

“Comninos” — 2005/8/31 — 20:17 — page i — #1

Mathematical and Computer Programming
Techniques for Computer Graphics

“Comninos” — 2005/8/31 — 20:17 — page iii — #3

Peter Comninos

Mathematical and
Computer
Programming
Techniques for
Computer Graphics

With 311 Figures

“Comninos” — 2005/8/31 — 20:17 — page iv — #4

Peter Comninos, Dip (Comp. Prog.), BSc (Hons) (Comp. Sc.), PhD (Comp. Sc.)
The National Centre for Computer Animation
Weymouth House
Bournemouth University
Poole BH12 5BB
United Kingdom
peterc@bournemouth.ac.uk

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2005925503

ISBN-10: 1-85233-902-0 Printed on acid-free paper
ISBN-13: 978-1-8233-902-9

© Springer-Verlag London Limited 2006

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be repro-
duced, stored or transmitted, in any form or by any means, with the prior permission in writing of
the publishers, or in the case of reprographic reproduction in accordance with the terms of licences
issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms
should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the ab-
sence of a specific statement, that such names are exempt from the relevant laws and regulations
and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the infor-
mation contained in this book and cannot accept any legal responsibility or liability for any errors
or omissions that may be made.

Printed in the United States of America (SPI/MVY)

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springeronline.com

“Comninos” — 2005/8/31 — 20:17 — page v — #5

“The knowledge of which geometry aims is the knowledge of the eternal.”

Plato Republic, VII, 52.

“There is geometry in the humming of the strings.”

Pythagoras

“Mathematics is the most beautiful and most powerful creation of the human
spirit. Mathematics is as old as Man.”

Stefan Banach

“The mathematician’s best work is art, a high perfect art, as daring as the most
secret dreams of imagination, clear and limpid. Mathematical genius and artistic
genius touch one another.”

Gösta Mittag-Leffler

“It is not only important, it is essential!”

Dr. Strangelove

“Comninos” — 2005/8/31 — 20:17 — page vii — #7

Preface

This book introduces undergraduate and postgraduate students to mathematics
and related computer programming techniques used in Computer Graphics. In a
gradual approach, the book exposes students to the underlying mathematical ideas
and leads them towards a level of sufficient understanding of detail to be able to
implement libraries and programs for 2D and 3D graphics. Through the use of
numerous code examples, the students are encouraged to explore and experiment
with data structures and computer programs (in the C programming language) and
to master the related mathematical techniques.

This book is meant for students with a minimum prerequisite knowledge of
mathematics. It assumes very little and any high school graduate should be able to
follow this book. The intended reader is expected to have had some basic exposure
to topics such as functions, trigonometric functions, elementary geometry and
number theory, and elements of set theory. The reader is also expected to have
some familiarity with some computer programming language such as C, although
any algorithmic language will serve the purpose.

The book includes a simple but effective set of routines, organised as a library,
that covers both 2D and 3D graphics. This parallel approach of exposing the
students to the mathematical theory and showing them how to incorporate it into
example programs is the major strength of this book. It both demystifies the
mathematics and it demonstrates its relevance to 2D and 3D computer graphics,
thus motivating and rewarding the reader.

This book is organised into ten chapters and four appendices. Chapters 1–4 are
characterised as survival kits, as they introduce the basic mathematical concepts
and techniques that are applied and are essential for a thorough understanding of
the remaining six chapters. The material presented in this book has been used to
teach mathematical and programming techniques to both Computer Scientists and
Artists. For a Bachelor degree that covers the mathematics for computer graphics
over three years, Chapter 1 would normally be taught at the end of year one,
Chapters 2–9 would normally be taught in year two of the course and Chapter 10
may be taught at the end of year two or the beginning of year three.

Chapter 1 introduces readers to concepts of set theory and function theory. It
assumes no prior knowledge of these topics and it is self-contained.

vii

“Comninos” — 2005/8/31 — 20:17 — page viii — #8

viii Preface

Chapter 2 deals with vectors and vector algebra. It introduces readers to these
topics assuming no prior knowledge save a rudimentary understanding of 2D and
3D geometry and some elements of trigonometry. Once readers have mastered
the material presented in this chapter, they will be able to solve complex vector
algebra problems and to implement their solutions in computer programs. Appen-
dix 1, which is associated with this chapter, presents an example implementation
of a 3D vector-algebra library.

Chapter 3 deals with matrices and matrix algebra. It introduces readers to these
topics assuming no prior knowledge of matrices but requiring a good understand-
ing of vector algebra. Once readers have mastered the material presented in this
chapter, they will be able to solve complex matrix algebra problems and to imple-
ment their solutions in computer programs. Appendix 2, which is associated with
this chapter, presents an example implementation of a 4D matrix-algebra library.

Chapter 4 deals with vector spaces, which is one of the most abstract subjects
dealt with in this book and thus one of the topics that some students find more
difficult. This chapter requires a good understanding of both vector and matrix
algebra. It is self-contained and, although it introduces the very important concept
of the change of basis matrix, it may be omitted by the uninterested reader.

Chapters 5 and 6 deal with the concepts of 2D transformations and 2D clipping
algorithms respectively, and their implementation. Appendix 3, which is associ-
ated with these two chapters, presents an example implementation of a compre-
hensive 2D graphics library.

Chapter 7 deals with the concepts of viewing and projection transformations,
3D clipping, and their implementation. Appendix 4, which is associated with this
chapter, presents an example implementation of a comprehensive 3D graphics
library.

Chapter 9 examines the data structures required to represent 3D models and
some of the hidden-surface removal and rendering techniques used in the creation
of computer generated images. This chapter also introduces readers to some of
the simple empirical lighting and shading models used in real-time graphics.

Finally, Chapter 10 presents a much more detailed exposition of the nature of
light and examines, in some detail, physically-based lighting and shading models,
and rendering techniques and algorithms. The material presented in this chapter
is more mathematically challenging.

Most of the material presented in this book has been designed to be accessible
to B.A., B.Sc., M.A. and M.Sc. students of a computer animation, digital spe-
cial effects or technical direction degree course. This book however will also be
useful to computer science students studying a graphics or animation unit and to
technical directors in CGI production.

The vector and matrix notation of this book is designed to appeal to both North
American and International readers.

“Comninos” — 2005/8/31 — 20:17 — page ix — #9

Acknowledgements

I express my unreserved gratitude to countless students at the National Centre for
Computer Animation who have helped me “debug” this text and improve its read-
ability. My sincere thanks also go to my wife Danièle and my daughter Celina.
Without their support and understanding writing this book would have been im-
possible.

Last but not least I would like to express my gratitude to my colleague
and friend Peter Hardie for allowing me to use his computer art on the cover
of this book. More information on Peter’s work can be found online at
http://ncca.bournemouth.ac.uk/newhome/announce phsab.html.

ix

“Comninos” — 2005/8/31 — 20:17 — page xi — #11

Contents

Preface vii

Acknowledgements ix

Some Definitions of Terms 1

1 Set Theory Survival Kit 3
1.1 Some Basic Notations and Definitions 4

1.1.1 Sets and Elements . 4
1.1.2 Notation and Set Specification 4
1.1.3 Set Membership . 5
1.1.4 Finite and Infinite Sets 6

1.2 Equality of Sets . 6
1.3 The Null Set or Empty Set . 6
1.4 Subsets . 6
1.5 Supersets . 7
1.6 Proper Subsets and Supersets 7
1.7 Comparable Sets . 8
1.8 The Universal Set . 8
1.9 Disjoint Sets . 8
1.10 Venn-Euler Diagrams . 8
1.11 Line Diagrams . 11
1.12 Basic Set Operations . 11

1.12.1 Set Union . 11
1.12.2 Set Intersection . 12
1.12.3 Set Difference . 13
1.12.4 The Symmetric Difference of Two Sets 14
1.12.5 The Complement of a Set 18

Theorem 1.1 . 19
1.12.6 Theorems on Comparable Sets 20

Theorem 1.2 . 20
Theorem 1.3 . 20

xi

“Comninos” — 2005/8/31 — 20:17 — page xii — #12

xii Contents

Theorem 1.4 . 20
Theorem 1.5 . 21
Theorem 1.6 . 22

1.13 The Algebra of Sets . 22
1.13.1 The Rules of the Algebra of Sets 22

Theorem 1.7 . 23
Theorem 1.8 . 23

1.13.2 The Duality Principle 24
Theorem 1.9 . 24

1.14 Numbers and Sets . 25
1.14.1 Classes of Numbers 25
1.14.2 Closure . 25
1.14.3 The Set of Real Numbers R 26
1.14.4 The Set of Rational Numbers Q 26
1.14.5 The Set of Irrational Numbers Q

′ 27
1.14.6 The Set of Natural Numbers N 27
1.14.7 The Set of Integer Numbers Z 28
1.14.8 Other useful Sets of Numbers 28

1.14.8.1 The Set of Complex Numbers C 28
1.14.8.2 The Set of Algebraic Numbers A 28
1.14.8.3 The Set of Transcendental Numbers T 28

1.14.9 Ordering Relations or Inequalities 29
The Reflexivity Property 29
The Trichotomy Property 29
The Antisymmetry Property 29
The Transitivity Property 29
The Additional and Subtraction Property . . 29
The Multiplication and Division Property . . 30
Examples 30

1.14.10 The Absolute Value or Modulus of a Number 30
1.14.11 Real Number Intervals 32
1.14.12 Properties of Real Number Intervals 34
1.14.13 Real Number Interval Arithmetic 34
1.14.14 Bounded and Unbounded Real Number Sets 35

1.15 Ordered Pairs and Ordered n-tuples 36
1.16 The Cartesian Product of Sets 37
1.17 Functions . 38

1.17.1 The Formal Definition of a Function 39
1.17.2 Mappings, Operators and Transformations 41
1.17.3 Equality of Functions 41
1.17.4 The Range of a Function 43
1.17.5 Different Types of Functions 43

1.17.5.1 Many-to-One Functions 43
1.17.5.2 Injective Functions or One-to-One Functions 43
1.17.5.3 Surjective Functions or Onto Functions . . . 44

“Comninos” — 2005/8/31 — 20:17 — page xiii — #13

Contents xiii

1.17.5.4 Bijective Functions or One-to-One
Correspondences 45

1.17.6 Constant Functions 47
1.17.7 The Identity Function or Identity Transformation 48
1.17.8 The Composition or Product of Functions 48
1.17.9 The Inverse of a Function 49

1.17.9.1 Applying the Inverse of a Function to an
Element of its Co-domain 50

1.17.9.2 Applying the Inverse of a Function to a
Subset of its Co-domain 50

1.17.10 The Inverse Function 52
1.17.11 Theorems on the Inverse Function 53

Theorem 1.10 . 53
Theorem 1.11 . 54

1.17.12 The Graph of a Function 54
1.17.13 The Redefinition of a Function as a Set of

Ordered Pairs . 57
1.18 Families of Indexed Sets . 58
1.19 The Generalised Set Union and Intersection Operations 60

1.19.1 The Negation of the Generalised Set Operations 61
1.19.2 Some Algebraic Rules for the Generalised Set

Operations . 61
1.20 The Cardinality or Size of a Set 62

1.20.1 Equivalent Sets . 62
1.20.2 The Cardinal Number or Cardinality of a Set 63

1.21 The Power Set of a Set . 63

2 Vector Algebra Survival Kit 65
2.1 Some Basic Definitions and Notation 65
2.2 Multiplication of a Vector by a Scalar 68
2.3 Vector Addition . 69
2.4 Position Vectors and Free Vectors 71
2.5 The Vector Equation of a Line 71
2.6 Linear Dependence/Independence of Vectors 72
2.7 Vector Bases . 74
2.8 The Components of a Vector . 74

2.8.1 Multiplication of a Vector by a Scalar 74
2.8.2 Vector Addition . 74
2.8.3 Vector Equality . 75

2.9 Orthogonal, Orthonormal and Right-Handed Vector Bases 75
2.10 Cartesian Bases and Cartesian Coordinates 77
2.11 The Length of a Vector . 78
2.12 The Scalar Product of Vectors 78
2.13 The Scalar Product Expressed in Terms of its Components 80
2.14 Properties and Applications of the Scalar Product 80

“Comninos” — 2005/8/31 — 20:17 — page xiv — #14

xiv Contents

2.14.1 The Magnitude of a Vector Using its Components 80
2.14.2 Normalising a Vector 80
2.14.3 The Projection of a Vector onto Another 81
2.14.4 The Cosine of the Angle Between two Vectors 82
2.14.5 The Scalar Product of Collinear Vectors 82
2.14.6 The Scalar Product of Orthogonal Vectors 82

2.15 The Direction Ratios and Direction Cosines of a Vector 82
2.16 The Vector Product of two Vectors 84
2.17 The Vector Product Expressed in Terms of its Components 85
2.18 Properties of the Vector Product 86

2.18.1 The Geometric Interpretation of the Vector Product . . . 86
2.18.2 The Magnitude of the Vector Product in Terms of its

Components . 87
2.18.3 The Square of the Magnitude of the Vector Product . . . 87
2.18.4 The Magnitude of the Sine of the Angle between Two

Vectors . 87
2.19 Triple Products of Vectors . 88

2.19.1 The Triple Scalar Product 88
2.19.2 The Triple Vector Product 90
2.19.3 The Scalar Product of Two Vector Products 91
2.19.4 The Vector Product of two Vector Products 92

2.20 The Components of a Vector Relative to a Non-orthogonal
Basis . 92

2.21 The Decomposition of a Vector According to a Basis 95
2.22 The Vector Equation of the Line Revisited 96

2.22.1 The Line Defined by Two Position Vectors 96
2.22.2 The Line Defined by a Position Vector and Direction

Vector . 97
2.23 The Vector Equation of the Plane 98

2.23.1 The Plane Defined by a Position Vector and a Normal
Vector . 98

2.23.2 The Plane Defined by three Position Vectors 99
2.24 Some Applications of Vector Algebra in Analytical Geometry . . 101

2.24.1 The Distance Between Two Points in Space 101
2.24.2 The Perpendicular Distance from a Point to a Line 102
2.24.3 The Distance of a Point from a Line 103
2.24.4 The Distance Between Two Parallel Lines 104
2.24.5 The Distance Between Two Non-Parallel Lines 105
2.24.6 The Cosine of the Angle Between Two Lines 106
2.24.7 The Cosine of the Angle Between Two Planes 106
2.24.8 The Distance of a Point from a Plane 107
2.24.9 The Point of Intersection of a Line and a Plane 109

2.25 Summary of Vector Algebra Axioms and Rules 110
2.26 A Simple Vector Algebra C Library 113

“Comninos” — 2005/8/31 — 20:17 — page xv — #15

Contents xv

3 Matrix Algebra Survival Kit 115
3.1 The Definition of a Matrix . 118
3.2 Square Matrices . 119
3.3 Diagonal Matrices . 120
3.4 The Identity Matrix . 120
3.5 The Zero or Null Matrix . 120
3.6 The Transpose of a Matrix . 121
3.7 Symmetric and Antisymmetric Matrices 122
3.8 Triangular Matrices . 123
3.9 Scalar Matrices . 124
3.10 Equality of Matrices . 124
3.11 Matrix Operations . 125

3.11.1 Addition and Subtraction of Matrices 125
3.11.2 Multiplication of a Matrix by a Scalar 126
3.11.3 Multiplication of a Vector by a Vector 127
3.11.4 Multiplication of a Matrix by a Vector 128
3.11.5 Multiplication of Two Matrices 129
3.11.6 Powers of Matrices . 130
3.11.7 Axioms and Rules of Matrix Multiplication 131

3.12 The Minor of a Matrix . 131
3.13 The Determinant of a Matrix 132
3.14 The Computational Rules of Determinants 134

3.14.1 The Transposition Rule 134
3.14.2 The Interchange Rule 135
3.14.3 The Factor Rule . 135
3.14.4 The Linear Combinations Rule 136
3.14.5 The Decomposition Rule 136
3.14.6 The Product Rule . 136
3.14.7 The Equality Rule . 137
3.14.8 The Conditions for a Zero Determinant 137

3.15 The Cofactor of an Element of a Matrix and the Cofactor Matrix . 138
3.16 The Adjoint Matrix or Adjugate Matrix 139
3.17 The Reciprocal or Inverse of a Matrix 140

3.17.1 Justification of the Definition of the Inverse 141
3.18 A Theorem on Invertible Matrices and their Determinants 142
3.19 Axioms and Rules of Matrix Inversion 145
3.20 Solving a system of linear Simultaneous Equations 146
3.21 Orthogonal Matrices . 146
3.22 Two Theorems on Vector by Matrix Multiplication 147
3.23 The Row-/Column-Reversal Matrix 148

3.23.1 Summary of Matrix Algebra Axioms and Rules 149
3.24 A Simple Matrix Algebra C Library 151

4 Vector Spaces or Linear Spaces 153
4.1 Definition of a Scalar Field . 153

“Comninos” — 2005/8/31 — 20:17 — page xvi — #16

xvi Contents

4.2 Definition of a Vector Space . 154
4.3 Linear Combinations of Vectors 156
4.4 Linear Dependence and Linear Independence of Vectors 157
4.5 Spans and Bases of a Vector Space 157
4.6 Transformations Between Bases 158
4.7 Transformations Between Orthonormal Bases 161
4.8 Alternative Notation for Change of Basis Transformations 162

5 Two-Dimensional Transformations 165
5.1 Definition of a 2D Transformation 165
5.2 Concatenation of Transformations 165
5.3 2D Graphics Transformations 167
5.4 2D Primitive Transformations 167

5.4.1 Scaling Transformation Relative to the Origin 167
5.4.2 Translation Transformation 168
5.4.3 Rotation Transformation about the Origin 168
5.4.4 Shearing Transformation Along the X-Axis 171
5.4.5 Shearing Transformation Along the Y-Axis 171

5.5 2D Composite Transformations 172
5.5.1 Reflection Transformations About One- or

Two-Coordinate Axes 172
5.5.2 Scaling Transformation About an Arbitrary Point 173
5.5.3 Rotation Transformation About an Arbitrary Point 174
5.5.4 Reflection Transformation About an Arbitrary Axis . . . 175

5.6 Sign of the Angles in Transformations 177
5.7 Some Important Observations 178
5.8 Matrix Representation of 2D Transformations 178
5.9 Matrix Representation of Primitive Transformations 180
5.10 Some Transformation Matrix Properties 181
5.11 Concatenation of Transformation Matrices 181
5.12 Local Frame and Global Frame Transformations 184

5.12.1 Concatenation of Global Transformations 185
5.12.2 Concatenation of Local Transformations 186

5.13 Transformations of the Frame of Reference or
Coordinate System . 186

5.14 Viewing Transformation . 187
5.14.1 Windowing Transformation 187
5.14.2 Viewporting Transformation 188

5.15 Homogeneous Coordinates . 190
5.16 A Simple C Library for 2D Transformations 192

6 Two-Dimensional Clipping 193
6.1 Clipping a 2D Point to a Rectangular Clipping Boundary 193
6.2 Clipping a 2D Line Segment to a Rectangular Clipping Boundary 194
6.3 The Cohen and Sutherland 2D Line-Clipping Algorithm 197

“Comninos” — 2005/8/31 — 20:17 — page xvii — #17

Contents xvii

6.4 2D Polygon Clipping . 202
6.4.1 The Sutherland and Hodgman Polygon-Clipping Algorithm 203
6.4.2 The Weiler and Atherton Polygon-Clipping Algorithm . . . 219

References . 223

7 Three-Dimensional Transformations 225
7.1 Introduction . 225
7.2 Primitive 3D Transformations . 226

7.2.1 Scaling Transformation Relative to the Origin 227
7.2.2 Translation Transformation 227
7.2.3 Rotation About a Coordinate Axis 228

7.2.3.1 Rotation About the Z-Axis 228
7.2.3.2 Rotation About the X-Axis 229
7.2.3.3 Rotation About the Y-Axis 230

7.2.4 Shearing Transformations 231
7.2.4.1 Shearing the X-Axis Parallel to the Y-Axis

(sx ‖y) . 232
7.2.4.2 Shearing the X-Axis Parallel to the Z-Axis

(sx ‖z) . 233
7.2.4.3 Shearing the Y-Axis Parallel to the X-Axis

(sy ‖x) . 234
7.2.4.4 Shearing the Y-Axis Parallel to the Z-Axis

(sy ‖z) . 235
7.2.4.5 Shearing the Z-Axis Parallel to the X-Axis

(sz ‖x) . 236
7.2.4.6 Shearing the Z-Axis Parallel to the Y-Axis

(sz ‖y) . 237
7.3 Global and Local Frames of Reference 238
7.4 Aiming Transformations . 241

7.4.1 Aiming the Local X-Axis in the Direction of an Arbitrary
Unit Vector V . 242

7.4.2 Aiming the Local Y-Axis in the Direction of an Arbitrary
Unit Vector V . 243

7.4.3 Aiming the Local Z-Axis in the Direction of an Arbitrary
Unit Vector V . 244

7.5 Composite Transformations . 245
7.5.1 Composite Transformations Relative to a Point 245

7.5.1.1 Composite Transformations Relative to the
Origin of the Frame 245

7.5.1.2 Composite Transformations Relative to an
Arbitrary Point 246

7.5.2 Composite Transformations Relative to an Axis 246
7.5.2.1 Composite Transformations Relative to a Major

Axis . 246

“Comninos” — 2005/8/31 — 20:17 — page xviii — #18

xviii Contents

7.5.2.2 Composite Transformations Relative to an Axis
Parallel to a Major Axis 247

7.5.2.3 Composite Transformations Relative to an
Arbitrary Axis 248

7.5.3 Composite Transformations Relative to a Plane 249
7.5.3.1 Composite Transformations Relative to a Major

Plane . 249
7.5.3.2 Composite Transformations Relative to an

Arbitrary Plane 250
7.6 Local Frame and Global Frame Transformations 251
7.7 Transformations of the Frame of Reference or Coordinate System 252
References . 252

8 Viewing and Projection Transformations 253
8.1 Conceptual Camera Model . 253
8.2 Viewing Transformation . 255
8.3 Projection Transformation . 260
8.4 Projection Transformation Matrix 261
8.5 Parallel Projections . 262

8.5.1 Orthographic Projections 262
8.5.1.1 Multi-View Orthographic Projections 262
8.5.1.2 Axonometric Projections 264

8.5.1.2.1 Isometric Projections 264
8.5.1.2.2 Dimetric Projections 266
8.5.1.2.3 Trimetric Projections 266

8.5.1.3 Orthographic Projection Matrix 267
8.5.2 Oblique Projections . 267

8.5.2.1 Oblique Projection Matrix 270
8.6 Perspective Projections . 271

8.6.1 Perspective Projection Matrix 273
8.7 Screen or Device Coordinate System 275
8.8 3D Line Clipping . 277
8.9 Perspective Depth . 287
8.10 Simple C Library for 3D Transformations 289

9 3D Rendering 291
9.1 Introduction . 291
9.2 Rendering Algorithms . 294

9.2.1 A Simple Rendering Algorithm 295
9.2.2 Warnock (Screen Subdivision) Algorithm 296
9.2.3 Newell, Newell and Sancha Algorithm 299
9.2.4 Single Scan-Line Depth-Buffer Algorithm 302

9.3 Reflection Models and Shading Techniques 305
9.3.1 Ambient Light Reflection 306
9.3.2 Diffuse Light Reflection 306

“Comninos” — 2005/8/31 — 20:17 — page xix — #19

Contents xix

9.3.3 Specular Light Reflection 308
9.3.3.1 Horn’s Method for Computing the Specular

Reflection Function 309
9.3.3.2 Blinn’s Method for Computing the

Specular Reflection Function 310
9.3.4 Phong’s Lighting Model 311

9.3.4.1 Simulating Multiple Light Sources 311
9.3.4.2 Simulating Distant Light Sources 311
9.3.4.3 Coloured Light Sources 312

9.4 Shading Techniques . 313
9.4.1 Flat Polygon Shading Technique 313
9.4.2 Gouraud Smooth Shading Technique 313
9.4.3 Phong Smooth Shading Technique 315

References . 316

10 Physically Based Lighting and Shading Models and Rendering
Algorithms 317
10.1 Evolution of the Theory of Light 317
10.2 Nature of Light . 320
10.3 Interaction of Light with Various Materials 324

10.3.1 Light Reflection . 325
10.3.2 Light Refraction and Transmission 326
10.3.3 Total Internal Reflection 328
10.3.4 Light Scattering and Absorption 329
10.3.5 Subsurface Scattering 330

10.4 Some Useful Concepts, Definitions and Conventions 331
10.4.1 Spherical Coordinates of a Vector 333
10.4.2 Determining the Reflection Vector 335
10.4.3 Determining the Transmission Vector 335
10.4.4 Illuminating Hemisphere and Solid Angles 337

10.5 Some Basic Terminology of Lighting 341
10.6 Light Emission . 347
10.7 The Scattering and Reflection Functions 349

10.7.1 Bi-directional Scattering Surface Reflectance
Distribution Function (BSSRDF) 350

10.7.2 Bi-directional Reflectance Distribution Function
(BRDF) . 351

10.7.3 Reflectance, Transmittance and Scattering Equations . . 354
10.7.4 Properties of the BRDFs 355

10.7.4.1 Non-Negativity Property 355
10.7.4.2 Symmetry Property or the Helmholtz

Reciprocity Property 355
10.7.4.3 Energy Conservation Property 356

10.8 Reflectance Function of a Surface 356
10.9 Transmittance Function of a Surface 358

“Comninos” — 2005/8/31 — 20:17 — page xx — #20

xx Contents

10.10 Reflection and Transmission Models 359
10.10.1 Diffuse Reflection Model 360
10.10.2 Specular Reflection Model 361
10.10.3 Fresnel Effect . 363
10.10.4 Glossy or Semi-coherent Reflections 372

10.11 Some Classical and Physically Plausible Shading Models . . . 374
10.11.1 The Phong Shader 375
10.11.2 The Modified Phong Shader 377
10.11.3 The Cook-Torrance Shaders 378
10.11.4 The Ashikmin-Shirley Shader 382

10.12 Illumination Models and Rendering Equation 385
10.12.1 Local or Direct Illumination Model 386
10.12.2 Global or Indirect Illumination Model 387

10.13 Monte Carlo Method and Monte Carlo Integration 391
10.14 Physically-Based Rendering Algorithms 393

10.14.1 Object-Space Rendering Algorithms 394
10.14.1.1 The Radiosity Algorithm 394

10.14.2 Image-Space Rendering Algorithms 395
10.14.2.1 The Recursive Ray-Tracing Algorithm . . 396
10.14.2.2 The Distributed Ray-Tracing Algorithm . 398
10.14.2.3 The Path-Tracing Algorithm 400
10.14.2.4 The Bi-directional Path-Tracing

Algorithm 403
10.14.2.5 The Metropolis Light Transport

Algorithm 409
10.14.2.6 The Photon-Mapping Technique 410

10.14.2.6.1 Photon-Mapping Pass . . . 411
10.14.2.6.2 Emission of Photons 411
10.14.2.6.3 Scattering and Tracing of

Photons 412
10.14.2.6.4 Storage of Photons 412
10.14.2.6.5 Photon Density Estimation . 413
10.14.2.6.6 Rendering Pass 414
10.14.2.6.7 Observations 417

10.14.3 Hybrid Multi-Pass Rendering Algorithms 418
References . 418

Appendix 1 A Simple Vector Algebra C Library 423

Appendix 2 A Simple Matrix Algebra C Library 437

Appendix 3 A Simple C Library for 2D Transformations 449

Appendix 4 A Simple C Library for 3D Transformations 467

Index 531

“Comninos” — 2005/8/31 — 20:17 — page 1 — #21

Some Definitions of Terms

Before we proceed with the main business of this book, let us start by presenting
some definitions of terms frequently used in mathematics.

Definitions of Mathematical Terms

Proposition A statement that is to be proved.

True A statement that is rigorously known to be correct. In preposi-
tional logic any statement can be true or false.

False A statement that is rigorously known not to be true.

Axiom A statement considered to be self-evidently true without the need
for any proof. The term axiom is an archaic synonym for the term
postulate. In contrast the terms conjecture or hypothesis denote
a statement that is apparently true (i.e. it is consistent with the
available data) but is not self-evidently true. The word axiom is
derived from the Greek noun “axioma” which is derived from the
Greek verb “axio” meaning to claim or to demand [that a statement
is true].

Postulate A statement that is self-evidently true without the need for any
proof. Postulates are the basic building blocks from which lemmas
and theorems are derived. The entire topic of Euclidean geometry
is based on five postulates that are known as Euclid’s postulates
(see below).

Conjecture A proposition that is consistent with the available data (known
facts), but has neither been shown (proven) to be true or false.
A conjecture is sometimes known as a hypothesis.

Hypothesis A proposition that is consistent with the available data (known
facts), but has neither been shown (proven) to be true or false.
A hypothesis is sometimes known as a conjecture.

1

“Comninos” — 2005/8/31 — 20:17 — page 2 — #22

2 Mathematical and Computer Programming Techniques for Computer Graphics

Lemma A short theorem used as a stepping stone in proving a larger (more
complex) theorem.

Theorem A statement that can be demonstrated to be true by a series of mathe-
matical operations and logical arguments. A theorem is the embodi-
ment of some general principle and forms part of a larger theory. The
process of proving the correctness of a theorem is called a proof. It is
estimated that 250,000 theorems are published each year. The word
theorem is derived from the Greek noun “theorima” which is derived
from the Greek verb “theoro” meaning to consider or to regard [that
a statement is true].

Proof A rigorous mathematical argument that unambiguously demon-
strates the truth of a given proposition.

What normally determines the elegance of a mathematical theory is its reliance
on as few ideas as possible that we take for granted and that we do not have to
or we cannot prove, i.e. its reliance on as few axioms or postulates as possible to
ensure its logical consistency. In order to illustrate the use of axioms or postulates
in a definition of a mathematical theory, let us examine how the famous Greek
mathematician Euclid based the entire formulation of his geometry on just five
self-evidently true but unprovable statements.

Euclid’s Postulates

The whole logical structure of Euclidean geometry is based on the following five
postulates or axioms:

1. Any two points in space define a straight-line or a straight-line segment can be
drawn by joining two points in space.

2. Any straight-line segment can be extended indefinitely into a straight-line.
3. Given any straight-line segment, a circle can be drawn having this segment as

its radius and one of its endpoints as its centre.
4. All right angles are congruent (i.e. equal to one another).
5. If two lines are drawn which intersect a third in such a way that the sum of

the two interior angles on the same side of the third line is less than two right
angles, then these two lines, if extended infinitely, must intersect each other
on that side of the third line. This postulate is known as the parallel postulate.

“Comninos” — 2005/8/31 — 14:52 — page 3 — #1

1

Set Theory Survival Kit

Unlike many other branches of mathematics, where the formulation of ideas and
concepts occurs gradually over time and is developed by many mathematicians
before it is formalised into a single theory, the formulation of set theory is almost
the single-handed creation of one mathematician, namely Georg Cantor.

Georg Ferdinand Ludwig Philipp Cantor (1845–1918) was born in Russia to a
Danish father and a Russian mother and spent most of his life in Germany. Be-
tween the years 1879 and 1884 Cantor published a six-part treatise on set theory
(where he introduced some of the fundamental notions of this theory) followed
by the publication of a two-part treatise between the years 1895 and 1897 (where
he clarified and systematised what he had introduced in his first cycle of publi-
cations).

Between the years 1897 and 1902 a number of paradoxes in Cantor’s set the-
ory began to emerge. These paradoxes were discovered by Cantor himself and,
among others, by the Italian mathematician Cesare Burali-Forti (1861–1931), the
German mathematician Ernst Friedrich Ferdinand Zermelo (1871–1953) and the
British mathematician Bertrand Arthur William Russell (1872–1970).

In 1908, Zermelo was the first to attempt to introduce an axiomatic approach to
the study of set theory. Since then, many mathematicians proved influential in the
further development of set theory. Among these are the German mathematician
Adolf Abraham Halevi Fraenkel (1891–1965), the Hungarian mathematician and
computer scientist John von Neumann (1903–1957), the Swiss mathematician
Paul Isaac Bernays (1888–1977) and the Czech mathematician Kurt Gödel (1906–
1978).

Since its introduction, set theory has proved to be of great importance to the
modern formulation of many topics of pure mathematics. In current mathemati-
cal practice, such topics as numbers, relations, intervals, functions and transfor-
mations are defined in terms of sets. In our study of computer graphics we will
frequently use sets to explain a number of other mathematical concepts. Thus, it
is important to gain a good understanding of sets and set theory.

3

“Comninos” — 2005/8/31 — 14:52 — page 4 — #2

4 Mathematical and Computer Programming Techniques for Computer Graphics

1.1 Some Basic Notations and Definitions

1.1.1 Sets and Elements

The concept of the set is one of the basic concepts of mathematics and is funda-
mental to most branches of modern mathematics. Thus, we start our discussion by
defining the terms set and element or member. A set is any well-defined list, col-
lection or class of objects, in which the order and multiplicity of these objects has
no significance and is ignored. These objects are called the elements or members
of the set. The phrase well-defined means that there is a clear and unambiguous
way of defining the elements of a set, i.e. of determining if a given element is a
member of a given set.

Sets may be finite or infinite depending on the number of their elements.
Set theory is the branch of mathematics that concerns the study of sets and their

properties.

1.1.2 Notation and Set Specification

Usually sets are denoted by upper-case bold italic characters such as A, B, S1 or
S2, while their elements are denoted by non-bold italic characters such as a, b, e1
or e2.

We may define a particular set in two distinct ways. We may define a set by
listing its elements. For instance:

A = {2, 3, 6, 8}
We call such a definition the tabular form of the set.

Alternatively, we may define a set by stating one or more properties that its
elements must satisfy in order to belong to this set. For instance:

B = {x | x is an odd integer} or B = {x : x is an odd integer}
We call such a definition the set-builder form or the set-comprehension form of

the set. Here the symbols “|” and “:” are read as “where”.
Consider the following examples of set definitions:

S1 = {John, Paul, George, Ringo}
S2 = {x | x is a person living in Europe}
S3 = {1, 3, 5, 7, . . .}
S4 = {cyan, magenta, yellow}
S5 = {magenta, yellow, cyan}
S6 = {cyan, cyan, magenta, yellow, yellow}
S7 = {x | x is a primary colour of the subtractive colour system}

Here, set S1 represents the members of the sixties popular group “The Beatles”,
set S2 is a very large set containing every person living in Europe at this instance

“Comninos” — 2005/8/31 — 14:52 — page 5 — #3

Set Theory Survival Kit 5

in time, and S3 is the set of all odd integers which is identical to the set B defined
above.

Also, the alternative definitions S4 to S7 specify the same set (i.e. the primary
colours of the subtractive colour system). Observe that the order of the elements
and the repetition of elements in a set definition are irrelevant and are ignored.

A more general form of the set-builder form of a set can be written as:

S = {x | ℘(x)}
which denotes the set of all the entities (objects) for which the condition (propo-
sition) ℘ (x) holds true. For instance, the definition:

S = {x | x is a dog wi th blue eyes} or S = {x | ℘ (x)}
denotes the set of all dogs with blue eyes when the proposition ℘(x) = x is a dog
wi th blue eyes.

Let us consider some variations on the theme of the set-builder form of set
definitions. In the following examples, Z denotes the set of all integers.

• S1 = {x ∈ S | ℘ (x)} denotes the set of all elements that belong to set S and sat-
isfy the proposition ℘ (x). For instance, S1 = {x ∈ Z | ℘ (x)} (where ℘ (x) =
x is odd) denotes the set of odd integers.

• S2 = { f (x) | x ∈ S} denotes the set of elements obtained by applying the func-
tion f to the elements of set S. For instance, the set definition S2 = { f (x) | x ∈
Z} (where f (x) = 2x) denotes the set of all even integers.

• S3 = { f (x) | ℘ (x)} denotes the set of all elements obtained by applying the
function f to all the objects that satisfy the proposition ℘. For instance, the
definition S3 = {x2 | x is a member of the set {−3,−2,−1, 1, 2, 3}} denotes
the set {1, 4, 9}. Here f (x) = x2 and ℘(x) = x is a member of the set {−3,−2,
−1, 1, 2, 3}.

1.1.3 Set Membership

If an object x is a member of a set A, i.e. if A contains x as one of its elements,
then we denote this relationship as:

x ∈ A

which reads x belongs to A, x is a member of A or x is in A.
If an object x is not a member of a set A, then we denote this relationship as:

x /∈ A

which reads x does not belong to A, x is not a member of A or x is not in A.
The symbol “∈” was introduced by the Italian mathematician Giuseppe Peano

in 1888 and is derived from the first letter of the Greek word “ειναι”
meaning “is”.

“Comninos” — 2005/8/31 — 14:52 — page 6 — #4

6 Mathematical and Computer Programming Techniques for Computer Graphics

1.1.4 Finite and Infinite Sets

We say that a set is finite if it consists of a specific number of different elements,
i.e. if the process of counting its elements can terminate. Otherwise, we say that
the set is infinite. For instance:

• If D is the set of the days of the week, then D is a finite set.
• If O = {1, 3, 5, 7, . . .}, then O is an infinite set.
• If M = {x | x is a mountain of this planet}, then M is a finite set, even though

it may be very difficult to count all the mountains of this planet.

If a set S has n elements (where n is a non-negative integer), then we say that
S has cardinality n.

1.2 Equality of Sets

A set A is said to be equal to a set B, if both sets have the same members, i.e. if
every element of A also belongs to B and if every element of B also belongs to
A. We denote this equality as A = B. If the two sets are not equal, then we write
A �= B. For instance:

• If A = {1, 2, 3, 4} and B = {3, 1, 4, 2}, then A = B (as a set does not change if
its elements are rearranged).

• If C = {5, 6, 5, 7} and D = {7, 5, 7, 6}, then C = D (as a set does not change if
its elements are repeated).

1.3 The Null Set or Empty Set

A set that contains no elements is called a null set or an empty set and is denoted
by the symbol “Ø”or by two empty braces “{}”. For instance:

• If A is the set of all people in the world who are older than 500 years, then A is
the empty set, i.e. A = Ø.

• If B = {
x | x2 = 4 ∧ x is an odd integer

}
, then B = Ø. In this definition the

symbol “∧” is read as “and”.
• Empty sets have zero cardinality.

1.4 Subsets

If every element of a set A is also an element of a set B, then set A is called a
subset of set B. This relationship is denoted as A ⊆ B which reads “A is a subset
of B” or “A is contained in B”. Thus, given two sets A and B:

A ⊆ B, if x ∈ A ⇒ x ∈ B

“Comninos” — 2005/8/31 — 14:52 — page 7 — #5

Set Theory Survival Kit 7

For instance:

• If C = {1, 3, 5} and D = {5, 4, 3, 2, 1}, then C ⊆ D.

• If E = {2, 4, 6} and F = {6, 4, 2}, then E ⊆ F.

Two sets A and B are said to be equal if and only if A ⊆ B and B ⊆ A
(i.e. A = B ⇔ A ⊆ B ∧ B ⊆ A).

1.5 Supersets

If set A is a subset of set B (i.e. A ⊆ B), then we can also denote this as B ⊇ A,
which reads B is a superset of A or B contains A.

If set A is not a subset of set B, then we can denote this as A �⊆ B or B �⊇ A.
Observe that:

• The null set Ø is the subset of every set.

• If A �⊆ B, then this means that there is at least one element of set A that is not a
member of set B.

1.6 Proper Subsets and Supersets

A set A is called a proper subset of a set B if A is a subset of B and A is not equal
to B, i.e.

A ⊂ B, if A ⊆ B and A �= B

If set A is a proper subset of set B (i.e. A ⊂ B), then we can also denote this as
B ⊃ A, which reads “B is a proper superset of A”, i.e.

B ⊃ A, if A ⊂ B

If set A is not a proper subset of set B, then we can denote this as A �⊂ B
(which reads A is not a proper subset of B) or B �⊃ A (which reads B is not a
proper superset of A).

The use of the symbols “⊆” and “⊂” to represent the ordinary and proper subset
operators is symmetrical to the use of the symbols “≤” and “<” to represent
the less than or equal and less than scalar operators. Similarly, the use of the
symbols “⊇” and “⊃” to represent the ordinary and proper superset operators
is symmetrical to the use of the symbols “≥” and “>” to represent the greater
than or equal and greater than scalar operators. In some literature there is no
distinction made between the ordinary and proper subset/superset operators which
are represented by the symbols “⊂” and “⊃”, respectively.

“Comninos” — 2005/8/31 — 14:52 — page 8 — #6

8 Mathematical and Computer Programming Techniques for Computer Graphics

1.7 Comparable Sets

Two sets A and B are said to be comparable if A ⊂ B or B ⊂ A, that is if one of
the two sets is a subset of the other set. Conversely, two sets A and B are said to
be non-comparable (incomparable) if A �⊂ B and B �⊂ A.

If a set A is not comparable to a set B, then there is an element of A which is
not in B and an element in B which is not in A. For instance:

• If A = {a, b} and B = {a, b, c}, then A is comparable to B (since A ⊂ B).
• If R = {a, b} and S = {b, c}, then these sets are non-comparable (since a ∈ R

and a /∈ S, and c ∈ S and c /∈ R).

1.8 The Universal Set

In any application of set theory, all the sets under investigation are likely to be
subsets of a fixed set. We call this set the universal set or the universe of discourse
and we denote it by the capital letter U. Any set can act as the universal set,
provided that we are investigating this particular set and its subsets. For instance,
if we are investigating the set of real numbers and their subsets, then the real
number set R can be taken to be the universal set for our investigation (i.e. in this
case, U = R).

The universal set is only defined in the context of our investigation and it is
not an absolute concept. Thus, we can not speak of an absolute universal set that
contains everything.

1.9 Disjoint Sets

If two sets A and B have no elements in common (i.e. if no element of A is in
B and no element of B is in A), then we say that A and B are disjoint sets. For
instance:

• If A = {1, 3, 7, 8} and B = {2, 4, 7, 9}, then A and B are not disjoint (as 7 ∈ A
and 7 ∈ B).

• If A = {1, 2, 3} and B = {4, 5, 6}, then A and B are disjoint.
• If A = {x | x > 0} and B = {x | x < 0}, then A and B are disjoint.

1.10 Venn-Euler Diagrams

A Venn-Euler diagram is a pictorial representation of specific sets and their rela-
tionships, using sets of points on the plane to represent them.

These diagrams were invented by Leonhard Euler (1707–1783) and about one
hundred years later by John Venn (1834–1923). Euler and Venn diagrams are
identical in their appearance and are only differentiated by their domain of appli-
cation. Euler used his diagrams in an attempt to illustrate specific sets and their

“Comninos” — 2005/8/31 — 14:52 — page 9 — #7

Set Theory Survival Kit 9

subsets, while Venn used his diagrams to illustrate all possible relationships be-
tween specific sets. These diagrams are commonly known as Venn diagrams since
they represent the only major contribution of Venn to mathematics, whereas Euler
is remembered for his many contributions to the field.

In a Venn diagram, the universal set is represented by a region of the plane
described by a rectangle and the other sets under investigation are represented
by regions of the plane described by ellipses or closed curves. For instance, if
the universal set U represents all animals, the region labelled C represents the set
of all camels, the region labelled B represents the set of all birds and the region
labelled A represents the set of all albatrosses, then the Venn diagram shown in
Fig. 1.1 represents the relationship of these sets.

Figures 1.2–1.5 illustrate the use of Venn diagrams to represent various rela-
tionships between two sets A and B. Figure 1.2 represents the relationship “set A is
a proper subset of set B”, i.e. A ⊂ B. Figure 1.3 represents the relationship “set A

U

C

B

A

FIGURE 1.1. The relationship of camels, birds and albatrosses.

U

B

A

FIGURE 1.2. The Venn diagram of the set relationship A ⊂ B.

“Comninos” — 2005/8/31 — 14:52 — page 10 — #8

10 Mathematical and Computer Programming Techniques for Computer Graphics

U

BA

FIGURE 1.3. The Venn diagram of two disjoint sets.

U

BA

FIGURE 1.4. The Venn diagram of two incomparable sets.

U

BA
e1•

•

•

•

•

•e2

e3

e4

e5

e6

FIGURE 1.5. The Venn diagram of two sets that share some common elements.

“Comninos” — 2005/8/31 — 14:52 — page 11 — #9

Set Theory Survival Kit 11

B

A

C

B

A

C

BA
B

DC

A

(a) (b) (c) (d)

FIGURE 1.6. (a), (b), (c), (d)

is disjoint from set B”. Figure 1.4 represents the relationship “sets A and B are
incomparable”. Figure 1.5 represents the relationship between set A = {e1, e2,
e3, e4} and set B = {e3, e4, e5, e6}.

1.11 Line Diagrams

Another insightful and instructive way of representing the relationships that exist
between sets is by using line diagrams. The following examples help illustrate
how line diagrams can be used to represent the relationship between two or more
sets:

• The set relationship A ⊆ B is illustrated by the line diagram of Fig. 1.6a.
• The set relationship A ⊆ B and B ⊆ C is illustrated by the line diagram of

Fig. 1.6b.
• If A = {e1}, B = {e2} and C = {e1, e2}, then the relationship of these sets is

illustrated by the line diagram of Fig. 1.6c.
• If A = {x}, B = {x , y}, C = {x , y, z} and D = {x , y, w}, then the relationship

of these sets is illustrated by the line diagram of Fig. 1.6d.

1.12 Basic Set Operations

1.12.1 Set Union

The union of sets A and B is the set of elements that belong to set A or to set B or
to both sets. We denote the union of sets A and B by A ∪ B, which reads A union
B. The formal definition of the union of sets A and B is given by:

A ∪ B = {x | x ∈ A ∨ x ∈ B} (1.1)

In this definition the symbol “∨” is read as “or”.
The Venn diagram representing the union of two sets is shown in Fig. 1.7. In

this diagram, the shaded area represents the elements of the union A ∪ B.

“Comninos” — 2005/8/31 — 14:52 — page 12 — #10

12 Mathematical and Computer Programming Techniques for Computer Graphics

U

BA

BA

FIGURE 1.7. The Venn diagram of the union A ∪ B.

Consider the following examples:

• If A = {a, b, c, d} and B = {c, d, e, f }, then A ∪ B {a, b, c, d, e, f }.
• If A = {x | x ∈ R ∧ x > 0} and B = {x | x ∈ R ∧ x < 0}, then A ∪ B =

{x | x ∈ R ∧ x �= 0}.
Given two sets A and B and their union A ∪ B, we make the following observa-

tions:

• The union operation is commutative, i.e. A ∪ B = B ∪ A.
• Both sets are subsets of their union, i.e. A ⊆ (A ∪ B) and B ⊆ (A ∪ B).

In some literature the union of sets A and B is denoted as A + B and it is called
the set-theoretic sum of A and B.

1.12.2 Set Intersection

The intersection of sets A and B is the set of elements that are common to both
sets, i.e. the elements that belong both to set A and to set B. We denote the in-
tersection of set A and B by A ∩ B, which reads A intersection B. The formal
definition of the intersection of sets A and B is given by:

A ∩ B = {x | x ∈ A ∧ x ∈ B} (1.2)

The Venn diagram representing the intersection of two sets is shown in Fig. 1.8.
In this diagram, the shaded area represents the elements of the intersection A ∩ B.

Consider the following examples:

• If A = {a, b, c, d} and B = {c, d, e, f }, then A ∩ B = {c, d}.
• If A = {x | x ∈ R ∧ x ≥ 0} and B = {x | x ∈ R ∧ x ≤ 0}, then A ∩ B =

{x | x ∈ R ∧ x = 0} = {0}.

“Comninos” — 2005/8/31 — 14:52 — page 13 — #11

Set Theory Survival Kit 13

U

BA

BA

FIGURE 1.8. The Venn diagram of the intersection A ∩ B.

Given two sets A and B and their intersection A ∩ B, we make the following
observations:

• The intersection operation is commutative, i.e. A ∩ B = B ∩ A.
• The intersection of two sets is a subset of both sets, i.e. (A ∩ B) ⊆ A and

(A ∩ B) ⊆ B.
• If two set are disjoint, then their intersection is the empty set, i.e. A ∩ B = Ø.

In some literature the intersection of sets A and B is denoted as A · B and it is
called the set-theoretic product of A and B.

1.12.3 Set Difference

The difference of sets A and B is the set of elements that belong to set A and do
not belong to set B. We denote the difference of sets A and B by A – B, which
reads A difference B or A minus B. The formal definition of the difference of sets
A and B is given by:

A − B = {x | x ∈ A ∧ x /∈ B} (1.3)

The Venn diagram representing the difference of two sets is shown in Fig. 1.9. In
this diagram, the shaded area represents the elements of the difference A – B.

Consider the following examples:

• If A = {a, b, c, d} and B = {c, d, e, f }, then A – B = {a, b}.
• If A = {x | x ∈ R} and B = {x | x ∈ R ∧ x < 0}, then A−B = {x | x ∈ R ∧ x ≥ 0}.

Given two sets A and B and their difference A – B, we make the following
observations:

• The difference operation is not commutative, i.e. A – B �= B – A.
• The difference of sets A and B is a subset of set A, i.e. (A – B) ⊆ A.

“Comninos” — 2005/8/31 — 14:52 — page 14 — #12

14 Mathematical and Computer Programming Techniques for Computer Graphics

U

BA

A - B

FIGURE 1.9. The Venn diagram of the difference A − B.

U

B − AA − B BA

BA

FIGURE 1.10. The Venn diagram of the sets (A − B), (A ∩ B) and (B − A).

• The sets (A – B), (A ∩ B) and (B – A) are mutually disjoint, i.e. (A − B) ∩
(A ∩ B) = Ø, (A − B) ∩ (B − A) = Ø and (A ∩ B) ∩ (B − A) = Ø. (See
Fig. 1.10.)

In some literature the difference of sets A and B is denoted as A\B and is called
the set-theoretic difference of A and B.

1.12.4 The Symmetric Difference of Two Sets

The symmetric difference of two sets A and B is the set of elements that belong to
set A but not to set B and the elements that belong to set B but not to set A, i.e.
the elements that belong to set A or to set B but not to both sets. We denote the
symmetric difference of two sets A and B by A � B, which reads A symmetric
difference B. This operation is the set theoretic equivalent to the exclusive or
(XOR) operation in Boolean algebra. The formal definition of the symmetric

“Comninos” — 2005/8/31 — 14:52 — page 15 — #13

Set Theory Survival Kit 15

difference of two sets A and B is given by:

A � B = {x | (x ∈ A ∧ x /∈ B) ∨ (x ∈ B ∧ x /∈ A)} or

A � B = {x | x ∈ A + x ∈ B} (1.4)

In this definition the symbol “+” is read as “exclusive or” or “XOR” and rep-
resents the logical non-equivalence relationship.

The Venn diagram representing the symmetric difference of two sets is shown
in Fig. 1.11. In this diagram, the shaded area represents the elements of the dif-
ference A � B.

There are three additional ways of defining the symmetric difference of two
sets, which derive from the above definition. The symmetric difference can be
defined as the union of the intersections

(
A ∩ B′) and

(
A′ ∩ B

)
, i.e.

A � B = (
A ∩ B′) ∪ (

A′ ∩ B
)

(See Fig. 1.12.)
It can be defined as the union of the differences (A – B) and (B – A), i.e.
A � B = (A − B) ∪ (B − A) (See Fig. 1.13.)
It can also be defined as the difference of the union and the intersection of the

two sets, i.e.
A � B = (A ∪ B) − (A ∩ B) (See Fig. 1.14.)
Consider the following examples:

• If A = {a, b, c, d} and B = {c, d, e, f }, then A � B = {a, b, e, f }.
• If A = {x | x ∈ R ∧ x ≤ 0} and B = {x | x ∈ R ∧ x ≥ 0}, then

A � B = {x | x ∈ R ∧ x �= 0}.
Given two sets A and B and their symmetric difference A � B, we make the

following observations:

• The symmetric difference operation is commutative, i.e. A � B = B � A.
• The symmetric difference operation is associative, i.e. (A � B) � C = A �

(B � C). (See Fig. 1.15)

U

BA

A D B

FIGURE 1.11. The Venn diagram of the symmetric difference A � B.

“Comninos” — 2005/8/31 — 14:52 — page 16 — #14

16 Mathematical and Computer Programming Techniques for Computer Graphics

(a) (b)

(c)

U

BA

U

BA

U

BA

FIGURE 1.12. (a) A ∩ B′. (b) A′ ∩ B. (c) A � B = (A ∩ B′) ∪ (A′ − B).

U

BA

(c)

U

BA

U

BA

(a) (b)

FIGURE 1.13. (a) A – B. (b) B – A. (c) A � B = (A – B) ∪ (B – A).

“Comninos” — 2005/8/31 — 14:52 — page 17 — #15

Set Theory Survival Kit 17

U

BA

U

BA

(a) (b)

U

BA

(c)

FIGURE 1.14. (a) A ∪ B. (b) A ∩ B. (c) A � B = (A ∪ B) ∪ (B ∩ A).

U

BA

C
U

BA

C

(a) (b)

(c) (d)

U

BA

C
U

BA

C

FIGURE 1.15. (a) (A � B). (b) (A � B) � C. (c) (B � C). (d) A � (B � C).

“Comninos” — 2005/8/31 — 14:52 — page 18 — #16

18 Mathematical and Computer Programming Techniques for Computer Graphics

U

BA

C
U

BA

C

(a) (b)

U

BA

C
U

BA

C

(c) (d)

U

BA

C

(e)

FIGURE 1.16 (a) (B � C). (b) A ∩ (B � C). (c) (A ∩ B). (d) (A ∩ C). (e) (A ∩ B) � (A ∩ C).

• Set intersection is distributive over the symmetric difference operation, i.e.
A ∩ (B � C) = (A ∩ B) � (A ∩ C). (See Fig. 1.16)

• The empty set is neutral under the symmetric difference operation, i.e.
A � Ø = A.

• The empty set is its own inverse under the symmetric difference operation, i.e.
A � A = Ø.

1.12.5 The Complement of a Set

The complement of set A is the set of elements that belong to the universal set U
but do not belong to set A, i.e. the difference U – A. We denote the complement

“Comninos” — 2005/8/31 — 14:52 — page 19 — #17

Set Theory Survival Kit 19

U

A�

A

FIGURE 1.17. The Venn diagram of the complement A′.

of set A by A′ or sometimes by Ac. The formal definition of the complement of a
set A is given by:

A′ = {x | x ∈ U ∧ x /∈ A} (1.5)

The Venn diagram representing the complement of a set is shown in Fig. 1.17.
In this diagram, the shaded area represents the elements of the complement A′.

Consider the following examples:

• If U = {a, . . . , z } and A = {a, b, c, d}, then A′ = {e, . . . , z}.
• If U = {1, 2, 3, . . . } and A = {2, 4, 6, . . . }, then A′ = {1, 3, 5, . . . }.

Given a set A and its complement A′, we make the following observations:

• The union of a set A and its complement A′ is the universal set, i.e. A ∪ A′ = U.
• The intersection of a set A and its complement A′ is the empty set, i.e.

A ∩ A′ = Ø.
• Any set A and its complement A′ are mutually disjoint, i.e. A ∩ A′ = Ø.
• The complement of the universal set U is the empty set Ø and vice versa, i.e.

U′ = Ø and Ø′ = U.

Theorem 1.1 The difference of sets A and B is equal to the intersection of set A
and the complement of set B, i.e.

A − B = A ∩ B′. (T1.1)

Proof : We may prove the theorem as follows. By the definition of the set differ-
ence (Eq. 1.3), we have:

A − B = {x | x ∈ A ∧ x /∈ B}
Which can be rewritten as:

A − B = {
x | x ∈ A ∧ x ∈ B′}

“Comninos” — 2005/8/31 — 14:52 — page 20 — #18

20 Mathematical and Computer Programming Techniques for Computer Graphics

Which in turn is the definition of the intersection of sets A and B′. (See Eq. 1.2.)
Thus,

A − B = A ∩ B′. �

1.12.6 Theorems on Comparable Sets

Given that two sets A and B are comparable (i.e. A ⊆ B or B ⊆ A), we can prove
the following theorems.

Theorem 1.2 If set A is a subset of set B, then the intersection of sets A and B is
equal to set A, i.e.

A ⊆ B ⇒ A ∩ B = A. (T1.2)

Proof : We can prove this theorem using the Venn diagram shown in Fig. 1.18.
As can be seen from this diagram, the shaded area represents both set A and
set A ∩ B.

Theorem 1.3 If set A is a subset of set B, then the union of sets A and B is equal
to set B, i.e.

A ⊆ B ⇒ A ∪ B = B. (T1.3)

Proof : We can prove this theorem using the Venn diagram shown in Fig. 1.19.
As can be seen from this diagram, the shaded area represents both set B and
set A ∪ B.

Theorem 1.4 If set A is a subset of set B, then the complement of set B is a subset
of the complement of set A, i.e.

A ⊆ B ⇒ B′ ⊆ A′. (T1.4)

U

B

A, A B

FIGURE 1.18. The graphical proof of the theorem: A ⊆ B ⇒ A ∩ B = A

“Comninos” — 2005/8/31 — 14:52 — page 21 — #19

Set Theory Survival Kit 21

U

A

B, A B

FIGURE 1.19. The graphical proof of the theorem: A ⊆ B ⇒ A ∪ B = B.

U

A

B

FIGURE 1.20. The graphical proof of the theorem: A ⊆ B ⇒ B′ ⊆ A′.

Proof : We can prove this theorem using the Venn diagram shown in Fig. 1.20. In
this diagram, the complement A′ is represented by the area of U that is outside
the area of A (which is shaded with a horizontal line pattern) and the complement
B′ is represented by the area of U that is outside the area of B (which is shaded
with a vertical line pattern). The area of U that is shaded by both vertical and
horizontal line patterns represents the intersection A′ ∩ B′.

Theorem 1.5 If set A is a subset of set B, then the union of sets A and (B − A) is
equal to set B, i.e.

A ⊆ B ⇒ A ∪ (B − A) = B. (T1.5)

Proof : We can prove this theorem using the Venn diagram shown in Fig. 1.21. In
this diagram, the set B is represented by the area that is shaded with a horizontal
line pattern and the set A′ is represented by the area that is shaded with a vertical

“Comninos” — 2005/8/31 — 14:52 — page 22 — #20

22 Mathematical and Computer Programming Techniques for Computer Graphics

U

A B

(B−A)

FIGURE 1.21. The graphical proof of the theorem: A ⊆ B ⇒ A ∪ (B − A) = B.

line pattern. Thus, the set difference (B − A) is shaded by both vertical and
horizontal line patterns. From this diagram, it is also apparent that (B − A) =
(B ∩ A′).

Theorem 1.6 If set A is a subset of set B, then the sets (B − A) and (B ∩ A′) are
equal, i.e.

A ⊆ B ⇒ (B − A) = (
B ∩ A′) . (T1.6)

Proof : Refer to the proof of the Theorem (T1.5) and the Venn diagram shown in
Fig. 1.21.

1.13 The Algebra of Sets

Having examined the basic notions and definitions of sets in an intuitive and non-
rigorous fashion, let us systematise what we have learned thus far by introducing
a collection of rules (identities) for the algebra of sets. These rules can be used to
provide rigorous mathematical proofs for any theorem of set theory.

1.13.1 The Rules of the Algebra of Sets

Given any universal set U and its subsets A, B, C, taken in conjunction with the
operations of union, intersection and complementation of sets, the following rules
of the algebra of sets apply.

The Identity Rules: A ∪ Ø = A (R1.1a)
A ∩ U = A (R1.1b)
A ∪ U = U (R1.2a)
A ∩ Ø = Ø (R1.2b)

“Comninos” — 2005/8/31 — 14:52 — page 23 — #21

Set Theory Survival Kit 23

The Complement Rules: A ∪ A′ = U (R1.3a)
A ∩ A′ = Ø (R1.3b)
U′ = Ø (R1.4a)
Ø′ = U (R1.4b)(
A′)′ = A (R1.5)

The Idempotent Rules: A ∪ A = A (R1.6a)
A ∩ A = A (R1.6b)

The Commutative Rules: A ∪ B = B ∪ A (R1.7a)
A ∩ B = B ∩ A (R1.7b)

The Associative Rules: (A ∪ B) ∪ C = A ∪ (B ∪ C) (R1.8a)
(A ∩ B) ∩ C = A ∩ (B ∩ C) (R1.8b)

The Distributive Rules: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (R1.9a)
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (R1.9b)

The De Morgan Rules: (A ∪ B)′ = A′ ∩ B′ (R1.10a)
(A ∩ B)′ = A′ ∪ B′ (R1.10b)

In the above list of rules an idempotent element (or idempotent for short) is an
entity that when operated upon by itself, yields (results in) itself.

Observe that these rules do not cover the concept of an element belonging to a
set (i.e. a ∈ A). Also, that the concepts of the subset and proper subset are not
covered by these rules.

In this algebra of sets, these concepts are defined as follows:

Subset/Superset: A ⊆ B∨B ⊇ A ⇒ A∩B = A (1.6)

Proper Subset/Superset: A ⊂ B ∨ B ⊃ A ⇒ A ∩ B = A ∧ B − A �= Ø (1.7)

Let us now use the rules of the algebra of sets to prove some theorems.

Theorem 1.7 Given any two sets A and B, we say that:

A, B ⊆ U ⇒ (A ∩ B) ∪ (
A ∩ B′) = A. (T1.7)

Proof : Starting with the left-hand side of this equality and using the distributive
rule (R1.9b) we get:

(A ∩ B) ∪ (
A ∩ B′) = A ∩ (

B ∪ B′)

Using the complement rule (R1.3a) we get:

(A ∩ B) ∪ (
A ∩ B′) = A ∩ U

Finally, using the identity rule (R1.1b) we get:

(A ∩ B) ∪ (
A ∩ B′) = A. �

Theorem 1.8 Given that A ⊆ B and B ⊆ C, then A ⊆ C, i.e.

A ⊆ B ∧ B ⊆ C ⇒ A ⊆ C. (T1.8)

“Comninos” — 2005/8/31 — 14:52 — page 24 — #22

24 Mathematical and Computer Programming Techniques for Computer Graphics

Proof : From the definition of a subset (1.6) we have:

A = A ∩ B (1.8)

and
B = B ∩ C (1.9)

By substituting (1.9) into the right-hand side of equality (1.8) we get:

A = A ∩ (B ∩ C)

Using the associative rule (R1.8b) we get:

A = (A ∩ B) ∩ C

Using Eq. (1.8) we get:
A = A ∩ C

Which is the definition of A ⊆ C.

1.13.2 The Duality Principle

In mathematics, a dual is a pair of identities or a grouping of two identities. As
it applies to set theory, the duality principle can be expressed as follows. Given
a set identity (i.e. an expression of set relationships) I, we can construct its dual
identity I∗ by interchanging each occurrence of the symbols ∪ and ∩, and the
symbols Ø and U in the original identity. For instance:

• The dual of the identity A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) is the identity A ∩
(B ∪ C) = (A ∩ B) ∪ (A ∩ C).

• The dual of the identity A ∪ A′ = U is the identity A ∩ A′ = Ø.
• The dual of the identity (A ∩ B) ∪ (

A ∩ B′) = A is the identity (A ∪ B) ∩(
A ∪ B′) = A.

This is precisely why, in the above table of set algebraic rules, we have arranged
these rules in pairs (duals). The principle of duality implies that if we use a
sequence of axioms or rules to prove the validity of an identity, then we can use
the duals of these axioms and rules to prove the validity of the dual of the original
identity. For instance in Theorem (T1.7) we proved that A, B ⊆ U ⇒ (A ∩ B) ∪(
A ∩ B′) = A. We can now employ the principle of duality to prove the dual of

this identity.

Theorem 1.9 Given any two sets A and B, we say that:

A, B ⊆ U ⇒ (A ∪ B) ∩ (
A ∪ B′) = A. (T1.9)

Proof : Starting with the left-hand side of this equality and using the distributive
rule (R1.9a), which is the dual of rule (R1.9b) that we have used in the first step
of the proof of Theorem (T1.7), we get:

(A ∪ B) ∩ (
A ∪ B′) = A ∪ (

B ∩ B′)

“Comninos” — 2005/8/31 — 14:52 — page 25 — #23

Set Theory Survival Kit 25

Using the complement rule (R1.3b), which is the dual of rule (R1.3a) that we have
used in the second step of the proof of Theorem (T1.7), we get:

(A ∪ B) ∩ (
A ∪ B′) = A ∪ Ø

Finally, using the identity rule (R1.1a), which is the dual of rule (R1.1b) that we
have used in the third step of the proof of Theorem (T1.7), we get:

(A ∪ B)∩ (
A ∪ B′) = A. �

1.14 Numbers and Sets

1.14.1 Classes of Numbers

A number is an abstract entity that can be used to represent a quantity (i.e. a mea-
surement, a count or an amount). There are many different classes of numbers
and all numbers belonging to each class can be considered as elements belonging
to a particular set. One of the earliest examples of these number classes is that
of the natural numbers, which are represented by the set N = {0, 1, 2, 3, . . .}.
Since the dawn of civilisation this class of numbers has been used for count-
ing. The natural numbers {1, 2, 3, . . .} are sometimes referred to as positive
whole numbers. If we augment the set of natural numbers by the set of nega-
tive whole numbers, we get the set of integer numbers which is represented as
Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

The ratio of integers, where the divisor is non-zero, is called a rational number
or a fraction. The set of all rational numbers is represented as Q = {x | x = a/b∧
a, b ∈ Z ∧ b �= 0}. A characteristic of rational numbers is that their decimal ex-
pansion is periodic in nature.

If we augment the set of rational numbers with the set of all other numbers that
have a non-periodic decimal expansion, we get the set of real numbers that are
represented by the symbol R. The set of all the real numbers that are non-rational
(i.e. these numbers that can not be represented as the ratio of two integers, where
the divisor is non-zero) are called irrational numbers and are represented by the
symbol Q

′.
From the above we can observe that N ⊂ Z ⊂ Q ⊂ R. Thus, for the purposes

of our discussion we will assume that the set of real numbers is our universal set,
i.e. U = R.

In the discussion that follows we will make use of the concept of the closure of
sets. So, let us begin by defining this concept.

1.14.2 Closure

Given a set S, we say that this set is closed under a binary operation “×”, if and
only if the result of this operation on two elements of the set is also an element of
this set (i.e. iff ∀ s1, s2 ∈ S ⇒ s1 × s2 ∈ S). Thus, for instance, the set of natural

“Comninos” — 2005/8/31 — 14:52 — page 26 — #24

26 Mathematical and Computer Programming Techniques for Computer Graphics

numbers is closed under the binary operation of addition “+”, since by adding
two natural numbers together results in a natural number (i.e. ∀s1, s2 ∈ N ⇒
s1 + s2 ∈ N). Similarly, natural numbers are closed under the binary operation
of multiplication “∗”, as the product of two natural numbers results in a natural
number (i.e. ∀s1, s2 ∈ N ⇒ s1 ∗ s2 ∈ N). Alternatively, natural numbers are
not closed under the binary operation of subtraction “−”, as the difference of
two natural numbers may be a negative integer rather than a natural number (i.e.
∀s1, s2 ∈ N �⇒ /s1 − s2 ∈ N). Set N is also not closed under division, as the
quotient of two naturals may be a real.

In general the closure of a set S is the set C (S) which is the smallest superset
of set S.

1.14.3 The Set of Real Numbers R

Intuitively the set of real numbers can be defined as the class of numbers whose
members have a one to one correspondence with the set of points lying on a
straight line. Loosely speaking, a one to one correspondence is a relationship
between two sets which allows us to match each element of the first set with one
and only one element of the second set and vice versa. Later we will define this
relationship in a more rigorous way. Thus, each real number can be represented
by one and only one point of the straight line and each point of the straight line
represents only one real number. To do this mapping we select an arbitrary point
on the line to represent the number zero. This point is called the origin of the real
number line. Another point to the right of the origin is chosen to represent the
number 1. Now that we have established the length of a unit on the real number
line, we can represent all positive real numbers to the right of the origin and all
negative numbers to the left of the origin, as shown in Fig. 1.22.

The set of real numbers is closed under the binary operations of addition, sub-
traction, multiplication and division.

1.14.4 The Set of Rational Numbers Q

A rational number or fraction is a number that can be expressed as the ratio of two
integers, where the divisor is non-zero. The set of rational numbers is represented
as Q = {x | x = a/b ∧ a, b ∈ Z ∧ b �= 0}. Each rational number can be written
in an infinite number of ways, for instance: 1

3 = 2
6 = 3

9 = · · · = n
3n where n

3
1

0 1 2 3 4 +�−1−2−3−4−�

2 =1.414...

π=3.141...

e =2.718...

19=4.358...

−0.5

FIGURE 1.22. The real number line.

“Comninos” — 2005/8/31 — 14:52 — page 27 — #25

Set Theory Survival Kit 27

can be any integer not equal to zero. One important characteristic of any rational
number is that its decimal expansion is periodic or recurring in nature. This means
that its representation, following the decimal point, may start with a non-repeating
sequence of digits but eventually continues with a sequence of digits that recur
(repeat) ad infinitum. For instance:

• 1
2 = 0.50̇, where the final decimal digit recurs (i.e. 1

2 = 0.5000 · · ·);
• 1

3 = 0.3̇, where the final decimal digit recurs (i.e. 1
3 = 0.333 · · ·);

• 1
6 = 0.16̇, where the final decimal digit recurs (i.e. 1

6 = 0.1666 · · ·);
• 1

7 = 0.1̇42857̇, where the sequence of decimal digits 1̇42857̇ recurs (i.e. 1
7 =

0.142857142857142857 . . .).

It is worth observing that, immaterial of the number base (decimal, binary,
octal, etc.) that we choose to represent a rational number in, its expansion is
always periodic in nature.

The set of rational numbers is closed under the binary operations of addition,
subtraction, multiplication and division (except division by zero). The set of ra-
tional numbers is a proper subset of the set of real numbers, i.e. Q ⊂ R.

1.14.5 The Set of Irrational Numbers Q
′

An irrational number is any real number that is not a rational number. In other
words any real number that cannot be expressed as the ratio of two integers, where
the devisor is not zero. The decimal expansion of an irrational number is not
periodic or recurring. The set of irrational numbers is defined as the complement
of the set of rational numbers, when the universal set is taken to be the set of real
numbers, i.e. Q

′ = (R − Q).
We observe that U = R ⇔ R = Q ∪ Q

′ and that Q
′ ⊂ R.

Examples of irrational numbers are
√

2,
√

3, 3
√

5, π = 3.14159 · · · , e =
2.71828 · · · .

1.14.6 The Set of Natural Numbers N

As we have seen above, the set of natural numbers is defined as N =
{0, 1, 2, 3, . . .}. This is the definition given by the DIN 5473 standard “Logic and
Set Theory, Symbols and Concepts” published in 1992 by DIN (the Deutsches
Institute für Normung-the German Institute for Standardisation). In some other
literature the number zero is not included in the set of natural numbers. The nat-
ural numbers {1, 2, 3, . . . } are sometimes referred to as positive whole numbers
or cardinal numbers and are defined as N

∗ = N − {0} = {1, 2, 3, . . .}.
The set of natural numbers is closed under the binary operations of addition and

multiplication but not subtraction and division, as the difference of two natural
numbers may be a negative integer and the quotient of two natural numbers may
be a real number.

We observe that N ⊂ R.

“Comninos” — 2005/8/31 — 14:52 — page 28 — #26

28 Mathematical and Computer Programming Techniques for Computer Graphics

1.14.7 The Set of Integer Numbers Z

The set of integers is the union of the set of natural numbers N = {0, 1, 2, 3, . . .}
and the set of negative whole numbers {−1,−2,−3, . . .}. Thus, the set of integers
is defined as Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} or Z = {0,±1,±2,±3, . . .}.
The name of this set originates from the German word Zahlen (meaning numbers).

The set of integers is closed under the binary operations of addition, subtraction
and multiplication but not division, as the quotient of two integers may be a real
number.

We observe that N ⊂ Z ⊂ R.

1.14.8 Other useful Sets of Numbers

1.14.8.1 The Set of Complex Numbers C

A superset of the set of real numbers R is the set of complex numbers C in which
all non-constant polynomials have real roots. Complex numbers have wide ap-
plication in many field of mathematics, such as: differential equations, control
theory, quantum mechanics, relativity, fluid dynamics, fractals, etc. Complex
numbers are defined as C = {

x | x = a + bi ∧ a, b ∈ R ∧ i = √−1
}
. Thus, a

complex number x consists of a real part a and an imaginary part bi and requires
the imaginary unit i = √−1 (i.e. i2 = −1) for its definition.

We observe that R ⊂ C.

1.14.8.2 The Set of Algebraic Numbers A

An algebraic number is any real number that is the solution of a polynomial
equation with integer coefficients of the form:

cn xn + cn−1xn−1 + cn−2xn−2 + · · · + c2x2 + c1x1 + c0x0 = 0 for n > 0

where ci are integer coefficients and cn �= 0.
From the definition of rational numbers we know that any rational number is

of the form x = a/b. Thus, any rational number can be expressed in the form
bx −a = 0 (with the root x = a/b), which in turn means that every rational num-
ber is an algebraic number. Some irrational numbers are also algebraic numbers.
For instance, the irrational number

√
2 can also be expressed as a polynomial

with integer coefficients, 1x2 − 2 = 0, with the root x = √
2. Thus,

√
2 is both

irrational and algebraic.

1.14.8.3 The Set of Transcendental Numbers T

A transcendental number is any irrational number that is not the solution of any
polynomial equation with integer coefficients. The French mathematician Joseph
Liouville (1809-1882) first established the existence of transcendental numbers
in an 1851 paper. Examples of transcendental numbers are π = 3.14159 · · · ,

e = 2.71828 · · · , sin (π), cos (2π), and tan
(π

4

)
.

“Comninos” — 2005/8/31 — 14:52 — page 29 — #27

Set Theory Survival Kit 29

We observe that the set of real numbers is the union of the algebraic and tran-
scendental numbers, i.e. R = A ∪ T.

1.14.9 Ordering Relations or Inequalities

An inequality is an assertion about the relative size or order of two quantities, i.e.
a statement of their relation. Given two real numbers a and b, they may have the
following ordering relations:

• a = b which signifies that a is equal to b (i.e. that the numbers a and b
correspond to the same point on the real number line);

• a < b which signifies that a is less than b (i.e. that number a corresponds to
a point, on the real line, that lies to the left of the point corresponding to the
number b);

• a ≤ b which signifies that a is less than or equal to b (i.e. that number a
corresponds to a point, on the real line, that lies on or to the left of the point
corresponding to the number b);

• a > b which signifies that a is greater than b (i.e. that number a corresponds to
a point, on the real line, that lies to the right of the point corresponding to the
number b);

• a ≥ b which signifies that a is greater than or equal to b (i.e. that number a
corresponds to a point, on the real line, that lies on or to the right of the point
corresponding to the number b).

The inequalities of real numbers exhibit the following properties:

The Reflexivity Property
Given any real number a, a ≤ a.

The Trichotomy Property
Given any two real numbers a and b, only one of the following relations is true:
a < b, a = b or a > b.

The Antisymmetry Property
Given any two real numbers a and b, then a ≤ b ∧ b ≤ a ⇒ a = b.

The Transitivity Property
Given any three real numbers a, b and c, then a ≤ b ∧ b ≤ c ⇒ a ≤ c.

The Addition and Subtraction Property
Given the inequalities a ≤ b and a ≥ b (between two real numbers a and b),
we may add or subtract to or from both sides of these inequalities the same real
number c without changing the sense of the inequalities, i.e.

• a ≤ b ⇒ a + c ≤ b + c
• a ≤ b ⇒ a − c ≤ b − c
• a ≥ b ⇒ a + c ≥ b + c
• a ≥ b ⇒ a − c ≥ b − c

“Comninos” — 2005/8/31 — 14:52 — page 30 — #28

30 Mathematical and Computer Programming Techniques for Computer Graphics

The Multiplication and Division Property
Given the inequalities a ≤ b and a ≥ b (between two real numbers a and b), we
may multiply or divide both sides of these inequalities by the same non-negative
real number c without changing the sense of the inequalities. If, however, we
multiply or divide by a negative real number, the sense of the inequalities will be
reversed. Thus:

• a ≤ b ∧ c ≥ 0 ⇒ a · c ≤ b · c
• a ≤ b ∧ c ≥ 0 ⇒ a/c ≤ b/c
• a ≤ b ∧ c < 0 ⇒ a · c ≥ b · c
• a ≤ b ∧ c < 0 ⇒ a/c ≥ b/c
• a ≥ b ∧ c ≥ 0 ⇒ a · c ≥ b · c
• a ≥ b ∧ c ≥ 0 ⇒ a/c ≥ b/c
• a ≥ b ∧ c < 0 ⇒ a · c ≤ b · c
• a ≥ b ∧ c < 0 ⇒ a/c ≤ b/c

Examples
Consider the following examples of inequalities:

• x < 6 which signifies that the value of x is less than 6 (i.e. that number x corre-
sponds to a point, on the real line, that lies to the left of the point corresponding
to the number 6);

• 1 < x < 6 which signifies that the value of x is greater than 1 and less than
6 (i.e. that number x corresponds to a point, on the real line, that lies to the
right of the point corresponding to the number 1 and to the left of the point
corresponding to the number 6);

• 1 ≤ x ≤ 6 which signifies that the value of x is greater than or equal to 1 and
less than or equal to 6 (i.e. that number x corresponds to a point, on the real
line, that lies on or to the right of the point corresponding to the number 1 and
on or to the left of the point corresponding to the number 6).

1.14.10 The Absolute Value or Modulus of a Number

The absolute value or modulus of a real number x represents its size or magnitude
and is defined as:

|x | =
{

x, x ≥ 0
−x, otherwise

We observe that |x | ≥ 0 for all x ∈ R. In geometric terms, |xi | represents the
distance between the point corresponding to the value of xi on the real number
line and the origin (i.e. the point corresponding to the number 0). See Fig. 1.23.

Given two real numbers x1 and x2 the distance between the two points, on the
real number line, corresponding to these numbers is given by |x2−x1| = |x1−x2|.
See Fig. 1.24.

“Comninos” — 2005/8/31 — 14:52 — page 31 — #29

Set Theory Survival Kit 31

0 x1

x1x2

x2

FIGURE 1.23. The absolute value of xi .

0x1

x1 − x2x2 − x1

x2

FIGURE 1.24. The distance between points x1 and x2.

Consider the following inequalities (illustrated in Figs. 1.25a–1.25d, respec-
tively):

• |x | ≤ 3 which means −3 < x < 3 and signifies that the value of x is greater
than −3 and less than +3 (i.e. the number x corresponds to a point, on the real
line, that lies to the right of the point corresponding to the number −3 and to
the left of the point corresponding to the number +3);

• |x | ≤ 3 which means −3 < x < 3 and signifies that the value of x is greater
than or equal to −3 and less than or equal to +3 (i.e. the number x corresponds
to a point, on the real line, that lies on or to the right of the point corresponding
to the number −3 and on or to the left of the point corresponding to the number
+3);

• |x | > 3 which means x < −3 ∨ x > 3 and signifies that the value of x is either
less than −3 or greater than +3 (i.e. the number x corresponds to a point, on
the real line, that lies either to the left of the point corresponding to the number
−3 or to the right of the point corresponding to the number +3);

• |x | ≥ 3 which means x ≤ −3 ∨ x ≥ 3 and signifies that the value of x is
either less than or equal to −3, or greater than or equal to +3 (i.e. the number
x corresponds to a point, on the real line, that lies either on or to the left of the
point corresponding to the number −3, or alternatively, on or to the right of the
point corresponding to the number +3).

Figures 1.25a-1.25d depict the graphical representation of the inequalities
|x | < 3, |x | ≤ 3 and |x | ≥ 3, respectively. The darker parts of the real num-
ber line represent the points that correspond to the range of real values that sat-
isfy these inequalities. The black and white circles indicate that the real value
corresponding to that point is respectively included or excluded from the range of
values that satisfy the given inequality.

“Comninos” — 2005/8/31 — 14:52 — page 32 — #30

32 Mathematical and Computer Programming Techniques for Computer Graphics

0 1 2 3 4−1−2−3−4−�

+�

+�

+�

+�

−1−2−3−4−�

−1−2−3−4−�

−1−2−3−4−�

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

(a)

(b)

(c)

(d)

FIGURE 1.25 (a) The graphical representation of the inequality |x | < 3. (b) The graphical
representation of the inequality |x | ≤ 3. (c) The graphical representation of the inequality
|x | > 3. (d) The graphical representation of the inequality |x | ≥ 3.

1.14.11 Real Number Intervals

A real number interval is a subset of the real number set R that is bounded (lim-
ited) by two endpoints on the real number line which correspond to the real values
a and b, where a ≤ b. These two values are known as the lower bound or lower
limit and the upper bound or upper limit of the interval.

Real number intervals can be finite or infinite intervals. In infinite intervals
either or both of their bounds a and b can be replaced by −∞ and +∞, respec-
tively. Depending on whether the values of the bounds a and b are included in
or excluded from the interval, we characterise the interval either as being an open
interval or a closed interval. If the value of the lower bound is included in the in-
terval but the value of the upper bound is excluded, then the interval is known as a
closed-open interval. While, if the value of the lower bound is excluded from the
interval but the value of the upper bound is included, then the interval is known
as an open-closed interval. Closed-open and open-closed intervals are sometimes
referred to as half-open intervals.

Given a, b ∈ R (where a ≤ b) we may define the following intervals:

• I1 = (a, b) = {x | a < x < b}, which is an open interval depicted in Fig. 1.26a;
• I2 = [a, b] = {x | a ≤ x ≤ b}, which is a closed interval depicted in Fig. 1.26b;

“Comninos” — 2005/8/31 — 14:52 — page 33 — #31

Set Theory Survival Kit 33

ba−�

−�

−�

−�

+�

+�

+�

+�

ba

ba ba

(a) (b)

(c) (d)

b b

a a

(e) (f)

(g) (h)

−�

−�

−�

−�

+�

+�

+�

+�

FIGURE 1.26 (a) The interval I1. (b) The interval I2. (c) The interval I3. (d) The interval
I4. (e) The interval I5. (f) The interval I6. (g) The interval I7. (h) The interval I8.

• I3 = (a, b] = {x | a < x ≤ b}, which is a open-closed interval depicted in
Fig. 1.26c;

• I4 = [a, b) = {x | a ≤ x < b}, which is a closed-open interval depicted in
Fig. 1.26d;

• I5 = (−∞, b) = {x | x < b}, which is an open infinite interval depicted in
Fig. 1.26e;

• I6 = (−∞, b] = {x | x ≤ b}, which is an open-closed infinite interval depicted
in Fig. 1.26f;

• I7 = (a,+∞) = {x | a < x}, which is an open infinite interval depicted in
Fig. 1.26g;

• I8 = [a,+∞) = {x | a ≤ x}, which is an closed-open infinite interval depicted
in Fig. 1.26h;

• I9 = (−∞,+∞) = {x | x ∈ R} , which is an open infinite interval equal to R.

There are also two degenerate intervals:
• I10 = {a}, which consists only of one value and is known as a singleton;
• I11 = Ø, which is a zero-length interval.

Intervals I1, I2, I3, I4, I10 and I11 are known as bounded intervals, while inter-
vals I5, I6, I7, I8 and I9 are known as unbounded intervals.

In some European literature a slightly different notation is used to represent
open and closed intervals. Instead of using the round brackets “(” and “)” to
indicate the open ends of an interval we use square brackets pointing outwards, i.e.
we use the symbol “]” instead of “(” and the symbol “[” instead of the symbol “)”.
Thus, the following intervals are equivalent in the two representations:
•]a, b[≡ (a, b), which is an open interval;
• [a, b] ≡ [a, b], which is a closed interval;

“Comninos” — 2005/8/31 — 14:52 — page 34 — #32

34 Mathematical and Computer Programming Techniques for Computer Graphics

•]a, b[≡ (a, b], which is a open-closed interval;
• [a, b[≡ [a, b), which is a closed-open interval.

1.14.12 Properties of Real Number Intervals

If F is the family of all real number intervals (including the singleton and the
zero-length interval), then given two real number intervals I1 and I2 they exhibit
the following properties:

• I1, I2 ∈ F ⇒ I1 ∩ I2 ∈ F, i.e. the intersection of two real number intervals is
itself a real number interval;

• I1, I2 ∈ F ∧ I1 ∩ I2 �= Ø ⇒ I1 ∪ I2 ∈ F, i.e. the union of two non-disjoint real
number intervals is itself a real number interval;

• I1, I2 ∈ F ∧ I1 �⊂ I2 ∧ I2 �⊂ I1 ⇒ (I1 − I2) ∈ F, i.e. the difference of two
non-comparable real number intervals is itself a real number interval.

For instance, given the two real number intervals I1 = [−3, 3) and I2 = (0, 5]
we observe that:

• I1 ∪ I2 = [−3, 5], i.e. the interval of all real numbers that belong to either of
the two intervals I1 and I2.

• I1∩I2 = (0, 3), i.e. the interval of all real numbers that belong to both intervals
I1 and I2.

• I1 − I2 = [−3, 0], i.e. the interval of all real numbers that belong to I1 but not
to I2.

• I2 − I1 = [3, 5], i.e. the interval of all real numbers that belong to I2 but not
to I1.

See Fig. 1.27.

1.14.13 Real Number Interval Arithmetic

When using a computer to perform arithmetic computations we can not represent
real numbers accurately. Thus the results of any such computations are only ap-
proximate and susceptible to rounding errors. Occasionally it is more important
to know the range of the result, of a computation, rather than the exact result it-
self. On such occasions we can use interval arithmetic to compute the range of

0 1 2 3 4−1−2−3−4 5

I1

I2

I2I1

I2I1

I1 − I2 I2 − I1

−� +�

FIGURE 1.27. The graphical representation of interval set operations.

“Comninos” — 2005/8/31 — 14:52 — page 35 — #33

Set Theory Survival Kit 35

the result. Given two closed real number intervals A = [aL , aU] and B = [bL ,
bU], the operations of addition, subtraction, multiplication and division of real
number intervals are defined as follows:

C = [aL , aU] + [bL , bU] = [aL + bL , aU + bU] (1.10a)

C = [aL , aU] − [bL , bU] = [aL − bU , aU − bL] (1.10b)

C = [aL , aU] · [bL , bU] = [min (aL · bL , aL · bU , aU · bL , aU · bU) ,

max (aL · bL , aL · bU , aU · bL , aU · bU)] (1.10c)

C = [aL , aU] / [bL , bU] = [
min

(
aL/bL , aL/bU , aU /bL , aU /bU

)
,

max (aL/bL , aL/bU , aU /bL , aU /bU)] (1.10d)

For example, if we know that a real number a lies in the interval A = [−2, 2]
and that the real number b lies in the interval B = [2, 3], then we can say with
certainty that the result of their addition, subtraction, multiplication and division
lie in the following intervals, respectively:

• (a + b) ∈ [−2 + 2, 2 + 3] = [0, 5]
• (a − b) ∈ [−2 + 2, 2 − 3] = [−4,−2]
• (a · b) ∈ [min (−2 · 2,−2 · 3, 2 · 2, 2 · 3), max (−2 · 2,−2 · 3, 2 · 2, 2 · 3)] =

[min (−4,−6, 4, 6), max (−4,−6, 4, 6)] = [−6, 6]

• (a/b) ∈
[
min

(−2
2 , −2

3 , 2
2 , 2

3

)
, max

(−2
2 , −2

3 , 2
2 , 2

3

)]
=

[
min

(
−1,− 2

3 , 1, 2
3

)
, max

(
−1,− 2

3 , 1, 2
3

)]
= [−1, 1]

1.14.14 Bounded and Unbounded Real Number Sets

Roughly speaking, a bounded set is a set that has a finite size and it is thus a subset
of a finite set. A set that is not bounded is called an unbounded set.

More precisely given a set of real numbers S, if there exists a real number sU

such that s ≤ sU for every s ∈ S, then we call S an upper bounded set and we
say that sU is the upper bound of S. Also if there exists a real number sL such
that sL ≤ s for every s ∈ S, then we call S a lower bounded set and we say that
sL is the lower bound of S. If the set S is both upper and lower bounded (i.e. iff
sL ≤ s ≤ sU ∀s ∈ S), then we call S a bounded set. Thus, in general a set is
bounded if it is a subset of a finite interval, i.e. S is bounded iff S ⊆ [sL , sU].

Alternatively, we may say that a real number set S is bounded iff |s| ≤
b ∀ b ≥ 0 ∧ b, s ∈ S, which means that S ⊆ [−b, b].

Consider the following examples:

• If S1 =
{

1, 1
2 , 1

4 , 1
8 , . . .

}
, then S1 is bounded as S1 ⊆ [0, 1].

• If S2 = {1, 3, 5, 7, . . .}, then S2 is unbounded as we can not find a positive
number b such that |s| ≤ b ∀ s ∈ S2.

• If S3 = {33,−2, 56, 77,−22}, then S3 is bounded as S3 ⊆ [−22, 77].

We observe that if a real number set is finite, then its is bounded (as is the case of
set S3 above) and if it is infinite, then it may be bounded (as is the case of set S1
above) or it may be unbounded (as is the case of set S2 above).

“Comninos” — 2005/8/31 — 14:52 — page 36 — #34

36 Mathematical and Computer Programming Techniques for Computer Graphics

1.15 Ordered Pairs and Ordered n-tuples

An ordered pair is a collection of two objects such that we can distinguish one
object as being the first element of the ordered pair and the other as being its
second element. An ordered pair whose first element is a and second element is
b is denoted as (a, b). An ordered pair is sometimes referred to as an ordered
2-tuple.

A collection of three objects such that we can distinguish its first, second and
third elements is called an ordered triple, an ordered triplet or an ordered 3-tuple
and it is denoted by (a, b, c), where a ∈ A, b ∈ B and c ∈ C. An ordered triple
can be defined recursively from the definition of an ordered pair, if we allow the
second element of the ordered pair to be an ordered pair itself, i.e. the ordered
pair (a, (b, c)) gives rise to the ordered triple (a, b, c).

In general, a collection of n ordered elements is called an ordered n-tuple.
There are two main properties that distinguish an ordered n-tuple from a set with
n elements. Unlike a set:
• An ordered n-tuple can contain an object more than once.
• The objects in an ordered n-tuple appear in a certain order.

Thus, two n-tuples are equal iff their corresponding elements are equal, i.e.

(a1, a2, . . . , an) = (b1, b2, . . . , bn) ⇔ a1 = b1, a2 = b2, . . . , an = bn (1.11)

Consider the following examples of ordered pairs:
• The ordered pairs (1, 5) and (5, 1) are not equal, as the order of their elements

is not the same.
• The set {− 1, 3} is not an ordered pair as its elements are not ordered, i.e.

{− 1, 3} = {3,−1}.
• (−1,−1) and (3, 3) are valid ordered pairs, as an ordered pair may have dupli-

cate elements.
• The Cartesian coordinates of point P in Fig. 1.28 form the ordered pair (2, 3).

0 1 2 3 4−1−2−3−4

P

−1

−2

−3

−4

1

2

3

4

FIGURE 1.28. The Cartesian coordinates of a point P form an ordered pair(2,3).

“Comninos” — 2005/8/31 — 14:52 — page 37 — #35

Set Theory Survival Kit 37

1.16 The Cartesian Product of Sets

The set of all ordered pairs (a, b), where a ∈ A and b ∈ B, is called the Cartesian
product of sets A and B and is denoted as A × B, which is read as A cross B. The
formal definition of the Cartesian product of two sets A and B is given by:

A × B = {(a, b) | a ∈ A ∧ b ∈ B} (1.12)

Consider the following examples:

• If X = {x1, x2, x3} and Y = {y1, y2}, then their Cartesian product is given by:
X × Y = {(x1, y1), (x1, y2), (x2, y1), (x2, y2), (x3, y1), (x3, y2)}.

• The Cartesian plane, shown in Fig. 1.28, is the set of all ordered pairs that are
elements of the Cartesian product R

2 = R × R.

We observe that:

• If set A has n elements and set B has m elements, then their Cartesian product
A × B has n × m elements.

• If set A or set B are empty, then their Cartesian product is the empty set, i.e.
A = Ø ∨ B = Ø ⇒ A × B = Ø.

• If one of two sets is infinite and the other is not empty, then their Cartesian
product is an infinite set.

• In general, the product of two sets A and B is not commutative, i.e. A × B �=
B × A.

The binary Cartesian product, defined in Eq. (1.12), can be extended to the
n-ary Cartesian product as follows:

n∏

i=1

Si =S1×S2×· · ·×Sn ={(s1, s2, · · · , sn) | s1 ∈ S1 ∧ s2 ∈ S2 ∧ · · · ∧ sn ∈ Sn}
(1.13)

An example of this type of product is the three-dimensional Cartesian space,
which is defined as the Cartesian product R

3 = R × R × R.
The Cartesian product is named after the French mathematician and philoso-

pher René Descartes (1596–1650) who formulated the principles of analytical
geometry and first used the product R × R.

The Cartesian product A×B of two sets A and B can be represented graphically
by a coordinate diagram. In such a diagram the horizontal and vertical axes rep-
resent the first and second sets of the Cartesian product. Subdivisions along these
axes represent the respective elements of these sets and the points of intersection
of vertical and horizontal lines, corresponding to these set elements, represent the
ordered pairs that define the Cartesian product.

For instance, given a set A = {a1, a2, a3, a4} and a set B = {b1, b2, b3} the co-
ordinate diagram representing the Cartesian product A × B is shown in Fig. 1.29.
In this diagram, the intersection point P represents the ordered pair (a2, b3). Alto-
gether there are twelve intersection points representing the ordered pairs that de-
fine the Cartesian product A × B = {(a1, b1), (a1, b2), (a1, b3), (a2, b1), (a2, b2),
(a2, b3), (a3, b1), (a3, b2), (a3, b3), (a4, b1), (a4, b2), (a4, b3)}.

“Comninos” — 2005/8/31 — 14:52 — page 38 — #36

38 Mathematical and Computer Programming Techniques for Computer Graphics

a1 a2 a3 a4

b3

b2

b1

A

B
P

FIGURE 1.29. The coordinate diagram of the Cartesian product A × B.

x1

x2

y1
y2

z1

z2

X

Y

Z

P

FIGURE 1.30. The coordinate diagram of the Cartesian product X × Y × Z.

Similarly, given the three sets X = {x1, x2}, Y = {y1, y2} and Z = {z1, z2}
the coordinate diagram of their Cartesian product X × Y × Z = {(x1, y1, z1),
(x1, y1, z2), (x1, y2, z1), (x1, y2, z2), (x2, y1, z1), (x2, y1, z2), (x2, y2, z1), (x2,

y2, z2)} is depicted in Fig. 1.30. In this diagram, the intersection point P repre-
sents the ordered triplet (x1, y2, z2).

1.17 Functions

Roughly speaking, a function is a relation that allows us to associate each element
of an input set I with a unique element of an output set O. The output set may be
the same set as the input set. Thus, a function is a deterministic procedure or rule
that allows us to assign a unique output to each given input. For example, given
the set of members of the popular sixties group “The Beatles” I = {John, Paul,

“Comninos” — 2005/8/31 — 14:52 — page 39 — #37

Set Theory Survival Kit 39

George, Ringo}, the set of instruments O = {lead guitar, base guitar, accompany-
ing guitar, drums} and the function f = person i plays instrument o (where i ∈ I
and o ∈ O), it is easy to see that we can use the function f to assign a unique
musical instrument to each member of the group. Thus, we say that:

• f (i1) = o1, i.e. “John plays the lead guitar”;
• f (i2) = o2, i.e. “Paul plays the base guitar”;
• f (i3) = o3, i.e. “George plays the accompanying guitar”;
• f (i4) = o4, i.e. “Ringo plays the drums”.

The term function was first introduced in the late seventeenth century by the
German mathematician Gottfried Leibniz (1646–1716) and it was later refined by
the Swiss mathematician Leonhard Euler (1707–1783) and the German mathe-
matician Karl Weierstrass (1815–1897). The German mathematician Peter Dirich-
let (1805–1859) introduced the formal definition of functions.

1.17.1 The Formal Definition of a Function

More formally, a function can be defined as follows. Suppose that to each element
ii of an input set I we can assign a unique element o j of an output set O. We call
such a relation between the sets I and O a function f . This relationship is denoted
as f : I → O, which is read as f is a function of I into O or f maps I into O. The
input set I is called the domain of the function and the output set O is called the
co-domain of the function.

If i is an element of set I, then the element o of set O (which is assigned to it)
is known as the image of element i and is denoted as f (i) = o. Also, element i is
known as the preimage of element o. For the relationship f to be a well-defined
function, it must satisfy the following two constraints:

• f must be total, i.e. for all elements i ∈ I there must exist an o ∈ O such that
f (i) = o.

• Many input values may be assigned to one output value, but only one output
value may be assigned to each input value, i.e. f (ii) = oi ∧ f (ii) = o j ⇒
oi = o j .

The above definition can be expressed, in a more concise form, as follows. A
function f from an input set I into an output set O is a subset of the Cartesian
product I × O, where for each element i in set I there exists a unique image o in
set O such that the ordered pair (i , o) is in the function f .

The domain of a function f : I → O can be restricted to a subset S ∈ I, in
which case the restricted function is denoted as f | S : S → O.

Consider the following examples:

• The function f maps every real number x to its cube, i.e. f (x) = x3. Here,
the real number set is both the domain and the co-domain of the function f , i.e.
f : R → R. The image of −2 is −8 (i.e. f : − 2 → −8) and the image of 2 is 8
(i.e. f : 2 → 8). See Fig. 1.31.

“Comninos” — 2005/8/31 — 14:52 — page 40 — #38

40 Mathematical and Computer Programming Techniques for Computer Graphics

I = R R

−2

O =

−8

2 8

FIGURE 1.31. The mapping of the function f (x) = x3.

• Given the sets I = {a, b, c, d} and O = {1, 2, 3}, we may define a function f
by the correspondence f (a) = 1, f (b) = 2, f (c) = 1 and f (d) = 2 or more
concisely by:

f (x) =
{

1, x = a ∨ x = c
2, x = b ∨ x = d

Observe that for f to be a function f : I → O, each elements of the domain
must be assigned to a unique element of the co-domain, but not all the ele-
ments of the co-domain need be assigned as images of elements of the domain.
Thus, element 1 of the co-domain is the image of elements a and c of the
domain, element 2 of the co-domain is the image of elements b and d of
the domain, and element 3 of the co-domain has not been assigned to any of
the elements of the domain. See Fig. 1.32.

• Let D = {0, 1} and the function f assign each rational number to element 1 of
set D and each irrational number to element 0 of set D. This function is known
as the Dirichlet function f : R → D and is denoted as:

f (x) =
{

1, x ∈ Q

0, x ∈ Q
′

See Fig. 1.33.

I

a

O

1

2

b

c

d

3

FIGURE 1.32. The mapping of the function f (x) =
{

1, x = a ∨ x = c
2, x = b ∨ x = d

.

“Comninos” — 2005/8/31 — 14:52 — page 41 — #39

Set Theory Survival Kit 41

DR

Q

Q9

1

0

FIGURE 1.33. The mapping of the function f (x) =
{

1, x = Q

0, x = Q
′ .

I

a

O

1

2

b

c

d

3

FIGURE 1.34. The mapping of a function that is defined diagrammatically.

• Given the sets I = {a, b, c, d} and O = {1, 2, 3}, the function f : I → O may
be defined in diagrammatic form as shown in Fig. 1.34.

1.17.2 Mappings, Operators and Transformations

Given two general sets I and O, the function f of I into O is frequently known as
a mapping of I into O and the notation f : I → O reads “f maps I into O”. The

mapping (or function) of a set I into a set O is sometimes denoted by I
f→ O or

depicted in diagrammatic form as shown in Fig. 1.35.
If the same set S is both the domain and the co-domain of a function f (i.e.

f : S → S), then this function is frequently referred to as an operator on the set S
or a transformation on the set S.

1.17.3 Equality of Functions

Two functions f 1 and f 2 are said to be equal (i.e. f 1 = f 2) if the following two
conditions are satisfied:

• Both functions have the same domain I.
• For every element i ∈ I the same image is assigned to it by both functions

(i.e. f 1(i) = f 2(i)).

“Comninos” — 2005/8/31 — 14:52 — page 42 — #40

42 Mathematical and Computer Programming Techniques for Computer Graphics

I O

FIGURE 1.35. The mapping I
f→ O .

Consider the following examples:

• Given the two function f 1(x) = x3, where x ∈ Q, and f 2(x) = x3, where
x ∈ Q

′, we say that these functions are unequal (i.e. f 1 �= f 2) as they have
different domains.

• Given two functions f 1(x) = x3 and f 2(y) = y3, where x,y ∈ R, we say that
these functions are equal (i.e. f 1 = f 2) as they have the same domain and
f 1(x) = f 2(y) for every x, y ∈ R and x = y.

• Given that the function f 1 is defined by the mapping shown in Fig. 1.36 and that
the function f 2 is defined as f 2(x) = x3 with a domain I2 = {1, 2}, we say that
these two functions are equal, as their domains are equal (i.e. I1 = I2 = {1, 2})
and equal elements in their co-domains are assigned to equal elements in their
domains (i.e. f 1(1) = f 2(1) = 1 and f 1(2) = f 2(2) = 8). Here, the co-domain
of function f 2 is O2 = {1, 8}. The fact that element 27 of the co-domain of
function f 1 is not assigned to any element of its domain does not effect the
equality of the two functions. Thus, two functions can be equal even though
they have different co-domains. In this case, O2 ⊂ O1.

I1 O1

1

8

27

1

2

FIGURE 1.36. The diagrammatic mapping of the function f1.

“Comninos” — 2005/8/31 — 14:52 — page 43 — #41

Set Theory Survival Kit 43

1.17.4 The Range of a Function

If f is a function of set I into set O (i.e. f : I → O), then as we have seen in
the above example not every element of its co-domain O need be an image of
an element of its domain I. The elements of O that are the image of at least one
element of I are known as the range of the function f . The range of a function
f : I → O is denoted as f (I).

A function f : I → O whose domain and range are the same (i.e. f (I) = O) is
known as an endofunction.

Consider the following examples:

• Given that the function f is defined by the mapping shown in Fig. 1.36 (i.e.
f 1 : I1 → O1), the range of this function is f 1(I1) = {1, 8} which, as we can
see, is different from its co-domain O1 = {1, 8, 27}.

• Given the function f 2(x) = |x |, where x ∈ R, the range of this function is
f 2(R) = {x | x ∈ R ∧ x ≥ 0}.
Thus, we observe that the co-domain of a function is the set of possible outputs

and the range of a function is the set of actual outputs.

1.17.5 Different Types of Functions

We can distinguish the following four different types of functions, which we will
examine in more detail.

• Many-to-one functions
• Injective functions or one-to-one functions
• Surjective functions or onto functions
• Bijective functions or one-to-one correspondences

1.17.5.1 Many-to-One Functions

A many-to-one function or many-to-one mapping is a function f : I → O, which
maps more than one distinct input values to one distinct output value.

More precisely, a function f : I → O is a many-to-one function if more than
one elements ii of its domain are assigned the same element o j of its co-domain
(i.e. if the correspondence f (i1) = f (i2) = · · · = f (in) = o j is allowed under the
function f).

Consider the following examples:

• The function f (x) = |x | (where x ∈ R) is a many-to-one function, as f (x) =
f (−x) = |x |. See Fig. 1.37.

• The function f (x) = x2 (where x ∈ R) is a many-to-one function, as f (x) =
f (−x) = x2. See Fig. 1.38.

1.17.5.2 Injective Functions or One-to-One Functions

An injective function or one-to-one function or injection is a function f : I → O,
which maps each distinct input value to a distinct output value.

“Comninos” — 2005/8/31 — 14:52 — page 44 — #42

44 Mathematical and Computer Programming Techniques for Computer Graphics

I = R R

−1

O =

1

−2
2

0 0

1

2 ...
...

FIGURE 1.37. The mapping of the function f (x) = |x|.

I =

−1

O =

1

−2
4

......

0 0

1

2

R R

FIGURE 1.38. The mapping of the function f (x) = x2.

More precisely, a function f : I → O is a one-to-one function if each dis-
tinct elements ii of its domain is assigned a distinct element o j of its co-domain.
Alternatively, if two elements of the domain have the same image o j in its co-
domain, then the two elements must be equal (i.e. f (i1) = o j ∧ f (i2) = o j ⇒
i1 = i2).

Consider the following examples:

• The function f (x) = x3 (where x ∈ R) is injective, as distinct input values
generate distinct output values. See Fig. 1.39.

• The function f (x) = 3x + 2 (where x ∈ R) is also injective. See Fig. 1.40.

If a function f : I → O is injective, then its co-domain O has at least as many
elements as its domain I.

1.17.5.3 Surjective Functions or Onto Functions

A surjective function or onto function or surjection is a function f : I → O,
which contains no other values in its co-domain than the images of the values of
its domain.

More precisely, a function f : I → O is an onto function if every element of
its co-domain is the image of at least one element of its domain. Alternatively,

“Comninos” — 2005/8/31 — 14:52 — page 45 — #43

Set Theory Survival Kit 45

I =

−1

O =

−2

8

0 0

1

2

−1

1
−8

R R

FIGURE 1.39. The mapping of the function f (x) = x3.

I =

−1

O =

−2

−8

0 −2

1

2

1

−5
4

R R

FIGURE 1.40. The mapping of the function f (x) = 3x + 2.

a function f : I → O is surjective if its range is equal to its co-domain (i.e. iff
f : (I) = O). Equally, a function is surjective if for each image in its co-domain
there exists a preimage in its domain.

Consider the following examples:

• The function f : I → O defined by the mapping depicted in Fig. 1.41 is surjec-
tive, as for every image o j there exists a preimage ii .

• The function f (x) = 3x (where x ∈ R) is also surjective, as for every image 3x
there exists a preimage x . See Fig. 1.42.

• The function f : I → O defined by the mapping depicted in Fig. 1.43 is not
surjective, as the image 4 has no preimage.

If a function f : I → O is surjective, then its domain I has at least as many
elements as its co-domain O.

1.17.5.4 Bijective Functions or One-to-One Correspondences

A bijective function or one-to-one correspondence or bijection is a function
f : I → O, which is both injective (i.e. a one-to-one function) and surjective
(i.e. an onto function). In other words, a bijection is a function that creates a
correspondence that maps one input value to exactly one output value.

“Comninos” — 2005/8/31 — 14:52 — page 46 — #44

46 Mathematical and Computer Programming Techniques for Computer Graphics

I

a

O

1

3

b

c

d

2

FIGURE 1.41. The mapping of surjective function.

I =

−1

O =

−2

6

0 0

1

2

−3

3
−6

R R

FIGURE 1.42. The mapping of the function f (x) = 3x .

I

a

O

1

3

b

c

d

2

4

FIGURE 1.43. The mapping of non-surjective function.

“Comninos” — 2005/8/31 — 14:52 — page 47 — #45

Set Theory Survival Kit 47

I

a

O

1

3

b

c

d

2

4

FIGURE 1.44. The mapping of bijective function.

More precisely, a function f : I → O is a bijective function if every image o j of
its co-domain there is exactly one preimage ii in its domain such that f (ii) = o j .

Consider the following examples:

• The function f (x) = 3x (where x ∈ R) is bijective, as it is both injective and
subjective. See Fig. 1.42;

• The function f : I → O defined by the mapping depicted in Fig. 1.44 is also
bijective.

If the sets I and O are finite, then the function f : I → O is bijective iff its domain
and its co-domain have exactly the same number of elements.

1.17.6 Constant Functions

A constant function is a function f : I → O, which maps all the elements ii of its
domain to only one element o j of its co-domain (i.e. f (ii) = o j∀ii ∈ I | o j ∈ O).
The range of a constant function is a set containing the unique element of its co-
domain onto which all the elements of its domain are mapped (i.e. f (I) = {o j }).
Thus, the range of a constant function is a singleton.

For instance, the function f : I → O defined by the mapping depicted in
Fig. 1.45 is a constant function.

I

a

O

1

3

b

c

d

2

4

FIGURE 1.45. The mapping of constant function.

“Comninos” — 2005/8/31 — 14:52 — page 48 — #46

48 Mathematical and Computer Programming Techniques for Computer Graphics

S

a

b

c

d

FIGURE 1.46. The mapping of an identity function.

1.17.7 The Identity Function or Identity Transformation

An identity function or identity transformation is a function f : S → S, which
maps each element of its domain to itself (i.e. f (si) = si ,∀si ∈ S). The identity
function is denoted by 1 or 1s . Figure 1.46 depicts an identity function.

1.17.8 The Composition or Product of Functions

A composite function or the composition of one function on another is the out-
put value arrived at by using the output of one function as input into a second
function.

More precisely, given two functions f 1 : I1 → O1 and f 2 : O1 → O2
the composition of these functions is denoted by

(
f 2 ◦ f 1

)
and is defined as(

f 2 ◦ f 1
)
(i) = f 2

(
f 1 (i)

) = o, where i ∈ I1 ∧ o ∈ O2. The operation
(

f 2 ◦ f 1
)

reads as f 1 composed with f 2, f 1 composition f 2, f 2 circle f 1 or f 2 oh f 1. The
operator “◦” itself is known as the function product operator or the function com-
position operator.

This new function
(

f 2 ◦ f 1
)

is a mapping of the domain I1, of the first function,
into the co-domain O2 of the second function. This operation can be thought of
as occurring in two steps. First, function f 1 maps the elements of its domain I1
into its co-domain O1, then function f 2 maps the elements of its domain O1 into
its co-domain O2. The combined effect of these two function applications maps
the elements of its domain I1 into its co-domain O2. See Fig. 1.47.

The function composition operation can of course be extended recursively to n
levels. Thus, given n functions f 1 : I1 → O1, f 2 : O1 → O2, · · · , f n : On−1 →
On their composition is defined as:

(
f n ◦ · · · ◦ f 2 ◦ f 1

)
(i) = f n

(· · · f 2
(

f 1 (i)
) · · ·) = o, where i ∈ I1 ∧ o ∈ On

Given a function f 1 : I → O, where O ⊆ I, the function can be composed with
itself (i.e. f ◦ f). Such a product is often denoted by f 2(i) and is defined as
f 2 (i) = (f ◦ f) (i) = f (f (i)) = o, where i ∈ I ∧ o ∈ O.

“Comninos” — 2005/8/31 — 14:52 — page 49 — #47

Set Theory Survival Kit 49

f1(i)i f2(f1(i))

I1 O1 O2f1 f2

f1f2 o

FIGURE 1.47. The mapping of function composition
(

f2 ◦ f1
)
.

This notation can be generalised to n levels of function composition:

f n (i) = (f ◦ · · · ◦ f ◦ f) (i) = f (· · · f (f (i)) · · ·) = o, where i ∈ I ∧ o ∈ O.

In this notation the superscript is used to indicate levels of function composition
except in the case of trigonometric functions, where for historical reasons the
superscript is used to indicate raising the function to a power rather than function
composition. For instance, cos2 θ is defined to be cos θ ·cos θ and not cos (cos θ).

Given two functions f 1 : I1 → O1, and f 2 : O1 → O2, in the general case the
composition of these functions is not commutative (i.e. f 2 ◦ f 1 �= f 1 ◦ f 2). To
illustrate this consider the following example. Given two functions f 1 : R → R

(which is defined as f 1(x) = 3x + 2) and f 2 : R → R (which is defined as
f 2(x) = x2), let us compute the function compositions

(
f 2 ◦ f 1

)
and

(
f 1 ◦ f 2

)
:

(
f 2 ◦ f 1

)
(x) = f 2

(
f 1 (x)

) = f 2 (3x + 2) = (3x + 2)2 = 9x2 + 12x + 4

and
(

f 1 ◦ f 2
)
(x) = f 1

(
f 2 (x)

) = f 1
(
x2

) = 3x2 + 2

Thus, in general
(

f 2 ◦ f 1
) �= (

f 1 ◦ f 2
)
. The above two compositions could

only be equal iff 9x2 + 12x + 4 = 3x2 + 2 (i.e. iff 6x2 + 12x + 2 = 0, which in
this particular case has no real solution).

If f : I → O, then pre-multiplying this function by the identity function 1o on
its co-domain or post-multiplying it by the identity function 1I on its domain does
not alter the function (i.e. 1O ◦ f = f and f ◦ 1I = f).

Given three functions f 1 : I1 → O1, f 2 : O1 → O2 and f 3 : O2 → O3, the
composition of these three functions

(
f 3 ◦ f 2 ◦ f 1

)
: I1 → O3 is associative (i.e.(

f 3 ◦ f 2
) ◦ f 1 = f 3 ◦ (

f 2 ◦ f 1
)
). See Fig. 1.48.

1.17.9 The Inverse of a Function

Let f : I → O be a function in its most general form. For such a function
each element of its domain is mapped to an element of its co-domain and one
or more elements of its domain are mapped to a given element of its co-domain

“Comninos” — 2005/8/31 — 14:52 — page 50 — #48

50 Mathematical and Computer Programming Techniques for Computer Graphics

()i1fi ()()i12 ff

1I 1O 2O
1f 2f

12 ff

()()()i123 fff

3O
3f

()123 fff

23 ff
() 123 fff

FIGURE 1.48. The mapping of function composition
(

f3 ◦ f2
) ◦ f1 = f3 ◦ (

f2 ◦ f1
)
.

(i.e. f (i1) = f (i2) = . . . = f (in) = o j , where ii ∈ I and o j ∈ I). Thus, each
element of the co-domain of f (that is an image under this function) may have
one or more preimages and the function maps each preimage ii (in its domain) to
its corresponding image o j (in its co-domain). A function that maps each image
o j to its corresponding preimages ii is known as the inverse of function f and is
denoted by f −1. We read f −1 as f inverse or the inverse of f .

1.17.9.1 Applying the Inverse of a Function to an Element of its Co-domain

If o j is an image under the function f : I → O, then the inverse of this image is
given by f−1(o j) = {i1, i2, . . . , in} where ii ∈ I and o j ∈ O. This set is known
as the inverse image of o j .

If o j ∈ f (I) (i.e. if o j is in the range of the function, which means that it is the
image at least one ii ∈ I), then the inverse image of o j is given by f −1 (

o j
) ={

ii | ii ∈ I ∧ f (ii) = o j
}
. Alternatively, if ok ∈ O ∧ ok /∈ f (I) (i.e. if ok is in

the co-domain but not in the range of the function, which means that it is not the
image of any ii ∈ I), then the inverse image of ok is given by an empty set (i.e.
f−1 (ok) = Ø). See Fig. 1.49.

For example, given the function f : I → O defined by the mapping depicted in
Fig. 1.50 then by applying the inverse function to the elements of the co-domain
we get:

f −1(1) = {a, c}
f −1(2) = {b, d}
f −1(3) = Ø

Observe that the image 1 has two preimages a and c, the image 2 has two preim-
ages b and d, and element 3 of the co-domain is not the image of any element of
the domain under this function (thus its inverse image is the empty set).

1.17.9.2 Applying the Inverse of a Function to a Subset of its Co-domain

Now let us widen the definition of the inverse of a function. Suppose that we have
a function f : I → O and that C is a subset of its co-domain (i.e. C ⊆ O). Then

“Comninos” — 2005/8/31 — 14:52 — page 51 — #49

Set Theory Survival Kit 51

I

1i

O

2i

ni

jo

f ko

()If

I

1i

O

2i

ni

jo

f

()jf o−1

(a) (b)

−1

FIGURE 1.49 (a) The mapping of the elements i1, i2, . . . , in onto the image o j under the
function f . (b) The mapping of the image o j to the preimages {i1, i2, . . . , in}under the

inverse function f−1.

I

a

O

1

2

b

c

d

3

FIGURE 1.50. The mapping of a function that is defined diagrammatically.

the inverse of this subset under the mapping f is denoted by f −1(C) and is defined
to be the set of all the elements of the domain I that are mapped onto some image
contained in set C, i.e. f −1(C) = {i | i ∈ I ∧ f (i) ∈ C}. See Fig. 1.51.

Let us re-examine the function f : I → O defined by the mapping depicted in
Fig. 1.50. By applying the inverse of the function f to subsets of its co-domain
we get:

f −1({1, 2, 3}) = {a, b, c, d}
f −1({1, 2}) = {a, b, c, d}
f −1({1}) = {a, c}
f −1({2}) = {b, d}
f −1({3}) = Ø

In this example the range of the function is f (I) = {1, 2}, and as can be seen, the
inverse of the range of f is f −1(f (I)) = I. From this result it should be apparent
that the mapping represented by the inverse function f −1 is the reverse of the

“Comninos” — 2005/8/31 — 14:52 — page 52 — #50

52 Mathematical and Computer Programming Techniques for Computer Graphics

I O

f

C

I O

f -1

()Cf -1 C

(a) (b)

FIGURE 1.51 (a) The mapping of the elements of the domain whose images are in the
subset C of the co-domain under the function f . (b) The mapping of the images that are
members of the subset C of the co-domain under the inverse function f−1.

mapping represented by the function f . Also, if o ∈ O then f −1(o) = f −1({o}).
Thus an inverse function has two distinct meanings. It may either represent the
inverse of an element of the co-domain or the inverse of a subset of the co-domain.

1.17.10 The Inverse Function

Next, we restrict the function f : I → O to be a bijection (i.e. a one-to-one
correspondence). If we now apply the inverse function f −1 to each image o ∈ O,
we get a single preimage i ∈ I. Thus the inverse function is itself a one-to-one
correspondence of the form f −1 : O → I.

Consider the following examples:

• Let the function f : I → O be defined by the mapping depicted in Fig. 1.52a.
From the diagram we can see that this function is a bijection (i.e. both one-to-
one and onto) and thus its inverse function f −1 : O → I exists and is defined
by the mapping depicted in Fig. 1.52b.

I

a

O

1
b 2

f

I

a

O

1

b 2

f −1

(a) (b)

FIGURE 1.52 (a) The mapping of the function f : I → O. (b) The mapping of the function
f−1 : I → O.

“Comninos” — 2005/8/31 — 14:52 — page 53 — #51

Set Theory Survival Kit 53

• Let the function f : R → R be defined as f (x) = x3. This function is a
bijection as it is both one-to-one and onto. Thus its inverse function f −1 : R →
R exists and is defined as f −1(x) = x

1/3 = 3
√

x .

1.17.11 Theorems on the Inverse Function

For functions that are bijections (i.e. one-to-one correspondences) we can prove
the following two theorems.

Theorem 1.10 If the function f : I → O is a bijection (which implies that its
inverse function exists and is given by f −1 : O → I), the composite function
(f −1 ◦ f) : I → I is equal to the identity function 1I on the domain of f and the
composite function (f ◦ f−1) : O → O is equal to the identity function 1O on the
co-domain of f. See Fig. 1.53. This can be expressed more concisely as:

f : I → O ∧ f −1 : O → I ⇒
(

f−1 ◦ f
)

= 1I ∧
(

f ◦ f −1
)

= 1O . (T1.10)

Proof : To illustrate this theorem consider the following example. Given the
bijective function f : I → O defined by the mapping depicted in Fig. 1.52a

()ifi ()()if

I Of

ff -1

f -1

f -1

o

I

(a)

()oo ()()of -1

f -1

f -1

f -1

f

O I f

f o

O

(b)

FIGURE 1.53 (a) The mapping of function composition
(

f −1 ◦ f
)
. (b) The mapping of

function composition
(

f ◦ f −1)
.

“Comninos” — 2005/8/31 — 14:52 — page 54 — #52

54 Mathematical and Computer Programming Techniques for Computer Graphics

and its inverse f −1 : O → I) defined by the mapping depicted in Fig. 1.52b, let

us apply the composite function
(

f −1 ◦ f
)

to each element of the domain of f

and the composite function
(

f ◦ f −1
)

to each element of the co-domain of f :

(
f −1 ◦ f

)
(a) = f −1 (f (a)) = f −1 (1) = a

(
f −1 ◦ f

)
(b) = f −1 (f (b)) = f −1 (2) = b

and (
f ◦ f −1

)
(1) = f

(
f −1 (1)

)
= f (a) = 1

(
f ◦ f −1

)
(2) = f

(
f −1 (2)

)
= f (b) = 2

Thus, it is apparent that
(

f −1 ◦ f
)

= 1I and
(

f ◦ f −1
)

= 1O.

Theorem 1.11 If the functions f : I → O and g : O → I are bijections, then
g = f −1 iff the composite function (g ◦ f) : I → I is equal to the identity
function 1I on the domain of f and the composite function (f ◦ g) : O → O is
equal to the identity function 1o on the co-domain of f. This can be expressed
more concisely as:

f : I → O ∧ g : O → I ⇒
(

g = f−1 ⇔ (g ◦ f) = 1I ∧
(

f ◦ f−1
)

= 1O

)
.

(T1.11)

Proof : To illustrate this theorem consider the following example. Given the bi-
jective functions f : I → O defined by the mapping depicted in Fig. 1.54a and
g : O → I defined by the mapping depicted in Fig. 1.54b, let us apply the com-
posite function (g ◦ f) to each element of the domain of f and the composite
function (f ◦ g) to each element of the co-domain of f :

(g ◦ f) (a) = g (f (a)) = g (1) = a

(g ◦ f) (b) = g (f (b)) = g (2) = b

and
(f ◦ g) (1) = f (g (1)) = f (a) = 1

(f ◦ g) (2) = f (g (2)) = f (b) = 2

Thus, it is apparent that (g ◦ f) = 1I and (f ◦ g) = 1O , which implies that
g = f −1.

1.17.12 The Graph of a Function

Given a function f : I → O, the graph f* of this function is the set of all ordered
pairs (i, o) where i is an element of the domain of the function and o is an element
of its co-domain. More precisely:

f∗ = {(i, o) | i ∈ I ∧ o = f (i)}

“Comninos” — 2005/8/31 — 14:52 — page 55 — #53

Set Theory Survival Kit 55

I

a

O

1

b 2

f

I

a

O

1

b 2

g

(a) (b)

FIGURE 1.54 (a) The mapping of the function f : I → O. (b) The mapping of the function
g : O → I.

Frequently the term graph of a function refers to the graphical representation of
this set of ordered pairs.

Consider the following examples:

• Given the function f : I → O defined by f (i) =
⎧
⎨

⎩

1, i = a
2, i = b
3, i = c

,

then its graph is given by f∗ = {(a, 1), (b, 2), (c, 3)}.
• Given the function f : I → O defined by the mapping depicted in Fig. 1.55,

then its graph is given by f∗ = {(a, 1), (b, 2), (c, 3)}.
• Given the function f : X → N (where X = {0, 1, 2, 3}) defined as f (x) =

x2 + 2, then its graph is given by f∗ = {(0, 2), (1, 3), (2, 6), (3, 11)}.
• Given the function f : N → N defined as f (x) = x2 + 2, then the graph of this

function is the infinite set f∗ = {(0, 2), (1, 3), (2, 6), (3, 11), (4, 18), . . .}.

I

a

O

1

3

b

c

2

4

FIGURE 1.55. The mapping of the function f : I → O.

Recall that, given a mapping f : I → O, for f to be a function of I into O every
element i ∈ I must a have a unique image o ∈ O, but not all elements of O need
to have a preimage in I. Thus we can make the following observations about the
graph f* of function f :

“Comninos” — 2005/8/31 — 14:52 — page 56 — #54

56 Mathematical and Computer Programming Techniques for Computer Graphics

• For each i ∈ I there exists an ordered pair (i, o) ∈ f*.
• Each i ∈ I appears as the first element of only one ordered pair of the graph f*,

i.e.
f (i, o1) ∈ f∗ ∧ f (i, o2) ∈ f∗ ⇒ o1 = o2.

• The graph f∗, of the general function f : I → O, is a proper subset of the
Cartesian product of its domain and its co-domain, i.e.: f∗ ⊂ I × O.

Let f∗ be the graph of a general function f : I → O. As we have seen above
f∗ ⊂ I × O, thus we could graph (display) f∗ on the coordinate diagram of the
Cartesian product I × O. To illustrate this point, consider the following example.
Given the function f : I → O defined by the mapping depicted in Fig. 1.56a, the
graph of this function is given by f∗ = {(i1, o1), (i2, o3), (i3, o2), (i4, o1)} and it
is graphed on the coordinate diagram depicted in Fig. 1.56b.

Thus, if the graph f∗ of a general function f : I → O is graphed on the coordi-
nate diagram of the Cartesian product I × O, then we observe that:

• Each vertical line of the coordinate diagram (corresponding to an element of I)
contains one and only one point (represented by an ordered pair) of the graph f∗.

• Some of the horizontal lines may contain more than one point, as an image
in the co-domain may have more than one preimages in the domain of the
function f .

Let us now examine the case where the function f is a bijection (a one-to-
one correspondence) by considering the following example. Given the bijective
function f : I → O defined by the mapping depicted in Fig. 1.57a, the graph of
this function is given by f∗ = {(i1, o1), (i2, o3), (i3, o2)} and it is graphed on the
coordinate diagram depicted in Fig. 1.57b.

Thus, if the graph f∗ of a bijective function f : I → O is graphed on the
coordinate diagram of the Cartesian product I × O, then we observe that:

• Each vertical line of the coordinate diagram (corresponding to an element of I)
contains one and only one point (represented by an ordered pair) of the graph f∗.

I

1i

O

2i

3i

4i

1o

2o

3o

I
1i

O

2i 3i 4i

1o

2o

3o

(a) (b)

FIGURE 1.56 (a) The mapping of the function f : I → O. (b) The graph f∗ on the coordi-
nate diagram of I × O.

“Comninos” — 2005/8/31 — 14:52 — page 57 — #55

Set Theory Survival Kit 57

I

i1

O

i2

i3

o1

o2

o3

I
i1

O

i2 i3

o1

o2

o3

(a) (b)

FIGURE 1.57 (a) The mapping of the function f : I → O. (b) The graph f∗ on the coordi-
nate diagram of I × O.

• Each horizontal line of the coordinate diagram (corresponding to an element
of O) contains one and only one point (represented by an ordered pair) of the
graph f∗.

To further clarify the relationship between a function f and its graph f∗ dis-
played on the coordinate diagram of the Cartesian product I × O consider the
following example. Given two sets I = {i1, i2, i3, i4} and O = {o1, o2, o3}, and
the three coordinate diagrams shown in Fig. 1.58, we observe that:

• the set of points {(i1, o1), (i2, o3), (i3, o1), (i4, o2)} of the coordinate diagram
depicted in Fig. 1.58a is the graph f∗ of a function f : I → O, as each vertical
line of the coordinate diagram contains one and only one point contained in the
graph of f ;

• The set of points {(i1, o1), (i2, o2), (i4, o3)} of the coordinate diagram depicted
in Fig. 1.58b is not the graph of a function, as the vertical line corresponding
to the element i3 of the coordinate diagram does not contain a point (which
indicates that i3 ∈ I does not have an image in O).

• The set of points {(i1, o1), (i2, o2), (i3, o1), (i3, o2), (i4, o3)} of the coordinate
diagram depicted in Fig. 1.58c is not the graph of a function, as the vertical line
corresponding to the element i3 of the coordinate diagram contains two points
(which indicates that i3 ∈ I does not have a unique image in O).

1.17.13 The Redefinition of a Function as a Set of Ordered
Pairs

As we have seen above the graph f∗ of a function f : I → O is a proper subset of
the Cartesian product I × O and has the following properties:

• For each i ∈ I there exists an ordered pair (i, o) ∈ f∗.
• No two different ordered pairs of f∗ have the same first element.

“Comninos” — 2005/8/31 — 14:52 — page 58 — #56

58 Mathematical and Computer Programming Techniques for Computer Graphics

I
i1

O

i2 i3 i4 i1 i2 i3 i4

o1

o2

o3

o1

o2

o3

I

O

(a) (b)

i1 i2 i3 i4

o1

o2

o3

I

O

(c)

FIGURE 1.58 (a) A set of points on the coordinate diagram of I × O. (b) A set of points
on the coordinate diagram of I × O. (c) A set of points on the coordinate diagram of I × O.

Thus, we have a rule that assigns to each element i ∈ I a unique image o ∈ O.
In other words, f∗ is a function of I into O. This observation leads us to redefine
the concept of the function as a set of ordered pairs. Thus, we say that: a function
f : I → O is a subset of I × O in which all elements i ∈ I appear as the first
element of an ordered pair (i, o) that belongs to the set of ordered pairs f .

Given this new definition of a function as a set of ordered pairs belonging to a
subset of I × O, we can make the following observations:

• If f is a set of ordered pairs in the coordinate diagram of the Cartesian product
I × O (where each vertical line of this diagram contains one and only one point
that belongs to the set f), then f is a function of I into O.

• If the function f : I → O is a one-to-one correspondence (bijection), then the
inverse function f −1 is defined to be the set of ordered pairs that define the
function f taken in the reverse order, i.e. f −1 = {(o, i) | (i, o) ∈ f }.

1.18 Families of Indexed Sets

A set I whose elements i ∈ I index (are used to refer to) members of another
set S is known as an index set. As an example suppose that we have the sets
S1 = {

s1,1, s1,2, . . . , s1,k
}
, S2 = {

s2,1, s2,2, . . . , s2,l
}
, S3 = {

s3,1, s3,2, . . . , s3,m
}

“Comninos” — 2005/8/31 — 14:52 — page 59 — #57

Set Theory Survival Kit 59

and a set I = {1, 2, 3}, i.e. for each element i ∈ I there exists a set Si . Then,
the set I is known as the index set, the element i ∈ I is known as the index of set
Si , the sets S1, S2 and S3 are known as the indexed sets, and S = {S1, S2, S3} is
the set of all indexed sets Si . Such a collection of sets is often referred to as an
indexed family of sets and is denoted as S = {Si }i∈I .

Families and sets are alternative ways of representing collections of entities.
These two representations only differ formally, as an indexed family of sets S =
{Si }i∈I can give rise to set of indexed sets S = {Si | i ∈ I} and vice-versa a
set of indexed sets S = {Si | i ∈ I} can give rise to an indexed family of sets
S = {Si }i∈I . The main difference between sets and families is that the repetition
of an element in a set definition is ignored and does not alter its definition, while
the repetition of an element in a family definition alters its definition.

Alternatively, we may view an indexed family of sets S = {Si }i∈I as a function
f : I → S that assigns each element i ∈ I of its domain (which is the index set I
of the indexed family of sets S) to a unique element Si of its range (which is the
indexed family of sets S itself).

Consider the following examples:

• Suppose that we have the interval definition I j = {i | j ≤ i ≤ j + 1}, where
j ∈ J and J = {0, 1, 2, 3}. This definition gives rise to the intervals I0 = [0, 1],
I1 = [1, 2], I2 = [2, 3], I3 = [3, 4] and to the indexed family of intervals
I = {

I j
}

j∈J .

• Suppose that we have the set definition Si = {
s | s = in∀n ∈ N

+}
, where i ∈ N

and where the symbol N
+ denotes the set of the positive natural numbers. This

definition gives rise to the sets:

S0 =
{

01, 02, 03, 04, . . .
}

= {0, 0, 0, 0, . . .} ,

S1 =
{

11, 12, 13, 14, . . .
}

= {1, 1, 1, 1, . . .} ,

S2 =
{

21, 22, 23, 24, . . .
}

= {2, 4, 8, 16, . . .} ,

...

and to the indexed family of sets S = {Si }i∈N.
• Suppose that we have the set definition Si = {s | s = i · n ∀n ∈ N}, where

i ∈ N. This definition gives rise to the sets:

S0 = {0 · 0, 0 · 1, 0 · 2, 0 · 3, . . .} = {0, 0, 0, 0, . . .} ,

S1 = {1 · 0, 1 · 1, 1 · 2, 1 · 3, . . .} = {0, 1, 2, 3, . . .} ,

S2 = {2 · 0, 2 · 1, 2 · 2, 2 · 3, . . .} = {0, 2, 4, 6, . . .} ,

...

and to the indexed family of sets S = {Si }i∈N. Observe that in this example
the set S1 is identical to the index set N and is the universal set for all indexed
sets Si .

“Comninos” — 2005/8/31 — 14:52 — page 60 — #58

60 Mathematical and Computer Programming Techniques for Computer Graphics

Above we have observed that any indexed family of sets S = {Si }i∈I can be
thought of as a function f : I → S. Replacing the function f by the identity
function on S we get 1S : S → S, which is another way of saying that
S = {Si }i∈S, where Si ∈ S and i = Si (i.e. the index of any set in the family of
indexed sets S is the set itself). Now, we can rewrite S as S = {i}i∈S and say
that any indexed family of sets S can be indexed by itself.

1.19 The Generalised Set Union and Intersection Operations

Earlier in this chapter we have defined the operations of union and intersection
between two sets. Now, we will extend these operations to deal with a finite
number of sets. Thus, given n sets S1, S2, . . . , Sn we refine the definition of these
set operations as follows. The union of n sets is defined as:

n⋃

i=1

Si = S1 ∪ S2 ∪ · · · ∪ Sn (1.14)

or
n⋃

i=1

Si = {s | (∃i ∈ {1, 2, . . . , n}) : (s ∈ Si)} (1.15)

Which reads “the union of the sets Si for i from 1 to n is equal to the set of
elements s such that there exists a value of i that belongs to the set {1, 2, . . . , n}
for which element s belongs to the set Si ”, i.e. the elements of the union of the
sets belong to at least one of the sets Si .

Similarly, the intersection of n sets is defined as:

n⋂

i=1

Si = S1 ∩ S2 ∩ · · · ∩ Sn (1.16)

or
n⋂

i=1

Si = {s | (∀i ∈ {1, 2, . . . , n}) : (s ∈ Si)} (1.17)

Which reads “the intersection of the sets Si for i from 1 to n is equal to the set of
elements s such that for all values of i that belong to the set {1, 2, . . ., n} element
s belongs to the set Si ”, i.e. the elements of the intersection of the sets belong to
all the sets Si .

As we have seen before in some literature the union and intersection of two sets
A and B are denoted as A + B and A · B, respectively. If this notation is used, the
generalised union and intersection of n sets S1, S2, · · · , Sn are denoted as:

n⋃

i=1

Si ≡
n∑

i=1

Si = S1 + S2 + · · · + Sn (1.18)

“Comninos” — 2005/8/31 — 14:52 — page 61 — #59

Set Theory Survival Kit 61

n⋂

i=1

Si ≡
n∏

i=1

Si = S1 · S2 . . . Sn (1.19)

Next, we further generalise the union and intersection operations to deal with fam-
ilies of indexed sets. Thus, given a family of indexed sets S = {Si}i∈I (where I is
the index set of the family) we refine the definition of the union and intersection
operations as follows. The union operation of a family of indexed sets is defined
as:

⋃

i∈I

Si = {s | (∃i ∈ I) : (s ∈ Si)} (1.20)

If the index set is not ambiguous, the notation
⋃

i∈I Si can be shortened to
⋃

Si.
Similarly, the intersection of a family of indexed sets is defined as:

⋂

i∈I

S = {s | (∀i ∈ I) : (s ∈ Si)} (1.21)

Again, If the index set is not ambiguous, the notation
⋂

i∈I Si can be shortened to⋂
Si.

1.19.1 The Negation of the Generalised Set Operations

We must be particularly careful when negating a generalised union or intersection
operation on a family of indexed sets. For instance, the expression s ∈ ⋃

i∈I Si

means that there is at least one value of the index i for which s ∈ Si and conversely
the expression s /∈ ⋃

i∈I Si means that s /∈ Si for all values of the index i ∈ I.
Similarly, the expression s ∈ ⋂

i∈I Si means that s ∈ Si for all values of the index
i ∈ I and conversely the expression s /∈ ⋂

i∈I Si means that s /∈ Si for at least one
value of the index i .

1.19.2 Some Algebraic Rules for the Generalised Set
Operations

The distributive rules of the union over intersection (R1.9a) and of the intersection
over union (R1.9b) can be extended to deal with a set A and a family of indexed
sets S = {Si}i∈I (where I is the index set of the family). Starting from the
distributive rule of the union over intersection A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

we get:

A ∪
(

⋂

i∈I

Si

)

=
⋂

i∈I

(A ∪ Si) (1.22)

Similarly, starting from the distributive rule of the intersection over union A ∩
(B ∪ C) = (A ∩ B) ∪ (A ∩ C) we get:

A ∩
(

⋃

i∈I

Si

)

=
⋃

i∈I

(A ∩ Si) (1.23)

“Comninos” — 2005/8/31 — 14:52 — page 62 — #60

62 Mathematical and Computer Programming Techniques for Computer Graphics

Also, the De Morgan rules for the negation of the union of two sets (R1.10a)
and the negation of the intersection of two sets (R1.10b) can be extended to deal
with a family of indexed sets S = {Si}i∈I (where I is the index set of the fam-
ily). Starting from the De Morgan rule for the negation of the union of two sets
(A ∪ B)′ = A′ ∩ B′ we get:

(
⋃

i∈I

Si

)′
=

⋂

i∈I

S′
i (1.24)

Similarly, starting from the De Morgan rule for the negation of the intersection of
two sets (A ∩ B)′ = A′ ∪ B′ we get:

(
⋂

i∈I

Si

)′
=

⋃

i∈I

S′
i (1.25)

1.20 The Cardinality or Size of a Set

When dealing with sets we frequently wish to know what is the size of a set or
indeed if two sets have the same size. With finite sets this is easy, all we have to
do is to count the number of their elements. With infinite sets, however, this is
more difficult (as we can not count the elements of infinite sets) and it depends on
how we define the sets to have the same number of elements.

1.20.1 Equivalent Sets

Two sets A and B are said to be equivalent, equipotent or equipollent if there exists
a bijective function (i.e. a one-to-one correspondence) f such that f : A → B.
The equivalence of sets A and B is denoted by A ∼ B.

If the sets A and B are finite, then it is easy to see that these sets can only be
equivalent if and only if they have the same number of elements. For instance,
given the sets A = {0, 1, 2, 3}, B = {0, 3, 6, 9} and the bijective function f : A →
B defined by f (x) = 3x it is easy to see that each element of the domain of f
has a unique image in its co-domain and that each element in its co-domain has
a unique preimage in its domain. This is inherent in the definition of a bijective
function. It should also be apparent that the function f can only be defined if its
domain and its co-domain have exactly the same number of elements.

On the other hand, if the two sets are infinite, one of the sets can be equivalent
to a proper subset of itself. For instance, consider the sets N = {0, 1, 2, 3, . . .},
M = {0, 3, 6, 9, . . .} and the bijective function f : N → M defined by f (x) = 3x .
Here both sets N and M are infinite, the function f is bijective and its is obvious
that M ⊂ N. Thus, we arrive at the following definitions:

• A set is infinite if it is equivalent to a proper subset of itself.
• A set is finite if it is not equivalent to a proper subset of itself.

“Comninos” — 2005/8/31 — 14:52 — page 63 — #61

Set Theory Survival Kit 63

Given three sets A, B and C we observe that:

• For any set A, A ∼ A (i.e. (∀A) : (A ∼ A)).
• If A ∼ B, then B ∼ A (i.e. (A ∼ B) ⇔ (B ∼ A)).
• If A ∼ B and B ∼ C, then A ∼ C (i.e. (A ∼ B) ∧ (B ∼ C) ⇒ (A ∼ C)).

1.20.2 The Cardinal Number or Cardinality of a Set

The cardinal number, cardinal, cardinality or power of a set S describes the size
of the set, is denoted as #(S) or |S| and is defined as “if a set S contains a finite
number of unique elements, then its cardinality |S| is the number of elements in
S”. Thus:

the set {} has cardinality 0,
the set {0} has cardinality 1,
the set {0, 1} has cardinality 2,
the set {0, 1, 2} has cardinality 3,
and so on. . .

According to this definition the sets S1 = {1, 2, 3} and S2 = {a, b, c} have the
same cardinality and are said to be equivalent, equipotent, equipollent or equinu-
merous (equal in their number of elements).

1.21 The Power Set of a Set

Given a set S, the power set of S is the set of all subsets of S. The power set of a
set S is denoted as P (S) or 2S . For instance, given the set S = {1, 2, 3}, its power
set P (S) = {{} , {1} , {2} , {3} , {1, 2} , {1, 3} {2, 3} , {1, 2, 3}}.

If the set S has cardinality |S| = n, then its power set has cardinality |P (S)| =
2n . In the above example |S| = 3 and |P (S)| = 23 = 8.

To represent a set with cardinality n in computer memory we would require
an n-bit field, with each bit of the field corresponding to a given element of the
set. The presence of a given element in the set would be indicated by setting the
corresponding bit of the n-bit field to 1, while the absence of an element would
be indicated by setting the corresponding bit to 0.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 65 — #1
�

�

�

�

�

�

2

Vector Algebra Survival Kit

Vector algebra is one of the most important topics in modern mathematics. The
Czech mathematician Bernard Bolzano first developed the concept of a vector
in 1804. This concept was further developed by the French mathematician Jean
Argand, the German mathematician August Möbius, the Irish mathematician Sir
William Hamilton (who is believed to have coined the term vector) and culmi-
nated in the development of the theory of vectors by the Polish mathematician
Hermann Grassmann in 1844. The concept of the vector continued to develop
through the late nineteenth century and early twentieth century until the Ameri-
can mathematician Josiah Gibbs introduced the theory of vector analysis in 1890
and the theory of vector spaces in 1930.

In our study of computer graphics we will frequently use vectors to solve a va-
riety of problems in such diverse areas as geometric modelling, transformations,
projections, visibility determination, lighting, shading and texturing, and the de-
velopment of curves, surfaces and deformations. Thus it is important to gain a
thorough understanding of vector algebra.

2.1 Some Basic Definitions and Notation

Let us start by defining the terms scalar and vector. A scalar is a quantity that is
completely determined by a single numerical value, which consists of a possibly
signed magnitude (i.e. a real number). For instance, quantities such as tempera-
ture, time, length, mass, and speed are all represented by scalars. A vector, on the
other hand, is a quantity that is determined by a direction and a magnitude. It is
a directed quantity represented by an arrow. The direction and the length of this
arrow determine the vector’s direction and magnitude, respectively.

In everyday language it is common to use quantities such as speed and velocity
interchangeably. This use however is inaccurate as the speed of a vehicle repre-
sents the magnitude of its movement alone and gives no indication of its direction
of movement, while the velocity of a vehicle represents both its magnitude and its
direction of movement. A scalar is a single dimensional quantity, while a vector
is a multidimensional quantity.

65

�

�

“Comninos” — 2005/8/31 — 18:32 — page 66 — #2
�

�

�

�

�

�

66 Mathematical and Computer Programming Techniques for Computer Graphics

In this book we denote vectors in bold italic notation such as �v, v or v, while
scalars are denoted by Greek letters or non-bold italic characters such as λ or l.

A three-dimensional geometric vector can be seen as a translation in three-
dimensional Euclidean space E3. Given a point P in E3, we may use a vector
v to move this point to a new position P′, as shown in Fig. 2.1. Sometimes we
call the vector v a displacement vector, as it displaces point P to its new position
P′. The distance between points P and P′ is called the magnitude of the vector v
and it is denoted by |v| or the non-bold italic version of the vector name v. This
distance is the same for all points P in E3. Thus, the original position of point P
is immaterial. For all vectors v we say that |v| ≥ 0.

There exists a special vector whose magnitude is zero. This vector translates
every point P onto itself, i.e. the position of the point is left unchanged and the
magnitude of the vector is zero. We call this vector the zero vector or null vector
and we denote it by �0 or 0 when there is no notational ambiguity (i.e. when it can
not be misinterpreted as a scalar). No direction is associated with the zero vector.
Thus, ∣∣∣�0

∣∣∣ = 0 (2.1)

It follows that
|v| > 0 for every v �= �0 (2.2)

A vector v whose magnitude is equal to one (i.e. |v|=1) is called a unit vector.
From the above discussion it should be apparent that all non-zero vectors are

characterised by their direction and their magnitude and that two vectors are equal
if they have the same direction and the same magnitude.

Given two points P1 and P2 in E3, the straight line segment between P1 and P2,
as well as the direction from P1 to P2, is denoted by

−−→
P1P2 or P1P2 and is called

a directed segment. See Fig. 2.2. The points P1 and P2 are called the initial and
terminal points of the directed segment, respectively. The distance between the

two points is called the magnitude of
−−→
P1P2 and is denoted by

∣∣∣
−−→
P1P2

∣∣∣ or |P1P2|.
We use the notation (P1P2) to denote the signed (directed) distance between the
two points. This of course means that when travelling along the line defined by the

P

P�

v

v

FIGURE 2.1. A displacement vector.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 67 — #3
�

�

�

�

�

�

Vector Algebra Survival Kit 67

P1

P2P1

P2

P2P1

FIGURE 2.2. A directed segment.

points P1 and P2, distances are taken to be positive in one direction and negative
in the opposite direction. Thus,

(P2P1) = −(P1P2) (2.3)

From the above discussion it should be apparent that all non-zero directed seg-
ments are defined by their direction and their magnitude. Two directed segments
are said to be equivalent if they have the same direction and magnitude. We can
extend the concept of the directed segment to include the case where the initial
and terminal points are the same. Thus,

−→
PP is a directed segment of zero magni-

tude and a non-unique direction.
If a vector v moves a point P to P′, then v has the same direction and magnitude

as the directed segment
−→
PP′. The directed segment

−→
PP′ is said to be representative

of the vector v with initial point P. Similarly, given a point P′ there is one and
only one representative with terminating point P′. Conversely, given a directed
segment

−→
PP′ there is only one vector v represented by

−→
PP′.

Two directed segments are said to represent the same vector if and only if they
are equivalent.

Confusion between a vector and its representative directed segment must be
avoided as it leads to serious errors in vector algebra. Despite the fact that both
the vector v and its representative directed segment

−→
PP′ have the same direction

and magnitude,
−→
PP′ has an initial point associated with it, whereas v does not. For

this reason a directed segment is sometimes called a localised vector.
If two non-zero vectors v1 and v2 have the same direction they are said to be

equidirectional or parallel and if they have an opposite direction they are said
to be opposite or antiparallel. Two vectors that are either parallel or antiparallel
are said to be collinear. Parallel vectors are denoted by v1 ↑↑ v2, antiparallel
vectors are denoted by v1 ↑↓ v2 and collinear vectors are denoted by v1|| v2. If−−−→
P1P′

1 and
−−−→
P2P′

2 are the representatives of v1 and v2, respectively, then the vectors
are parallel if the lines P1P′

1 and P2P′
2 are coincident or parallel. It is convenient

to think of the zero vector �0 as being parallel to any vector.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 68 — #4
�

�

�

�

�

�

68 Mathematical and Computer Programming Techniques for Computer Graphics

v

−v

FIGURE 2.3. A vector and its inverse vector.

Given a non-zero vector v, the vector with the same magnitude but an opposite
direction is called the negative or inverse of v and is denoted by −v. If

−→
PP′ is

the representative of v, then
−→
P′P is representative of −v. See Fig. 2.3. For any

vector v we have:

−(−v) = v (2.4)

2.2 Multiplication of a Vector by a Scalar

If v is a non-zero vector and α is a positive real number (scalar), then we define
their product αv to be the vector with the same direction as v and a magnitude
α |v| or αv. See Fig. 2.4. If α is a negative number, we define αv to be (−α)(−v),
so that αv is the vector with a direction opposite to v (i.e. antiparallel to v) and a
magnitude −αv. We also define 0v to be the zero vector for any vector v, and α�0
to be the zero vector for any scalar value α. The operation of forming the product
αv is called scalar multiplication of v by α.

v

v

v

v
va2

a1v

a2v

va1

a1 > 0

a2 < 0

FIGURE 2.4. Scalar multiplication.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 69 — #5
�

�

�

�

�

�

Vector Algebra Survival Kit 69

The following axioms and rules of vector algebra apply to the vector by scalar
product for all vectors v, v1 and v2 and all scalars α and β:

Existence of the vector by scalar product:
αv is a vector (A2.1)

Existence of the zero element:
0v = v0 = �0 (A2.2)

Existence of the neutral element:
1v = v1 = v (A2.3)

Associative law:
α(βv) = (αβ)v (R2.1)

Distributive laws:
(α + β)v = αv + βv (R2.2)
α(v1 + v2) = αv1 + αv2 (R2.3)

2.3 Vector Addition

If vector v1 moves point P1 to P2 and vector v2 moves point P2 to P3, then the
combined effect of v1 followed by v2 moves P1 to P3. See Fig. 2.5. The directed
segment

−−→
P1P3 represents a vector v3, which is unaffected by the choice of P1. So

we obtain a unique vector v3 by combining v1 and v2. v3 is known as the sum of
v1 and v2:

v3 = v1 + v2 (2.5)

The sum of vectors is sometimes referred to as the resultant vector. The opera-
tion forming v3 from v1 and v2 is called vector addition. Vector addition can also
be expressed in terms of directed segments. Thus,

−−→
P1P3 = −−→

P1P2 + −−→
P2P3 (2.6)

where
−−→
P1P3 is the representative of v1 + v2.

The above result is sometimes referred to as the triangle rule. This rule states
that if two vectors v1 and v2 are represented in direction and magnitude by two

v1 v2

v3P1

P2

P3

FIGURE 2.5. Vector addition.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 70 — #6
�

�

�

�

�

�

70 Mathematical and Computer Programming Techniques for Computer Graphics

consecutive sides of a triangle, then their sum v3 = v1+v2 is represented in direc-
tion and magnitude by the third side (i.e. the closing side) of this triangle. The
direction of the resultant vector is as shown in Fig. 2.5, i.e. from the initial point
of v1 to the terminal point of v2.

The triangle rule can be generalised to the polygon rule, which deals with the
summation of n vectors. In this case we arrange the vectors in such a fashion
that the initial point of each vector (to be added to the sum) is placed at the ter-
minal point of the vector preceding it in the summation, thus forming a vector
polygon. Then the resultant vector is the vector with the same initial point as
the first vector in the summation and the same terminal point as the last vector in
the summation. The direction of the resultant vector r is as shown in Fig. 2.6a.
If the vector polygon is closed, then the resultant vector is the zero vector. See
Fig. 2.6b

The difference v1 − v2 of two vectors v1 and v2 is defined as the vector:

v3 = v1 − v2 = v1 + (−v2) (2.7)

The operation that forms v3 from v1 and v2 is called vector subtraction.
See Fig. 2.7.

v1
v2 v3

r

vn vn-1

v1

v2

v3

v4

v5

FIGURE 2.6. (a) The polygon rule. (b) A closed vector polygon.

v1 v2

v3=v1−v2

−v2

v2

v3 = v1 + (−v2)

FIGURE 2.7. Vector subtraction.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 71 — #7
�

�

�

�

�

�

Vector Algebra Survival Kit 71

The following axioms and rules of vector algebra apply to vector addition hold
for all vectors v, v1, v2 and v3:

Existence of the vector sum:
v1 + v2 is a vector (A2.4)

Existence of the neutral element:
�0 + v = v + �0 = v (A2.5)

Existence of the inverse element:
v + (−v) = (−v) + v = �0 (A2.6)

Commutative law:
v1 + v2 = v2 + v1 (R2.4)

Associative law:
(v1 + v2) + v3 = v1 + (v2 + v3) (R2.5)

Change of detection rule:
−(v1 − v2) = v2 − v1 (R2.6)

2.4 Position Vectors and Free Vectors

The position vector of a point P in E3 relative to an origin O is defined to be the

vector representing the directed segment
−→
OP. The position vector of a point P is

sometimes referred to as a bound vector, as its initial point is fixed at the origin
O and its terminal point is fixed at the point P. The position vector p of a point P
relative to the origin O is sometimes denoted by:

�p(P) = −→
OP (2.8)

In contrast a free vector or an orientation vector is any unbound vector that is
free to be translated in an arbitrary fashion.

2.5 The Vector Equation of a Line

Lines in E3 can be represented by equations involving position vectors. Let P1
and P2 be two points on a line, having position vectors p1 and p2, respectively,

p1

p2p

O

P1
r

P2P d

p1
p2

p

O

P1r

P2

P

d

FIGURE 2.8. A line passing through two points.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 72 — #8
�

�

�

�

�

�

72 Mathematical and Computer Programming Techniques for Computer Graphics

relative to some origin O. From Fig. 2.8 we see that:

−−→
P1P2 = −−→

P1O + −−→
OP2 (2.9)

which represents the direction vector:

d = (−p1
) + p2

= p2 − p1 (2.10)

Now, let P be a point whose position vector relative to the origin O is p. This
point will lie on the line P1P2 if and only if

−→
P1P and

−−→
P1P2 represent collinear

vectors. Since
−→
P1P represents vector r = p−p1, it follows that point P lies on the

line P1P2 if and only if p−p1 = t(p2 −p1) for some scalar t , i.e. if and only if

p = (1 − t) p1 + tp2 (2.11)

This is the parametric vector equation of the line P1P2 relative to some origin
O. Here t is a parameter that can assume any real value. It is worth noting that
at point P1 t = 0, at point P2 t = 1, at points preceding the directed segment−−→
P1P2 t < 0 and at points following it t > 1.

2.6 Linear Dependence/Independence of Vectors

If a is a non-zero vector, then any vector v which is collinear to the vector a is of
the form αa for some scalar α. When vectors a and v are parallel then α = |v| / |a|,
when vectors a and v are antiparallel then α = − |v| / |a| and finally when v = �0
then α = 0.

If vector v is of the form αa (i.e. v = αa), then we say that vector v is linearly
dependent on vector a. This definition remains valid even if a = �0. When a �=
�0, vector v is linearly dependent on vector a if and only if vectors v and a are
collinear.

Next, assume that we have two vectors a and b that are non-collinear and are
represented by the directed segments

−→
OA and

−→
OB, as shown in Fig. 2.9.

Given a vector v represented by the directed segment
−→
OV, where point V lies

on the plane AOB, then we say that the vector v is coplanar with vectors a and b
if and only if there exist scalars α and β such that:

v = αa + βb (2.12)

In such a case, we say that the vector v is linearly dependent on vectors a and
b, and that vector v is formed as a linear combination of vectors a and b. Further
we say that vectors a, b and v are coplanar vectors. Thus, any vector lying on a

�

�

“Comninos” — 2005/8/31 — 18:32 — page 73 — #9
�

�

�

�

�

�

Vector Algebra Survival Kit 73

v

b

a

B

A

O V

aa bb

FIGURE 2.9. Linear dependence on two vectors.

plane defined by two other vectors is linearly dependent on these vectors, i.e. it
can be expressed as the sum of multiples of these vectors.

Finally, assume that we have three non-coplanar vectors a, b, c represented

by the directed segments
−→
OA,

−→
OB,

−→
OC, respectively, as shown in Fig. 2.10. The

relationship of these vectors implies that points O, A, B, C are not coplanar.
A vector v is said to be linearly dependent on vectors a, b, c if and only if there

exist scalars α, β, γ such that:

v = αa + βb + γ c (2.13)

Thus any vector of E3 is linearly dependent on three non-coplanar vectors.
In general, given a set of n non-zero vectors {vi }n

i=1 and a set of scalars {αi }n
i=1,

there exists a linear combination of these vectors that vanishes, i.e. equal to the
null vector:

α1v1 + α2v2 + · · · + αnvn = �0 (2.14)

If this linear combination of vectors vanishes with at least one of the scalars
αi �= 0, then we say that these vectors are linearly dependent. If however this
linear combination of vectors only vanishes when all scalars {αi = 0}n

i=1, then
we say that these vectors are linearly independent.

v
b

a

B

A

O

V

C

c

aa bb

gc

FIGURE 2.10. Linear dependence on three vectors.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 74 — #10
�

�

�

�

�

�

74 Mathematical and Computer Programming Techniques for Computer Graphics

2.7 Vector Bases

Given an ordered set of three non-coplanar vectors a, b, c, we call this a basis of
E3. The order of the vectors is significant. If a, b, c is a basis of E3, then b, c,
a is a different basis of E3. The vectors a, b, c forming the basis are called base
vectors. Every other vector in E3 can be expressed as a linear combination of a
given basis.

In general, a basis of an n-dimensional vector space En is defined by a set of
n linearly independent vectors {vi }n

i=1 in En . Every other vector v in this vector
space can be expressed as a linear combination of the base vectors:

v = α1v1 + α2v2 + · · · + αnvn (2.15)

where {αi }n
i=1 are scalars.

2.8 The Components of a Vector

Let a, b, c be a basis. Then vector v is linearly dependent on the base vectors a,
b, c and there exist a unique triple of scalars α, β, γ such that v = αa + βb + γ c.
The scalars α, β, γ are called the components of vector v relative to the basis
a, b, c.

Let v be the set of all the vectors v and C be the set of all the triples of compo-
nents [α, β, γ] where α, β, γ are scalars. There is a one to one correspondence
between sets v and C associating each vector v with a triple of components [α, β,
γ]. Thus a triple of components is uniquely determined by v and given the triple
[α, β, γ] there is only one vector v that satisfies the equation v = α a +β b + γ c.
Using this correspondence between vectors and the ordered triples of scalars we
can prove properties of vectors by working in terms of their components rather
than the vectors themselves, remembering that the basis relative to which a vec-
tor is expressed uniquely determines its components. Thus, changing the basis
relative to which a vector is expressed changes its components.

Let us now see how multiplication of a vector by a scalar and vector addition
can be defined in terms of the components of vectors.

2.8.1 Multiplication of a Vector by a Scalar

Given a vector v with components [α, β, γ] relative to some basis a, b, c and a
scalar s, then the vector by a scalar product sv in terms of its components is given
by:

s[α, β, γ] = [sα, sβ, sγ] (2.16)

2.8.2 Vector Addition

Given two vectors v1 and v2 with components [α1, β1, γ 1] and [α2, β2, γ 2] rela-
tive to some basis a, b, c, then the vector sum v1 ± v2 in terms of its components

�

�

“Comninos” — 2005/8/31 — 18:32 — page 75 — #11
�

�

�

�

�

�

Vector Algebra Survival Kit 75

is given by:

[α1, β1, γ1] ± [α2, β2, γ2] = [α1 ± α2, β1 ± β2, γ1 ± γ2] (2.17)

2.8.3 Vector Equality

Given two vectors v1 and v2 with components [α1, β1, γ 1] and [α2, β2, γ 2]
relative to some basis a, b, c, then the vectors are said to be equal if their corre-
sponding components are equal, i.e.

[α1, β1, γ1] = [α2, β2, γ2] ⇔ α1 = α2 ∧ β1 = β2 ∧ γ1 = γ2 (2.18)

The components [α, β, γ] of a vector v can either be written in row or in column
form, i.e.

[α, β, γ] or

⎡

⎣
α

β

γ

⎤

⎦

The row form is said to be the transpose of the column form and vice versa, i.e.

[α, β, γ]T =
⎡

⎣
α

β

γ

⎤

⎦ and

⎡

⎣
α

β

γ

⎤

⎦

T

= [α, β, γ]

These two representations are equivalent and the choice of one over the other
is a matter of taste.

2.9 Orthogonal, Orthonormal and Right-Handed Vector
Bases

A basis is said to be orthogonal if its base vectors are mutually perpendicular and
it is said to be orthonormal if its base vectors are mutually perpendicular unit
vectors.

Given an orthogonal basis a, b, c and any vector v, the directed segments−→
OA,

−→
OB,

−→
OC,

−→
OV represent the a, b, c, v vectors, respectively, as shown in

Fig. 2.11.
Let P be the foot of the perpendicular from point V to the plane AOB (i.e. the

projection of point V on the plane AOB) and let Q be the foot of the perpendicular
from point P to the line OA. From this figure we see that:

−→
OV = −→

OQ + −→
QP + −→

PV (2.19)

If vector v has components [α, β, γ] relative to the orthogonal basis a, b, c,

then
−→
OV represents the vector sum α a + β b + γ c. But the directed segments−→

OQ,
−→
QP,

−→
PV have the same directions as a, b, c, respectively. Thus

−→
OQ,

−→
QP,

�

�

“Comninos” — 2005/8/31 — 18:32 — page 76 — #12
�

�

�

�

�

�

76 Mathematical and Computer Programming Techniques for Computer Graphics

b

a
B

A

O

V

C

c

P
Q b

a γ
V

FIGURE 2.11. An orthogonal vector basis.

−→
PV represent the vectors αa, βb, γ c, respectively. From this we can deduce that
the magnitudes of the components α, β, γ are equal to the magnitudes of the

orthogonal projections of the directed segment
−→
OV onto the lines OA, OB, OC,

respectively. The sign of α is positive if points V and A are on the same side of
the plane BOC and negative if they are on opposite sides of this plane. Similarly
for the signs of β and γ .

For a non-orthogonal basis we can not obtain the components of a vector, with
respect to this basis, by orthogonal projections as we have done above. In a later
section we resolve this problem using triple scalar products.

Let a, b, c be three non-zero non-coplanar vectors, represented by the directed

segments
−→
OA,

−→
OB,

−→
OC, respectively, form a basis, as shown in Fig. 2.12.

Suppose that there is a right-handed screw aligned with the directed segment−→
OC and pointing in the same direction as

−→
OC. A clockwise rotation of the screw

will cause it to advance along
−→
OC and will also cause

−→
OA and

−→
OB to rotate so that−→

OA rotates towards the original position of
−→
OB. Alternatively, suppose that the

observer’s eye is situated at point C and is looking along
−→
OC towards the point O.

b
a B

A

O

C

c

FIGURE 2.12. A right-handed basis.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 77 — #13
�

�

�

�

�

�

Vector Algebra Survival Kit 77

v
j

i
Y

X

O

V

Z

k

Vxy

YOZ

vxXOZ

XOY

vy

vz

FIGURE 2.13. A rectangular Cartesian coordinate system.

A counter-clockwise rotation about
−→
OC will cause

−→
OA and

−→
OB to rotate so that−→

OA rotates towards the original position of
−→
OB. Any ordered set of vectors a, b, c

that are arranged thus is called a right-handed system of vectors or a right-handed
basis.

2.10 Cartesian Bases and Cartesian Coordinates

A basis that is both orthonormal and right-handed is called a Cartesian basis.
Let i, j, k be a Cartesian basis, let O be any fixed point and let the directed

segments
−→
OX,

−→
OY,

−→
OZ represent the base vectors i, j, k, respectively, as shown in

Fig. 2.13.
If v is the point with position vector v relative to the origin O, the components of

vector v relative to the basis i, j, k are the perpendicular distances of point V from
the planes YOZ, XOZ, XOY, respectively, with the sign conventions described in
Section 2.9.

In this section we abandon the conventions we have adopted earlier of denoting
the components of vectors by Greek letters. We write vx , vy , vz for the compo-
nents of the vector v relative to some Cartesian basis i, j, k. Thus,

v = vx i + vy j + vzk (2.20)

By expressing the position vectors of points in this way, we establish a one to
one correspondence between vectors and ordered triples of real numbers. Here the
triple

[
vx , vy, vz

]
corresponds to point V with position vector v = vx i+ vy j+ vzk.

Such a correspondence is called a rectangular Cartesian coordinate system and
the components of the position vector are called the coordinates of the point to
which they correspond.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 78 — #14
�

�

�

�

�

�

78 Mathematical and Computer Programming Techniques for Computer Graphics

The coordinates of the origin O are [0, 0, 0], the coordinates of a point on the
line OX are given by [x , 0, 0], the coordinates of a point on the plane XOY are
given by [x , y, 0] and finally the coordinates of a point in space are given by
[x , y, z]. Similar properties hold for the other coordinate axes and major planes.

It is sometimes convenient to use vector notation rather than coordinate nota-
tion. When doing so, we often write v = [

vx , vy, vz
]

to mean the same thing as
v = vx i + vy j + vzk. We frequently abbreviate the expression the point with co-
ordinates

[
vx , vy, vz

]
by the expression the point

[
vx , vy, vz

]
and the expression

the point with position vector v by the expression the point v. Such abbreviations
are valid so long as only one coordinate system is involved.

2.11 The Length of a Vector

Let
[
vx , vy, vz

]
be the components of a vector v related to some Cartesian basis

i, j, k, as shown in Fig. 2.13. Let point Vxy be the foot of the perpendicular of
point V onto the XOY plane. From this figure we see that:

|v|2 =
∣∣∣
−→
OV

∣∣∣
2

=
∣∣∣
−−−→
OVxy

∣∣∣
2 + v2

z

But:
∣∣∣
−−−→
OVxy

∣∣∣
2 = v2

x + v2
y

∴ |v|2 = v2
x + v2

y + v2
z

∴ |v| =
√

v2
x + v2

y + v2
z (2.21)

2.12 The Scalar Product of Vectors

Let a and b be two non-zero vectors represented by the directed segments
−→
OA

and
−→
OB, respectively. The angle θ between the two vectors is the angle be-

tween their representatives, as seen in Fig. 2.14. We assume that 0 ≤ θ ≤ π .
If θ = 0, then the two vectors have the same direction, if θ = π , then the
two vectors point in opposite directions and if θ = π

2 , then the two vectors are
perpendicular.

The scalar product or dot product or inner product a � b of vectors a and b is
defined as:

a � b = |a| |b| cos θ (2.22)

If a = �0 or b = �0, then the scalar product a � b is defined to be zero.
If a and b are unit vectors, then their scalar product simplifies to a � b = cos θ .

�

�

“Comninos” — 2005/8/31 — 18:32 — page 79 — #15
�

�

�

�

�

�

Vector Algebra Survival Kit 79

a

b

O

A

B

q

FIGURE 2.14. The angle between two vectors.

If a⊥b (i.e. a and b are perpendicular), then their scalar product is a � b = 0,
as cos

(
π
2

) = 0.
From the above it should be apparent that the scalar product of two vectors is a

scalar. This implies that the scalar product is only defined for two vectors. This
further implies that the only power of vectors that is defined is the square power,
i.e. a2 = a � a = |a|2.

Applying Eq. (2.22) to the base vectors of an orthonormal basis i, j, k we
obtain:

and
i � i = j � j = k � k = 1

i � j = j � k = i � k = 0 (2.23)

since cos (0) = 1 and cos
(

π
2

) = 0.
The above result can be written in a more condensed form using Kronecker’s

symbol that summarises orthonormality:

δl,m = vl � vm =
{

1,

0,

l = m
otherwise

with l, m ∈ {1, 2, 3} and where v1 = i, v2 = j, v3 = k (2.24)

The following axioms and vector algebra rules apply to the scalar product of
vectors for all vectors v1, v2, v3 and v, and all scalars α:

Existence of the scalar product:
v1 � v2 is a scalar (A2.7)

Powers of a vector:
v2 = v � v = |v|2 (A2.8)

Commutative law:
v1 � v2 = v2 � v1 (R2.7)

Distributive laws:
(αv1) � v2 = v1 � (αv2) = α (v1 � v2) (R2.8)
v1 � (v2 + v3) = v1 � v2 + v1 � v3 (R2.9)

�

�

“Comninos” — 2005/8/31 — 18:32 — page 80 — #16
�

�

�

�

�

�

80 Mathematical and Computer Programming Techniques for Computer Graphics

2.13 The Scalar Product Expressed in Terms of its
Components

If p, q, r is a basis and if a, b are vectors with components
[
ax , ay, az

]
and[

bx , by, bz
]
, respectively, relative to this basis, then the scalar product a � b (in

terms of its components) is defined as:

a � b = (
ax p + ayq + azr

) � (
bx p + byq + bzr

)

= ax bx p � p + aybyq � q + azbzr � r + (
aybz + azby

)
q � r

+ (azbx + ax bz) r � p + (
ax by + aybx

)
p � q (2.25)

When dealing with an orthonormal basis i, j, k, using equation (2.23) we can
simplify the above definition to:

a � b = ax bx + ayby + azbz (2.26)

2.14 Properties and Applications of the Scalar Product

In this section, unless otherwise stated or implied, we will assume that the com-
ponents of all vectors used are defined with respect to a Cartesian basis i, j, k.

2.14.1 The Magnitude of a Vector Using its Components

Using Axiom (A2.8) we can now define the magnitude, length or norm of a vector
in terms of the scalar product as:

|v| = √
v � v =

√
v2

x + v2
y + v2

z (2.27)

Which accords with the definition we have given in Eq. (2.21).

2.14.2 Normalising a Vector

Given a non-zero vector v we can normalise this vector (i.e. cause it to become
a unit-vector) by dividing the vector by its magnitude. This normalised vector is
given by:

v̂ = v
|v| =

⎡

⎣ vx√
v2

x + v2
y + v2

z

,
vy√

v2
x + v2

y + v2
z

,
vz√

v2
x + v2

y + v2
z

⎤

⎦ (2.28)

The magnitude of a normalised vector is
∣∣v̂

∣∣ = 1.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 81 — #17
�

�

�

�

�

�

Vector Algebra Survival Kit 81

a

b

O A

B

p P

q

FIGURE 2.15. Projection of a vector onto another.

2.14.3 The Projection of a Vector onto Another

Suppose that a, b are non-zero and non-collinear vectors represented by the di-

rected segments
−→
OA,

−→
OB, respectively, as shown in Fig. 2.15. Let P be the foot of

the perpendicular from point B to the line OA. Then
−→
OP is the projection of

−→
OB

onto
−→
OA and vector p represents the projection of vector b onto vector a. Vector

p is known as the projection vector. From the diagram it should be apparent that
the magnitude of p is not affected by the magnitude of a.

Initially, let us suppose that the vectors a, b are unit vectors. Using simple
trigonometry we determine that in this case the magnitude of the projection vector
p is |p| = cos θ and the vector itself is given by:

p = a · cos θ (2.29)

Next, let us assume that vector a is a unit vector and b is any non-zero vector.
In this case the magnitude of the projection vector p is |p| = |b| cos θ and the
vector itself is given by:

p = a · |b| cos θ (2.30)

Finally, let us relax all restrictions and assume that a, b are any non-zero vec-
tors. In this case the magnitude of the projection vector p is |p| = |b| cos θ (as
before) but now the vector itself is given by:

p = â · |b| cos θ = a
|a| |b| cos θ

∴ p = a · |b|
|a| cos θ (2.31)

Observe that above we have normalised vector a before we scaled it by the
magnitude of the projection vector |p|.

If vectors a, b are parallel, then we define the projection of b onto a to be b
itself.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 82 — #18
�

�

�

�

�

�

82 Mathematical and Computer Programming Techniques for Computer Graphics

2.14.4 The Cosine of the Angle Between two Vectors

Given two non-zero vectors a and b their scalar product is given by a � b =
|a| |b| cos θ . Solving this equation for cos θ we obtain:

cos θ = a � b
|a| |b| = ax bx + ayby + azbz√

a2
x + a2

y + a2
z

√
b2

x + b2
y + b2

z

(2.32)

2.14.5 The Scalar Product of Collinear Vectors

Assume that we have two non-zero collinear vectors a and b.
If the vectors are parallel, then their scalar product is given by:

a � b = |a| |b| ⇔ a ↑↑ b (2.33)

since cos (0) = 1.
If the vectors are antiparallel, then their scalar product is given by:

a � b = − |a| |b| ⇔ a ↑↓ b (2.34)

since cos (π) = −1.

2.14.6 The Scalar Product of Orthogonal Vectors

Given two non-zero orthogonal vectors a and b, the cosine of the angle between
them will be zero and thus their scalar product vanishes (i.e. it is zero). This is
both a necessary and sufficient condition. This means that the converse is also
true, i.e. if the scalar product of two vectors vanishes, then the vectors are orthog-
onal. We say that:

a � b = 0 ⇔ a ⊥ b (2.35)

since cos
(

π
2

) = 0.

2.15 The Direction Ratios and Direction Cosines of
a Vector

Let i, j, k be a Cartesian basis. Suppose that the vector v is a non-zero vector,
with components

[
vx , vy, vz

]
relative to the i, j, k basis, that is represented by

the directed segment
−→
OV, as seen in Fig. 2.16. Let point Vxy be the foot of the

perpendicular from point V to the XOY plane. Then the coordinates of point V
and the components of vector v are given by the triple

[
vx , vy, vz

]
.

The components vx , vy , vz are known as the direction ratios of vector v. They
allow us to express vector v as the sum of the vx i, vy j, vzk vectors, which are
collinear to the base vectors i, j, k and have magnitudes vx , vy , vz, respectively.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 83 — #19
�

�

�

�

�

�

Vector Algebra Survival Kit 83

v

j

i

Y

X

O

V

Z

k

Vxy

vx

XOY

vy

vz

vx
i

vy
j

vz
k

qx qy

qz

FIGURE 2.16. The direction ratios and direction cosines of a vector.

These vectors are projections of vector v onto the three base vectors. θx , θy , θz

are the angles subtended by the vector v and each of the base vectors i , j , k,
respectively.

If we compute the scalar product of vector v with each of the base vectors
i, j, k, respectively we obtain:

v � i = vx

v � j = vy

v � k = vz (2.36)

Which are the lengths of the projection vectors vx i, vy j, vzk. Thus,

|vx i| = vx = |v| cos (θx)∣∣vy j
∣∣ = vy = |v| cos

(
θy

)

|vzk| = vz = |v| cos (θz) (2.37)

Solving the above equation for the cosines of the angles we obtain:

cos (θx) = vx

|v| = vx√
v2

x + v2
y + v2

z

cos
(
θy

) = vy

|v| = vy√
v2

x + v2
y + v2

z

cos (θz) = vz

|v| = vz√
v2

x + v2
y + v2

z

(2.38)

These three quantities are known as the direction cosines of the vector v. Thus,
the direction cosines of a vector v are the components of the normalised vector v̂.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 84 — #20
�

�

�

�

�

�

84 Mathematical and Computer Programming Techniques for Computer Graphics

a

b
n̂

a ⊗ b

q

FIGURE 2.17. The vector product of two vectors.

2.16 The Vector Product of two Vectors

Let a, b be two non-collinear vectors. Let n̂ be a unit vector which is perpendicular
to both a and b, which, when taken together with a and b, forms a right-handed
system a, b, n̂ in this order. The vector n̂ is uniquely determined by a and b, as
it is the only vector that satisfies all the above constraints. Let θ be the angle
between vectors a and b, as shown in Fig. 2.17.

The vector product or cross product or outer product a ⊗ b of two vectors a, b
is defined as:

a ⊗ b = (|a| |b| sinθ) · n̂ (2.39)

If a and b are collinear vectors, then their vector product is defined to be the
zero vector. This includes the cases where one or both vectors are the zero vector.

If a and b are non-collinear vectors, then any vector perpendicular to both a
and b is collinear to a ⊗ b.

From the above discussion it should be apparent that the vector product of two
vectors is defined in three-dimensional space E3.

The following axioms and vector algebra rules apply to the vector product for
all vectors v1, v2, v3 and all scalars α:

Existence of the vector product:
v1 ⊗ v2 is a vector with magnitude |v1| |v2| sin (θ) (A2.9)

Vector product of collinear vectors:
v1 ⊗ v2 = �0 ⇔ v1||v2 (A2.10)

Associative law (does not apply):
v1 ⊗ (v2 ⊗ v3) �= (v1 ⊗ v2) ⊗ v3 (R2.10)

Anti-commutative law:
v1 ⊗ v2 = − (v2 ⊗ v1) (R2.11)

Distributive laws:
(αv1) ⊗ v2 = v1 ⊗ (αv2) = α (v1 ⊗ v2) (R2.12)
v1 ⊗ (v2 + v3) = v1 ⊗ v2 + v1 ⊗ v3 (R2.13)

�

�

“Comninos” — 2005/8/31 — 18:32 — page 85 — #21
�

�

�

�

�

�

Vector Algebra Survival Kit 85

Given a Cartesian basis i, j, k, then the vector products of combinations of its
base vectors are given by:

i ⊗ i = j ⊗ j = k ⊗ k = �0 (N.B. This result is also true for any basis) (2.40)

i ⊗ j = k, j ⊗ k = i, k ⊗ i = j (2.41)

j ⊗ i = −k, k ⊗ j = −i, i ⊗ k = −j (2.42)

2.17 The Vector Product Expressed in Terms of its
Components

If p, q, r is a right-handed basis and if a, b are vectors with components
[
ax , ay, az

]

and
[
bx , by, bz

]
, respectively, relative to this basis, then the vector product a ⊗ b

(in terms of its components) is defined as:

a ⊗ b = (
ax p + ayq + azr

) ⊗ (
bx p + byq + bzr

)

= ax p ⊗ bx p + ax p ⊗ byq + ax p ⊗ bzr

+ ayq ⊗ bx p + ayq ⊗ byq + ayq ⊗ bzr

+ azr ⊗ bx p + azr ⊗ byq + azr ⊗ bzr

= ax bx p ⊗ p + aybyq ⊗ q + azbzr ⊗ r

+ (
aybzq ⊗ r + azbyr ⊗ q

) + (azbx r ⊗ p + ax bzp ⊗ r)

+ (
ax byp ⊗ q + aybx q ⊗ p

)

Using the anti-commutative law (R2.11) and since p ⊗ p = �0, q ⊗ q = �0 and
r ⊗ r = �0 we can simplify the above expression to:

a⊗b = (
aybz − azby

)
q⊗r+(azbx − ax bz) r⊗p+(

ax by − aybx
)

p⊗q (2.43)

The above definition of the vector product applies to any right-handed basis
p, q, r. When dealing with a Cartesian basis i, j, k using Eq. (2.41) we can further
simplify the above definition to:

a ⊗ b = (
aybz − azby

)
i + (azbx − ax bz) j + (

ax by − aybx
)

k (2.44)

Thus, the vector product a ⊗ b is a vector with components:

a ⊗ b = [(
aybz − azby

)
, (azbx − ax bz) ,

(
ax by − aybx

)]
(2.45)

Alternatively:

a ⊗ b =
⎡

⎣
ax

ay

az

⎤

⎦ ⊗
⎡

⎣
bx

by

bz

⎤

⎦ =
⎡

⎣
aybz − azby

azbx − ax bz

ax by − aybx

⎤

⎦ (2.46)

�

�

“Comninos” — 2005/8/31 — 18:32 — page 86 — #22
�

�

�

�

�

�

86 Mathematical and Computer Programming Techniques for Computer Graphics

Finally, the vector product can be represented as the determinant of a matrix
whose first column consists of the base vectors:

a ⊗ b =
∣∣∣∣∣∣

i ax bx

j ay by

k az bz

∣∣∣∣
∣∣

= i ·
∣∣∣∣

ay by

az bz

∣∣∣∣ − j ·
∣∣∣∣

ax bx

az bz

∣∣∣∣ + k ·
∣∣∣∣

ax bx

ay by

∣∣∣∣

= i · (
aybz − azby

) − j · (ax bz − azbx) + k · (
ax by − aybx

)

= i · (
aybz − azby

) + j · (azbx − ax bz) + k · (
ax by − aybx

)
(2.47)

Such a determinant can only be evaluated symbolically, as we can not compute
the value of a determinant that contains symbols. An identical result would be
arrived at by transposing the rows and columns of the above determinant.

2.18 Properties of the Vector Product

2.18.1 The Geometric Interpretation of the Vector Product

Let a, b be two non-collinear vectors that are represented by the directed seg-

ments
−→
OA,

−→
OB, respectively. Let θ be the angle between vectors a and b. Let

C be the fourth corner of the parallelogram that has OA and OB as two adja-
cent sides, as shown in Fig. 2.18. Using simple trigonometry, the area of the
triangle AOB is given by 1

2 |a| · h = 1
2 |a| |b| |sin θ |, thus the area of the paral-

lelogram AOBC is |a| |b| sin θ . But the magnitude of the vector product a ⊗ b is
|a ⊗ b| = ||a| |b| sin θ |. Thus, the magnitude of the vector product a ⊗ b is equal
to the area of the parallelogram spanned by vectors a and b. Extra care should be
taken with the sign of angle θ , which is positive on the left diagram but negative
on the right diagram of Fig. 2.18.

a

b

a ⊗ b

a ⊗ bO A

B C

h

a

b

O A

B C

h

q

q

FIGURE 2.18. The magnitude of the vector product.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 87 — #23
�

�

�

�

�

�

Vector Algebra Survival Kit 87

2.18.2 The Magnitude of the Vector Product in Terms of
its Components

As we have seen in Eq. (2.45), given two non-collinear vectors a and b with
components

[
ax , ay, az

]
and

[
bx , by, bz

]
relative to a Cartesian basis i, j, k, the

components of their vector product are:

a ⊗ b = [(
aybz − azby

)
, (azbx − ax bz) ,

(
ax by − aybx

)]

Thus the magnitude of the vector product a ⊗ b, in terms of the components of
a and b, is given by:

|a ⊗ b| =
√(

aybz − azby
)2 + (azbx − ax bz)

2 + (
ax by − aybx

)2 (2.48)

2.18.3 The Square of the Magnitude of the Vector Product

Given two non-collinear vectors a and b, the square of the magnitude of their
vector product a ⊗ b is given by:

|a ⊗ b|2 = |a|2 |b|2 sin2 θ

= |a|2 |b|2
(

1 − cos2 θ
)

= |a|2 |b|2 − (|a| |b| cos θ)2

= |a|2 |b|2 − (a � b)2

∴ |a ⊗ b|2 = |a|2 |b|2 − (a � b)2 (2.49)

2.18.4 The Magnitude of the Sine of the Angle between
Two Vectors

Given two non-zero and non-collinear vectors a and b, the magnitude of their
vector product a ⊗ b is given by:

|a ⊗ b| = ||a| |b | sin θ |
Solving this equation for |sin θ | we obtain:

|sin θ | = |a ⊗ b|
|a| |b| (2.50)

If the components of the vectors a and b are defined relative to a Cartesian basis
i, j, k, then |sin (θ)| is given by:

|sin θ | = |a ⊗ b|
|a | |b| =

√(
aybz − azby

)2 + (azbx − ax bz)
2 + (

ax by − aybx
)2

√
a2

x + a2
y + a2

z

√
b2

x + b2
y + b2

z

(2.51)

�

�

“Comninos” — 2005/8/31 — 18:32 — page 88 — #24
�

�

�

�

�

�

88 Mathematical and Computer Programming Techniques for Computer Graphics

2.19 Triple Products of Vectors

Triple products of vectors combine the operations of scalar multiplication and/or
vector multiplication and define products involving three or four vectors.

2.19.1 The Triple Scalar Product

Given any three vectors a, b, c, the products (a ⊗ b) � c and a � (b ⊗ c) (which
are equal) are known as the triple scalar products of a, b, c in this particular order.
They are denoted by (a, b, c) or [a, b, c] or 〈a, b, c〉 or det (a, b, c). Thus the triple
scalar product of three vectors a, b, c is defined as:

(a, b, c) = (a ⊗ b) � c = a � (b ⊗ c) (2.52)

From this definition we see that the triple scalar product is in reality the scalar
product of two vectors (one of which is the vector product of two other vectors)
and thus it produces a scalar result.

If vectors a, b, c have components
[
ax , ay, az

]
,
[
bx , by, bz

]
,
[
cx , cy, cz

]
relative

to a Cartesian basis i, j, k, then the triple scalar product is defined in terms of these
components as:

(a, b, c) = a � (b ⊗ c)

= [
ax , ay, az

] � ([
bx , by, bz

] ⊗ [
cx , cy, cz

])

= [
ax , ay, az

] � [(
bycz − bzcy

)
, (bzcx − bx cz) ,

(
bx cy − bycx

)]

∴ (a, b, c) = ax
(
bycz − bzcy

) + ay (bzcx − bx cz) + az
(
bx cy − bycx

)
(2.53)

Alternatively we can define the triple scalar product using the determinant of a
matrix whose rows or columns are the components of a, b, c:

(a, b, c) = a � (b ⊗ c)

=
∣∣∣∣∣∣

ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣

= ax

∣∣∣∣
by bz

cy cz

∣∣∣∣ − ay

∣∣∣∣
bx bz

cx cz

∣∣∣∣ + az

∣∣∣∣
bx by

cx cy

∣∣∣∣

= ax
(
bycz − bzcy

) − ay (bx cz − bzcx) + az
(
bx cy − bycx

)

∴ (a, b, c) = ax
(
bycz − bzcy

) + ay (bzcx − bx cz) + az
(
bx cy − bycx

)
(2.54)

The reason why the triple scalar product is of interest is because of its geometric
interpretation. The triple scalar product (a ⊗ b) � c is equal in magnitude to the
volume of the parallelepiped having vectors a, b, c as concurrent sides.

Let a, b, c be three non-coplanar vectors, which are represented by the directed

segments
−→
OA,

−→
OB,

−→
OC, respectively. Let AOBD be the parallelogram spanning

�

�

“Comninos” — 2005/8/31 — 18:32 — page 89 — #25
�

�

�

�

�

�

Vector Algebra Survival Kit 89

a

b

n̂

O A

B

C

D

c

h

q

f

FIGURE 2.19. The parallelepiped whose volume is defined by the triple scalar product.

the vectors a and b, as shown in Fig. 2.19. Let n̂ be the unit vector normal to the
plane defined by the vectors a and b, i.e.

n̂ = a ⊗ b
|a ⊗ b|

Finally, let θ be the angle between vectors a and b, and let φ be the angle
between vectors n̂ and c.

By definition the vector product a ⊗ b is given by:

a ⊗ b = (|a| |b| sin θ) · n̂

As we have seen in Subsection 2.18.1, the area α of the parallelogram of the
base is given by:

α = ||a| |b| sin θ |
The magnitude of the vector product can now be rewritten as:

|a ⊗ b| = ∣∣α · n̂
∣∣

and the magnitude of the triple scalar product (a ⊗ b) � c can be rewritten as:

|(a ⊗ b) � c| = ∣∣(α · n̂
) � c

∣∣ = α · ∣∣(n̂ � c
)∣∣ = α · ∣

∣n̂
∣
∣ · |c| · |cos φ| = α · h = ν

Where h = |c| · |cos φ| represents the height of the parallelepiped and ν = α ·h
represents the volume of the parallelepiped.

Looking at the triple scalar product (a ⊗ b) � c from this geometric point of
view has a number of useful consequences. If any two of the vectors a, b, c are
collinear, then the parallelepiped collapses to a plane and has zero volume, i.e.
(a ⊗ b) � c = 0. Similarly, if any of the vectors is the zero vector or if all the
vectors are coplanar, then the parallelepiped collapses and has zero volume.

Another important application of the triple scalar product is that it allows us to
determine the handedness of a basis. Suppose that vectors a, b, c form a basis.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 90 — #26
�

�

�

�

�

�

90 Mathematical and Computer Programming Techniques for Computer Graphics

This implies that (a, b, c) �= 0. If (a, b, c) > 0, then this basis is right-handed.
Alternatively, if (a, b, c) < 0, then it is left-handed. Thus, the basis i, j, k is
right-handed, while the basis i, j, k is left-handed.

The following axioms and vector algebra rules apply to the triple scalar product
for all vectors v1, v2, v3:

Existence of the triple scalar product:
(v1, v2, v3) is a scalar (A2.11)

Triple scalar product of coplanar vectors:
i f all v1, v2, v3 are coplanar ⇒ (v1, v2, v3) = 0 (A2.12)

Triple scalar product of zero vectors:
v1 = �0 ∨ v2 = �0 ∨ v3 = �0 ⇒ (v1, v2, v3) = 0 (A2.13)

Triple scalar product of collinear vectors:
v1||v2 ∨ v2||v3 ∨ v3||v1 ⇒ (v1, v2, v3) = 0 (A2.14)

Cyclic permutation rule:
(v1, v2, v3) = (v2, v3, v1) = (v3, v1, v2) (R2.14)
i.e., v1 � (v2 ⊗ v3) = v2 � (v3 ⊗ v1) = v3 � (v1 ⊗ v2)

and (v1 ⊗ v2) � v3 = (v2 ⊗ v3) � v1 = (v3 ⊗ v1) � v2
Non-cyclic permutation rule:

(v2, v1, v3) = (v3, v2, v1) = (v1, v3, v2) = − (v1, v2, v3) (R2.15)

2.19.2 The Triple Vector Product

Given any three vectors a, b, c, the products (a ⊗ b) ⊗ c and a ⊗ (b ⊗ c) (which
are not equal in general) are known as the triple vector products of a, b, c in
this particular order. If vectors a, b, c have components

[
ax , ay, az

]
,
[
bx , by, bz

]
,[

cx , cy, cz
]

relative to a Cartesian basis i, j, k, then the triple vector product is
defined in terms of these components as:

(a ⊗ b) ⊗ c = ([
ax , ay, az

] ⊗ [
bx , by, bz

]) ⊗ [
cx , cy, cz

]

= [(
aybz − azby

)
, (azbx − ax bz) ,

(
ax by − aybx

)] ⊗ [
cx , cy, cz

]

∴ (a ⊗ b) ⊗ c =
⎡

⎢
⎣

(azbx − ax bz) cz − (
ax by − aybx

)
cy(

ax by − aybx
)

cx − (
aybz − azby

)
cz(

aybz − azby
)

cy − (azbx − ax bz) cx

⎤

⎥
⎦

T

(2.55)

Expanding the first component of this vector we get:

(azbx − ax bz) cz − (
ax by − aybx

)
cy = azczbx − bzczax − bycyax + aycybx

= azczbx − bzczax − bycyax + aycybx

+ ax cx bx − bx cx ax

= (
ax cx + aycy + azcz

)
bx

− (
bx cx + bycy + bzcz

)
ax

= (a � c) bx − (b � c) ax

�

�

“Comninos” — 2005/8/31 — 18:32 — page 91 — #27
�

�

�

�

�

�

Vector Algebra Survival Kit 91

Expanding its second component we get:
(
ax by − aybx

)
cx − (

aybz − azby
)

cz = ax cx by − bx cx ay − bzczay + azczby

= ax cx by − bx cx ay − bzczay + azczby

+aycyby − bycyay

= (
ax cx + aycy + azcz

)
by

− (
bx cx + bycy + bzcz

)
ay

= (a � c) by − (b � c) ay

Expanding its third component we get:
(
aybz − azby

)
cy − (azbx − ax bz) cx = aycybz − bycyaz − bx cx az + ax cx bz

= aycybz − bycyaz − bx cx az + ax cx bz

+azczbz − bzczaz

= (
ax cx + aycy + azcz

)
bz

− (
bx cx + bycy + bzcz

)
az

= (a � c) bz − (b � c) az

Thus:

(a ⊗ b) ⊗ c = [((a � c)bx − (b � c)ax) ,
(
(a � c) � by − (b � c)ay

)
, ((a � c)bz − (b � c)az)

]

∴ (a ⊗ b) ⊗ c = (a � c)b − (b � c)a (2.56)

Similarly we can prove that:

a ⊗ (b ⊗ c) = (a � c)b − (a � b)c

The following axioms and vector algebra rules apply to the triple vector product
for all vectors v1, v2, v3:

Existence of the triple vector product:
(v1 ⊗ v2) ⊗ v3 is a vector (A2.15)

Associative law (does not apply):
(v1 ⊗ v2) ⊗ v3 �= v1 ⊗ (v2 ⊗ v3) (R2.16)

Permutation rule:
(v1 ⊗ v2) ⊗ v3 = v3 ⊗ (v2 ⊗ v1) (R2.17)

Expansion rules:
(v1 ⊗ v2) ⊗ v3 = (v1 � v3) v2 − (v2 � v3) v1 (R2.18)
v1 ⊗ (v2 ⊗ v3) = (v1 � v3) v2 − (v1 � v2) v3 (R2.19)

2.19.3 The Scalar Product of Two Vector Products

Given any four vectors a, b, c, d, the product (a ⊗ b) � (c ⊗ d) is known as the
scalar product of two vector products or the scalar product of four vectors. Such
a product results in a scalar.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 92 — #28
�

�

�

�

�

�

92 Mathematical and Computer Programming Techniques for Computer Graphics

First we use the cyclic permutation rule (R2.14) to rewrite this product:

(a ⊗ b) � (c ⊗ d) = c � (d ⊗ (a ⊗ b))

Where for the cyclic permutation v1 � (v2 ⊗ v3) = v2 � (v3 ⊗ v1) we used
mappings (a ⊗ b) → v1, c → v2, d → v3.

Next we apply the expansion rule (R2.19) to rewrite this result:

c � (d ⊗ (a ⊗ b)) = c� (a(b � d) − b(d � a)) = (c�a)(b�d)− (c�b)(d�a)

Where for the expansion v1 ⊗ (v2 ⊗ v3) = (v1 � v3) v2 − (v1 � v2) v3, we used
mappings d → v1, a → v2, b → v3.

∴ (a ⊗ b) � (c ⊗ d) = (c � a)(b � d) − (c � b)(d � a) (2.57)

Using this result we can calculate the square of the vector product as:

(a ⊗ b)2 = (a � a)(b � b) − (a � b)(a � b) = |a|2 |b|2 − (a � b)2 (2.58)

2.19.4 The Vector Product of Two Vector Products

Given any four vectors a, b, c, d, the product (a ⊗ b) ⊗ (c ⊗ d) is known as the
vector product of two vector products or the vector product of four vectors. Such
a product results in a vector.

Using the expansion rule (R2.18) we can rewrite this product as:

(a ⊗ b) ⊗ (c ⊗ d) = (a � (c ⊗ d)) b − (b � (c ⊗ d)) a
= (a, c, d) b − (b, c, d) a

(2.59)

Where for the expansion (v1 ⊗ v2)⊗ v3 = (v1 � v3) v2 − (v2 � v3) v1, we used
mappings a → v1, b → v2, (c ⊗ d) → v3.

Similarly, using the expansion rule (R2.19) we can rewrite this product as:

(a ⊗ b) ⊗ (c ⊗ d) = ((a ⊗ b) � d) c − ((a ⊗ b) � c) d
= (a, b, d) c − (a, b, c) d

(2.60)

Where for the expansion v1 ⊗ (v2 ⊗ v3) = (v1 � v3) v2 − (v1 � v2) v3, we used
mappings (a ⊗ b) → v1, c → v2, d → v3.

Thus, the vector product of two vector products is defined as:

(a ⊗ b) ⊗ (c ⊗ d) = (a, c, d) b − (b, c, d) a = (a, b, d) c − (a, b, c) d (2.61)

2.20 The Components of a Vector Relative
to a Non-orthogonal Basis

Let s, t, u be three non-coplanar and non-zero vectors that form a right-handed

basis. Let the directed segments
−→
OS,

−→
OT,

−→
OU represent the vectors s, t, u, respec-

tively, as shown in Fig. 2.20. Let v be any vector and let the directed segment

�

�

“Comninos” — 2005/8/31 — 18:32 — page 93 — #29
�

�

�

�

�

�

Vector Algebra Survival Kit 93

v

s

O

k�

i�

j�

t

u

S

T

U

V

qt

qu

qs

FIGURE 2.20. The non-orthonormal right-handed s, t, u basis.

−→
OV represent vector v. The components of the s, t, u, v vectors with respect to a
Cartesian basis i, j, k are given by

[
sx , sy, sz

]
,
[
tx , ty, tz

]
,
[
ux , uy, uz

]
,
[
vx , vy, vz

]
,

respectively.
Suppose we wish to express the components of v with respect to the right-

handed basis s, t, u. That is, we wish to determine the triple of components
[vs, vt , vu].

Had the s, t, u basis been a Cartesian basis like the i, j, k basis, this would be
simple. As we have seen in Section 2.14.3, we would project v onto each of the
s, t, u base vectors of this basis. The magnitudes of these projection vectors
would be equal to the components vs , vt , vu . Thus, when s = i, t = j and u = k
these components are given by:

vs = |v| · cos (θs) = s � v
vt = |v| · cos (θt) = t � v
vu = |v| · cos (θu)= u � v

where θ s , θ t , θu are the angles subtended by v and s, t, u, respectively.
The above result can be generalised as follows:

vs = the magnitude of the projection of v onto i
the magnitude of the projection of s onto i

= i � v
i � s

vt = the magnitude of the projection of v onto j
the magnitude of the projection of t onto j

= j � v
j � t

vu = the magnitude of the projection of v onto k

the magnitude of the projection of u onto k
= k � v

k � u

�

�

“Comninos” — 2005/8/31 — 18:32 — page 94 — #30
�

�

�

�

�

�

94 Mathematical and Computer Programming Techniques for Computer Graphics

Which when s = i, t = j and u = k reduces to:

vs = i � v
i � i

= s � v
1

= s � v

vt = j � v
j � j

= t � v
1

= t � v

vu = k � v
k � k

= u � v
1

= u � v

In the general case however s �= i, t �= j and u �= k, we must compute a new set
of vectors i′, j′, k′ that correspond to base vectors i, j, k. As vector i is normal to
the plane defined by the other two vectors j, k (of the i, j, k basis), so i′ must be
normal to the plane defined by vectors t, u (of the s, t, u basis). Similarly j′ must
be normal to the plane defined by u, s, and k′ must be normal to the plane defined
by s, t.

Thus:
i′ = t ⊗ u
j′ = u ⊗ s
k′ = s ⊗ t

Using this new set of vectors i′, j′, k′ we can compute the components of vector
v with respect to the right-handed basis s, t, u:

vs = (t ⊗ u) � v
(t ⊗ u) � s

= (t, u, v)
(t, u, s)

vt = (u ⊗ s) � v
(u ⊗ s) � t

= (u, s, v)
(u, s, t)

(2.62)

vu = (s ⊗ t) � v
(s ⊗ t) � u

= (s, t, v)
(s, t, u)

Expanding the triple scalar products we obtain:

vs = (t, u, v)
(t, u, s)

=
(
tyuz − tzuy

)
vx + (tzux − tx uz) vy + (

tx uy − tyux
)

vz(
tyuz − tzuy

)
sx + (tzux − tx uz) sy + (

tx uy − tyux
)

sz

vt = (u, s, v)
(u, s, t)

=
(
uysz − uzsy

)
vx + (uzsx − ux sz) vy + (

ux sy − uysx
)

vz(
uysz − uzsy

)
tx + (uzsx − ux sz) ty + (

ux sy − uysx
)

tz

vu = (s, t, v)
(s, t, u)

=
(
sytz − szty

)
vx + (sztx − sx tz) vy + (

sx ty − sytx
)

vz(
sytz − szty

)
ux + (sztx − sx tz) uy + (

sx ty − sytx
)

uz

(2.63)

The above discussion was useful in illuminating the geometric aspects of our
problem. It illustrated how geometric arguments are helpful in reasoning and
solving problems in vector algebra, but it did not provide a conclusive mathemat-
ical proof of the correctness of our arguments. At some stage of our discussion
we claimed that a result could be generalised without offering any evidence to
back our claim. We will do so in the next section.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 95 — #31
�

�

�

�

�

�

Vector Algebra Survival Kit 95

2.21 The Decomposition of a Vector According to a Basis

In this section we revisit the problem dealt with in the previous section, but we do
so in a more mathematically rigorous way and provide a vector algebraic proof of
our argument.

We start by restating the problem. Given four non-coplanar and non-zero vec-
tors a, b, c, d decompose vector d according to a basis a, b, c, i.e. express the
components of d with respect to a right-handed basis a, b, c (which is not re-
quired to be orthonormal or even orthogonal). From Section 2.7 we know that
this is possible. Indeed, given any four non-coplanar and non-zero vectors in E3

we can express one of the vectors as a linear combination of the remaining three
vectors.

By combining Eqs. (2.59) and (2.60) we obtain:

(a, b, d) c − (a, b, c) d = (a, c, d) b − (b, c, d) a

∴ (b, c, d) a − (a, c, d) b + (a, b, d) c − (a, b, c) d = −→
0

Using the non-cyclic permutation rule (R2.15) we obtain:

(b, c, d) a + (a, d, c) b + (a, b, d) c − (a, b, c) d = −→
0

But given that any four vectors in E3 are always linearly dependent (i.e. we can
decompose one in terms of the remaining three), we can solve the above equation
for d:

(b, c, d) a + (a, d, c) b + (a, b, d) c = (a, b, c) d

∴ d = (b, c, d) a + (a, d, c) b + (a, b, d) c
(a, b, c)

= (b, c, d)

(a, b, c)
a+ (a, d, c)

(a, b, c)
b+ (a, b, d)

(a, b, c)
c

Expressing d in component form we obtain:

d =
[
(b, c, d)

(a, b, c)
,
(a, d, c)
(a, b, c)

,
(a, b, d)

(a, b, c)

]

Using the cyclic permutation rule (R2.14) we obtain:

d =
[
(b, c, d)

(b, c, a)
,
(c, a, d)

(c, a, b)
,
(a, b, d)

(a, b, c)

]

Finally, expanding the triple scalar products we obtain:

d =
[
(b ⊗ c) � d
(b ⊗ c) � a

,
(c ⊗ a) � d
(c ⊗ a) � b

,
(a ⊗ b) � d
(a ⊗ b) � c

]

�

�

“Comninos” — 2005/8/31 — 18:32 — page 96 — #32
�

�

�

�

�

�

96 Mathematical and Computer Programming Techniques for Computer Graphics

The individual components of d are given as:

da = (b ⊗ c) � d
(b ⊗ c) � a

= (b, c, d)

(b, c, a)

db = (c ⊗ a) � d
(c ⊗ a) � b

= (c, a, d)

(c, a, b)
(2.64)

dc = (a ⊗ b) � d
(a ⊗ b) � c

= (a, b, d)

(a, b, c)

Which accords with the result we obtained in Eq. (2.62). QED
If a, b, c, d have components

[
ax , ay, az

]
,
[
bx , by, bz

]
,
[
cx , cy, cz

]
,
[
dx , dy, dz

]
,

respectively, then by expanding the triple scalar products we obtain:

da = (b, c, d)

(b, c, a)
=

(
bycz − bzcy

)
dx + (bzcx − bx cz) dy + (

bx cy − bycx
)

dz(
bycz − bzcy

)
ax + (bzcx − bx cz) ay + (

bx cy − bycx
)

az

db = (c, a, d)

(c, a, b)
=

(
cyaz − czay

)
dx + (czax − cx az) dy + (

cx ay − cyax
)

dz(
cyaz − czay

)
bx + (czax − cx az) by + (

cx ay − cyax
)

bz

dc = (a, b, d)

(a, b, c)
=

(
aybz − azby

)
dx + (azbx − ax bz) dy + (

ax by − aybx
)

dz(
aybz − azby

)
cx + (azbx − ax bz) cy + (

ax by − aybx
)

cz

(2.65)

2.22 The Vector Equation of the Line Revisited

2.22.1 The Line Defined by Two Position Vectors

In Section 2.5 we have seen that the vector equation of a line � passing through
two points P1 and P2 with position vectors p1, p2 relative to some origin O is
given by:

p = (1 − t) · p1 + t · p2 (2.66)

or p = p1 + t · (
p2 − p1

)
(2.67)

where t is a scalar parameter and p is the position vector of the general point P on
the line, as shown in Fig. 2.21.

If points P1, P2, P have coordinates [x1, y1, z1],[x2, y2, z2],[x, y, z], respec-
tively, then the line equation can be rewritten as:

x = (1 − t) · x1 + t · x2

y = (1 − t) · y1 + t · y2

z = (1 − t) · z1 + t · z2 (2.68)

x = x1 + t · (x2 − x1)

or y = y1 + t · (y2 − y1)

z = z1 + t · (z2 − z1) (2.69)

�

�

“Comninos” — 2005/8/31 — 18:32 — page 97 — #33
�

�

�

�

�

�

Vector Algebra Survival Kit 97

p1

p2
p

O

P1

P2
P L

FIGURE 2.21. A line defined by two position vectors.

p1

d

p

O

P1

P2

P

p2

L

FIGURE 2.22. A line defined by a position vector and a direction vector.

2.22.2 The Line Defined by a Position Vector and Direction
Vector

An alternative but equivalent representation of the line � is derived as follows.
Let � be a line that passes through a point P1 (having position vector p1) in the
direction of a direction unit vector d represented by the directed segment

−−→
P1P2 in

Fig. 2.22.
Then the line equation can be written as:

p = p1 + t · d (2.70)

where, as above, t is a scalar parameter and p is the position vector of the general
point P on the line. This equation is reminiscent of the Eq. (2.67). This is not
surprising as d = (p2 – p1).

If points P1, P have coordinates [x1, y1, z1], [x, y, z], respectively and vector d
has components

[
dx , dy, dz

]
, then the line equation can be rewritten as:

x = x1 + t · dx

y = y1 + t · dy

z = z1 + t · dz (2.71)

�

�

“Comninos” — 2005/8/31 — 18:32 — page 98 — #34
�

�

�

�

�

�

98 Mathematical and Computer Programming Techniques for Computer Graphics

Which is reminiscent of Eq. (2.69).
Sometimes it is convenient to rewrite Eq. (2.71) in what is known as the stan-

dard form of the line equation:

(x − x1)

dx
= (y − y1)

dy
= (z − z1)

dz
= t (2.72)

Here it is understood that if a denominator vanishes, then so does the corre-
sponding numerator. Thus, if dx = 0, then the above equation becomes:

x = x1,
(y − y1)

dy
= (z − z1)

dz
= t

Since the direction cosines of the direction vector d are dx = x2 – x1, dy = y2 –
y1 and dz = z2 – z1, respectively, an alternative form of Eq. (2.72) is:

(x − x1)

(x2 − x1)
= (y − y1)

(y2 − y1)
= (z − z1)

(z2 − z1)
= t (2.73)

Here again it is understood that if a denominator vanishes, then so does the
corresponding numerator.

2.23 The Vector Equation of the Plane

2.23.1 The Plane Defined by a Position Vector
and a Normal Vector

To derive a vector equation of the plane we use the fact that any line defined by
any two points on a plane Π is perpendicular to the vector normal to the plane, as
seen in Fig. 2.23.

n

p

O

P1
PP1

P

p1

n̂

P

FIGURE 2.23. A plane defined by a position vector and a normal direction vector.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 99 — #35
�

�

�

�

�

�

Vector Algebra Survival Kit 99

Let P1 be a point on the plane with position vector p1 and let P be the general
point on the plane with position vector p. Let n be a vector that is normal to
the plane and let n̂ be the unit normal of the plane. Let vectors p1, p, n have
components [x1, y1, z1],[x, y, z],[a, b, c], respectively. The directed segment

−→
P1P

represents vector (p – p1), which is perpendicular to n. Thus:

(p − p1) � n = 0 (2.74)

∴ p � n − p1 � n = 0

∴ p � n = p1 � n (2.75)

or p � n = do (2.76)

Equations (2.74), (2.75) and (2.76) are all alternative forms of the vector equa-
tion of the plane. In the special case where n = n̂, then do represents the distance
of the plane from the origin O.

Expressing Eq. (2.74) in component form we obtain:

a · (x − x1) + b · (y − y1) + c · (z − z1) = 0 (2.77)

This equation provides both the necessary and sufficient condition for a point
[x , y, z] to lie on the plane containing the point [x1, y1, z1] and being perpendic-
ular to the direction [a, b, c].

Similarly Eq. (2.76) in component form gives:

a · x + b · y + c · z + d = 0 (2.78)

where d = −do is the negative distance of the plane from the origin. Thus the
plane is represented by a linear equation of x , y, z.

2.23.2 The Plane Defined by Three Position Vectors

Let P1, P2, P3 be three non-collinear points lying on a plane Π with position
vectors p1, p2, p3 and components [x1, y1, z1], [x2, y2, z2], [x3, y3, z3], respec-
tively. Directed segments

−−→
P1P2,

−−→
P1P3 represent the vectors (p2 − p1), (p3 − p1),

respectively, as shown in Fig. 2.24.
Both directed segments lie on the plane
 and are therefore perpendicular to

the normal of the plane. Thus:

n = (
p2 − p1

) ⊗ (
p3 − p1

)
(2.79)

Using the distributive rule (R2.13):

n = p2 ⊗ p3 − p2 ⊗ p1 − p1 ⊗ p3 + p1 ⊗ p1

Using axiom (A2.10) and the anti-commutative rule (R2.11):

n = p2 ⊗ p3 + p1 ⊗ p2 + p3 ⊗ p1

�

�

“Comninos” — 2005/8/31 — 18:32 — page 100 — #36
�

�

�

�

�

�

100 Mathematical and Computer Programming Techniques for Computer Graphics

n

p

O

P1

P1 P P

p1

P2

P3

p3 p2

P

FIGURE 2.24. A plane defined by three position vectors.

Substituting this normal into Eq. (2.74) we obtain:
(
p − p1

) � ((
p2 − p1

) ⊗ (
p3 − p1

)) = 0 (2.80)

∴
(
p − p1

) � (
p2 ⊗ p3 + p3 ⊗ p1 + p1 ⊗ p2

) = 0 (2.81)

Rewriting Eq. (2.81) in component form we obtain:

(x − x1) · ((y2z3 − y3z2) + (y3z1 − y1z3) + (y1z2 − y2z1))

+ (y − y1) · ((z2x3 − z3x2) + (z3x1 − z1x3) + (z1x2 − z2x1))

+ (z − z1) · ((x2 y3 − x3 y2) + (x3 y1 − x1 y3) + (x1 y2 − x2 y1)) = 0 (2.82)

To simplify this expression we label the bracketed vector products as a, b, c.
Thus:

(x − x1) · a + (y − y1) · b + (z − z1) · c = 0

∴ (a · x + b · y + c · z) − (a · x1 + b · y1 + c · z1) = 0

∴ a · x + b · y + c · z + d = 0 (2.83)

where:

a = (y2z3 − y3z2) + (y3z1 − y1z3) + (y1z2 − y2z1)

b = (z2x3 − z3x2) + (z3x1 − z1x3) + (z1x2 − z2x1)

c = (x2 y3 − x3 y2) + (x3 y1 − x1 y3) + (x1 y2 − x2 y1)

d = − (a · x1 + b · y1 + c · z1)

Here a, b, c are the direction ratios of the plane normal and d is equal to the
negative distance of the plane from the origin scaled by the magnitude of the plane
normal.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 101 — #37
�

�

�

�

�

�

Vector Algebra Survival Kit 101

An alternative representation of the plane can be arrived at by expressing the
left-hand side of Eq. (2.80) as a triple scalar product:

(
p − p1

) � ((
p2 − p1

) ⊗ (
p3 − p1

)) = ((
p − p1

)
,
(
p2 − p1

)
,
(
p3 − p1

))

∴
((

p − p1
)
,
(
p2 − p1

)
,
(
p3 − p1

)) = 0 (2.84)

Expanding the left-hand side of Eq. (2.81) we obtain:

∴ p� (
p2 ⊗ p3

) + p � (
p3 ⊗ p1

) + p � (
p1 ⊗ p2

) − p1 � (
p2 ⊗ p3

)

−p1 � (
p3 ⊗ p1

) − p1 � (
p1 ⊗ p2

) = 0

The last two terms of the above equation cancel out by Axiom (A2.14) giving:

p � (
p2 ⊗ p3

) + p � (
p3 ⊗ p1

) + p � (
p1 ⊗ p2

) − p1 � (
p2 ⊗ p3

) = 0

Which in triple scalar product form is:
(
p, p2, p3

) + (
p, p3, p1

) + (
p, p1, p2

) − (
p1, p2, p3

) = 0

∴
(
p, p2, p3

) + (
p, p3, p1

) + (
p, p1, p2

) = (
p1, p2, p3

)
(2.85)

2.24 Some Applications of Vector Algebra in Analytical
Geometry

2.24.1 The Distance Between Two Points in Space

Given two points P1, P2 with position vectors p1 = [x1, y1, z1], p2 = [x2, y2, z2],
the distance between these points is given by the magnitude of the directed seg-
ment

−−→
P1P2, which represents the vector

(
p2 − p1

)
, as shown in Fig. 2.25. Thus,

|−−→P1P2| = ∣∣p2 − p1

∣∣ =
√

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 (2.86)

p1

p2

(p2 − p1)O

P1

P2
P2P1

−p1

FIGURE 2.25. The distance between two points.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 102 — #38
�

�

�

�

�

�

102 Mathematical and Computer Programming Techniques for Computer Graphics

2.24.2 The Perpendicular Distance from a Point to a Line

A line Λ is defined by a position vector a = [
ax , ay, az

]
and a direction unit

vector b = [
bx , by, bz

]
. Let P be a point not on the line Λ with position vector

p = [
px , py, pz

]
. Suppose we wish to find the foot Q of the perpendicular from

point P to the line as well as the perpendicular distance from this point to the line,
as seen in Fig. 2.26.

The general point x on the line is given by its parametric equation:

x = a + t · b

Hence the position vector of point Q is given by:

q = a + tq · b (2.87)

for some scalar value tq . Therefore the directed segment
−→
PQ represents the vector:

v = q − p = a + tq · b − p (2.88)

and since
−→
PQ is perpendicular to Λ we have:

(
a + tq · b − p

) � b = 0

Expanding this scalar product and recalling that b is a unit vector, we get:

a � b + tq · b � b − p � b = 0

∴ a � b + tq · 1 − p � b = 0

Solving for tq we get:
tq = (p − a) � b

which in component form is:

tq = (px − ax) · bx + (
py − ay

) · by + (pz − az) · bz

q

b

p

O

A

Q

P

a

q − pv =

L

FIGURE 2.26. The foot of the perpendicular from a point to a line.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 103 — #39
�

�

�

�

�

�

Vector Algebra Survival Kit 103

Substituting this value in Eq. (2.87) we obtain:

q = a + ((p − a) � b) · b (2.89)

which is the required foot of the perpendicular. Rewriting the above equation in
component form we get:

qx = ax + tq · bx

qy = ay + tq · by where tq = (px − ax) · bx + (
py − ay

) · by + (pz − az) · bz

qz = az + tq · bz (2.90)

Now we can calculate the length of the perpendicular distance quite simply as:

|v| = |q − p| =
√

(qx − px)
2 + (

qy − py
)2 + (qz − pz)

2 (2.91)

2.24.3 The Distance of a Point from a Line

This is essentially the same problem as in the previous section, but here we do
not calculate the foot of the perpendicular. A line � is defined by a position
vector a = [

ax , ay, az
]

and a direction unit vector b = [
bx , by, bz

]
, as shown in

Fig. 2.27.
As before, the general point x on the line is given by its parametric equation:

x = a + t · b

Let the general point P have position vector p = [
px , py, pz

]
. The directed

segment
−→
AP represents the vector c = (p − a). The perpendicular distance of the

point from the line is the magnitude of the directed segment
−→
PQ:

∣∣∣
−→
PQ

∣∣∣ = |p − a| · sin θ = |b ⊗ (p − a)| (2.92)

c

b

p

O

A
Q

P

a

b ⊗ c

sinqc
PQ

L

q

FIGURE 2.27. The perpendicular distance of a point from a line.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 104 — #40
�

�

�

�

�

�

104 Mathematical and Computer Programming Techniques for Computer Graphics

The components of the vector product are given by:

b ⊗ (p − a) = [(
by (pz − az) − bz

(
py − ay

))
,

(bz (px − ax) − bx (pz − az)) ,
(
bx

(
py − ay

) − by (px − ax)
)]

and its magnitude is given by:

|b ⊗ (p − a)| =

√√√√√√

(
by (pz − az) − bz

(
py − ay

))2 +
(bz (px − ax) − bx (pz − az))

2 +
(
bx

(
py − ay

) − by (px − ax)
)2

(2.93)

2.24.4 The Distance Between Two Parallel Lines

Let Λ1,Λ2 be two parallel lines. Where a1 = [
a1x , a1y, a1z

]
, a2 = [

a2x , a2y, a2z
]

are position vectors of lines Λ1, Λ2, respectively and b = [
bx , by, bz

]
is the

direction unit vector of both lines, as shown in Fig. 2.28.
The perpendicular distance between the two parallel lines is equal to the dis-

tance of point A2 from line Λ1 (or analogously the distance of point A1 from

line Λ2). As in the previous section, the directed segment
−−→
A1A2 represents the

vector c = (a2 − a1). The perpendicular distance of point A2 from line Λ1 is the

magnitude of the directed segment
−−→
A2Q:

∣∣∣
−−→
A2Q

∣∣∣ = |a2 − a1| · sin θ = |b ⊗ (a2 − a1)| (2.94)

The components of the vector product are given by:

b ⊗ (a2 − a1) = [(
by (a2z − a1z) − bz

(
a2y − a1y

))
,

(bz (a2x − a1x) − bx (a2z − a1z)) ,
(
bx

(
a2y − a1y

) − by (a2x − a1x)
)]

c

b

a2

O

A1

Q

A2

a1

b ⊗ c

sinqc
A2Q

b

L1

L2

q

FIGURE 2.28. The perpendicular distance between two parallel lines.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 105 — #41
�

�

�

�

�

�

Vector Algebra Survival Kit 105

and its magnitude is given by:

|b ⊗ (a2 − a1)| =

√√√√
√√

(
by (a2z − a1z) − bz

(
a2y − a1y

))2 +
(bz (a2x − a1x) − bx (a2z − a1z))

2 +
(
bx

(
a2y − a1y

) − by (a2x − a1x)
)2

(2.95)

2.24.5 The Distance Between Two Non-Parallel Lines

Let Λ1,Λ2 be two non-parallel lines. Where line Λ1 is defined by a position
vector a1 = [

a1x , a1y, a1z
]

and a direction unit vector b1 = [
b1x , b1y, b1z

]
and

line is defined by a position vector a2 = [
a2x , a2y, a2z

]
and a direction unit vector

b2 = [
b2x , b2y, b2z

]
, as shown in Fig. 2.29.

The directed segment
−−→
A1A2 represents the vector c = (a2 − a1). The feet of

the line that is mutually perpendicular to the lines Λ1,Λ2 are Q1, Q2, respectively.
The perpendicular distance between the two lines is the magnitude of the directed

segment
−−−→
Q1Q2. The magnitude of this segment is equal to the ratio of the volume

of the parallelepiped having vectors b1, b2, c as concurrent sides over the area of
its base:

∣∣∣
−−−→
Q1Q2

∣∣∣ = volume of the parallelepiped ((a2 − a1) , b1, b2)

area of the base of the parallelepiped ((a2 − a1) , b1, b2)

= |(a2 − a1) � (b1 ⊗ b2)|
|b1 ⊗ b2| (2.96)

a1

b2
b1⊗ b2

O

A1Q1

c

b1

A2

a2

Q2

Q2Q1

L1

L2

FIGURE 2.29. The distance between two non-parallel lines.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 106 — #42
�

�

�

�

�

�

106 Mathematical and Computer Programming Techniques for Computer Graphics

The perpendicular distance between two non-parallel lines in component form
is given by:

∣∣∣
−−−→
Q1Q2

∣∣∣ = |a � b|
|b| =

∣∣ax bx + ayby + azbz
∣∣

√
b2

x + b2
y + b2

z

for

⎧
⎨

⎩

a = a2 − a1 = [
(a2x − a1x) ,

(
a2y − a1y

)
,
(
a2z − a1z

)]

b = b1 ⊗ b2 = [(
b1yb2z − b1zb2y

)
,
(
b1zb2x − b1x b2z

)
,
(
b1x b2y − b1yb2x

)]

(2.97)

2.24.6 The Cosine of the Angle between Two Lines

Let Λ1,Λ2 be two non-parallel lines. Where line Λ1 is defined by a position
vector a1 = [

a1x , a1y, a1z
]

and a direction unit vector b1 = [
b1x , b1y, b1z

]
and

line is defined by a position vector a2 = [
a2x , a2y, a2z

]
and a direction unit vector

b2 = [
b2x , b2y, b2z

]
, as shown in Fig. 2.30.

The cosine of the angle between the two lines is given by:

cos θ = b1 � b2 = b1x b2x + b1yb2y + b1zb2z (2.98)

2.24.7 The Cosine of the Angle between Two Planes

Let Π1, Π2 be two non-parallel planes with unit normal vectors n̂1 = [
n̂1x , n̂1y, n̂1z

]
,

n̂2 = [
n̂2x , n̂2y, n̂2z

]
, respectively, as seen in Fig. 2.31.

The angle between the planes is by definition the angle between their unit nor-
mals, thus:

cos θ = n̂1 � n̂2 = n̂1x n̂2x + n̂1y n̂2y + n̂1z n̂2z (2.99)

a1

b2

O

A1
L1

b1

A2

a2

L2

θ

FIGURE 2.30. The cosine of the angle between two non-parallel lines.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 107 — #43
�

�

�

�

�

�

Vector Algebra Survival Kit 107

n1ˆ

n2ˆ θ

P1

P2

FIGURE 2.31. The cosine of the angle between two planes.

2.24.8 The Distance of a Point from a Plane

From Eq. (2.76) we know that the plane Π is defined by:

x � n̂ = do

where x is the position vector of the general point X on the plane, n̂ is the unit
normal of the plane and do is the distance of the plane from the origin O. A point
P off the plane has position vector p, as shown in Fig. 2.32.

The magnitude of the projection of p onto n̂ is given by:

p � n̂ = m p

The signed distance of point P from the plane is given by:

dp = m p − do = p � n̂ − x � n̂ = (p − x) � n̂ (2.100)

∴ dp = (px − xx) · n̂x + (
py − xy

) · n̂ y + (pz − xz) · n̂z (2.101)

The observant reader would have noticed that the distance of point P from
plane Π should be dp = do − m p and not dp = m p − do. This change of sign
was done deliberately to satisfy the following convention. Plane Π divides three-
dimensional space into two half-spaces. A positive half-space that lies in front
of the plane, i.e. in the direction that the plane normal points, and a negative
half-space that lies behind the plane. By convention the origin lies in the negative
half-space and any point lying on the same half-space as the origin is assumed
to have a negative distance from the plane. For example, in CG a cube defined

�

�

“Comninos” — 2005/8/31 — 18:32 — page 108 — #44
�

�

�

�

�

�

108 Mathematical and Computer Programming Techniques for Computer Graphics

X

n̂

Q

P

do x

P
p

dp

mp

q

O

FIGURE 2.32. The distance of a point from a plane.

around the origin has the normals of its faces pointing outwards and the origin is
behind the planes that form its faces. Thus:

If dp > 0, then the point P lies on the opposite side of the plane to the origin
(i.e. P is in front of the plane).

If dp < 0, then the point P lies on the same side of the plane as the origin (i.e.
P is behind of the plane).

If dp = 0, then the point P lies on the plane (i.e. P is on the plane).

Let Q be the foot of the perpendicular from point P to plane Π. Point Q lies on
the plane and thus satisfies the equation of the plane, i.e.

q � n̂ = do

Point Q also lies on the perpendicular line whose equation is given by:

xl = p + t · n̂

Thus, point Q satisfies the perpendicular line equation:

q = p + tq · n̂

The parameter tq represents the distance travelled along n̂, starting from P and
ending at Q, i.e.

tq = do − m p

Thus, the position vector of the foot Q of the perpendicular from point P to plane
Π is given by:

q = p + (
do − m p

) · n̂

�

�

“Comninos” — 2005/8/31 — 18:32 — page 109 — #45
�

�

�

�

�

�

Vector Algebra Survival Kit 109

2.24.9 The Point of Intersection of a Line and a Plane

A line Λ is defined by a position vector a = [
ax , ay, az

]
and a direction unit

vector b = [
bx , by, bz

]
. The general point x on the line is given by its parametric

equation:
x = a + t · b

A plane Π is defined by:
n̂ � x = d

where x is the position vector of the general point X on the plane, n̂ = [
n̂x , n̂ y, n̂z

]

is the unit normal of the plane and d is the distance of the plane from the origin O.
If the line Λ intersects the plane Π, then let X0 be their point of intersection, as

shown in Fig. 2.33.
The point of intersection X0 has a position vector given by:

x0 = a + t0 · b

where t0 is the value of the line parameter at point X0. To determine this value
we proceed as follows. First, we determine the magnitude ma of the projection of
position vector a onto the plane normal:

ma = n̂ � a

Then, we find the length of the projection of the directed segment
−−→
AX0 onto the

plane normal (i.e. the value of the line parameter at point X0) by subtracting ma

from the distance of the plane from the origin. See the right-hand diagram of the
Fig. Thus:

t0 = d − ma = d − (n̂ � a) = d − (
nx ax + nyay + nzaz

)

d x0
x0

O

A

X0

X0

a

n̂

ma
ma

b

d − ma

d − ma(d − ma)b
(d − ma)b

d

O

A

a

n̂

b

L L

P

P

FIGURE 2.33. The distance of a point from a plane.

�

�

“Comninos” — 2005/8/31 — 18:32 — page 110 — #46
�

�

�

�

�

�

110 Mathematical and Computer Programming Techniques for Computer Graphics

Now, the position vector of the point of intersection in component form is given
by:

x0 = [
(ax + t0bx) ,

(
ay + t0by

)
, (az + t0bz)

]
where

t0 = d − (
n̂x ax + n̂ yay + n̂zaz

)
(2.102)

2.25 Summary of Vector Algebra Axioms and Rules

In this section we collect together, for ease of reference, all the axioms and vector
algebra rules that apply to all the vector operations we have examined.

Multiplication of a Vector by a Scalar
The following axioms and rules of vector algebra apply to the vector by scalar
product for all vectors v, v1, v2 and all scalars α, β:

Existence of the vector by scalar product:
αv = [

αvx , αvy, αvz
]

(A2.1)
Existence of the zero element:

0v = v0 = �0 (A2.2)
Existence of the neutral element:

1v = v1 = v (A2.3)
Associative law:

α (βv) = (αβ) v (R2.1)
Distributive laws:

(α + β) v = αv + βv (R2.2)
α (v1 + v2) = αv1 + αv2 (R2.3)

Vector Addition
The following axioms and rules of vector algebra apply to vector addition hold
for all vectors a, b, v, v1, v2, v3:

Existence of the vector sum:
a + b = [

(ax + bx) ,
(
ay + by

)
, (az + bz)

]
(A2.4)

Existence of the neutral element:
�0 + v = v + �0 = v (A2.5)

Existence of the inverse element:
v + (−v) = (−v) + v = �0 (A2.6)

Commutative law:
v1 + v2 = v2 + v1 (R2.4)

Associative law:
(v1 + v2) + v3 = v1 + (v2 + v3) (R2.5)

Change of detection rule:
− (v1 − v2) = (v2 − v1) (R2.6)

�

�

“Comninos” — 2005/8/31 — 18:32 — page 111 — #47
�

�

�

�

�

�

Vector Algebra Survival Kit 111

The Scalar Product of Vectors
The following axioms and vector algebra rules apply to the scalar product of vec-
tors for all vectors a, b, v1, v2, v3, v and all scalars α:

Existence of the scalar product:

a � b =
{ |a| · |b| · cos θ

ax bx + ayby + azbz
(Cartesian basis case only) (A2.7)

Powers of a vector:
v2 = v � v = |v|2 (A2.8)

Commutative law:
v1 � v2 = v2 � v1 (R2.7)

Distributive laws:
(αv1) � v2 = v1 � (αv2) = α (v1 � v2) (R2.8)
v1 � (v2 + v3) = v1 � v2 + v1 � v3 (R2.9)

The Vector Product of Two Vectors
The following axioms and vector algebra rules apply to the vector product for all
vectors a, b, v1, v2, v3 and all scalars α:

Existence of the vector product:

a ⊗ b =

⎧
⎪⎨

⎪⎩

(|a| · |b| · sin θ) n̂
[(

aybz − azby
)
, (azbx − ax bz) ,

(
ax by − aybx

)] (Cartesian basis case only)

(A2.9)
Vector product of collinear vectors:

v1 ⊗ v2 = �0 ⇔ v1||v2 (A2.10)
Associative law:

v1 ⊗ (v2 ⊗ v3) �= (v1 ⊗ v2) ⊗ v3 (R2.10)
(does not apply)

Anti-commutative law:
v1 ⊗ v2 = − (v2 ⊗ v1) (R2.11)

Distributive laws:
(αv1) ⊗ v2 = v1 ⊗ (αv2) = α (v1 ⊗ v2) (R2.12)
v1 ⊗ (v2 + v3) = v1 ⊗ v2 + v1 ⊗ v3 (R2.13)

The Triple Scalar Product
The following axioms and vector algebra rules apply to the triple scalar product
for all vectors a, b, v1, v2, v3:

Existence of the triple scalar product:

(a, b, c) =
⎧
⎨

⎩

(a ⊗ b) � c = a � (b ⊗ c)
ax

(
bycz − bzcy

) + ay (bzcx − bx cz)

+az
(
bx cy − bycx

) (Cartesian basis case only)
(A2.11)

�

�

“Comninos” — 2005/8/31 — 18:32 — page 112 — #48
�

�

�

�

�

�

112 Mathematical and Computer Programming Techniques for Computer Graphics

Triple scalar product of coplanar vectors:
if all v1, v2, v3 are coplanar ⇒ (v1, v2, v3) = 0 (A2.12)

Triple scalar product of zero vectors:
v1 = �0 ∨ v2 = �0 ∨ v3 = �0 ⇒ (v1, v2, v3) = 0 (A2.13)

Triple scalar product of collinear vectors:
v1||v2 ∨ v2||v3 ∨ v3||v1 ⇒ (v1, v2, v3) = 0 (A2.14)

Cyclic permutation rule:
(v1, v2, v3) = (v2, v3, v1) = (v3, v1, v2) (R2.14)

i.e., v1 � (v2 ⊗ v3) = v2 � (v3 ⊗ v1) = v3 � (v1 ⊗ v2)

and (v1 ⊗ v2) � v3 = (v2 ⊗ v3) � v1 = (v3 ⊗ v1) � v2
Non-cyclic permutation rule:

(v2, v1, v3) = (v3, v2, v1) = (v1, v3, v2) = − (v1, v2, v3) (R2.15)

The Triple Vector Product
The following axioms and vector algebra rules apply to the triple vector product
for all vectors a, b, v1, v2, v3:

Existence of the triple vector product:
(a ⊗ b) ⊗ c = (a � c) b − (b � c) a (A2.15)

Associative law (does not apply):
(v1 ⊗ v2) ⊗ v3 �= v1 ⊗ (v2 ⊗ v3) (R2.16)

Permutation rule:
(v1 ⊗ v2) ⊗ v3 = v3 ⊗ (v2 ⊗ v1) (R2.17)

Expansion rules:
(v1 ⊗ v2) ⊗ v3 = (v1 � v3) v2 − (v2 � v3) v1 (R2.18)
v1 ⊗ (v2 ⊗ v3) = (v1 � v3) v2 − (v1 � v2) v3 (R2.19)

The Scalar Product of Two Vector Products
The following axiom applies to the scalar product of two vector products for all
vectors a, b, c, d:

Existence of the scalar product of two vector products:
(a ⊗ b) � (c ⊗ d) = (c � a) (b � d) − (c � b) (d � a) (A2.16)

The Vector Product of Two Vector Products
The following axiom applies to the vector product of two vector products for all
vectors a, b, c, d:

�

�

“Comninos” — 2005/8/31 — 18:32 — page 113 — #49
�

�

�

�

�

�

Vector Algebra Survival Kit 113

Existence of the vector product of two vector products:

(a ⊗ b) ⊗ (c ⊗ d) =
{

(a, c, d) b − (b, c, d) a
(a, b, d) c − (a, b, c) d

(A2.17)

2.26 A Simple Vector Algebra C Library

See Appendix 1.

“Comninos” — 2005/8/31 — 15:34 — page 115 — #1

3

Matrix Algebra Survival Kit

The theory of matrices and their determinants is closely related to the problem of
solving a system of linear simultaneous equations.

The Babylonians appear to be among the first people to have investigated this
problem. In a clay tablet, which has been dated to approximately 400–300 BC,
the following problem was formulated.

Two fields have a total area of 1800 square yards. One field produces grain at the
rate of 2/3 of a bushel per square yard, while the other produces grain at the rate
of 1/2 a bushel per square yard. If the total yield is 1100 bushels, what is the size
of each field?

In today’s terminology, this problem can be represented by the following sys-
tem of linear simultaneous equations:

1 · x1 + 1 · x2 = 1800

2
3 · x1 + 1

2 · x2 = 1100

which, when solved, yields x1 = 1200 yd2 and x2 = 600 yd2 where x1, x2 represent
the areas of the first and second fields, respectively.

The earliest example of the use of a determinant appears in the Chinese text
entitled Nine Chapters of the Mathematical Art, which was written in 200 BC
during the Hun Dynasty. In this text the following problem, which is similar to
the Babylonian problem, was formulated.

There are three types of corn, of which three bundles of the first, two of the second,
and one of the third make 39 measures. Two of the first, three of the second and
one of the third make 34 measures. And one of the first, two of the second and
three of the third make 26 measures. How many measures of corn are contained
in one bundle of each type?

Today we would represent this problem by the following system of linear si-
multaneous equations:

3 · x1 + 2 · x2 + 1 · x3 = 39
2 · x1 + 3 · x2 + 1 · x3 = 34
1 · x1 + 2 · x2 + 3 · x3 = 26

115

“Comninos” — 2005/8/31 — 15:34 — page 116 — #2

116 Mathematical and Computer Programming Techniques for Computer Graphics

or in matrix form:

⎡

⎢
⎣

3 2 1

2 3 1

1 2 3

⎤

⎥
⎦ ·

⎡

⎢
⎣

x1

x2

x3

⎤

⎥
⎦ =

⎡

⎢
⎣

39

34

26

⎤

⎥
⎦

The Chinese mathematician expressed the problem in a tableau of the form:

c1 c2 c3

x1 3 2 1
x2 2 3 2
x3 1 1 3

39 34 26

and then proceeded to instruct the reader as to how to solve the problem using
a sequence of elementary column transformations, the object of which was to
introduce two zeros in rows 1 and 2 of column 3, two zeroes in rows 1 and 3
of column 2, and two zeroes in rows 2 and 3 of column 1. Then the value of
each unknown could be found by dividing the element at the bottom of a column
by the only non-zero element above it. The elementary column transformations
allow one to interchange two columns, to multiply a column by a non-zero number
and to add to a column or subtract from a column a multiple of another column.
This technique was reinvented in Europe, using rows rather than columns, at the
beginning of the nineteenth century and is known as the Gaussian elimination
method.

Here, it is instructive to follow the procedure described in the Chinese text
in some detail. In our explanation we will introduce the following shorthand
notation. An elementary column transformation of the form

c2 ← 3 · c2 − 2 · c1

represents a shorthand notation for the following operation. Multiply the elements
of the second column of the tableau by 3 and subtract from them the correspond-
ing elements of the first column multiplied by 2.

According to the Chinese text, the following eight steps must be followed to
determine the values of the three unknowns.

Step 1: Construct the initial tableau.

c1 c2 c3

x1 3 2 1
x2 2 3 2
x3 1 1 3

39 34 26

“Comninos” — 2005/8/31 — 15:34 — page 117 — #3

Matrix Algebra Survival Kit 117

Step 2: By setting c2 ← 3 · c2 − 2 · c1 we obtain

c1 c2 c3

x1 3 0 1
x2 2 5 2
x3 1 1 3

39 24 26

Step 3: By setting c3 ← 3 · c3 − 1 · c1 we obtain

c1 c2 c3

x1 3 0 0
x2 2 5 4
x3 1 1 8

39 24 39

Step 4: By setting c3 ← 5 · c3 − 4 · c2 we obtain

c1 c2 c3

x1 3 0 0
x2 2 5 0
x3 1 1 36

39 24 99

Step 5: By setting c2 ← 36 · c2 − 1 · c3 we obtain

c1 c2 c3

x1 3 0 0
x2 2 180 0
x3 1 0 36

39 765 99

Step 6: By setting c1 ← 36 · c1 − 1 · c3 we obtain

c1 c2 c3

x1 108 0 0
x2 72 180 0
x3 0 0 36

1305 765 99

Step 7: By setting c1 ← 5 · c1 − 2 · c2 we obtain

c1 c2 c3

x1 540 0 0
x2 0 180 0
x3 0 0 36

4995 765 99

“Comninos” — 2005/8/31 — 15:34 — page 118 — #4

118 Mathematical and Computer Programming Techniques for Computer Graphics

Step 8: By dividing the bottom element of each column by the non-zero coeffi-
cient of the corresponding unknown we obtain the solution of the system of linear
simultaneous equations:

x1 = 4995

540
= 9.25

x2 = 765

180
= 4.25

x3 = 99

36
= 2.75

In 1683 Takakazu Seki (1642–1708), a Japanese mathematician, wrote a book
entitled Method of Solving the Dissimulated Problems in which he introduced
matrix and determinant methods, computed the determinants of 2 × 2, 3 × 3,
4 × 4, 5 × 5 matrices and used them in the solution of systems of linear simul-
taneous equations. By coincidence, the idea of determinants appeared in Europe
in the same year in a letter that the German mathematician Gottfried Leibniz
(1646–1716) wrote to the French mathematician Guillaume De l’Hôpital (1661–
1704).

Since then, numerous mathematicians worked on the development of matrices
and their determinants, until the theory reached its present form in a book entitled
An Introduction to Linear Algebra published in 1955 by the Russian mathemati-
cian Leon Mirsky (1918–1983).

Matrix algebra is of great importance to most fields of study in modern science
and it is central to the study of computer graphics. Thus it is important to gain a
thorough understanding of matrix algebra.

3.1 The Definition of a Matrix

A matrix is a rectangular array of numbers. An m × n matrix has m rows and n
columns. The general matrix can be written as

A(m,n) =

⎡

⎢⎢⎢
⎣

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n

⎤

⎥⎥⎥
⎦

All matrices that have the same number of rows and the same number of
columns are said to be of the same type or order.

An individual element of the matrix is written as ai, j , where i is the row number
and j is the column number of the element. The subscript bracket (m, n) that
follows the name of matrix A(m,n) specifies the number of rows and columns of
matrix A.

“Comninos” — 2005/8/31 — 15:34 — page 119 — #5

Matrix Algebra Survival Kit 119

Two degenerate cases exist:
1. When m = 1, then we have a matrix with a single row B(1,n) = [

b1,1 b1,2
· · · b1,n

]
, which is called a row matrix.

2. When n = 1, then we have a matrix with a single column C(m,1) =

⎡

⎢⎢⎢
⎣

c1,1
c2,1
...

cm,1

⎤

⎥⎥⎥
⎦

,

which is called a column matrix.
Both row and column matrices are called vectors and in this case are denoted by

a lower case bold letter. Often a simpler notation is adopted for vectors. An order
m row vector is denoted by v = [v1 v2 · · · vm] and an order m column
vector is denoted by

v =

⎡

⎢⎢⎢
⎣

v1
v2
...

vm

⎤

⎥⎥⎥
⎦

.

3.2 Square Matrices

If a matrix has the same number of rows as columns (i.e. m = n), then the matrix
is called a square matrix. An m × m square matrix is said to have order m. The
general form of an order m matrix is

A(m,m) =

⎡

⎢⎢⎢
⎣

a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m
...

...
. . .

...

am,1 am,2 · · · am,m

⎤

⎥⎥⎥
⎦

In a square matrix of order m, the diagonal from top-left to bottom-right is
called the leading diagonal or the main diagonal or the principal diagonal of the
matrix:

{
ai,i

}m
i=1 = {

a1,1 a2,2 · · · am,m
}

(3.1)

The diagonal from top-right to bottom-left is called the trailing diagonal or the
secondary diagonal of the matrix:

{
ai,m−(i−1)

}m
i=1 = {

a1,m a2,m−1 · · · am,1
}

(3.2)

The sum of the elements of the leading diagonal of a square matrix of order m
is called the trace of the matrix:

trace (A) = a1,1 + a2,2 + · · · + am,m =
m∑

i=1

ai,i (3.3)

“Comninos” — 2005/8/31 — 15:34 — page 120 — #6

120 Mathematical and Computer Programming Techniques for Computer Graphics

3.3 Diagonal Matrices

A square matrix that has non-zero elements only in its leading diagonal is called
a diagonal matrix:

D =

⎡

⎢⎢⎢⎢
⎣

a1,1 0 · · · 0

0 a2,2
... 0

... · · · . . .
...

0 0 · · · am,m

⎤

⎥⎥⎥⎥
⎦

ai, j = 0 for i �= j where , i, j ∈ {1, . . . , m}

(3.4)

3.4 The Identity Matrix

A diagonal matrix that has all its leading diagonal elements set to 1 (i.e.{
ai,i = 1

}m
i=1) is called the identity matrix or the unit matrix.

I =

⎡

⎢⎢⎢
⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤

⎥⎥⎥
⎦

(3.5)

The identity matrix of order m is denoted by I(m) or I or 1 and, as we shall see
later, represents the neutral element in matrix multiplication.

The identity matrix can be written in a condensed form using Kronecker’s delta
(in a similar way that we have represented orthogonality in vectors in Section
2.12). Thus, the identity matrix has elements, which are defined by

δi, j =
{

1,

0,

i = j
otherwise

with i, j ∈ {1, . . . , m} (3.6)

3.5 The Zero or Null Matrix

A matrix with all its elements set to zero is called the zero matrix or null matrix.

0 =

⎡

⎢⎢⎢
⎣

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤

⎥⎥⎥
⎦

(3.7)

The zero matrix of order m is denoted by 0(m) or 0 and, as we shall see later,
represents the neutral element in matrix addition.

“Comninos” — 2005/8/31 — 15:34 — page 121 — #7

Matrix Algebra Survival Kit 121

3.6 The Transpose of a Matrix

The transpose of an m × n matrix A(m,n) is an n × m matrix AT
(n,m), which is

defined by interchanging the rows and the columns of matrix A. The elements of
the transpose matrix are given by

aT
j,i = ai, j where i ∈ {1, . . . , m} ∧ j ∈ {1, . . . , n} (3.8)

The transpose of a matrix A(m,n) =
⎡

⎢
⎣

a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n

⎤

⎥
⎦ is given by

AT
(n,m) =

⎡

⎢
⎣

a1,1 · · · am,1
...

. . .
...

a1,n · · · am,n

⎤

⎥
⎦ (3.9)

The transpose of a row vector v = [
v1 · · · vm

]
is given by the column

vector

vT =
⎡

⎢
⎣

v1
...

vm

⎤

⎥
⎦ (3.10)

The transpose of a column vector v =
⎡

⎢
⎣

v1
...

vm

⎤

⎥
⎦ is given by the row vector

vT = [
v1 · · · vm

]
(3.11)

If matrix A is square, then its transpose matrix is derived from the original
by reflecting the matrix about its leading diagonal. Thus, the elements of the
transpose are given by

aT
j,i = ai, j where i, j ∈ {1, . . . , m} (3.12)

For example

⎡

⎣
1 4 7
2 5 8
3 6 9

⎤

⎦

T

=
⎡

⎣
1 2 3
4 5 6
7 8 9

⎤

⎦.

The transpose of the transpose of a matrix is the matrix itself, i.e.

(
AT

)T = A (3.13)

“Comninos” — 2005/8/31 — 15:34 — page 122 — #8

122 Mathematical and Computer Programming Techniques for Computer Graphics

3.7 Symmetric and Antisymmetric Matrices

A square matrix that is equal to its transpose (i.e. AT = A) is called a symmetric
matrix. Symmetric matrices are mirror-symmetric about their leading diagonal.
The relationship between the elements of a symmetric matrix is given by

ai, j = a j,i where i, j ∈ {1, . . . , m} (3.14)

For example the matrix

⎡

⎣
1 2 3
2 4 5
3 5 6

⎤

⎦ is a symmetric matrix.

A square matrix that is equal to the negative of its transpose (i.e. AT = −A)
is called an antisymmetric matrix or a skew-symmetric matrix. The relationship
between the elements of an antisymmetric matrix is given by

ai, j = −a j,i where i, j ∈ {1, . . . , m} thus,
{
ai,i = 0

}m
i=1 (3.15)

For example the matrix

⎡

⎣
0 −2 −3
2 0 −5
3 5 0

⎤

⎦ is an antisymmetric matrix.

Every square matrix A can be written as the sum of a symmetric matrix AS and
an antisymmetric matrix AA, thus

A = AS + AA where AS = 1
2

(
A + AT

)
and AA = 1

2

(
A − AT)

(3.16)

See Subsection 3.11.1 for a complete explanation.

Example:

Say A =
⎡

⎣
1 4 7
2 5 8
3 6 9

⎤

⎦, then its transpose is AT =
⎡

⎣
1 2 3
4 5 6
7 8 9

⎤

⎦.

Thus, AS =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1 + 1

2

4 + 2

2

7 + 3

2
2 + 4

2

5 + 5

2

8 + 6

2
3 + 7

2

6 + 8

2

9 + 9

2

⎤

⎥⎥⎥⎥⎥⎥
⎦

=
⎡

⎣
1 3 5
3 5 7
5 7 9

⎤

⎦ and

“Comninos” — 2005/8/31 — 15:34 — page 123 — #9

Matrix Algebra Survival Kit 123

AA =

⎡

⎢⎢⎢⎢
⎣

1 − 1

2

4 − 2

2

7 − 3

2
2 − 4

2

5 − 5

2

8 − 6

2
3 − 7

2

6 − 8

2

9 − 9

2

⎤

⎥⎥⎥⎥
⎦

=
⎡

⎣
0 1 2

−1 0 1
−2 −1 0

⎤

⎦.

Therefore, A = AS + AA =
⎡

⎣
1 + 0 3 + 1 5 + 2
3 − 1 5 + 0 7 + 1
5 − 2 7 − 1 9 + 0

⎤

⎦ =
⎡

⎣
1 4 7
2 5 8
3 6 9

⎤

⎦.

3.8 Triangular Matrices

An upper triangular matrix or right triangular matrix is a square matrix in which
all the elements below or to the left of its leading diagonal are zero. The elements
of an upper triangular matrix are given by

ai, j = 0 for i > j and where i, j ∈ {1, . . . , m} (3.17)

Thus

U =

⎡

⎢⎢⎢⎢
⎣

a1,1 a1,2 · · · a1,m

0 a2,2
... a2,m

... · · · . . .
...

0 0 · · · am,m

⎤

⎥⎥⎥⎥
⎦

(3.18)

For example the matrix

⎡

⎣
1 2 3
0 4 5
0 0 6

⎤

⎦ is an upper triangular matrix.

A lower triangular matrix or left triangular matrix is a square matrix in which
all the elements above or to the right of its leading diagonal are zero. The elements
of a lower triangular matrix are given by

ai, j = 0 f or i < j and where i, j ∈ {1, . . . , m} (3.19)

L =

⎡

⎢⎢⎢⎢
⎣

a1,1 0 · · · 0

a2,1 a2,2
... 0

... · · · . . .
...

am,1 am,2 · · · am,m

⎤

⎥⎥⎥⎥
⎦

(3.20)

“Comninos” — 2005/8/31 — 15:34 — page 124 — #10

124 Mathematical and Computer Programming Techniques for Computer Graphics

For example the matrix

⎡

⎣
1 0 0
2 4 0
3 5 6

⎤

⎦ is a lower triangular matrix.

The transpose of an upper triangular matrix is a lower triangular matrix and
vice versa, thus

UT = L and LT = U (3.21)

For example, if L =
⎡

⎣
1 0 0
2 4 0
3 5 6

⎤

⎦, then its transpose is LT =
⎡

⎣
1 2 3
0 4 5
0 0 6

⎤

⎦ = U.

Every diagonal matrix is at the same time both left and right (or upper and
lower) triangular. Every diagonal matrix is also a symmetric matrix.

The transpose of a diagonal matrix is equal to the matrix itself, i.e.

DT = D (3.22)

For example, if D =
⎡

⎣
1 0 0
0 2 0
0 0 3

⎤

⎦, then its transpose is DT =
⎡

⎣
1 0 0
0 2 0
0 0 3

⎤

⎦ = D.

3.9 Scalar Matrices

A diagonal matrix that has its leading diagonal elements set to some scalar value
s is called a scalar matrix, i.e.

S =

⎡

⎢⎢⎢⎢
⎣

s 0 · · · 0

0 s
... 0

... · · · . . .
...

0 0 · · · s

⎤

⎥⎥⎥⎥
⎦

= s ·

⎡

⎢⎢⎢⎢
⎣

1 0 · · · 0

0 1
... 0

... · · · . . .
...

0 0 · · · 1

⎤

⎥⎥⎥⎥
⎦

= s · I (3.23)

Note that matrix by scalar multiplication and matrix by matrix multiplication
are discussed later.

For example, S =
⎡

⎣
5 0 0
0 5 0
0 0 5

⎤

⎦ = 5 ·
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦.

3.10 Equality of Matrices

Two matrices A and B are said to be equal, i.e. A = B, if and only if they are of
the same order and their corresponding elements are all equal. Thus

A(m,n) = B(m,n) ⇔ ai, j = bi, j for i ∈ {1, . . . , m} ∧ j ∈ {1, · · · , n} (3.24)

“Comninos” — 2005/8/31 — 15:34 — page 125 — #11

Matrix Algebra Survival Kit 125

3.11 Matrix Operations

3.11.1 Addition and Subtraction of Matrices

Given two matrices A and B of the same order, we may add or subtract these
matrices by adding or subtracting their corresponding elements. The result of
such an operation is a matrix of the same order. Thus

C(m,n) = A(m,n) ± B(m,n) ⇒ ci, j = ai, j ± bi, j

for i ∈ {1, . . . , m} ∧ j ∈ {1, · · · , n} (3.25)

Example:
[

1 3
2 4

]
+

[
5 7
6 8

]
=

[
1 + 5 3 + 7
2 + 6 4 + 8

]
=

[
6 10
8 12

]

The following axioms and matrix algebra rules apply to the addition and sub-
traction of matrices for all matrices A, B, C (which are assumed to be of the same
order):

Existence of the matrix sum:
C(m,n) = A(m,n) ± B(m,n) ⇒ {

ci, j = ai, j ± bi, j
}m,n

i, j=1 (A3.1)
Existence of the null element:

A ± 0 = A (A3.2)
Existence of the additive inverse:

A + (−A) = 0 (A3.3)
Commutative law:

A + B = B + A (R3.1)
Associative law:

(A + B) + C = A + (B + C) (R3.2)
Distributive law:

s · (A ± B) = s · A ± s · B (R3.3)
Transposition rule:

(A ± B)T = AT ± BT (R3.4)

If A is a square matrix, then
(

AT + A
)T =

(
AT

)T + AT = A + AT

∴
(

AT + A
)T = AT + A

Thus
(
AT + A

)T
must be a symmetric matrix.

Similarly
(

A − AT
)T = AT −

(
AT

)T = AT − A

∴
(

A − AT
)T = −

(
A − AT

)

Thus
(
A − AT)T

must be an antisymmetric matrix.

“Comninos” — 2005/8/31 — 15:34 — page 126 — #12

126 Mathematical and Computer Programming Techniques for Computer Graphics

As we have seen in Section 3.7, any square matrix can be expressed as the sum
of a symmetric and an antisymmetric matrix, thus

A = 1
2

(
AT + A

) + 1
2

(
A − AT)

(3.26)

3.11.2 Multiplication of a Matrix by a Scalar

To multiply a matrix A by a scalar s we multiply every element of the matrix by
the scalar. The result is a matrix of the same order as A. Thus

B(m,n) = A(m,n) · s ⇒ bi, j = ai, j · s for i ∈ {1, . . . , m} ∧ j ∈ {1, · · · , n}
(3.27)

or B = A · s =

⎡

⎢⎢
⎣

a1,1 · · · a1,n

...
. . .

...

am,1 · · · am,n

⎤

⎥⎥
⎦ · s =

⎡

⎢⎢
⎣

a1,1 · s · · · a1,n · s
...

. . .
...

am,1 · s · · · am,n · s

⎤

⎥⎥
⎦

(3.28)

Matrix by scalar multiplication can also be regarded as matrix by matrix mul-
tiplication, where the second matrix is a scalar matrix, i.e.

s · A = (s · I) · A = S · A (3.29)

Given any non-zero scalar s, matrix division by this scalar is achieved through
matrix multiplication by the inverse of the scalar, i.e.

A
s

=
(

1

s

)
· A (3.30)

The following axioms and matrix algebra rules apply to the multiplication of
a matrix by a scalar for all matrices A, B (which are assumed to be of the same
order) and all scalars s, s1, s2.

Existence of the matrix by scalar product:
B(m,n) = A(m,n) · s ⇒ {

bi, j = ai, j · s
} m,n

i, j=1 (A3.4)
Existence of the identity map:

1 · A = I · A = A (A3.5)
Commutative law:

s · A = A · s (R3.5)
Associative law:

s1 · (s2 · A) = (s1 · s2) · A (R3.6)
Distributive law:

(s1 ± s2) · A = s1 · A ± s2 · A (R3.7)

“Comninos” — 2005/8/31 — 15:34 — page 127 — #13

Matrix Algebra Survival Kit 127

3.11.3 Multiplication of a Vector by a Vector

In vector algebra, we defined two types of vector by vector multiplication, namely
the dot product a�b and the cross product a⊗b. In matrix algebra, the definition
of the cross product a ⊗ b retains the same as in vector algebra and results in
a vector. The definition of the dot product a � b, however, is refined in matrix
algebra. By disallowing the commutative property of the dot product we can now
define two distinct products, namely the dot product and the tensor product or
dyadic product.

The dot product of an mth order row vector a by an mth order column vector b
results in a scalar.

a � b = aT · b = [
a1 a2 · · · am

] ·

⎡

⎢⎢⎢
⎣

b1
b2
...

bm

⎤

⎥⎥⎥
⎦

= a1b1 + a2b2 + · · · + ambm =
m∑

i=1
ai · bi

(3.31)

The tensor product of an mth order column vector a and an nth order row vector
b results in an m × n matrix.

a · bT =
⎡

⎢
⎣

a1
...

am

⎤

⎥
⎦ · [

b1 · · · bn
] =

⎡

⎢
⎣

a1b1 · · · a1bn
...

. . .
...

amb1 · · · ambn

⎤

⎥
⎦ (3.32)

or
{
ci, j = ai b j

}m,n
i=1, j=1 (3.33)

Example:

⎡

⎣
1
2
3

⎤

⎦ · [
4 5 6

] =
⎡

⎣
1 · 4 1 · 5 1 · 6
2 · 4 2 · 5 2 · 6
3 · 4 3 · 5 3 · 6

⎤

⎦ =
⎡

⎣
4 5 6
8 10 12

12 15 18

⎤

⎦

The following axioms apply to the vector by vector multiplication for all row and
column matrices a, b (which are assumed to be conformant).

Existence of the dot product:

aT · b =
m∑

i=1
ai · bi (A3.6)

Existence of the tensor product:
a · bT = {

ci, j = ai b j
} m,n

i, j=1 (A3.7)

“Comninos” — 2005/8/31 — 15:34 — page 128 — #14

128 Mathematical and Computer Programming Techniques for Computer Graphics

3.11.4 Multiplication of a Matrix by a Vector

The post-multiplication of a matrix A of order m × n by a column vector b of
order n results in a column vector c of order m. Thus the product A · b = c is
defined as

A · b =
⎡

⎢
⎣

a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n

⎤

⎥
⎦ ·

⎡

⎢
⎣

b1
...

bn

⎤

⎥
⎦

(3.34)

=
⎡

⎢
⎣

a1,1b1 + a1,2b2 + · · · + a1,nbn
...

am,1b1 + am,2b2 + · · · + am,nbn

⎤

⎥
⎦ =

⎡

⎢
⎣

c1
...

cm

⎤

⎥
⎦ = c

or {
ci = ai � b =

n∑

j=1

ai, j b j

}m

i=1
(3.35)

where ai is the i th row of matrix A. This multiplication is only defined if the
matrix A and the column vector b are conformant, conformal or conformable. In
this case, conformity indicates that the matrix has as many columns as vector has
rows.

If matrix A is square, then this operation can be seen as an abbreviated notation
for a system of m linear simultaneous equations in m unknowns, i.e.

A · x = c

where A is the coefficients matrix of the simultaneous equations, x is the vector
of unknowns and c is the vector of constants.

For example, the system of three linear simultaneous equations

a1,1x1 + a1,2x2 + a1,3x3 = c1
a2,1x1 + a2,2x2 + a2,3x3 = c2
a3,1x1 + a3,2x2 + a3,3x3 = c3

can be represented as
⎡

⎣
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

⎤

⎦ ·
⎡

⎣
x1
x2
x3

⎤

⎦ =
⎡

⎣
c1
c2
c3

⎤

⎦

The multiplication of a matrix by a vector is a special case of the multiplication
of two matrices. As we shall see in the next section, the following transposition
rule applies to matrix multiplication.

(A · B)T = BT · AT

By applying this transposition rule to Eq. (3.34) the product A · b = c can be
rewritten as bT · AT = cT. But c and cT are two different ways of denoting the
same vector.

“Comninos” — 2005/8/31 — 15:34 — page 129 — #15

Matrix Algebra Survival Kit 129

Thus, the pre-multiplication of a matrix A of order n × m by a row vector b of
order n results in a row vector c of order m can be rewritten as

bT · AT = [
b1 · · · bn

] ·
⎡

⎢
⎣

a1,1 · · · a1,m
...

. . .
...

an,1 · · · an,m

⎤

⎥
⎦

= [(
b1a1,1 + b2a1,2 + · · · + bnan,1

) · · ·(
b1a1,m + b2a2,m + · · · + bnan,m

)]

= [
c1 · · · cm

] = c

(3.36)

or

{

c j =
n∑

i=1

bi ai, j

}m

i=1

(3.37)

Here again the row vector and the matrix must be conformant. In this case, con-
formity indicates that the vector has as many columns as the matrix has
rows.

It is easy to verify that Eqs. (3.34)–(3.37) are equivalent and produce identical
results.

3.11.5 Multiplication of Two Matrices

Two matrices may be multiplied together if and only if the number of columns of
the first matrix is equal to the number rows of the second matrix. Two matrices
that meet this constraint are said to be conformant. Multiplying a matrix A(m,l)

by a matrix B(l,n) will result in a matrix C(m,n), whose ijth element ci, j is the dot
product of the i th row of A and the j th column of B (i.e. the summation of the
products of corresponding elements of the i th row of A and the j th column of
B). Such a product is called a matrix product or scalar product of two matrices.
Thus

A · B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

a1,1 · · · a1,l
...

...

.

ai,1 · · · ai,l

.
...

...

am,1 · · · am,l

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

·

⎡

⎢⎢⎢⎢⎢
⎣

b1,1 · · · ... b1, j
... · · · b1,n...
......

...
...

...
......

...

bl,1 · · · ... bl, j
... · · · bl,n

⎤

⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

c1,1 · · · · · · c1,n
...

...

ci, j

...
...

cm,1 · · · · · · cm,n

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

= C (3.38)

“Comninos” — 2005/8/31 — 15:34 — page 130 — #16

130 Mathematical and Computer Programming Techniques for Computer Graphics

If ai denotes the i th row of A and b j denotes the j th column of B, then element
ci, j of the product is defined as

{

ci, j = ai � b j = ai,1b1, j + ai,2b2, j + · · · + ai,lbl, j =
l∑

k=1

ai,kbk, j

}m,n

i=1, j=1

(3.39)

Matrix by matrix multiplication can be implemented by the following pseudo-
code:

for i = 1..m do
for j = 1..n do
begin
ci, j ← 0
for k = 1..l do
ci, j ← ci, j + ai,k · bk, j

end

Division of a matrix A by a matrix B is carried out through the multiplication of A
by the reciprocal or inverse matrix B−1. Inversion of matrices will be examined
in Section 3.17.

Example:

C(3,3) = A(3,2) · B(2,3)

=
⎡

⎢
⎣

a1,1 a1,2

a2,1 a2,2

a3,1 a3,2

⎤

⎥
⎦ ·

[
b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

]

=
⎡

⎢
⎣

a1,1b1,1 + a1,2b2,1 a1,1b1,2 + a1,2b2,2 a1,1b1,3 + a1,2b2,3

a2,1b1,1 + a2,2b2,1 a2,1b1,2 + a2,2b2,2 a2,1b1,3 + a2,2b2,3

a3,1b1,1 + a3,2b2,1 a3,1b1,2 + a3,2b2,2 a3,1b1,3 + a3,2b2,3

⎤

⎥
⎦

3.11.6 Powers of Matrices

Given a square matrix A, we can define the powers of this matrix through repeated
matrix multiplication. The zero power of the matrix is defined to be the identity
matrix. And the first power of a matrix is the matrix itself. Thus

A0 = I, A1 = A, A2 = A · A, A3 = A2 · A, · · · , Am = A(m−1) · A
(3.40)

“Comninos” — 2005/8/31 — 15:34 — page 131 — #17

Matrix Algebra Survival Kit 131

3.11.7 Axioms and Rules of Matrix Multiplication

The following axioms and matrix algebra rules apply to the matrix product for all
matrices A, B, C (which are assumed to be conformant) and all scalars s.

Existence of the matrix product:

A(m,l) · B(l,n) = C(m,n) ⇒
{

ci, j =
l∑

k=1
ai,kbk, j

}m,n

i, j=1

(A3.8)

Existence of the unit matrix:
I(m) · A(m,n) = A(m,n) · I(n) = A(m,n) (A3.9)

Existence of the zero matrix
0(m) · A(m,n) = A(m,n) · 0(n) = 0(m,n) (A3.10)

Powers of a matrix:
A0 = I ∧ Am = A(m−1) · A (A3.11)

Commutative law (does not hold):
A · B �= B · A (R3.8)

Associative law:
A · (B · C) = (A · B) · C (R3.9)

Distributive laws:
(s · A) · B = A · (s · B) = s · (A · B) (R3.10)
A · (B ± C) = A · B ± A · C (R3.11)
(A ± B) · C = A · C ± B · C (R3.12)

Transpose rules:
(A · B)T = BT · AT (R3.13)
(A · B · C)T = CT · BT · AT (R3.14)

Zero divisor rule:
A · B = 0 �⇒ /A = 0 ∨ B = 0 (R3.15)

Example:
This example demonstrates the zero divisor rule. Here neither matrix A nor B is a
zero matrix but their product is a zero matrix.

A · B =
⎡

⎣
2 0 4
0 0 0
1 0 2

⎤

⎦ ·
⎡

⎣
2 0 4
0 1 0

−1 0 −2

⎤

⎦ =
⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦ = 0

3.12 The Minor of a Matrix

The minor, Ai, j , of an m × n matrix A is defined to be an (m – 1) × (n – 1) matrix
derived by deleting the i th row and the j th column of matrix A.

The minor matrix B = Ai, j of a matrix A can be computed using the following
pseudo-code.

/∗ Copy the Upper Left corner of the Minor∗ /
for r = 1.. (i − 1) do
for c = 1.. (j − 1) do br,c ← ar,c

“Comninos” — 2005/8/31 — 15:34 — page 132 — #18

132 Mathematical and Computer Programming Techniques for Computer Graphics

/∗ Copy the Lower Left corner of the Minor∗ /
for r = (i + 1) ..m do
for c = 1.. (j − 1) do br−1,c ← ar,c

/∗ Copy the Upper Right corner of the Minor∗ /
for r = 1.. (i − 1) do
for c = (j + 1) ..n do br,c−1 ← ar,c

/∗ Copy the Lower Right corner of the Minor∗ /
for r = (i + 1) ..m do
for c = (j + 1) ..n do br−1,c−1 ← ar,c

Example:
Given a 4 × 4 matrix:

A =

⎡

⎢⎢⎢⎢⎢
⎣

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

⎤

⎥⎥⎥⎥⎥
⎦

The minor matrix of A, with respect to element a2,2, is the 3 × 3 matrix given by

A2,2 =
⎡

⎢
⎣

a1,1 a1,3 a1,4

a3,1 a3,3 a3,4
a4,1 a4,3 a4,4

⎤

⎥
⎦

Here the indices of the elements of the minor matrix A2,2 refer to the elements of
the original matrix A.

3.13 The Determinant of a Matrix

The determinant is a scalar that is calculated from the elements of a square ma-
trix A(m,m) Thus only square matrices have a determinant. The determinant of a
matrix A is denoted by det (A) or |A|.

In matrix algebra it is frequently important to be able to compute the reciprocal
or the inverse A−1 of a square matrix A. The inverse of a matrix is required in
matrix division, in the solution of systems of linear simultaneous equations and in
the reversal of the effect of a transformation in computer graphics. We examine
how the inverse of a matrix is computed in a later section.

The determinant of a matrix helps us establish whether the matrix is invertible
in the first place. If the determinant of a matrix A is non-zero, we say that the
matrix is regular and thus invertible. Alternatively, if the determinant of A is
zero, we say that the matrix is singular and thus non-invertible, i.e.

det (A) �= 0 ⇔ A is regular
det (A) = 0 ⇔ A is singular

}
(3.41)

“Comninos” — 2005/8/31 — 15:34 — page 133 — #19

Matrix Algebra Survival Kit 133

To avoid confusion between a matrix A and its determinant we denote determi-
nants by enclosing the element of the matrix between vertical parallel bars. Thus
the determinant of an m × m matrix A is given by

det (A) =

∣∣∣∣∣∣∣∣∣

a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m
...

...
. . .

...

am,1 am,2 · · · am,m

∣∣∣∣∣∣∣∣∣

(3.42)

The determinant of a 1 × 1 matrix A(1,1) = [
a1,1

]
is defined as:

det(A) = ∣∣a1,1
∣∣ = a1,1 (3.43)

The determinant of an m × m matrix A is defined using Laplace’s recursive ex-
pansion rule on a given row or a given column of the matrix.

det (A) =
m∑

i=1

ai, j · (−1)(i+ j) · det
(
Ai, j

)
for a given column i ∈ {1, . . . , m}

(3.44)

or det (A) =
m∑

i=1

ai, j · (−1)(i+ j)·det
(
Ai, j

)
for a given column j ∈ {1, . . . , m}

(3.45)

Example 1:

det (A) = det

([
a1,1 a1,2
a2,1 a2,2

])

=
∣∣∣∣

a1,1 a1,2
a2,1 a2,2

∣∣∣∣

= a1,1 · (−1)(1+1) · ∣∣a2,2
∣∣ + a2,1 · (−1)(2+1) · ∣∣a1,2

∣∣

= a1,1a2,2 − a2,1a1,2

Example 2:

det (A) = det

⎛

⎝

⎡

⎣
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

⎤

⎦

⎞

⎠

=
∣∣∣∣∣∣

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

∣∣∣∣∣∣

“Comninos” — 2005/8/31 — 15:34 — page 134 — #20

134 Mathematical and Computer Programming Techniques for Computer Graphics

= a1,1 · (−1)(1+1) ·
∣∣∣∣

a2,2 a2,3
a3,2 a3,3

∣∣∣∣

+a2,1 · (−1)(2+1) ·
∣∣∣∣

a1,2 a1,3
a3,2 a3,3

∣∣∣∣

+a3,1 · (−1)(3+1) ·
∣∣∣∣

a1,2 a1,3
a2,2 a2,3

∣∣∣∣

= +a1,1
(
a2,2a3,3 − a3,2a2,3

)

−a2,1
(
a1,2a3,3 − a3,2a1,3

)

+a3,1
(
a1,2a2,3 − a2,2a1,3

)

The general method for calculating the determinant of a square matrix can
be expressed as follows. We start by selecting a row/column and then we progres-
sively accumulate the product of successive elements (of the selected row/column)
by the determinant of the minor of these elements, using the appropriate sign.
The sign associated with the determinant of the minor of a particular element is
given by ∣∣∣∣∣∣∣∣∣∣∣

+ − + − · · ·
− + − + · · ·
+ − + − · · ·
− + − + · · ·
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣

(3.46)

3.14 The Computational Rules of Determinants

The computational rules for determinants of the mth order are not always obvious
and are frequently hard to prove in their full generality. Thus, we will present
these rules without proof.

3.14.1 The Transposition Rule

The determinant of a matrix A is equal to the determinant of its transpose AT, i.e.

det (A) = det
(

AT
)

(3.47)

For example:

det (A) =
∣∣∣∣

a1,1 a1,2
a2,1 a2,2

∣∣∣∣ = a1,1a2,2 − a1,2a2,1 by expanding the first row

det
(

AT
)

=
∣∣∣∣

a1,1 a2,1
a1,2 a2,2

∣∣∣∣ = a1,1a2,2 − a1,2a2,1 by expanding the first column

det (A) = det
(

AT
)

“Comninos” — 2005/8/31 — 15:34 — page 135 — #21

Matrix Algebra Survival Kit 135

3.14.2 The Interchange Rule

Interchanging two rows or two columns of a determinant reverses its sign, i.e.
∣∣∣∣

a1,1 a1,2
a2,1 a2,2

∣∣∣∣ = −
∣∣∣∣

a1,2 a1,1
a2,2 a2,1

∣∣∣∣ ∧
∣∣∣∣

a1,1 a1,2
a2,1 a2,2

∣∣∣∣

= −
∣∣∣∣

a2,1 a2,2
a1,1 a1,2

∣∣∣∣ (3.48)

For example

det (A) =
∣∣∣∣

a1,1 a1,2
a2,1 a2,2

∣∣∣∣ = a1,1a2,2 − a1,2a2,1 and

det (B) =
∣∣∣∣

a1,2 a1,1
a2,2 a2,1

∣∣∣∣ = a1,2a2,1 − a1,1a2,2 = − (
a1,1a2,2 − a1,2a2,1

)

∴ det (A) = −det (B) or

∣∣∣∣
a1,1 a1,2
a2,1 a2,2

∣∣∣∣ = −
∣∣∣∣

a1,2 a1,1
a2,2 a2,1

∣∣∣∣

3.14.3 The Factor Rule

Factors common to rows or columns may be removed from a determinant and be
multiplied by the resulting determinant, i.e.

∣∣∣∣
βa1,1 a1,2
βa2,1 a2,2

∣∣∣∣ = β

∣∣∣∣
a1,1 a1,2
a2,1 a2,2

∣∣∣∣ ∧
∣∣∣∣

βa1,1 βa1,2
a2,1 a2,2

∣∣∣∣

= β

∣∣∣∣
a1,1 a1,2
a2,1 a2,2

∣∣∣∣ (3.49)

For example:
∣∣∣∣

βa1,1 a1,2
βa2,1 a2,2

∣∣∣∣ = βa1,1a2,2 − βa2,1a1,2

= β
(
a1,1a2,2 − a1,2a2,1

)

= β

∣∣∣∣
a1,1 a1,2
a2,1 a2,2

∣∣∣∣

Conversely, if the determinant is multiplied by a scalar β, then one and only
one of its rows or columns is multiplied by this scalar, i.e.

β

∣∣∣∣
a1,1 a1,2
a2,1 a2,2

∣∣∣∣ =
∣∣∣∣

βa1,1 a1,2
βa2,1 a2,2

∣∣∣∣

=
∣∣∣∣

a1,1 βa1,2
a2,1 βa2,2

∣∣∣∣ =
∣∣∣∣

βa1,1 βa1,2
a2,1 a2,2

∣∣∣∣

=
∣∣∣∣

a1,1 a1,2
βa2,1 βa2,2

∣∣∣∣ (3.50)

“Comninos” — 2005/8/31 — 15:34 — page 136 — #22

136 Mathematical and Computer Programming Techniques for Computer Graphics

3.14.4 The Linear Combinations Rule

The value of a determinant is not altered when one of its rows is increased/decreased
by equal multiples of another row or one of its columns is increased/decreased by
equal multiples of another column, i.e.

∣∣∣∣
a1,1 a1,2
a2,1 a2,2

∣∣∣∣ =
∣∣∣∣

a1,1 ± βa2,1 a1,2 ± βa2,2
a2,1 a2,2

∣∣∣∣ =
∣∣∣∣

a1,1 ± βa1,2 a1,2
a2,1 ± βa2,2 a2,2

∣∣∣∣

(3.51)

For example:
∣∣∣∣

a1,1 + βa1,2 a1,2
a2,1 + βa2,2 a2,2

∣∣∣∣ = a1,1a2,2 + βa1,2a2,2 − a2,1a1,2 − βa2,2a1,2

= a1,1a2,2 − a2,1a1,2

=
∣∣∣∣

a1,1 a1,2
a2,1 a2,2

∣∣∣∣

3.14.5 The Decomposition Rule

The determinant whose row/column consists of the sum or difference of two or
more terms can be expanded to the sum or difference of two or more determinants,
i.e. ∣∣∣∣

a1,1 ± b1 a1,2
a2,1 ± b2 a2,2

∣∣∣∣ =
∣∣∣∣

a1,1 a1,2
a2,1 a2,2

∣∣∣∣ ±
∣∣∣∣

b1 a1,2
b2 a2,2

∣∣∣∣ (3.52)

For example:
∣∣∣∣

a1,1 + b1 a1,2
a2,1 + b2 a2,2

∣∣∣∣ = a1,1a2,2 + b1a2,2 − a2,1a1,2 − b2a1,2

= (
a1,1a2,2 − a2,1a1,2

) + (
b1a2,2 − b2a1,2

)

=
∣∣∣∣

a1,1 a1,2
a2,1 a2,2

∣∣∣∣ +
∣∣∣∣

b1 a1,2
b2 a2,2

∣∣∣∣

3.14.6 The Product Rule

The determinant of the product of two matrices is equal to the product of their
determinants, i.e.

det(A · B) = det (A) · det (B) (3.53)

For example:

det(A · B) = det

([
a1,1 a1,2
a2,1 a2,2

]
·
[

b1,1 b1,2
b2,1 b2,2

])

= det

([(
a1,1b1,1 + a1,2b2,1

) (
a1,1b1,2 + a1,2b2,2

)
(
a2,1b1,1 + a2,2b2,1

) (
a2,1b1,2 + a2,2b2,2

)
])

“Comninos” — 2005/8/31 — 15:34 — page 137 — #23

Matrix Algebra Survival Kit 137

∴ det (A · B) = (
a1,1b1,1 + a1,2b2,1

) · (
a2,1b1,2 + a2,2b2,2

)

− (
a1,1b1,2 + a1,2b2,2

) · (
a2,1b1,1 + a2,2b2,1

)

∴ det (A · B) = a1,1a2,1b1,1b1,2 + a1,1a2,2b1,1b2,2 + a1,2a2,1b2,1b1,2

+ a1,2a2,2b2,1b2,2

− a1,1a2,1b1,2b1,1 − a1,1a2,2b1,2b2,1 − a1,2a2,1b2,2b1,1

− a1,2a2,2b2,2b2,1

∴ det (A · B) = a1,1a2,2b1,1b2,2 − a1,1a2,2b1,2b2,1

−a1,2a2,1b1,1b2,2 + a1,2a2,1b1,2b2,1

∴ det (A · B) = a1,1a2,2
(
b1,1b2,2 − b1,2b2,1

) − a1,2a2,1
(
b1,1b2,2 − b1,2b2,1

)

= (
a1,1a2,2 − a1,2a2,1

) · (
b1,1b2,2 − b1,2b2,1

)

det(A · B) = det

([
a1,1 a1,2
a2,1 a2,2

])
det

([
b1,1 b1,2
b2,1 b2,2

])
= det (A) · det (B)

3.14.7 The Equality Rule

If the determinants of two matrices A and B are equal this does not guarantee that
the matrices are equal, i.e.

det (A) = det (B) �⇒ / A = B (3.54)

For example, det (A) =
∣∣∣∣

1 0
0 1

∣∣∣∣ = 1 and det (B) =
∣∣∣∣

2 0
0 0.5

∣∣∣∣ = 1, but A �= B.

3.14.8 The Conditions for a Zero Determinant

An mth order determinant is zero if and only if at least one of the following
conditions is satisfied.

• An entire row/column of the determinant is zero, i.e.

∣∣∣∣
a1,1 0
a2,1 0

∣∣∣∣ =
∣∣∣∣

0 0
a2,1 a2,2

∣∣∣∣ = 0 (3.55)

• Two rows/columns of the determinant are identical, i.e.

∣∣∣∣
a1,1 a1,2
a1,1 a1,2

∣∣∣∣ =
∣∣∣∣

a1,1 a1,1
a2,1 a2,1

∣∣∣∣ = 0 (3.56)

“Comninos” — 2005/8/31 — 15:34 — page 138 — #24

138 Mathematical and Computer Programming Techniques for Computer Graphics

• Two rows/columns of the determinant are proportional, i.e.

∣∣∣∣
a1,1 a1,2
βa1,1 βa1,2

∣∣∣∣ =
∣∣∣∣

a1,1 βa1,1
a2,1 βa2,1

∣∣∣∣ = 0 (3.57)

Given the determinant with a second column proportional to its first column∣∣∣∣
a1,1 βa1,1
a2,1 βa2,1

∣∣∣∣, by the linear combination rule we can subtract β times the first

column from the second column, which results in a zero second column and a
zero determinant:

∣
∣∣∣

a1,1 βa1,1
a2,1 βa2,1

∣
∣∣∣ =

∣
∣∣∣

a1,1 βa1,1 − βa1,1
a2,1 βa2,1 − βa2,1

∣
∣∣∣ =

∣
∣∣∣

a1,1 0
a2,1 0

∣∣∣∣ = 0

• One row/column of the determinant is a linear combination of other rows/columns
of the determinant, i.e.

∣∣∣∣∣∣

a1,1 a1,2 αa1,1 + βa1,2
a2,1 a2,2 αa2,1 + βa2,2
a3,1 a3,2 αa3,1 + βa3,2

∣∣∣∣∣∣
= 0 (3.58)

By the linear combination rule we may subtract α times the first column plus
β times the second column from the third column, thus producing a zero column
that gives us a zero determinant.

3.15 The Cofactor of an Element of a Matrix and the
Cofactor Matrix

Cofactors are associated with the determinant of a matrix. The cofactor of an
element of a matrix is the determinant of the minor of that element prefixed by
the appropriate sign, as shown in Eq. (3.46). As we have seen in Section 3.13,
this sign is given by (− 1)i+ j where i , j are the row and column numbers of the
element, respectively. Thus, the cofactor, ci, j of element ai, j of a matrix A is
defined as

ci, j = (−1)(i+ j) · det
(
Ai, j

)
(3.59)

The matrix that is formed by the cofactors of all the elements of the matrix A is
called the cofactor matrix, C, of matrix A.

Now, the determinant of an m × m matrix A can be rewritten as

det (A) =
m∑

j=1

ai, j ci, j for a given row i, where i ∈ {1, . . . , m} (3.60)

or

det (A) =
m∑

i=1

ai, j ci, j for a given column j, where j ∈ {1, . . . , m} (3.61)

Equations (3.60) and (3.61) are equivalent to Eqs. (3.44) and (3.45).

“Comninos” — 2005/8/31 — 15:34 — page 139 — #25

Matrix Algebra Survival Kit 139

Example:
Given a 3 × 3 matrix A:

A =
⎡

⎢
⎣

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

⎤

⎥
⎦

The cofactor matrix of A is

C =

⎡

⎢⎢
⎣

+ ∣∣A1,1
∣∣ − ∣∣A1,2

∣∣ + ∣∣A1,3
∣∣

− ∣∣A2,1
∣∣ + ∣∣A2,2

∣∣ − ∣∣A2,3
∣∣

+ ∣∣A3,1
∣∣ − ∣∣A3,2

∣∣ + ∣∣A3,3
∣∣

⎤

⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

+
∣∣∣∣

a2,2 a2,3
a3,2 a3,3

∣∣∣∣ −
∣∣∣∣

a2,1 a2,3
a3,1 a3,3

∣∣∣∣ +
∣∣∣∣

a2,1 a2,2
a3,1 a3,2

∣∣∣∣

−
∣∣∣∣

a1,2 a1,3
a3,2 a3,3

∣∣∣∣ +
∣∣∣∣

a1,1 a1,3
a3,1 a3,3

∣∣∣∣ −
∣∣∣∣

a1,1 a1,2
a3,1 a3,2

∣∣∣∣

+
∣∣∣∣

a1,2 a1,3
a2,2 a2,3

∣∣∣∣ −
∣∣∣∣

a1,1 a1,3
a2,1 a2,3

∣∣∣∣ +
∣∣∣∣

a1,1 a1,2
a2,1 a2,2

∣∣∣∣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢
⎣

+ (
a2,2a3,3 − a2,3a3,2

) − (
a2,1a3,3 − a2,3a3,1

) + (
a2,1a3,2 − a2,2a3,1

)

− (
a1,2a3,3 − a1,3a3,2

) + (
a1,1a3,3 − a1,3a3,1

) − (
a1,1a3,2 − a1,2a3,1

)

+ (
a1,2a2,3 − a1,3a2,2

) − (
a1,1a2,3 − a1,3a2,1

) + (
a1,1a2,2 − a1,2a2,1

)

⎤

⎥⎥
⎦

∴ C =
⎡

⎣
c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3

⎤

⎦

3.16 The Ajoint Matrix or Adjugate Matrix

The transpose of the cofactor matrix, CT, of a matrix A is called the ajoint matrix
or the adjugate matrix of A and it is denoted by adj A. Thus

adj (A) = CT (3.62)

Example:
Given 3 × 3 matrix A:

A =
⎡

⎢
⎣

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

⎤

⎥
⎦

“Comninos” — 2005/8/31 — 15:34 — page 140 — #26

140 Mathematical and Computer Programming Techniques for Computer Graphics

The adjoint matrix of A is

adj (A) = CT =
⎡

⎣
c1,1 c2,1 c3,1
c1,2 c2,2 c3,2
c1,3 c2,3 c3,3

⎤

⎦

=
⎡

⎣
+ (

a2,2a3,3 − a2,3a3,2
) − (

a1,2a3,3 − a1,3a3,2
) + (

a1,2a2,3 − a1,3a2,2
)

− (
a2,1a3,3 − a2,3a3,1

) + (
a1,1a3,3 − a1,3a3,1

) − (
a1,1a2,3 − a1,3a2,1

)

+ (
a2,1a3,2 − a2,2a3,1

) − (
a1,1a3,2 − a1,2a3,1

) + (
a1,1a2,2 − a1,2a2,1

)

⎤

⎦

3.17 The Reciprocal or Inverse of a Matrix

The inverse A−1 of a square matrix A is the matrix which when pre-multiplied or
post-multiplied by matrix A results in the identity matrix, i.e.

A · A−1 = A−1 · A = I

The determinant of the matrix allows us to establish whether or not the matrix
is invertible. If the determinant det A �= 0, we say that the matrix is regular and
thus invertible, i.e. A−1 does exist. Otherwise, if the determinant det A = 0, we
say that the matrix is singular and thus non-invertible, i.e. A−1 does not exist.

The elements of A−1 are defined as

a−1
i, j = (−1)(i+ j) · det

(
A j,i

)

det (A)
= c j,i

det (A)
= cT

i, j

det (A)
(3.63)

Thus,

A−1 = CT

det (A)
= adj (A)

det (A)
(3.64)

The general method for calculating the inverse of a square matrix can be expressed
as follows. We start by calculating the determinant of the matrix. If the determi-
nant is zero, then the matrix is singular and has no inverse. Otherwise, the inverse
matrix is found by calculating the adjoint matrix and dividing it by the determi-
nant of the original matrix.

The inverse or reciprocal matrix makes matrix division possible. Given a matrix
equation:

A · X = B

To solve for matrix X we pre-multiply both sides of the equation by the reciprocal
of A which gives

A−1 · A · X = A−1 · B

But since A−1 · A = I, we get

X = A−1 · B

“Comninos” — 2005/8/31 — 15:34 — page 141 — #27

Matrix Algebra Survival Kit 141

3.17.1 Justification of the Definition of the Inverse

Consider 3 × 3 matrix A:

A =
⎡

⎣
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

⎤

⎦

The minors of the three elements of the top row of A are given by

A1,1 =
[

a2,2 a2,3
a3,2 a3,3

]
, A1,2 =

[
a2,1 a2,3
a3,1 a3,3

]
and A1,3 =

[
a2,1 a2,2
a3,1 a3,2

]

The cofactors of the three elements of the top row of A are

c1,1 = +det
(
A1,1

) = + (
a2,2a3,3 − a3,2a2,3

)

c1,2 = −det
(
A1,2

) = − (
a2,1a3,3 − a3,1a2,3

)

c1,3 = +det
(
A1,3

) = + (
a2,1a3,2 − a3,1a2,2

)

By definition the dot product of the first row of the matrix by the first row of its
cofactor matrix yields the determinant of the matrix, thus

a1,1c1,1 + a1,2c1,2 + a1,3c1,3 = det (A) = |A|
Next we compute the dot products of the second and third rows of the matrix by
the first row of its cofactor matrix.

a2,1c1,1 + a2,2c1,2 + a2,3c1,3 = a2,1
(
a2,2a3,3 − a3,2a2,3

)

− a2,2
(
a2,1a3,3 − a3,1a2,3

)

+a2,3
(
a2,1a3,2 − a3,1a2,2

)

= a2,1a2,2a3,3 − a2,1a3,2a2,3 − a2,2a2,1a3,3

+ a2,2a3,1a2,3 + a2,3a2,1a3,2 − a2,3a3,1a2,2

= 0

a3,1c1,1 + a3,2c1,2 + a3,3c1,3 = a3,1
(
a2,2a3,3 − a3,2a2,3

)

− a3,2
(
a2,1a3,3 − a3,1a2,3

)

+ a3,3
(
a2,1a3,2 − a3,1a2,2

)

= a3,1a2,2a3,3 − a3,1a3,2a2,3 − a3,2a2,1a3,3

+ a3,2a3,1a2,3 + a3,3a2,1a3,2 − a3,3a3,1a2,2

= 0

It turns out that this is a general result. That is, if we compute the dot product
of any row/column of the matrix by the corresponding row/column of its cofactor
matrix it results in the determinant of the matrix. Alternatively, if we compute
the dot product of any row/column of the matrix by a different row/column of its
cofactor matrix it produces a zero result.

“Comninos” — 2005/8/31 — 15:34 — page 142 — #28

142 Mathematical and Computer Programming Techniques for Computer Graphics

Thus
m∑

k=1

ai,kc j,k =
{ |A| if i = j

0 if i �= j
(3.65)

Recalling that adj A = CT, let us calculate the matrix B = A · adj (A), concentrat-
ing on the ijth element of matrix B:

bi, j =
m∑

k=1

ai,kcT
k, j

=
m∑

k=1

ai,kc j,k

=
{ |A| if i = j

0 if i �= j

So, for our example

B = A · adj (A) =
⎡

⎣
|A| 0 0
0 |A| 0
0 0 |A|

⎤

⎦ = |A| ·
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ = |A| · I

Thus

A · adj (A) = |A| · I

∴ A · adj (A)

|A| = I

But as A ·
(

adj (A)

|A|
)

= I, the matrix

(
adj (A)

|A|
)

must be equal to the inverse of

A, i.e.

A−1 = adj (A)

|A|
Observe that the inverse of matrix A exists only if |A| �= 0.

3.18 A Theorem on Invertible Matrices and their
Determinants

Theorem 3.1 A square matrix is invertible if and only if it has a non-zero deter-
minant.
Proof : We will prove this theorem by elimination.

Given a 2 × 2 matrix:

A =
[

a b
c d

]

“Comninos” — 2005/8/31 — 15:34 — page 143 — #29

Matrix Algebra Survival Kit 143

The determinant of A is given by

det (A) = |A| = ad − bc

Let us, for the moment, assume that |A| �= 0 and let us look for the inverse of
matrix A. Then

[
a b
c d

]
·
[

x y
z w

]
=

[
1 0
0 1

]

∴
[

ax + bz ay + bw

cx + dz cy + dw

]
=

[
1 0
0 1

]

which reduces to solving the following two systems of linear equations in two
unknowns:

System 1 System 2
ax + bz = 1 cx + dz = 0
ay + bw = 0 cy + dw = 1

Now we must solve the two systems for the unknowns x , z and y, w, respec-
tively.

System 1
ax + bz = 1 (3.66)

cx + dz = 0 (3.67)

Multiplying Eq. (3.66) by d
b we get

a
d

b
x + dz = d

b
(3.68)

Now subtracting Eq. (3.68) from Eq. (3.67) we get

cx − ad

b
x = −d

b
(3.69)

Multiplying both sides of Eq. (3.69) by b we get

bcx − adx = −d

∴ adx − bcx = d

∴ x (ad − bc) = d

∴ x = d

(ad − bc)

∴ x = d

det (A)

“Comninos” — 2005/8/31 — 15:34 — page 144 — #30

144 Mathematical and Computer Programming Techniques for Computer Graphics

Substituting x in Eq. (3.67) we get

dc

(ad − bc)
+ dz = 0

∴ dz = − dc

(ad − bc)

∴ z = − c

(ad − bc)

∴ z = −c

det (A)

System 2
ay + bw = 0 (3.70)

cy + dw = 1 (3.71)

Multiplying Eq. (3.70) by d
b we get

a
d

b
y + dw = 0 (3.72)

Now subtracting Eq. (3.72) from Eq. (3.71) we get

cy − ad

b
y = 1 (3.73)

Multiplying both sides of Eq. (3.73) by b we get

bcy − ady = b

∴ y (bc − ad) = b

∴ y = b

(bc − ad)

∴ y = −b

(ad − bc)

∴ y = −b

det (A)

Substituting y in Eq. (3.70) we get

−ab

(ad − bc)
+ bw = 0

“Comninos” — 2005/8/31 — 15:34 — page 145 — #31

Matrix Algebra Survival Kit 145

∴ bw = ab

(ad − bc)

∴ w = a

(ad − bc)

∴ w = a

det (A)

The above result shows that the two systems have a solution (i.e. A−1 exists) if
and only if |A| �= 0. If alternatively |A| = 0, then none of the above equations
would have a solution and consequently the inverse matrix A−1 would not exist.
QED (Quod Erat Demonstrandum, which means “that which is to be proved”).

Observation:

Given a matrix A =
[

a b

c d

]

, then its inverse is A−1 =
[

a b

c d

]−1

=
⎡

⎢⎢⎢
⎣

d

|A|
−b

|A|
−c

|A|
a

|A|

⎤

⎥⎥⎥
⎦

= 1

|A| ·
[

d −b

−c a

]

.

The cofactor matrix of matrix A is C =
[

d −c
−b a

]
. The transpose of its

cofactor matrix is CT =
[

d −b
−c a

]
.

Thus, we observe that the inverse of matrix A is given by A−1 = CT

|A| , i.e. by

the transpose of its cofactor matrix divided by its determinant.

3.19 Axioms and Rules of Matrix Inversion

The following axioms and matrix algebra rules apply to the operation of matrix
inversion for all square matrices A, B (which are assumed to be conformant).

Existence of the inverse of a matrix:

det (A) �= 0 ⇔ A−1 = adj (A)

det (A)
(A3.12)

Product of a matrix by its inverse:
A · A−1 = A−1 · A = I (R3.16)

Inverse rules:
(
A−1)−1 = A (R3.17)

(A · B)−1 = B−1 · A−1 (R3.18)
Transpose of the inverse rule:

(
A−1)T = (

AT)−1
(R3.19)

“Comninos” — 2005/8/31 — 15:34 — page 146 — #32

146 Mathematical and Computer Programming Techniques for Computer Graphics

3.20 Solving a System of Linear Simultaneous Equations

Given a system of m linear simultaneous equations with m unknowns:

a1,1x1 + a1,2x2 + · · · + a1,m xm = c1
a2,1x1 + a2,2x2 + · · · + a2,m xm = c2

...

am,1x1 + am,2x2 + · · · + am,m xm = cm

(3.74)

We may represent this system in matrix form as
⎡

⎢⎢⎢
⎣

a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m
...

...
. . .

...

am,1 am,2 · · · am,m

⎤

⎥
⎥⎥
⎦

·

⎡

⎢
⎢⎢
⎣

x1
x2
...

xm

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

c1
c2
...

cm

⎤

⎥
⎥⎥
⎦

(3.75)

or in a more concise notation as

A · x = c (3.76)

Where A is the matrix of coefficients, x is the column vector of unknowns and c
is the column vector of constants.

To solve this system of equations, we multiply both sides of the above equation
by the reciprocal of the coefficients matrix A−1, thus

x = A−1 · c (3.77)

3.21 Orthogonal Matrices

A square matrix A for which its inverse A−1 is equal to its transpose AT (i.e.
A−1 = AT), is called an orthogonal matrix. With orthogonal matrices

A · AT = AT · A = I (3.78)

For a more detailed explanation and a proof of this property see Section 3.7.

Example:
Given the orthogonal matrix A defined as:

A = 1√
2

⎡

⎣
1 1 0

−1 1 0
0 0

√
2

⎤

⎦

The transpose of this matrix is given by

AT = 1√
2

⎡

⎣
1 −1 0
1 1 0
0 0

√
2

⎤

⎦

“Comninos” — 2005/8/31 — 15:34 — page 147 — #33

Matrix Algebra Survival Kit 147

Thus

A · AT = 1√
2

⎡

⎢
⎣

1 1 0

−1 1 0

0 0
√

2

⎤

⎥
⎦ · 1√

2

⎡

⎢
⎣

1 −1 0

1 1 0

0 0
√

2

⎤

⎥
⎦

A · AT = 1

2

⎡

⎢
⎣

1 · 1 + 1 · 1 + 0 · 0 −1 · 1 + 1 · 1 + 0 · 0 1 · 0 + 1 · 0 + 0 · √
2

−1 · 1 + 1 · 1 + 0 · 0 −1 · (−1) + 1 · 1 + 0 · 0 −1 · 0 + 1 · 0 + 0 · √
2

0 · 1 + 0 · 1 + √
2 · 0 0 · (−1) + 0 · 1 + √

2 · 0 0 · 0 + 0 · 0 + √
2 · √

2

⎤

⎥
⎦

A · AT = 1

2

⎡

⎢
⎣

2 0 0

0 2 0

0 0 2

⎤

⎥
⎦ = I

Matrix A represents a 2D counter-clockwise rotation by –45 ˚ about the origin
and matrix AT = A−1 represents a 2D counter-clockwise rotation by +45 ˚ about
the origin. Alternately matrix A is the change of basis matrix that rotates the i, j,
k Cartesian basis in counter-clockwise fashion about the k basis vector by +45 ˚ .
See Section 3.7.

3.22 Two Theorems on Vector by Matrix Multiplication

Theorem 3.2 Given the product of a row vector by a conformant matrix, inter-
changing two elements of the vector and the corresponding rows of the matrix
does not alter their product, i.e.

[
v1 v2 v3

] ·
⎡

⎣
m1,1 m1,2 m1,3
m2,1 m2,2 m2,3
m3,1 m3,2 m3,3

⎤

⎦

= [
v2 v1 v3

] ·
⎡

⎣
m2,1 m2,2 m2,3
m1,1 m1,2 m1,3
m3,1 m3,2 m3,3

⎤

⎦ (3.79)

Proof : Performing the matrix multiplication on the left-hand side of Eq. (3.78)
we get

[
v1 v2 v3

] ·
⎡

⎣
m1,1 m1,2 m1,3
m2,1 m2,2 m2,3
m3,1 m3,2 m3,3

⎤

⎦ = [
v1m1,1 + v2m2,1 + v3m3,1

v1m1,2 + v2m2,2 + v3m3,2 v1m1,3 + v2m2,3 + v3m3,3
]

“Comninos” — 2005/8/31 — 15:34 — page 148 — #34

148 Mathematical and Computer Programming Techniques for Computer Graphics

and performing the matrix multiplication on the right-hand side of this equation
we get an identical result:

[
v2 v1 v3

] ·
⎡

⎣
m2,1 m2,2 m2,3
m1,1 m1,2 m1,3
m3,1 m3,2 m3,3

⎤

⎦ = [
v2m2,1 + v1m1,1 + v3m3,1

v2m2,2 + v1m1,2 + v3m3,2 v2m2,3 + v1m1,3 + v3m3,3
]

�
Theorem 3.3 Similarly, given the product of a matrix by a conformant column
vector, interchanging two elements of the vector and the corresponding columns
of the matrix does not alter their product, i.e.
⎡

⎣
m1,1 m1,2 m1,3
m2,1 m2,2 m2,3
m3,1 m3,2 m3,3

⎤

⎦ ·
⎡

⎣
v1
v2
v3

⎤

⎦ =
⎡

⎣
m1,2 m1,1 m1,3
m2,2 m2,1 m2,3
m3,2 m3,1 m3,3

⎤

⎦ ·
⎡

⎣
v2
v1
v3

⎤

⎦ (3.80)

Proof : Performing the matrix multiplication on the left-hand side of Eq. (3.80)
we get

⎡

⎣
m1,1 m1,2 m1,3
m2,1 m2,2 m2,3
m3,1 m3,2 m3,3

⎤

⎦ ·
⎡

⎣
v1
v2
v3

⎤

⎦ =
⎡

⎣
m1,1v1 + m1,2v2 + m1,3v3
m2,1v1 + m2,2v2 + m2,3v3
m3,1v1 + m3,2v2 + m3,3v3

⎤

⎦

and performing the matrix multiplication on the right-hand side of this equation
we get an identical result:

⎡

⎣
m1,2 m1,1 m1,3
m2,2 m2,1 m2,3
m3,2 m3,1 m3,3

⎤

⎦ ·
⎡

⎣
v2
v1
v3

⎤

⎦ =
⎡

⎣
m1,2v2 + m1,1v1 + m1,3v3
m2,2v2 + m2,1v1 + m2,3v3
m3,2v2 + m3,1v1 + m3,3v3

⎤

⎦

�

3.23 The Row-/Column-Reversal Matrix

There is a special matrix that we shall call the row-/column-reversal matrix R,
which is a square matrix with all its elements set to 0 apart from the elements
of its trailing diagonal which are set to 1. So R is a row-reversed (or a column-
reversed) version of the identity matrix I. Thus a 3 × 3 row-/column-reversal
matrix is given by

R =
⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦

Pre-multiplying a matrix A by the row-/column-reversal matrix R, has the effect
of row-reversing the matrix, thus

⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ ·
⎡

⎣
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

⎤

⎦ =
⎡

⎣
a3,1 a3,2 a3,3
a2,1 a2,2 a2,3
a1,1 a1,2 a1,3

⎤

⎦

“Comninos” — 2005/8/31 — 15:34 — page 149 — #35

Matrix Algebra Survival Kit 149

or B = R · A and A = R · B (3.81)

Similarly, post-multiplying a matrix A by the row-/column-reversal matrix R, has
the effect of column-reversing the matrix, thus

⎡

⎣
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

⎤

⎦ ·
⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ =
⎡

⎣
a1,3 a1,2 a1,1
a2,3 a2,2 a2,1
a3,3 a3,2 a3,1

⎤

⎦

or C = A · R and A = C · R (3.82)

Row-reversing the row-reverse matrix yields the identity matrix, i.e.
⎡

⎢
⎣

0 0 1

0 1 0

1 0 0

⎤

⎥
⎦ ·

⎡

⎢
⎣

0 0 1

0 1 0

1 0 0

⎤

⎥
⎦ =

⎡

⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎦

Like the identity matrix, the matrix R is equal to its inverse and also to its
transpose, i.e.

R · R = I ⇔ R = R−1 (3.83)

and
R = RT (3.84)

3.23.1 Summary of Matrix Algebra Axioms and Rules

In this section we collect together, for ease of reference, all the axioms and matrix
algebra rules that apply to all the matrix operations we have examined.

Matrix Addition/Subtraction
The following axioms and matrix algebra rules apply to the addition and subtrac-
tion of matrices for all matrices A, B, C (which are assumed to be of the same
order).

Existence of the matrix sum:
C(m,n) = A(m,n) ± B(m,n) ⇒ {

ci, j = ai, j ± bi, j
}m,n

i, j=1 (A3.1)
Existence of the null element:

A ± 0 = A (A3.2)
Existence of the additive inverse:

A + (−A) = 0 (A3.3)
Commutative law:

A + B = B + A (R3.1)
Associative law:

(A + B) + C = A + (B + C) (R3.2)
Distributive law:

s · (A ± B) = s · A ± s · B (R3.3)
Transposition rule:

(A ± B)T = AT ± BT (R3.4)

“Comninos” — 2005/8/31 — 15:34 — page 150 — #36

150 Mathematical and Computer Programming Techniques for Computer Graphics

Matrix by Scalar Multiplication
The following axioms and matrix algebra rules apply to the multiplication of a
matrix by a scalar for all matrices A, B (which are assumed to be of the same
order) and all scalars s, s1, s2.

Existence of the matrix by scalar product:
B(m,n) = A(m,n) · s ⇒ {

bi, j = s · ai, j
} m,n

i, j=1 (A3.4)
Existence of the identity map:

1 · A = I · A = A (A3.5)
Commutative law:

s · A = A · s (R3.5)
Associative law:

s1 · (s2 · A) = (s1 · s2) · A (R3.6)
Distributive law:

(s1 ± s2) · A = s1 · A ± s2 · A (R3.7)

Vector by Vector Multiplication
The following axioms apply to the vector by vector multiplication for all matrices
a, b (which are assumed to be conformant).

Existence of the dot product:

aT · b =
m∑

i=1
ai · bi (A3.6)

Existence of the tensor product:
a · bT = {

ci, j = ai b j
} m,n

i, j=1 (A3.7)

Matrix Multiplication
The following axioms and matrix algebra rules apply to the matrix multipli-
cation for all matrices A, B, C (which are assumed to be conformant) and all
scalars s.

Existence of the matrix product:

A(m,l) · B(l,n) = C(m,n) ⇒
{

ci, j =
l∑

k=1
ai,kbk, j

}m,n

i, j=1

(A3.8)

Existence of the unit matrix:
I(m) · A(m,n) = A(m,n) · I(n) = A(m,n) (A3.9)

Existence of the zero matrix:
0(m) · A(m,n) = A(m,n) · 0(n) = 0(m,n) (A3.10)

Powers of a matrix:
A0 = I ∧ Am = A(m−1) · A (A3.11)

Commutative law (does not hold):
A · B �= B · A (R3.8)

Associative law:
A · (B · C) = (A · B) · C (R3.9)

“Comninos” — 2005/8/31 — 15:34 — page 151 — #37

Matrix Algebra Survival Kit 151

Distributive laws:
(s · A) · B = A · (s · B) = s · (A · B) (R3.10)
A · (B ± C) = A · B ± A · C (R3.11)
(A ± B) · C = A · C ± B · C (R3.12)

Transpose rules:
(A · B)T = BT · AT (R3.13)
(A · B · C)T = CT · BT · AT (R3.14)

Zero divisor rule:
A · B = 0 �⇒ A = 0 ∨ B = 0 (R3.15)

Matrix Inversion
The following axioms and matrix algebra rules apply to the operation of matrix
inversion for all matrices A, B (which are assumed to be conformant).

Existence of the inverse of a matrix:

det (A) �= 0 ⇔ A−1 = adj (A)

det (A)
(A3.12)

Product of a matrix by its inverse:
A · A−1 = A−1 · A = I (R3.16)

Inverse rules:
(
A−1)−1 = A (R3.17)

(A · B)−1 = B−1 · A−1 (R3.18)
Transpose of the inverse rule:

(
A−1)T = (

AT)−1
(R3.19)

3.24 A Simple Matrix Algebra C Library

See Appendix 2.

“Comninos” — 2005/8/31 — 15:41 — page 153 — #1

4

Vector Spaces or Linear Spaces

The introduction of Cartesian coordinates in the 1630s by the French mathe-
maticians Pierre de Fermat (1601–1665) and René Descartes (1596–1650) had
a profound influence on the development of mathematics. Cartesian coordinates
allowed mathematicians to introduce algebraic methods into the study of geome-
try. By the middle of the 1800s, however, there was a general dissatisfaction with
these coordinate methods and mathematicians began to look for more general and
abstract ways by which they could study geometry without referring to coordi-
nate systems. This search leads to the development of vectors and matrices, and
eventually to the development of vector spaces or linear spaces.

Among the first to introduce a geometry without coordinates was the Prussian
mathematician Hermann Günter Grassman (1809–1877). In his 1844 book Die
Ausdehnungslehre (Extension Theory) he introduced the notion of abstract quan-
tities and he defined the operations of addition and scalar multiplication on these
abstract quantities. It was, however, the Italian mathematician Giuseppe Piano
(1858–1932) who introduced the first axiomatic definition of a vector space in
his 1888 book Calcolo Geometrico (Geometric Calculus). This book was well
in advance of its time and introduced most of the concepts of vector spaces. The
complete axiomatic definition of vector spaces appeared in the 1920 doctoral dis-
sertation of the Polish mathematician Stefan Banach (1892–1945).

As the theory of vector spaces underpins much of the work in computer graph-
ics and curve and surface theory, we will briefly introduce some of the basic ideas
of vector spaces in this chapter.

Underlying the concept of a vector space is the concept of a scalar field. Let us
start by defining what a scalar field is.

4.1 Definition of a Scalar Field

A scalar field is defined as a non-empty set of scalars for which the operations
of addition and multiplication are defined, such that for any scalars s1, s2, s3 that
belong to the scalar field S the following axioms are satisfied:

153

“Comninos” — 2005/8/31 — 15:41 — page 154 — #2

154 Mathematical and Computer Programming Techniques for Computer Graphics

Closure of a Scalar Field
Closure under addition:

s1, s2 ∈ S ⇒ s1 + s2 ∈ S
Closure under multiplication:

s1, s2 ∈ S ⇒ s1 · s2 ∈ S

Addition of Scalars
Comutativity of addition:

s1 + s2 = s2 + s1
Associativity of addition:

s1 + (s2 + s3) = (s1 + s2) + s3
Existence of the additive identity element:

s1 + 0 = 0 + s1 = s1
Existence of the additive inverse:

s1 + (−s1) = 0,

i.e. ∀ s1 ∈ S ∃ (−s1) ∈ S

Multiplication of Scalars
Comutativity of multiplication:

s1 · s2 = s2 · s1
Associativity of multiplication:

s1 · (s2 · s3) = (s1 · s2) · s3
Distributivity of multiplication over addition:

s1 · (s2 + s3) = s1 · s2 + s1 · s3
Distributivity of addition over multiplication:

(s1 + s2) · s3 = s1 · s3 + s2 · s3
Existence of the multiplicative identity element:

1 · s1 = s1 · 1 = s1
Existence of the multiplicative inverse:

s1 · 1

s1
= 1 ⇔ s1 �= 0

Examples of scalar fields are the set of real numbers R, the set of rational
numbers Q and the set of complex numbers C.

Having defined scalar fields, we are now ready to define a vector space in terms
of a scalar field.

4.2 Definition of a Vector Space

A vector space V is a non-empty set of abstract entities called vectors taken
together with the algebraic rules for vector addition and scalar by vector mul-
tiplication.

Given a scalar field S, we can construct a vector as the ordered n-tuple v =
[v1, v2, . . . , vn], where the components of the vector v1, v2, . . . , vn ∈ S and the
vector v ∈ Sn .

“Comninos” — 2005/8/31 — 15:41 — page 155 — #3

Vector Spaces or Linear Spaces 155

Given two vectors v1, v2 ∈ Sn , vector addition is defined as

v1 + v2 = [v11, v12, . . . , v1n] + [v21, v22, . . . , v2n]

= [v11 + v21, v12 + v22, . . . , v1n + v2n]

where [v11 + v21, v12 + v22, . . . , v1n + v2n] ∈ Sn and (v11 + v21) , (v12 + v22) ,

. . . , (v1n + v2n) ∈ S.
Given a scalar s ∈ S and a vector v ∈ Sn , scalar by vector multiplication is

defined as

s · v = s · [v1, v2, . . . , vn] = [s · v1, s · v2, . . . , s · vn]

where [s · v1, s · v2, . . . , s · vn] ∈ Sn and s · v1, s · v2, . . . , s · vn ∈ S.
Given two vectors v1, v2 ∈ Sn , the equality of two vectors is defined as

[v11, v12, . . . , v1n] = [v21, v22, . . . , v2n] ⇔ {v1i = v2i }n
i=1

We say that a non-empty set of vectors V is a vector space over a scalar field S,
if and only if for any vectors v1, v2, v3 ∈ V and any scalars s1, s2 ∈ S the following
axioms are satisfied.

Closure of a Vector Space
Closure under addition:

v1, v2 ∈ V ⇒ v1 + v2 ∈ V (A4.1)
Closure under multiplication:

s1 ∈ S ∧ v1 ∈ V ⇒ s1 · v1 ∈ V (A4.2)

Addition of Vectors
Comutativity of addition:

v1 + v2 = v2 + v1 (A4.3)
Associativity of addition:

v1 + (v2 + v3) = (v1 + v2) + v3 (A4.4)
Existence of the additive identity element:

v1 + �0 = �0 + v1 = v1 where �0 ∈ V (A4.5)
Existence of the additive inverse:

v1 + (−v1) = �0 where (−v1) , �0 ∈ V (A4.6)

Multiplication of a Vector by a Scalar
Distributivity of scalar multiplication over addition:

s1 · (v1 + v2) = s1 · v1 + s1 · v2 (A4.7)
Distributivity of scalar addition over multiplication:

(s1 + s2) · v1 = s1 · v1 + s2 · v1 (A4.8)
Associativity of scalar multiplication:

s1 · (s2 · v1) = (s1 · s2) · v1 (A4.9)
Existence of the multiplicative identity element:

1 · v1 = v1 · 1 = v1 where 1 ∈ S (A4.10)

In the above axioms the zero vector is given by �0 = [0, 0, . . . , 0], where �0 ∈ V.

“Comninos” — 2005/8/31 — 15:41 — page 156 — #4

156 Mathematical and Computer Programming Techniques for Computer Graphics

A real vector space is a vector space V that obeys Axioms (A4.1)–(A4.10) and
is defined over the scalar field of real numbers (i.e. S = R). There are many
examples of such vector spaces.

Vector Space of Real Numbers
Real numbers are members of the scalar field S = R and as they satisfy Axioms
(A4.1)–(A4.10) they form a vector space. Here S = R, V = R

1, the operation of
vector addition reduces to the addition of two real numbers and the operation of
scalar by vector multiplication reduces to the multiplication of two real numbers.

Vector Space of 2D Vectors
The vectors of the two-dimensional (2D) Euclidean space E2 are 2-tuples that are
members of the set S2 = R

2. In this example S = R, V = {v : v = [v1, v2] ∧
vi ∈ R}, vector addition and scalar by vector multiplication are performed in a
component-wise fashion. Thus, it is clear that 2D vectors satisfy Axioms (A4.1)–
(A4.10) and form a vector space.

Vector Space of 3D Vectors
The vectors of the three-dimensional Euclidean space E3 are 3-tuples that are
members of the set S3 = R

3. In this example S = R, V = {v : v = [v1, v2, v3] ∧
vi ∈ R}, vector addition and scalar by vector multiplication are performed in a
component-wise fashion. Thus, it is clear that 3D vectors satisfy Axioms (A4.1)–
(A4.10) and form a vector space.

Vector Space of m × n Matrices

In this example S = R, V =

⎧
⎪⎨

⎪⎩
A : A =

⎡

⎢
⎣

a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n

⎤

⎥
⎦ ∧ ai, j ∈ R

⎫
⎪⎬

⎪⎭
,

matrix addition and scalar by matrix multiplication are performed in a component-
wise fashion. Thus, it is clear that set of matrices of order m × n satisfies Axioms
(A4.1)–(A4.10) and forms a vector space.

In the discussion that follows we will concentrate on real vector spaces.

4.3 Linear Combinations of Vectors

Let Vm = {v1, v2, . . . , vm} be any set of vectors in vector space V and let
{s1, s2, . . . , sm} be any set of scalars (i.e. {si }m

i=1 ∈ R). Then any vector
v of the form

v = s1 · v1 + s2 · v2 + · · · + sm · vm (4.1)

is said to be a linear combination of the vectors in Vm and vector v is said to
be linearly dependant on the vectors in Vm . Vector v is also a member of the

“Comninos” — 2005/8/31 — 15:41 — page 157 — #5

Vector Spaces or Linear Spaces 157

vector space V, as the expression s1 · v1 + s2 · v2 + · · · + sm · vm obeys Axioms
(A4.1)–(A4.10).

4.4 Linear Dependence and Linear Independence of Vectors

Given a set of vectors Vm = {v1, v2, . . . , vm} from the vector space V, we say
that the vectors in Vm are linearly independent or that Vm is a free set of vectors
in V if

s1 · v1 + s2 · v2 + · · · + sm · vm = �0 ⇔ s1 = s2 = · · · = sm = 0 (4.2)

i.e. if the equation s1 · v1 + s2 · v2 + · · · + sm · vm = �0 only has a solution when
s1 = s2 = · · · = sm = 0. We say that the vectors in Vm are linearly dependent if
the equation s1 · v1 + s2 · v2 +· · ·+ sm · vm = �0 has a solution when at least one of
the scalars s1, s2, . . . , sm is non-zero. Thus, a set Vm from a vector space V is said
to be linearly dependent if it contains at least one vector vi that can be written as
a linear combination of the remaining (m − 1) vectors in the set Vm , i.e.

−si · vi = s1 · v1 + s2 · v2 + · · · + si−1 · vi−1

+ si+1 · vi+1 + · · · + sm · vm (4.3)

∴ vi = s1

−si
· v1 + s2

−si
· v2 + · · · + si−1

−si
· vi−1

+ si+1

−si
· vi+1 + · · · + sm

−si
· vm (4.4)

4.5 Spans and Bases of a Vector Space

The set that contains all possible linear combinations of the vectors in Vm is called
the span of Vm and it is denoted by span (Vm) or 〈v1, v2, . . . , vm〉, thus

VS = span (Vm) =
{

m∑

i=1

si · vi |∀si ∈ R

}

(4.5)

VS is always a subset of the vector space V. We say that VS is spanned or gener-
ated by the m vectors in Vm . As every vector v in VS can be expressed as a linear
combination of the vectors in Vm , we say that Vm is the spanning set of VS . The
elements of set Vm are called the generators of set VS .

Let VB = {v1, v2,. . . ,vm} be a set of vectors from the vector space V and let VS

be the span of VB . If the set of vectors VB is linearly independent and if VB is
the spanning set of V (i.e. VS = V), then we say that the vectors in VB , taken
in the order v1, v2, . . . , vm , form a basis for V and that V has a dimension m (i.e.
dim (V) = m).

“Comninos” — 2005/8/31 — 15:41 — page 158 — #6

158 Mathematical and Computer Programming Techniques for Computer Graphics

Since the vectors in VB span V, any vector v ∈ V can be written uniquely as

v = α1 · v1 + α2 · v2 + · · · + αm · vm (4.6)

To establish the uniqueness of this representation, let us assume that v can also
be written as

v = β1 · v1 + β2 · v2 + · · · + βm · vm (4.7)

Then

α1 · v1 + α2 · v2 + · · · + αm · vm = β1 · v1 + β2 · v2 + · · · + βm · vm

∴ α1 · v1 + α2 · v2 + · · · + αm · vm − β1 · v1 − β2 · v2 − · · · − βm · vm = �0
∴ (α1 − β1) · v1 + (α2 − β2) · v2 + · · · + (αm − βm) · vm = �0 (4.8)

But since v1, v2, . . . , vm are linearly independent, the only possible solution is

α1 = β1, α2 = β2, . . . , αm = βm (4.9)

Thus the two expressions on the right hand side of Eqs. (4.6) and (4.7) are the
same and there is a unique way of writing v.

As shown above, given a basis for a vector space, any vector in the vector
space can be expressed as a linear combination of the elements of this basis. All
the bases of a vector space have the same number of elements, which is called the
dimension of the vector space.

In 3D Euclidean space the vectors v1 = [1, 0, 0], v2 = [0, 1, 0], v3 = [0, 0, 1]
form a basis of the vector space of 3D vectors. Similarly, u1 = [1, 0, 0], u2 =
[1, 1, 0], u3 = [1, 1, 1] form an alternative valid basis. While the basis of a vector
space may change, the number of vectors in a basis of the vector space does not
as it is an intrinsic property of this vector space.

4.6 Transformations Between Bases

Since any valid basis of a particular vector space contains the same number of
vectors (equal to the dimension of the vector space) there exists a transformation
that allows us to convert from one basis to another. We call such a transformation
a change of basis transformation.

We shall start by considering a 3D vector space, but our results can be extended
to m-dimensional vector spaces.

Given a 3D vector space V, let s1, s2, s3 and d1, d2, d3 be two valid bases
in V. Assume that s1, s2, s3 is the source basis and that d1, d2, d3 is the destination
basis. From the definition of the basis, we know that we can rewrite vectors d1,
d2, d3 as linear combinations of the source basis s1, s2, s3, i.e. we can express the
components of d1, d2, d3 with respect to the basis s1, s2, s3.

Thus

d1 = d1,1 · s1 + d1,2 · s2 + d1,3 · s3
d2 = d2,1 · s1 + d2,2 · s2 + d2,3 · s3
d3 = d3,1 · s1 + d3,2 · s2 + d3,3 · s3

(4.10)

“Comninos” — 2005/8/31 — 15:41 — page 159 — #7

Vector Spaces or Linear Spaces 159

where di, j represents the j th component of the i th destination base vector with
respect to the source basis s1, s2, s3.

Any vector v in V can be expressed either with respect to the source basis:

v = v1 · s1 + v2 · s2 + v3 · s3 (4.11)

or with respect to the destination basis:

v = v′
1 · d1 + v′

2 · d2 + v′
3 · d3 (4.12)

Substituting Eq. (4.10) into (4.12) we get:

v = v′
1 · (

d1,1 · s1 + d1,2 · s2 + d1,3 · s3
)

+ v′
2 · (

d2,1 · s1 + d2,2 · s2 + d2,3 · s3
)

+ v′
3 · (

d3,1 · s1 + d3,2 · s2 + d3,3 · s3
)

∴ v = v′
1 · d1,1 · s1 + v′

1 · d1,2 · s2 + v′
1 · d1,3 · s3

+ v′
2 · d2,1 · s1 + v′

2 · d2,2 · s2 + v′
2 · d2,3 · s3

+ v′
3 · d3,1 · s1 + v′

3 · d3,2 · s2 + v′
3 · d3,3 · s3

∴ v = (
v′

1 · d1,1 + v′
2 · d2,1 + v′

3 · d3,1
) · s1

+ (
v′

1 · d1,2 + v′
2 · d2,2 + v′

3 · d3,2
) · s2

+ (
v′

1 · d1,3 + v′
2 · d2,3 + v′

3 · d3,3
) · s3 (4.13)

Equating the corresponding coefficients in Eqs. (4.11) and (4.13) we obtain

v1 = v′
1 · d1,1 + v′

2 · d2,1 + v′
3 · d3,1

v2 = v′
1 · d1,2 + v′

2 · d2,2 + v′
3 · d3,2

v3 = v′
1 · d1,3 + v′

2 · d2,3 + v′
3 · d3,3 (4.14)

Rewriting Eq. (4.14) in matrix form we get

⎡

⎣
v1
v2
v3

⎤

⎦ =
⎡

⎣
d1,1 d2,1 d3,1
d1,2 d2,2 d3,2
d1,3 d2,3 d3,3

⎤

⎦ ·
⎡

⎣
v′

1
v′

2
v′

3

⎤

⎦ (4.15)

or v = D · v′ (4.16)

where matrix D is given by

D =
⎡

⎣
d1,1 d2,1 d3,1
d1,2 d2,2 d3,2
d1,3 d2,3 d3,3

⎤

⎦ (4.17)

“Comninos” — 2005/8/31 — 15:41 — page 160 — #8

160 Mathematical and Computer Programming Techniques for Computer Graphics

Here v is the vector expressed in the source basis, v′ is the vector expressed in
the destination basis and D is a change of basis transformation matrix. Matrix D
transforms vectors whose components are expressed relative to the destination
basis into vectors whose components are expressed relative to the source basis,
i.e. it changes the basis from destination to source.

From Eq. (4.17) we can see that the elements of the columns of matrix D are the
components of the destination base vectors d1, d2, d3 with respect to the source
basis.

From the above it is apparent that changing from a source basis to a destination
basis involves pre-multiplying the original vector by the change of basis transfor-
mation matrix.

If we pre-multiply both sides of Eq. (4.16) by the inverse of matrix D we obtain

D−1 · v = D−1 · D · v′

∴ v′ = D−1 · v (4.18)

Or if we label D−1 as S we have

v′ = S · v (4.19)

where S is the change of basis matrix that changes the basis from source to desti-
nation.

The multiplication by D−1 in Eq. (4.18) is only possible if D is a regular
matrix, i.e. invertible. But since by definition vector v can be expressed in both
the source and destination bases, the change of basis transformation matrix must
be invertible.

For m-dimensional vector spaces Eq. (4.15) can be generalised to
⎡

⎢
⎣

v1
...

vm

⎤

⎥
⎦ =

⎡

⎢
⎣

d1,1 · · · dm,1
...

. . .
...

d1,m · · · dm,m

⎤

⎥
⎦ ·

⎡

⎢
⎣

v′
1
...

v′
m

⎤

⎥
⎦ (4.20)

where the elements of the columns of the matrix are the components of the desti-
nation base vectors d1, . . . , dm with respect to the source basis s1, . . . , sm .

Successive transformations into a second or third basis are given by

v′ = S1 · v

v′′ = S2 · v′

v′′′ = S3 · v′′

Thus

v′′′ = S3 · (S2 · (S1 · v))

∴ v′′′ = (S3 · S2 · S1) · v (4.21)

which follows the normal matrix multiplication rules.

“Comninos” — 2005/8/31 — 15:41 — page 161 — #9

Vector Spaces or Linear Spaces 161

4.7 Transformations Between Orthonormal Bases

A noteworthy case occurs when both the source and destination bases are ortho-
normal. In this case, using the definition of the dot product from matrix algebra,
we have

sT
i � s j = δi, j ∧ dT

i � d j = δi, j for i, j ∈ {1, 2, 3} (4.22)

where δi, j is Kronecker’s delta, which was defined in Eqs. (2.24) and (3.6).
If we expand the dot product dT

i � d j using Eq. (4.10) we obtain

dT
i � d j =

(
3∑

k=1

di,k · sT
k

)

·
(

3∑

l=1

d j,l · sl

)

=
3∑

k=1

3∑

l=1

di,kd j,l

(
sT

k � sl

)

=
3∑

k=1

3∑

l=1

di,kd j,lδk,l

= di,1d j,1δ1,1 + di,1d j,2δ1,2 + di,1d j,3δ1,3

+ di,2d j,1δ2,1 + di,2d j,2δ2,2 + di,2d j,3δ2,3

+ di,3d j,1δ3,1 + di,3d j,2δ3,2 + di,3d j,3δ3,3

= di,1d j,11 + di,1d j,20 + di,1d j,30

+ di,2d j,10 + di,2d j,21 + di,2d j,30

+ di,3d j,10 + di,3d j,20 + di,3d j,31

= di,1d j,1 + di,2d j,2 + di,3d j,3

∴ dT
i � d j =

3∑

m=1

di,md j,m (4.23)

But since dT
i � d j = δi, j so

3∑

m=1

di,md j,m = δi, j (4.24)

which expressed in matrix form yields

DT · D = I (4.25)

“Comninos” — 2005/8/31 — 15:41 — page 162 — #10

162 Mathematical and Computer Programming Techniques for Computer Graphics

Since
⎡

⎣
d1,1 d1,2 d1,3
d2,1 d2,2 d2,3
d3,1 d3,2 d3,3

⎤

⎦ ·
⎡

⎣
d1,1 d2,1 d3,1
d1,2 d2,2 d3,2
d1,3 d2,3 d3,3

⎤

⎦

=
⎡

⎣
d1,1d1,1 + d1,2d1,2 + d1,3d1,3 d1,1d2,1 + d1,2d2,2 + d1,3d2,3 d1,1d3,1 + d1,2d3,2 + d1,3d3,3
d2,1d1,1 + d2,2d1,2 + d2,3d1,3 d2,1d2,1 + d2,2d2,2 + d2,3d2,3 d2,1d3,1 + d2,2d3,2 + d2,3d3,3
d3,1d1,1 + d3,2d1,2 + d3,3d1,3 d3,1d2,1 + d3,2d2,2 + d3,3d2,3 d3,1d3,1 + d3,2d3,2 + d3,3d3,3

⎤

⎦

=
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

so DT must be equal to D−1 and D must be an orthogonal matrix. Which means
that

S = DT (4.26)

Thus the elements of the rows of matrix S are the components of the destination
base vectors d1, d2, d3 with respect to the source basis. Thus

S =
⎡

⎣
d1,1 d1,2 d1,3
d2,1 d2,2 d2,3
d3,1 d3,2 d3,3

⎤

⎦ (4.27)

For m-dimensional vector spaces Eq. (4.19) can now be generalised to
⎡

⎢
⎣

v′
1
...

v′
m

⎤

⎥
⎦ =

⎡

⎢
⎣

d1,1 · · · d1,m
...

. . .
...

dm,1 · · · dm,m

⎤

⎥
⎦ ·

⎡

⎢
⎣

v1
...

vm

⎤

⎥
⎦ (4.28)

where the elements of the rows of the matrix are the components of the destination
base vectors d1, . . . , dm with respect to the source basis s1, . . . , sm .

4.8 Alternative Notation for Change of Basis
Transformations

An alternative notation, which is found in some books, can be arrived at using
the matrix multiplication transposition rules (R3.13) and (R3.14). In this notation
vectors are assumed to be row vectors rather than column vectors, matrices are
replaced by their transpose and changing from a source basis to a destination
basis involves post-multiplying the source basis representation of the vector by
the change of basis transformation matrix. Thus Eq. (4.15) yields

[v1, v2, v3] = [
v′

1, v′
2, v′

3

] ·
⎡

⎣
d1,1 d1,2 d1,3
d2,1 d2,2 d2,3
d3,1 d3,2 d3,3

⎤

⎦ (4.29)

Equation (4.16) yields
v = v′ · D (4.30)

“Comninos” — 2005/8/31 — 15:41 — page 163 — #11

Vector Spaces or Linear Spaces 163

where matrix D is given by

D =
⎡

⎣
d1,1 d1,2 d1,3
d2,1 d2,2 d2,3
d3,1 d3,2 d3,3

⎤

⎦ (4.31)

In this notation, the elements of the rows of matrix D are the components of the
destination base vectors d1, d2, d3 with respect to the source basis s1, s2, s3.

Equation (4.19) yields
v′ = v · S (4.32)

where matrix S is given by

S =
⎡

⎣
d1,1 d2,1 d3,1
d1,2 d2,2 d3,2
d1,3 d2,3 d3,3

⎤

⎦ (4.33)

In this notation, the elements of the columns of matrix S are the components of
the destination base vectors d1, d2, d3 with respect to the source basis s1, s2, s3.
Here the two bases are assumed to be orthonormal.

Equation (4.21) yields

v′′′ = v · (S1 · S2 · S3) (4.34)

Finally, for m-dimensional vector spaces Eqs. (4.30) and (4.32) can be gener-
alised to

[v1, . . . , vm] = [
v′

1, . . . , v′
m

] ·
⎡

⎢
⎣

d1,1 · · · d1,m
...

. . .
...

dm,1 · · · dm,m

⎤

⎥
⎦ (4.35)

[
v′

1, . . . , v′
m

] = [v1, . . . , vm] ·
⎡

⎢
⎣

d1,1 · · · d1,m
...

. . .
...

dm,1 · · · dm,m

⎤

⎥
⎦

T

(4.36)

where the elements of the rows (or after transposition, the elements of the columns)
of the matrix are the components of the destination base vectors d1, . . . , dm with
respect to the source basis s1, . . . , sm . Here the two bases are assumed to be
orthonormal.

“Comninos” — 2005/8/31 — 15:47 — page 165 — #1

5

Two-Dimensional Transformations

5.1 Definition of a 2D Transformation

A 2D transformation is a function or a mapping, which when applied to a 2D point
P = 〈x, y〉 will transform it (map it) onto another 2D point P ′ = 〈

x ′, y′〉. So a
2D transformation transforms a set of original points, O, into a set of transformed
points, T.

In this chapter we will focus our attention on the type of transformation in
which any point Pi = 〈xi , yi 〉 of set O can be transformed to one and only one
point P′

i = 〈
x ′

i , y′
i

〉
of set T. Also no two points of set O can be transformed into

the same point of set T. Such a transformation is said to be a one to one mapping
(see Fig. 5.1).

So a transformation t can transform a 2D point 〈x, y〉 into a 2D point
〈
x ′, y′〉,

i.e. t (〈x, y〉) = 〈
x ′, y′〉 or P′ = t(P)

Note that the elements of the sets O and T have a one-to-one correspondence,
i.e. by applying the transformation function t to the point 〈x, y〉 we transform it
to the point

〈
x ′, y′〉 and if we apply the inverse transformation function t−1 to the

transformed point
〈
x ′, y′〉 we will transform it back to the original point 〈x, y〉.

5.2 Concatenation of Transformations

The concatenation of transformations is sometimes called the product of transfor-
mations. Let t1 be a transformation that maps elements of the set O onto elements
of the set T1. Let t2 be a transformation that maps elements of the set T1 onto
elements of the set T2 (see Fig. 5.2).

So

〈
x ′, y′〉 = t1 (〈x, y〉)

and
〈
x ′′, y′′〉 = t2

(〈
x ′, y′〉)

By substitution we get

165

“Comninos” — 2005/8/31 — 15:47 — page 166 — #2

166 Mathematical and Computer Programming Techniques for Computer Graphics

P P ¢

t

O

t -1

T

FIGURE 5.1. A transformation mapping.

P P ¢

t1

O

t1
-1

t1
-1

�t2
-1

t2
-1

T1

P ¢¢

t2

T2

t2 �
 t1

FIGURE 5.2. The concatenation of transformations.

〈
x ′′, y′′〉 = t2 (t1 (〈x, y〉))

which can be written as
〈
x ′′, y′′〉 = t2 ◦ t1 (〈x, y〉)

where t2 ◦ t1 is the product or concatenation of the transformations t1 and t2 in
this exact order. So applying the concatenation of a series of transformations
is equivalent to applying the individual transformations one after the other. A
transformation composed of the concatenation of a series of primitive (simple)
transformations is called a composite transformation.

Observe that if we wish to undo a sequence of transformations t1 and t2, applied
in this order, we must undo transformation t2 before we undo transformation t1,
i.e.

〈x, y〉 = t−1
1 ◦ t−1

2

(〈
x ′′, y′′〉)

Thus
(t2 ◦ t1)−1 = t−1

1 ◦ t−1
2 (5.1)

“Comninos” — 2005/8/31 — 15:47 — page 167 — #3

Two-Dimensional Transformations 167

This result is also true for the concatenation of any series of n transformations:

(tn ◦ · · · ◦ t2 ◦ t1)−1 = t−1
1 ◦ t−1

2 ◦ · · · ◦ t−1
n (5.2)

5.3 2D Graphics Transformations

The principles of 2D transformations, mentioned above, can be directly applied
to the transformation of points of the 2D Euclidean space E2 into new points of
this space. Lines defined in E2 can also be transformed in a similar way. All we
have to do is transform the endpoints of the line and then join these together to
obtain the transformed line.

Some examples of 2D transformations:

• scaling
• translation
• rotation
• reflection
• shearing

Two-dimensional transformations can be categorised either as primitive trans-
formations or as composite transformations. Composite transformations can be
constructed by composing (concatenating together) a sequence of primitive trans-
formations.

5.4 2D Primitive Transformations

5.4.1 Scaling Transformation Relative to the Origin

The scaling transformation relative to the origin of E2 is defined as
〈
x ′, y′〉 = t (〈x, y〉) = 〈

x · sx , y · sy
〉

or in component form as

x ′ = x · sx

y′ = y · sy (5.3)

where sx and sy are the scale factors along the x and y axes, respectively. These
scale factors can assume any non-zero value, as zero scale factors lead to a non-
invertible transformation that collapses every transformed point to the origin. If
the two scaling factors are equal (i.e. sx = sy), then this transformation is known as
uniform scaling, otherwise it is known as non-uniform scaling. Uniform scaling
is a special case of non-uniform scaling.

x ′ = x · s

y′ = y · s (5.4)

“Comninos” — 2005/8/31 — 15:47 — page 168 — #4

168 Mathematical and Computer Programming Techniques for Computer Graphics

P

X

Y
P ¢

FIGURE 5.3. A scaling transformation relative to the origin.

Uniform scaling can also be expressed in vector form as follows.

P ′ = t (P) = s · P (5.5)

Figure 5.3 illustrates a scaling transformation where the scaling factors along
the x and y axes are sx = 3 and sy = 2, respectively.

5.4.2 Translation Transformation

The translation transformation is defined as

〈
x ′, y′〉 = t (〈x, y〉) = 〈

x + dx , y + dy
〉

or in component form as

x ′ = x + dx

y′ = y + dy (5.6)

where dx and dy are the displacements along the x and y axes, respectively.
The translation transformation can also be expressed in vector form as follows.

P ′ = t (P) = P + d = P + [
dx , dy

]
(5.7)

Figure 5.4 illustrates a translation transformation where the displacements along
the x and y axes are dx = 2 and dy = 1, respectively.

5.4.3 Rotation Transformation about the Origin

The rotation transformation relative to the origin of E2 is defined as

〈
x ′, y′〉 = t (〈x, y〉) = 〈x · cos θ − y · sin θ, x · sin θ + y · cos θ〉

“Comninos” — 2005/8/31 — 15:47 — page 169 — #5

Two-Dimensional Transformations 169

P

P ¢

X

Y

FIGURE 5.4. A translation transformation.

P

P¢

X

Y

q

FIGURE 5.5. A rotation transformation about the origin.

or in component form as

x ′ = x · cos θ − y · sin θ

y′ = x · sin θ + y · cos θ (5.8)

where θ is the angle of rotation about the origin measured in a counter-clockwise
positive fashion.

To derive the rotation transformation we reason as follows. Rotating the point
P through a counter-clockwise angle θ about the origin of the coordinate system
XOY is equivalent to rotating these axes through a clockwise angle θ and leaving
the point P stationary. As shown in Fig. 5.6, the system XOY now becomes X′OY′.

The polar coordinates of point P in the XOY system are 〈r, α〉 and in the X′OY′
system are 〈r, β〉. The Cartesian coordinates of point P in the two systems are

x = r · cos α

y = r · sin α

“Comninos” — 2005/8/31 — 15:47 — page 170 — #6

170 Mathematical and Computer Programming Techniques for Computer Graphics

a

P

X

Y

q

Y �

X �

b

r .sin (b)

r .sin (a)

r .cos (b)

r .cos (a)
O

r

FIGURE 5.6. The coordinate system rotation.

and
x ′ = r · cos β

y′ = r · sin β

Given the trigonometric identities:

cos(a + b) = cos a · cos b − sin a · sin b
sin(a + b) = sin a · cos b + cos a · sin b

we can express x ′and y′ in terms of x and y to get

x ′ = r · cos β = r · cos(α + θ)

= r · (cos α · cos θ − sin α · sin θ)

= r · cos α · cos θ − r · sin α · sin θ

= x · cos θ − y · sin θ

and

y′ = r · sin β = r · sin(α + θ)

= r · (sin α · cos θ + cos α · sin θ)

= r · sin α · cos θ + r · cos α · sin θ

= x · sin θ + y · cos θ

Similarly, the rotation transformation relative to the origin through a clockwise
positive angle θ is given by

x ′ = x · cos θ + y · sin θ

y′ = −x · sin θ + y · cos θ
(5.9)

“Comninos” — 2005/8/31 — 15:47 — page 171 — #7

Two-Dimensional Transformations 171

P

X

Y

q
y

P¢

q

dx

FIGURE 5.7. A shearing transformation along the x-axis.

5.4.4 Shearing Transformation Along the x-Axis

This transformation involves shearing a point P along the x-axis thus modifying
its x coordinate while leaving its y coordinate unchanged. The shearing trans-
formation is defined in terms of the angle of shear θ , which is measured in a
counter-clockwise positive fashion. The effect of this transformation is to shear
the y-axis parallel to the x-axis. This transformation is defined as follows.

From Fig. 5.7 we have

tan θ = dx

y
∴ dx = y · tan θ

Thus

x ′ = x − dx = x − y · tan θ

y′ = y (5.10)

5.4.5 Shearing Transformation Along the y-Axis

This transformation involves shearing a point P along the y-axis thus modifying
its y coordinate while leaving its x coordinate unchanged. The shearing trans-
formation is defined in terms of the angle of shear θ , which is measured in a
counter-clockwise positive fashion. The effect of this transformation is to shear
the x-axis parallel to the y-axis. This transformation is defined as follows.

From Fig. 5.8 we have

tan θ = dy

x
∴ dy = x · tan θ

“Comninos” — 2005/8/31 — 15:47 — page 172 — #8

172 Mathematical and Computer Programming Techniques for Computer Graphics

P

X

Y
q

x

dy

P¢

q

FIGURE 5.8. A shearing transformation along the y-axis.

Thus

x ′ = x

y′ = y + dy = y + x · tan θ (5.11)

5.5 2D Composite Transformations

5.5.1 Reflection Transformations About One- or
Two-Coordinate Axes

Reflections about one or more of the axes of the coordinate system can be achieved
by applying a scaling transformation with either or both scaling factors having a
negative value (see Fig. 5.9).

P

X

Y

(a)

P¢

P¢ P¢

(c)

(d) (b)

FIGURE 5.9. Three reflection transformations.

“Comninos” — 2005/8/31 — 15:47 — page 173 — #9

Two-Dimensional Transformations 173

In Fig. 5.9, triangle (a) represents the original image, triangle (b) is the result
of a reflection about the x-axis, triangle (c) is the result of a reflection about the
y-axis and triangle (d) is the result of a reflection about the origin.

The reflection about the x-axis [case (b)] is defined as

x ′ = x · (+1)

y′ = y · (−1) (5.12)

The reflection about the y-axis [case (c)] is defined as

x ′ = x · (−1)

y′ = y · (+1) (5.13)

The reflection about the origin [case (d)] is defined as

x ′ = x · (−1)

y′ = y · (−1) (5.14)

If the scaling factors are other than (+1) or (–1) then scaling as well as reflection
takes place.

As we have seen above some non-primitive transformations can be achieved
by modifying the parameters of a primitive transformation. In general however,
composite transformations can only be achieved by applying a sequence of prim-
itive transformations one after another, i.e. by concatenating this sequence of
transformations.

Usually for a transformation problem that is too complex to solve in its current
domain we adopt the following procedure. First, through a series of primitive
transformation steps, we transform the geometry of the problem into a much sim-
pler domain defined around the origin of the coordinate space. Here the problem
can usually be solved using a primitive transformation. Then, having solved the
problem in this simpler domain we return the geometry to its original domain,
through a series of inverse transformation steps, i.e. by undoing the steps that
transformed the geometry from its original domain to the simpler domain.

5.5.2 Scaling Transformation About an Arbitrary Point

Scaling a point P = 〈x, y〉 by scale factors sx and sy about an arbitrary point
Pc = 〈xc, yc〉 is achieved through the following steps.

Step 1: Translate the arbitrary point to the origin

x1 = x − xc

y1 = y − yc

Step 2: Scale the point P1 about the origin

x2 = x1 · sx

y2 = y1 · sy

“Comninos” — 2005/8/31 — 15:47 — page 174 — #10

174 Mathematical and Computer Programming Techniques for Computer Graphics

P

X

Y

Pc P1

X

Y

Pc P2

X

Y

Pc

P3

X

Y

Pc

FIGURE 5.10. A scaling transformation about an arbitrary point.

Step 3: Translate the arbitrary point back to its original position

x3 = x2 + xc

y3 = y2 + yc

Observe that the third transformation is the inverse of the first transformation,
i.e. it undoes what the first transformation did.

These three transformations can be concatenated into a composite trans-
formation:

x3 = x2 + xc = x1 · sx + xc

y3 = y2 + yc = y1 · sy + yc

∴
x3 = (x − xc) · sx + xc

y3 = (y − yc) · sy + yc
(5.15)

5.5.3 Rotation Transformation About an Arbitrary Point

Rotating a point P = 〈x, y〉 through a counter-clockwise angle θ about an arbi-
trary point Pc = 〈xc, yc〉 is achieved through the following steps.

Step 1: Translate the arbitrary point to the origin

x1 = x − xc

y1 = y − yc

P

X

Y

Pc P1

X

Y

Pc
P2

X

Y

Pc

P3

X

Y

Pc

FIGURE 5.11. A rotation transformation about an arbitrary point.

“Comninos” — 2005/8/31 — 15:47 — page 175 — #11

Two-Dimensional Transformations 175

Step 2: Rotate the point P1 about the origin

x2 = x1 · cos θ − y1 · sin θ

y2 = x1 · sin θ + y1 · cos θ

Step 3: Translate the arbitrary point back to its original position

x3 = x2 + xc

y3 = y2 + yc

Observe that the third transformation is the inverse of the first transformation,
i.e. it undoes what the first transformation did.

These three transformations can be concatenated into a composite trans-
formation:

x3 = x2 + xc = x1 · cos θ − y1 · sin θ + xc

y3 = y2 + yc = x1 · sin θ + y1 · cos θ + yc

∴
x3 = (x − xc) · cos θ − (y − yc) · sin θ + xc

y3 = (x − xc) · sin θ + (y − yc) · cos θ + yc
(5.16)

5.5.4 Reflection Transformation About an Arbitrary Axis

Reflecting a point P = 〈x, y〉about an arbitrary axis passing through points Pa =
〈xa, ya〉 and Pb = 〈xb, yb〉 is achieved through the following steps, shown in
Fig. 5.12.

Step 1: Translate the arbitrary point Pa to the origin

x1 = x − xa

y1 = y − ya

P

X

Y

Pa

Pb

h

dx

dy

q

q

P

X

Y

Pa

Pb P1

X

Y

P2

X

Y

P3

X

Y

P4 X

Y

P5 X

Y

FIGURE 5.12. A reflection transformation about an arbitrary axis.

“Comninos” — 2005/8/31 — 15:47 — page 176 — #12

176 Mathematical and Computer Programming Techniques for Computer Graphics

Step 2: Rotate about the origin through a clockwise angle θ , so that the arbitrary
axis coincides with the x-axis

x2 = x1 · cos(−θ) − y1 · sin(−θ) = x1 · cos θ + y1 · sin θ

y2 = x1 · sin(−θ) + y1 · cos(−θ) = −x1 · sin θ + y1 · cos θ

Step 3: Reflect the point P2 about the x-axis

x3 = x2 · (+1)

y3 = y2 · (−1)

Step 4: Rotate about the origin through a counter-clockwise angle θ , so that the
arbitrary axis assumes its original angle with the x-axis

x4 = x3 · cos θ − y3 · sin θ

y4 = x3 · sin θ + y3 · cos θ

Step 5: Translate the arbitrary point Pa back to its original position

x5 = x4 + xa

y5 = y4 + ya

Observe that the fourth step is the inverse of the second step and that the fifth
step is the inverse of the first step.

From Fig. 5.12 we see that

dx = xb − xa

dy = yb − ya

and h =
√

d2
x + d2

y

Thus

cos θ = dx

h

sin θ = dy

h
Also recall that

cos(−θ) = cos θ

sin(−θ) = − sin θ

These five transformations can be concatenated to the following transforma-
tion:

x5 = x4 + xa

∴ x5 = x3 · cos θ − y3 · sin θ + xa

∴ x5 = x2 · cos θ + y2 · sin θ + xa

∴ x5 = (x1 · cos θ + y1 · sin θ) · cos θ

+ (−x1 · sin θ + y1 · cos θ) · sin θ + xa

“Comninos” — 2005/8/31 — 15:47 — page 177 — #13

Two-Dimensional Transformations 177

∴ x5 = [(x − xa) · cos θ + (y − ya) · sin θ] · cos θ

+ [− (x − xa) · sin θ + (y − ya) · cos θ] · sin θ + xa

∴ x5 = (x − xa) · cos2 θ + (y − ya) · sin θ · cos θ − (x − xa) · sin2 θ

+ (y − ya) · cos θ · sin θ + xa

∴ x5 =
[
(x − xa) · cos2 θ − (x − xa) · sin2 θ

]

+ [(y − ya) · sin θ · cos θ + (y − ya) · cos θ · sin θ] + xa

∴ x5 = (x − xa) · cos(2θ) + (y − ya) · sin(2θ) + xa

and

y5 = y4 + ya

∴ y5 = x3 · sin θ + y3 · cos θ + ya

∴ y5 = x2 · sin θ − y2 · cos θ + ya

∴ y5 = (x1 · cos θ + y1 · sin θ) · sin θ

− (−x1 · sin θ + y1 · cos θ) · cos θ + ya

∴ y5 = [(x − xa) · cos θ + (y − ya) · sin θ] · sin θ

− [− (x − xa) · sin θ + (y − ya) · cos θ] · cos θ + ya

∴ y5 = (x − xa) · cos θ · sin θ + (y − ya) · sin2 θ

+ (x − xa) · sin θ · cos θ − (y − ya) · cos2 θ + ya

∴ y5 = [(x − xa) · cos θ · sin θ + (x − xa) · sin θ · cos θ]

+
[
(y − ya) · sin2 θ − (y − ya) · cos2 θ

]
+ ya

∴ y5 = (x − xa) · sin(2θ) − (y − ya) · cos(2θ) + ya

Thus the concatenated transformation is given by

x5 = (x − xa) · cos(2θ) + (y − ya) · sin(2θ) + xa

y5 = (x − xa) · sin(2θ) − (y − ya) · cos(2θ) + ya (5.17)

5.6 Sign of the Angles in Transformations

In our discussion so far all the angles used in transformations were assumed to
be measured in a counter-clockwise positive fashion. This was a purely arbitrary
choice. Some writers choose to define their angles as being counter-clockwise
positive and others as being clockwise positive. This is a matter of taste and
different graphics libraries and systems do it differently. The important thing to
remember is that, in order to convert from one system to the other we just need to
negate the angles in our transformations recalling that

sin(−θ) = − sin θ

cos(−θ) = cos θ

tan(−θ) = − tan θ

“Comninos” — 2005/8/31 — 15:47 — page 178 — #14

178 Mathematical and Computer Programming Techniques for Computer Graphics

5.7 Some Important Observations

It is worth observing the following with regard to the analytical form of the trans-
formations that we have used so far.

1. A sequence of transformations can be concatenated into a single analytical
equation.

2. The ordering of the sequence of individual transformations must be preserved
in the concatenated transformation.

3. Concatenated transformations have a number of advantages over a sequence
of individual transformations:
i. they can be represented more compactly,

ii. they require fewer arithmetic operations than if we were to apply each in-
dividual transformation in sequence one after the other.

4. Concatenated transformations have one main disadvantage. The rules of con-
catenating transformations are quite complex.

In order to overcome this disadvantage of the concatenated transformations we
can represent transformations as matrices, then their concatenation reduces to a
matrix multiplication.

5.8 Matrix Representation of 2D Transformations

Two-dimensional transformations can be represented by a 3 × 3 matrix and 2D
points can be represented in homogeneous form by a three-element row or column
vector. (See Section 5.15 for a detailed discussion of the homogeneous form.)

There are two distinct and equivalent notations that can be used to represent the
transformation of a 2D point. The first notation is used most widely by mathe-
maticians, engineers and computer scientists around the world.

P ′ = P · T

where P and P ′ are the original and the transformed points, expressed in homo-
geneous form, and T is the square matrix representing the transformation. For a
2D transformation in this notation we would write

[
x ′, y′, 1

] = [x, y, 1] ·
⎡

⎣
t1,1 t1,2 t1,3
t2,1 t2,2 t2,3
t3,1 t3,2 t3,3

⎤

⎦

American computer scientists use an alternative notation

P ′ T = TT · PT

where PT and P ′ T are the transposed original and transformed points, respectively
and TT is the transpose of the square matrix representing the transformation. For

“Comninos” — 2005/8/31 — 15:47 — page 179 — #15

Two-Dimensional Transformations 179

a 2D transformation in this notation we would write
⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
t1,1 t2,1 t3,1
t1,2 t2,2 t3,2
t1,3 t2,3 t3,3

⎤

⎦ ·
⎡

⎣
x
y
1

⎤

⎦

Observe that as P ′ = P ′ T so is P · T = TT · PT.
More precisely, the transformation of a 2D point 〈x, y〉 to a new point

〈
x ′, y′〉

can then be represented by

[
x ′, y′, 1

] = [x, y, 1] ·
⎡

⎣
a d 0
b e 0
c f 1

⎤

⎦ (5.18a)

or alternatively by

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
a b c
d e f
0 0 1

⎤

⎦ ·
⎡

⎣
x
y
1

⎤

⎦ (5.18b)

where the 3 × 3 matrix completely specifies the transformation. As we have
seen in Section 3.11.4, those two representations are equivalent and may be used
interchangeably. The third element in the vector [x , y, 1] is added so that the
matrix and the vector are conformant for matrix multiplication. This product
yields a row/column vector that contains the transformed point

〈
x ′, y′〉. From Eq.

(5.18a) we get

[
x ′, y′, 1

] = [ax + by + c, dx + ey + f, 1] (5.19a)

Alternatively, from Eq. (5.18b) we get

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
ax + by + c
dx + ey + f

1

⎤

⎦ (5.19b)

In both the cases this reduces to

x ′ = ax + by + c
y′ = dx + ey + f

(5.20)

which requires only four multiplication and four addition operations. It would
therefore appear that we only need the first two columns/rows of the transforma-
tion matrix. However, the third column/row is necessary if we wish to concatenate
a sequence transformations by multiplying them together or to invert a transfor-
mation represented by a matrix. Recall that matrices have to be conformant in
order to be multiplied together and that we can only compute the inverse of a
square matrix.

“Comninos” — 2005/8/31 — 15:47 — page 180 — #16

180 Mathematical and Computer Programming Techniques for Computer Graphics

5.9 Matrix Representation of Primitive Transformations

The 2D primitive transformations are represented in matrix notation as follows.
Scaling Relative to the Origin

[
x ′, y′, 1

] = [x, y, 1] ·
⎡

⎣
sx 0 0
0 sy 0
0 0 1

⎤

⎦ (5.21a)

or alternatively by
⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
sx 0 0
0 sy 0
0 0 1

⎤

⎦ ·
⎡

⎣
x
y
1

⎤

⎦ (5.21b)

Translation

[
x ′, y′, 1

] = [x, y, 1] ·
⎡

⎣
1 0 0
0 1 0
dx dy 1

⎤

⎦ (5.22a)

or alternatively by
⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
1 0 dx

0 1 dy

0 0 1

⎤

⎦ ·
⎡

⎣
x
y
1

⎤

⎦ (5.22b)

Rotation About the Origin

[
x ′, y′, 1

] = [x, y, 1] ·
⎡

⎣
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤

⎦ (5.23a)

or alternatively by
⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦ ·
⎡

⎣
x
y
1

⎤

⎦ (5.23b)

Shearing the y-Axis Parallel to the x-Axis

[
x ′, y′, 1

] = [x, y, 1] ·
⎡

⎣
1 0 0

− tan θ 1 0
0 0 1

⎤

⎦ (5.24a)

or alternatively by
⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
1 − tan θ 0
0 1 0
0 0 1

⎤

⎦ ·
⎡

⎣
x
y
1

⎤

⎦ (5.24b)

“Comninos” — 2005/8/31 — 15:47 — page 181 — #17

Two-Dimensional Transformations 181

Shearing the x-Axis Parallel to the y-Axis:

[
x ′, y′, 1

] = [x, y, 1] ·
⎡

⎣
1 tan θ 0
0 1 0
0 0 1

⎤

⎦ (5.25a)

or alternatively by
⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
1 0 0

tan θ 1 0
0 0 1

⎤

⎦ ·
⎡

⎣
x
y
1

⎤

⎦ (5.25b)

5.10 Some Transformation Matrix Properties

A matrix representing a sequence of rotation and translation transformations is
called an orthogonal matrix and is of the form

T =
⎡

⎣
r1,1 r1,2 0
r2,1 r2,2 0
tx ty 1

⎤

⎦ or TT =
⎡

⎣
r1,1 r2,1 tx
r1,2 r2,2 ty

0 0 1

⎤

⎦

A unit square transformed by such matrices retains its original shape and size.
Such transformations are called rigid body transformations. In such matrices the
elements labelled ri, j are involved in the rotation transformations and the ele-
ments labelled tx and ty are involved in the translation transformations.

A matrix representing a sequence of rotation, translation, scaling, and shearing
transformations is called an affine transformation. A unit square transformed
by such a matrix may become a parallelogram. Affine transformations preserve
parallelism of lines but do not preserve the lengths of edges or the angles between
edges.

In such matrices the elements labelled ri, j are involved in the rotation transfor-
mations, the elements labelled tx and ty are involved in the translation transforma-
tions, the diagonal elements labelled ri, j are involved in the scale transformations
and the off-diagonal elements labelled r2,1 and r1,2 are involved in the shearing
transformations.

5.11 Concatenation of Transformation Matrices

If we wish to apply a sequence of transformations t1, t2, . . . , tn to a point 〈x, y〉,
the transformed point

〈
x ′, y′〉 is given by
〈
x ′, y′〉 = tn (· · · t2 (t1 (〈x, y〉)))

= tn ◦ · · · ◦ t2 ◦ t1 (〈x, y〉) (5.26)

To represent this concatenated transformation in matrix form we must represent
each transformation by an individual matrix and then concatenate these transfor-
mations by multiplying the corresponding matrices together in the right order.

“Comninos” — 2005/8/31 — 15:47 — page 182 — #18

182 Mathematical and Computer Programming Techniques for Computer Graphics

The order in which we multiply these matrices is related to the way we choose to
represent a point as a row or a column vector. If we choose to represent a point
by a row vector, then Eq. (5.26) can be represented in matrix form as follows.

[
x ′, y′, 1

] = [x, y, 1] · T1 · T2 · · · · · Tn = [x, y, 1] · T (5.27a)

Alternatively, if we choose to represent a point by a column vector, then Eq.
(5.26) can be represented in matrix form as follows.

⎡

⎣
x ′
y′
1

⎤

⎦ = TT
n · · · · · TT

2 · TT
1 ·

⎡

⎣
x
y
1

⎤

⎦ = TT ·
⎡

⎣
x
y
1

⎤

⎦ (5.27b)

So, if we choose the row representation of a point we must post-multiply the
matrices in sequence and if we choose the column representation of a point we
must pre-multiply the transpose matrices in sequence.

As an example let us represent in matrix form the transformation of rotation
about an arbitrary point which we have already examined in analytical form in
Section 5.5.3.

First let us represent the point 〈x, y〉 as a row vector. Recall that this transfor-
mation was achieved through the following three steps.

Step 1: Translate the arbitrary point to the origin

[x1, y1, 1] = [x, y, 1] ·
⎡

⎣
1 0 0
0 1 0

−xc −yc 1

⎤

⎦

Step 2: Rotate the point P1 about the origin

[x2, y2, 1] = [x1, y1, 1] ·
⎡

⎣
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤

⎦

Step 3: Translate the arbitrary point back to its original position

[x3, y3, 1] = [x2, y2, 1] ·
⎡

⎣
1 0 0
0 1 0
xc yc 1

⎤

⎦

These three transformations can be concatenated to

[x3, y3, 1]

= [x, y, 1] ·
⎡

⎣
1 0 0
0 1 0

−xc −yc 1

⎤

⎦ ·
⎡

⎣
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤

⎦ ·
⎡

⎣
1 0 0
0 1 0
xc yc 1

⎤

⎦

= [x, y, 1] ·
⎡

⎣
cos θ sin θ 0

− sin θ cos θ 0
−xc cos θ + yc sin θ −xc sin θ − yc cos θ 1

⎤

⎦ ·
⎡

⎣
1 0 0
0 1 0
xc yc 1

⎤

⎦ ,

“Comninos” — 2005/8/31 — 15:47 — page 183 — #19

Two-Dimensional Transformations 183

= [x, y, 1] ·
⎡

⎣
cos θ sin θ 0

− sin θ cos θ 0
−xc cos θ + yc sin θ + xc −xc sin θ − yc cos θ + yc 1

⎤

⎦

= [x cos θ − y sin θ − xc cos θ + yc sin θ + xc,

x sin θ + y cos θ − xc sin θ − yc cos θ + yc, 1]

= [(x − xc) · cos θ − (y − yc) · sin θ + xc,

(x − xc) · sin θ + (y − yc) · cos θ + yc, 1]

Thus,

x3 = (x − xc) · cos θ − (y − yc) · sin θ + xc

y3 = (x − xc) · sin θ + (y − yc) · cos θ + yc

Alternatively, representing the point 〈x, y〉 as a column vector leads to the fol-
lowing three transformations.

Step 1: Translate the arbitrary point to the origin

⎡

⎣
x1
y1
1

⎤

⎦ =
⎡

⎣
1 0 −xc

0 1 −yc

0 0 1

⎤

⎦ ·
⎡

⎣
x
y
1

⎤

⎦

Step 2: Rotate the point P1 about the origin

⎡

⎣
x2
y2
1

⎤

⎦ =
⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦ ·
⎡

⎣
x1
y1
1

⎤

⎦

Step 3: Translate the arbitrary point back to its original position

⎡

⎣
x3
y3
1

⎤

⎦ =
⎡

⎣
1 0 xc

0 1 yc

0 0 1

⎤

⎦ ·
⎡

⎣
x2
y2
1

⎤

⎦

These three transformations can be concatenated to
⎡

⎣
x3
y3
1

⎤

⎦ =
⎡

⎣
1 0 xc
0 1 yc
0 0 1

⎤

⎦ ·
⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦ ·
⎡

⎣
1 0 −xc
0 1 −yc
0 0 1

⎤

⎦ ·
⎡

⎣
x
y
1

⎤

⎦

=
⎡

⎣
1 0 xc
0 1 yc
0 0 1

⎤

⎦ ·
⎡

⎣
cos θ − sin θ − cos θ xc + sin θyc
sin θ cos θ − sin θ xc − cos θyc

0 0 1

⎤

⎦ ·
⎡

⎣
x
y
1

⎤

⎦

“Comninos” — 2005/8/31 — 15:47 — page 184 — #20

184 Mathematical and Computer Programming Techniques for Computer Graphics

=
⎡

⎣
cos θ − sin θ − cos θ xc + sin θ yc + xc
sin θ cos θ − sin θ xc − cos θ yc + yc

0 0 1

⎤

⎦ ·
⎡

⎣
x
y
1

⎤

⎦

=
⎡

⎣
cos θ x − sin θ y − cos θ xc + sin θyc + xc
sin θ x + cos θ y − sin θ xc − cos θ yc + yc

1

⎤

⎦

∴ x3 = (x − xc) · cos θ − (y − yc) · sin θ + xc

y3 = (x − xc) · sin θ + (y − yc) · cos θ + yc

Observe that the results are identical in both the cases.

5.12 Local Frame and Global Frame Transformations

We can perform two different types of transformation: global transformations and
local transformations. Global transformations are performed and expressed with
respect to the global frame of reference or world space origin and axes, while
local transformations are performed and expressed with respect to the local frame
of reference or local space origin and axes.

When a global transformation is applied to an entity the origin and axes of the
global space remain unchanged. In contrast, when a local transformation is ap-
plied to an entity the origin and axes of its local frame can be thought as reflecting
the transformations applied to the entity itself. As an entity is translated with a
local translation, its local frame origin and axes will also be translated together
with the entity and when an entity is rotated with a local rotation, its local frame
origin and axes will also be rotated.

To better understand the difference between global and local transformations
let us consider the concatenation of the same two transformations applied in the
global and local frames, respectively. Figure 5.13 shows the concatenation of a
global translation by 3 units along the x-axis followed by a global rotation by 45◦
about the world space origin, while Fig. 5.14 shows the concatenation of a local

P

X

Y

P ¢

X

Y
P ¢¢

X

Y

45�

FIGURE 5.13. The concatenation of a global translation by 3 units along the x-axis fol-
lowed by a global rotation of 45 ˚ .

“Comninos” — 2005/8/31 — 15:47 — page 185 — #21

Two-Dimensional Transformations 185

P

X

Y

XL

YL P ′

X

Y

XL

YL

P ′′

X

Y

XLYL

45�

FIGURE 5.14. The concatenation of a local translation by 3 units along the x-axis followed
by a local rotation of 45 ˚ .

translation by 3 units along the x-axis followed by a local rotation by 45◦ about
the local space origin. Observe that after the local translation the local frame of
the triangle has also been translated and that after the local rotation its local frame
has also been rotated.

Below we show how local and global composite transformations can be
constructed by pre- or post-concatenating a transformation into the current trans-
formation matrix. We will discover that the results are symmetrical for the two
alternative matrix notations introduced in Section 5.8.

5.12.1 Concatenation of Global Transformations

Here we denote the global transformation matrices by Gi and the concatenated
transformation matrix by T. As we have already seen in Section 5.11, global
transformations are concatenated in ascending order of application (i.e. from the
least recently applied to the most recently applied) as follows.
When using the P ′ = P · T notation

P ′ = (((P · G1) · G2) · G3)

= P · (G1 · G2 · G3)

= P · T

Thus, the concatenated global transformation is constructed by post-multiplying
the individual transformations from left to right in ascending order of application,
i.e.

T = (G1 · G2) · G3

When using the P ′ T = TT · PT notation

P ′ T = (
GT

3 · (
GT

2 · (
GT

1 · PT
)))

= (
GT

3 · GT
2 · GT

1

) · PT

= TT · PT

“Comninos” — 2005/8/31 — 15:47 — page 186 — #22

186 Mathematical and Computer Programming Techniques for Computer Graphics

Thus, the concatenated global transformation is constructed by pre-multiplying
the individual transformations from right to left in ascending order of application,
i.e.

TT = GT
3 ·

(
GT

2 · GT
1

)

5.12.2 Concatenation of Local Transformations

Here we denote the local transformation matrices by Li and the concatenated
transformation matrix by T. Local transformations are concatenated in descend-
ing order of application (i.e. from the most recently applied to the least recently
applied) as follows.

When using the P ′ = P · T notation

P ′ = (((P · L3) · L2) · L1)

= P · (L3 · L2 · L1)

= P · T

Thus, the concatenated local transformation is constructed by pre-multiplying the
individual transformations from right to left in ascending order of application, i.e.

T = L3 · (L2 · L1)

When using the P ′ T = TT · PT notation:

P ′ T = (
LT

1 · (
LT

2 · (
LT

3 · PT
)))

= (
LT

1 · LT
2 · LT

3

) · PT

= TT · PT

Thus, the concatenated local transformation is constructed by post-multiplying
the individual transformations from left to right in ascending order of application,
i.e.

TT =
(

LT
1 · LT

2

)
· LT

3

5.13 Transformations of the Frame of Reference or
Coordinate System

All the transformations we have examined so far are transformations of a point
relative to a given frame of reference. An alternative way of viewing such trans-
formations is to think of the point in question remaining stationary while its frame
of reference is transformed by the inverse transformation. Thus transforming a
point P by a transformation matrix T will produce the same result as transforming
its frame of reference by the transformation matrix T−1. In Fig. 5.15, point P in
diagram (a) is transformed to point P ′ in diagram (b) by translating it by 2 units

“Comninos” — 2005/8/31 — 15:47 — page 187 — #23

Two-Dimensional Transformations 187

P

X

Y

(a) (b) (c)

O

P¢

X

Y

O

P

X¢

Y¢

O¢
O X

Y

FIGURE 5.15. The transformation of a point vs. the transformation of the frame of refer-
ence.

along the x-axis and by 1 unit along the y-axis. Point P in diagram (c) remains
stationary while its frame of reference is translated by –2 units along the x-axis
and by –1 unit along the y-axis. Observe that after these translations, point P ′ in
the {X, Y, O} frame of reference and point P in the

{
X′, Y′, O′} frame of reference

have identical coordinates. Thus, it is apparent that these two transformations are
equivalent.

5.14 Viewing Transformation

In computer graphics we normally define our picture in the world coordinate sys-
tem. This system can have units to fit the particular application. When we view
our picture we may choose to project the entire image or a small rectangular area
of the image onto the entire screen or a small rectangular area of the screen.

The process of mapping a world coordinate system point onto the screen co-
ordinate system point is called the viewing transformation. The world coordinate
system is chosen to suit the application, while the screen coordinate system is
fixed once the output device has been selected.

The viewing transformation is composed of two simpler transformations:

• the windowing transformation,
• the viewporting transformation.

The viewing transformation can be represented by a 3 × 3 matrix.

5.14.1 Windowing Transformation

The windowing transformation is named so because it involves specifying a win-
dow which surrounds a rectangular area of the picture. Only the portion of the
picture which falls inside the window will be displayed on the screen. The win-
dow defines its own coordinate system called the window coordinate space. This
coordinate space has its origin at the lower left corner of the window. The win-
dow coordinate system is sometimes called the normalised coordinate system as

“Comninos” — 2005/8/31 — 15:47 — page 188 — #24

188 Mathematical and Computer Programming Techniques for Computer Graphics

XW

World coordinate system Nomalised coordinate system Screen coordinate system

Window

Normalised window
viewport
Screen

YW

XN

YN

XS

YS

W

N
S

wl wr

wb

wt

vl vr
vb

vt

xw

yw

yn

xn

ys

xs

FIGURE 5.16. The world, the normalised and the screen coordinate systems.

it transforms the rectangular window defined in the world coordinate system into
a square window defined in the window coordinate system with dimensions 1 unit
by 1 unit.

Let wl , wr , wb and wt be the left, right, bottom and top limits of the window,
defined in the world coordinate space. Also, let W = [xw, yw] be a point defined
in the world coordinate system (see Fig. 5.16).

The world coordinate system point W can be mapped into the window coordi-
nate system (normalised coordinate system) point N = [xn, yn] as follows.

xn = xw − wl

wr − wl

yn = yw − wb

wt − wb
(5.28)

Thus points inside the window have normalised coordinates, i.e.

0 ≤ xn ≤ 1 and 0 ≤ yn ≤ 1 (5.29)

5.14.2 Viewporting Transformation

In addition to the window we can also define a viewport. The viewport is a rec-
tangular area of the screen where we wish to display the contents of the window.
It is often useful to specify a viewport which covers only a small portion of the
screen, so that we can leave room for command menus and system messages.

The mapping from a window coordinate system point N to a screen coordinate
system point S = [xs, ys] is called the viewporting transformation.

Let vl , vr , vb and vt be the left, right, bottom and top limits of the viewport,
defined in the screen coordinate space (see Fig. 5.16).

“Comninos” — 2005/8/31 — 15:47 — page 189 — #25

Two-Dimensional Transformations 189

The viewporting transformation is defined as follows.

xs = xn · (vr − vl) + vl

ys = yn · (vt − vb) + vb (5.30)

So the points inside the viewport have coordinates in the range

vl ≤ xs ≤ vr and vb ≤ ys ≤ vt (5.31)

The windowing and the viewporting transformations can be concatenated into
a composite viewing transformation as follows.

xs = xw − wl

wr − wl
· (vr − vl) + vl

ys = yw − wb

wt − wb
· (vt − vb) + vb

which can be rewritten as

xs = (xw − wl) · vr − vl

wr − wl
+ vl

ys = (yw − wb) · vt − vb

wt − wb
+ vb (5.32)

which expands to

xs = xw · vr − vl

wr − wl
− wl · vr − vl

wr − wl
+ vl

ys = yw · vt − vb

wt − wb
− wb · vt − vb

wt − wb
+ vb

which can be rewritten as

xs = xw · sx + dx

ys = yw · sy + dy (5.33)

where

sx = vr − vl

wr − wl

dx = −wl · vr − vl

wr − wl
+ vl

(5.34)
sy = vt − vb

wt − wb

dy = −wb · vt − vb

wt − wb
+ vb

“Comninos” — 2005/8/31 — 15:47 — page 190 — #26

190 Mathematical and Computer Programming Techniques for Computer Graphics

We only need to compute the values of sx , dx , sy and dy once, when the win-
dow and the viewport are defined. And so we can transform every point in
our picture by a computation involving only two multiplication and two addition
operations.

Clipping can be applied either to the screen space points using the viewport
perimeter as the clipping boundary or to the world space points using the window
perimeter as the clipping boundary.

The analytical equations, developed above, can be rewritten in matrix form as
follows.

[xs, ys, 1] = [xw, yw, 1] ·
⎡

⎣
sx 0 0
0 sy 0
dx dy 1

⎤

⎦ (5.34a)

or alternatively as
⎡

⎣
xs

ys

1

⎤

⎦ =
⎡

⎣
sx 0 dx

0 sy dy

0 0 1

⎤

⎦ ·
⎡

⎣
xw

yw

1

⎤

⎦ (5.34b)

The viewing transformation matrix can be concatenated with the matrix con-
taining all other transformations, thus allowing us to apply all transformations
with one matrix multiplication operation. In this case, clipping must be applied to
the screen space points using the viewport perimeter as the clipping boundary.

5.15 Homogeneous Coordinates

The homogeneous representation of an entity defined in n-dimensional space is
another entity defined in (n+1)-dimensional space. The mapping from n-space to
(n + 1)-space is a one-to-many mapping. Thus, the n-space entity has an infinity
of images (representations) in (n + 1)-space. The inverse mapping, which is a
many-to-one mapping, is a central projection that uses the origin as its centre of
projection.

A point/vector in n-dimensional Euclidean space can be represented as an
(n + 1)-dimensional homogeneous space point/vector by the introduction of an
additional coordinate or component that also acts as a scale factor.

The homogeneous representation of a 2D point P = [
x y

]
is the homoge-

neous point P h = [
w · x w · y w

]
, where w is the homogeneous coordinate

which is a non-zero scalar frequently known as the weight of the point. By se-
lecting different values for w we produce different homogeneous mappings of the
original point. Thus, the homogeneous points

P h
1 = [

w1 · x w1 · y w1
]
, P h

2 = [
w2 · x w2 · y w2

]
,

P h
3 = [

w3 · x w3 · y w3
]
, . . .

are all valid homogeneous mappings of the point P = [
x y

]
and there is an

infinity of such mappings.

“Comninos” — 2005/8/31 — 15:47 — page 191 — #27

Two-Dimensional Transformations 191

Two homogeneous points P h
1 = [

X1 Y1 W1
]

and P h
2 = [

X2 Y2 W2
]

are said to be equal if and only if P h
2 is a multiple of P h

1, i.e. if and only if

X2 = α · X1

Y2 = α · Y1

W2 = α · W1

For example, P h
1 = [

1 3 4
]

and P h
2 = [

2 6 8
]

are equal as P h
2 = 2P h

1.
If we take all the triplets representing the same homogeneous point, i.e.,[
(t · w) · x (t · w) · y (t · w)

]
where t �= 0, they represent a line in 3D

Euclidean space E3. From Fig. 5.17 we can see that the E2 point P maps onto an
infinity of homogeneous points forming a line in E3. Thus, we say that a point in
E2 maps onto a line in homogeneous space (in this case E3).

A homogeneous point is said to be homogenised if we divide all its compo-
nents by its W component, thus obtaining a homogeneous point of the form[

X
W

Y
W 1

]
. Geometrically this represents a central projection of the point[

X Y W
]

onto the hyperplane W = 1, using the origin as the centre of
projection. Thus, the set of all homogenised points forms the W = 1 hyperplane.

Given a homogeneous point P h = [
X Y W

]
we can map it back to the

original 2D Euclidean point P = [
x y

]
(from which it has originated) by first

homogenising P h to obtain
[

X
W

Y
W 1

]
and then ignoring its third component

to obtain P = [
X
W

Y
W

]
(as seen in Fig. 5.17), where

x = X

W

y = Y

W
(5.35)

P1
h

X

YP

W=1 Hyperplane

W
P2

h

P3
h

W = 1

x

y

P h

FIGURE 5.17. The 3D homogeneous space for E2.

“Comninos” — 2005/8/31 — 15:47 — page 192 — #28

192 Mathematical and Computer Programming Techniques for Computer Graphics

This process is called a projective map H and is the inverse of the mapping that
originally mapped point P onto the homogeneous point P h .

In 2D Euclidean space both points and vectors are represented by two com-
ponents and can only be distinguished by their context. They are however quite
different. A vector has a magnitude and a direction, but no fixed position, while a
point has a position but no magnitude or direction.

By examining Eq. (5.35) we can see that as W approaches 0 both x and y
approach infinity from a particular direction. Thus, we may think of the homo-
geneous point

[
w · x w · y w

]
as representing the point

[
x y

]
and the

homogeneous point
[

x y 0
]

as representing the vector
[

x y
]
. So, in ho-

mogeneous space we have a way of distinguishing between points and vectors.
Three-dimensional Euclidean points/vectors are represented analogously al-

though their homogeneous representation is more difficult to visualise. More
formally, a point/vector P = [

x y z
]

in 3D Euclidean space may be rep-
resented by the 4D homogeneous point

P h =
{ [

w · x w · y w · z w
]
,

[
x y z 0

]
,

w �= 0
w = 0

(5.36)

The original point/vector P may be retrieved from its homogeneous represen-
tation P h by using the projective map H, which is defined as

H
([

X Y Z W
]) =

{ [
X
W

Y
W

Z
W

]
, W �= 0

direction
([

X Y Z
])

, W = 0
(5.37)

Thus, the projective map H uses the origin as the centre of projection to project
the homogeneous point/vector P h onto the hyperplane W = 1 in order to retrieve
the 3D point/vector P.

P = H
(

P h
)

(5.38)

5.16 A Simple C Library for 2D Transformations

See Appendix 3.

6

Two-Dimensional Clipping

Clipping is a process that subdivides each element of a picture to be displayed
into its visible and invisible parts, thus allowing us to discard the invisible parts
of the picture. In 2D, the clipping process can be applied to a variety of graphics
primitives such as points, lines, polygons and curves. Clipping is performed with
respect to a clipping boundary, which may be a convex or concave polygonal
boundary. Clipping to a convex polygonal boundary is much simpler, thus we will
start our discussion by looking at various algorithms that clip graphics primitives
against a convex polygonal boundary. In its simplest form, a convex polygonal
boundary consists of the four edges of the world window or the screen viewport.
In this case, xl (x-left), xr (x-right), yb (y-bottom) and yt (y-top) represent the
four extremities of this rectangular clipping boundary.

6.1 Clipping a 2D Point to a Rectangular Clipping Boundary

Clipping 2D points to a rectangular clipping boundary is very simple. All we
have to do is to determine whether the point 〈x, y〉 satisfies the following four
inequalities.

xl ≤ x ≤ xr and yb ≤ y ≤ yt (6.1)

If the point satisfies all four inequalities, then it is visible otherwise it is invisible
(see Fig. 6.1).

The following C Boolean function clips a point to a rectangular clipping
boundary.

/* Define the Boolean type and constants */

typedef unsigned char boolean_t;

boolean_t clip_point(double x, double y,
double xl, double xr, double yb, double yt)

{

193

194 Mathematical and Computer Programming Techniques for Computer Graphics

Clipping boundary

X

Y

P

xl xr

yb

yt

y

x

FIGURE 6.1. Clipping a point to a rectangular clipping boundary.

return((boolean_t) ((xl <= x) && (x <= xr) &&
(yb <= y) && (y <= yt));

} /* clip_point */

This function provides us with a very simple method of clipping primitives on a
point by point basis. It would however be quite inappropriate to clip primitives by
decomposing them into points and using this function to determine their visibility.
The clipping process would take far too long and leave the primitives in a form
no longer suitable for a line-drawing display. We must instead attempt to clip
different primitives by developing more powerful clipping algorithms that can
determine the visible and invisible portions of line segments and polygons.

6.2 Clipping a 2D Line Segment to a Rectangular Clipping
Boundary

Figure 6.2 shows a number of different attitudes that a straight line segment may
assume with respect to a rectangular clipping boundary. Notice that the lines that

xl xr

yb

yt

FIGURE 6.2. Examples of clipped line segments.

Two-Dimensional Clipping 195

are partially visible are divided by the clipping boundary into one or two invisible
segments but only one visible segment. It is an extremely useful fact that clipping
to a convex clipping boundary never generates more than one visible segment of
a straight line. This means that for a partially visible line segment we have to
determine its new end points as it enters and/or leaves the clipping region.

An efficient line-clipping algorithm has to determine whether a line segment
is entirely within the clipping boundary or entirely outside the clipping boundary
and dispense with such cases quickly. If however a part of the line segment falls
within the clipping boundary and one or two parts lie outside it, then the algo-
rithm has to determine the point or points of intersection of the line segment with
one or more edges of the clipping boundary. Given that the line segment to be
clipped has endpoints P1 = 〈x1, y1〉 and P2 = 〈x2, y2〉, the coordinates of the
point of intersection Pi = 〈xi , yi 〉 with each of the rectangular clipping boundary
extremities are computed as follows.

The intersection of the line segment
−−→
P1P2 with the left clipping boundary is

shown in Fig. 6.3a. Here the x coordinate of the point of intersection is

xi = xl

From the similar triangles in this figure we have

yi − y1

y2 − y1
= xl − x1

x2 − x1

∴ yi − y1 = xl − x1

x2 − x1
(y2 − y1)

Thus
xi = xl

yi = xl − x1

x2 − x1
(y2 − y1) + y1

(6.2)

The intersection of the line segment
−−→
P1P2 with the right clipping boundary is

shown in Fig. 6.3b. Here the x coordinate of the point of intersection is

xi = xr

From the similar triangles in this figure we have

yi − y1

y2 − y1
= xr − x1

x2 − x1

∴ yi − y1 = xr − x1

x2 − x1
(y2 − y1)

Thus
xi = xr

yi = xr − x1

x2 − x1
(y2 − y1) + y1

(6.3)

196 Mathematical and Computer Programming Techniques for Computer Graphics

x1,y1

xl

(a) (b)

(d)(c)

x2 ,y2
x2 ,y2

x2 ,y2x2 ,y2

xi ,yi
xi ,yi

xi ,yixi ,yi

x1,y1

x1,y1x1,y1

xr

yb
yt

FIGURE 6.3. Intersections of a line segment with the four clipping boundaries.

The intersection of the line segment
−−→
P1P2 with the bottom clipping boundary

is shown in Fig. 6.3c. Here the y coordinate of the point of intersection is

yi = yb

From the similar triangles in this figure we have

xi − x1

x2 − x1
= yb − y1

y2 − y1

∴ xi − x1 = yb − y1

y2 − y1
(x2 − x1)

Thus
yi = yb

xi = yb − y1

y2 − y1
(x2 − x1) + x1

(6.4)

Finally, the intersection of the line segment
−−→
P1P2 with the top clipping bound-

ary is shown in Fig. 6.3d. Here the y coordinate of the point of intersection is

yi = yt

Two-Dimensional Clipping 197

From the similar triangles in this figure we have

xi − x1

x2 − x1
= yt − y1

y2 − y1

∴ xi − x1 = yt − y1

y2 − y1
(x2 − x1)

Thus

yi = yt

xi = yt − y1

y2 − y1
(x2 − x1) + x1 (6.5)

6.3 The Cohen and Sutherland 2D Line-Clipping Algorithm

The Cohen and Sutherland 2D line-clipping algorithm clips a line segment
−−→
P1P2

to a rectangular clipping boundary defined by its four extremities: xl , xr , yb and
yt . This algorithm speeds up the decision that allows us to reject a line segment
as being entirely invisible or accept it as being entirely visible. It achieves this by
the following procedure.

The edges of the clipping region are extended so that they divide the plane into
nine regions, as shown in Fig. 6.4. Each of these regions is given a 4-bit code and
the two endpoints of the line segment

−−→
P1P2 are assigned a code according to the

region they are in.
The 4-bit codes have the following meaning when set:

1st bit (least significant bit) being set indicates that the point is to the left of the
left clipping edge xl

2nd bit indicates that the point is to the right of the right clipping edge xr
3rd bit indicates that the point is to the bottom of the bottom clipping edge yb
4th bit (most significant bit) indicates that the point is to the top of the top clipping

edge yt

xl xr

yb

yt

10001001 1010

00000001 0010

0101 0100 0110

FIGURE 6.4 The 4-bit region codes of the Cohen and Sutherland 2D line-clipping
algorithm.

198 Mathematical and Computer Programming Techniques for Computer Graphics

R10001001 1010

00000001 0010

0101 0100 0110

R

R
A

R

R

R

??

?

FIGURE 6.5. Examples of trivial acceptance and trivial rejection.

If the 4-bit codes of both endpoints are zero, then the line segment is entirely
inside the clipping boundary. This is known as the trivial acceptance case. In
Fig. 6.5, the line segment labelled A can be trivially accepted as being visible in
its entirety.

If the bit-wise and of the two 4-bit codes is non-zero, then the line segment is
entirely outside the clipping region. This is known as the trivial rejection case.
In Fig. 6.5, the line segments labelled R can be trivially rejected as being entirely
invisible.

Finally, if the line segment can not be eliminated by either of these tests, then
it must be subdivided by intersecting it with one of the clipping boundary edges
and the two tests repeated. This process may have to be repeated a number of
times. In Fig. 6.5, the line segments labelled ? can neither be trivially accepted
nor trivially rejected even though they might be totally invisible.

Algorithm 6.1 outlines the steps of the Cohen and Sutherland 2D line-clipping
algorithm.

1. c1 ←compute the 4-bit code for P1;
c2 ←compute the 4-bit code for P2;

2. if (c1 = 0) and (c2 = 0) then
{
trivially accept the line segment;
done;

}
3. if (c1 bit − wise AN D c2) then

{
trivially reject the line segment;
done;

}
4. if (c1 = 0) then c = c2;

else c = c1;

Two-Dimensional Clipping 199

5.if the first bit of c is set then
{
compute the point of intersection 〈xi , yi 〉 of the line
segment with the left clipping boundary;
goto step 9;

}
6.if the second bit of c is set then

{
compute the point of intersection 〈xi , yi 〉 of the line
segment with the right clipping boundary;
goto step 9;

}
7.if the third bit of c is set then

{
compute the point of intersection 〈xi , yi 〉 of the line
segment with the bottom clipping boundary;
goto step 9;

}
8.if the fouth bit of c is set then

{
compute the point of intersection 〈xi , yi 〉 of the line
segment with the top clipping boundary;
goto step 9;

}
9.if (c = c1) then

{
x1 ← xi ;
y1 ← yi ;
c1 ←recompute the 4-bit code for this new point;
goto step 2;

}
else
{

x2 ← xi ;
y2 ← yi ;
c2 ←recompute the 4-bit code for this new point;
goto step 2;

}

Algorithm 6.1 The Cohen and Sutherland 2D line-clipping algorithm.

The following C functions implement the Cohen and Sutherland 2D line-
clipping algorithm.

/*
* Common constants and typedefs.

*/

typedef unsigned char boolean_t;

#define False (boolean_t) 0
#define True (boolean_t) 1

200 Mathematical and Computer Programming Techniques for Computer Graphics

/*
* Constants and typedef for Cohen and Sutherland 2D line-clipping

* routine.

*/

#define small_t 0.000000005
typedef unsigned char region_code_t;

#define left_region ((region_code_t) 1)
#define right_region ((region_code_t) 2)
#define bottom_region ((region_code_t) 4)
#define top_region ((region_code_t) 8)

/*---*/

void cs_get_region_code
(
double xl, /* clipping Boundary Limits (In) */
double yb,
double xr,
double yt,
double x, /* Test Point (In) */
double y,
region_code_t *c /* Region code (Out) */
)
{

*c = 0;

if (x < xl) *c = left_region; else
if (x > xr) *c = right_region;

if (y < yb) *c |= bottom_region; else
if (y > yt) *c |= top_region;

} /* cs_get_region_code */

/*---*/

boolean_t cs_clip_line
(
double *x1, /* Test Line (In/Out) */
double *y1,
double *x2,
double *y2,
double xl, /* c1ipping Boundary Limits (In) */
double yb,
double xr,
double yt
)
{

region_code_t c, c1, c2;
double x, y, t;

Two-Dimensional Clipping 201

cs_get_region_code(xl, yb, xr, yt, *x1, *y1, &c1);
cs_get_region_code(xl, yb, xr, yt, *x2, *y2, &c2);

while ((c1 != 0) || (c2!= 0))
{
if ((c1 & c2) != 0) return(False); /* Trivial Rejection */
/*
* The line segment may be partially inside the c1ipping boundary.

*/

if (c1 == 0) c = c2;
else c = c1;

if (c & left_region)
{
/*
* Compute the intersection with the xl boundary edge.

*/

t = *x2 - *x1;

if (fabs(t) < small_t) t = small_t;

y = (xl - *x1) / t * (*y2 - *y1) + *y1;
x = xl;

}
else

if (c & right_region)
{
/*
* Compute the intersection with the xr boundary edge.

*/

t = *x2 - *x1;

if (fabs(t) < small_t) t = small_t;

y = (xr - *x1) / t * (*y2 - *y1) + *y1;
x = xr;
}

else

if (c & bottom_region)
{
/*
* Compute the intersection with the yb boundary edge.

*/

t = *y2 - *y1;

if (fabs(t) < small_t) t = small_t;

x = (yb - *y1) / t * (*x2 - *x1) + *x1;

202 Mathematical and Computer Programming Techniques for Computer Graphics

y = yb;
}
else

if (c & top_region)
{
/*
* Compute the intersection with the yt boundary edge.

*/

t = *y2 - *y1;

if (fabs(t) < small_t) t = small_t;

x = (yt - *y1) / t * (*x2 - *x1) + *x1;
y = yt;
}

if (c == c1)
{

*x1 = x;

*y1 = y;
cs_get_region_code(xl, yb, xr, yt, x, y, &c1);
}

else
{

*x2 = x;

*y2 = y;
cs_get_region_code(xl, yb, xr, yt, x, y, &c2);
}

} /* while */

return(True);

} /* cs_clip_line */

6.4 2D Polygon Clipping

If we wish to display a polygon in line drawn form, we can clip each of its edges in
sequence and display their visible portions. For a polygon that is partially visible
this process will result in a series of disconnected edges, as seen in Fig. 6.6b.
If, on the other hand, we wish to display a polygon as an enclosed area filled
with colour, the polygon-clipping process must produce a closed polygon. To do
so it must piece together the visible segments of the original polygon edges and
sections of the clipping boundary edges, as seen in Fig. 6.6c.

An elegant solution to the polygon-clipping problem has been suggested in a
paper by Ivan Sutherland and Gary Hodgman [Sutherland 74].

Two-Dimensional Clipping 203

(a) (b) (c)

FIGURE 6.6 Edge and polygon clipping: (a) unclipped polygon, (b) edge clipping, (c)
polygon clipping.

6.4.1 The Sutherland and Hodgman Polygon-Clipping
Algorithm

The Sutherland and Hodgman algorithm allows us to clip a convex or concave
polygon to a convex polygonal clipping boundary (i.e. we are not restricted to
a rectangular clipping boundary). The algorithm abandons the idea of clipping
each separate edge of the polygon against all clipping boundaries in sequence in
favour of clipping the entire polygon against each clipping boundary in sequence,
as shown in Fig. 6.7.

(a) (b) (c)

(d) (e) (f)

FIGURE 6.7 Clipping against each clipping boundary in turn: (a) the unclipped polygon,
(b) clipping against the top boundary, (c) clipping against the right boundary, (d) clipping
against the bottom boundary, (e) clipping against the left boundary, (f) the clipped polygon.

204 Mathematical and Computer Programming Techniques for Computer Graphics

To facilitate the description of the Sutherland and Hodgman polygon-clipping
algorithm let us first introduce some terminology. The input polygon, i.e. the
polygon to be clipped, is referred to as the unclipped polygon. The polygonal
clipping boundary, against which clipping takes place, is referred to as the clipper
polygon. The output polygon, resulting from the clipping process, is referred to as
the clipped polygon. The unclipped polygon consists of l vertices P1, P2, . . . , Pl ,
l edges P1P2, P2P3, . . . , PlP1 and may be defined in clockwise or in counter-
clockwise order. The clipper polygon consists of m vertices C1, C2, . . . , Cm , m
edges C1C2, C2C3, . . . , CmC1 and must be defined in counter-clockwise order.
The clipped polygon consists of n vertices O1, O2, . . . , On , and is defined in
the same order as the unclipped polygon. The numbers of vertices of these three
polygons obey the relationship n ≤ (l + m).

The Sutherland and Hodgman polygon-clipping algorithm can be seen as con-
sisting of two sub-algorithms. The first sub-algorithm constructs clipper edges
and clips the entire polygon against each such edge in turn, by calling the second
sub-algorithm. In the first clipping stage, the input polygon is clipped against
the first clipper edge. The output polygon resulting from the first clipping stages
then becomes the input polygon for the second clipping stage and so forth. This
process is outlined in Algorithm 6.2. The second sub-algorithm clips the entire
input polygon against one clipper edge. It considers the list of vertices of the input
polygon one at a time. For each such vertex Pi zero, one or two output vertices
O j will be generated. Every vertex Pi is considered to be the terminal vertex of

an edge
−→
SPi , where S is the previous (saved) vertex in the polygon vertex loop.

Note that for the input polygon edge
−→
SP1, vertex S is the last vertex in the input

polygon. Each edge
−→
SP of the input polygon can assume one of four possible

attitudes with respect to the infinite line of the clipper edge, as shown in Fig. 6.8.
This process is outlined in Algorithm 6.3.

Clip Polygon to Polygon(unclipped, clipper, clipped)
{
1. clipped ← empty;

2. if the clipper is empty then return(clipped);

3. make a private copy of the unclipped polygon;

4. for every clipper edge ce of the clipper do
{
4.1 Clip Polygon to Edge(unclipped, ce, clipped);
4.2 if clipped is empty then return(clipped);
4.3 unclipped ← clipped;

}
5. return(clipped);

}

Algorithm 6.2 The Clip Polygon to Polygon algorithm.

Two-Dimensional Clipping 205

(a) (b)

(c) (d)

output

no output

P

S

S

P

S

output
I P

P
I

S

2nd output

1stoutput

FIGURE 6.8 The relationship of an edge to a clipper edge: (a) both endpoints are visible,
(b) both endpoints are invisible, (c) the edge is leaving the visible region, (d) the edge is
entering the visible region.

If both endpoints of the input polygon edge lie on the visible half-space of
the clipper edge, then only its terminal vertex P need be output since its initial
vertex S would have already been output. This case is depicted in Fig. 6.8a. If
both endpoints of the edge lie on the invisible half-space of the clipper edge, then
nothing need be output. This case is depicted in Fig. 6.8b. If the edge is leaving
the visible half-space of the clipper edge, with S visible and P invisible, then only
the point of intersection I of the input polygon edge and the clipper edge need
be output, as the initial vertex S would have already been output. This case is
depicted in Fig. 6.8c. If the edge is entering the visible half-space of the clipper
edge, with S invisible and P visible, then two outputs must be generated, the point
of intersection I of the edge and the clipper edge, followed by the terminal vertex
P. This case is depicted in Fig. 6.8d.

Figure 6.9 illustrates the clipping process steps when clipping a concave poly-
gon against a convex clipping boundary. In this case two portions of the un-
clipped polygon fall within the clipping boundary. The Sutherland and Hodg-
man polygon-clipping algorithm deals with such polygons correctly by inserting
so-called bridging edges that connect the separate parts of the polygon. These
bridging edges are indicated by arrows in the figure. In this example the unclipped
polygon is defined in counter-clockwise order.

206 Mathematical and Computer Programming Techniques for Computer Graphics

In order to implement this algorithm we must be able to determine if a point of
the input polygon lies on the visible half-plane defined by a clipper edge and we
must be able to calculate the coordinates of the point of intersection of an input
polygon edge and a clipper edge. Let us develop the mathematical formulae that
will allow us to make those two determinations.

Clip Polygon to Edge(unclipped, ce, clipped)
{
1. Determine the visibility of every vertex of the

unclipped polygon;

2. if the unclipped polygon can be trivially rejected then
{

2.1 dispose of the unclipped polygon;
2.2 clipped ← empty;
2.3 return(clipped);

}

3. if the unclipped polygon can be trivially accepted then
{

3.1 clipped ← unclipped;
3.2 return(clipped);

}

4. /* get the current and previous input vertex pointers */
civ ← unclipped;
piv ←last vertex of the unclipped polygon;

5. while(civ �= empty) do
{

5.1 if civ is visible then
{

5.1.1 if piv is visible then Output Vertex(civ); else
{

5.1.2.1 Output Intersection(piv, civ, ce);
5.1.2.2 Output Vertex(civ);

}
} else

5.2 if civis invisible then
{

5.2.1 if piv is visible then Output Intersection(piv,civ,ce);
}

5.3 piv ← civ;
5.4 civ ←next vertex of the unclipped polygon;

}
6. return(clipped);

}

Algorithm 6.3 The Clip Polygon to Edge algorithm.

Two-Dimensional Clipping 207

(a) (b) (c)

(d) (e) (f)

FIGURE 6.9 Clipping a polygon, with two visible parts, against each clipping boundary in
turn: (a) the unclipped polygon, (b) clipping against the top boundary, (c) clipping against
the right boundary, (d) clipping against the bottom boundary, (e) clipping against the left
boundary, (f) the clipped polygon.

Given a line segment defined by two points P1 = 〈x1, y1〉, P2 = 〈x2, y2〉 and
the given general point on this line is P = 〈x, y〉, then the slope of the line is
given by

m = dy

dx
= y2 − y1

x2 − x1
= y − y1

x − x1
(6.6)

∴ (y − y1) · (x2 − x1) = (y2 − y1) · (x − x1)

∴ y · (x2 − x1) − y1 · (x2 − x1) = x · (y2 − y1) − x1 · (y2 − y1)

∴ −x · (y2 − y1) + y · (x2 − x1) + x1 · (y2 − y1) − y1 · (x2 − x1) = 0

∴ − (y2 − y1) · x + (x2 − x1) · y + x1 · y2 − x1 · y1 − y1 · x2 + y1 · x1 = 0

which can be written as

∴ a · x + b · y + c = 0 (6.7)

where
a = − (y2 − y1) = (y1 − y2) = −dy

b = (x2 − x1) = dx

c = (x1 · y2 − y1 · x2)

(6.8)

208 Mathematical and Computer Programming Techniques for Computer Graphics

Equation (6.7) may be rewritten as

x = −b

a
y − c

a
or x = d · y + e (6.9)

where

d = −b

a
= − dx

−dy
= dx

dy

e = − c

a
= x1 · y2 − y1 · x2

dy

= x1 · y2 − x1 · y1 − y1 · x2 + x1 · y1

dy

= (y2 − y1) · x1 − (x2 − x1) · y1

dy

= −dx

dy
· y1 + x1

= −d · y1 + x1

Thus

d = dx

dy

e = −d · y1 + x1 (6.10)

Finding the Point of Intersection of Two Lines
Assuming that the two lines intersect at a point Pi = 〈xi , yi 〉, then the two line
equations are given by

a1 · xi + b1 · yi + c1 = 0
a2 · xi + b2 · yi + c2 = 0

or alternatively by

xi = d1 · yi + e1

xi = d2 · yi + e2

∴ d1 · yi + e1 = d2 · yi + e2

∴ (d1 − d2) · yi = e2 − e1

∴ yi = e2 − e1

d1 − d2
(6.11)

Once we have calculated yi we can substitute it in Eq. (6.9) to compute xi .

xi = d1 · yi + e1

= d1 · yi − d1 · y1 + x1

= d1 · (yi − y1) + x1 (6.12)

Two-Dimensional Clipping 209

P0

M

N

a

q

q
b

h

l

dp

FIGURE 6.10. The Perpendicular distance from a point to a line.

Finding the Perpendicular Distance from a Point to a Line
Let P0 = 〈 x0, y0〉 be a given point and

−−→
P0N be the perpendicular from point P0

to the line with equation

a · x + b · y + c = 0

Let
−−→
P0M be a horizontal line through point P0.

Recall from Eq. (6.8) that a = −dy and b = dx . Now from Fig. 6.10 we have

h =
√

(−a)2 + b2 =
√

a2 + b2

Point M has y = y0, its x coordinate can be found from Eq. (6.7) as

x = − (b · y0 + c)

a

Hence line segment
−−→
P0M has length

l = x − x0 = − (b · y0 + c)

a
− x0

∴ l = − (a · x0 + b · y0 + c)

a

From Fig. 6.10 we have

sin θ = −a

h

Also from this figure we have

sin θ = dp

l

210 Mathematical and Computer Programming Techniques for Computer Graphics

Thus the perpendicular distance dp of the point P0 from the line is given by

dp = l · sin θ

= − (a · x0 + b · y0 + c)

a
· −a

h

= a · x0 + b · y0 + c

h

∴ dp = a · x0 + b · y0 + c√
a2 + b2

(6.13)

The sign of this expression is sometimes positive and sometimes negative, as
the line divides the plane in two half-planes.

If the line segment
−−→
NM is directed and forms part of a counter-clockwise polyg-

onal outline, then dp is positive when the point P0 lies inside the polygon and
negative when P0 lies outside the polygon. Observe that the denominator of the
fraction in Eq. (6.13) will always be positive. Thus, if we are only interested in
the sign of dp we can simplify this expression to

sign
(
dp

) = sign (a · x0 + b · y0 + c) (6.14)

The following C functions implement the Sutherland and Hodgman polygon-
clipping algorithm.

/*
* Common constants and typedefs.

*/

#include <stdio.h>
#include <math.h>

#define small_t 0.000000005

typedef unsigned char boolean_t;

#define False (boolean_t) 0
#define True (boolean_t) 1

/*
* Constants and typedefs for the Sutherland and Hodgman

* polygon-clipping routine.

*/

typedef struct poly_vtx_t *poly_vtx_ptr_t;

typedef struct poly_vtx_t
{
double x, y; /* Point coordinates */
poly_vtx_ptr_t next_vtx; /* Next vertex pointer */
boolean_t inside; /* Inside clipper indicator */
} poly_vtx_t;

Two-Dimensional Clipping 211

typedef struct clipper_edge_t
{
double x1, y1; /* Clipper Edge 1st Endpoint Coordinates */
double x2, y2; /* Clipper Edge 2nd Endpoint Coordinates */
double a, b, c; /* Clipper Edge Line Equation Coefficients */
} clipper_edge_t;

/*---*/

void sh_output_vertex
(
poly_vtx_ptr_t civp, /* Current Input Clip Vertex Pointer */
poly_vtx_ptr_t *fovp, /* First Output Clip Vertex Pointer */
poly_vtx_ptr_t *covp /* Current Output Clip Vertex Pointer */
)
{
/*
* Output the current input vertex.

*/

poly_vtx_ptr_t nvp;

nvp = (poly_vtx_ptr_t) malloc(sizeof(poly_vtx_t));

/*
* Copy the structure.

*/

*nvp = *civp;

nvp->next_vtx = NULL;

if (*fovp == NULL) *fovp = nvp;
else (*covp)->next_vtx = nvp;

*covp = nvp;

} /* sh_output_vertex */

/*---*/

void sh_output_intersection
(
poly_vtx_ptr_t civp, /* Current Input Clip Vtx ptr */
poly_vtx_ptr_t pivp, /* Previous Input Clip Vtx ptr */
poly_vtx_ptr_t *fovp, /* First Output Clip Vtx ptr */
poly_vtx_ptr_t *covp, /* Current Output Clip Vtx ptr */
clipper_edge_t ce /* Clipper Edge Data */

)
{
poly_vtx_ptr_t nvp;
double t,

ux1, uy1,
ux2, uy2,

212 Mathematical and Computer Programming Techniques for Computer Graphics

ua, ub,
d1, d2,
xi, yi;

/*
* Compute and output the point of intersection of the current

* unclipped polygon edge with the current clipper edge.

*/

/*
* Create a new vertex.

*/

nvp = (poly_vtx_ptr_t) malloc(sizeof(poly_vtx_t));

if (*fovp == NULL) *fovp = nvp;
else (*covp)->next_vtx = nvp;

*covp = nvp;

/*
* Compute the intersection of the unclipped edge with the

* clipper edge.

*/

ux1 = pivp->x;
uy1 = pivp->y;

ux2 = civp->x;
uy2 = civp->y;

ua = uy1 - uy2;
ub = ux2 - ux1;

if (fabs(ua) < small_t)
{
/*
* Unclipped edge is vertical.

*/

t = ce.y2 - ce.y1;

if (fabs(t) < small_t) t = small_t;

xi = (uy1 - ce.y1) / t * ce.b + ce.x1;
yi = uy1;
}

else

if (fabs (ce.a) < small_t)
{
/*
* Clipper edge is horizontal.

*/

Two-Dimensional Clipping 213

t = uy2 - uy1;

if (fabs(t) < small_t) t = small_t;

xi = (ce.y1 - uy1) / t * ub + ux1;
yi = ce.y1;
}
else
{
/*
* General case.

*/

d1 = ub / -ua;
d2 = ce.b / -ce.a;

/*
* From: d1 * yi + e1 = d2 * yi + e2

*
* we get: yi = (e2 - e1) / (d1 - d2)

*
* where: e1 = (ux1 - uy1 * d1) and e2 = (ce.x1 - ce.y1 * d2).

*/

yi = (ce.x1 - ce.y1 * d2 - ux1 + uy1 * d1) / (d1 - d2);

/*
* From: (xi - ux1) / (yi - uy1) = d1

*
* we get: xi = (yi - uy1) * d1 + ux1.

*/

xi = (yi - uy1) * d1 + ux1;
}

(*covp)->x = xi;
(*covp)->y = yi;
(*covp)->next_vtx = NULL;

} /* sh_output_intersection */

/*---*/

void sh_clip_polygon_to_edge
(
poly_vtx_ptr_t ivp, /* Input Polygon (In) */
poly_vtx_ptr_t *ovp, /* Output Polygon (Out) */
clipper_edge_t ce /* Clipper Edge Data (In) */
)
{
poly_vtx_ptr_t civp; /* Current Input Clip Vertex Pointer */
poly_vtx_ptr_t pivp; /* Previous Input Clip Vertex Pointer */
poly_vtx_ptr_t livp; /* Last Input Clip Vertex Pointer */

214 Mathematical and Computer Programming Techniques for Computer Graphics

poly_vtx_ptr_t fovp; /* First Output Clip Vertex Pointer */
poly_vtx_ptr_t covp; /* Current Output Clip Vertex Pointer */
boolean_t all_inside,

all_outside;
double d;

/*
* Determine the visibility of each vertex of the input polygon

* relative to the current clipping boundary.

*
* Determine if the input polygon can be trivially accepted or

* rejected.

*
* Also find the last vertex of the input polygon and use it as the

* start vertex.

*/

all_inside = True;
all_outside = True;

pivp = NULL;
civp = ivp;

while (civp != NULL)
{
pivp = civp;

/*
* Compute the signed distance of the point from the clipper edge.

*
* The signed distance of a point <x, y> from the line with

* equation:

*
* a*x+b*y+c=O

*
* is given by:

*
* d = (a * x + b * y + c) / sqrt(aˆ2 + bˆ2).

*
* In this case we only need the sign of d, so we only need to

* compute numerator of the above fraction.

*/

d = ce.a * civp->x + ce.b * civp->y + ce.c;

/*
* Do the inside test.

*/

civp->inside = (d >= 0);
all_inside = (all_inside & civp->inside);

/*
* Do the outside test.

Two-Dimensional Clipping 215

*/

all_outside = (all_outside & (d <= 0));
civp = civp->next_vtx;

}

/*
* Save the pointer to the last vertex in the input polygon.

*/

livp = pivp;

if (all_inside)
{
/*
* Trivially accepted.

*/

*ovp = ivp;
return;

}

if (all_outside)
{
/*
* Trivially rejected.

*/

*ovp = NULL;

/*
* Dispose of the input polygon.

*/

while (ivp != NULL)
{
civp = ivp;
ivp = ivp->next_vtx;
free(civp);
}

return;
}

/*
* Must process further.

*/

fovp = NULL;
covp = NULL;
civp = ivp;

while (civp != NULL)

216 Mathematical and Computer Programming Techniques for Computer Graphics

{
/*
* For every vertex in the input polygon.

*/

if (civp->inside)
{
/*
* Current input vertex is inside.

*/

if (pivp->inside)
{
/*
* Previous input vertex is inside.

*/

sh_output_vertex(civp, &fovp, &covp);
}
else
{
/*
* Previous Input Vertex is Outside.

*/

sh_output_intersection(civp, pivp, &fovp, &covp, ce);
sh_output_vertex(civp, &fovp, &covp);
}

}
else
{
/*
* Current input vertex is outside.

*/

if (pivp->inside)
{
/*
* Previous input vertex is inside.

*/

sh_output_intersection(civp, pivp, &fovp, &covp, ce);
}

}

pivp = civp;
civp = civp->next_vtx;
}

*ovp = fovp;

/*
* Dispose of the input polygon.

Two-Dimensional Clipping 217

*/

while (ivp != NULL)
{
civp = ivp;
ivp = ivp->next_vtx;
free(civp);

}
} /* sh_clip_polygon_to_edge */

/*---*/

poly_vtx_ptr_t sh_copy_polygon(poly_vtx_ptr_t ivp)
{
poly_vtx_ptr_t fvp, nvp, lvp;

fvp = NULL;
nvp = NULL;

while (ivp != NULL)
{
lvp = nvp;

nvp = (poly_vtx_ptr_t) malloc(sizeof(poly_vtx_t));

if (fvp == NULL) fvp = nvp;

nvp->x = ivp->x;
nvp->y = ivp->y;
nvp->next_vtx = NULL;

if (lvp != NULL) lvp->next_vtx = nvp;

ivp = ivp->next_vtx;
}

return(fvp);

} /* sh_copy_polygon */

/*---*/

void sh_clip_polygon_to_polygon
(
poly_vtx_ptr_t unclipped, /* Input Poly (In) */
poly_vtx_ptr_t clipper, /* Clipper Poly (In) */
poly_vtx_ptr_t *clipped /* Output Poly (Out) */
)
{
/*
* This is an implementation of the Sutherland and Hodgman

* polygon-clipping algorithm. This version clips the unclipped

* polygon to the clipping boundary specified by the

218 Mathematical and Computer Programming Techniques for Computer Graphics

* clipper polygon.

*
* The unclipped polygon pointer points to a linked list of polygon

* vertices provided by the caller.

*
* The clipped polygon pointer points to a linked list of polygon

* vertices returned by this function. If the clipped polygon is

* empty a NULL pointer is returned.

*
* The clipper polygon pointer points to a linked list of polygon

* vertices provided by the caller. The clipper must be specified

* in counter-clockwise order and must be a convex polygon.

*
* This function works with empty input polygons as well!

*/

poly_vtx_ptr_t fcvp; /* First Clipper Vertex Pointer */
poly_vtx_ptr_t ccvp; /* Current Clipper Vertex Pointer */
poly_vtx_ptr_t ncvp; /* Next Clipper Vertex Pointer */
clipper_edge_t ce; /* Clipper Edge Data */
double dx, dy;

/*
* First check if the clipper is empty.

*/

*clipped = NULL;

if (!clipper) return;

/*
* Make a private copy of the unclipped polygon. This is required

* as this function disposes of the unclipped polygon and the

* caller might not like this!

*/

unclipped = sh_copy_polygon(unclipped);

/*
* Clip the unclipped polygon against all the clipper edges.

*/

fcvp = NULL;
ccvp = clipper;

while (ccvp != fcvp)
{
if (!fcvp) fcvp = ccvp;

ncvp = ccvp->next_vtx;

if (!ncvp) ncvp = fcvp;

/*
* Compute the line equation of the clipper edge.

Two-Dimensional Clipping 219

*/

ce.x1 = ccvp->x;
ce.y1 = ccvp->y;
ce.x2 = ncvp->x;
ce.y2 = ncvp->y;

dx = ce.x2 - ce.x1;
dy = ce.y2 - ce.y1;

ce.a = -dy;
ce.b = dx;
ce.c = ce.x1 * dy - ce.y1 * dx;

sh_clip_polygon_to_edge(unclipped, clipped, ce);

if (!(*clipped)) return;

unclipped = *clipped;

ccvp = ncvp;
}

} /* sh_clip_polygon_to_polygon */

6.4.2 The Weiler and Atherton Polygon-Clipping Algorithm

The Sutherland–Hodgman algorithm allows us to clip a convex or concave poly-
gon to a convex clipping boundary. If we wish to clip a to a convex or concave
clipping boundary we have to use the Weiler–Atherton algorithm [Weiler 77].
This is a generalised-polygon clipper that is capable of clipping a concave poly-
gon with holes to the borders of a concave polygon with holes.

The polygon to be clipped is called the subject polygon and clipping is per-
formed to the borders of the clip polygon.

The algorithm represents a polygon as a set of contours. These contours can be
outline contours or hole contours. Each contour is represented as a circular list
of vertices. Unlike the Sutherland–Hodgman algorithm, the vertices of an outline
contour are linked in a clockwise order and those of a hole contour are linked
in counter-clockwise order. Using this order, as one follows along the chain of
vertices of the polygon, the interior of the polygon is always to the right of the
border (see Fig. 6.11).

The clipping process may fragment the subject polygon in more than one visi-
ble polygons (see Fig. 6.12).

The clipping process has the following steps:
1. The borders of the two polygons are compared for intersections. At each in-

tersection a new false vertex is added into the contour chain of each of the
two intersecting polygons and it is marked as an intersection vertex. A link
is established between each pair of intersection vertices, thus allowing us to
switch (jump) between the two polygons whenever they intersect.

220 Mathematical and Computer Programming Techniques for Computer Graphics

Subject polygon

Clip polygon

⊗

⊗

FIGURE 6.11. A subject polygon with a hole and the clip polygon.

Subject polygon

Clip polygon

⊗

⊗

FIGURE 6.12. Subject polygon fragmentation.

2. Next we process all contours that have no intersections. Each contour of the
subject polygon that has no intersections and lies inside the clip polygon is
placed in a holding list. Clip polygon contours that lie outside the subject
polygon are ignored. Clip polygon contours that lie inside the subject polygon
are put in the holding list, as such contours in effect cut holes in the subject
polygon (see Fig. 6.13).

3. A list of the intersection vertices found on all the subject polygon contours is
formed. This intersection list contains only those intersections where the clip
polygon border passes to the outside of the subject polygon (i.e. the intersec-
tion points indicated by the symbol ⊗ in Figs. 6.11–6.13).

Two-Dimensional Clipping 221

Subject polygon

Clip polygon

Subject polygon contour (ignored)

Clip polygon contour (ignored)

Clip polygon contour (included)

⊗

FIGURE 6.13. New hole cut in the subject polygon.

4. The actual clipping can now be done. It consists of six steps:

a. An intersection vertex is removed from the intersection list and used as the
starting point of a new output contour. If this list is exhausted, then the
clipping is complete; so go to step 5.

b. Follow along the subject polygon vertex chain until the next intersection is
reached.

c. Jump to the clip polygon (using the link created in step 1).
d. Follow along the clip polygon vertex chain until the next intersection is

reached.
e. Jump to the subject polygon (using the link created in step 1). If this inter-

section vertex is not the start vertex, then remove it from the intersection
list.

f. Repeat steps (b)–(e) until the start intersection point has been reached.
When this point is reached a new contour has just been closed and can
be put in the holding list. Go to step (a).

5. All the holes in the holding list are attached to their corresponding outlines.

Example
Let us consider the subject and clip polygons shown in Fig. 6.14.

The subject polygon is described by the chain of vertices {s1, s2, s3, s4, s5, s6,
s7, s8, s9, s10, s1} and the clip polygon is described by the chain of vertices {c1, c2,
c3, c4, c1}. The two polygons intersect at the points

{
i⊗1 , i2, i⊗3 , i4

}
but only ver-

tices i⊗1 and i⊗3 are included in the intersection list.
After steps (1)–(3) of the algorithm our lists look like this:

subject polygon: {s1, (
s i1 → ci1), s2, s3, (

s i2 → ci2), s4, s5, s6, (
s i3 → ci3), s7,

s8, (
s i4 → ci4) , s9, s10, s1}

clip polygon: {c1, c2, (
ci4 → s i4) , (ci3 → s i3) , c3, (

ci2 → s i2) , (ci1 → s i1),
c4, c1}

222 Mathematical and Computer Programming Techniques for Computer Graphics

s1

s2s3

s4s5

s6

s7

s8s9

s10

c1c2

c3 c4i2

i⊗
3

i⊗
1

i4

FIGURE 6.14. A clipping example.

intersection list: {s i1, s i3}
output polygon: { }
holding list: { }
where

(
s i j → ci j

)
means that the intersection vertex i j in the subject polygon

points to the intersection point i j in the clip polygon and analogously
(

ci j → s i j
)

means that the intersection vertex i j in the clip polygon points to the intersection
point i j in the subject polygon.

At step (4a) we pickup i⊗1 from the intersection list, we remove it from this list
and we output i1. At this stage our output polygon list looks like this: {i1}.

At step (4b), we jump to the subject polygon and we output s2, s3 and i2. At
this stage our output polygon list looks like this: {i1, s2, s3, i2}.

At step (4c), we jump to the clip polygon and at step (4d), we output i1. After
steps (4e) and (4f), we have closed the output polygon {i1, s2, s3, i2, i1} and thus
we can put it in the holding list and continue with any remaining output. At this
stages our lists look like this:

intersection list: {s i3}
output polygon: { }
holding list: {{i1, s2, s3, i2, i1}}

The intersection list is not empty and so we go back to step (4a). We pickup
i⊗3 from the intersection list, we remove it from this list and we output i3. At this
stage our output polygon list looks like this: {i3}.

At step (4b), we jump to the subject polygon and we output s7, s8 and i4. At
this stage our output polygon list looks like this: {i3, s7, s8, i4}.

At step (4c), we jump to the clip polygon and at step (4d), we output i3. After
steps (4e) and (4f), we have closed the output polygon {i3, s7, s8, i4, i3} and thus

Two-Dimensional Clipping 223

we can put it in the holding list. As the intersection list is empty we can go to step
(5). At this stage our lists look like this:

intersection list: {}
output polygon: {}
holding list: {{i1, s2, s3, i2, i1} , {i3, s7, s8, i4, i3}}
The holding list contains two outline contours and we are done.

References

[Sutherland 74] Sutherland, I. E. and Hodgman, G. W. Reentrant polygon clipping.
CACM, Vol. 17, No. 1, p.p. 32–42, Jan 1974.

[Weiler 77] Weiler, K. and Atherton, P. Hidden surface removal using polygon
area sorting. Computer Graphics, Vol. 11, No. 2, p.p. 214 –222
(1977).

“Comninos” — 2005/8/31 — 15:57 — page 225 — #1

7

Three-Dimensional Transformations

7.1 Introduction

Geometric transformations play an important part in the visualisation of three-
dimensional scenes. The ability to rotate, translate and scale an object is fun-
damental to the understanding of its shape. This can easily be demonstrated by
picking up a relatively complex and unfamiliar object. In an effort to understand
its shape one rotates the object and looks at it from close or at arms length. In the
generation of different views of a given scene with the computer, transformations
are used to achieve the effect of different viewing positions and directions.

The techniques we shall develop in this chapter for expressing 3D transforma-
tions will be an extension of the 2D techniques that we have developed in the
chapter concerning 2D transformations.

Two important points to remember are

1. A transformation can be represented by a transformation matrix.
2. Complex transformations can be expressed as a sequence of primitive trans-

formations and can be concatenated to yield a single transformation matrix,
which has the same effect as the sequence of the primitive transformations.

Three-dimensional transformations can be represented by a 4 × 4 matrix and
3D points can be represented in homogeneous form by a four-element row or
column vector. As with 2D transformations there are two distinct and equivalent
notations that can be used to represent the transformation of a 3D point. The first
notation is

P ′ = P · T

where P and P′ are the original and the transformed points, expressed in homoge-
neous form, and T is the square matrix representing the transformation. For a 3D
transformation in this notation we would write

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

r1,1 r1,2 r1,3 0
r2,1 r2,2 r2,3 0
r3,1 r3,2 r3,3 0
tx ty tz 1

⎤

⎥⎥
⎦

225

“Comninos” — 2005/8/31 — 15:57 — page 226 — #2

226 Mathematical and Computer Programming Techniques for Computer Graphics

Or using the alternative notation

P ′T = TT · PT

where PT and P ′T are the transposed original and transformed points, respectively
and TT is the transpose of the square matrix representing the transformation. For
a 3D transformation in this notation we would write

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

r1,1 r2,1 r3,1 tx
r1,2 r2,2 r3,2 ty

r1,3 r2,3 r3,3 tz
0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

Observe that as in the 2D case P ′ = P ′T and so is P · T = TT · PT.
The generalised transformation matrix

T =

⎡

⎢⎢⎢⎢
⎣

r1,1 r1,2 r1,3
... 0...

r2,1 r2,2 r2,3
... 0...

r3,1 r3,2 r3,3
... 0

.
...

tx ty tz
... 1

⎤

⎥⎥⎥⎥
⎦

or TT =

⎡

⎢⎢⎢⎢⎢
⎣

r1,1 r2,1 r3,1
... tx...

r1,2 r2,2 r3,2
... ty...

r1,3 r2,3 r3,3
... tz.... .

0 0 0 1

⎤

⎥⎥⎥⎥⎥
⎦

(7.1)
can be partitioned into three separate sub-matrices. The 3 × 3 sub-matrix of
elements labelled ri, j is used to represent linear transformations such as scaling,
rotation, shearing and reflection transformations. The diagonal elements of this
sub-matrix are used to represent scaling and reflection transformations, and the
off-diagonal elements are used to represent shearing transformations. A linear
transformation is one that transforms a linear combination of vectors into some
linear combination of transformed vectors. The 1 × 3 row sub-matrix or the 3 × 1
column sub-matrix of elements labelled tx , ty , tz is used to represent translations.
Finally, the 4 × 1 column sub-matrix or the 1 × 4 row sub-matrix must always be
set to ⎡

⎢⎢
⎣

0
0
0
1

⎤

⎥⎥
⎦ or

[
0 0 0 1

]

so that we have an affine transformation. An affine transformation is a combi-
nation of linear transformations followed by a translation. Under an affine trans-
formation every straight line maps onto a straight line, parallel lines map onto
parallel lines, and if a point divides a segment into a given ratio, its image divides
the image of this segment into the same ratio [Ahuja 68].

7.2 Primitive 3D Transformations

The following primitive 3D transformations will be discussed.
1. Translation transformations along the X-, Y- and Z-axes.
2. Scaling transformations relative to the origin and along the X-, Y- and Z-axes.

“Comninos” — 2005/8/31 — 15:57 — page 227 — #3

Three-Dimensional Transformations 227

3. Rotation transformations about the X-, Y- and Z-axes.
4. Shearing transformations parallel to the X-, Y- and Z-axes.

7.2.1 Scaling Transformation Relative to the Origin

The scaling transformation relative to the origin of E3 is defined in analytical
form as

x ′ = x · sx

y′ = y · sy

z′ = z · sz

(7.2)

where sx , sy and sz are the scale factors along the X-, Y- and Z-axes, respectively.
These scale factors can assume any value except from the value zero, which leads
to a non-invertible transformation that collapses every transformed point to the
origin. If all three scaling factors are equal (i.e. sx = sy = sz), then this transfor-
mation is known as uniform scaling, otherwise it is known as non-uniform scaling.
Uniform scaling is a special case of non-uniform scaling.

x ′ = x · s
y′ = y · s
z′ = z · s

(7.3)

Uniform scaling can also be expressed in vector form as follows.

P ′ = t
(
P ′) = s · P ′ (7.4)

In matrix form the scaling transformation is given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎤

⎥⎥
⎦ (7.5a)

or alternatively by
⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.5b)

7.2.2 Translation Transformation

The translation transformation in analytical form is defined as

x ′ = x + dx

y′ = y + dy

z′ = z + dz

(7.6)

“Comninos” — 2005/8/31 — 15:57 — page 228 — #4

228 Mathematical and Computer Programming Techniques for Computer Graphics

where dx , dy and dz are the displacements along the X-, Y- and Z-axes, respec-
tively.

The translation transformation can also be expressed in vector form as follows.

P ′ = P + d = P + [
dx , dy, dz

]
(7.7)

In matrix form the transformation is given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
dx dy dz 1

⎤

⎥⎥
⎦ (7.8a)

or alternatively by

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.8b)

7.2.3 Rotation About a Coordinate Axis

In three dimensions it is necessary to devise transformations for rotations about
all three coordinate axes. The rotation angle θ is measured in a counter-clockwise
positive fashion about a given axis, when looking at the origin from a point on the
positive half of this axis. An important point to note is that the transformation
leaves the coordinate values associated with the axis of rotation unchanged and
only affects the coordinate values associated with the other two axes.

7.2.3.1 Rotation About the Z -Axis

We start with the rotation about the Z-axis because it can be seen as a simple
extension of the 2D rotation about the origin. The rotation transformation about
the Z-axis in analytical form is defined as

x ′ = x · cos θ − y · sin θ

y′ = x · sin θ + y · cos θ

z′ = z
(7.9)

where θ is the angle of rotation about the Z-axis measured in a counter-clockwise
positive fashion, as seen in Fig. 7.1.

In matrix form the transformation is given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ (7.10a)

“Comninos” — 2005/8/31 — 15:57 — page 229 — #5

Three-Dimensional Transformations 229

P

q

q

P9

X

Y

Z

PP9

X

Y

FIGURE 7.1. Rotation about the Z-axis.

or alternatively by

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.10b)

Observe the similarity of this matrix with that for 2D rotation about the origin.
Transformations of rotation about the X-axis and the Y-axis can be derived

from the rotation about the Z-axis by permuting the axes in a cyclic fashion, i.e.
x �→ y, y �→ z, z �→ x .

7.2.3.2 Rotation About the X-Axis

The rotation transformation about the X-axis in analytical form is defined as

x ′ = x
y′ = y · cos θ − z · sin θ

z′ = y · sin θ + z · cos θ

(7.11)

where θ is the angle of rotation about the X-axis measured in a counter-clockwise
positive fashion, as seen in Fig. 7.2.

PP9

X

Y

Z

PP9

Y

Z

q
q

FIGURE 7.2. Rotation about the X-axis.

“Comninos” — 2005/8/31 — 15:57 — page 230 — #6

230 Mathematical and Computer Programming Techniques for Computer Graphics

In matrix form the transformation is given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

⎤

⎥⎥
⎦ (7.12a)

or alternatively by

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎤

⎥
⎥
⎦ ·

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦ (7.12b)

7.2.3.3 Rotation About the Y-Axis

The rotation transformation about the Y-axis in analytical form is defined as

x ′ = x · cos θ + z · sin θ

y′ = y
z′ = −x · sin θ + z · cos θ

(7.13)

where θ is the angle of rotation about the Y-axis measured in a counter-clockwise
positive fashion, as seen in Fig. 7.3.

In matrix form the transformation is given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

cos θ 0 − sin θ 0
0 1 0 0

sin θ 0 cos θ 0
0 0 0 1

⎤

⎥⎥
⎦ (7.14a)

PP�

X

Y

Z

PP�

X

Z

q q

FIGURE 7.3. Rotation about the Y-axis.

“Comninos” — 2005/8/31 — 15:57 — page 231 — #7

Three-Dimensional Transformations 231

or alternatively by

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.14b)

7.2.4 Shearing Transformations

In the generalised 4 × 4 transformation matrix of Eq. (7.1), the off-diagonal ele-
ments of the upper left 3 × 3 sub-matrix can be used to represent the six primitive
3D shearing transformations, as shown below.

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

1 sx ‖y sx ‖z 0
sy ‖x 1 sy ‖z 0
sz ‖x sz ‖y 1 0

0 0 0 1

⎤

⎥⎥
⎦

= [x, y, z, 1] ·

⎡

⎢⎢⎢
⎣

1 tan
(
θxy

) − tan (θxz) 0

− tan
(
θyx

)
1 tan

(
θyz

)
0

tan (θzx) − tan
(
θzy

)
1 0

0 0 0 1

⎤

⎥⎥⎥
⎦

(7.15a)

or alternatively as

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 sy ‖x sz ‖x 0
sx ‖y 1 sz ‖y 0
sx ‖z sy ‖z 1 0

0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

1 − tan
(
θyx

)
tan (θzx) 0

tan
(
θxy

)
1 − tan

(
θzy

)
0

− tan (θxz) tan
(
θyz

)
1 0

0 0 0 1

⎤

⎥⎥⎥
⎦

·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

(7.15b)

In the transformation matrices of Eqs. (7.15a) and (7.15b), the element la-
belled sx ‖y represents the transformation of shearing the X-axis parallel to the
Y-axis, the element labelled sx ‖z represents the transformation of shearing the
X-axis parallel to the Z-axis and so on for all other shearing transformations. All
shearing transformations can be defined in terms of the six primitive shearing
transformations that we introduce below.

“Comninos” — 2005/8/31 — 15:57 — page 232 — #8

232 Mathematical and Computer Programming Techniques for Computer Graphics

P P9
X

Y

Z

P

P9

X
qxy

Y

qxy
dy

x

FIGURE 7.4. Shearing the X-axis parallel to the Y-axis.

7.2.4.1 Shearing the X-Axis Parallel to the Y-Axis (sx ‖y)

Shearing the X-axis parallel to the Y-axis results in a transformation which mod-
ifies the y coordinate of the transformed point without altering its x and z coor-
dinates. Thus, in the transformed point, only the coordinate measured along the
axis parallel to which we are shearing is modified, as seen in Fig. 7.4.

The analytical form of this shearing transformation can be derived as follows.
From the above figure we have

dy

x
= tan

(
θxy

)

∴ dy = x · tan
(
θxy

)

Thus

x ′ = x
y′ = y + dy = y + x · tan

(
θxy

)

z′ = z
(7.16)

where θxy is the angle of shear of the X-axis parallel to the Y-axis measured in
counter-clockwise positive direction on the XY plane.

In matrix form this transformation is given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

1 tan
(
θxy

)
0 0

0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ (7.17a)

or alternatively by

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢⎢
⎣

1 0 0 0

tan
(
θxy

)
1 0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥⎥
⎦

·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.17b)

“Comninos” — 2005/8/31 — 15:57 — page 233 — #9

Three-Dimensional Transformations 233

Note that the shearing angle θxy must lie in the range −π

2
< θxy <

π

2
as

tan
(
−π

2

)
= −∞ and tan

(π

2

)
= +∞.

7.2.4.2 Shearing the X-Axis Parallel to the Z-Axis (sx ‖z)

Shearing the X-axis parallel to the Z-axis results in a transformation which modi-
fies the z coordinate of the transformed point without altering its x and y
coordinates. Thus, in the transformed point, only the coordinate measured along
the axis parallel to which we are shearing is modified, as seen in Fig. 7.5.

The analytical form of this shearing transformation can be derived as follows.
From the figure below we have

dz

x
= tan (θxz)

∴ dz = x · tan (θxz)

Thus

x ′ = x
y′ = y
z′ = z − dz = z − x · tan (θxz)

(7.18)

where θxz is the angle of shear of the X-axis parallel to the Z-axis measured in
counter-clockwise positive direction on the XZ plane.

In matrix form this transformation is given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

1 0 − tan (θxz) 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ (7.19a)

P

P9

X

Y

Z

P

P9X qxz

Z

qxzdz

x

FIGURE 7.5. Shearing the X-axis parallel to the Z-axis.

“Comninos” — 2005/8/31 — 15:57 — page 234 — #10

234 Mathematical and Computer Programming Techniques for Computer Graphics

P
P9

X

Y

Z

PP9

X

Y

qyxqxy

dx

y

FIGURE 7.6. Shearing the Y-axis parallel to the X-axis.

or alternatively by

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0

− tan (θxz) 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.19b)

Note that the shearing angle θxz must lie in the range −π

2
< θxz <

π

2
as

tan
(
−π

2

)
= −∞ and tan

(π

2

)
= +∞.

7.2.4.3 Shearing the Y-Axis Parallel to the X-Axis (sy ‖x)

Shearing the Y-axis parallel to the X-axis results in a transformation which mod-
ifies the x coordinate of the transformed point without altering its y and z coor-
dinates. Thus, in the transformed point, only the coordinate measured along the
axis parallel to which we are shearing is modified, as seen in Fig. 7.6.

The analytical form of this shearing transformation can be derived as follows.
From the above figure we have

dx

y
= tan

(
θyx

)

∴ dx = y · tan
(
θyx

)

Thus

x ′ = x − dx = x − y · tan
(
θyx

)

y′ = y
z′ = z

(7.20)

where θyx is the angle of shear of the Y-axis parallel to the X-axis measured in
counter-clockwise positive direction on the XY plane.

“Comninos” — 2005/8/31 — 15:57 — page 235 — #11

Three-Dimensional Transformations 235

P

P9

X

Y

Z

P

P9

Y

Z

dz

y
qyz

qyz

FIGURE 7.7. Shearing the Y-axis parallel to the Z-axis.

In matrix form this transformation is given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

1 0 0 0
− tan

(
θyx

)
1 0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ (7.21a)

or alternatively by
⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 − tan
(
θyx

)
0 0

0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.21b)

Note that the shearing angle θyx must lie in the range −π

2
< θyx <

π

2
as

tan
(
−π

2

)
= −∞ and tan

(π

2

)
= +∞.

7.2.4.4 Shearing the Y-Axis Parallel to the Z-Axis (sy ‖z)

Shearing the Y-axis parallel to the Z-axis results in a transformation which mod-
ifies the z coordinate of the transformed point without altering its x and y coor-
dinates. Thus, in the transformed point, only the coordinate measured along the
axis parallel to which we are shearing is modified, as seen in Fig. 7.7.

The analytical form of this shearing transformation can be derived as follows.
From the above figure we have

dz

y
= tan

(
θyz

)

∴ dz = y · tan
(
θyz

)

Thus
x ′ = x
y′ = y
z′ = z + dz = z + y · tan

(
θyz

) (7.22)

“Comninos” — 2005/8/31 — 15:57 — page 236 — #12

236 Mathematical and Computer Programming Techniques for Computer Graphics

where θyz is the angle of shear of the Y-axis parallel to the Z-axis measured in
counter-clockwise positive direction on the YZ plane.

In matrix form this transformation is given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

1 0 0 0
0 1 tan

(
θyz

)
0

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ (7.23a)

or alternatively by

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 tan

(
θyz

)
1 0

0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.23b)

Note that the shearing angle θyz must lie in the range −π

2
< θyz <

π

2
as

tan
(
−π

2

)
= −∞ and tan

(π

2

)
= +∞.

7.2.4.5 Shearing the Z-Axis Parallel to the X-Axis (sz ‖x)

Shearing the Z-axis parallel to the X-axis results in a transformation which mod-
ifies the x coordinate of the transformed point without altering its y and z coor-
dinates. Thus, in the transformed point, only the coordinate measured along the
axis parallel to which we are shearing is modified, as seen in Fig. 7.8.

The analytical form of this shearing transformation can be derived as follows.
From the figure below we have

dx

z
= tan (θzx)

∴ dx = z · tan (θzx)

P
P9

X

Y

Z

PP9

X

Z

dx

zqzx qzx

FIGURE 7.8. Shearing the Z-axis parallel to the X-axis.

“Comninos” — 2005/8/31 — 15:57 — page 237 — #13

Three-Dimensional Transformations 237

Thus
x ′ = x + dx = x + z · tan (θzx)

y′ = y
z′ = z

(7.24)

where θzx is the angle of shear of the Z-axis parallel to the X-axis measured in
counter-clockwise positive direction on the XZ plane.

In matrix form this transformation is given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0

tan (θzx) 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ (7.25a)

or alternatively by
⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 tan (θzx) 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.25b)

Note that the shearing angle θzx must lie in the range −π

2
< θzx <

π

2
as

tan
(
−π

2

)
= −∞ and tan

(π

2

)
= +∞.

7.2.4.6 Shearing the Z-Axis Parallel to the Y-Axis (sz ‖y)

Shearing the Z-axis parallel to the Y-axis results in a transformation which mod-
ifies the y coordinate of the transformed point without altering its x and z coor-
dinates. Thus, in the transformed point, only the coordinate measured along the
axis parallel to which we are shearing is modified, as seen in Fig. 7.9.

The analytical form of this shearing transformation can be derived as follows.
From the figure below we have

dy

z
= tan

(
θzy

)

∴ dy = z · tan
(
θzy

)

PP9

X

Y

Z

PP9

Y

qzy qzy

Z

dy

z

FIGURE 7.9. Shearing the Z-axis parallel to the Y-axis.

“Comninos” — 2005/8/31 — 15:57 — page 238 — #14

238 Mathematical and Computer Programming Techniques for Computer Graphics

Thus
x ′ = x
y′ = y − dy = y − z · tan

(
θzy

)

z′ = z
(7.26)

where θzy is the angle of shear of the Z-axis parallel to the Y-axis measured in
counter-clockwise positive direction on the YZ plane.

In matrix form this transformation is given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 − tan

(
θzy

)
1 0

0 0 0 1

⎤

⎥⎥
⎦ (7.27a)

or alternatively by
⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 0 0
0 1 − tan

(
θzy

)
0

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.27b)

Note that the shearing angle θzy must lie in the range −π

2
< θzy <

π

2
as

tan
(
−π

2

)
= −∞ and tan

(π

2

)
= +∞.

7.3 Global and Local Frames of Reference

In computer graphics a frame of reference is normally defined by selecting an
orthonormal basis and a point representing the origin of the frame. The base
vectors of the frame are often referred to as the axes of the frame.

Commonly the orthonormal basis X = [1, 0, 0], Y = [0, 1, 0], Z = [0, 0, 1]
and the origin O = [0, 0, 0] are taken to represent the global frame of reference,
which is the Cartesian coordinate system. This frame of reference is unchanging
and is referred to as the world coordinate system.

Other frames of reference may be defined with respect to the global frame of
reference. Such frames of reference may be right-handed or left-handed and are
referred to as local frames of reference. Local frames of reference are normally
associated with objects, lights or the camera. The local frame of an object is
assumed to be attached to it. Thus, whenever a transformation is applied to an
object it is also applied to its local frame, which follows the orientation of the
object as it moves and deforms.

In computer graphics it is frequently necessary to be able to represent a point
relative to different frames of reference and to convert from one representation to
the other. Indeed we have already seen how this can be achieved in Chapter 4. To
illustrate this point let us examine the transformation matrix for the rotation about
the Z-axis.

“Comninos” — 2005/8/31 — 15:57 — page 239 — #15

Three-Dimensional Transformations 239

First we will use the notation that represents points as row vectors. From
Eq. (7.10a) the transformation matrix is given by

RZ =

⎡

⎢⎢⎢⎢
⎣

cos θ sin θ 0
... 0

−sin θ cos θ 0
... 0

0 0 1
... 0

. .

0 0 0
... 1

⎤

⎥⎥⎥⎥
⎦

This matrix transforms point P into point P′. As the point is rotated about the
Z-axis by a counter-clockwise angle θ , so is its local frame of reference, as seen
in Fig. 7.10.

As can be readily seen from Fig. 7.10, the three rows of the upper-left 3 × 3
sub-matrix of the RZ transformation matrix represent the transformed local frame
base vectors (local axes):

X′
L = [

cos θ sin θ 0
]

Y′
L = [−sin θ cos θ 0

]

Z′
L = [

0 0 1
]

(7.28)

The transformed local frame remains a Cartesian basis, i.e. it continues to have
base vectors which are unit length, perpendicular to each other and forming a
right-handed system. Thus the rotation of a 3D point can be expressed as

[
x ′, y′, z′] = [x, y, z] ·

⎡

⎣
X′

Lx X′
Ly X′

Lz
Y′

Lx Y′
Ly Y′

Lz
Z′

Lx Z′
Ly Z′

Lz

⎤

⎦ (7.29)

P

ZG = ZL

YG = YL

XG = XL

ZG = ZL

OG

P
P9

XG

YG

X9L

Y9L

P

P9

XG

YG

cos q

X9L

Y9L

sin q

−sin q

cos q

FIGURE 7.10. The rotation of a point and its local frame of reference.

“Comninos” — 2005/8/31 — 15:57 — page 240 — #16

240 Mathematical and Computer Programming Techniques for Computer Graphics

The matrix in Eq. (7.29) is the transpose (inverse) of matrix S in Eq. (4.33).
The reason for this is that here we are transforming the point and we are not
simply changing its basis. As we have seen in Section 4.7, this is an orthogonal
matrix and its inverse is equal to its transpose. Thus

[x, y, z] = [
x ′, y′, z′] ·

⎡

⎣
X′

Lx Y′
Lx Z′

Lx
X′

Ly Y′
Ly Z′

Ly
X′

Lz Y′
Lz Z′

Lz

⎤

⎦ (7.30)

For the same reason, the matrix in Eq. (7.30) is the transpose (inverse) of matrix
D in Eq. (4.31).

Using the above result we can make the following generalisation. Given an
object the local frame of which coincides with the global frame and an arbitrary
orthonormal basis V1, V2, V3 we can construct a rotation transformation matrix
that aligns the local frame of reference of the object with the basis V1, V2, V3.
This transformation matrix is given by

RA =

⎡

⎢⎢
⎣

V1x V1y V1z 0
V2x V2y V2z 0
V3x V3y V3z 0

0 0 0 1

⎤

⎥⎥
⎦ (7.31)

Conversely, an object the local frame of which is aligned with an arbitrary
orthonormal basis V1, V2, V3 can be realigned to coincide with the global frame
using the transformation matrix

RG = R−1
A =

⎡

⎢⎢
⎣

V1x V2x V3x 0
V1y V2y V3y 0
V1z V2z V3z 0
0 0 0 1

⎤

⎥⎥
⎦ (7.32)

When using the notation that represents points as column vectors the rotation
matrices RA and RG are transposed.

Let us recapitulate. In this section we have developed a very powerful mecha-
nism that allows us to align the local frame of reference of an object and thus the
object itself with an arbitrary orthonormal basis V1, V2, V3. If the local frame of
reference is originally aligned with the global frame of reference (i.e. XL = XG,
YL = YG and ZL = ZG), then this transformation is effected by

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

V1x V1y V1z 0
V2x V2y V2z 0
V3x V3y V3z 0

0 0 0 1

⎤

⎥⎥
⎦ (7.33a)

Alternatively, it is effected by
⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

V1x V2x V3x 0
V1y V2y V3y 0
V1z V2z V3z 0
0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.33b)

“Comninos” — 2005/8/31 — 15:57 — page 241 — #17

Three-Dimensional Transformations 241

If the local frame of reference is not originally aligned with the global frame of
reference, then this transformation has two steps. First, we must align it with the
global frame of reference and then align it with the arbitrary orthonormal basis,
by applying these two transformations in sequence.

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

XLx YLx ZLx 0
XLy YLy ZLy 0
XLz YLz ZLz 0

0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

V1x V1y V1z 0
V2x V2y V2z 0
V3x V3y V3z 0

0 0 0 1

⎤

⎥⎥
⎦

(7.34a)

Alternatively, by applying these two transformations in sequence

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

V1x V2x V3x 0
V1y V2y V3y 0
V1z V2z V3z 0
0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

XLx XLy XLz 0
YLx YLy YLz 0
ZLx ZLy ZLz 0

0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

(7.34b)

7.4 Aiming Transformations

In computer graphics we often need to be able to align one of the local axes of
an object with an arbitrary vector. This problem is under-specified, i.e. we do not
have enough information to determine a unique solution to the problem. Indeed
there is no unique solution to this problem, as the other two local axes of the object
are free to assume an infinity of orientations around the fixed axis, as shown in
Fig. 7.11.

This is a classic problem in 3D geometry and it is known as a gimbal lock or,
in plain English, being lost in space. A problem dreaded by spacecraft designers

V

FIGURE 7.11. Aiming a local axis of an object along an arbitrary vector.

“Comninos” — 2005/8/31 — 15:57 — page 242 — #18

242 Mathematical and Computer Programming Techniques for Computer Graphics

and navigators, which is due to the fact that we have lost track of the up direction
(i.e. which way is up). This, of course, is a problem that is easily solved on the
surface of a planet as gravity tells us which way is down and thus up is in the
opposite direction. In space however to avoid the gimbal lock problem we require
two vectors: one indicating the heading direction or aim direction and another
indicating the relative up direction. This is cumbersome and so to avoid having
to specify the relative up direction we often use the absolute up direction (i.e. the
ZG axis) as an approximate up direction. This simplifying assumption, however,
does not work when our heading direction is parallel or antiparallel to the ZG axis.
Another option we have is to use the relative up direction of the object (i.e. its ZL
axis) before the transformation as the approximate up direction. This may work
if the aiming operation is part of an animation sequence and develops gradually
over a number of frames. Failing that, we are gimbal locked and we must resort to
asking the user to specify the relative up direction otherwise our animated object
will spin unpredictably around its aim axis.

7.4.1 Aiming the Local X-Axis in the Direction of an
Arbitrary Unit Vector V

Let us assume that the local frame of an object is aligned with the global frame
and that we wish to align the local X-axis of this object with an arbitrary unit
vector V. As we have seen above, this is an under-specified problem. So we
will need to determine the new relative up direction (i.e. the new orientation of
the local Z-axis) of the transformed object before we can compute the aiming
transformation matrix. To help us do this we reason as follows. If the arbitrary
unit vector V is parallel or antiparallel to the global up direction (i.e. if V = ZG
or V = −ZG), then we have no option but to require the user to specify the
approximate up direction U, otherwise we set the approximate up direction to the
global up direction, i.e. U = ZG, as shown in Fig. 7.12.

X�L = V

U ⊗ X�L

U ⊗ X�L
Y�L =

X�L ⊗Y�L

X�L ⊗ Y�LZ�L =

U = ZG

FIGURE 7.12. Aiming the local X-axis along an arbitrary unit vector V.

“Comninos” — 2005/8/31 — 15:57 — page 243 — #19

Three-Dimensional Transformations 243

Next we calculate the new orientation of the transformed local axes.

X′
L = V

Y′
L = U ⊗ X′

L∣∣∣U ⊗ X′
L

∣∣∣

Z′
L = X′

L ⊗ Y′
L∣∣∣X′

L ⊗ Y′
L

∣∣∣

(7.35)

Now we can construct the rotation transformation matrix that will reorient the
local frame of the object in a manner similar to that of Eq. (7.31). Thus, the
transformation for aiming the local X-axis, of an object, in the direction of an
arbitrary unit vector V is given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

X′
Lx X′

Ly X′
Lz 0

Y′
Lx Y′

Ly Y′
Lz 0

Z′
Lx Z′

Ly Z′
Lz 0

0 0 0 1

⎤

⎥⎥
⎦ (7.36a)

or alternatively by

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

X′
Lx Y′

Lx Z′
Lx 0

X′
Ly Y′

Ly Z′
Ly 0

X′
Lz Y′

Lz Z′
Lz 0

0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.36b)

7.4.2 Aiming the Local Y-Axis in the Direction of an
Arbitrary Unit Vector V

The transformation for aiming the local Y-axis, of an object, in the direction of
an arbitrary unit vector V is similar to that for aiming its X-axis. As above, if the
arbitrary unit vector V is parallel or antiparallel to the global up direction (i.e. if
V = ZG or V = −ZG), then we require the user to specify the approximate up
direction U, otherwise we set it to the global up direction, i.e. U = ZG, as shown
in Fig. 7.13.

The new orientation of the transformed local axes is given as

Y′
L = V

X′
L = Y′

L ⊗ U∣∣∣Y′
L ⊗ U

∣∣∣

Z′
L = X′

L ⊗ Y′
L∣∣∣X′

L ⊗ Y′
L

∣∣∣

(7.37)

Thus, the transformation for aiming the local Y-axis, of an object, in the direction
of an arbitrary unit vector V is given by Eq. (7.36a) or (7.36b).

“Comninos” — 2005/8/31 — 15:57 — page 244 — #20

244 Mathematical and Computer Programming Techniques for Computer Graphics

Y�L = V

Z�L =

U = ZG

X�L ⊗ Y�L

X�L ⊗ Y�L

X�L =
YL ⊗ U

Y�L ⊗ U

FIGURE 7.13. Aiming the local Y-axis along an arbitrary unit vector V.

7.4.3 Aiming the Local Z-Axis in the Direction of an
Arbitrary Unit Vector V

The transformation for aiming the local Z-axis, of an object, in the direction of
an arbitrary unit vector V is similar to that for aiming its X-axis. As above, if the
arbitrary unit vector V is parallel or antiparallel to the global up direction (i.e. if
V = ZG or V = −ZG), then we require the user to specify the approximate up
direction U, otherwise we set it to the global up direction, i.e. U = ZG, as shown
in Fig. 7.14.

The new orientation of the transformed local axes is given as

Z′
L = V

Y′
L = U ⊗ Z′

L∣∣∣U ⊗ Z′
L

∣∣∣

X′
L = Y′

L ⊗ Z′
L∣∣∣Y′

L ⊗ Z′
L

∣∣∣

(7.38)

Z�L = V

Y�L =

U = ZG

U ⊗ Z�L

U ⊗ Z�L

X�L =
Y�L ⊗ Z�L

Y�L ⊗ Z�L

FIGURE 7.14. Aiming the local Z-axis along an arbitrary unit vector V.

“Comninos” — 2005/8/31 — 15:57 — page 245 — #21

Three-Dimensional Transformations 245

Thus, the transformation for aiming the local Z-axis, of an object, in the direction
of an arbitrary unit vector V is given by equation (7.36a) or (7.36b).

7.5 Composite Transformations

As we have already seen in the case of 2D transformations, composite transfor-
mations can be constructed by composing (concatenating together) a sequence of
primitive transformations. As in the 2D case, some non-primitive transformations
can be constructed by modifying the parameters of a primitive transformation. In
general however, composite transformations can only be constructed by applying
a sequence of primitive transformations one after another, i.e. by concatenating
this sequence of transformations.

Usually for a transformation problem that is too complex to solve in its current
domain, we adopt the following procedure. First, through a series of primitive
transformation steps, we transform the geometry of the problem into a much sim-
pler domain defined around the origin of the frame of reference. Here the problem
can usually be solved using a primitive transformation. Then, having solved the
problem in this simpler domain we return the geometry to its original domain,
through a series of inverse transformation steps, i.e. by undoing the steps that
transformed the geometry from its original domain to the simpler domain.

In 3D there is a proliferation of composite transformations. In an effort to sim-
plify the examination of these transformations we will categorise them as being
performed relative to a point, an axis or a plane.

7.5.1 Composite Transformations Relative to a Point

Composite transformations relative to a point can be further subdivided into com-
posite transformations relative to the origin of the frame of reference and
composite transformations relative to an arbitrary point.

7.5.1.1 Composite Transformations Relative to the Origin of the Frame

This is only one composite transformation that falls into this category, namely
the reflection transformation about the origin of the frame of reference. When
reflecting a point about the origin of the frame of reference, we scale all three of
its coordinates by –1. Thus

x ′ = x · (−1)

y′ = y · (−1)

z′ = z · (−1)

(7.39)

which in matrix form is given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤

⎥⎥
⎦ (7.40a)

“Comninos” — 2005/8/31 — 15:57 — page 246 — #22

246 Mathematical and Computer Programming Techniques for Computer Graphics

or alternatively by

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.40b)

7.5.1.2 Composite Transformations Relative to an Arbitrary Point

There are two composite transformations that fall in this category, namely the
scaling and reflection transformations about an arbitrary point. The transforma-
tion of a point P about an arbitrary point Pc can be constructed by concatenating
the transformations representing the following three steps.

Step 1: Translate the arbitrary point Pc to the origin of the frame. Call this trans-
formation TP.

Step 2: Perform the required transformation about the origin of the frame. Call
this transformation TO.

Step 3: Translate the arbitrary point Pc back to its original position, by applying
the inverse of the transformation from step 1. Call this transformation
T−1

P .

Thus the composite transformation about an arbitrary point is given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] · TP · TO · T−1
P (7.41a)

or alternatively by

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ = T−1

P · TO · TP ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.41b)

In the above two equations it is assumed that we have used the appropriate rules in
the construction of the transformation matrices that correspond to the row/column
representation of points.

7.5.2 Composite Transformations Relative to an Axis

Composite transformations relative to an axis can be further subdivided into com-
posite transformations relative to a major axis (i.e. the X-, Y-, Z-axes of the
frame), composite transformations relative to an axis parallel to a major axis and
composite transformations relative to an arbitrary axis.

7.5.2.1 Composite Transformations Relative to a Major Axis

There are three composite transformations that fall in this category, namely the
composite transformations of reflection about the X-,Y- and Z-axes.

“Comninos” — 2005/8/31 — 15:57 — page 247 — #23

Three-Dimensional Transformations 247

When reflecting a point about the X-axis, its y and z coordinates are scaled
by –1. Thus

sx = +1
sy = −1
sz = −1

(7.42a)

When reflecting a point about the Y-axis, its x and z coordinates are scaled
by –1. Thus

sx = −1
sy = +1
sz = −1

(7.42b)

When reflecting a point about the Z-axis, its x and y coordinates are scaled
by –1. Thus

sx = −1
sy = −1
sz = +1

(7.42c)

Using one of the Eqs. (7.42a)–(7.42c), we can construct the reflection about
one of the major axes as

x ′ = x · sx

y′ = y · sy

z′ = z · sz

(7.43)

which in matrix form is given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎤

⎥⎥
⎦ (7.44a)

or alternatively by

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.44b)

7.5.2.2 Composite Transformations Relative to an Axis Parallel to a Major
Axis

There are three composite transformations that fall in this category, namely the
composite transformations of reflection, rotation and scaling about/along an axis
parallel to a major axis. Given that such an axis is defined by a point Pa and a
direction unit vector V, the transformation of point P about/along this axis can be
constructed by concatenating the transformations representing the following three
steps.

“Comninos” — 2005/8/31 — 15:57 — page 248 — #24

248 Mathematical and Computer Programming Techniques for Computer Graphics

Step 1: Translate the point Pa to the origin of the frame. This has the effect of
aligning the parallel axis with the corresponding major axis. Call this
transformation TP.

Step 2: Perform the required transformation about/along this major axis. Call this
transformation TA.

Step 3: Translate the point Pa back to its original position, by applying the inverse
of the transformation from step 1. Call this transformation T−1

P .

Thus the composite transformation about/along an axis parallel to a major axis
is given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] · TP · TA · T−1
P (7.45a)

or alternatively by
⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ = T−1

P · TA · TP ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.45b)

In the above two equations it is assumed that we have used the appropriate rules in
the construction of the transformation matrices that correspond to the row/column
representation of points.

7.5.2.3 Composite Transformations Relative to an Arbitrary Axis

There are four composite transformations that fall in this category, namely the
composite transformations of reflection, rotation, scaling and translation about/
along an arbitrary axis. Given that such an axis is defined by a point Pa and a
direction unit vector V, the transformation of point P about/along this axis can be
constructed by concatenating the transformations representing the following five
steps.

Step 1: Translate the point Pa to the origin of the frame. Call this transformation
TP.

Step 2: Align the unit vector V with one of the major axes, using the inverse of the
aiming transformation that would align the selected axis with this vector.
Call this transformation AV .

Step 3: Perform the required transformation about/along this major axis. Call this
transformation TA.

Step 4: Return the V vector to its original orientation, by applying the inverse of
the transformation from step 2. Call this transformation A−1

V .
Step 5: Translate the point Pa back to its original position, by applying the inverse

of the transformation from step 1. Call this transformation T−1
P .

Thus the composite transformation about/along an arbitrary axis is given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] · TP · AV · TA · A−1
V · T−1

P (7.46a)

“Comninos” — 2005/8/31 — 15:57 — page 249 — #25

Three-Dimensional Transformations 249

or alternatively by

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ = T−1

P · A−1
V · TA · AV · TP ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.46b)

In the above two equations it is assumed that we have used the appropriate
rules in the construction of the transformation matrices that correspond to the
row/column representation of points. Also recall that the inverse of the aim trans-
formation is equal to its transpose, i.e. A−1

V = AT
V .

7.5.3 Composite Transformations Relative to a Plane

Composite transformations relative to a plane can be further subdivided into com-
posite transformations relative to a major plane (i.e. the XY, XZ or YZ plane)
and composite transformations relative to an arbitrary plane.

7.5.3.1 Composite Transformations Relative to a Major Plane

There are three composite transformations that fall in this category, namely the
composite transformations of reflection about the XY, XZ or YZ planes.

When reflecting a point about the XY plane, its z coordinate is scaled by –1.
Thus

sx = +1
sy = +1
sz = −1

(7.47a)

When reflecting a point about the XZ plane, its y coordinate is scaled by −1.
Thus

sx = +1
sy = −1
sz = +1

(7.47b)

When reflecting a point about the YZ plane, its x coordinate is scaled by −1.
Thus

sx = −1
sy = +1
sz = +1

(7.47c)

Using one of Eqs. (7.47a)–(7.47c), we can construct the reflection transforma-
tion about one of the major planes as

x ′ = x · sx

y′ = y · sy

z′ = z · sz

(7.48)

“Comninos” — 2005/8/31 — 15:57 — page 250 — #26

250 Mathematical and Computer Programming Techniques for Computer Graphics

which in matrix form is given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] ·

⎡

⎢⎢
⎣

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎤

⎥⎥
⎦ (7.49a)

or alternatively by
⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.49b)

7.5.3.2 Composite Transformations Relative to an Arbitrary Plane

There is only one composite transformation that falls into this category, namely
the reflection transformation about an arbitrary plane.

Given an arbitrary plane Π defined by a point Pa = [xa, ya, za] and a unit
normal vector N = [xn, yn, zn], the transformation that reflects a point P about
this plane can be constructed by concatenating transformations representing the
following five steps.

Step 1: Translate the arbitrary point Pa to the origin of the frame. Call this trans-
formation TP.

Step 2: Align the unit normal vector N of the arbitrary plane with one of the
major axes, using the inverse of the aiming transformation that would
align the selected axis with the unit normal vector. This has the effect
of aligning the arbitrary plane Π with one of the major planes. Call this
transformation AN.

Step 3: Perform the reflection about this major plane. Call this transformation RP.
Step 4: Return the unit normal vector N to its original orientation, by applying the

inverse of the transformation from step 2. Call this transformation A−1
N .

Step 5: Translate the arbitrary point Pa back to its original position, by applying
the inverse of the transformation from step 1. Call this transformation
T−1

P .

Thus the composite transformation for the reflection about an arbitrary plane is
given by

[
x ′, y′, z′, 1

] = [x, y, z, 1] · TP · AN · RP · A−1
N · T−1

P (7.50a)

or alternatively by
⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ = T−1

P · A−1
N · RP · AN · TP ·

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ (7.50b)

“Comninos” — 2005/8/31 — 15:57 — page 251 — #27

Three-Dimensional Transformations 251

In the above two equations it is assumed that we have used the appropriate rules in
the construction of the transformation matrices that correspond to the row/column
representation of points. Also recall that the inverse of the aim transformation is
equal to its transpose, i.e. A−1

N = AT
N.

7.6 Local Frame and Global Frame Transformations

As in the 2D case, in 3D we can perform global transformations and local trans-
formations. In Section 5.12, we have seen that global transformations are per-
formed and are expressed with respect to the global frame of reference or world
space origin and axes, while local transformations are performed and are ex-
pressed with respect to the local frame of reference or local space origin and axes
of an object. In Section 5.12.1, we have observed that the rules for concatenating
a series of global/local transformations are as follows.

When using the row representation of points, a series of n global transforma-
tions is concatenated by post-multiplying the individual transformations from left
to right in ascending order of application, i.e.

P′ =
(((

P · G1

)
· G2

)
· . . .

)
· Gn = P ·

(
G1 · G2 · . . . · Gn

)
= P · TG (7.51a)

While, a series of n local transformations is concatenated by pre-multiplying
the individual transformations from right to left in ascending order of application,
i.e.

P′ =
((((

P · Ln

)
· . . .

)
· L2

)
· L1

)
= P ·

(
Ln · . . . · L2 · L1

)
= P · TL (7.52a)

When using the column representation of points, a series of n global transfor-
mations is concatenated by pre-multiplying the individual transformations from
right to left in ascending order of application, i.e.

P′T =
(

GT
n ·

(
. . . ·

(
GT

2 ·
(

GT
1 · PT

))))
=

(
GT

n · . . . · GT
2 · GT

1

)
· PT = TT

G · PT

(7.51b)
While, a series of n local transformations is concatenated by post-multiplying

the individual transformations from left to right in ascending order of application,
i.e.

P′T =
(

LT
1 ·

(
LT

2 ·
(
. . . ·

(
LT

n · PT
))))

=
(

LT
1 · LT

2 · . . . · LT
n

)
· PT = TT

L · PT

(7.52b)

“Comninos” — 2005/8/31 — 15:57 — page 252 — #28

252 Mathematical and Computer Programming Techniques for Computer Graphics

7.7 Transformations of the Frame of Reference or
Coordinate System

Analogously to the 2D case, which we have examined in Section 5.13, trans-
forming a point P by a transformation matrix T relative to a frame of reference
F is equivalent to leaving the point P stationary while transforming the frame of
reference F by the inverse transformation matrix T−1.

References

[Ahuja 68] Ahuja, D. V. and Coons, S. A. Geometry for construction and display.
IBM System Journal, vol. 3 & 4, p.p. 188–205 1968.

8

Viewing and Projection Transformations

In computer graphics we are often concerned with representing three-dimensional
scenes on a two-dimensional surface. In order to generate an image of a 3D object
on a 2D display, we must first project this object onto a projection plane and then
display this projected image.

A point of a 3D object is expressed in terms of the object-space coordinate sys-
tem (sometimes referred to as the world-space coordinate system), the projection
of such a point onto the projection plane is expressed in terms of the projection-
space coordinate system and the final image of this point on the display device is
expressed in terms of the screen-space coordinate system (sometimes referred to
as the image-space coordinate system). The complete transformation of a point
from the object-space coordinate system to the screen-space system is achieved
through the concatenation of three distinct transformations.

• The viewing transformation (or the object-space to eye-space coordinate
transformation) expresses the location of object-space points relative to the
observer’s eye, accounting for the observer’s position and direction of view.

• The projection transformation (or the eye-space to projection-space coordinate
transformation) expresses the location of eye-space points relative to the pro-
jection plane, accounting for the effects of the type of projection used.

• The viewporting transformation (or the projection-space to screen-space coor-
dinate transformation) expresses the location of projection-space points relative
to a viewport of the screen, accounting for the viewport size and displacement.

In order to best understand the viewing transformation we will attempt to ex-
plain it in terms of a conceptual camera model.

8.1 Conceptual Camera Model

When we shoot a picture with a camera, we are looking at a 3D scene, namely the
world, every point of which may be expressed in terms of three coordinates mea-
sured from a given origin. In our conceptual camera model, this coordinate system
is called the object-space or world-space coordinate system. By convention, this

253

254 Mathematical and Computer Programming Techniques for Computer Graphics

 Projection plane

Xo

Zo

Yo

Xe

Ze

Ye

Vp

Cp

Xs

Ys

Screen

Viewport

Window

Viewing axis

FIGURE 8.1. The object-space, eye-space and screen-space coordinate systems.

coordinate system is right-handed, as shown in Fig. 8.1. In this 3D space the cam-
era (i.e. the observers eye) lies at a point called the viewing point Vp. The point
towards which we focus our attention is called the centre point Cp. The viewing
point and the centre point may be placed anywhere in the object space but they
may not coincide. These two points define the viewing axis, i.e. the direction
of view.

A new coordinate system can now be defined with its origin at the viewing
point, its Ze-axis pointing towards the centre point, its Xe-axis pointing to the right
and its Ye-axis pointing up as the observer sees them. This coordinate system is
called the eye-space coordinate system and it is a left-handed coordinate system,
as shown in Figs. 8.1 and 8.2. The left-handedness of this system comes about
from our desire to make the ze coordinate a direct measure of the depth of the point

dV

Xe

Ye

Ze

Window

p

p�

FIGURE 8.2. The eye-space coordinate system and the viewing pyramid.

Viewing and Projection Transformations 255

(with respect to the viewing point) and to keep the Xe and Ye axes in their most
familiar positions. Later we will explain how this transformation is achieved.

In order to transform the 3D eye-space coordinates into 2D screen-space co-
ordinates we must first project the eye-space point onto a projection plane. This
is achieved through the projection transformation that we will examine in some
detail later. In our camera model the projection plane is placed between the 3D
scene and the viewing point and is perpendicular to the viewing axis, as seen
in Fig. 8.1. We are generally only interested in a small portion of the projection
plane, a rectangular area centred about the viewing axis known as the window.
The perimeter of the window and the viewing point form the viewing pyramid.
Any part of the scene that falls outside this pyramid will not be visible to the eye,
so we say that the scene is clipped to the viewing pyramid. The distance between
the viewing point and the centre of the window is known as the viewing distance
dV . Finally, the portion of the projection plane that falls within the window will be
mapped onto a rectangular portion of the screen (or other graphic device) known
as the viewport. This is achieved through the viewporting transformation that we
will examine later.

Let us start by looking at the viewing transformation in more detail.

8.2 Viewing Transformation

The object-space to eye-space coordinate transformation is often referred to as the
viewing transformation. The viewing transformation, represented by the matrix
TV , converts an object-space point po = 〈xo, yo, zo〉 into an eye-space point pe =
〈xe, ye, ze〉. Thus

[xe, ye, ze, 1] = [xo, yo, zo, 1] · TV (8.1a)

or alternatively

[xe, ye, ze, 1]T = TT
V · [xo, yo, zo, 1]T (8.1b)

The viewing transformation can be constructed by concatenating a number of
primitive transformations that are determined by the viewing parameters. In con-
structing the viewing transformation we have to recall that “a transformation that
transforms a point expressed relative to a frame of reference is the inverse of
the transformation that transforms the frame of reference relative to this point”.
For example, given a point p expressed in the frame {X, Y, Z, O}, translating this
point along to the X-axis by 5 units is equivalent to translating the frame along to
the X-axis by −5 units. Similarly, rotating this point about the Z-axis by 30◦ is
equivalent to rotating the frame about the Z-axis by −30◦.

In the discussion that follows the scene will be observed from the viewing point
Vp = 〈

Vpx , Vpy, Vpz
〉
, looking towards the centre point Cp = 〈

C px , C py, C pz
〉
.

Those two points define the viewing axis v of the camera.

v = [(
C px − Vpx

)(
C py − Vpy

)(
C pz − Vpz

)]

256 Mathematical and Computer Programming Techniques for Computer Graphics

which can be normalised to

v̂ = v
|v|

To unambiguously define the orientation of the camera and to avoid any po-
tential gimbal-lock problems we require an additional vector u that defines the
approximate up direction of the camera. If the viewing axis is not parallel or
antiparallel to the Zo-axis, then the up-direction vector can be automatically set to
u = [0 0 1], otherwise it will have to be specified by the user (or determined
otherwise from the previous orientation of the camera). See Fig. 8.3. This vector
must also be normalised to

û = u
|u|

We assume that the object-space coordinate system is defined by the frame{
io, jo, ko, O

}
, where io = [

1 0 0
]
, jo = [

0 1 0
]

and ko = [
0 0 1

]
.

Similarly, we assume that the eye-space coordinate system is defined by the frame{
ie, je, ke, Vp

}
, where ie = [

xie yie zie
]
, je = [

x je y je z je
]

and ke =[
xke yke zke

]
, which need to be determined. See Fig. 8.4.

To determine the viewing transformation we proceed as follows. First, we
translate the object-space frame to the to the viewing point, as shown in Fig. 8.5.
Using the point row representation, this is achieved with the following trans-
formation.

TT =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0

Vpx Vpy Vpz 1

⎤

⎥⎥
⎦ (8.2)

O
io

jo

ko

Xo

Yo

Zo

Cp

Vp

v̂

û

FIGURE 8.3. The v and u vectors.

Viewing and Projection Transformations 257

O
io

jo

ko

Xo

Yo

Zo

Cp

Vp

ke

ie

je

FIGURE 8.4. The eye-space coordinate system frame.

O
io

jo

ko

Xo

Yo

Zo

Cp

Vp

k9o

j9o

i9
v̂

û

o

FIGURE 8.5. Moving the object-space frame to the viewing point.

Next, we aim the k′
o vector along the normalised viewing axis v̂, as shown in

Fig. 8.6. This is achieved by re-computing the three frame vectors as follows.

k′′
o ← v̂

i′′o ← û ⊗ k′′
o∣∣û ⊗ k′′
o

∣∣

j′′o ← k′′
o ⊗ i′′o∣∣k′′
o ⊗ i′′o

∣∣ (8.3)

Finally, we reverse the direction of the i′′o vector, as the eye-space system is a
left-handed coordinate system. See Fig. 8.7. Thus, we can compute the eye-space
frame

{
ie, je, ke, Vp

}
as follows.

ie ← −i′′o
je ← j′′o
ke ← k′′

o

(8.4)

258 Mathematical and Computer Programming Techniques for Computer Graphics

O
io

jo

ko

Xo

Yo

Zo

Cp

Vp

j99o

k99o

i99o
j99o

v̂

û

FIGURE 8.6. Aiming the k′
o vector along the v̂ vector.

O
io

jo

ko

Xo

Yo

Zo

Cp

Vp
ek

ie
je

v

u

FIGURE 8.7. Reversing the direction of the i′′o vector.

So, to transform the frame
{
i′o, j′o, k′

o, Vp
}

to the frame
{
ie, je, ke, Vp

}
we

require the following aiming transformation.

TA =

⎡

⎢⎢
⎣

xie yie zie 0
x je y je z je 0
xke yke zke 0
0 0 0 1

⎤

⎥⎥
⎦ (8.5)

Above, for the purpose of producing clear illustrations, we have first translated
the original frame to the viewing point and then reoriented it, while in reality
we should have reoriented the frame first and then translated it. If we assume
that the transformation TT and TA are local rather than global transformation,
then we achieve the same result. By composing these two local transformations
we obtain the composite transformation (TA · TT) that converts the

{
io, jo, ko, O

}

frame to the
{
ie, je, ke, Vp

}
frame. We do not however wish to transform the

Viewing and Projection Transformations 259

frames of the coordinate systems, but to transform points from the object-space
to the eye-space coordinate systems. Thus, we must use the inverse of the matrix
product that would transform the frames. The inverse matrices for TT and TA are
given by

T −1
T =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0

−Vpx −Vpy −Vpz 1

⎤

⎥⎥
⎦ (8.6)

and

T −1
A =

⎡

⎢⎢
⎣

xie x je xke 0
yie y je yke 0
zie z je zke 0
0 0 0 1

⎤

⎥⎥
⎦ (8.7)

as TA is an orthogonal matrix and its inverse is the same as its transpose, i.e.
T −1

A = T T
A.

The viewing transformation can now be written as

TV = (TA · TT)−1 = T −1
T · T −1

A

∴ TV =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0

−Vpx −Vpy −Vpz 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

xie x je xke 0
yie y je yke 0
zie z je zke 0
0 0 0 1

⎤

⎥⎥
⎦

∴ TV =

⎡

⎢⎢⎢⎢
⎣

xie x je xke 0
yie y je yke 0
zie z je zke 0

−xie · Vpx − yie· −x je · Vpx − y je· −xke · Vpx − yke·
Vpy − zie · Vpz Vpy − z je · Vpz Vpy − zke·Vpz 1

⎤

⎥⎥⎥⎥
⎦

TV =

⎡

⎢⎢
⎣

⎡

⎣ie

⎤

⎦

⎡

⎣je

⎤

⎦

⎡

⎣ke

⎤

⎦
0
0
0

−ie � Vp −je � Vp −ke � Vp 1

⎤

⎥⎥
⎦ (8.8)

Hence

[xe, ye, ze, 1] = [xo, yo, zo, 1] · TV (8.9a)

or alternatively

[xe, ye, ze, 1]T = TT
V · [xo, yo, zo, 1]T (8.9b)

where 〈xe, ye, ze〉 is the point expressed in the eye-space coordinate system.

260 Mathematical and Computer Programming Techniques for Computer Graphics

8.3 Projection Transformation

When we represent a 3D object on a 2D display we may attempt either to show
the general appearance of the object, as in a photograph, or to depict the object
so that its metric properties, such as distances and angles, can easily be derived
from this image. Those methods of representation as well as the representations
themselves are known as projections. Thus, a projection is defined to be both
a mapping of a 3D coordinate system onto a 2D coordinate system, called the
projection coordinate system, and the resulting image of applying such a mapping
to an object.

The projected image of a 3D object is found by passing a line through each
point of the object and finding the intersections of these lines with the projection
plane, as shown in Figs. 8.8 and 8.9. These lines are called projectors, and
emanate from a single point called the centre of projection. When the centre
of projection is at infinity, so that the projectors are parallel to each other, the
projection is known as a parallel projection (see Fig. 8.8). Alternatively, when
the centre of projection is at a finite distance from the projection plane, then the

 Projection plane
Projectors

Projected line

Original line

Projection at centre at α

FIGURE 8.8. Parallel projections.

Projection plane
Projectors

Projected line

Original line

Projection centre

FIGURE 8.9. Perspective projections.

Viewing and Projection Transformations 261

One Point Perspective

Perspective Projections

Planar Geometric Projections

Parallel Projections

Orthographic Projections

Axonometic Projections

Multiview Orthographic
Projection

Isometric Projection

Diametric Projection

Triametric Projection

Oblique Projections

Cabinet Projection

Cavalier Projection
Two Point Perspective

Three Point Perspective

FIGURE 8.10. A classification of planar geometric projections.

projection is known as a perspective projection (see Fig. 8.9). Each of these types
of projection has further sub-classifications, which are shown in Fig. 8.10.

The class of projections we have defined above is known as planar geometric
projections because the projection is onto a planar rather than some curved sur-
face and uses straight rather than curved projectors. Non-planar projections are
possible but as they are not common in computer graphics we will not deal with
such projections.

8.4 Projection Transformation Matrix

In the discussion that follows we will examine the individual projection trans-
formations in terms of a 4 × 4 transformation matrix, which together with the
viewing parameters uniquely defines the projection.

In our discussion of the orthographic, oblique and perspective projections we
will assume that the viewing transformation has already been applied and that
the coordinates of the 3D scene, to be projected, are expressed in the eye-space
coordinate system. We will also assume that the projection plane is parallel to the
XeYe plane.

As we shall see later, certain projection transformations can only be achieved if
we restrict the location and orientation of the viewing axis of our camera model.
A distinct projection matrix will be derived for the orthographic, oblique and
perspective projections.

262 Mathematical and Computer Programming Techniques for Computer Graphics

Orthographic projetion Oblique projetion

FIGURE 8.11. Orthographic and oblique projections.

8.5 Parallel Projections

Parallel projections are classified by the angle between the projectors and the
projection plane. When the projectors are perpendicular to the projection plane,
then the projection is known as an orthographic projection; otherwise it is known
as an oblique projection. See Fig. 8.11.

8.5.1 Orthographic Projections

Orthographic projections are characterised by projectors that are perpendicular to
the projection plane. These projections are therefore completely determined by
the orientation of the projection plane. Orthographic projections are represented
as multi-view orthographic projections or as axonometric projections.

8.5.1.1 Multi-View Orthographic Projections

A multi-view orthographic projection is not one but a collection of projections.
These projections show, in one picture, two or more orthographic projections
onto projection planes that are perpendicular to the coordinate axes, as shown
in Fig. 8.12. Thus, only six distinct orthographic projections are possible.

A multi-view orthographic projection has the advantage that it illustrates the
exact shape of two or more faces of an object, while at the same time it suffers
from the disadvantage that the three-dimensional shape of the object may be hard
to visualise from the separate views. The number of views required to adequately
describe the dimensions of an object depends on the complexity of its shape.
A simple symmetrical object with rectangular faces can often be described in only
two or three views. These projections are often arranged relative to each other in
a specific manner. Orthographic projections are often used because distances and
angles can be directly measured from them.

Viewing and Projection Transformations 263

Xo

Yo

Zo

Top view

Front view Side view

FIGURE 8.12. A multi-view orthographic projection.

In order to produce an orthographic projection we must restrict the location and
the orientation of the camera as follows.

• For a front view (front elevation) the viewing axis of the camera must lie on the
positive XO-axis and point towards the origin (or be parallel to this axis).

• For a back view the viewing axis of the camera must lie on the negative XO-axis
and point towards the origin (or be parallel to this axis).

264 Mathematical and Computer Programming Techniques for Computer Graphics

• For a right side view (side elevation) the viewing axis of the camera must lie on
the positive YO-axis and point towards the origin (or be parallel to this axis).

• For a left side view (side elevation) the viewing axis of the camera must lie on
the negative YO-axis and point towards the origin (or be parallel to this axis).

• For a top view (plan view) the viewing axis of the camera must lie on the posi-
tive ZO-axis and point towards the origin (or be parallel to this axis).

• For a bottom view the viewing axis of the camera must lie on the negative ZO-
axis and point towards the origin (or be parallel to this axis).

8.5.1.2 Axonometric Projections

An axonometric projection is an orthographic projection onto the projection plane,
where this plane is chosen in such a way that the general three-dimensional shape
of the object is illustrated. Such projections usually represent an object so that
three adjacent faces are visible, but the true shape and size of any of these faces
are not shown unless a face is parallel to the projection plane. In an axonomet-
ric projection, parallel lines are equally foreshortened. In particular, axonometric
projections produce uniform foreshortening along the projected coordinate axes;
thus measurements can easily be made to scale along these axes.

Axonometric projections are classified according to the orientation of the pro-
jection plane and the coordinate axes (i.e. the angles between the projection plane
and the coordinate axes), as seen in Fig. 8.13. If all three angles are equal, then
the projection is called isometric. If only two angles are equal, then the projection
is called dimetric. If all angles are different, then the projection is called trimetric.

8.5.1.2.1 Isometric Projections

In an isometric projection all three coordinate axes are equally foreshortened and
the angles between the projected axes are equal. To obtain an isometric projection
the projection plane must intersect all three coordinate axes at equal angles. This

O

qx
qy

qz

Xo

Yo

Zo

FIGURE 8.13. The angles between the projection plane and the coordinate axes.

Viewing and Projection Transformations 265

is equivalent to requiring that the absolute values of all three direction cosines of
the projection plane normal (i.e. the viewing axis) be equal.

Let

x = Vpx − C px

y = Vpy − C py

z = Vpz − C pz

be the direction ratios of the projection plane normal, also let l = √
x2 + y2 + z2

be the length of this normal, then we require that

|x |
l

= |y|
l

= |z|
l

which implies that ±x = ±y = ±z, i.e. the lines

+x = +y = +z (Case 1)

−x = +y = +z (Case 2)

+x = −y = +z (Case 3)

−x = −y = +z (Case 4)

+x = +y = −z (Case 5)

−x = +y = −z (Case 6)

+x = −y = −z (Case 7)

−x = −y = −z (Case 8)

The viewing axis of our camera must lie on or be parallel to one of the above
eight lines and the camera must be looking towards the origin, as seen in Fig. 8.14.
Thus, it is apparent that the isometric projection provides little freedom in the
choice of the orientation of the projection plane and that an equal importance is
given to all the coordinates axes. The right diagram of Fig. 8.14 depicts the iso-
metric projection of a unit cube situated at the origin and aligned with the primary
axes. In this projection, the viewing point of the camera is situated at the point
labelled 4 on the left diagram of the figure.

X

Y

Z

1

2

3

4

5

6

7

8

308

12081208

308

11
1

FIGURE 8.14. An isometric projection.

266 Mathematical and Computer Programming Techniques for Computer Graphics

8.5.1.2.2 Dimetric Projections

In a dimetric projection only two coordinate axes are equally foreshortened and
only two of the angles between the projected axes are equal. In order to obtain a
dimetric projection, the projection plane must intersect two of the coordinate axes
at equal angles. This is equivalent to requiring the absolute value of two of the
direction cosines of the projection plane normal to be equal. Thus we require

|x |
l

= |y|
l

or
|x |
l

= |z|
l

or
|y|
l

= |z|
l

which implies that the projection plane normal lies on a plane parallel to one of
the following six planes:

x = ±y
x = ±z
y = ±z

which means that the viewing axis of our camera must lie on one of these planes
or on a plane parallel to one of these planes, as seen in Fig. 8.15.

A dimetric projection affords us more freedom in the choice of the projection
plane orientation, thus allowing us to emphasise the face of the object we are most
interested in.

To best visualise the above six planes, think of them as dissecting opposite
faces of the solid cube of the left diagram of Fig. 8.15. For example, the points 1,
4, 8 and 5 define the x = +y plane and points 2, 3, 7 and 6 define the x = −y
plane.

8.5.1.2.3 Trimetric Projections

A trimetric projection is the most general form of an axonometric projection.
It produces different foreshortening for each of the coordinate axes and no two
angles between the projected axes are equal. A trimetric projection affords us
almost complete freedom in the choice of projection plane orientation and if the

X

Y

Z

1

2

3

4

5

6

7

8

368509168209

1 1
4
3

FIGURE 8.15. A dimetric projection.

Viewing and Projection Transformations 267

8
7

3
2

1

238169128289

FIGURE 8.16. A trimetric projection.

projection plane is appropriately chosen, it gives the most realistic appearance.
See Fig. 8.16.

8.5.1.3 Orthographic Projection Matrix

An orthographic projection onto the XpYp plane, which is parallel to the XeYe
plane, is achieved by simply ignoring the ze coordinate of the point 〈xe, ye, ze〉.
Thus the projection matrix is

P =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤

⎥⎥
⎦ (8.10)

Hence
[
x p, yp, 0, 1

] = [xe, ye, ze, 1] · P (8.11a)

or alternatively
[
x p, yp, 0, 1

]T = PT · [xe, ye, ze, 1]T (8.11b)

where
〈
x p, yp, 0

〉
is the projected point expressed in the projection-space coordi-

nate system.

8.5.2 Oblique Projections

Oblique projections combine the properties of the multi-view orthographic pro-
jections and those of the axonometric projections. An oblique projection normally
represents the exact shape of one face of an object, and at the same time illustrates
the general three-dimensional appearance of the object.

268 Mathematical and Computer Programming Techniques for Computer Graphics

908

Projection plane

Projectors

Object

F1 F1

F1� F1�F2� F2�

F2
F2

458Projection plane

Projectors

Object

FIGURE 8.17. Comparison of an orthographic and an oblique projection.

Figure 8.17 allows us to compare two projections of an object with faces F1 and
F2, the details of which we wish to emphasise; an orthographic projection (on the
left) and an oblique projection (on the right). Observe that in both projections
the relative length of the projection F′

1 of face F1 remains unchanged. This is so
because this face is parallel to the projection plane. In contrast, the relative length
of the projection F′

2 of the face F2 is larger in the oblique projection, thus allowing
us to show more detail in the projection of this face. This has been achieved by
altering the projection angle alone in this case.

The oblique projection is characterised by projectors that meet the projection
plane at an oblique angle and is determined by

• the orientation of the projection plane (which is determined by the orientation
of the viewing axis);

• the projection angle α1, i.e. the angle between the projectors and the projection
plane;

• the orientation angle α2, i.e. the orientation of the projectors with respect to the
projection plane normal. This angle is usually measured from the horizontal
axis of the projection-space coordinate system (i.e. the X-axis).

See Figs. 8.18 and 8.19.
The projection plane of an oblique projection is usually positioned either

• parallel to the largest face of the object or
• parallel to the face of the object with the most detail,

so that this face is projected without distortion.
The orientation of the projectors is chosen to best illustrate the third dimension

of the object.
An oblique projection is classified by its projection angle either as a cavalier

projection when α1 = 45◦ or as a cabinet projection when α1 ≈ 64◦.
The projection angle α1 determines the thickness of the projected object, while

the orientation angle α2 determines the relative emphasis of the receding planes.
The orientation angle is often chosen such that the projection plane normal is pro-
jected at 30◦ or at 45◦ with respect to the horizontal projection-space coordinate
axis, Xp.

Viewing and Projection Transformations 269

a2

Projector

Projection plane

Projection plane
Unit normal

Shadow of projector on the plane

Xp

Yp

Shadow of the
unit normal

a1

FIGURE 8.18. The Projection and the orientation angles of the oblique projection.

a2

a1

Projector

Projection plane

Projection plane unit normal

a

b
1

l

a

a2

Projection plane

Xp

b
l

ZpYp

Zp

Yp

Xp

FIGURE 8.19. The oblique projection parameters.

The parameters of an oblique projection are best defined with respect to a co-
ordinate system with two axes on the projection plane and the third along the
projection plane normal. See Fig. 8.19.

These parameters are

l the length of the projected unit normal on the projection plane (i.e. the fore-
shortening ratio);

a and b the coordinates of the tip of the projected unit normal on the projection
plane;

α1 the projection angle;
α2 the orientation angle.

270 Mathematical and Computer Programming Techniques for Computer Graphics

From Fig. 8.19 we have

tan (α1) = 1

l

∴ l = 1

tan (α1)

Also from Fig. 8.19 we have

cos (α2) = a

l
and sin (α2) = b

l

∴ a = l · cos (α2) and b = l · sin (α2)

Thus an oblique projection is specified if we know

α1 and α2 in which case we calculate l, a and b;
or l and α2 in which case we calculate a and b;
or a and b directly.

In oblique projections there are no restrictions placed on the location and ori-
entation of the camera, provided that 0◦ < |α1| < 90◦.

8.5.2.1 Oblique Projection Matrix

Usually when we think of a projection we envisage the projection plane as being
in front of us (i.e., in front of the viewing point). In parallel projections the dis-
tance of the projection plane from the viewing point is irrelevant, as it has no effect
on the projected image. In order to simplify the computation of the oblique pro-
jection we assume that the projection plane XpYp lies on the XeYe plane. Then an
oblique projection can be thought of as a shearing transformation along the XeYe
plane followed by an orthographic projection. Thus, we first shear the Ze-axis par-
allel to the Xe-axis by an amount a and then we shear the Ze-axis parallel to the
Ye-axis by an amount b. To visualise this shearing transformation see Fig. 8.20,
which depicts a unit cube situated at the origin of the eye-space coordinate system,
starting from its neutral position and undergoing the two shearing transformations
in sequence.

The combined shearing transformation can be expressed in matrix form as

S =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
a b 1 0
0 0 0 1

⎤

⎥⎥
⎦

Now the projection transformation for the oblique projection becomes

P =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
a b 1 0
0 0 0 1

⎤

⎥⎥
⎦ ·

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
a b 0 0
0 0 0 1

⎤

⎥⎥
⎦ (8.12)

Viewing and Projection Transformations 271

Projection plane

Xe,Xp

Xe,Xp

Ze,Zp

Xe,Xp

Ye,Yp

Ye,Xp

Ye,Yp

Ye,Yp

Xe,Xpa

Projection plane

a

Projection plane

bZe

Ze

FIGURE 8.20. The oblique projection of a unit cube.

Hence
[
x p, yp, 0, 1

] = [xe, ye, ze, 1] · P (8.13a)

or alternatively
[
x p, yp, 0, 1

]T = PT · [xe, ye, ze, 1]T (8.13b)

where
〈
x p, yp, 0

〉
is the projected point expressed in the projection-space coordi-

nate system.

8.6 Perspective Projections

A perspective projection gives a natural appearance to the image of the object.
Perspective projections do not preserve the shape of the object and measurements
can only be made to scale on faces of the object that lie on the projection plane.
A perspective projection is distinguished from a parallel projection by

• the convergence of parallel lines;
• the diminution of size (i.e. foreshortening); and
• non-uniform foreshortening.

Lines that are parallel to the projection plane remain parallel after the projec-
tion, all other parallel lines converge to one, two or three vanishing points. See
Figs. 8.21–8.23. The convergence of parallel lines results in the diminution of size

272 Mathematical and Computer Programming Techniques for Computer Graphics

FIGURE 8.21. A one-point perspective projection.

Horizon line

Base line

FIGURE 8.22. Two two-point perspective projections.

and non-uniform foreshortening of objects. Objects of equal size appear smaller
as their distance from the eye increases. Only faces on the projection plane retain
their true size.

Perspective projections are classified according to the number of vanishing
points they produce. A perspective projection has the same number of vanish-
ing points as the number of coordinate axes the projection plane intersects. Axes
tangential to the projection plane are not counted. There are three classes of per-
spective projection:

• one-point perspective or parallel perspective, with one vanishing point;
• two-point perspective or angular perspective, with two vanishing points; and

• three-point perspective, with three vanishing points.

Viewing and Projection Transformations 273

Horizon line

FIGURE 8.23. A three-point perspective projection.

To obtain a one-point perspective projection we must restrict the viewing axis
of our camera to coincide with one of the coordinate axes Xo, Yo or Zo (i.e. one
of the object-space axes) or to be parallel to it. To obtain a two-point perspective
projection we must restrict the viewing axis of our camera to lie on one of the
object-space major planes XoYo, XoZo or YoZo, or to lie on a plane parallel to one
of these planes. No restrictions are imposed on the viewing axis of our camera if
a three-point perspective projection is required. See Figs. 8.21–8.23.

8.6.1 Perspective Projection Matrix

A perspective projection on the XpYp plane, which is parallel to the XeYe plane
at a distance dV (viewing distance) from it, is defined as outlined below. See
Fig. 8.24.

A point p = 〈xe, ye, ze〉 projects onto a point p′ = 〈
x p, yp, dV

〉
on the projec-

tion plane. From Fig. 8.24 we have

x p

xe
= dV

ze
and

yp

ye
= dV

ze

∴ x p = xe
dV

ze
= xe

(ze/dV)
and yp = ye

dV

ze
= ye

(ze/dV)

Thus the analytical form of the perspective projection transformation is given
by

x p = xe · 1

(ze/dV)

yp = ye · 1

(ze/dV)

(8.14)

274 Mathematical and Computer Programming Techniques for Computer Graphics

dV

dV

dV

p
p

Projection plane

p

p9

Top view

p

p9

Side view

Ze,Zp

Ze

Ze

xe

ye
yp

ze

xp

ze

YpYe

XpXe

Xe

Ye

FIGURE 8.24. The perspective projection.

and the matrix form of this transformation is given by

P =

⎡

⎢⎢⎢
⎣

1 0 0 0
0 1 0 0

0 0 1
1

dV
0 0 0 0

⎤

⎥⎥⎥
⎦

(8.15)

Let us verify that this is so. Post-multiplying the homogeneous point ph =
〈xe, ye, ze, 1〉 by this matrix yields the general homogeneous point 〈x, y, z, w〉,
i.e.

[
x y z w

] = [
xe ye ze 1

] · P (8.16a)

Viewing and Projection Transformations 275

or
[
x y z w

] =
[

xe ye ze
ze

dV

]

∴ x = xe, y = ye, z = ze, w = ze

dV

Dividing both sides of the above vector equation by w (i.e. homogenising the
point) we obtain

[x

w

y

w

z

w
1
]

=
[

xe

(ze/dV)

ye

(ze/dV)
dV 1

]

which is equivalent to

[
x p yp dV 1

] =
[

xe

(ze/dV)

ye

(ze/dV)
dV 1

]

Thus we arrive at the same result as in Eq. (8.14).

x p = xe

(ze/dV)

yp = ye

(ze/dV)

We can arrive at the same result using the alternative form

[
x y z w

]T = PT · [
xe ye ze 1

]T (8.16b)

Note that ze can assume any value apart from zero as this would cause the
values of x p and yp to become infinite and will therefore cause a floating point
error in a computer program that implements this projection. Later, we will see
how we resolve this problem through clipping.

8.7 Screen or Device Coordinate System

Having performed the perspective projection, the image of our scene lies on the
projection plane and is centred about the origin of the projection coordinate sys-
tem. Let us assume that there is a window defined on the projection plane of size
2sx × 2sy that is centred at the origin, as shown in Fig. 8.25.

In order to display the contents of this window on the screen (or any other
graphics device), inside a viewport of size vsx × vsy centred at

〈
vcx , vcy

〉
, we must

scale and offset each projected point, thus transforming it into the screen coordi-
nate system. This transformation is known as the viewporting transformation and
is computed as

xs = x p ·
(

vsx/2

sx

)
+ vcx and ys = yp ·

(
vsy/2

sy

)
+ vcy (8.17)

276 Mathematical and Computer Programming Techniques for Computer Graphics

dV

Window of the projection plane

Ze

Xp
Xe

Ye Yp

Sy

Sx

FIGURE 8.25. The projection plane window.

i.e. xs = xe

(ze/dV)
·
(

vsx/2

sx

)
+ vcx and ys = ye

(ze/dV)
·
(

vsy/2

sy

)
+ vcy

which can be rewritten as

xs =
(

xe

ze

)
·
(

dV

sx

)
·
(vsx

2

)
+vcx and ys =

(
ye

ze

)
·
(

dV

sy

)
·
(vsy

2

)
+vcy (8.18)

See Fig. 8.25.
If s = max

(
sx , sy

)
, then the ratio (dV /s) is the cotangent (i.e. the reciprocal

of the tangent) of half the viewing angle and it thus allows us to simulate differ-
ent types of camera lenses. If this ratio is small, then the viewing angle will be
large thus producing an image similar to that of a wide-angle lens (or a fish-eye
lens). Conversely, if this ratio is large, then the viewing angle will be small thus
producing an image similar to that of a telephoto lens. See Fig. 8.26.

Telephoto lens Wide-angle lens

s

s

dV

FIGURE 8.26. Simulating different types of lenses by varying the viewing distance.

Viewing and Projection Transformations 277

sy

sx

Window

Viewing angle

Ze

Xe

Ye

dV

FIGURE 8.27. The viewing pyramid.

8.8 3D Line Clipping

If we join the origin of the eye-space coordinate system with the corners of the
projection plane window (that will be mapped onto the viewport of the screen)
we define the viewing pyramid which determines the visible portion of eye-space.
Each edge of the window together with the origin of the eye-space defines a clip-
ping plane. Thus, the top, bottom, right and left edges of the window define the
top, bottom, right and left clipping planes, respectively. See Figs. 8.27 and 8.28.

All the edges of an object (defined in object-space) must first be transformed
to the eye-space, then clipped against the viewing pyramid and finally projected
onto the viewport of the screen.

From Fig. 8.28 it can be seen that the clipping planes are defined as

Top plane:

(
dV

sy

)
· ye = +ze

Bottom plane:

(
dV

sy

)
· ye = −ze

Right plane:

(
dV

sx

)
· xe = +ze

Left plane:

(
dV

sx

)
· xe = −ze

Thus, for a point to lie within the viewing pyramid the following conditions
must hold true

−ze ≤
(

dV

sx

)
· xe ≤ +ze and − ze ≤

(
dV

sy

)
· ye ≤ +ze (8.19)

In order to simplify the clipping algorithm we now introduce a new coordinate
system, called the clip-space coordinate system. To effect this transformation
we multiply both the xe and ye coordinates of the eye-space point by the scaling

278 Mathematical and Computer Programming Techniques for Computer Graphics

Top view

Side view

Ze

Ze

−xe

+xe

sx

sx

+ye

−ye

sy

sy

ze

dV

ze

dV

Xe

Ye

FIGURE 8.28. Two views of the eye-space viewing pyramid.

factors (dV /sx) and
(
dV /sy

)
. In matrix form this transformation is expressed as

C =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

(
dV

sx

)
0 0 0

0

(
dV

sy

)
0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

(8.20)

Thus
[xc, yc, zc, 1] = [xe, ye, ze, 1] · C (8.21a)

or alternatively as

[xc, yc, zc, 1]T = CT · [xe, ye, ze, 1]T (8.21b)

This has the effect of transforming the clipping planes to

Top plane: yc = +zc

Bottom plane: yc = −zc

Right plane: xc = +zc

Left plane: xc = −zc

Viewing and Projection Transformations 279

The four conditions for a point being visible now become

−zc ≤ xc ≤ +zc and − zc ≤ yc ≤ +zc (8.22)

The geometric significance of this is that in the clip-space coordinate system
the viewing angle is transformed to a 90◦ angle as shown in Fig. 8.29.

We can now derive a 3D line-clipping algorithm by extending the 2D Choen
and Sutherland line-clipping algorithm. This algorithm determines whether the
endpoints of a line segment lie inside or outside the limits of the viewing pyra-
mid by testing the above four conditions and by computing a 4-bit code for each
endpoint of the line segment. A given bit being set has the following meaning.

1st bit: xc is to the left of the left clipping plane, i.e. xc < −zc

2nd bit: xc is to the right of the right clipping plane, i.e. xc > +zc

3rd bit: yc is to the bottom of the bottom clipping plane, i.e. yc < −zc

4th bit: yc is to the top of the top clipping plane, i.e. yc > +zc

4-Bit codes are computed for both endpoints of the line segment to be clipped
in order to speed up the process of trivially accepting the segment (as being
totally visible) or trivially rejecting the segment (as being totally invisible). If
the codes of both endpoints are zero, then both endpoints must lie within the
viewing pyramid and the segment can be trivially accepted. If the logical inter-
section (logical ANDing) of the codes is non-zero, then both endpoints must lie
on the invisible side of at least one of the clipping planes and the segment can be

Top view

458

458

458

458

Zc

Side view

Zc

Xc

Yc

−xc = zc clipping plane

+xc = zc clipping plane

+yc = zc clipping plane

−yc = zc clipping plane

FIGURE 8.29. Two views of the clip-space viewing pyramid.

280 Mathematical and Computer Programming Techniques for Computer Graphics

trivially rejected. If both the above conditions fail, then we must consider the
segment further as it might be partially visible. In order to determine the visible
portion of the segment (if any), we must compute the point of intersection of the
segment with each of the clipping planes.

The intersection computation makes use of the parametric form of the line. Say
a line segment is defined by the points p1 = 〈x1, y1, z1〉 and p2 = 〈x2, y2, z2〉,
then the general point on the line is given as

x = t · (x2 − x1) + x1
y = t · (y2 − y1) + y1
z = t · (z2 − z1) + z1

(8.23)

where 0 ≤ t ≤ 1 if the point lies on the line segment −−→p1p2.
To compute the point of intersection of the line with one of the clipping planes

we first compute the value of the parameter t at the point of intersection. This is
done as follows.

Let us assume that we wish to compute the point of intersection of the line with
the right clipping plane (i.e. the xc = +zc plane). Using Eq. (8.23) we have

t · (x2 − x1) + x1 = t · (z2 − z1) + z1

∴ t · (x2 − x1) − t · (z2 − z1) = z1 − x1

∴ t = z1 − x1

(x2 − x1) − (z2 − z1)
(8.24a)

In a similar fashion we compute the value of the parameter t at the point of
intersection of the segment with the remaining clipping planes.

At the intersection with the left clipping plane (i.e. the xc = −zc plane)

t = − (z1 + x1)

(x2 − x1) + (z2 − z1)
(8.24b)

At the intersection with the top clipping plane (i.e. the yc = +zc plane)

t = z1 − y1

(y2 − y1) − (z2 − z1)
(8.24c)

At the intersection with the bottom clipping plane (i.e. the yc = −zc plane)

t = − (z1 + y1)

(y2 − x1) + (y2 − z1)
(8.24d)

If 0 ≤ t ≤ 1, then we can compute the point of intersection by substituting the
value of the parameter t into Eq. (8.23); otherwise the infinite line intersects the
clipping plane, but the line segment does not. If there is a point of intersection
with the line segment, its coordinates can be computed as follows.

xi = t · (x2 − x1) + x1
yi = t · (y2 − y1) + y1
zi = t · (z2 − z1) + z1

(8.25)

Viewing and Projection Transformations 281

A
A�

B

B�Vp

Projection plane

Object in front of the cameraObject behind the camera

FIGURE 8.30. An unclipped perspective projection.

If the clipping process yields a visible line segment, then the viewporting trans-
formation must be applied to both its endpoints before the segment can be dis-
played on the screen.

xs =
(

xc

zc

)
·
(vsx

2

)
+ vcx

ys =
(

yc

zc

)
·
(vsy

2

)
+ vcy

(8.26)

It is important to observe that clipping must take place before the perspective
division. Failure to do so will produce incorrect results with parts of the scene
that lie behind the viewing point (and should therefore be invisible) being drawn
upside-down on the screen, as seen in Fig. 8.30

An outline of the 3D Cohen and Sutherland line-clipping algorithm is given in
Algorithm 8.1.

1. c1 ← compute the 4-bit code for p1 ;
c2 ← compute the 4-bit code for p2 ;

2. if (c1 = 0) and (c2 = 0) then
{
trivially accept the line segment;
add a small displacement dz to z1 and z2;
done;

}
3. if (c1 bit − wise AN D c2) then

{
trivially reject the line segment;
done;

}

282 Mathematical and Computer Programming Techniques for Computer Graphics

4. if (c1 = 0) then c = c2;
else c = c1 ;

5. if the first bit of c is set then
{
compute the point of intersection 〈xi , yi , zi 〉 of the line
segment with the left clipping plane;
goto step 9;

}
6. if the second bit of c is set then

{
compute the point of intersection

〈
xi, yi, zi

〉
of the line

segment with the right clipping plane;
goto step 9;

}

7. if the third bit of c is set then
{
compute the point of intersection

〈
xi, yi, zi

〉
of the line

segment with the bottom clipping plane;
goto step 9;

}
8. if the fourth bit of c is set then

{
compute the point of intersection

〈
xi, yi, zi

〉
of the line

segment with the top clipping plane;
goto step 9;

}
9. if (c = c1) then

{
x1 ← xi;
y1 ← yi;
z1 ← zi;
c1 ← recompute the 4-bit code for this point;
goto step 2;

}
else

{
x2 ← xi;
y2 ← yi;
z2 ← zi;
c2 ← recompute the 4-bit code for this point;
goto step 2;

}

Algorithm 8.1 The 3D Choen and Sutherland line-clipping algorithm.

The following C functions implement a 3D point-clipping routine and the
Cohen and Sutherland 3D line-clipping algorithm.

Viewing and Projection Transformations 283

/*
* Common Constants and typedefs.

*/

typedef unsigned char boolean_t;

#define False (boolean_t) 0
#define True (boolean_t) 1

/*
* Constants and typedef for Choen and Sutherland 3D line-clipping
routine.

*/

#define small_t 0.000000005
#define z_displacement 0.0005

typedef unsigned char plane_code_t;

#define left_plane (plane_code_t) 1)
#define right_plane (plane_code_t) 2)
#define bottom_plane (plane_code_t) 4)
#define top_plane (plane_code_t) 8)

/*---*/

boolean_t clip_point_3d(double *x, /* Test Point (In/Out) */
double *y,
double *z
)

{
boolean_t inside;

inside = (
(-(*z) <= (*x)) &&
((*x) <= (*z)) &&
(-(*z) <= (*y)) &&
((*y) <= (*z))
);

/*
* If the point is visible add a small displacement to its

* z-coordinate in order to prevent a potential zero divide

* in the perspective division.

*/

if (inside) (*z) += z_displacement;

return(inside);

} /* clip_point_3d */

/*---*/

284 Mathematical and Computer Programming Techniques for Computer Graphics

void cs_get_plane_code(double x,
double y,
double z,
plane_code_t *c
)

{
if (x < -z) *c = left_plane; else
if (x > z) *c = right_plane;

if (y < -z) *c |= bottom_plane; else
if (y > z) *c |= top_plane;

} /* cs_get_plane_code */

/*---*/

boolean_t cs_clip_line_3d(double *x1, /* Test Line (In/Out) */
double *y1,
double *z1,
double *x2,
double *y2,
double *z2
)

{

/*
* Clip a 3D line segment in the clip-space coordinate system.

*/

double x, y, z, t;
plane_code_t c, c1, c2, done;
boolean_t result;

result = False;
done = 0;

cs_get_plane_code(*x1, *y1, *z1, &c1);
cs_get_plane_code(*x2, *y2, *z2, &c2);

while ((c1 != 0) || (c2 != 0))
{
if (c1 & c2) return(False); /* Trivial rejection */

/*
* The line segment is at least partially outside the clipping

* pyramid.

*/

if (c1 == 0) c = c2;
else c = c1;

if (c & left_plane)
{
/*

Viewing and Projection Transformations 285

* Compute the intersection with x = -z clipping plane.

*/

if (done & left_plane) return(result);
else done |= left_plane;

t = (*x2 - *x1) + (*z2 - *z1);

if (fabs(t) < small_t) t = small_t;

t = -(*z1 + *x1) / t;
x = -z;
y = t * (*y2 - *y1) + *y1;
z = t * (*z2 - *z1) + *z1;
}
else

if (c & right_plane)
{

/*
* Compute the intersection with x = +z clipping plane.

*/

if (done & right_plane) return(result);
else done |= right_plane;

t = (*x2 - *x1) - (*z2 - *z1);

if (fabs(t) < small_t) t = small_t;

t = (*z1 - *x1) / t;
x = z;
y = t * (*y2 - *y1) + *y1;
z = t * (*z2 - *z1) + *z1;
}
else

if (c & bottom_plane)
{
/*
* Compute the intersection with y = -z clipping plane.

*/

if (done & bottom_plane) return(result);
else done |= bottom_plane;

t = (*y2 - *y1) + (*z2 - *z1);

if (fabs(t) < small_t) t = small_t;

t = -(*z1 + *y1) / t;
x = t * (*x2 - *x1) + *x1;
y = -z;

286 Mathematical and Computer Programming Techniques for Computer Graphics

z = t * (*z2 - *z1) + *z1;
}

else

if (c & top_plane)
{
/*
* Compute the intersection with y = +z clipping plane.

*/

if (done & top_plane) return(result);
else done |= top_plane;

t = (*y2 - *y1) - (*z2 - *z1);

if (fabs(t) < small_t) t = small_t;

t = (*z1 - *y1) / t;
x = t * (*x2 - *x1) + *x1;
y = z;
z = t * (*z2 - *z1) + *z1;
}

/*
* Recompute the code.

*/

if (c == c1)
{

*x1 = x;

*y1 = y;

*z1 = z;
cs_get_plane_code(x, y, z, &c1);
}

else
{

*x2 = x;

*y2 = y;

*z2 = z;
cs_get_plane_code(x, y, z, &c2);
}

} /* while loop */

/*
* Add a small displacement to the z-coordinates of the

* line segment in order to prevent a potential zero

* divide in the perspective division.

*/

*z1 += z_displacement;

*z2 += z_displacement;

return(True);

} /*cs_clip_line_3d */

Viewing and Projection Transformations 287

8.9 Perspective Depth

The process of removing hidden lines or hidden surfaces (when displaying a
scene) requires a perspective transformation with special properties. Here, we
wish to produce a perspective view and at the same time we require the depth, zs ,
of each point in the perspective image, so that we can make decisions about which
surfaces hide lines and other surfaces. We must therefore augment the screen co-
ordinate system to be a 3D system with coordinates 〈xs, ys, zs〉, where xs and ys

are the coordinates of the point on the screen, as before, and zs to be calculated
so as to retain the depth information, without altering xs and ys . Thus, to display
a point 〈xs, ys, zs〉 on the screen we use xs and ys , and ignore zs , as shown in
Fig. 8.31.

In this figure, the perspective image p′ of points p1 and p2 is identical because
they have the same xs and ys coordinates, but point p1 is closer to the eye than
point p2.

The screen coordinates can now be computed as

xs =
(

xc

zc

)
·
(vsx

2

)
+ vcx

ys =
(

yc

zc

)
·
(vsy

2

)
+ vcy

zs = − 1

zc

(8.27)

This expression for zs has the advantage that it preserves the intuitive notion
of depth. If a point has a larger ze coordinate than another point, then it will also
have a larger zs coordinate, i.e.

ze2 > ze1 ⇔ zs2 > zs1

p� Zs

Ys

ys

xs

Xs

p2p1

FIGURE 8.31. The screen coordinate system.

288 Mathematical and Computer Programming Techniques for Computer Graphics

In matrix form the above transformation is expressed as

S =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

(vsx

2

)
0 0 0

0
(vsy

2

)
0 0

vcx vcy 0 1

0 0 −1 0

⎤

⎥⎥⎥⎥⎥
⎥
⎦

(8.28)

Now multiplying the homogeneous point p h = 〈xc, yc, zc, 1〉 by this matrix
yields the general homogeneous point 〈x, y, z, w〉, i.e.

[x, y, z, w] = [xc, yc, zc, 1] · S (8.29a)

or alternatively as

[x, y, z, w]T = ST · [xc, yc, zc, 1]T (8.29b)

Thus

x = xc ·
(vsx

2

)
+ zc · vcx

y = yc ·
(vsy

2

)
+ zc · vcy

z = −1

w = zc

To recover the 3D point we homogenise the 4D point to obtain

xs = x

w

ys = y

w

zs = z

w

which after substitution yields

xs = xc

zc
·
(vsx

2

)
+ zc · vcx

zc

ys = yc

zc
·
(vsy

2

)
+ zc · vcy

zc

zs = − 1

zc

Viewing and Projection Transformations 289

and after simplification we obtain the same result as in Eq. (8.27):

xs =
(

xc

zc

)
·
(vsx

2

)
+ vcx

ys =
(

yc

zc

)
·
(vsy

2

)
+ vcy

zs = − 1

zc

8.10 Simple C Library for 3D Transformations

See Appendix 4.

“Comninos” — 2005/8/31 — 18:28 — page 291 — #1

9

3D Rendering

9.1 Introduction

Computer image synthesis is the process of generating a two-dimensional pictor-
ial representation of a mathematically defined three-dimensional object or scene.
Sometimes this process is referred to as rendering the scene and the computer
program that caries out this process is called a renderer.

Given the mathematical description of a collection of objects or curved surfaces
in a scene, there are three main ways in which we may render this scene. We may
render it as

• a wire-frame drawing, depicting all the edges or curves, as shown in Fig. 9.1a;
• a hidden-line drawing, depicting only the visible edges or curves (i.e. all the

edges or curves not obscured by any faces or surfaces closer to the observer),
as shown in Fig. 9.1b;

• a shaded image, which attempts to capture the photographic appearance of the
scene by simulating how light is reflected off the surface of its objects or curved
surfaces, as shown in Fig. 9.1c.

There are clear distinctions between these three techniques of rendering, which
we shall examine shortly.

To simplify our discussion, we will only deal with scenes that are described
as a collection of polygons. In this scheme, curved surfaces are assumed to have
been decomposed into polygonal meshes which approximate their shape. This is
common practice in most rendering schemes.

In our scheme, a scene is defined as a set (collection) of objects, i.e. S =
{O1, O2, . . . , Ok}. Each object is defined as a set of polygons, faces or facets
F, a set of edges E and a set of vertices V. Thus an object O is defined as
O = {F, E, V}, where F = {

f 1, f 2, . . . , f l
}
, E = {e1, e2, . . . , em} and V =

{v1, v2, . . . , vn}. Each vertex vi is defined by its three coordinates vi = {xi , yi , zi },
each edge e j is defined by its two endpoints ej = {vs, ve} and each face fp may
be defined by the set of edges fp = {e} or by the set of vertices fp = {v} that
describe it.

291

“Comninos” — 2005/8/31 — 18:28 — page 292 — #2

292 Mathematical and Computer Programming Techniques for Computer Graphics

(a) (b) (c)

FIGURE 9.1. Three rendering techniques.

Figure 9.2 depicts a cuboid with its faces, edges and vertices labelled, and
Table 9.1 shows the corresponding description of this object. In Table 9.1, the
face descriptions f = {v} are given in counter-clockwise order when seen from
the outside of the object. The reason for this is simple. If we use three consecutive
vertices in a face description, we can construct two vectors lying on the face. We
can then compute the cross product of these two vectors to determine the normal
of the face, which points outwards from the object. This only works with convex
polygonal facets. For convex or concave polygonal facets with n vertices we have
to use a more sophisticated method developed by Martin Newell. His method
also works with non-flat facets, where it calculates the average plane equation of
the facet. Recall that for a point to lie on a plane it must satisfy its equation
a · x + b · y + c · z + d = 0, where a, b, c, d are the coefficients of the plane
equation and x , y, z are the coordinates of the general point. Newell computes
the coefficients of this equation as follows.

v8

v1 v2

v3v4

v5

v6

v7

e8

e1

e2

e3

e4

e5

e6

e7

e9

e10

e11

e12

f2

f3
f4

f5f6

f1

FIGURE 9.2. A cuboid with its faces, edges and vertices labelled.

“Comninos” — 2005/8/31 — 18:28 — page 293 — #3

3D Rendering 293

TABLE 9.1. The vertex, edge and face lists of the cuboid depicted in Fig. 9.2.
Vertex list Edge list Face list

v = {x, y, z} e = {v} f = {v} f = {e}
v1 = {x1, y1, z1} e1 = {v1, v2} f1 = {v4, v3, v2, v1} f1 = {e4, e3, e2, e1}
v2 = {x2, y2, z2} e2 = {v2, v3} f2 = {v5, v6, v7, v8} f2 = {e5, e6, e7, e8}
v3 = {x3, y3, z3} e3 = {v3, v4} f3 = {v1, v2, v6, v5} f3 = {

e1, e10, e5, e9
}

v4 = {x4, y4, z4} e4 = {v4, v1} f4 = {v2, v3, v7, v6} f4 = {e2, e11, e6, e10}
v5 = {x5, y5, z5} e5 = {v5, v6} f5 = {v3, v4, v8, v7} f5 = {e3, e12, e7, e11}
v6 = {x6, y6, z6} e6 = {v6, v7} f6 = {v4, v1, v5, v8} f6 = {

e4, e9, e8, e12
}

v7 = {x7, y7, z7} e7 = {v7, v8}
v8 = {x8, y8, z8} e8 = {v8, v5}

e9 = {v1, v5}
e10 = {v2, v6}
e11 = {v3, v7}
e12 = {v4, v8}

a =
n∑

i=1

(
yi − y j

) · (
zi + z j

)

b =
n∑

i=1

(
zi − z j

) · (
xi + x j

)

c =
n∑

i=1

(
xi − x j

) · (
yi + y j

)

and d = − (a · x1 + b · y1 + c · z1) (9.1)

where if (i < n) then j = i + 1 else j = 1
As we have seen in Chapter 2 (Section 2.24.8), the normal of this plane is given

by n = [a, b, c] and d is the signed distance of the plane from the origin.
Incidentally, the signed distance of a point P = 〈x, y, z〉 from the plane is given

by

dp = (a · x + b · y + c · z)

|n| = (a · x + b · y + c · z)√
a2 + b2 + c2

(9.2)

Here, if dp > 0, then this point lies in front of the plane (i.e. in the half-space
towards which the plane normal points). If dp < 0, then this point lies behind the
plane (i.e. in the half-space opposite to the one towards which the plane normal
points). Finally, if dp = 0, then this point lies on the plane.

Another interesting fact is that, the coefficients a, b, c of the plane equation
(i.e. the components of its normal) are proportional to the area of the projections
of the polygon on the YZ, the XZ and the XY planes, respectively. The area of the
projected polygon on the YZ plane is given by |a| /2, on the XZ plane by |b| /2
and on the XY by |c| /2.

In the above discussion, it is assumed that the polygon is described in counter-
clockwise fashion when seen from the front (i.e. from the half-space towards
which its normal points).

“Comninos” — 2005/8/31 — 18:28 — page 294 — #4

294 Mathematical and Computer Programming Techniques for Computer Graphics

9.2 Rendering Algorithms

Producing a wire-frame drawing of the objects in a scene is fairly simple. First
we must transform all the vertices of the scene into the eye-space coordinate sys-
tem. Then, we clip each edge of the scene against the viewing pyramid and if
the clipped edge is at least partially visible, we transform its endpoints into the
image-space coordinate system and we draw a 2D line segment using the available
graphics package.

Producing a hidden-line drawing or a shaded image of the objects in a scene
is slightly more complex. In both cases, we first transform all the vertices of the
scene into the eye-space coordinate system and we clip all the polygons of the
scene against the viewing pyramid using a 3D polygon-clipping algorithm.

To produce a hidden-line drawing of the scene we need to use a hidden-line
elimination algorithm. This algorithm examines each edge in the scene and com-
pares it against each face in the scene in order to determine if it is obscured by
any face that is closer to the observer. If the algorithm determines that an edge
is totally obscured by a face, then it eliminates this edge and proceeds with the
next one. If an edge is partially obscured by a face, then the algorithm removes
the invisible part and continues checking the visible part of the edge against the
remaining faces. If an entire edge or a part of an edge is found to be obscured by
none of the faces, then its endpoints are transformed into the image-space coordi-
nate system and it is displayed as before.

To produce a shaded image of the scene we need to use a hidden-surface elim-
ination algorithm and a shading algorithm. In this case our image can only be
displayed on a raster scan display device. Such devices are capable of display-
ing a number of scan-lines on the screen. A scan-line is a horizontal line on the
screen which is composed of a number of pixels (picture elements) that appear
as dots on the screen. A typical display may consist of 1024 scan-lines each of
which has 1280 pixels, which gives us a total of 1,310,720 pixels. These pixels
are commonly stored in a rectangular array in memory called the frame-buffer.

At each pixel of the frame-buffer, the hidden-surface elimination algorithm has
to examine each polygon in the scene in order to determine the polygon that is
closest to the observer thus obscuring all other polygons at that pixel. While per-
forming this determination, the algorithm needs to store the depth of the polygon
found to be the closest to the observer so far. These depths are stored in a rectan-
gular array, called the depth-buffer or z-buffer, which has the same dimensions as
the frame-buffer.

After the hidden-surface elimination algorithm has determined the closest
polygon at a given pixel, the shading algorithm must determine the intensity and
colour of the light reflected by the polygon covering the pixel. This intensity and
colour will depend on the surface finish and colour texture of the polygon, on the
lighting characteristics of the light source, on whether the polygon is lit directly
or is in shadow and on whether the polygon is opaque or transparent. The more
realistic the rendering is required to be the more complex and computationally
expensive the rendering algorithm becomes.

“Comninos” — 2005/8/31 — 18:28 — page 295 — #5

3D Rendering 295

The removal of the hidden parts from an image of solid objects is one of the
most challenging problems in computer graphics and has occupied researchers
since the early 1960s. Although there are many hidden-line and hidden-surface
elimination algorithms there is no single answer to the hidden-line and hidden-
surface elimination problem. There is no best algorithm. In an excellent paper,
Sutherland, Sproull and Schumacker categorise the hidden-line and hidden-surface
elimination algorithms into two basic classes: object-space algorithms and image-
space algorithms [Sutherland 74]. Although some algorithms fit partially in each
class, namely the list-priority algorithms. This classification also happens to sepa-
rate the hidden-line and hidden-surface elimination algorithms. Three-dimensional
objects are considered to be a collection of nf polygonal facets by both categories
of algorithm.

Object-space algorithms seek to compute exactly what the image should be by
discovering what parts of the scene are hidden by other parts. Each of the nf

facets must be compared to the remaining (nf – 1) facets in order to determine
the facets or the portions of facets that are not visible. Thus the computations
required for this determination are of the order nf × (nf – 1).

Image-space algorithms, on the other hand, seek to determine what the image
will be at each of the pixels of the display screen. For each of the n p pixels
of the display the algorithm must examine all nf facets in order to determine
the facet that is closest to the observer. Thus the computations required for this
determination are of the order nf × n p. As we have seen above, the number of
pixels n p is very large. Thus, when (nf – 1) < n p object-space algorithms tend to
be more efficient than image-space algorithms. This is only a rule of thumb since
the computational steps required for image-space algorithms tend to be simpler
than those required for object-space algorithms.

Next we examine a collection of simple hidden surface elimination algorithms.

9.2.1 A Simple Rendering Algorithm

A simple, but inefficient, algorithm is one that looks at all surfaces in a scene
at each pixel and declares the one closest to the viewer as the visible surface.
If the image has a resolution of (xmax + 1) × (ymax + 1) pixels, the scene con-
tains (pmax + 1) polygons and the depth (distance from the viewer) is computed
by the function compute depth(p,x,y), then this simple algorithm can be
expressed by the following pseudo-code.

#define background_depth 1e30
#define background_intensity 0

for (y = Y_max; y >=0; y--)
{
/* For every scan-line */

for (x = 0; x <= X_max; x++)
{
/* For every pixel in this scan-line */

“Comninos” — 2005/8/31 — 18:28 — page 296 — #6

296 Mathematical and Computer Programming Techniques for Computer Graphics

depth_buffer[x][y] = background_depth;
frame_buffer[x][y] = background_intensity;

for (p = 0; p <= P_max; p++)
{
/* For every polygon in the scene */

if (point_inside_polygon(p, x, y))
{
/* Pixel is inside the perimeter of the polygon */

z = compute_depth(p, x, y);

if (z < depth_buffer[x][y])
{
/* Store the depth and intensity of the polygon */

depth_buffer[x][y] = z;
frame_buffer[x][y] = compute_intensity(p, x, y, z);

}
}

}
}

}

One way the function compute depth(p,x,y) may compute the depth of
the polygon is to trace a ray from the point 〈x, y, 0〉 parallel to the –Z-axis and in-
tersect it with each polygon in the scene, hence the term ray-tracing. The visibility
calculation must be performed (xmax + 1)×(ymax + 1)×(pmax + 1) times per im-
age, which makes this algorithm very expensive. The function compute inte-
nsity(p,x,y,z) implements the shading algorithm (shader routine).

The reason why this simple, brute force, ray-tracing algorithm is wasteful is
primarily because it operates on a pixel-by-pixel basis. A more fruitful approach
is to attempt to determine visibility over large regions of the image exploiting
some of the coherence properties of the image.

9.2.2 Warnock (Screen Subdivision) Algorithm

Warnock developed one of the first area-subdivision algorithms that takes advan-
tage of the property of area-coherence [Warnock 69]. Area-coherence is based on
the observation that the image of a typical polygon has similar extents in both the
x and y directions. Thus, the pixels within such an area are coherent in that they
depict a single polygon.

The Warnock algorithm first tries to resolve the visibility problem (hidden-
surface problem) for a window that covers the entire screen. If the visibility prob-
lem is simple to resolve, then the algorithm displays the contents of the window,
otherwise it recursively subdivides the current window into four sub-windows

“Comninos” — 2005/8/31 — 18:28 — page 297 — #7

3D Rendering 297

and repeats the process until the visibility problem can be resolved for each sub-
window. If the visibility problem continues to prove intractable with successive
subdivisions, then this recursive subdivision process is forced to terminate when
the size of the sub-window reaches the size of a pixel. See Fig. 9.3.

At each stage of the recursive subdivision, the projection of each polygon and
the window have one of the following relationships (shown in Fig. 9.4).

1. The polygon surrounds the window. Such a polygon is called a surrounder
polygon.

2. The polygon intersects the window. Such a polygon is called an intersector
polygon.

3. The polygon is contained in the window.
4. The polygon is disjoint from the window.

FIGURE 9.3. The recursive subdivision of the Warnock algorithm.

Surrounder Contained Intersector Disjoint

FIGURE 9.4. The classification of polygons.

“Comninos” — 2005/8/31 — 18:28 — page 298 — #8

298 Mathematical and Computer Programming Techniques for Computer Graphics

Decisions about the visibility problem at a given window are made as follows.

1 If all the polygons are disjoint from the window, then

1.1 fill the window with the background colour;
1.2 done (return to the caller).

2 If there is only one polygon contained in the window, then

2.1 fill the window with the background colour;
2.2 fill the polygon (by scan-converting it);
2.3 done (return to the caller).

3 If there is only one polygon intersecting the window then

3.1 fill the window with the background colour;
3.2 clip the polygon to the window;
3.3 fill the polygon (by scan-converting it);
3.4 done (return to the caller).

4 If there is only one polygon surrounding the window then

4.1 clip the polygon to the window;
4.2 fill the polygon (by scan-converting it);
4.3 done (return to the caller).

otherwise there must be more than one polygons intersecting, contained or sur-
rounding the window.

5 If there is only one polygon surrounding the window and it is in front of all
other polygons then

5.1 clip the surrounder polygon to the window;
5.2 fill this polygon (by scan-converting it);
5.3 done (return to the caller).

6 If the size of the window is greater than one pixel then

6.1 recursively subdivide this window into four sub-windows and repeat the
algorithm for each sub-window;

6.2 done (return to the caller). otherwise
6.3 compute the depth of all polygons at the centre of the window and use the

closest polygon to colour the pixel;
6.4 done (return to the caller).

Determining that the surrounder polygon is in front of all other polygons is
done as follows.
for each polygon compute the depth of its plane at the four corners of the window.
If there is a surrounder that has z coordinates closer to the viewing point than any
other polygon

then the test succeeds (see Fig. 9.5a);
else the test fails (see Fig. 9.5b).

“Comninos” — 2005/8/31 — 18:28 — page 299 — #9

3D Rendering 299

X

Z

Window

(a) (b)

Surrounder

Intersector

Contained

X

Z

Window

Surrounder

Intersector

FIGURE 9.5 (a) Successful surrounder in front test. (b) Unsuccessful surrounder in front
test.

So the Warnock algorithm exhibits the following characteristics.

• It exploits the property of area coherence.
• It is useful for a scene with many large polygons.
• It is relatively easy to implement (though not the simplest) using recursive calls.
• Its memory costs can be large. For a 1024 × 1024 display, the algorithm may

recur to at most 10 levels of subdivision (as 210 = 1024).
• It is not the fastest available algorithm.

9.2.3 Newell, Newell and Sancha Algorithm

The Newell, Newell and Sancha algorithm is a list-priority algorithm [Newell 72].
All list-priority algorithms have to determine, in eye space, a display-priority (or
visibility-ordering) for all polygonal facets in the scene, before they are able to
generate a picture, in the screen space. The polygons are sorted in such a way that
if two polygons are compared, the one with the lower display priority is the most
visible one (i.e. not obscured by a higher display priority polygon).

The allocation of priorities is achieved through what is known as a topologi-
cal sort. The topological sort begins by sorting all the polygons in the scene in
descending order of their zmax , i.e. the depth of the point in each polygon that
is furthest away from the viewing point. This sort orders the polygons from the
deepest polygon (which is assigned the highest display priority) to the shallowest
polygon (which is assigned the lowest priority).

If after this depth sort, no two polygons (that are adjacent in the depth-sorted
list) overlap in z, then the list of polygons is sorted in the correct priority order
(see Fig. 9.6a). Such a simple priority sort is only guarantied to work with scenes
consisting of a series of polygons nearly perpendicular to the viewing axis.

If two polygons, in the depth-sorted list, overlap in depth but do not have an
x – y bounding box overlap, then their priority order is correct (see Fig. 9.6b).

If two polygons, in the depth-sorted list, overlap in depth and have an x – y
bounding box overlap, then their priority order may be incorrect and we must de-
termine if the deeper (higher priority) polygon P obscures the shallower (lower

“Comninos” — 2005/8/31 — 18:28 — page 300 — #10

300 Mathematical and Computer Programming Techniques for Computer Graphics

X

Z

P

Q

zmax

zmax

X

Z

P

Q

X

Z

P

Q

(a) (b) (c)

FIGURE 9.6 (a) No depth-overlap. (b) Depth-overlap with no x–y bounding box overlap.
(c) Depth-overlap and x–y bounding box overlap.

priority) polygon Q (see Fig. 9.6c). In this example the priority of the two poly-
gons is incorrect and must be reversed, i.e. Q must be displayed before P.

Polygon P may have a depth-overlap with a set of polygons
{
Qi

}
that imme-

diately follow it in the list. If P does not obscure any of the polygons Qi , then
polygon P has the correct display priority (see Fig. 9.7a), otherwise Qi must be
given a higher display priority than P (see Fig. 9.7b). In this example after the

X

Z

P
Q1

Q2

X

Z

P
Q1

Q2

X

Z

P

Q

X

Z

P
Q

X

Y

P

Q

(a) (b)

(d) (e)

(c)

FIGURE 9.7 (a) P does not obscure polygons Qi . (b) P obscures polygons Qi . (c) P behind
Q. (d) Q in front of P. (e) No proper x–y overlap.

“Comninos” — 2005/8/31 — 18:28 — page 301 — #11

3D Rendering 301

depth-sort the initial priority order is P, Q1, Q2 but after the P-obscures-Q test the
priority order becomes Q1, Q2, P.

The P-obscures-Q test is false if any of the following tests is true:

1. P and Q do not overlap in depth and Q is closer to the viewing point than P
(see Fig. 9.6a). This test is done by the initial depth-sort.

2. P and Q do not have an x – y bounding box overlap (see Fig. 9.7a). This test
is done above.

3. All vertices of P are further away from the viewing point than the plane of Q
(i.e. all the vertices of P are in the half-space that lies behind the plane of Q).
See Fig. 9.7c. This test is done by substituting the coordinates of the vertices
of P into the plane equation of Q.

4. All vertices of Q are closer to the viewing point than the plane of P (i.e. all
the vertices of Q are in the half-space that lies in front of the plane of P). See
Fig. 9.7d. This test is done by substituting the coordinates of the vertices of Q
into the plane equation of P.

5. There is no proper overlap of P and Q on the XY plane (i.e. no vertices of
P are in Q and no vertices of Q are in P, and the edges of P and Q do not
intersect). See Fig. 9.7e.

Tests 1–5 are performed in the specified order as they become progressively
more expensive to compute. If P-obscures-Q, then we reverse the order of P
and Q in the display priority list. This is not the end of the story however since
there are some problem cases:

1. Penetrating polygons cannot be ordered by the above procedure and one of
them must be split about the plane of the other before we can sort them topo-
logically. See Fig. 9.8a.

2. Cyclically overlapping polygons cannot be ordered by the above procedure
and one or more of them must be split before we can sort them topologically.
See Fig. 9.8b and c.

The Newell, Newell and Sancha algorithm calculates the visibility of the scene
using geometric criteria rather than using pixel-by-pixel depth comparisons. It

X

Y

P

Q

X

Y

P

Q

X

Y

Q1Q2

P

(a) (b) (c)

FIGURE 9.8. (a) Penetrating polygons. (b and c) Cyclic overlap.

“Comninos” — 2005/8/31 — 18:28 — page 302 — #12

302 Mathematical and Computer Programming Techniques for Computer Graphics

thus takes advantage of the depth coherence of polygons to make visibility de-
cisions about entire polygons. This algorithm performs the priority sort in eye
space and the resulting priority list is only valid for a single camera position.

9.2.4 Single Scan-Line Depth-Buffer Algorithm

This algorithm consists of two parts. In the first part, the algorithm sets up the
y-bucket list, which sorts each edge of each polygon in the scene according to
its maximum y coordinate. This operation is known as the y-bucket sort. The
y-bucket list is an array whose elements correspond to the scan-lines of the dis-
play. At the end of this pre-processing step, each y-bucket entry contains either
a null pointer (indicating that there are no polygon edges starting at this scan-
line) or points to a linked list of edge records (each representing a polygon edge
starting at this scan-line). Horizontal or near horizontal edges are omitted from
the y-bucket list. Edge records contain the following fields.

count containing minus the number of scan-lines crossed by this edge.

current x containing the x coordinate of the point of intersection of the edge
with the current scan-line.

current z containing the z coordinate of the point of intersection of the edge
with the current scan-line.

delta x containing the amount by which the current x coordinate of the point
of intersection of the edge is to be incremented or decremented by
on each subsequent scan-line.

delta z containing the amount by which the current z coordinate of the point
of intersection of the edge is to be incremented or decremented by
on each subsequent scan-line.

poly idx containing the index of the polygon to which the edge belongs.

next ptr containing a pointer to the next edge record in the list of this y-bucket
entry.

To build the y-bucket list the algorithm examines each edge of each facet of the
geometric model. As each non-horizontal edge is processed, its maximum y coor-
dinate is determined, its record is completed and it is inserted into the appropriate
linked list of edges starting at the same scan-line.

Given that an edge is defined by the following information {x1, y1, z1, x2, y2,
z2, poly idx}, its edge record is completed as follows.

for every polygon in the scene do
for every edge in this polygon do
if (truncate(y1) != truncate(y2)) then
{
create a new edge record;
if (y1 > y2) then
{
x_max = x1; y_max = y1; z_max = z1;
x_min = x2; y_min = y2; z_min = z2;

“Comninos” — 2005/8/31 — 18:28 — page 303 — #13

3D Rendering 303

}
else
{
x_max = x2; y_max = y2; z_max = z2;
x_min = x1; y_min = y1; z_min = z1;
}

count = (y_min - y_max);
current_x = x_max;
current_z = z_max;
delta_x = (x_min - x_max) / (y_max - y_min);
delta_z = (z_min - z_max) / (y_max - y_min);
link this record in the appropriate y-bucket entry list;
}

The second part of this algorithm maintains a list of active edges (i.e. edges that
intersect the current scan-line). This list, which is known as the active edge list, is
a sorted list of all the edges that intersect the scan-line under consideration. This
algorithm also maintains an intensity array (or frame-buffer) and a depth buffer
array (or z-buffer) for the current scan-line. These arrays have as many pixels as
the scan-line.

The image is generated starting from the top scan-line of the display and pro-
ceeding towards the bottom. Initially, the active edge list is empty and it is updated
before processing each scan-line. Each scan-line is processed by first updating the
active edge list. At this stage the algorithm removes from the active edge list any
edges that have ceased to be active (as they no longer intersect the current scan-
line) and it inserts the newly activated edges from the corresponding y-bucket
entry using an insertion sort procedure. This procedure inserts a newly activated
edge in ascending polygon-index order. If two edges have the same polygon-
index, then it inserts the new edge in ascending current-x order. If two edges have
the same current-x coordinate, then it inserts the new edge in ascending delta-x
order.

At the end of the updating stage, the algorithm initialises each pixel of the
frame-buffer to the background colour and each pixel of the z-buffer to some
large positive value (representing the depth of the background). Next, pairs of
neighbouring edges, known as polygon spans, are scan-converted in sequence.
Scan-converting a span involves determining the pixels of the current scan-line
that are covered by this span. At each pixel the algorithm determines if the depth
of the polygon at that pixel is closer to the observer than the current depth value
stored in this pixel. If it is, then that means that this polygon is visible at this pixel
and its shade must be computed and stored in this frame-buffer pixel.

When all the polygon spans have been processed in this way, the z-buffer con-
tains the depth and the frame-buffer contains the shade of the nearest polygon at
each pixel of the scan-line.

Because visibility must be resolved at each pixel covered by one or more poly-
gons, and because all polygon spans must be processed whether they are visible
or not, the single scan-line depth buffer algorithm is inefficient compared to some

“Comninos” — 2005/8/31 — 18:28 — page 304 — #14

304 Mathematical and Computer Programming Techniques for Computer Graphics

other algorithms. However, the depth comparisons are very simple operations that
can be executed quickly, giving this algorithm the potential for good performance.
This algorithm becomes relatively more efficient than other algorithms when the
number of polygons in the scene is greater than the total number of pixels on the
screen.

Part two of the algorithm has the following steps.

1. Set the active edge list to empty;

2. current_y = maximum scan-line index;

while (current_y >= 0) do
{

3. if the active edge list is not empty then
{
Update all the active edges as follows:

if the edge has expired (i.e. count == 0) then
{
Remove it from the active edge list;
}

else
{
Update the edge record:
current_x += delta_x;
current_z += delta_z;
count ++;
}

}

4. if the y-bucket entry for the current scan-line is not empty then
{
Insert all the newly activated edges into the active
edge list. This involves an insertion sort by
ascending poly_idx order, if two entries have the
same poly_idx, then by ascending current_x order and
if two entries have the same current_x then by
ascending delta_x order.
}

5. if the active edge list is not empty then
{

5.1 Initialise the z-buffer array to a large positive
number (representing the background depth) and the
intensity array to the background colour.

5.2 while (there are more entries in the active edge list) do
{
5.2.1 Pick a pair of entries from the active

edge list. (each pair of edges defines an
active polygon span).

“Comninos” — 2005/8/31 — 18:28 — page 305 — #15

3D Rendering 305

5.2.2 xl = the current_x of the left edge of
the polygon span;

zl = the current_z of the left edge of the
polygon span;

xr = the current_x of the right edge of the
polygon span;

zr = the current_z of the right edge of the
polygon span;

dz = (zr - zl) / (xr - xl);
(where dz is the amount by which the depth of
the span changes from pixel to pixel as we
move along the span).

5.2.3 for xc = xl to xr do
{
if (zl < z_buffer[xc]) then
{
z_buffer[xc] = zl;
intensity[xc] =
compute_intencity(poly_idx,xc,current_y,zl);
}

zl += dz;
}

}

5.3 Display the contents of the intensity buffer.
}

6. current_y --;
}

7. Done.

9.3 Reflection Models and Shading Techniques

Having determined which polygon (or surface) is visible at any given pixel of the
display device we must determine what colour to paint it with. The determina-
tion of this colour depends on the shading technique and on the reflection model
used. Additionally, texturing and transparency effects can influence the colour of
a pixel. In this section we will examine a number of simple reflection models and
shading techniques.

Briefly put, a shading technique determines how and at what instance we cal-
culate the normal vector of a polygon while scan converting it. Shading tends
to work either entirely in eye-space or partly in eye-space and partly in screen-
space. We will examine three different shading techniques: flat polygon shading,
Gouraud smooth shading and Prong smooth shading.

“Comninos” — 2005/8/31 — 18:28 — page 306 — #16

306 Mathematical and Computer Programming Techniques for Computer Graphics

In contrast, a reflection model determines how the light that reaches a surface
is reflected off it. Our discussion will concentrate on three simple light reflec-
tion models: ambient light reflection, diffuse light reflection and specular light
reflection.

In our discussion we will assume that the scene is composed of a number of
polygons that posses a number of attributes such as colour and surface finish. We
will also assume that our scene is lit by one or more point light sources. Let us
start by examining these three light reflection models.

9.3.1 Ambient Light Reflection

In most environments there is ambient light from a variety of sources that is re-
peatedly reflected off various surfaces and eventually reaches the surface of in-
terest. Examples of ambient light are: the light that is reflected off the walls, the
ceiling and the floor of a room or sunlight on an overcast day. Rather than model
such light sources individually, we make the simplifying assumption that ambient
light comes equally from all directions. Then we can model the reflection of this
ambient light as a constant term that has no dependence on the viewer, the light
source, or the surface normal directions. The model for ambient light reflection
can be expressed as follows.

Ia = La · ka (9.3)

where Ia is the intensity of the reflected ambient light,
La is the intensity of the incident ambient light, i.e. the ambient light
reaching the surface, and
ka is the coefficient of ambient reflection (i.e. the fraction of ambient light
that is reflected off the surface).

If an object is lit only with ambient light, it will appear dull and featureless and
with no discernible surface texture.

9.3.2 Diffuse Light Reflection

Matt surfaces, such as chalk, exhibit a rough surface finish that is composed of
randomly distributed micro-facets. When parallel light rays hit such a surface
they are reflected in a random fashion thus scattering in all directions, as shown
in Fig. 9.9. Such surfaces appear to be equally bright when viewed from any
direction, thus the direction of the viewer is unimportant. Such reflection is known
as diffuse or Lambertian reflection. According to Lambert’s law what determines
the brightness of such surfaces is the incidence angle i , i.e. the angle between the
incoming light ray and the surface normal vector, as shown in Fig. 9.10. When
the incidence angle is small then the surface appears brighter and when this angle
is large the surface appears darker. To be more precise, the surface brightness is
proportional to the cosine of the incidence angle, cos i .

“Comninos” — 2005/8/31 — 18:28 — page 307 — #17

3D Rendering 307

FIGURE 9.9. The surface micro-facets.

N
L

i

FIGURE 9.10. Diffuse reflection.

The model for diffuse light reflection can be expressed as follows.

Id = L p · kd · cos i = L p · kd · (L � N) (9.4)

where Id is the intensity of the reflected diffuse light,
L p is the intensity of the light of a point source incident on the surface,
L is the unit vector in the direction of the light source,
N is surface unit normal vector, and
kd is the coefficient of diffuse reflection (i.e. the fraction of light that is
reflected diffusely off the surface).

“Comninos” — 2005/8/31 — 18:28 — page 308 — #18

308 Mathematical and Computer Programming Techniques for Computer Graphics

9.3.3 Specular Light Reflection

Glossy surfaces, such as mirrors and polished metal surfaces, exhibit a smooth
surface finish. When parallel light rays hit such a surface and are reflected off
it, they remain parallel. The angle of reflection r of a ray is equal to its angle
of incidence i , as shown in Fig. 9.11. The best visual indicators of glossiness
are highlights, i.e. the specular reflection of the light source. Were the surface
a perfect mirror, light would only reach the viewer if the surface normal pointed
halfway between the light source direction vector L and the viewer direction vec-
tor E. We will call the vector pointing in this direction H. Since most glossy
surfaces are not perfectly smooth mirrors, the intensity of the highlight falls off
smoothly rather than abruptly when the angle of incidence is not equal to the angle
of a ray reflected in the direction of the observer, i.e. the eye angle e as depicted
in Fig. 9.12.

The reflection model for specular light reflection can be expressed as follows.

Is = L p · ks · Fs (N, L, E, n) (9.5)

where Is is the intensity of the reflected specular light,
L p is the intensity of the light of a point source incident on the surface,
L is the unit vector in the direction of the light source,
E is the unit vector in the direction of the viewer,
N is the surface unit normal vector,
n is the specular sharpness, i.e. the sharpness of the specular peak,
Fs is the specular reflection function, and
ks is the coefficient of specular reflection (i.e. the fraction of light that is
reflected off the surface in a specular fashion).

N,H
L

i

R,E

r

FIGURE 9.11. The direction of maximum highlights.

“Comninos” — 2005/8/31 — 18:28 — page 309 — #19

3D Rendering 309

N
L

i

E

r

H
R

h

g
p

e

FIGURE 9.12. Specular reflection.

The meaning of the remaining vectors and angles in Fig. 9.12 is as follows.

R is the unit vector in the direction of the reflected ray, i.e. the direction of
maximum highlights.

H is the vector which points halfway between the light source direction and
the eye direction. This vector points in the direction in which the surface
normal should point if the viewer were to receive the maximum amount
of highlights.

i is the incidence angle.
r is the reflection angle. Observe that r = i .
e is the eye angle, i.e. the angle between vectors N and E.
p is the phase angle, i.e. the angle between vectors L and E.
h is the highlight angle, i.e. angle between vectors E and R.
g is the angle between vectors N and H. Observe that g = h

/
2.

The specular reflection function Fs () can be calculated using either Horn’s or
Blinn’s method.

9.3.3.1 Horn’s Method for Computing the Specular Reflection Function

In Horn’s method the specular reflection function is given by

Fs (N, L, E, n) = cosn h (9.6)

From Fig. 9.12 we have the following relationships between the angles:

h = e − r

and since r = i we have

h = e − i (9.7)

“Comninos” — 2005/8/31 — 18:28 — page 310 — #20

310 Mathematical and Computer Programming Techniques for Computer Graphics

also p = e + i (9.8)

Given the trigonometric identities:

cos (α − β) = cos α · cos β + sin α · sin β (9.9)

and cos (α + β) = cos α · cos β − sin α · sin β (9.10)

Combining Eqs. (9.7) and (9.9), and Eqs. (9.8) and (9.10) we get

cos h = cos (e − i) = cos e · cos i + sin e · sin i (9.11)

and cos p = cos (e + i) = cos e · cos i − sin e · sin i (9.12)

Adding Eqs. (9.11) and (9.12) we can eliminate all the sines:

cos h + cos p = 2 · cos e · cos i

∴ cos h = 2 · cos e · cos i − cos p

∴ cos h = 2 · (N � E) · (N � L) − (E � L) (9.13)

Therefore the specular reflection function can be computed as

Fs (N, L, E, n) = [2 · (N � E) · (N � L) − (E � L)]n (9.14)

where n > 4 for glossy surfaces and n < 2 for less shinny surfaces.

9.3.3.2 Blinn’s Method for Computing the Specular Reflection Function

In Blinn’s method the specular reflection function is given by

Fs (N, L, E, n) = cosn g (9.15)

This is a simplification of Horn’s function based on the observation that g =
h/2.

Now, from Fig. 9.12 we have

cos g = N � H

where N is known and H is easy to compute as it is the vector halfway between
the vectors E and L. Thus

H = E + L
|E + L|

Thus the specular reflection function can be computed as

Fs (N, L, E, n) = (N � H)n (9.16)

where n > 20 for glossy surfaces and n < 8 for less shinny surfaces.
Both Horn’s and Blinn’s methods are essentially the same as g = h/2, but

Horn’s highlights decay faster and are therefore sharper and look more realistic.

“Comninos” — 2005/8/31 — 18:28 — page 311 — #21

3D Rendering 311

9.3.4 Phong’s Lighting Model

Phong’s lighting model is based on the observation that “real life” surfaces are
sometimes glossy or chalky or something in-between, and incorporates all three
reflection models that we have examined so far. Thus

I = Ia + Id + Is

i.e. I = La · ka + L p · [kd · (L � N) + ks · Fs (N, L, E, n)] (9.17)

9.3.4.1 Simulating Multiple Light Sources

Phong’s lighting model can farther be improved by allowing for multiple light
sources.

I = La · ka +
m∑

j=1

I j (9.18)

where I is the total intensity of the reflected light,
La is the incident ambient light intensity,
ka is the ambient reflection coefficient of the surface, 0 ≤ ka ≤ 1,
I j is the intensity of reflected light contributed by the j th light source,
and
m is the number of light sources.

The intensity of reflected light contributed by the j th light source is given by

I j = L pj · [
kd · (

L j � N
) + ks · Fs

(
N, L j , E, n

)]
(9.19)

where L pj is the incident intensity of the j th light source,
kd is the coefficient of diffuse reflection of the surface, 0 ≤ kd ≤ 1,
ks is the coefficient of specular reflection of the surface, 0 ≤ ks ≤ 1,
N is the surface unit normal vector,
L j is the unit vector in the direction of the j th light source,
E is the unit vector in the direction of the viewer,
n is the specular sharpness, and
Fs is the specular reflection function.

9.3.4.2 Simulating Distant Light Sources

This model can further be improved by attenuating the intensity of reflected light
contributed by the j th light source, I j , by the distance of this light source from
the surface. Thus

I j = A
(
d j

) · L pj · [
kd · (

L j � N
) + ks · Fs

(
N, L j , E, n

)]
(9.20)

where d j is the distance of the j th light source from the surface, and
A is the intensity attenuation function.

“Comninos” — 2005/8/31 — 18:28 — page 312 — #22

312 Mathematical and Computer Programming Techniques for Computer Graphics

A number of intensity attenuation functions may be constructed. One such
function is

A (d) = 1

d2 + 1
(9.21)

Although this function is based on Lambert’s law and it is physically correct,
it causes the intensity to decay too dramatically and does not produce good CG
results. Observe that we have augmented Lambert’s law by adding 1 to the de-
nominator of the fraction to avoid a division by zero when the light source is very
near the surface.

An alternative attenuation function is

A (d) = 1

d + k
(9.22)

where k is an arbitrary constant. This function is based on empirical observation.
Another alternative attenuation function is

A (d) = kd (9.23)

where k is an arbitrary constant, 0 ≤ k ≤ 1. This is an empirical function,
which is easy to control, and produces good visual results. If, say, we require the
intensity contributed by a given light source to fall to half the original intensity at
a distance of 20 units from the light source, then we set the value of the constant
to k = 0.51/20. In general, if we require the intensity contributed by the light
source to fall to a fraction f of the original intensity at a distance of d f units from
the light source, then we set the value of the constant to k = f (1/d f).

9.3.4.3 Coloured Light Sources

Phong’s lighting model, as presented above, only deals with white ambient light
and white light sources. We can easily modify this lighting model to deal with
coloured lights. To do this we have to rewrite Eq. (9.18) as a set of three equations,
one for each of the primary colour components of light.

IR = La R · ka +
m∑

j=1
I j R

IG = LaG · ka +
m∑

j=1
I jG

IB = La B · ka +
m∑

j=1
I j B

(9.24)

where IR, IG , IB are the RGB components of the total intensity of the
reflected light,

La R, LaG, La B are the RGB components of the incident ambient light
intensity,

I j R, I jG , I j B are the RGB components of the intensity of reflected
light contributed by the j th light source,

and all other terms retain their original meaning.

“Comninos” — 2005/8/31 — 18:28 — page 313 — #23

3D Rendering 313

Equation (9.20) will also have to be rewritten as a set of three equations:

I j R = A
(
d j

) · L pj R · [
kd · (

L j � N
) + ks · Fs

(
N, L j , E, n

)]

I jG = A
(
d j

) · L pjG · [
kd · (

L j � N
) + ks · Fs

(
N, L j , E, n

)]
(9.25)

I j B = A
(
d j

) · L pj B · [
kd · (

L j � N
) + ks · Fs

(
N, L j , E, n

)]

where L pj R, L pjG , L pj B are the RGB components of the incident intensity of the
j th light source, and all other terms retain their original meaning.

9.4 Shading Techniques

Having developed a number of reflection models, let us now examine how shading
of a given polygon is achieved. We will examine three simple shading techniques:
flat polygon shading, Gouraud smooth shading and Prong smooth shading.

Let us start with the simplest of these techniques.

9.4.1 Flat Polygon Shading Technique

In the simplest case, each polygon is assigned a fixed shade value (i.e. reflected
colour value). Then whenever the polygon is visible, this fixed shade value is
written into the appropriate pixel of the frame buffer. To calculate the polygon’s
shade value we use the polygon’s normal to calculate the RGB colour compo-
nents of the intensity of the reflected light and then we use the components of the
polygon colour to modulate the colour components of this intensity. Thus

SR = PR · IR

SG = PG · IG

SB = PB · IB

(9.26)

where SR, SG , SB are the RGB components of the shade value,
PR, PG , PB are the RGB components of the polygon colour, and
IR, IG , IB are the RGB components of the total intensity of light

reflected off the polygon.

If a polyhedral object is flat polygon shaded, its individual facets will be dis-
cernible and it will appear faceted.

9.4.2 Gouraud Smooth Shading Technique

If the polygons to be displayed are meant to approximate a curved surface, the
flat polygon shading technique will produce an object with a faceted appearance,
thus betraying the construction method of the geometric model. A possible solu-
tion to this problem is to approximate the curved surface with a large number of
polygons. Then the differences in shade between adjacent polygons will be too

“Comninos” — 2005/8/31 — 18:28 — page 314 — #24

314 Mathematical and Computer Programming Techniques for Computer Graphics

small for the viewer to see. A less expensive approach is to use a smooth shading
technique.

For most surfaces of interest it is possible to calculate the exact surface normal
at each sample point on the surface. If these points correspond to the vertices of
the polygonal approximation to the surface, then a sample surface normal can be
associated with each vertex. If we cannot calculate the exact surface normal at
these vertices, then we compute the average normal at each vertex by averaging
the surface normals of all the faces meeting at this vertex. In the example depicted
in Fig. 9.13, the averaged normal is given by

Na =

5∑

i=1
Ni

∣∣∣∣∣

5∑

i=1
Ni

∣∣∣∣∣

i.e. Na = N1 + N2 + N3 + N4 + N5

|N1 + N2 + N3 + N4 + N5|
The trick to produce a smooth shaded image from a polyhedral model with

only a few vertices is to calculate a shade value for each vertex (instead of each
polygon) and then to interpolate these shade values over the entire polygon. Henri
Gouraud devised this technique in 1971 while studying for his Ph.D. at the Utah
State University. This technique is known as Gouraud smooth shading [Gouraud
71].

The interpolation is accomplished by first linearly interpolating along each
edge, and then by linearly interpolating along the scan-line, as shown in Fig. 9.14
and Eq. (9.27). This, of course, is exactly how z is interpolated in ordered-edge

N1

N2

N3
N4

N5Na

FIGURE 9.13. The average vertex normal vector.

“Comninos” — 2005/8/31 — 18:28 — page 315 — #25

3D Rendering 315

S1

S5

S3

S7 S6

S2

S4

Polygon

Scan-line

a

1−a
1−c

1−b

b

c

FIGURE 9.14. Gouraud smooth shading.

scan-line algorithms. Consequently, scan-line algorithms can be modified almost
trivially to handle Gouraud smooth shading.

In Gouraud smooth shading, the shade value interpolation is done as follows.

S5 = (1 − a) · S1 + a · S3
S6 = (1 − b) · S2 + b · S4 where 0 ≤ a, b, c ≤ 1
S7 = (1 − c) · S5 + c · S6

(9.27)

where a and b represent the fractions of the left and right edges traversed so far
and c represents the fraction of the polygon span traversed so far.

9.4.3 Phong Smooth Shading Technique

If one attempts to apply the Phong illumination model to each vertex of a poly-
hedral model and then uses Gouraud’s smooth shading technique to interpolate
the resulting shade values, the result will not be satisfactory, as it will produce
peculiar looking highlights. For instance, unless a highlight is centred on a ver-
tex, maximum highlights will not result from the shade value interpolation. In
an animation sequence the highlights of a rotating object will appear to be jump-
ing from vertex to vertex in an erratic manner. To overcome this problem Phong
Bui-Tuong devised a new shading technique in 1973 while studying for his Ph.D.
at the Utah State University. This technique is known as Phong smooth shading
[Phong 73].

Phong’s solution was to interpolate the surface normal vectors of the vertices
of the polygon rather than the shade values of these vertices. See Fig. 9.15. The
illumination model is then applied at each pixel instead of just at the vertices of
the polygon. Here, the surface normal is interpolated just like the z values or the
shade values in Gouraud smooth shading with one important difference. The illu-
mination model requires that the surface normal be unit length. Consequently the

“Comninos” — 2005/8/31 — 18:28 — page 316 — #26

316 Mathematical and Computer Programming Techniques for Computer Graphics

N1

N5

N3

N4

N6

N2

N7a

1−a
1−c

1−b

b

c

Polygon

Scan-line

FIGURE 9.15. Phong smooth shading.

interpolated surface normal must be normalised at every point in the interpolation
process which is computationally expensive. Slow as it may be, Phong shading
can produce realistic looking results.

In Phong smooth shading, the normal vector interpolation is done as follows.

N5 = (1 − a) · N1 + a · N3
N6 = (1 − b) · N2 + b · N4 where 0 ≤ a, b, c ≤ 1
N7 = (1 − c) · N5 + c · N6

(9.28)

where a and b represent the fractions of the left and right edges traversed so far
and c represents the fraction of the polygon span traversed so far.

References
[Gouraud 71] Gouraud, H. Computer display of curved surfaces. University of Utah

Computer Science Department, UTEC-Cs-71-113, June 1971.
[Newell 72] Newell, M. E., Newell, R. G., and Sancha T. L. A new approach to the

shaded picture problem. Proceedings of the ACM National Conference,
p. 443, 1972.

[Phong 73] Bui-Tuong, Phong. Illumination for computer-generated images.
University of Utah Computer Science Department, UTEC-Cs-73-129,
July 1973.

[Sutherland 74] Sutherland, I. E., Sproull, R. F., and Schumacker, R. A. A characteriza-
tion of ten hidden surface algorithms. ACM Computing Surveys 6 (1),
1–55, 1974.

[Warnock 69] Warnock, J. E. A hidden-surface algorithm for computer generated
half-tone pictures. University of Utah Computer Science Department,
Technical Report: TR 4-15, 1969.

“Comninos” — 2005/8/31 — 19:01 — page 317 — #1

10

Physically Based Lighting and Shading
Models and Rendering Algorithms

In the last chapter we have examined a simple model of how light, emanating
from light sources, interacts with the surfaces of objects in a scene. This model
is purely empirical and bears very little relation to what actually takes place in
reality. In this chapter we will introduce a much more sophisticated physically
based model of light and examine how it interacts with the surfaces, volume and
substance of objects in a computer-generated scene. To do that we must first
examine the nature of light and of the materials lit by it. We start by examining
how our understanding of light and its perception has evolved over the ages.

10.1 Evolution of the Theory of Light

Much of our interaction with the physical universe is mediated by light or through
images generated by the mediation of light. So understanding what light is and
how we perceive it has preoccupied human beings since the dawn of history.

The early Greeks believed that Aphrodite, the goddess of love, made the human
eye using the four elements (of water, earth, wind and fire) and lit the fire that
shines out of the eye as light rays, thus making sight possible. This simple belief
does not explain why we cannot see at night and why we see shadows during the
day. In computer graphics terms this is equivalent to ray tracing a scene which is
lit by a single point light source situated at the eye.

The Greek philosopher Empedocles of Acrages in Sicily (492–432 BC) ques-
tioned this belief and postulated an interaction between the rays from the eyes and
the rays from an external light source such as the sun. In computer graphics terms
this is equivalent to ray tracing a scene which is lit by external light sources.

The Greek mathematician Euclid of Alexandria (325–265 BC) wrote his book
“Optica” around 300 BC, in which he presented a mathematical study of light
and optics. Euclid postulated that light travels in straight lines and developed the
mathematics for the law of reflection.

317

“Comninos” — 2005/8/31 — 19:01 — page 318 — #2

318 Mathematical and Computer Programming Techniques for Computer Graphics

In 50 BC, the Roman poet Titus Lucratius Charus (99–55 BC) wrote a poem
entitled “On the Nature of the Universe” in which he wrote “the light and the heat
of the sun are composed of minute atoms which, when they are shoved off, lose
no time in shooting right across the inter-space of air in the direction imparted by
the shove”. He was thus the first person to express the idea that light is composed
of particles.

Following the Greeks, the next big breakthrough in our understanding of light
came from the Arab mathematician Abu Ali al-Hasan ibn al-Haytham who was
born in Basra (Iraq) in AD 965 and died in Cairo (Egypt) in AD 1040. He wrote
that light emanates from light sources, is reflected off surfaces and enters the eye,
thus making sight possible. He used a pinhole camera to prove his point. In
this type of camera, light enters the camera chamber through a pinhole situated
on the front wall of the chamber and the image is formed upside-down on the
back wall of the chamber. His experiment showed that rays emanating from the
eye were not required in order to generate an image. Al-Haytham believed that
light is composed of tiny particles that travel in straight lines. He further believed
that these particles must travel at a very high but finite speed and that their speed
varied depending on the medium through which they travelled, and he thought
that this was the reason why refraction took place. Unfortunately, his writings
were not available to European readers until the end of the sixteenth century, his
work went unnoticed and European thinkers continued to subscribe to the Greek
explanation of sight.

At the beginning of the seventeenth century the German astronomer Johannes
Kepler (1571–1630) worked on optics and was the first to develop a correct mathe-
matical explanation of the camera obscura and to correctly explain how the human
eye works.

In the last third of the seventeenth century two opposing major theories of light
were put forward. The first theory was put forward by the English mathematician
Isaac Newton (1643–1727). The second theory was developed independently by
the Dutch astronomer Christian Huygens (1629–1695) and by the English scholar
Robert Hook (1635–1703). Newton’s theory was corpuscular in nature (i.e. it
was a particle theory), while the Huygens–Hook theories were wave theories. For
Newton’s theory to be correct it was necessary for light to travel faster in denser
materials (which we now know is false) and for the Huygens–Hook theories to be
correct it was necessary for light to travel slower in denser materials (which we
now know is true).

During the eighteenth century most mathematicians and scientists sided with
Newton, but in 1799 the English philosopher Thomas Young (1773–1829) pro-
duced some experimental results in favour of the wave theory of light.

In 1817, the work of the French mathematician Augustin Jean Fresnel (1788–
1827) on light diffraction provided further proof of the validity of the wave theory
of light.

In 1849, the French physicist Armand Hyppolyte Louis Fizeau (1819–1896)
determined experimentally the speed of light to be 300,000 km/s.

“Comninos” — 2005/8/31 — 19:01 — page 319 — #3

Physically Based Lighting and Shading Models and Rendering Algorithms 319

In 1862, the English natural philosopher (physicist) James Clark Maxwell
(1831–1879) realised that electromagnetic phenomena are related to light when
he discovered that electromagnetic waves travelled at the same speed as light.
Maxwell is considered to be both the person that completed the classical descrip-
tion of light and that instigated some of the modern developments in the theory of
light.

In 1887, the German physicist Heinrich Hertz (1857–1894) discovered the pho-
toelectric effect. By experimenting he noticed that when he shone ultraviolet light
on two metallic electrodes this lowered the voltage at which a spark would be
produced between the two electrodes. This effect could only be explained using
the particle theory of light and we now know that it is caused by electrons being
ejected from the surface of the electrodes when they are struck by light rays.

In 1905, the German physicist Albert Einstein (1879–1955) published his spe-
cial relativity theory in which he suggests that the speed of light remains constant
for all observers independent of their relative velocities. Despite the fact that this
notion is difficult to accept, it is less paradoxical than the alternative proposed
by the classical theory – according to which an observer travelling faster than the
speed of light could arrive at his destination in time to be able to observe himself
setting off for the journey. In his paper Einstein showed how the photoelectric
effect could be explained if we accept that light is composed of discrete particles
which are energy quanta. These particles are called photons and derive their name
from the Greek word ϕωτos (meaning of the light).

In 1915, Einstein published his general relativity theory in which he predicted
that light rays can be bent when passing through a gravitational field.

In 1924, the Indian physicist Satyendranath Bose (1894–1974) put forward the
hypothesis that light consists of particles that obeyed certain statistical laws.

In the same year, the French physicist Pierre Raymond duc de Broglie (1892–
1887) put forward his wave-particle duality theory that states that matter has both
the properties of waves and particles. Thus, not only photons act as waves but
electrons could as well. Such particles are often referred to as wavicles (short for
wave-particles).

In 1926, the American physicist Albert Abraham Michelson (1852–1931) ac-
curately established the speed of light to be 299,796 km/s.

By 1930 the stage was set for the Danish physicist Neils Henrik David Bohr
(1885–1962) and his group of collaborators to complete the Copenhagen inter-
pretation of quantum theory. This interpretation of quantum theory attempts to
explain the dual wave-particle nature of light by stating that light “travels as a
wave but departs and arrives as a particle”. The main idea behind the Copenhagen
interpretation is that observing light waves causes them to change into particles.
This interpretation, which seems to indicate that the observer affects the way light
behaves, although difficult to accept seems to be supported by experimental ev-
idence. In 1928, Bohr put forward the complementarity principle which states
that photons could behave either as waves or as particles but that it is impossible
to observe both these aspects of their behaviour at the same time. Some recent

“Comninos” — 2005/8/31 — 19:01 — page 320 — #4

320 Mathematical and Computer Programming Techniques for Computer Graphics

experiments, however, have created situations where light behaves both as waves
and particles at the same time, which contradicts the complementarity principle.

10.2 Nature of Light

Let us now put together what we know about the nature of light from physics.
Light is electromagnetic radiation in a range of wavelengths that can be detected
by the human visual system.

According to the wave-particle duality principle of quantum theory, light ex-
hibits properties of both waves and particles. Alternatively, light consists of
quanta (small packets) of excitation of a quantised electromagnetic field, called
photons. Thus a photon is both a fundamental particle and a small packet of elec-
tromagnetic radiation (i.e. an electromagnetic wave). In this sense a photon is
the smallest building block of electromagnetic radiation and all electromagnetic
radiation (from radio waves to gamma rays) is quantised as photons.

Photons have an infinite lifetime, although they can be created and destroyed.
Photons can be created in a variety of ways. For instance, a photon can be created
when an electron changes its energy state, during a nuclear transition in a particle–
antiparticle collision or due to the fluctuation of an electromagnetic field.

Table 10.1 represents the entire spectrum of electromagnetic radiation. In this
table the various types of electromagnetic waves are tabulated in ascending order
of wavelength. The frequency of each type of wave and the associated energy
of the corresponding photon is also shown. A more detailed explanation of these
terms will follow shortly. The wavelength of an electromagnetic wave is measured
in meters (m), its frequency is measured in Hertz (Hz) and the energy of the
corresponding photon is measured in electron-volts (eV). A Hertz is the number
of events per second; thus a wave that completes 10 complete undulations in a
second is said to have a frequency of 10 Hz. An electron-volt is the very small
amount of energy that a free electron gains when it falls through an electrostatic
potential difference of 1 V. Note that 1 eV = 1.602176462 × 10−19 J (joules).

At the top of this table we find γ (gamma) rays. These correspond to the most
energetic photons with energies in the range of mega-electron-volts, wavelengths
in the range of pico-meters and frequencies in the range of a few hexa-Hertz.
While, at the bottom of this table we find extremely low frequency waves that
can be detected as very base sounds reproduced by subwoofer speakers or in the
transmission of electrical currents. The photons corresponding to such waves
have energies in the range of pico-electron-volts, wavelengths in the range of
mega-meters and frequencies in the range of a few Hertz. Visible light represents
a very narrow electromagnetic spectrum band that lies in the wavelength range
between 380 and 740 nm and the frequency range of 789 and 480 tera-Hz. Most
of the Sun’s radiation is emitted at this wavelength range and thus the human
visual system has evolved to detect radiation at this range. Similarly skin sensors
have evolved to detect infrared radiation as heat.

“Comninos” — 2005/8/31 — 19:01 — page 321 — #5

Physically Based Lighting and Shading Models and Rendering Algorithms 321

TABLE 10.1. The electromagnetic spectrum.
Wavelength Frequency Energy

(m) (Hz) (eV) Type of radiation

1.00 × 10−12 3.00 × 1020 1.24 × 106

Gamma rays
1.00 × 10−11 3.00 × 1019 1.24 × 105

X-rays
1.00 × 10−9 3.00 × 1017 1.24 × 103

Ultraviolet rays
3.80 × 10−7 7.89 × 1014 3.26 × 100

Violet (visible light)
4.40 × 10−7 6.81 × 1014 2.82 × 100

Blue (visible light)
5.10 × 10−7 5.88 × 1014 2.43 × 100

Cyan (visible light)
5.20 × 10−7 5.77 × 1014 2.38 × 100

Green (visible light)
5.65 × 10−7 5.31 × 1014 2.19 × 100

Yellow (visible light)
5.90 × 10−7 5.08 × 1014 2.10 × 100

Orange (visible light)
6.25 × 10−7 4.80 × 1014 1.98 × 100

Red (visible light)
7.40 × 10−7 4.05 × 1014 1.68 × 100

Infrared rays
1.00 × 10−3 3.00 × 1011 1.24 × 10−3

Microwaves
1.00 × 10−1 3.00 × 109 1.24 × 10−5

Ultra high frequency waves (TV)
1.00 × 100 3.00 × 108 1.24 × 10−6

Very high frequency waves
(FM radio)

1.00 × 101 3.00 × 107 1.24 × 10−7

Radio waves
1.00 × 105 3.00 × 103 1.24 × 10−11

Voice frequency waves
(Telephony)

1.00 × 106 3.00 × 102 1.24 × 10−12

Extremely low frequency waves
(Electrical power)

1.00 × 107 3.00 × 101 1.24 × 10−13

Electromagnetic radiation is a combination of an electrical field and a magnetic
field moving in unison through a medium and transferring energy from one place
to another. These two fields are mutually perpendicular to each other and to the
direction of the propagation of the wave. As seen in Fig. 10.1, the E-axis repre-
sents the direction of the electrical field and the B-axis represents the direction of
the magnetic field. Such a wave is called a transverse wave, as it oscillates in a
direction perpendicular to which it advances.

“Comninos” — 2005/8/31 — 19:01 — page 322 — #6

322 Mathematical and Computer Programming Techniques for Computer Graphics

E

B

Electric Field

Magnetic Field

FIGURE 10.1. An electromagnetic wave.

A

E

A

l

FIGURE 10.2. The amplitude and wavelength of a wave.

Any wave is determined by its wavelength, frequency, amplitude and period.
The amplitude of a wave, usually denoted by the letter A, is the magnitude of

the maximum displacement in the medium in one wave cycle (see Fig. 10.2). The
magnitude of an electromagnetic wave is measured in volts per meter (V/m).

The wavelength of a wave, usually denoted by λ (the Greek letter lambda),
is the length of one entire oscillation (cycle) of the wave (see Fig. 10.2). The
wavelength of a wave is usually measured in meters (m) and in the case of visible
light in nanometers (nm).

The period of a wave, usually denoted by the letter T , is the time taken to
complete one entire oscillation of the wave. The period of a wave is usually
measured in seconds (s).

The frequency of a wave, usually denoted by the letter f , is the number of
periods of the wave per unit time. The frequency of a wave is usually measured
in Hertz (Hz), and is given by

f = 1

T
(10.1)

or alternatively by

f = c

λ
(10.2)

where c is the speed of light in vacuum (c = 299, 792, 458 m/s).

“Comninos” — 2005/8/31 — 19:01 — page 323 — #7

Physically Based Lighting and Shading Models and Rendering Algorithms 323

Sometimes the frequency is expressed in terms of the angular frequency or
angular velocity of the wave as follows.

f = ω

2π
(10.3)

where ω (the Greek letter omega) is the angular frequency of the wave, which is
a measure of its rotation rate.

The angular frequency is defined as

ω = 2π

T
= 2π f (10.4)

and is measured in radians per second (rad/s).
The wave number of a wave, usually denoted by the letter k, is defined to be

the number of wavelengths (or wave crests) in a set distance and is given as

k = 2π

λ
= 2π f

c
= ω

c
(10.5)

In general, the speed of a wave is given by

v = ω

k
= λ f (10.6)

Photons have a definite finite energy, which is given by

e = h f = hc

λ
(10.7)

where h is Planck’s constant, which is measured in joules by seconds (J·s) (h ≈
6.63 × 10−34 J s). Planck’s constant is the ratio between the angular velocity and
the group velocity of photons or, equivalently, the ratio between their momentum
and their energy. The momentum (mass × speed) of a photon is usually denoted
by ρ (the Greek letter rho) and is given by

ρ = h

λ
= h f

c
(10.8)

A question that often arises is the following. What is the mass of a photon?
Do photons have mass or are they “massless”? This is a thorny question and the
answer depends on how we define mass. Using Einstein’s equation E = mc2, we
can derive the relativistic mass of a particle as

m = E

c2
(10.9)

This definition gives every particle a speed related mass. Modern physics, how-
ever, assigns a speed invariant mass to each particle that is given as

m = E0

c2
(10.10)

“Comninos” — 2005/8/31 — 19:01 — page 324 — #8

324 Mathematical and Computer Programming Techniques for Computer Graphics

where E0 is the energy of a particle at rest (called the rest energy). This mass is
called the rest mass or invariant mass of the particle. Photons have zero invariant
mass.

In vacuum, photons of all wavelengths travel with the speed of light and in the
absence of a gravitational field they travel in a straight line.

In a material, photons behave in a more complex manner. When a photon,
which as we have seen is an electromagnetic wave, enters a material, its elec-
trical field causes a disturbance to the charges of the electrons of the atoms of
the material (causing them to oscillate). This disturbance is proportional to the
permittivity of the material. The permittivity, ε, of a material (medium) is a mea-
sure of how much the medium changes to absorb energy when subjected to an
electrical field. This oscillation of the charges of the electrons in turn causes the
radiation of an electromagnetic wave that is slightly out of phase with the electro-
magnetic wave that the photon represents. The sum of these two electromagnetic
waves is now a wave with the same frequency but a shorter wavelength than the
original electromagnetic wave of the photon. This explains why photons travel
slower in materials than they do in the vacuum.

In quantum physics this electromagnetic disturbance caused by the photon en-
tering the material is called an excitation and is represented by quasi-particles
called excitons. Thus when a photon enters a medium it couples with it. This
means that the photon gets absorbed and the medium gets excited, which in turn
means that the photon gets transformed into an exciton. When in this state, it
either gets absorbed by the medium and its energy is stored as heat in the medium
(which is likely to occur in opaque materials) or it gets transformed back into a
photon that re-emerges from the surface of the medium into space (which is likely
to occur in transparent materials). This transformation from an exciton back into
a photon is due to the medium relaxing and re-emitting the stored energy in the
form of a photon.

This is a simplified explanation of what is believed to occur, but will suffice for
the purposes of our discussion.

10.3 Interaction of Light with Various Materials

There are two distinct illumination phenomena that we will examine in more de-
tail below. The interaction of light with the boundaries between different types
of materials and the scattering and absorption of light as it is reflected from the
surface of and transmitted through the volume of different types of materials.

We can categorise the materials found in nature as being homogenous and non-
homogenous. Homogenous materials have a constant composition and the same
optical properties/qualities throughout their volume, while non-homogenous ma-
terials are composed of two or more different types of homogenous materials
(where one type is embedded within another) and their optical properties may
vary widely throughout their volume (depending on the concentration of the vari-
ous homogenous materials that make up their volume).

“Comninos” — 2005/8/31 — 19:01 — page 325 — #9

Physically Based Lighting and Shading Models and Rendering Algorithms 325

Homogenous materials can be further subdivided into opaque and transparent
materials.

Opaque materials are frequently called conductors or conducting materials, as
they tend to be good conductors of electrical currents. Examples of conducting
materials are iron and copper. Some opaque materials, however, are bad con-
ductors, such as plastics and wood. Opaque materials prevent light from passing
through their volume.

Transparent materials are frequently called dielectric materials, as they tend to
be insulators (i.e. they do not conduct electrical currents). Examples of dielectric
materials are gases and glass. Some transparent materials, however, are good
conductors, such as water and other liquids. Transparent materials allow light to
pass through their volume.

Some materials are called translucent, because they are semitransparent. They
allow light to pass through them only diffusely. Thus, we can see light passing
though such materials but we cannot see a clear image. Examples of translucent
materials are smoke, steam, paper, frosted glass and some plastics.

In computer graphics we are usually interested in the behaviour of light at the
surface between two different types of material. We shall call such a surface
the interface and the two materials either side of it the participating materials or
participating media. Of most interest are the interface between two transparent
materials and between a transparent and an opaque material.

When a beam of light, consisting of many photons, collides with the interface
between two participating materials, we observe the phenomena of reflection, re-
fraction and transmission, scattering, absorption and subsurface scattering.

10.3.1 Light Reflection

Light reflection is a phenomenon observed when a light beam travels through
the first participating medium, collides with the interface surface, its direction of
travel changes abruptly and continues to travel in the first participating medium.
We can distinguish two types of reflections, namely specular reflections and dif-
fuse reflections. Specular or mirror-like reflections are most pronounced when the
interface surface between the two participating media is smooth (shiny). In this
case an incoming ray of light is reflected in one direction as shown in Fig. 10.3. In
this figure, N represents the unit normal vector of the surface, the angle θi (known
as the angle of incidence) is the angle between the incoming ray and the surface
normal, and the angle θr (known as the angle of reflection) is the angle between
the reflected (outgoing) ray and the surface normal. The law of reflection states
that θi = θr . If the light beam collides with the interface surface at right angles,
then the light beam bounces in the direction from which it came. This kind if
reflection is called retro-reflection.

Diffuse reflections are most pronounced when the interface surface between
the two participating media is rough (matt) and can be seen to be composed of
many micro-facets, as shown in Fig. 10.4a. In this case an incoming ray of light
is reflected in many different directions, as shown in Fig. 10.4. In Fig. 10.4b, N

“Comninos” — 2005/8/31 — 19:01 — page 326 — #10

326 Mathematical and Computer Programming Techniques for Computer Graphics

N

θi θr

FIGURE 10.3. Specular reflection.

N

iq

(a) (b)

FIGURE 10.4. (a) The surface micro-facets. (b) Diffuse reflection.

represents the average unit normal vector of the interface surface. The dotted lines
in Fig. 10.4a represent the normals of the micro-facets of the interface surface.

10.3.2 Light Refraction and Transmission

Light refraction and transmission are phenomena observed when a light beam
travels through the first participating medium (which is transparent), collides with
the interface surface, penetrates this surface changing direction abruptly and con-
tinues to travel through the second participating medium (which is transparent).
Transmission is the phenomenon of light travelling through a transparent material
and refraction is phenomenon of the abrupt change of direction when the beam en-
ters the second participating medium. This phenomenon is observed at the inter-
face between two transparent materials with different refractive indices. It occurs
because at the interface surface the electromagnetic wave changes velocity and its
wavelength increases or decreases but its frequency remains the same. Figure 10.5
shows an incoming light ray that collides with the interface surface at an incidence
angle θi and it is refracted and transmitted in the second medium. Its transmission

“Comninos” — 2005/8/31 — 19:01 — page 327 — #11

Physically Based Lighting and Shading Models and Rendering Algorithms 327

N

qi

qt

hi

ht

N

qi

qt

hi

ht

(a) (b)

FIGURE 10.5. (a) Refraction with ηi < ηt . (b) Refraction with ηi > ηt .

angle is θt . In general θi �= θt , unless the two participating media have the same
refractive index.

The refractive index of a material at a given frequency is the rate by which
an electromagnetic wave, of that frequency, is slowed down with respect to its
speed in vacuum. The refractive index of a material at a given frequency, which
is denoted by η (the Greek letter eta), is given as

η = c

v
(10.11)

where c is the speed of light in vacuum and v is the speed of light of that frequency
in the material. The refractive index is typically larger than 1. The denser the
material is the larger its refractive index.

The refractive index of a material is also defined as

η = √
εrµ (10.12)

where εr is the dielectric constant or relative permittivity of the material and µ

(the Greek letter mu) is the permeability of the material.
The relative permittivity is defined as

εr = ε

ε0
(10.13)

where ε is the permittivity of the material and ε0 is the permittivity of the material
in vacuum. As we have seen earlier, the permittivity of a material is a measure of
how much the material changes to absorb energy when subjected to an electrical
field.

The permeability, µ, of a material is the degree of magnetisation of a material
in response to a magnetic field. The product of the permittivity, ε, and the perme-
ability, µ, of a material is inversely proportional to the square of the speed with
which electromagnetic radiation travels through the material. Thus

εµ = 1

v2
or v = 1√

εµ
(10.14)

“Comninos” — 2005/8/31 — 19:01 — page 328 — #12

328 Mathematical and Computer Programming Techniques for Computer Graphics

If we know the refractive indices ηi and ηt for the two participating media either
side of the interface surface, we can use Snell’s law to determine the transmission
angle θt .

Snell’s law states that

ηi · sin (θi) = ηt · sin (θt) (10.15)

∴ θt = arcsin
(

ηi
ηt

· sin (θi)
)

(10.16)

If θi = 0 (i.e. if the light ray is perpendicular to the interface surface), then no
refraction takes place and θt = 0. If ηi < ηt , then the refracted ray moves closer
to the direction normal to the interface surface and θi > θt , as seen in Fig. 10.5a.
Alternatively if ηi > ηt , then the refracted ray moves further away from the
direction normal to the interface surface and θi < θt , as seen in Fig. 10.5b.

10.3.3 Total Internal Reflection

When ηi > ηt (i.e. when moving from a denser medium to a less dense medium),
Eq. (10.16) has no solution if (ηi/ηt) sin (θi) > 1. Thus when the incidence angle
θi becomes greater than some critical angle θc, then no refraction or transmission
takes place and the incident ray is reflected off the interface surface and continues
to travel in the first participating medium. This phenomenon is known as total
internal reflection. See Figs. 10.6 and 10.36. The critical angle is computed as
follows.

θc = arcsin

(
ηi

ηt

)
(10.17)

Figure 10.6 shows a light ray V that strikes an interface surface, where ηi > ηt .
Figure 10.6a shows that when θi < θc, some of the incident light is reflected
in the direction of Vr and some is refracted and transmitted in the direction of
Vt . Figure 10.6b shows that when θi ≥ θc, all the incident light undergoes total
internal reflection and no light is transmitted through the second participating
medium.

As we have seen above, the refractive index of any material varies with fre-
quency. This means that not all colours (frequencies) of light travel with the same

N

V

Vt

Vr

N

V Vr

qt

qi qr
hi

ht

qi qr
hi

ht

(a) (b)

FIGURE 10.6. (a) When θi < θc, reflection and transmission take place. (b) When θi ≥ θc,
only total internal reflection takes place.

“Comninos” — 2005/8/31 — 19:01 — page 329 — #13

Physically Based Lighting and Shading Models and Rendering Algorithms 329

speed through a material and that the transmission angles of different colours
of light are different. This phenomenon, which is known as dispersion, can be
observed when a beam of light passes through a prism and divides into its con-
stituent spectral colours. A rainbow is the most common manifestation of this
phenomenon in nature. The creation of a rainbow can be explained as follows.
As a ray of white light from the sun enters a near spherical droplet of rainwater it
is refracted and dispersed into a number of coloured rays. These rays continue to
travel through the droplet until they reach the back surface of the droplet where
they undergo total internal reflection. They continue to travel through the droplet
until they reach the front surface of the droplet where they exit the droplet under-
going further refraction. The angle between the entering ray of white light and
the exiting coloured rays is between 40 ˚ and 42 ˚ .

10.3.4 Light Scattering and Absorption

Light scattering is a phenomenon observed when a light beam travels through a
non-homogenous medium where small particles of one material are suspended in
a second material with a different refractive index. When the photons of the light
beam collide with these particles they are scattered in all directions, resulting
in the diffusion of the light beam. Light scattering varies as a function of the
wavelength of the individual photons and the radius of the suspended particles.
See Fig. 10.7.

Light absorption is the phenomenon observed when a photon travelling through
a material collides with an atom of this material. This collision results in the
distraction of the photon, whose energy is stored as heat in the material.

The light scattering and absorption properties of a material are frequency de-
pendent. For instance, when a beam of white light passes trough a yellow filter, the
photons corresponding to the blue frequencies of light are absorbed by the mater-
ial while the photons corresponding to the red and green frequencies are allowed
to pass through the filter. Thus the light leaving the filter is yellow. Similarly,

FIGURE 10.7. Light scattering.

“Comninos” — 2005/8/31 — 19:01 — page 330 — #14

330 Mathematical and Computer Programming Techniques for Computer Graphics

N

qt

qi

(a) (b)

FIGURE 10.8. (a) The interface surface micro-facets. (b) Refraction with scattering.

when sunlight passes through the earth’s atmosphere the photons corresponding
to the blue frequencies of light are scattered while the photons corresponding to
the red and green frequencies are allowed to pass through the atmosphere. This
causes the sky to appear blue and since the blue component of the sunlight is
scattered the sun appears yellow-orange depending on the time of day.

A form of scattering also occurs when a light beam collides with the inter-
face between the two participating media, which is rough and composed of many
micro-facets. If the two participating media are transparent and have different
refractive indices, refraction also takes place. This phenomenon is illustrated in
Fig. 10.8.

10.3.5 Subsurface Scattering

Subsurface scattering is the phenomenon observed when a light beam travels
through the first participating medium (which is transparent), collides with the
interface surface between this medium and an opaque or semitransparent non-
homogenous medium. Upon entering the second participating medium, the indi-
vidual photons of the light beam are refracted and scattered. The photons continue
to travel in this medium for a short distance under the interface surface until they
collide with some suspended particles that cause them to scatter once again. Some
of the photons escape through the interface surface back into the first participat-
ing medium where they continue to travel, while others continue to travel in the
second participating medium until they are absorbed. This phenomenon is most
noticeable when observing the contours of human skin or a thin marble structure
that is lit from behind by a strong light source. This phenomenon is illustrated in
Fig. 10.9.

One important property of light travelling through an environment is that of
energy preservation. Thus, the energy of the light incident on an interface sur-
face is equal to the energy of the light reflected (from the surface), transmitted
(through the second participating medium) or absorbed (by the second participat-
ing medium).

Another important property of light is that it travels in a straight line unless it
collides with a surface where it changes direction by being reflected, refracted or
scattered.

“Comninos” — 2005/8/31 — 19:01 — page 331 — #15

Physically Based Lighting and Shading Models and Rendering Algorithms 331

N

qi

FIGURE 10.9. Subsurface scattering.

10.4 Some Useful Concepts, Definitions and Conventions

Next we will introduce some notation in order to best explain the above-mentioned
phenomena. Let us concentrate on the behaviour of light at a point s which lies on
the interface surface between two participating media. At that point the surface
unit normal vector is N which points from the surface and into the first participat-
ing medium. By convention all vectors that we use in our explanations are unit
vectors and point away from point s. Thus, as seen in Fig. 10.10, the unit vector
L points from the surface point s towards the light source (i.e. it points in the
opposite direction from which the light is coming).

Vector E points in the direction of the viewer (the eye). Vector H points halfway
between vectors L and E. Vectors RL and RE are the directions of the reflection
of vectors L and E, respectively, relative to the surface normal N. While, vectors
TL and TE are the directions of the transmission of vectors L and E, respectively,
relative to the surface normal N.

It is convenient to define a local surface Cartesian frame {T, B, N, s} with its
origin at the surface point s, where N is the unit normal vector of the surface, T

N

LRL

TL

E RE

H

TE

qiqr

qt

FIGURE 10.10. The reflection and refraction vectors.

“Comninos” — 2005/8/31 — 19:01 — page 332 — #16

332 Mathematical and Computer Programming Techniques for Computer Graphics

is the unit tangent vector of the surface and B is the unit binormal or bitangent
vector of the surface.

If the surface is isotropic in nature (i.e. if it reflects, refracts and scatters light
in a uniform manner), then the tangent vector T can be assumed to lie on the plane
defined by the vectors L and N. In this case, as seen in Fig. 10.11, the unit vectors
B and T are defined as

B = N ⊗ L
|N ⊗ L| and T = B ⊗ N

|B ⊗ N| (10.18)

Alternatively if the surface is anisotropic in nature and has a grain pointing in
a particular direction G (thus reflecting, refracting and scattering light in a biased
manner), then the tangent unit vector can be taken in the direction of the grain.
Thus, as seen in Fig. 10.12, the unit vectors T and B are defined as

T = G
|G| and B = N ⊗ T

|N ⊗ T| (10.19)

Next, we define a spherical coordinate system with its origin at the surface
point s, as seen in Fig. 10.13. The spherical coordinates θ and φ, of a given
vector V, are measured from the normal vector N and from the plane defined by
the primary axis N and the secondary axis T. Thus, for isotropic surfaces the φ

N

L
B

T

s

FIGURE 10.11. The cartesian frame of an isotropic surface.

N

L

B

G,T
s

f

FIGURE 10.12. The cartesian frame of an anisotropic surface.

“Comninos” — 2005/8/31 — 19:01 — page 333 — #17

Physically Based Lighting and Shading Models and Rendering Algorithms 333

N

V

B

T

s

f

q

FIGURE 10.13. A spherical coordinate system with its origin at surface point s.

spherical coordinate of vector L is zero and for anisotropic surfaces φ of L is
generally non-zero.

The components of the direction vectors T, B, N and the position vector s are
defined relative to the global Cartesian frame {X, Y, Z, O}, where O is the origin
of this frame.

10.4.1 Spherical Coordinates of a Vector

Given an arbitrary unit vector V = [vx , vy, vz
]

defined relative to the global Carte-
sian frame {X, Y, Z, O} we can calculate its spherical coordinates (θV , φV) rela-
tive to the local surface Cartesian frame {T, B, N, s} by referring to Fig. 10.14 and
reasoning as follows.

The projection of vector V onto vector N is

CV = (V � N) ·N = cos (θV) ·N

N

V

B

T

qV

f
V

s

VTB

V�

CV

90� − fV

FIGURE 10.14. Computing the spherical coordinates of an arbitrary unit vector.

“Comninos” — 2005/8/31 — 19:01 — page 334 — #18

334 Mathematical and Computer Programming Techniques for Computer Graphics

and the length of this projection is

cos (θV) = N � V (10.20)

The projection of vector V onto the TB plane is given by

VTB = V − CV

and after normalisation the projected unit vector is

V′ = VTB

|VTB|
Now,

cos (φV) = T � V′ (10.21)

sin (φV) = cos
(

900 − φV

)
= B � V′ (10.22)

Since 0 ≤ θV ≤ π and 0 ≤ φV ≤ 2π we can use arccos (cos (θV)) to determine
θV and, arccos (cos (φV)) and arcsin (sin (φV)) to determine φV .

To convert the spherical coordinates (θV , φV) of the vector to its components
[vt , vb, vn], relative to the local surface Cartesian basis, is simple, as

vt = sin (θV) · cos (φV)

vb = sin (θV) · sin (φV) (10.23)

vn = cos (θV)

and V = [vt , vb, vn] = vt ·T + vb·B + vn ·N (10.24)

To convert the vector components from the local frame to the global frame we
use the change of basis matrix.

[
vx , vy, vz

] = [vt , vb, vn] ·
⎡

⎣
Tx Ty Tz

Bx By Bz

Nx Ny Nz

⎤

⎦ (10.25a)

or

⎡

⎣
vx

vy

vz

⎤

⎦ =
⎡

⎣
Tx Bx Nx

Ty By Ny

Tz Bz Nz

⎤

⎦ ·
⎡

⎣
vt

vb

vn

⎤

⎦ (10.25b)

The choice of the appropriate equation depends on whether we use the row or
the column representation for vectors.

Similarly, to convert the components of a vector from the global frame to the
local frame we use the inverse (which in this case is the transpose) matrix of the
change of basis matrix.

[vt , vb, vn] = [vx , vy, vz
] ·
⎡

⎣
Tx Bx Nx

Ty By Ny

Tz Bz Nz

⎤

⎦ (10.26a)

or

⎡

⎣
vt

vb

vn

⎤

⎦ =
⎡

⎣
Tx Ty Tz

Bx By Bz

Nx Ny Nz

⎤

⎦ ·
⎡

⎣
vx

vy

vz

⎤

⎦ (10.26b)

“Comninos” — 2005/8/31 — 19:01 — page 335 — #19

Physically Based Lighting and Shading Models and Rendering Algorithms 335

N
V VR

VC

VS

iq rq

VS
V

VC

s

FIGURE 10.15. Computing the reflection vector.

10.4.2 Determining the Reflection Vector

Now, given a unit vector V incident at a point s of an interface surface with unit
normal vector N, we wish to determine the reflection vector RV . This vector lies
on the plane defined by the vectors V and N. To compute this vector we refer to
Fig. 10.15 and we reason as follows.

Let vector CV be the projection of vector V onto vector N. In the right-angled
triangle containing the angle θi |CV | = |cos (θi)| and |SV | = |sin (θi)|. Thus,

CV = (V � N) ·N = cos (θi) ·N
and

cos (θi) = V � N (10.27)

Now

V = CV + (−SV) = CV − SV

∴ SV = CV − V

Since θi = θr , from the above diagram we have

RV = V + 2·SV

= V + 2·CV − 2·V
= 2·CV − V

∴ RV = 2· (V � N) ·N − V (10.28)

or RV = 2· cos (θi) ·N − V (10.29)

10.4.3 Determining the Transmission Vector

Next we wish to determine the transmission vector TV after refraction takes place.
We will assume that the refractive indices of the two participating media are ηi

“Comninos” — 2005/8/31 — 19:01 — page 336 — #20

336 Mathematical and Computer Programming Techniques for Computer Graphics

N
V

S

TV

SV

CV

CT

ST

qi

qt

hi

ht

FIGURE 10.16. Computing the transmission vector.

and ηt , respectively. The transmission vector also lies on the plane defined by the
vectors V and N. To compute this vector we refer to Fig. 10.16 and we reason as
follows.

Let vector CT be the projection of vector TV onto vector N. In the right-angled
triangle containing the angle θt |CT | = |cos (θt)| and |ST | = |sin (θt)|. Using
Snell’s law we have

ηi · |SV | = ηt · |ST |
∴ |ST | = ηi

ηt
· |SV |

and ST = ηi

ηt
·SV (10.30)

From the right-angled triangle containing the angle θt we have

|CT |2 + |ST |2 = 1 (10.31)

∴ |CT | =
√

1 − |ST |2

Note that the length of the ST vector may not exceed the value of one, as when
this occurs total internal reflection takes place instead of refraction and transmis-
sion.

The vector CT can be defined as

CT = −N· |CT |
∴ CT =

(
−
√

1 − |ST |2
)

·N
or CT = − cos (θt) ·N (10.32)

Thus we can compute the transmission vector TV as

TV = CT + ST

“Comninos” — 2005/8/31 — 19:01 — page 337 — #21

Physically Based Lighting and Shading Models and Rendering Algorithms 337

Using Eqs. (10.32) and (10.30) we can expand this to

TV = ηi

ηt
·SV − cos (θt) ·N

∴ TV = ηi

ηt
· (CV − V) − cos (θt) ·N

∴ TV = ηi

ηt
· [cos (θi) ·N − V] − cos (θt) ·N

∴ TV =
[
ηi

ηt
· cos (θi) − cos (θt)

]
·N − ηi

ηt
·V (10.33)

To compute the cosine of the transmission angle we start from Eq. (10.31) and
proceed as follows.

|CT |2 = 1 − |ST |2
∴ cos2 (θt) = 1 − sin2 (θt) and

cos (θt) =
√

1 − sin2 (θt)

=
√

1 − (sin (θt))
2

=
√

1 −
[
ηi

ηt
sin (θi)

]2

=
√

1 −
(

ηi

ηt

)2

· sin2 (θi)

∴ cos (θt) =
√

1 −
(

ηi

ηt

)2

· [1 − cos2 (θi)
]

(10.34)

Thus collecting all the above results we have

cos (θi) = V � N

cos (θt) =
√

1 −
(

ηi

ηt

)2

· [1 − cos2 (θi)
]

RV = 2· cos (θi) ·N − V

TV =
[
ηi

ηt
· cos (θi) − cos (θt)

]
·N − ηi

ηt
·V

10.4.4 Illuminating Hemisphere and Solid Angles

Given a synthetic scene that we wish to render, we will assume that its geometry
consists of a finite set of surfaces that exist in E3. Each surface is assumed to be
a two-dimensional differentiable manifold Mi with boundary ∂Mi . A 2D man-
ifold is an entity that is topologically equivalent to a 2D Euclidean space. Thus
a polygon and its outline or a curved surface patch and its boundary curves, al-
though they may exist in a 3D Euclidean space, they are topologically equivalent

“Comninos” — 2005/8/31 — 19:01 — page 338 — #22

338 Mathematical and Computer Programming Techniques for Computer Graphics

to a subset of the 2D Euclidean space (i.e. they can be mapped/flattened onto a
2D plane through a parameter mapping). A differentiable manifold is a manifold
on which we apply the rules of Calculus, such as differentiation. Associated with
every point of a differentiable manifold is a 2D tangent space, which is a vector
space in which we define the directional derivatives of the manifold (i.e. its tan-
gent vectors), and a 2D cotangent space, which is also a vector space in which
we define the differentials of the manifold (i.e. its cotangent vectors). The en-
tire scene is assumed to be the set M, which is the union of n such manifolds
M1,M1, . . . ,Mn . A region D is defined to be a subset of the set of all the man-
ifolds in the scene, thus D ⊆ M. We define an area measure A on M, so that
A (D) is the area of the region D.

Given that directions in E3 are represented by unit vectors ω ∈ E3, the set of
all directions in a unit sphere centred at a surface point x is denoted by S2.

A solid angle is the three-dimensional equivalent of a two dimensional (planar)
angle. The solid angle σ(ωx) subtended by a surface patch P (in the direction
ωx) at a point x, is defined as the proportion of the area of the unit sphere (centred
at point x) that is covered by the projection P ′ of the patch P onto the unit sphere.
See Fig. 10.17, which shows how the solid angle σ(ωx) is computed. In a sphere
of radius r , the solid angle subtended by a spherical area a is a/r2. Solid angles
are measured in steradians (sr), i.e. radians squared. The steradian derives its
name from the Greek word “stereos” (meaning solid). A sphere has a total of 4πr
steradians.

The solid angle σ(ωx) can be computed as

σ(ωx) = A(P)

r2
= A
(
P ′)

12
(10.35)

Now starting with the direction vector ωx with spherical coordinates (θω, φω)

we define a differential patch on a unit sphere, which subtends angles ∂θω in the
longitudinal direction and ∂φωin the latitudinal direction (as shown in Fig. 10.18).

N

wx

s (wx)

qw

fw

B

T

x

9

r

FIGURE 10.17. The definition of a solid angle σ(ωx).

“Comninos” — 2005/8/31 — 19:01 — page 339 — #23

Physically Based Lighting and Shading Models and Rendering Algorithms 339

N

B

T

x wx

qw

∂qw

fw

∂fw

FIGURE 10.18. The definition of a differential solid angle ∂σ(ωx).

The length of the longitudinal arc of this patch is (1·∂θω), as the longitudinal
angle changes from θω −∂θω/2 to θω +∂θω/2, and the length of the latitudinal arc
of this patch is sin (θω) ·∂φω, as the latitudinal angle changes from φω − ∂φω/2
to φω + ∂φω/2.

Thus, the area of this differential spherical patch is

∂Ax = (1·∂θω) · [sin (θω) ·∂φω] = sin (θω) ·∂θω·∂φω (10.36)

and the differential solid angle ∂σ (ωx) of this differential spherical patch is

∂σ (ωx) = ∂Ax

12
= sin (θω) ·∂θω·∂φω (10.37)

since the distance of the spherical patch from the origin of the unit sphere is 1.
It is very convenient to think of the differential solid angle ∂σ (ωx) as a vector,

∂ωx . Where the vector ∂ωx points to a point on the unit sphere with spherical
coordinates (θω, φω) and its length is equal to the size of the differential solid
angle ∂σ (ωx) in the direction of the vector ωx .

As we have seen in Section 10.4.1, given the spherical coordinates of a vector
ωx relative to the local surface Cartesian frame {T, B, N, x} we can compute its
direction by combining Eqs. (10.23) and (10.24). Thus,

ωx = sin (θω) · cos (φω) ·T + sin (θω) · sin (φω) ·B + cos (θω) ·N (10.38)

To recapitulate, given a set of general directions D ⊆ S2 (distributed about
the direction vector ωx), the solid angle occupied by D is denoted by σ (D).
Similarly, at a point x the solid angle subtended by a surface patch P is computed
by projecting the surface patch P onto a unit sphere (centred at point x) and
determining the area of the sphere corresponding to the resulting set of projected
directions.

Another useful concept is that of the projected solid angle, introduced by
Nicodemus et al. [Nicodemus 77]. Given a point x ∈ M, given that N is the

“Comninos” — 2005/8/31 — 19:01 — page 340 — #24

340 Mathematical and Computer Programming Techniques for Computer Graphics

unit normal at point x and given a set of general directions D ⊆ S2 (distributed
about the direction vector ωx), then the projected solid angle is defined as

σ⊥ (D) =
∫

D
|ωx � N| ·∂σ (ωx) =

∫

D
cos (θω) ·∂σ (ωx) (10.39)

where θω is the angle between vectors ωx and N.
In order to describe the illumination events taking place above or below the in-

terface surface between two participating media we introduce the concept of the
illuminating hemisphere, which for computational convenience is assumed to be
a unit hemisphere. The plane defined by the tangent vector T and the bitangent
vector B is known as the tangent plane and divides the set of all directions S2 into
two hemispheres. The upper illuminating hemisphere H2+ and the lower illumi-
nating hemisphere H2−. The upper illuminating hemisphere, which lies above the
tangent plane, is defined as

H2+ (x) =
{
ωx ∈ S2| (ωx � N) > 0

}
(10.40)

The lower illuminating hemisphere, which lies below the tangent plane, is de-
fined as

H2− (x) =
{
ωx ∈ S2| (ωx � N) < 0

}
(10.41)

The upper illuminating hemisphere is used in the computation of the reflection
of light and the lower illuminating hemisphere is used in the computation of the
transmission of light.

Illumination events, such as light area sources or reflecting surfaces, are pro-
jected onto the illuminating hemispheres and for each of these we compute a solid
angle Dωx . See Fig. 10.19.

The solid angle of an entire illuminating hemisphere (denoted by the name of
the hemisphere H2+ or H2−, or sometimes by � – the capital Greek letter omega)
is half the surface area of the unit sphere. Thus,

σ
(
H2+
)

= 2π (10.42)

Given a set of directions D contained in a single hemisphere, the projected
solid angle can be found by first projecting orthographically the set of directions
D onto the tangent plane and then computing the area of this projected region.
For instance if D is equal to the entire upper illuminating hemisphere H2+, then
the corresponding projection region is a disc with area

σ⊥ (D) = π (10.43)

See also Fig. 10.24 and Eq. (10.64) in the next section.

“Comninos” — 2005/8/31 — 19:01 — page 341 — #25

Physically Based Lighting and Shading Models and Rendering Algorithms 341

N

B

T

x
wx1Dwx2

12

9192

FIGURE 10.19. The definition of a number of solid angles.

10.5 Some Basic Terminology of Lighting

As we have seen before, light sources radiate energy in the form of photons. The
energy of a photon, whose wavelength is λ, is denoted by eλ and is given as

eλ = h·c
λ

(10.44)

where h is Planck’s constant and c is the speed of light.
The energy of a beam of n photons of wavelength λ is known as the spectral

radiant energy Qλ and is defined as

Qλ = n·eλ = n·h·c
λ

(10.45)

The energy of a collection of photons over the entire visible spectrum is known
as the radiant energy Q and is defined as the sum or integral of spectral radiant
energy over the entire wavelength spectrum. Thus,

Q =
∫ ∞

0
Qλ∂λ (10.46)

The radiant energies Qλ and Q are measured in Joules per nano-meter (J·nm−1)

and Joules (J), respectively.
The rate of flow of the radiant energy Q over time t is known as the radiant

power, radiant flux or simply flux and is given by

Φ = ∂ Q

∂t
(10.47)

Flux is the radiant energy flowing through a surface per unit time and is mea-
sured in Watts (W), where watts are joules per second.

Similarly, the rate of flow of spectral radiant energy Qλ over time t is called
the spectral radiant flux or simply spectral flux and is given by

Φλ = ∂ Qλ

∂t
(10.48)

“Comninos” — 2005/8/31 — 19:01 — page 342 — #26

342 Mathematical and Computer Programming Techniques for Computer Graphics

The propagation (flow) of light in an environment is best explained using trans-
port theory. Transport theory deals with the transport of abstract particles devoid
of physical meaning [Duderstadt 79]. In transport theory, the flow of light is a
differential quantity and the best way to visualise it is to think of it in terms of
particles of light (i.e. photons). Let us assume that in a unit volume V , centred
at a point x, there are p(x) photons. Then the total number of photons in a small
differential volume ∂V is given by:

P (x) = p (x) ·∂V (10.49)

Next, let us assume that all photons (in this volume) travel in the same direction
with a velocity vector v and that we wish to count the total number of photons that
flow through a small differential surface patch P with area ∂ A. To count these
photons we first construct a prism, with differential volume ∂V , by sweeping the
differential area ∂ A in the direction from which the photons are coming (i.e. in
the direction −v) by a small distance |v·∂t |, where ∂t is a small time interval).
Now, the photons that lie inside the differential volume ∂V , between times t and
t + ∂t , will flow through the differential area ∂ A. Thus,

P(x) = p(x)·∂V
= p(x)· cos θ · |v·∂t | ·∂ A

∴ ∂V = cos θ · |v·∂t | ·∂ A
(10.50)

As we can see from Fig. 10.20, the vector N represents the unit normal to the
small differential surface patch P with area ∂ A, θ is the angle between the patch
normal and the direction of the sweep −v·∂t and cos θ · |v·∂t | is the length of the
projection of the vector −v·∂t onto vector N.

Observe that the maximum flow of photons through the differential surface
patch occurs when the patch is perpendicular to the direction of flow of the pho-
tons.

In the more general case, not all the photons passing through the small defer-
ential area ∂Ax , at point x, will be flowing in the same direction and the length

N

v.∂t

q

FIGURE 10.20. Sweeping a differential volume ∂V .

“Comninos” — 2005/8/31 — 19:01 — page 343 — #27

Physically Based Lighting and Shading Models and Rendering Algorithms 343

N

B

T

x

wx

∂wx

∂Ax

fw

qw

FIGURE 10.21. The differential solid angle ∂ωx .

of the side of the above prism will form a small differential solid angle ∂ωx of
different directions about the direction vector ωx . See Fig. 10.21.

In this case, the number of photons flowing through the differential surface area
∂Ax is given by

P (x,ωx) = p (x,ωx) · cos (θω) ·∂ωx ·∂Ax (10.51)

and the volume of the prism is cos (θω) ·∂ωx ·∂Ax . As the direction vector ωx

is a unit vector, it can be represented by a point on a unit sphere with spherical
coordinates (θω, φω), where θω is the altitude or zenith angle and φω is the azimuth
angle.

As we have seen in Section 10.4.4, the differential solid angle ∂ωx is given by

∂ωx = sin (θω) ·∂θω·∂φω (10.52)

The differential solid angle represents both the size and the direction of a beam
of photons; i.e. it represents both a direction and an infinitesimal area on the unit
sphere. Thus θω is the angle between the unit normal N of the differential surface
and the general direction ωx of the beam of photons and φω is the angle between
the projection of vector ωx onto the tangent plane and the T axis of the local
surface Cartesian frame {T, B, N, x}.

The differential radiant flux or differential radiant power ∂Φ(x) arriving at a
differential area ∂Ax (at a point x on a surface) is known as the irradiance E(x),
which is defined as

E(x) = ∂Φ(x)

∂Ax
(10.53)

This quantity, which is the unit energy falling on a unit area surface, is mea-
sured in Watts per square meter (W·m−2) and corresponds to the photometric
quantity of illuminance (see Fig. 10.22a).

“Comninos” — 2005/8/31 — 19:01 — page 344 — #28

344 Mathematical and Computer Programming Techniques for Computer Graphics

ωx ωx

∂Ax ∂Ax

x

∂Φ(x) ∂Φ(x)

∂ωx ∂ωx

N

x

N

θω θω

(a) (b)

FIGURE 10.22. (a) Irradiance (Illuminance) arriving at ∂Ax . (b) Radiosity (Luminosity)
leaving from ∂Ax .

The differential radiant power ∂Φ(x) departing from a differential area ∂Ax (at
a point x on a surface) is known as the radiant exitance M(x) or the radiosity
B(x), which are defined as

M(x) = B(x) = ∂Φ(x)

∂Ax
(10.54)

This quantity is also measured in Watts per square meter (W·m−2). Its photo-
metric equivalent is luminosity (see Fig. 10.22b).

The differential radiant power ∂Φ(x) arriving from a differential solid angle
∂ωx at a given point x is known as the radiant intensity or luminous intensity,
which is given as

I (ωx) = ∂Φ(x)

∂ωx
(10.55)

This quantity, which is the unit power per unit solid angle, is measured in Watts
per steradians (W·sr−1).

Finally, the radiance L(x,ωx) for a given point x and direction ωx is defined
as the differential radiant power ∂Φ(x) radiated per unit projected area and per
unit time from point x in the direction ωx . The radiance is given by

L(x,ωx) = ∂ E(x)

∂ωx
= ∂2Φ(x)

∂ A⊥
x ·∂ωx

= ∂2Φ(x)

cos(θω)·∂ Ax ·∂ωx
= ∂I(x)

cos(θω)·∂ Ax
(10.56)

where ∂A⊥
x is the differential projected area (i.e. the differential area around a

point x which is perpendicular to the direction ωx), ∂ωx is the differential solid
angle around the direction ωx and ∂2Φ(x) is the differential radiant power through
the differential surface area ∂A⊥

x and solid angle ∂ωx . In other words, to measure
the radiance at (x, ωx), we determine how many photons pass through a differen-
tial area ∂ A⊥

x that is perpendicular to the direction ωx in each unit of time. These

“Comninos” — 2005/8/31 — 19:01 — page 345 — #29

Physically Based Lighting and Shading Models and Rendering Algorithms 345

x

N

∂Ax
^

∂ωx

ωx

∂2Φ(x)

FIGURE 10.23. The differential projected area ∂A⊥
x .

photons have trajectories that are contained in a differential solid angle ∂ωx sur-
rounding the direction ωx . Thus radiance is defined to be the limiting ratio of
the differential radiant power ∂Φ(x) represented by these photons, arriving at a
differential projected area ∂A⊥

x from a solid angle ∂ωx . See Fig. 10.23. Radiance
is measured in Watts per meters squared per steradians (W·m−2·sr−1).

As radiance is defined for all points of 3D space and for all direction of a 2D
directional space, we say that radiance is a 5D function. The radiance just before
light arrives at a surface is called the incoming radiance or surface field radiance
Li (x,ωx) and the radiance just after light leaves a surface is called the outgoing
radiance or surface radiance Lo(x,ωx). When measuring the radiance leaving
the surface patch P , a more convenient form of the equation is

Lo(x,ωx) = ∂2Φ (x)

|ωx � N| ·∂Ax ·∂ωx
= ∂2Φ(x)

cos (θω) ·∂Ax ·∂ωx
(10.57)

where Ax is the area measured on the surface patch P . Thus, the relationship
between the differential projected area ∂A⊥

x and the ordinary differential area ∂Ax

is
∂A⊥

x = |ωx � N| ·∂Ax = cos (θω) ·∂Ax (10.58)

Alternatively, the radiant energy per unit volume is the product of the photon
volume density by the power of a single photon. Thus,

L(x,ωx) =
∫ ∞

0
P(x,ωx , λ)·h·c

λ
∂λ (10.59)

where P(x,ωx , λ) is the photon volume density at a given wavelength λ.
To recapitulate, incoming radiance or field radiance is a measure of energy per

unit time arriving at a small area (centred about a point) from a given direction
defined by small solid angle and outgoing radiance or surface radiance is a mea-
sure of energy per unit time radiating from a small area (centred about a point)
towards a given direction defined by small solid angle. Thus we can surmise that

“Comninos” — 2005/8/31 — 19:01 — page 346 — #30

346 Mathematical and Computer Programming Techniques for Computer Graphics

radiance is most important radiometric quantity in physically based image synthe-
sis, as its distribution completely determines the distribution of light in the scene
and all other radiometric quantities can be derived from it. For instance, the rate
of radiant power (flux) per unit time ∂Φ(x) arriving at a differential area ∂Ax from
a differential solid angle ∂ωx is given as

∂2Φ(x) = Li(x,ωx) · cos(θω) ·∂Ax ·∂ωx (10.60)

Now if Li (x,ωx) is the radiance incident onto a surface with a fixed orien-
tation, we can compute the total energy per unit area arriving at this surface by
integrating the incoming radiance over the entire illuminating hemisphere at a
point x.

∂Φ(x) =
(∫

�

Li(x,ωx) · cos(θω) ·∂ωx

)
·∂Ax (10.61)

As we have seen above the irradiance is given by E(x) = ∂Φ(x)

∂Ax
, thus:

E(x) =
∫

�

Li(x,ωx) · cos (θω) ·∂ωx

=
∫ 2π

0

∫ π

0
Li(x,ωx) · cos(θω) ·sin (θω) ·∂θx ·∂φx (10.62)

where the quantity cos(θω) ·∂ωx is known as the projected solid angle and can be
thought of as the projection of a differential surface which is defined on the illumi-
nating hemisphere and projected onto the base of this hemisphere. See Fig. 10.24.
The projected solid angle is often denoted by ∂ω⊥

x , thus

∂ω⊥
x = cos(θω) ·∂ωx (10.63)

It turns out that the integral of the projected solid angle over the entire illumi-
nating hemisphere reduces to π , since

N

B

T

x

∂wx

wx

qw

fw

FIGURE 10.24. The projected solid angle cos (θω) ·∂ωx .

“Comninos” — 2005/8/31 — 19:01 — page 347 — #31

Physically Based Lighting and Shading Models and Rendering Algorithms 347

x

E⊥(x)

qL

N

L

FIGURE 10.25. The projected irradiance E⊥(x).

∫

�

cos(θω) ·∂ωx =
∫ 2π

0

∫ π

0
cos(θω) · sin(θω) ·∂θx ·∂φx

= −
∫ 2π

0

∫ π

0
cos (θω) ·∂ (cos (θω)) ·∂φx

(10.64)

= −2π
cos2 (θω)

2

∣∣∣∣∣

π/2

0= π

Similarly, the radiosity is given by

B(x) =
∫

�

Lo (x,ωx) · cos (θω) ·∂ωx

=
∫ 2π

0

∫ π

0
Lo (x,ωx) · cos (θω) ·sin (θω) ·∂θx ·∂φx (10.65)

where Lo (x,ωx) is the outgoing radiance or surface radiance.
If a single distant light source irradiates the surface, then all the rays from this

source will be parallel and the integral in Eq. (10.62) reduces to a simpler form

E(x) = E⊥(x)· cos (θL) (10.66)

where E⊥(x) is the projected irradiance (i.e. the energy arriving from the light
source onto a unit surface which is perpendicular to the rays from the light source)
and θL is the incidence angle. See Fig. 10.25.

10.6 Light Emission

Although the use of radiance is convenient for characterising the light transport
between surface elements, it is not appropriate for the description of the energy
emanating from a point light source. It turns out that the radiant intensity I is best
suited for this purpose.

“Comninos” — 2005/8/31 — 19:01 — page 348 — #32

348 Mathematical and Computer Programming Techniques for Computer Graphics

Isotropic point light sources emanate energy in the form of photons equally in
all directions and their energy distribution expands outwards from the centre.

As we have seen above, radiant power (energy flux) Φs is energy per unit time,
irradiance (energy density) Es is energy per unit time per unit area and radiant
intensity (brightness) Is is energy flux per solid angle ωs through which the source
radiates energy. Thus the radiant intensity is given by

Is = Φs

ωs
(10.67)

For instance, consider a point light source situated at a point xs radiating a total
energy of Φs (per unit time) equally in all directions. The solid angle through
which the source radiates is 4π (i. e. the solid angle of the entire sphere). Now
the radiant intensity of the source in any direction is given by

Is = Φs

4π
(10.68)

The intensity (brightness) of the light source is independent of the distance of
the viewer from the source, but the irradiance (energy density) reaching the viewer
or a surface is dependant on this distance. A sphere of radius r , containing the
point source, has a surface area 4πr2. The energy flux Φs (of the light source) ra-
diates equally through all the points of the surface of this sphere and the projected
energy density E⊥

s at any point x on this sphere is given by dividing the energy
flux by the surface area of the sphere, thus

E⊥
s (x) = Φs

4πr2
(10.69)

The projected incident irradiance E⊥
s (x) is the energy received by the surface

element of any point x that lies on the surface of a sphere of radius r that is centred
at the point light source. This surface element is assumed to lie on a plane that is
tangential to this sphere (at point x) and to have a normal that points towards the
centre of the sphere from where the light radiates. See Fig. 10.26a.

If a point x is situated at a distance r from the light source point xs and its
surface element lies on a surface with a unit normal vector N pointing in a dif-
ferent direction, then the incident irradiance must be scaled by the cosine of the
incidence angle of the incoming rays. Thus, the incident irradiance Es(x) is

Es(x) = E⊥
s (x)· (N � L) = Φs

4πr2
· cos (θx) (10.70)

where r = |xs − x| is the distance of surface point from the light source point, L
is the vector pointing in the direction of the light source and θx is the incidence
angle of the light rays. See Fig. 10.26b.

Now combining Eqs. (10.68) and (10.70), we can express the incident irradi-
ance Es(x) in terms of the incident intensity Is as

Es(x) = Is

r2
· (N � L) = Is

r2
· cos (θx) (10.71)

“Comninos” — 2005/8/31 — 19:01 — page 349 — #33

Physically Based Lighting and Shading Models and Rendering Algorithms 349

(a) (b)

E⊥
s

N

xs

x x

Es

qx

N
L

xs

FIGURE 10.26. (a) The projected incident irradianceE⊥
s (x). (b) The incident irradiance

Es(x).

10.7 The Scattering and Reflection Functions

As we have seen previously, when a light beam strikes an interface surface be-
tween two participating media it can undergo reflection, refraction followed by
transmission, or subsurface scattering followed by reflection. In this section we
will examine the scattering and reflection functions that model these phenomena.

Let us start by examining what happens to a single photon when it strikes an
interface surface. Figure 10.27a depicts a photon striking the interface surface and
undergoing reflection, while Fig. 10.27b depicts a photon striking the interface
surface and undergoing subsurface scattering followed by reflection.

As we can see from the latter diagram, a light beam may strike the surface at
one point, undergo subsurface scattering and leave the surface from another point.
For this reason, we momentarily drop any reference to points from our notation.
Thus, the incoming (field) radiance will be denoted by Li (ωi) and the outgoing
(surface) radiance will be denoted by Lr (ωr). In general the outgoing radiance Lr

depends on the radiance arriving at a given point from all directions. To simplify
things, we will fix a particular direction ωi and consider only the incident light
arriving at a point from a solid angle ∂ωi . Let us assume that this light strikes the
surface at a point and generates an irradiance Ei (ωi) which given by

∂ Ei (ωi) = Li (ωi)·∂ω⊥
i (10.72)

where ∂ω⊥
i is the projected solid angle in the direction ωi . This light is subse-

quently scattered by the surface in all directions.
Let ∂Lr (ωr) represent the contribution made to the outgoing radiance in the di-

rection ωr with a solid angle ∂ωr . Experiments have shown that the incident light
energy ∂ Ei (ωi) arriving onto the surface is proportional to the reflected radiance
Lr (ωr) [Clarke 85]. Thus,

∂Lr (ωr) ∝ ∂ Ei (ωi) (10.73)

“Comninos” — 2005/8/31 — 19:01 — page 350 — #34

350 Mathematical and Computer Programming Techniques for Computer Graphics

xi xr

Li (wi) Lr (wr)
Li (wi) Lr (wr)

x

(a) (b)

FIGURE 10.27. (a) The reflection of a photon. (b) The scattering and reflection of a photon.

This relationship means that an increase in incident irradiance results in a corre-
sponding increase in the reflected radiance. An increase in the incident irradiance
can be achieved either by increasing the solid angle subtended by the light source
(i.e. by bringing the source closer to the surface) or by increasing the energy des-
tiny of the light beam (i.e. by increasing the intensity of the light source).

It should be equally apparent that the reflected radiance is proportional to the
incident radiant flux, thus

∂Lr (ωr) ∝ ∂Φi (ωi) (10.74)

10.7.1 Bi-directional Scattering Surface Reflectance
Distribution Function (BSSRDF)

When subsurface scattering followed by reflection takes place, a photon that
strikes an interface surface enters the second participating medium is scattered
around by various obstacles and finally re-emerges from the surface. The scat-
tered photon can even re-emerge from a different surface of the object being lit,
as shown in Fig. 10.28. This phenomenon is most noticeable in translucent ma-
terials such as skin, leafs or marble and is examined in detail in a monograph by
Nicodemus et al. [Nicodemus 77].

This form of scattering and reflection can be modelled using a BSSRDF func-
tion fs which represents the constant of proportionality of the differential reflected
radiance ∂Lr (ωr) (leaving from a point xr in a direction ωr) and the differential
incident energy flux ∂Φi (ωi) (arriving at a point xi from a direction ωi). Thus
this function, which is the most comprehensive model of light transport, is given
by

fs (xi , xr ,ωi ,ωr) = ∂Lr (xr ,ωr)

∂Φi (xi ,ωi)
(10.75)

where xi and xr are the points on the surface where the incident and the reflected
rays enter and leave the surface respectively, ωi and ωr are the direction vectors
of these rays, ∂Φi (ωi) is the incident differential energy flux and ∂Lr (ωr) is the

“Comninos” — 2005/8/31 — 19:01 — page 351 — #35

Physically Based Lighting and Shading Models and Rendering Algorithms 351

Li (wi)

Lr (wr)

xi

xr

FIGURE 10.28. Subsurface scattering followed by reflection.

reflected differential radiance. The BSSRDF is measured in dimensionless units
per meters squared per steradians (m−2·sr−1).

This model of reflectance assumes that the second participating medium is non-
homogenous. Here it is assumed that some of the light incident on a material is
directly reflected off its surface, some is transmitted and scattered inside the mate-
rial before re-emerging from a different point of its surface and some is absorbed
by the material and stored as heat.

The BSSRDF is a very expensive function to evaluate and has only been used
by very few researchers in computer graphics, mainly to compute subsurface scat-
tering followed by reflection, [Dorsey 99], [Hanrahan 93], [Jensen 99], [Jensen
01a], [Pharr 00].

As we shall see in the next section a BSSRDF can be expressed as a collection
of two BRDFs and two BTDFs.

10.7.2 Bi-directional Reflectance Distribution Function
(BRDF)

In the simpler case of reflection where the point of incidence and point of reflec-
tion coincide, a much simpler function (known as a Bi-directional Reflectance
Distribution Function) was introduced by Nicodemus et al. [Nicodemus 77] to
represent this form of reflection. The BRDF function fr represents the constant
of proportionality of the differential reflected radiance ∂Lr (x,ωr) (leaving from
a point x in a direction ωr) and the differential incident irradiance ∂ Ei (x,ωi)

(arriving at a point x from a direction ωi). Thus this function is given by

fr (x,ωi ,ωr) = ∂Lr (x,ωr)

∂ Ei (x,ωi)
= ∂Lr (x,ωr)

Li (x,ωi) ·∂ω⊥
i

= ∂Lr (x,ωr)

Li (x,ωi) · cos (θi) ·∂ωi

= ∂Lr (x,ωr)

Li (x,ωi) · (L � N) ·∂ωi
(10.76)

“Comninos” — 2005/8/31 — 19:01 — page 352 — #36

352 Mathematical and Computer Programming Techniques for Computer Graphics

where x is the point on the surface, ωi and ωr are the direction vectors of the inci-
dent and the reflected rays, ∂ωi and ∂ωr are the solid angles in the directions ωi

and ωr , θi is the incidence angle, ∂ Ei (x,ωi) is the differential incident irradiance,
Li (x,ωi) is the incident radiance and ∂Lr (x,ωr) is the differential reflected ra-
diance. See Fig. 10.29. The BRDF function is measured in dimensionless units
per steradians (sr−1).

This model of reflectance assumes that the second participating medium is ho-
mogenous. Here it is assumed that all the light incident on a material is directly
reflected off its surface and that the subsurface scattering and absorption charac-
teristics of the material are ignored.

The BRDF function is sometimes written in the following form:

fr (x,ωi → ωr) = ∂L (x → ωr)

∂ E (x ← ωi)
= ∂L (x → ωr)

L (x ← ωi) · cos (θi) ·∂ωi

= ∂L (x → ωr)

L (x ← ωi) · (L � N) ·∂ωi
(10.77)

where the arrows indicate the direction in which the light travels (.i.e. → meaning
outgoing and ← meaning incoming light).

The BRDF can also be expressed in terms of the zenith and azimuth angles of
the incident and the reflected ray directions.

fr (x, θi , φi , θr , φr) = ∂Lr (x, θr , φr)

∂ Ei (x, θi , φi)
= ∂Lr (x, θr , φr)

Li (x, θi , φi) · cos (θi) ·∂ωi

= ∂Lr (x, θr , φr)

Li (x, θi , φi) · (L � N) ·∂ωi
(10.78)

As we have seen in Section 10.4, surfaces can be classified as being isotropic
or anisotropic. With isotropic surfaces, the reflection remains unchanged when
the surface is rotated about its normal while the incoming irradiance and outgo-
ing radiance are left unchanged. Anisotropic surfaces, on the other hand, reflect
light differently when rotated about their normal. Such surfaces have micro-facets
that are strongly oriented. This orientation of their micro-facets causes light to re-
flect differently in different directions, with some directions being preferred. The
observer does not see these micro-facets but only perceives their effect on the re-
flected light. Anisotropic surfaces include brushed and brandished metal surfaces,
cloth, feathers, fur, and hair. Most natural and man-made materials have isotropic
surfaces with randomly distributed micro-facets.

When dealing with isotropic surfaces a simplified version of the BRDF, known
as an isotropic BRDF, can be used.

fi,r (x, θi , θr , φ) = ∂Lr (x, θr , φ)

∂ Ei (x, θi , φ)
= ∂Lr (x, θr , φ)

Li (x, θi , φ) · cos (θi) ·∂ωi

= ∂Lr (x, θr , φ)

Li (x, θi , φ) · (L � N) ·∂ωi
(10.79)

where φ is the difference of the azimuth angles of the reflected and the incident
rays (i.e. φ = φr − φi).

“Comninos” — 2005/8/31 — 19:01 — page 353 — #37

Physically Based Lighting and Shading Models and Rendering Algorithms 353

N

B

T

x

qi

fi

qr

fr

wr , R

wr

wi , L

wi

FIGURE 10.29. The BRDF function.

A corresponding function ft , known as the Bi-directional Transmission Distri-
bution Function (BTDF), can be constructed to deal with the refraction and trans-
mission of light passing through the interface surface between two participating
media with differing refraction coefficients.

The BTDF function ft represents the constant of proportionality of the differ-
ential transmitted radiance ∂Lt (x,ωt) (leaving from a point x in a direction ωt)

and the differential incident irradiance ∂ Ei (x,ωi) (arriving at a point x from a
direction ωi). Thus this function is given by

ft (x,ωi ,ωt) = ∂Lt (x,ωt)

∂ Ei (x,ωi)
= ∂Lt (x,ωt)

Li (x,ωi) ·∂ω⊥
i

= ∂Lt (x,ωt)

Li (x,ωi) · cos (θi) ·∂ωi

= ∂Lt (x,ωt)

Li (x,ωi) · (L � N) ·∂ωi
(10.80)

where x is the point on the surface, ωi and ωt are the direction vectors of the
incident and the transmitted rays, ∂ωi and ∂ωt are the solid angles in the direc-
tions ωi and ωt , θi is the incidence angle, ∂ Ei (x,ωi) is the differential incident
irradiance, Li (x,ωi) is the incident radiance and ∂Lt (x,ωt) is the differential
transmitted radiance.

In its most general form a BRDF can be seen as a function whose domain is the
Cartesian product of the incident illuminating hemisphere H2

i and the reflected
illuminating hemisphere H2

r and whose co-domain is the set real numbers R, thus

fr : H2
i × H2

r → R (10.81)

In this case, both illuminating hemispheres refer to the same set of directions,
i.e. H2

i = H2
r = H2+.

Similarly, a BTDF is defined as

ft : H2
i × H2

t → R (10.82)

In this case, the transmitted illuminating hemisphere H2
t is the complement of

the incident illuminating hemisphere H2
i , i.e. H2

t = −H2
i = H2−.

The combination of a BRDF function (defined over H2+ at xi), a BTDF function
(defined over H2− at xi), a BTDF function (defined using H2− at xr) and a BRDF

“Comninos” — 2005/8/31 — 19:01 — page 354 — #38

354 Mathematical and Computer Programming Techniques for Computer Graphics

Li Lr

xi xr

NrNi
2
r+

2
r+

2
i+

2
i+

FIGURE 10.30. A Bi-directional scattering distribution function.

function (defined using H2+ at xr), is known as a Bi-directional Scattering Dis-
tribution Function (BSDF). This function is an alternative form of the BSSRDF
function examined in the pervious section (see Fig. 10.30).

The BSDF function fs represents the constant of proportionality of the differ-
ential reflected radiance ∂Lr (xr ,ωr) (leaving from a point xr in a direction ωr)

and the differential incident irradiance ∂ Ei (xi ,ωi) (arriving at a point xi from a
direction ωi). Thus this function is given by

fs (xi , xr ,ωi ,ωr) = ∂Lr (xr ,ωr)

∂ Ei (xi ,ωi)
= ∂Lr (xr ,ωr)

Li (xi ,ωi) ·∂ω⊥
i

= ∂Lr (xr ,ωr)

Li (xi ,ωi) · cos (θi) ·∂ωi
(10.83)

where xi and xr are the points on the surface where the incident and the reflected
rays enter and leave the surface respectively, ωi and ωr are the direction vectors
of the incident and the reflected rays, ∂ωi and ∂ωr are the solid angles in the
directions ωi and ωr , θi is the incidence angle, ∂ Ei (xi ,ωi) is the differential
incident irradiance, Li (xi ,ωi) is the incident radiance and ∂Lr (xr ,ωr) is the
differential reflected radiance (see Fig. 10.30).

A BSDF can be seen as a function whose domain is the Cartesian product of
four illuminating hemispheres and whose co-domain is the set of real numbers R,
thus

fs : H2
i (xi) ×

[
−H2

i (xi)
]

×
[
−H2

r (xr)
]

× H2
r (xr) → R (10.84)

10.7.3 Reflectance, Transmittance and Scattering Equations

Rearranging Eq. (10.76) we get

∂Lr (x,ωr) = fr (x,ωi ,ωr) ·Li (x,ωi) ·∂ω⊥
i (10.85)

“Comninos” — 2005/8/31 — 19:01 — page 355 — #39

Physically Based Lighting and Shading Models and Rendering Algorithms 355

This is the differential reflected radiance (leaving point x in the direction ωr)

expressed in terms of the incident radiance (arriving at point x from the direction
ωi). To get the total reflected radiance (leaving point x in the direction ωr) we
must sum the incident radiance arriving at point x from all possible directions of
the incident illuminating hemisphere H2

i (or equivalently Ωi). Thus,

Lr (x,ωr) =
∫

H2
i

fr (x,ωi ,ωr) ·Li (x,ωi) ·∂ω⊥
i (10.86)

This equation is known as the surface reflectance equation and is used to pre-
dict the appearance of a surface given the incident illumination. Observe that here
we integrate the incoming radiance over the incident illuminating hemisphere.

Similarly, starting from Eqs.(10.80) and (10.83), we can develop the surface
transmittance equation and the surface scattering equation respectively.

Thus, the surface transmittance equation is given by

Lt (x,ωt) =
∫

H2
i

ft (x,ωi ,ωt) ·Li (x,ωi) ·∂ω⊥
i (10.87)

10.7.4 Properties of the BRDFs

Despite the fact that the co-domain of BRDFs is the real number set, BRDFs are
not arbitrary functions and have to satisfy a number of constraints in order to be
physically correct or at least physically plausible.

10.7.4.1 Non-Negativity Property

BRDFs can only assume non-negative values in the half-open interval [0,∞).
From Eqn. (10.76) it is self-evident that the BRDF fr (x,ωi ,ωr) =
∂Lr (x,ωr)

/
∂ Ei (x,ωi) is non-negative, as both the numerator of this fraction

(i.e. the differential reflected radiance) and its denominator (i.e. the differential
incident irradiance) are non-negative. Thus,

fr (x,ωi ,ωr) ≥ 0 ∀ωi ∈ H2
i ∧ ∀ωr ∈ H2

r (10.88)

10.7.4.2 Symmetry Property or the Helmholtz Reciprocity Property

Helmholtz’s law of reciprocity states that the reflective properties of a surface do
not depend on the direction in which the light travels. This means that reversing
the direction of the incident and the reflected light has no effect on the value of
the BRDF.

Thus,

fr (x,ωi ,ωr) = fr (x,ωr , ωi) ∀ωi ∈ H2
i ∧ ∀ωr ∈ H2

r (10.89)

Figure 10.31 illustrates the reciprocity property. By convention all directions
are defined as pointing away from point x. Observe that on the left-hand dia-
gram of the figure, light travels in the directions −ωi and +ωr with solid angles

“Comninos” — 2005/8/31 — 19:01 — page 356 — #40

356 Mathematical and Computer Programming Techniques for Computer Graphics

N

B
=

T

x

N

B

T

xx x

wr
wi

wr wi

wr
wi

wr wi

∂∂∂∂

FIGURE 10.31. Helmholtz’s law of reciprocity.

−∂ωi and +∂ωr , respectively, while on the right-hand diagram light travels in
the directions −ωr and +ωi with solid angles −∂ωr and +∂ωi , respectively.

A more detailed discussion of the reciprocity property can be found in [Clarke
85] and [Veach 97a].

10.7.4.3 Energy Conservation Property

Physically correct BRDFs must be energy conserving, which means that for any
incident direction the power reflected over the entire reflected illuminating hemi-
sphere cannot exceed the incident power. Similarly, the power reflected from a
given point, in any particular direction, does not exceed the total power arriving
at that point from all directions of the illuminating hemisphere. Any power that is
not reflected is absorbed by the surface and transformed into heat. The underlying
assumption here is that surface does not emit any energy by itself, which assumes
that the surface in not fluorescent.

More precisely, the total amount of power reflected over the entire illuminat-
ing hemisphere H2

r (or equivalently Ωr) must be less than or equal to the power
incident from the direction ωi . In this case, the fraction of the outgoing to the in-
coming power is known as the directional-hemispherical reflectance and is given
by

ρ (x,ωi) =
∫

H2
r

fr (x,ωi ,ωr) ·∂ω⊥
r ≤ 1 ∀ωi ∈ H2

i (10.90)

Observe that here we integrate over the outgoing direction.
In some literature the directional-hemispherical reflectance is denoted as

ρ (x,ωi , 2π) or as ρ (x,ωi → 2π).

10.8 Reflectance Function of a Surface

As we have noted in Section 10.7.2, the BRDF is a function that represents the
ratio of the differential reflected radiance ∂Lr (x,ωr) (leaving from a point x in

“Comninos” — 2005/8/31 — 19:01 — page 357 — #41

Physically Based Lighting and Shading Models and Rendering Algorithms 357

a direction ωr) and the differential incident irradiance ∂ Ei (x,ωi) (arriving at a
point x from a direction ωi). Although this function gives us the ratio of the
reflected to the incident light energy for a surface, it is not very intuitive, as its
range is the infinite interval [0,∞). To overcome this difficulty we define another
function, which represents the fraction of the incident light reflected off a surface.
This function is known as the reflectance of the surface and has a range [0, 1]. To
determine this function we proceed as follows. We start by considering the ratio
of the reflected differential flux to the incident differential flux at a point x. Using
Eqs. (10.61) and (10.63) we get

∂Φr (x)

∂Φi (x)
=
(∫

H2
r

Lr (x,ωr) ·∂ω⊥
r

)
·∂ Ax

(∫
H2

i
Li (x,ωi) ·∂ω⊥

i

)
·∂ Ax

=
∫
H2

r
Lr (x,ωr) ·∂ω⊥

r
∫
H2

i
Li (x,ωi) ·∂ω⊥

i

Using Eq. (10.86) we can expand this result to get

∂Φr (x)

∂Φi (x)
=
∫
H2

r

∫
H2

i
fr (x,ωi ,ωr) ·Li (x,ωi) ·∂ω⊥

i ·∂ω⊥
r

∫
H2

i
Li (x,ωi) ·∂ω⊥

i

If we assume that the incident radiance Li (x,ωi) is both uniform and isotropic,
then we can remove it from both integrals of the numerator and the denominator
of this fraction. The simplified fraction defines the reflectance function of the
surface.

ρ (x,ωi ,ωr) =
∫
H2

r

∫
H2

i
fr (x,ωi ,ωr) ·∂ω⊥

i ·∂ω⊥
r

∫
H2

i
∂ω⊥

i

(10.91a)

or equivalently

ρ (x,ωi ,ωr) =
∫
H2

r

∫
H2

i
fr (x,ωi ,ωr) · cos (θi) ·∂ωi · cos (θr) ·∂ωr

∫
H2

i
cos (θi) ·∂ωi

(10.91b)

Observe that the reflectance of the surface changes as the incidence angle θi

changes.
In the arrow notation this function is denoted by ρ (x,ωi → ωr).
The reflectance function involves the evaluation of a double integral over the

incident and reflected directions. The limits of these integrals can be set to a dif-
ferential solid angle range [∂ωa, ∂ωb], a finite solid angle range [Dωa,Dωb] or
the entire illuminating hemisphere H2

i or H2
r .

Depending on the chosen integration limits for the incident and reflected di-
rections we can use a qualifier that characterises the reflectance function. This
qualifier is constructed by juxtaposing the type of the integration limits used
in the incident and the reflected directions. The integration limit types are re-
ferred to by the terms directional (for a differential solid angle range), coni-
cal (for a finite solid angle range) and hemispherical (for an entire illuminating
hemisphere). By permutating these three integration limit types we can generate
nine such reflectance qualifiers. Thus, the qualifiers for the following reflectance
functions are:

“Comninos” — 2005/8/31 — 19:01 — page 358 — #42

358 Mathematical and Computer Programming Techniques for Computer Graphics

ρ (x,ωi → ωr) is a bi-directional reflectance function,
ρ (x,ωi → Dωr) is a directional-conical reflectance function,
ρ
(
x,ωi → H2

r

)
is a directional-hemispherical reflectance function,

ρ (x,Dωi → ωr) is a conical-directional reflectance function,
ρ (x,Dωi → Dωr) is a bi-conical reflectance function,
ρ
(
x,Dωi → H2

r

)
is a conical-hemispherical reflectance function,

ρ
(
x,H2

i → ωr
)

is a hemispherical-directional reflectance function,
ρ
(
x,H2

i → Dωr
)

is a hemispherical-conical reflectance function,
ρ
(
x,H2

i → H2
r

)
is a bi-hemispherical reflectance function.

10.9 Transmittance Function of a Surface

Following an analogous argument for the transmission of light, to that we used
in the previous section for the reflection of light, we can derive the transmittance
function of a surface. As before, we start by considering the ratio of the transmit-
ted differential flux to the incident differential flux at a point x:

∂Φt (x)

∂Φi (x)
=
(∫

H2
t

Lt (x,ωt) ·∂ω⊥
t

)
·∂ Ax

(∫
H2

i
Li (x,ωi) ·∂ω⊥

i

)
·∂ Ax

=
∫
H2

t
Lt (x,ωt) ·∂ω⊥

t
∫
H2

i
Li (x,ωi) ·∂ω⊥

i

Expanding this result we get

∂Φt (x)

∂Φi (x)
=
∫
H2

t

∫
H2

i
ft (x,ωi ,ωt) ·Li (x,ωi) ·∂ω⊥

i ·∂ω⊥
t

∫
H2

i
Li (x,ωi) ·∂ω⊥

i

Once again, assuming that the incident radiance Li (x, ωi) is both uniform and
isotropic, we can remove it from both integrals of the numerator and the denom-
inator of this fraction. The simplified fraction defines the transmittance function
of the surface.

τ (x,ωi ,ωt) =
∫
H2

t

∫
H2

i
ft (x,ωi ,ωt) ·∂ω⊥

i ·∂ω⊥
t

∫
H2

i
∂ω⊥

i

(10.92a)

or equivalently

τ (x,ωi ,ωt) =
∫
H2

t

∫
H2

i
ft (x,ωi ,ωt) · cos (θi) ·∂ωi · cos (θt) ·∂ωt

∫
H2

i
cos (θi) ·∂ωi

(10.92b)

Again, observe that the transmittance of the surface changes as the incidence
angle θi changes and that in the arrow notation this function is denoted by
τ (x,ωi → ωt).

“Comninos” — 2005/8/31 — 19:01 — page 359 — #43

Physically Based Lighting and Shading Models and Rendering Algorithms 359

10.10 Reflection and Transmission Models

Determining the reflection model of a surface is a difficult task and so, in practice,
it is often convenient to think of the general BRDF as the sum of three more basic
reflection models, namely: the ideal diffuse (or Lambertian diffuse) reflection
model, the ideal specular (or perfect mirror specular) reflection model and the
glossy reflection model. See Fig. 10.32.

The Lambertian diffuse and the perfect mirror specular reflection models are
mathematical abstractions and can not deal with the complexity of most surfaces
found in nature. Such surfaces are rough (i.e. composed of micro-facets) and
exhibit surface and sub-surface scattering phenomena.

An alternative way of characterising the reflection of light from an interface
surface and for that matter the transmission of light through an interface surface
is to think of the type of image generated by the reflected or the transmitted light.
This image can be characterised either as being coherent or incoherent.

A coherent reflection is a mirror type reflection, where the reflected rays of light
are not scattered in any way and reproduce a perfectly coherent image. Similarly,
coherent transmission of light occurs when it passes through a flat, transparent
(clear) pane of glass.

On the other hand, when light is reflected off a rough or grooved (scratched)
interface surface an incoherent reflection occurs, as the micro-facet characteris-
tics of the interface surface cause the light rays to be scattered giving rise to a
defocused reflection. Most surfaces that we observe produce incoherent reflec-
tions that are difficult to predict and understand. The degree of incoherence of
the reflection is related to the degree of roughness of the surface. The rougher the
surface is the more incoherent the reflected image becomes. At the extreme of
this type of reflection we have a Lambertian diffuse reflection, which is perfectly
diffusing and produces a totally incoherent reflection. In this case we characterise
the interface surface as being matt.

Similarly, incoherent transmission occurs when light passes through a rough
interface surface or a semitransparent (translucent) material. For instance, the
image seen through a frosted pane of glass or through a thin sheet of paper is
incoherent. The degree of incoherence is related to both the roughness of the

Lambertian Reflection Mirror Specular Reflection Glossy Reflection BRDF

=++

FIGURE 10.32. A BRDF is composed of the sum of Lambertian, mirror specular and
glossy reflections.

“Comninos” — 2005/8/31 — 19:01 — page 360 — #44

360 Mathematical and Computer Programming Techniques for Computer Graphics

interface surface and transparency/translucency of the material through which the
light has to travel before it reaches us.

Thus one can see that light reflection and transmission can be characterised
as being perfectly diffuse (i.e. totally incoherent), perfectly specular (i.e. totally
coherent) and something in-between these two extremes (i.e. semi-coherent). In
order to simulate these three types of reflection and transmission, we can use
correspondingly the diffuse reflection model, the specular reflection model and a
mixture of these two idealised models.

10.10.1 Diffuse Reflection Model

A surface that exhibits diffuse reflection characteristics scatters all incoming en-
ergy in all possible directions of the reflected illuminating hemisphere H2

r . In the
ideal case of Lambertian diffuse reflection, it is assumed that the micro-facets of
the surface are perfectly evenly distributed in all directions and thus they scatter
light evenly in all directions of H2

r . In this case, the reflected radiance is con-
stant in all directions regardless of the direction of the incoming radiance. Which
means that the BRDF is constant and does not depend on the incident and the
reflected directions ωi and ωr . Thus, Eq. (10.86) becomes

Lr,d (x,ωr) =
∫

H2
i

fr,d(x)·Li (x,ωi) ·∂ω⊥
i

= fr,d(x)·
∫

H2
i

Li (x,ωi) ·∂ω⊥
i

= fr,d(x)·Ei (x) (10.93)

From the above equation we can see that the reflected radiance is proportional
to the incident irradiance and that it is constant and has the same value in all
directions, since neither the BRDF fr,d (x) nor the irradiance Ei (x) depend on
the incident or reflected directions.

By forcing the bi-hemispherical reflectance ρd
(
x,H2

i → H2
r

)
to be less than

or equal to 1, we make sure that the energy conservation property is adhered to.
Thus,

ρd

(
x,H2

i ,H2
r

)
= Φr,d(x)

Φi (x)

=
∫
H2

r
Lr,d (x,ωr) ·∂ω⊥

r
∫
H2

i
Li (x,ωi) ·∂ω⊥

i

=
Lr,d (x,ωr) · ∫H2

r
∂ω⊥

r

Ei (x)

= Lr,d (x,ωr) ·π
Ei (x)

∴ ρd

(
x,H2

i ,H2
r

)
= fr,d(x)·π (10.94)

“Comninos” — 2005/8/31 — 19:01 — page 361 — #45

Physically Based Lighting and Shading Models and Rendering Algorithms 361

since Lr,d (x,ωr) is constant and has the same value in all directions, and∫
H2

r
∂ω⊥

r = π .
But if the Lambertian BRDF is constant, since it does not depend on the inci-

dent direction ωi , then the Lambertian reflectance ρd must also be constant. Now
we can express the Lambertian BRDF in terms of the Lambertian reflectance as

fr,d(x) = ρd(x)

π
(10.95)

A physically plausible Lambertian reflectance is usually denoted by a constant
kd ≤ 1, known as the diffuse coefficient of reflectance.

10.10.2 Specular Reflection Model

In a perfect mirror reflection the light reaching a perfectly smooth (polished) sur-
face is reflected in only one direction and no surface scattering occurs. In this
case, the angle of incidence θi is equal to the angle of reflection θr and, since a
perfect mirror surface is isotropic, the reflected ray vector RL lies on the plane
defined by the light ray vector L and the surface normal vector N. Recall that in
Section 10.4.1 we have shown how the reflected ray vector could be computed.

Thus, for perfect mirror reflections we have

θr = θi

φr = φi ± π
(10.96)

As we have also seen in Section 10.4.1, the reflection occurs in the direction

ωr = 2· (N � ωi) ·N − ωi (10.97)

In some literature the direction of the reflection vector is given as

ωr = R(N)·ωi (10.98)

where R(N) is a matrix known as the Householder transformation matrix. This
matrix is defined as follows:

R(N) = 2·N·NT − I (10.99)

i.e. as twice the Cartesian product of the unit surface normal by its transposed
minus the identity matrix.

Expanding this product we get

R(N) = 2·
⎡

⎣
Nx

Ny

Nz

⎤

⎦ · [Nx Ny Nz
]−
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

∴ R(N) =
⎡

⎣
2N 2

x − 1 2Nx Ny 2Nx Nz

2Ny Nx 2N 2
y − 1 2Ny Nz

2Nz Nx 2Nz Ny 2N 2
z − 1

⎤

⎦ (10.100)

“Comninos” — 2005/8/31 — 19:01 — page 362 — #46

362 Mathematical and Computer Programming Techniques for Computer Graphics

As this matrix is symmetric, it is equal to its transpose (i.e. R(N) = RT
(N)).

With a perfect mirror surface, the incoming light is only reflected in the mir-
ror direction and we have a perfect specular reflection. For such reflections, the
reflected radiance is related to the incident radiance by

Lr (x,ωr) = ρs (x,ωi , ωr) ·Li (x,ωi) (10.101)

For perfect mirror specular reflections, the value of the specular reflectance
ρs (x,ωi ,ωr) must be equal to 1 in the direction ωr and equal to 0 in all other
directions. The corresponding BRDF is usually defined in terms of two Dirac
delta functions.

Dirac’s delta function δ (x) can informally be thought of as a function that has
the value

δ(x) =
{ ∞, x = 0

0, x �= 0
(10.102a)

and has a total integral equal to 1, i.e.

∫ +∞

−∞
δ(x)·∂x = 1 (10.102b)

The delta function obeys the sifting property, i.e.

∫ +∞

−∞
f (x) ·δ (x − x0) ·∂x = f (x0) (10.102c)

Cohen and Wallace [Cohen 93] have developed a perfect mirror surface BRDF
that uses two Dirac delta functions to achieve a non-zero result in only one partic-
ular direction. In their definition of the BRDF they use the spherical coordinates
of the incident and the reflected directions. Thus, they define their BRDF as fol-
lows :

fr,s (x,ωi ,ωr) = δ (cos (θi) − cos (θr))

cos (θi)
δ (φi − (φr ± π)) (10.103)

In this function the first delta function has the value zero unless θr = ±θi and
the second delta function has the value zero unless φr = φi ±π , which guarantees
the BRDF only has a non-zero value in the direction ωr .

Cohen and Wallace, using the above BRDF for a perfect mirror reflection,
showed that the radiance incident (at a surface point x) is equal to the reflected ra-
diance (from that point). They did so by expressing the incident radiance Li (θi , φi)

and the reflected radiance Lr (θr , φr) in terms of spherical coordinates.
Thus, they showed that

Lr (θr , φr) = Li (θi , φi) = Li (θr , (φr ± π)) (10.104)

They proved this by evaluating the integral over the entire incident illuminating
hemisphere

“Comninos” — 2005/8/31 — 19:01 — page 363 — #47

Physically Based Lighting and Shading Models and Rendering Algorithms 363

Lr (θr , φr) =
∫

H2
i

δ (cos (θi) − cos (θr))

cos (θi)

·δ (φi − (φr ± π)) ·Li (θi , φi) · cos (θi) ·∂θi ·∂φi

= Li (θr , (φr ± π))

10.10.3 Fresnel Effect

As we have observed in Section 10.3.2, when light strikes a smooth interface
surface between two participating media with different refractive indices ηi �= ηt

that are transparent, some of the incident light is reflected and some is refracted
and transmitted into the second participating medium. The portion of the light
energy that is reflected, is reflected in a specular fashion. Both the reflection and
transmission of light is known as the Fresnel effect. This effect is responsible for
the stronger specular reflections at larger incidence angles and for the stronger
transmission at lower incidence angles.

The Fresnel effect is a direct consequence of the electromagnetic nature of
light. As we have explained in Section 10.2, light is a combination of an electrical
field E and magnetic field B, which are perpendicular to each other and to the
direction k of the propagation of the wave. The Fresnel effect both depends on and
influences the polarisation of light during specular reflection and transmission.
The directional nature of both the electrical and magnetic fields of light explains
the phenomenon of polarisation.

Polarisation represents the orientation of the electrical field of the light with
respect to the plane of incidence, which contains the surface normal, the incident,
the reflected and the transmitted rays. If the electric field is parallel to the plane
of incidence, then we say that the light is P-polarised and if the electric field is
perpendicular to the plane of incidence, then we say that the light is S-polarised.
The letters “S” and “P” in the terms S-polarised and P-polarised are derived from
the German words “Senkrecht” and “Parallele” meaning perpendicular and par-
allel respectively (see Figs. 10.33 and 10.34). These figures show two different
depictions of the incident, reflected and transmitted rays of light at the interface
surface between two participating media with refractive indices ηi and ηt , respec-
tively. In these figures, the vectors e(i)

P and e(i)
S represent the orientation of the

electrical fields of the P-polarised and S-polarised incident light, respectively and
vector k(i) represents the direction of the propagation of the light wave. Similarly,
the e(r)

P , e(r)
S , k(r) and e(t)

P , e(t)
S , k(t) represent these directions for the reflected and

transmitted light respectively.
Recall that the energy (power) of an electromagnetic wave is proportional to its

amplitude. To determine the ratios of the reflected to the incident and the trans-
mitted to incident electrical field magnitudes we use the Fresnel equations. There
are four such equations that define the four Fresnel factors: one pair of amplitude
reflection and amplitude transmission coefficients for S-polarised light (rs and ts)
and one pair of amplitude reflection and amplitude transmission coefficients for
P-polarised light (rP and tP).

“Comninos” — 2005/8/31 — 19:01 — page 364 — #48

364 Mathematical and Computer Programming Techniques for Computer Graphics

e(r)
S

e(t)
P

e(t)
S

e(i)
S

e(i)
P e(r)

Pe
k(r)

k(t)

k(i)

N

qt

qi

ht

hi

Plane of Incidence

Interface surface

FIGURE 10.33. The reflection and transmission of S-polarised and P-polarised incident
light.

Plane of incidence

Interface surface

N
k

(r)

hi

ht

qi

e(i)
S

k(i)

k(t)

e(r)
S

e(i)
P

e(t)
P

e(t)
S

e(i)
P

FIGURE 10.34. The reflection and transmission of S-polarised and P-polarised incident
light.

The amplitude reflection and transmission coefficients for S-polarised light are
given by

rS = E (r)
S

E (i)
S

= ηi · cos (θi) − ηt · cos (θt)

ηi · cos (θi) + ηt · cos (θt)
(10.105)

tS = E (t)
S

E (i)
S

= 2·ηi · cos (θi)

ηi · cos (θi) + ηt · cos (θt)
(10.106)

“Comninos” — 2005/8/31 — 19:01 — page 365 — #49

Physically Based Lighting and Shading Models and Rendering Algorithms 365

N

i

θt θt

hi

ht

bs
(r)

bp
(r)

bs
(t)

bs
(i)

bs
(i)

k(r) k(r)

k(i) k(i)

k(t) k(t)

es
(r)

ep
(r)

es
(i)

es
(i)

es
(t)

N

i
hi

ht

bp
(t)

ep
(t)θt

(a) (b)

FIGURE 10.35. (a) Refraction and transmission of S-polarised incident light. (b) Refrac-
tion and transmission of P-polarised incident light.

where E (i)
S , E (r)

S and E (t)
S are the amplitudes of the electrical fields of the incident,

reflected and transmitted S-polarised light rays (pointing in the directions e(i)
S ,

e(r)
S and e(t)

S , respectively), ηi and ηt are the refractive indices of the media on
either side of the interface surface, and θi and θt are the incidence and transmission
angles (see Fig. 10.35a). In this figure the vectors e(i)

S , e(r)
S and e(t)

S point out of the

page and vectors b(i)
S , b(r)

S and b(t)
S represent the orientations of the magnetic fields

of the incident, reflected and transmitted S-polarised light. Here the magnetic field
direction vectors lie on the plane of incidence.

If ηi ≥ ηt , then the amplitude reflection coefficient rS > 0 otherwise rS < 0.
This means that the electric field of the light is subjected to a phase shift upon
reflection, i.e.

∆ (φ) =
{

0, ηi ≥ ηt

π, ηi < ηt

where φ is the phase angle of the electrical field.
Similarly, the amplitude reflection and transmission coefficients for P-polarised

light are given by

rP = E (r)
P

E (i)
P

= ηt · cos (θi) − ηi · cos (θt)

ηt · cos (θi) + ηi · cos (θt)
(10.107)

tP = E (t)
P

E (i)
P

= 2·ηi · cos (θi)

ηt · cos (θi) + ηi · cos (θt)
(10.108)

where E (i)
P , E (r)

P and E (t)
P are the amplitudes of the electrical fields of the incident,

reflected and transmitted P-polarised light rays (pointing in the directions e(i)
P , e(r)

P

and e(t)
P , respectively), ηi and ηt are the refractive indices of the media on either

side of the interface surface, and θi and θt are the incidence and transmission an-
gles (see Fig. 10.35b). In this figure the vectors b(i)

P , b(r)
P and b(t)

P , which represent
the orientations of the magnetic fields of the incident, reflected and transmitted
P-polarised light, point out of the page. Here the electrical field direction vectors
lie on the plane of incidence.

“Comninos” — 2005/8/31 — 19:01 — page 366 — #50

366 Mathematical and Computer Programming Techniques for Computer Graphics

The squares of these four amplitude coefficients are known as the reflectance
coefficients and the transmittance coefficients, which can be thought of as power
or intensity coefficients.

RS = (rS)
2 =
[
ηi · cos (θi) − ηt · cos (θt)

ηi · cos (θi) + ηt · cos (θt)

]2
(10.109)

TS = (tS)2 =
[

2·ηi · cos (θi)

ηi · cos (θi) + ηt · cos (θt)

]2
(10.110)

RP = (rP)2 =
[
ηt · cos (θi) − ηi · cos (θt)

ηt · cos (θi) + ηi · cos (θt)

]2
(10.111)

TP = (tP)2 =
[

2·ηi · cos (θi)

ηt · cos (θi) + ηi · cos (θt)

]2
(10.112)

The reflectance coefficients RS and RP represent the directional-hemispherical
spectral reflectivities of the interface surface.

The power reflectance and transmittance coefficients are sometimes given as

RS =
[
− sin (θi − θt)

sin (θi + θt)

]2
(10.113)

TS =
[
−2· cos (θi) · sin (θt)

sin (θi + θt)

]2
(10.114)

RP =
[

tan (θi − θt)

tan (θi + θt)

]2

=
[

sin (θt) · cos (θt) − sin (θi) · cos (θi)

sin (θt) · cos (θt) + sin (θi) · cos (θi)

]2
(10.115)

TP =
[

2· cos (θi) · sin (θt)

sin (θi + θt) · cos (θi − θt)

]2
(10.116)

Equations (10.109) – (10.112), however, are more frequently used in computer
graphics, as they only involve the cosines of the incidence and the transmission
angles which are easy to compute from the surface normal and, the incidence and
transmission directions (i.e. cos (θi) = N � L and cos (θt) = −N � TL).

Because the amplitude reflection and transmission coefficients are different for
S-polarised and P-polarised light both the reflected and transmitted light are po-
larised. In computer graphics we usually assume that the incident light is unpo-
larised, thus the unpolarised reflectance and transmittance coefficients are given
as

R = (rS)2 + (rP)2

2
(10.117)

T = (tS)2 + (tP)2

2
(10.118)

“Comninos” — 2005/8/31 — 19:01 — page 367 — #51

Physically Based Lighting and Shading Models and Rendering Algorithms 367

Despite the assumption that the incoming light is unpolarised, the outgoing
reflected and transmitted light will be polarised.

The Fresnel effect does not take into account light absorption, thus

R + T = 1

When the incident light direction is near-normal to the interface surface (i.e. when
θi ≈ θr ≈ θt ≈ 00), then the amplitude reflection and transmission coefficients
of the S-polarised and the P-polarised light coincide, giving

rS = rP = ηi − ηt

ηi + ηt
(10.119)

tS = tP = 2ηi

ηi + ηt
(10.120)

Thus,

R =
[

ηi − ηt

ηi + ηt

]2
(10.121)

T =
[

2ηi

ηi + ηt

]2
(10.122)

In all the equations presented above, the transmission angle θt is computed
using Snell’s law (that we have examined in detail in Section 10.3.2). Recall that

θi = arccos (L � N)

where N and L are the unit surface normal and the unit vector pointing in the
direction of the of the light source. Using Snell’s law, we have

θt = arcsin

(
ηi

ηt
· sin (θi)

)

The formulae for the computation of the reflectance and transmittance coefficients
given above are valid whenever the transmission angle θt has a real value. This is
always the case for external reflections where ηi < ηt and for internal reflections
with ηi > ηt but where the incidence angle is smaller than the critical angle
(i.e. when θi < θc). See Fig. 10.36.

The latter case was examined in Section 10.3.3. Figure 10.37 depicts external
reflections. It shows a graph of the reflectivity (reflectance coefficient) for S-
polarised, P-polarised and unpolarised light at the interface surface between air
(with ηi = 1.0) and glass (with ηt = 1.5). From this figure we can see that as
θi increases above zero the P-polarised reflectivity RP first decreases, reaching a
zero value at approximately 560, and then increases reaching a value of one at 900.
The angle at which the reflectivity reaches the value zero is known as Brewster’s
angle.

As we have seen in Section 10.3.3, internal reflections occur at the interface
of a dense and a less dense material (i.e. when ηi > ηt). When θi < θc, then

“Comninos” — 2005/8/31 — 19:01 — page 368 — #52

368 Mathematical and Computer Programming Techniques for Computer Graphics

qc

ht

hi

FIGURE 10.36. Partial and total internal reflections.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90
qi

Brewster's Angle

RS

RP

R

FIGURE 10.37. A plot of the S-polarised , P-polarised and unpolarised light reflectance
against the angle of incidence.

partial internal reflection and diffraction followed by transmission occurs. But
when θi > θc, then only total internal reflection takes place (see Fig. 10.36).
From Eq. (10.17) we know that the critical angle is given by

θc = arcsin

(
ηi

ηt

)

For light striking the interface surface with θi < θc we can use the Fresnel equa-
tions presented above for the computation of the reflectance and transmittance
coefficients. Above the critical angle, however, for θi > θc and ηi > ηt the

“Comninos” — 2005/8/31 — 19:01 — page 369 — #53

Physically Based Lighting and Shading Models and Rendering Algorithms 369

following equations must be used to compute the amplitude reflection and trans-
mission coefficients.

rS =
cos (θi) − i ·

√

sin2 (θi) −
(

ηt
ηi

)2

cos (θi) + i ·
√

sin2 (θi) −
(

ηt
ηi

)2
(10.123)

tS = 0 (10.124)

rP =
(

ηt
ηi

)2 · cos (θi) − i ·
√

sin2 (θi) −
(

ηt
ηi

)2

(
ηt
ηi

)2 · cos (θi) − i ·
√

sin2 (θi) −
(

ηt
ηi

)2
(10.125)

tP = 0 (10.126)

where i = √−1 is the imaginary unit.
In practice however, above the critical angle, we only need to compute the

power reflectance and transmittance coefficients, which can be taken to be:

RS = (rS)2 = 1 (10.127)

TS = 0 (10.128)

RP = (rP)2 = 1 (10.129)

TP = 0 (10.130)

Above the critical angle, both rS and rP have an absolute value of one and are
pure phase shifts. In this case, the phase shift of the electrical field is given by

�(φ) = 2· arctan

⎛

⎝cos (θi) ·
√

sin2 (θi) −
(

ηt

ηi

)2
/

sin2 (θi)

⎞

⎠

where φ is the phase angle of the electrical field.
Figure 10.38 depicts this case. It shows a graph of the reflectivity for S-

polarised, P-polarised and unpolarised light at the interface surface between glass
(with ηi = 1.5) and air (with ηt = 1.0). In this figure Brewster’s angle is approx-
imately 340and the critical angle is approximately 41.80.

The electrical properties of a material have the greatest influence on how light
travels through it. As we have seen in Section 10.2, the magnetic field of a wave
effects the electrons of the material and the freedom of these electrons to respond
to this field determines the optical characteristics of the material.

Dielectric materials are largely unaffected by the passage of light through them,
as their electrons have very stable orbits that are not disturbed by the passing
electromagnetic wave.

Conductors, on the other hand, have free electrons (i.e. electrons that are free
to move inside the material) which are made to oscillate under the influence of
the magnetic field of the wave. The oscillations of the free electrons match the

“Comninos” — 2005/8/31 — 19:01 — page 370 — #54

370 Mathematical and Computer Programming Techniques for Computer Graphics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 qi

 Brewster's Angle

 Critical Angle

R S

R P

R

FIGURE 10.38. A plot of the S-polarised, P-polarised and unpolarised light reflectance
against the angle of incidence.

frequency of the wave. The oscillating free electrons generate electrical and mag-
netic fields that cause the material to reflect the light (by re-emitting it). In con-
ductors, there still exist forces that resist the motion of free electrons, resulting in
the resistance of the material to the passage of an electrical current. This resis-
tance slows down the motion of the free electrons, absorbing the lost energy in the
form of heat. As a result of this absorption the reflected energy of light is less than
the incident energy on a conducting surface. The ratio of the incident energy to
the reflected energy is known as the absorption coefficient of the material which
is denoted by k. The absorption index k′ is a measure of the decrease of the wave
energy that is caused by the absorption of this energy per unit distance travelled
that occurs in an electromagnetic wave (of a given wavelength λ) propagating
through a material (with a given refractive index η).

The absorption index is defined as

k′ = k·λ
4π ·η (10.131)

The absorption index of a material can vary from 0.001 to 70 approximately.
A reasonable approximation of the Fresnel amplitude reflection coefficients for

S-polarised and P-polarised light can be found in [Ditchburn 76], when the sum
of the squares of the refractive index and absorption coefficient of a conductive
material is much greater than one (i.e. when η2

t + k2
t >> 1)

r2
S =
(
η2

t + k2
t

)− 2ηt · cos (θi) + cos2 (θi)
(
η2

t + k2
t
)− 2ηt · cos (θi) + cos2 (θi)

(10.132)

“Comninos” — 2005/8/31 — 19:01 — page 371 — #55

Physically Based Lighting and Shading Models and Rendering Algorithms 371

r2
P =
(
η2

t + k2
t

) · cos2 (θi) − 2ηt · cos (θi) + 1
(
η2

t + k2
t
) · cos2 (θi) + 2ηt · cos (θi) + 1

(10.133)

In these formulae, the interface surface is assumed to be between air (with a
refractive index ηi = 1.0) and a conducting material with refractive index ηt and
absorption coefficient kt . In the case where the first participating medium is not
air and has a refractive index ηi �= 1.0, then we assume that the interface surface
is composed of a pseudo-material that has a relative refractive index ηa = ηt

ηi
and

we use this relative index in the above formulae.
Also, the power reflectance coefficient of the conducting surface for S-polarised

and P-polarised light is given by

RS = (rS)2 (10.134)

RP = (rP)2 (10.135)

and R = (rS)
2 + (rP)2

2
(10.136)

Figure 10.39 shows the plots for the S-polarised, P-polarised and unpolarised
reflectance coefficients for the interface between air and glass RG

S , RG
P and RG ,

as well as, the plots for the S-polarised, P-polarised and unpolarised reflectance
coefficients for the interface between air and copper RC

S , RC
P and RC . The re-

fractive index of air is taken to be ηi = 1.0, the refractive index of glass is taken
to be ηt = 1.5, the refractive index of copper is taken to be ηt = 0.617 and its
absorption coefficient is taken to be kt = 2.63. To compute the reflectance coeffi-
cients of the air-glass interface we used Eqs. (10.109), (10.111) and (10.117), and

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90
q i

 Brewster's Angle

R C
S

R C
P

R G
S

R G
P

R G

R C

FIGURE 10.39. A plot of the S-polarised, P-polarised and unpolarised light reflectance
against the incidence angle for the air-glass and air-copper interface surfaces.

“Comninos” — 2005/8/31 — 19:01 — page 372 — #56

372 Mathematical and Computer Programming Techniques for Computer Graphics

for the reflectance coefficients of the air-copper interface we used Eqs. (10.132),
(10.133) and (10.136).

The low reflectance of glass is characteristic of all dielectric materials and the
high reflectance of copper is characteristic of all conductors. As can also be
seen from this diagram, all materials become 100% reflective at grazing angles
(i.e. when θi ≈ 900). This is why when we observe a surface at an acute angle we
see glare from the surface.

Although the Fresnel relationship provides a valuable insight as to how light
behaves at an interface surface, its usefulness is often limited in practice as there
is very little reliable data on the refractive indices and absorption coefficients of
materials. This is exacerbated by the fact that the refractive index and absorption
coefficient of a given material is wavelength dependent. Frequently, these val-
ues only exist for a single wavelength value of light and this information is not
sufficient for our purposes in computer graphics. Useful source of such data are
[Jenkins 76] and [Palik 85]. Also the website [WWW 1] is a source of very useful
lighting data, listing indices of refraction and providing a photonics calculator.

Where there is missing or insufficient data for the refractive indices of partic-
ipating materials and the absorption coefficients of conducting materials, we can
use a set of techniques, developed by Cook and Torrance, to approximate this data
[Cook 82].

For unpolarised light, a good approximation of the average reflectance coeffi-
cient of a given material is given in [Schlick 93]

R (θi) ≈ R0 + (1 − R0) · (1 − cos (θi))
5 (10.137)

where R (θi) is the average reflectance at incidence angle θi and R0 is the mea-
sured value of the reflectance at normal incidence (i.e. measured in the direction
of the normal of the surface.

In some literature the quantities that relate to S-polarised and P-polarised light
are either subscripted or superscripted by the symbols “⊥” and “‖”, respectively.
Thus the terms rS , tS , RS , TS , rP , tP , RP and TP may also be written as r⊥, t⊥,
R⊥, T⊥, r‖, t‖, R‖ and T‖, respectively.

10.10.4 Glossy or Semi-coherent Reflections

Most surfaces that we observe and we are likely to wish to simulate in computer
graphics produce neither ideal mirror reflections (totally coherent reflections) nor
ideal Lambertian reflections (totally incoherent reflections). They produce semi-
coherent reflections that we have chosen to refer to as glossy reflections. The
name chosen is descriptive of their properties, but is by no means the only es-
tablished name in the literature. Other authors call such surfaces rough specular,
semi-coherent, directional diffuse or wide and narrow diffuse.

As we have observed before, perfectly smooth surfaces produce totally coher-
ent reflections, rough surfaces produce semi-coherent reflections and perfectly

“Comninos” — 2005/8/31 — 19:01 — page 373 — #57

Physically Based Lighting and Shading Models and Rendering Algorithms 373

rough surfaces produce totally incoherent reflections. The degree of smoothness
or roughness of a surface is explained in terms of the micro-facets that make up
the surface.

Perfectly smooth surfaces are composed of micro-facets that are perfectly
aligned and have normals that point in the same direction. Thus, they reflect and
transmit light in the directions and proportions predicted by the Fresnel equations
and Snell’s law.

Perfectly rough surfaces (matt surfaces) have micro-facets that are totally ran-
domly oriented and have normals that are evenly distributed over the entire illu-
minating hemisphere. Thus, they reflect and transmit light evenly in all directions
and obey Lambert’s law.

Rough surfaces are composed of micro-facets that are unevenly distributed and
have normals that are statistically distributed around the main (average) normal of
the surface. This micro-facet normal distribution can be biased in certain direc-
tions to account for grooves, scratches, cracks or some other surface finish. Thus,
such surfaces reflect and transmit light in a more complex and unpredictable way
and give rise to semi-coherent (defocused) reflections. In this case, the amount of
light from a given light source being reflected in the direction of the viewer is pro-
portional to the number of micro-facets that have their normals aligned halfway
between the vectors pointing, out of the surface, towards the light source and the
viewer. This direction is represented by the H vector in Fig. 10.10. This unit
vector is computed as

H = L + E
|L + E| (10.138)

where L is the unit vector pointing in the direction of the light source and E is the
unit vector pointing in the direction of the viewer (eye).

Various models with varying degrees of sophistication have been developed by
computer graphics researchers over the years. Some of these models are purely
empirical in nature, while others are physically plausible or even more physically
based. A good survey of the early models can be found in [Hall 89] and a more
up to date treatment in [Lewis 93].

For most surfaces that occur in nature, getting the precise physical model of
the interaction of light with the surface is very difficult if not impossible. Most
researchers in the field have concentrated on developing models that are good
approximations of physical phenomena while being both visually accurate and
easy to compute.

For simple renderers, visual believability and ease of computation are the pri-
mary criteria for selecting a particular model. With more sophisticated renderers,
using radiosity computations which are energy conserving, the selected model
must also be physically plausible. This of course does not necessarily mean that
the model is physically accurate, but only that it does not violate the laws of
physics and it is thus a believable model of a physical process.

“Comninos” — 2005/8/31 — 19:01 — page 374 — #58

374 Mathematical and Computer Programming Techniques for Computer Graphics

10.11 Some Classical and Physically Plausible Shading
Models

In the ensuing discussion we will assume the following. An infinitesimal (differ-
ential) surface element with area ∂A is situated at a point x on a surface. This
surface element is both opaque and non-emissive and is being lit by incident ra-
diance Li (x,ωi) arriving from an infinitesimal (differential) solid angle ∂ωi sur-
rounding the direction unit vector ωi (i.e. L). N is the unit normal of the surface
element at x. E is the unit vector in the direction of the viewer. The reflected
radiance Lr (x,ωr) leaving the patch with an infinitesimal (differential) solid an-
gle ∂ωr surrounding the direction unit vector ωr (i.e. E). RL is the unit vector in
the direction of the perfect mirror reflection (i.e. the reflection of vector L with
respect to N). See figure 10.40.

We further assume that all reflected light passes unobstructed through the illu-
minating hemisphere H2+ of point x.

In computer graphics a shading model is often referred to as a shader.
To consider the shader from the standpoint of energy conservation, we start

from the equation of energy balance [i.e. Eq. (10.56)]:

∂ Ei (x) = Li (x,ωi) ·∂ωi (10.139)

where ∂ Ei (x) is the change in the irradiance resulting from the illumination of
the patch from the solid angle ∂ωi .

Also from the definition of the BRDF [Eq. (10.76)], we have

∂Lr (x,ωr) = fr (x,ωi ,ωr) ·∂ Ei (x,ωi) (10.140)

The BRDF may also vary over the surface that we wish to shade but we treat
this as part of the texturing rather than shading, so we will ignore this effect.

As we have assumed that our surface is opaque and non-emissive, the only
contribution to the reflected radiance Lr (x,ωr) can only come from the incident

N

B

T

x

qi

fi

fr

RL

2
i

∂w r

w r , E

∂w i

w i , B

∂A

qr

FIGURE 10.40. Physically plausible shading models.

“Comninos” — 2005/8/31 — 19:01 — page 375 — #59

Physically Based Lighting and Shading Models and Rendering Algorithms 375

illuminating hemisphere H2
i , thus

Lr (x,ωt) =
∫

H2
i

fr (x,ωi ,ωr) ·Li (x,ωi) ·∂ω⊥
i

=
∫

H2
i

fr (x,ωi ,ωr) ·Li (x,ωi) · (N � ωi) ·∂ωi

=
∫

H2
i

fr (x,ωi ,ωr) ·Li (x,ωi) · cos (θi) ·∂ωi (10.141)

Next we will consider some of the most common shaders used in computer
graphics expressed as BRDFs.

10.11.1 Phong Shader

As we have seen in Chapter 9, the Phong shader is given by the equation

Lr = ka ·La + (kd · (N � L) + ks ·Fs (N, L, E, ns)) ·Ld (10.142)

where ka is the ambient reflection coefficient, La is the ambient radiance evenly
distributed over the incident illuminating hemisphere H2

i , kd is the diffuse reflec-
tion coefficient, ks is the specular reflection coefficient, Fs is the specular reflec-
tion function, ns is the specular sharpness and Ld is the radiance coming from the
direction L of the light source.

As we have seen in Section 9.3.3, the specular function can be defined using
Horn’s method:

Fs (N, L, E, ns) = (2· (N � E) · (N � L) − (E � L))ns (10.143)

or Blinn’s method:

Fs (N, L, E, ns) =
(

N � L + E
|L + E|

) ns

(10.144)

Let us examine how the Phong shader of Eq. (10.142) corresponds to Eq.
(10.141). Our surface patch is illuminated by the directed radiance Ld coming
from the direction of the light source and by the ambient radiance La which is
constant over H2

i . From the directional illumination we have θi = θl and φi = φl .
We can now express the resulting incident radiance as

Li = La + Ld ·δ (cos (θi) − cos (θl)) ·δ (φi − φl) (10.145)

Equation (10.141) can be rewritten as

Lr =
∫

H2
i

fr (θi , φi , E) ·Li · cos (θi) ·∂θi ·∂φi (10.146)

Substituting equation (10.145) into equation (10.146) we get

Lr = La ·
∫

H2
i

fr (θl , φl , E) · cos (θl) ·∂θl ·∂φl + Ld · fr (θi , φi , E) · cos (θi)

“Comninos” — 2005/8/31 — 19:01 — page 376 — #60

376 Mathematical and Computer Programming Techniques for Computer Graphics

which can be rewritten as

Lr = La ·
∫

H2
i

fr (L, E) · (N � L) ·∂ωi + Ld · fr (L, E) · (N � L) (10.147)

By combining Eqs. (10.142) and (10.147) we get

ka ·La + (kd · (N � L) + ks ·Fs (N, L, E, ns)) ·Ld

= La ·
∫

H2
i

fr (L, E) · (N � L) ·∂ωi + Ld · fr (L, E) · (N � L)

This equality must be valid for all values of La and Ld . Equating the compo-
nents of this equation that deal with the directed radiance Ld , we get

Ld · fr (L, E) · (N � L) = (kd · (N � L) + ks ·Fs (N, L, E, ns)) ·Ld

∴ fr (L, E) · (N � L) = kd · (N � L) + ks ·Fs (N, L, E, ns)

∴ fr (L, E) = kd · (N � L) + ks ·Fs (N, L, E, ns)

(N � L)

Thus, the Phong shader BRDF is given by

fr (x, L, E) = kd + ks · Fs (N, L, E, ns)

(N � L)
(10.148)

Note that the specular function in Eq. (10.143) can also be written as

Fs (N, L, E, ns) = (E � RL)ns (10.149a)

where RL is the unit vector representing the reflection of L with respect to N,
which as we have seen in Section 10.4.2 can be computed as

RL = 2· (N � L) ·N − L

or alternatively using the Householder matrix as

RL = R(N)·L
Equally, the specular function can be rewritten as

Fs (N, L, E, ns) = (L � RE)ns (10.149b)

where

RE = 2· (N � E) ·N − E

or RE = R(N)·E
The original Phong model is not physically plausible, since it obeys neither the

energy conservation property nor the reciprocity property.

“Comninos” — 2005/8/31 — 19:01 — page 377 — #61

Physically Based Lighting and Shading Models and Rendering Algorithms 377

10.11.2 Modified Phong Shader

Lafortune and Willems proposed a modified version of the Phong model, which
deals with the lack of reciprocity and energy conservation of the original model
[Lafortune 94]. Their BRDF is given as the sum of a diffuse BRDF and a specular
BRDF.

fr (x,ωi ,ωr) = fr,d (x,ωi ,ωr) + fr,s (x,ωi ,ωr)

i.e. fr (x, L, E) = kd · 1

π
+ ks ·ns + 2

2π
· cosns α (10.150)

where kd is the diffuse reflectivity (i.e. the fraction of incoming energy that is
reflected diffusely), ks is the specular reflectivity (i.e. the fraction of incoming
energy that is reflected in a specular manner), ns is the specular sharpness (i.e. the
higher this exponent is the sharper the specular reflections) and α is the highlight
angle (i.e. the angle between vectors E and RL or between L and ER). This angle
must be clamped to π

/
2, to avoid negative cosine values. The cosine of this angle

is given as

cos α = (E � RL) = (L � RE) (10.151)

Lafortune and Willems show that the modified Phong model obeys the Helmholtz
reciprocity property and that the total hemispherical reflectivity of this model be-
comes

ρ (x,ωi ,ωr) =
∫

H2
r

fr (x,ωi ,ωr) · cos (θr) ·∂ωr

=
∫

H2
r

(
kd · 1

π
+ ks ·ns + 2

2π
· cosns α

)
· cos (θr) ·∂ωr

= kd + ks ·ns + 2

2π

∫

H2
r

cosns α· cos (θr) ·∂ωr

= ρd + ρs (x,ωi ,ωr)

As the integral
∫
H2

r
cosns α· cos (θr) ·∂ωr reaches its maximum value of

2π
/
(ns + 2) at a normal incident direction (i.e. when α = θr), we have

ρmax = kd + ks

In order for the BRDF to obey the energy conservation property we must have

kd + ks ≤ 1 (10.152)

Thus, the Lafortune and Willems modifications of the Phong model make it
physically plausible.

“Comninos” — 2005/8/31 — 19:01 — page 378 — #62

378 Mathematical and Computer Programming Techniques for Computer Graphics

10.11.3 The Cook-Torrance Shader

A model for the off-specular reflections from a rough surface was first developed
by Torrance and Sparrow [Torrance 67], first used in computer graphics by Blinn
[Blinn 77] and later perfected by Cook and Torrance [Cook 81 & 82].

The Cook-Torrance shader model is based on the micro-facet nature of sur-
faces and accounts for the probability distribution of the micro-facet normals and
the shadowing and masking of micro-facets, but does not account for multiple
scattering which could be significant with certain types of rough surfaces.

The Cook-Torrance BRDF is a combination of a diffuse and a specular BRDF,
thus

fr (x, L, E) = kd · fr,d + ks · fr,s (x, L, E) (10.153)

where kd is the diffuse reflectivity (i.e. the fraction of incoming energy that is
reflected diffusely) and ks is the specular reflectivity (i.e. the fraction of incoming
energy that is reflected in a specular manner). To enforce energy conservation it
is required that

kd + ks ≤ 1

The diffuse BRDF is given as

fr,d = 1

π
(10.154)

and the specular BRDF is given as

fr,s (x, L, E) = Fr ·G·D
(N � L) · (N � E)

(10.155)

where Fr is the Fresnel reflectance coefficient for unpolarised light (i.e. Fr =
R), G is the geometric attenuation factor (which represents the shadowing and
masking of the micro-facets) and D is the micro-facet slope distribution function
(which accounts for the distribution of the orientation of the micro-facets).

Torrance and Sparrow derived a function for the geometric attenuation data G
by making a number of simplifying assumptions. They assumed that:

• Each micro-facet represents one side (bank) of a symmetrical V-shaped groove.
• The longitudinal axis of each groove is parallel to the average surface plane

(i.e. that a given groove does not have a varying depth).
• The lips (top edges) of all grooves are situated at the surface plane.
• The grooves are randomly distributed and do not have a biased orientation

(i.e. that grooves do not have a preferred direction).

See Fig. 10.41(a) and (b).
They defined the geometric attenuation function as

GC = min

(
1,

2· (N � H) · (N � E)

(E � H)
,

2· (N � H) · (N � L)

(E � H)

)
(10.156a)

or equivalently

GC = min

(
1,

2· (N � H) · (N � E)

(E � H)
,

2· (N � H) · (N � L)

(L � H)

)
(10.156b)

“Comninos” — 2005/8/31 — 19:01 — page 379 — #63

Physically Based Lighting and Shading Models and Rendering Algorithms 379

(a) (b)

FIGURE 10.41. (a) The V-shaped grooves of the Torrance-Sparrow rough surface model
(side view). (b) The V-shaped Grooves of the Torrance-Sparrow rough surface model (top
view).

This second formulation shows that the two fractions are symmetrical.
This function does not account for surface roughness, exhibits sharp disconti-

nuities, and is asymmetric and centred around the RL direction.
An attenuation function introduced by Sancer [Sancer 69] accounts for the self-

shadowing and masking of rough surfaces, although it is more expensive to com-
pute. This function is given as

GS = 1

Gi + Gr + 1
(10.157)

where

Gi = e−g1

2
√

π ·g1
− 1

2
·erfc
(√

g1
)

(10.158a)

Gr = e−g2

2
√

π ·g2
− 1

2
·erfc
(√

g2
)

(10.158b)

g1 = (N � L)2

2m2· [1 − (N � L)2] (10.159a)

g2 = (N � E)2

2m2· [1 − (N � E)2] (10.159b)

The Gi function relates to incident energy and controls the amount of masking
that is caused by the surface roughness, while the Gr function relates to reflected
energy and controls the amount of blocking that is caused by the surface rough-
ness. See Fig. 10.42.

In the definition of the functions Gi and Gr , erfc(x) is the conjugate error
function or complimentary error function (i.e. the integral of the residual error
under the Gauss function curve), which is defined as

erfc (x) = 2√
π

∫ ∞

x
e−t2

∂t = 1 − erf (x)

“Comninos” — 2005/8/31 — 19:01 — page 380 — #64

380 Mathematical and Computer Programming Techniques for Computer Graphics

reflection blocked
point masked by the surface

FIGURE 10.42. Self-shadowing of a rough surface.

where erf (x), known as the error function, is defined to be the integral of the
Gauss function e−ax2

and is given by

erf (x) = 2√
π

∫ x

0
e−t2

∂t

= 2√
π

·
∞∑

n=0

(−1)n ·x2n+1

n! (2n + 1)

= 2√
π

·
(

x − x3

3
+ x5

10
− x7

42
+ · · ·
)

In the definition of the functions g1 and g2, m represents the mean slope of the
surface grooves and it is defined by Bennett and Porteus [Bennett 61] as

m = σ
√

2

τ
(10.160)

where τ is known as the correlation distance and represents the average peak-to-
valley distance between surface grooves, while σ is known as the RMS (root mean
square) roughness and represents the average variation of the top or bottom of a
groove from the average surface height. See Fig. 10.43.

In the Sancer geometric attenuation function Gs , increasing m either by de-
creasing τ or increasing σ causes self-shadowing (i.e. blocking and masking) to
begin at a shallower incidence angle. This function is symmetrical about the nor-
mal and only depends on the elevation angle of the incident direction.

There are several choices for the micro-facet slope distribution function
D. Blinn suggested three alternatives [Blinn 77]. The first alternative corresponds
to the Phong shader and is given as

D1 = b1· cosc1 (α) (10.161a)

where α is the gloss angle (i.e. the angle between the surface normal N and the
halfway vector H). Thus,

cos α = (N � H) (10.161b)

“Comninos” — 2005/8/31 — 19:01 — page 381 — #65

Physically Based Lighting and Shading Models and Rendering Algorithms 381

m

s
s

t

FIGURE 10.43. The geometry of a rough surface.

Here b1 is an empirical constant (corresponding to the k constants of the Phong
model) that determines the sharpness of the micro-facet slopes and c1 is an em-
pirical constant that represents the width of the spectral lobe and is given as

c1 = − ln (2)

ln (cos β)
(10.161c)

where β is the value of angle α at which the distribution drops at half its peak
value.

The second micro-facet slope distribution function is derived from [Torrance
67], is Gaussian in nature and is given as

D2 = b2·e−(c2·α)2
(10.162a)

where, as before, b2 is an empirical constant that determines the sharpness of
the micro-facet slopes and c2 is an empirical constant that represents the width
of the spectral lobe and is given as

c2 =
√

ln (2)

β
(10.162b)

The third micro-facet slope distribution function is also derived from [Torrance
67] and is given as

D3 = b3·
(

c2
3

cos2 α· (c2
3 − 1
)+ 1

)2

(10.163a)

where, as before, b3 is an empirical constant that determines the sharpness of
the micro-facet slopes and c3 is an empirical constant that represents the width
of the spectral lobe and is given as

c3 =
√

cos2 β − 1

cos2 β − √
2

(10.163b)

“Comninos” — 2005/8/31 — 19:01 — page 382 — #66

382 Mathematical and Computer Programming Techniques for Computer Graphics

Cook and Torrance introduced an alternative micro-facet slope distribution func-
tion [Cook 82], which is derived from [Beckmann 63]. This function is given as

D4 = 1

4m2· cos4 α
·e−
(

1−cos2 α

m2 · cos2 α

)

(10.164a)

where m is the RMS micro-facet slope distribution of the rough surface, which is
give as

m = tan β√
ln (2) − 4· ln (cos β)

(10.164b)

The Cook-Torrance shader is reciprocal and appears to conserve energy, but it
fails to account for the blocked and masked energy. The shader does not treat sec-
ondary reflections and instead it treats blocked or masked light as being absorbed
by the surface.

10.11.4 The Ashikmin-Shirley Shader

Ashikmin and Shirley developed a shading model based on the Blinn variation of
the Phong shading model [Ashikmin 00a, 00b & 00c]. Their version of the Phong
model incorporates and refines some of the improvements first introduced to this
model by Schlick [Schlick 93], Newmann et al. [Neumann 99a & 99b] and Lafor-
tune et al. [Lafortune 97]. The Ashikmin and Shirley model is a modern version
of the Phong model which is energy preserving, reciprocal, has a sophisticated
non-Lambertian non-constant diffuse term (which decreases as the incidence an-
gle increases), takes into account the Fresnel effect, is capable of describing both
isotropic and anisotropic surface finishes and uses an intuitive set of parameters.
In their publications, they state that their BRDF is the sum of a diffuse and a
specular component, i.e.

fr (x, L, E) = fr,d (x, L, E) + fr,s (x, L, E) (10.165)

If we examine their model more carefully however, we realise that it is not just
the sum of a diffuse and a specular component but a linear combination of these
two components. This relationship can be expressed as follows:

fr (x, L, E) = [1 − ks (α)] ·kd · f ′
r,d (x, L, E) + ks (α) · f ′

r,s (x, L, E) (10.166)

where f ′
r,d and f ′

r,s are the diffuse and specular BRDF components before scaling,
kd is the diffuse reflection coefficient (a constant), ks (α) is the specular reflection
coefficient function and α is the angle whose cosine is used to shape the specular
lobe.

This type of shading model was designed to simulate the reflection of light
from polished surfaces and an earlier version of it is described in Shirley’s Ph.D
thesis [Shirley 91]. A polished surface reflector can be thought of as a diffuse
reflector covered by a transparent specular coating. A simplified depiction of
such a polished surface is shown in Fig. 10.44.

“Comninos” — 2005/8/31 — 19:01 — page 383 — #67

Physically Based Lighting and Shading Models and Rendering Algorithms 383

ks(a)

Air

1-ks(a)

Transparent Specular Material

 Opaque Diffuse Material

ks(a)

Air

Transparent SpecularMaterial

 Opaque Diffuse Material

1-ks(a)

FIGURE 10.44. (a) Large incidence angle reflection off a polished surface. (b) Small inci-
dence angle reflection off a polished surface.

In this figure ks [α] and [1 − ks (α)] are the fractions of the light incident on
the first interface surface (air to transparent coating) that are reflected by or trans-
mitted through this surface (i.e. ks (α) + [1 − ks (α)] = 1). As the incidence
angle increases ks (α) increases and [1 − ks (α)] decreases. Near the grazing
angle ks [α] approaches 1 and [1 − ks (α)] approaches 0. When the transmitted
light reaches the second interface surface (transparent coating to opaque reflec-
tor), it is scattered and some of it will be absorbed though most of it will be
reflected in various directions. When the light reflected in this way reaches the
first interface surface again (from the interior this time), some of it will undergo
an internal reflection and some of it will be transmitted. This process is repeated
until all the incident energy is dissipated either by being absorbed or by being
scattered/reflected. In this situation the light initially reflected from the first inter-
face surface is represented by the specular reflection component of the model and
all the light subsequently transmitted through the first interface surface (having
been diffusely reflected off the second interface) is represented by the diffuse re-
flection component of the model. Thus, in this model it is assumed that the diffuse
reflection is the result of subsurface scattering.

The Ashikmin and Shirley model emulates this reflection and subsurface scat-
tering process by using four parameters to control it. These parameters are:
Rs which controls the colour of the specular lobe and specifies the reflectance

coefficient of the surface measured at normal incidence (i.e. when θi = 00).
As the specular reflectance coefficient of the surface is wavelength dependant,
there will be three such coefficients – one for each primary colour.

Rd which controls the colour of the diffuse lobe and specifies the diffuse
reflectance coefficient of the opaque substrate surface under the specular coat-
ing. This coefficient should be measured away from the diffuse lobe. As the
diffuse reflectance coefficient of the surface is wavelength dependant, there
will be three such coefficients – one for each primary colour.

nT which is the Phong-like specular sharpness in the direction of the unit tangent
vector T in the local frame of the surface.

“Comninos” — 2005/8/31 — 19:01 — page 384 — #68

384 Mathematical and Computer Programming Techniques for Computer Graphics

nB which is the Phong-like specular sharpness in the direction of the unit bitan-
gent vector B in the local frame of the surface.

As we have seen above, the specular part f r,s of the BRDF does not represent
a pure specular reflection and cannot be modelled with a combination of Dirac’s
delta functions. It represents the glossy part of the BRDF and has a lobe that is
not symmetric about the surface normal (as we use two specular sharpness values
nT and nB).

The diffuse part f r,d of the BRDF is not constant, as it is view dependent and
has a lobe that exhibits rotational symmetry about the surface normal. This part
of the BRDF models the phenomenon by which the diffuse colour of a surface
disappears near the grazing angle, as most of the light is reflected in a specular
fashion at that angle. Thus the fraction of energy that is scattered diffusely is
dependent on the fraction of energy that is reflected in a specular fashion, which
in turn depends on the incidence angle.

With this model, to represent metal surfaces f r,d is forced to zero by setting the
Rd parameter to zero. To represent brushed metal surfaces we can vary the values
of the specular sharpens in the T and B directions in a non-uniform fashion. To
represent polished surfaces, such as smooth plastics, we must set Rd and Rs to
non-zero values. For plastics typically Rs = 0.05. Finally, to represent diffuse
surfaces we must set the Rs coefficient to a very small value.

The Ashikmin and Shirley specular BRDF is given as

fr,s (x, E, L) =
√

(nT + 1) · (nB + 1)

8π

· (N � H)
[
nT (T �H)2+nB (B�H)2]/

[
1−(N�H)2]

cos α· max ((N � L) , (N � E))

·Fr (cos α) (10.167)

where H is the halfway vector H = (L + E)
/|L + E|, T and B are the tangent

and bitangent vectors, respectively. Fr () is the Fresnel reflectance coefficient
computed using Schlick’s approximation [Schlick 93], i.e.

Fr (cos α) = Rs + (1 − Rs) · (1 − cos α)5 (10.168)

and where α is the angle that is used to shape the lobe of the specular BRDF.
Normally cos α = (L � H) or cos α = (E � H).

The Ashikmin and Shirley diffuse BRDF is given as

fr,d (x, L, E) = Rd · (1 − Rs) ·
(

28

23π

)
·
(

1 −
(

1 − (N � L)

2

)5)

·
(

1 −
(

1 − (N � E)

2

)5)

(10.169)

The constant 28
/

23π was selected to enforce energy conservation. Observe
that the diffuse component of the BRDF is isotropic, as it does not depend on nT

and nB .

“Comninos” — 2005/8/31 — 19:01 — page 385 — #69

Physically Based Lighting and Shading Models and Rendering Algorithms 385

To represent isotropic surfaces we can set nT = nB = nS , in which case the
specular component BRDF can be simplified to

fr,s (x, E, L) = (nS + 1)

8π
· (N � H)nS

cos α· max ((N � L) , (N � E))
·Fr (cos α)

(10.170)
The Ashikmin and Shirley BRDF although based on an empirical model, sim-

ulates a number of physical effects and it is physically plausible, thus it is consid-
ered to be a physically based BRDF.

10.12 Illumination Models and the Rendering Equation

The application of our knowledge of optics and physics to computer generated
rendering is an evolutionary process which at any given time is dependant on
the following three factors: the sophistication of the currently available hidden-
surface removal algorithms, the degree of realism that is currently deemed ac-
ceptable and the computational cost per computer generated frame currently con-
sidered affordable. The illumination models used in the computer graphics and
animation production process differ significantly from the theoretical physically
based models. Computer generated rendering has always been and is likely to
continue to be a feasibility versus quality versus cost compromise.

In Section 10.7.3, we have seen how the surface reflectance, transmittance and
scattering equations can be used to compute the reflected, transmitted and scat-
tered light distribution from the incident light distribution and the BRDF, BTDF
and BSDF of the interface surface. All these equations are of the form

Lo (x,ωo) =
∫

H2
i

fT (x, ωi ,ωo) ·Li (x,ωi) · cos (θi) ·∂ωi (10.171)

where the subscripts i and o indicate the incoming and outgoing radiance and
angles, respectively, and the subscript T can be one of r , t or s indicating the
bi-directional distribution function of the surface for reflection, transmission or
scattering, respectively.

In Section 10.11, we have seen how some empirical (classical) and some phys-
ically plausible shading models can be defined.

The one remaining task left to do is to determine how we compute the incoming
radiance Li (x,ωi). The simulation of the incoming light distribution is often
referred to as the illumination model. We can distinguish two different types
of illumination model, namely: the local illumination model, also known as the
direct illumination model, and the global illumination model, also known as the
indirect illumination model.

The local or direct illumination model is the simplest to explain and understand,
as it only deals with the light, from simple light sources, arriving on the surface
unobstructed by other surfaces and objects in the scene. This model can only deal
with a small number of point or parallel light sources, which can be shaped, in

“Comninos” — 2005/8/31 — 19:01 — page 386 — #70

386 Mathematical and Computer Programming Techniques for Computer Graphics

some fashion, to simulate spotlights and spots with barn doors, but can not deal
with shadows. Thus this model is considered to be local, as it only deals with the
local geometry of the surface being lit, and it is considered to be direct, as only
light arriving directly from a light source is accounted for.

The global or indirect illumination model is considerably more complex, as it
has to deal with the indirect illumination that arrives at a given surface, emanating
from other surfaces and objects in the scene and accounts for shadows and colour
bleeding. Broadly speaking we can distinguish two types of indirect illumination,
namely: specular inter-object illumination and diffuse inter-object illumination.

Specular inter-object illumination is the coherent illumination that results from
the coherent reflection, transmission or emission of light from or through smooth
surfaces. These phenomena are referred to as specular inter-object reflection,
specular inter-object transmission and specular emission.

Diffuse inter-object illumination, on the other hand, is the incoherent illumina-
tion that results from the incoherent reflection, transmission or emission of light
from or through rough surfaces. These phenomena are referred to as diffuse inter-
object reflection, diffuse inter-object transmission and diffuse emission.

Roughly speaking, specular inter-object illumination is best handled by the
Monte Carlo ray-tracing family of rendering algorithms and diffuse inter-object
illumination is best handled by the finite element radiosity family of rendering
algorithms. More recent physically-based algorithms have managed to combine
these two types of inter-object illumination using various hybrid techniques.

Both local and global illumination can be represented by a rendering equation,
which allows us to compute the outgoing radiance from any given point on a
surface.

10.12.1 Local or Direct Illumination Model

The rendering equation for the local or direct illumination model is relatively easy
to explain. To develop this equation we reason as follows.

As we have seen in Section 10.6, if a point x is situated at a distance r from a
point light source (located at point xs) and its surface normal subtends an angle
θs with the direction unit vector, ωi , pointing towards the light source, then the
incident irradiance arriving at a point x is given as

Es(x) = Φs

4πr2
· cos (θs) (10.172)

where Φs is the radiant flux of the point source and r is distance between the point
and the light source (i.e. r = |xs − x |) (see Fig. 10.45).

Now, the incoming radiance from this point source can be expressed in terms
of two Dirac delta functions as

Li (x,ωi) = Φs

4πr2
·δ (cos (θi) − cos (θs)) ·δ (φi − φs) (10.173)

The two delta functions ensure that only light arriving from the direction ωs is
taken into account.

“Comninos” — 2005/8/31 — 19:01 — page 387 — #71

Physically Based Lighting and Shading Models and Rendering Algorithms 387

N

x

w i

xs

r
w s

q s

FIGURE 10.45. A point x situated at a distance r from a point light source.

Substituting Eq. (10.173) into Eq. (10.171) we get

Lo (x,ωo) =
∫

H2
i

fr (x,ωi ,ωo) ·Li (x,ωi) · cos (θi) ·∂ωi

= Φs

4πr2
· fr (x,ωs,ωo) · cos (θs) (10.174)

If the virtual scene contains n point sources, then the hemispherical integral
simplifies to a sum over the n light sources. This is the equivalent of the traditional
Phong illumination model.

The direct illumination model can be easily extended to arbitrary directional
light sources, as well as, linear and area sources. See [Amanatides 84] and
[Nishita 85].

10.12.2 Global or Indirect Illumination Model

The rendering equation for the global or indirect illumination model is slightly
more complex. To develop this equation we reason as follows.

For any point x (on a surface) the radiance leaving the surface, known as the
outgoing radiance Lo, is equal to the sum of the radiance reflected off the surface
(Lr) and the radiance emitted by the surface (Le). Thus,

Lo (x,ωo) = Le (x,ωo) + Lr (x,ωo) (10.175)

In the case of the emitted radiance Le, the surface acts as a light source and
emits light that is not the direct result of incident light being reflected off the
surface. A surface may emit light, if it becomes incandescent, due to a rise in
its temperature or as a result of molecular activity, or if it becomes phosphores-
cent, due to the release of light energy absorbed at an earlier instance. In com-
puter graphics we often use lighting textures to represent features such as window
pains or complex lighting fixtures, which can be implemented as emitter surfaces.

“Comninos” — 2005/8/31 — 19:01 — page 388 — #72

388 Mathematical and Computer Programming Techniques for Computer Graphics

Direct Illumination

Transparent Surface

Indirect Illumination

Transparent Surface

(a) (b)

FIGURE 10.46. (a) Radiance due to direct illumination. (b) Radiance due to indirect
illumination.

This illumination model can be adjusted to simulate both coherent and incoherent
emitted illumination.

The emitted radiance Le is usually given as part of the scene description, in
some pre-computed form, and it does not need to be computed by the rendering
equation.

The reflected radiance Lr is due to the incident incoming radiance Li that is
subsequently reflected by the surface in question. The incoming radiance is due to
either direct illumination, arriving on the surface directly from a light source, or
due to indirect illumination, arriving at the surface indirectly having been reflected
from one or more other surfaces in the scene. See Fig. 10.46.

As we have seen above, there are two main families of rendering algorithms:
the Monte Carlo ray-tracing family of rendering algorithms and the finite element
radiosity family of rendering algorithms. Each family of algorithms requires a
distinct formulation of the rendering equation.

Let us examine first the rendering equation used by the Monte Carlo ray-tracing
family of rendering algorithms, which includes the Photon Mapping technique
[Jensen 96] that we will examine in detail later. For these algorithms, we can
construct the rendering equation by combining Eqs. (10.175) and (10.86) to get

Lo (x,ωo) = Le (x,ωo) +
∫

H2
i

fr (x,ωi ,ωo) ·Li (x,ωi) ·∂ω⊥
i

= Le (x,ωo)

+
∫

H2
i

fr (x,ωi ,ωo) ·Li (x,ωi)

· (N � ωi) ·∂ωi (10.176)

As the indirect illumination model is a global illumination model, we must
relate the incident incoming illumination of one surface to the outgoing illumi-
nation reflected from another surface. Consider the scene geometry shown in
Fig. 10.47a. To account for possible occlusions we introduce a visibility function

“Comninos” — 2005/8/31 — 19:01 — page 389 — #73

Physically Based Lighting and Shading Models and Rendering Algorithms 389

Nx

Nx�

Mx

Mx�

q�i
q�i

qi

q�i

q�r

q�r

w�i w�iw�o

qr qr

wo= −w�i

x�

x Nx
Nx�

x

x
Nx�

x�

(a) (b)

FIGURE 10.47. (a) Two mutually visible points x and x′. (b) The three-point form geom-
etry of the light transport equation.

V
(
x, x′), which is defined as

∀x, x′ ∈ M : V
(
x, x′) =

{
1, x and x′ are mutually visible
0, otherwise

(10.177)

where x and x′ are points on the manifolds Mx and Mx ′ , which are members of
the set of all manifolds in the scene M.

With the ray-tracing family of rendering algorithms, the visibility function is
part of the hidden surface elimination algorithms and is normally not included in
the rendering equation.

Now, we can express the incoming radiance at point x′, on surface Mx ′ , in
terms of the outgoing radiance at a point x, on a surface Mx . Thus,

Li
(
x′,ω′

i

) = V
(
x, x′) ·Lo (x,ωo) (10.178)

where ω′
i is the direction unit vector from point x′ to point x and ωo is the opposite

direction vector. Thus,

ω′
i = −ωo = x − x′

|x − x′| (10.179)

See Fig. 10.47b.
Similarly, ω′

o is the direction unit vector from point x′ to point x′′ and is given
as

ω′
o = −ω′′

i = x′′ − x′

|x′′ − x′| (10.180)

If we now switch from the hemispherical integral over all the incident directions
H2

i , of Eq. (10.176), to the integral over all the other surfaces in the scene M,
we get the rendering equation

Lo
(
x′,ω′

o

) = Le
(
x′,ω′

o

)

+
∫

M
fr
(
x′,ω′

i ,ω
′
o

) ·Li
(
x′,ω′

i

) ·
·V (x, x′) ·G (x, x′) ·∂ Ax ′ (10.181)

“Comninos” — 2005/8/31 — 19:01 — page 390 — #74

390 Mathematical and Computer Programming Techniques for Computer Graphics

This equation is sometimes written in arrow notation, in which case it is known
as the three-point form of the light transport equation and is given as

L
(
x′ → x′′) = Le

(
x′ → x′′)

+
∫

M
fr
(
x → x′ → x′′) ·L (x → x′)

·V (x ↔ x′) ·G (x ↔ x′) ·∂ Ax′ (10.182)

In this notation the arrows indicate the flow of light energy from point x,
through point x′, to point x′′.

In the above equations, M is the union of all the surfaces in the scene, Ax is the
area measure on M, the function G, known as the geometry function, represents
the change of variables from the original integration variable (step) ∂ω⊥

i to the
new integration variable ∂ Ax′ . This relationship is given as

∂ω⊥
i = G

(
x, x′) ·∂ Ax′ (10.183a)

or ∂ω⊥
i = G

(
x ↔ x′) ·∂ Ax′ (10.183b)

where

G
(
x, x′) =

∣∣cos (θo) · cos
(
θ ′

i

)∣∣

|x − x′|2 (10.184a)

or G
(
x ↔ x′) =

∣∣cos (θo) · cos
(
θ ′

i

)∣∣

|x − x′|2 (10.184b)

For the radiosity family of rendering algorithms we can simplify the rendering
Eq. (10.181), which we have developed for the Monte Carlo ray-tracing family of
algorithms, and replace it by a much simpler expression of the outgoing radiosity.

With the radiosity family of rendering algorithms we assume that all the sur-
faces in the scene are perfect Lambertian reflectors and restrict ourselves to deal-
ing with only diffuse inter-object reflections and diffuse emittance. Under these
conditions the outgoing radiance from any point x′ is constant in all directions,
as the BRDF of a perfectly diffusing surface is independent of the incoming and
outgoing directions of light. Thus, we can replace the complex computation of
the outgoing radiance Lo

(
x′,ω′

o

)
of Eq. (10.181) by a much simpler expression

for the outgoing radiosity B
(
x′). To explain how this simplification is justified,

we rewrite Eq. (10.65) to get

B
(
x′) =
∫

H2
i

Lo
(
x′,ω′

o

) · cos
(
θ ′

r

) ·∂ωo (10.185)

But since we are dealing with a perfectly diffuse surface, the outgoing radiance
Lo
(
x′) is the same in all directions and can be moved outside the integral. Thus,

B
(
x′) = Lo

(
x′) ·
∫

H2
i

cos
(
θ ′

r

) ·∂ωo (10.186)

“Comninos” — 2005/8/31 — 19:01 — page 391 — #75

Physically Based Lighting and Shading Models and Rendering Algorithms 391

Using Equ. (10.64), this reduces to

B
(
x′) = Lo

(
x′) ·π

∴ Lo
(
x′) = B

(
x′)

π
(10.187)

It should now be apparent that Eq. (10.181) can be simplified to

B
(
x′) = Be

(
x′)+
∫

M
fr,d
(
x′) ·B(x)·V (x, x′) ·G (x, x′) ·∂ Ax′ (10.188)

where B
(
x′) is the emitted radiosity from a differential patch at point x′.

Since the BRDF f r,d
(
x′) is independent of the incoming and outgoing direc-

tions, it can be moved outside the integral. Thus,

B
(
x′) = Be

(
x′)+ fr,d

(
x′) ·
∫

M
B(x)·V (x, x′) ·G (x, x′) ·∂ Ax′ (10.189)

Using Eq. (10.95) we can rewrite the above equation as

B
(
x′) = Be

(
x′)+ ρd

(
x′)

π
·
∫

M
B(x)·V (x, x′) ·G (x, x′) ·∂ Ax′ (10.190)

This equation is known as the radiosity equation.

10.13 Monte Carlo Method and Monte Carlo Integration

Before we proceed with examining the implementation of physically based ren-
derers we must introduce a mathematical technique that underlies almost all state
of the art physically based rendering algorithms. This technique is known as the
Monte Carlo method. We will use this method to compute accurate estimates of
integrals which are required for the evaluation of the components of the rendering
equation. We refer to this technique as Monte Carlo integration.

The concept of the Monte Carlo method has existed for a long time, but was
first formalised by Metropolis and Ulam [Metropolis 49]. Monte Carlo methods
allow us to solve problems by estimating the value of an equation using random
numbers. Historically they have been applied to the solution of problems of a
probabilistic nature.

Let us now examine how the Monte Carlo method can be used to perform
numerical integration (also known as quadrature). Given the definite integral of a
function f (x) over the interval [a, b] its value, known as the estimand, is given by

I =
∫ b

a
f (x) ·∂x (10.191)

The value of the integral, representing the area under the graph of the func-
tion (see Fig. 10.48), can be estimated by computing the mean value of the

“Comninos” — 2005/8/31 — 19:01 — page 392 — #76

392 Mathematical and Computer Programming Techniques for Computer Graphics

f(x)

x

f(x)

a bxi

FIGURE 10.48. Monte Carlo Integration.

function f (x) over the interval [a, b] and then multiplying this mean value by
the length of the interval (b – a).

The value of this integral can be estimated by picking a uniform random num-
ber χi from the interval [a, b] and evaluating f (χi). Here the value of the integral
of f (χi) is called the primary estimator of the integral and is denoted as

〈I 〉prim =
∫ b

a
f (χi) ·∂x = (b − a) · f (χi) (10.192)

The evaluation of the primary estimator for a specific sample χi is known as an
estimate. Thus, (b − a) · f (χi) gives us an estimate of the area under the graph
of f (x) in Fig. 10.48. If we use N uniformly distributed random sample points
χ1, χ2, . . . , χN from the range [a, b] to compute N estimates of the integral and
average these, then we get a more accurate estimate of the integral

∫ b
a f (x)·∂x .

〈I 〉sec = 1

N
·

N∑

i=1

〈I 〉prim = (b − a) · 1

N
·

N∑

i=1

f (χi) (10.193)

This is known as the secondary estimate or the Monte Carlo estimate of the in-
tegral. As we increase the number of samples in the computation of the secondary
estimate of the integral, this estimate becomes more accurate and at the limit it
becomes equal to the estimand, i.e.

limN→∞ 〈I 〉sec = I (10.194)

The standard deviation σ of the secondary estimate 〈I 〉sec from the true value
of the integral I is proportional to the square root of the sample size, i.e.

σ ∝ 1√
N

(10.195)

which means that in order to half the estimation error, we must quadruple the
sample size. See [Dutré 94].

“Comninos” — 2005/8/31 — 19:01 — page 393 — #77

Physically Based Lighting and Shading Models and Rendering Algorithms 393

10.14 Physically-Based Rendering Algorithms

The eventual output of any computer visualisation process is the production of
a rendered image of the input scene. The geometry of a virtual scene can be
described by a combination of geometric primitives which can either take the
form of a solid representation or a boundary representation.

A solid representation is usually based on an implicit functional representation
that describes the shape (i.e. the volume and boundary) of the object in question.
A representation of this type is often referred to as an F-rep.

Complex object representations of this form are composed by blending and
combining the functional representations of primitive solid objects, such as cubes,
cylinders, cones, spheres and super-ellipsoids. Each of these primitives can be
represented by a unique implicit function that allows us to test if a given point in
space lies inside of, on the surface of or outside the solid object. These simple
solid primitives can be combined through blending operations or Boolean alge-
bra operations (such as union, intersection and difference) to form more complex
solid objects. Most manufactured objects can easily be composed in this fashion.
The F-rep is also ideally suited for the representation of soft objects and ethe-
real phenomena, such as steam, smoke and fire. It is common to use ray-tracing
rendering techniques to render such arbitrary geometries.

A boundary representation, on the other hand, is composed of a set of bound-
ary surfaces that represent the skin of the solid object. Such boundary surfaces
are represented in the form of parametric equations that describe curved surfaces
delimited by their boundary curves or polygons delimited by their outlines. A
representation of this type is often referred to as a B-rep.

Boolean algebra operations can also be applied to B-reps to generate more com-
plex forms. With a boundary representation it is much more difficult to deter-
mine if a given point in space lies inside, on the surface or outside a solid object.
This makes the implementation of Boolean algebra operations on B-reps more
difficult. B-reps are ideally suited, however, for the representation of free-form
surfaces, which are best suited for the description of bodies of cars, ships and
aeroplanes.

Other information that is required by the renderer, in order to be able to render
a virtual scene, includes a description of the light scattering properties of the sur-
faces in the scene, a description of the light sources in the scene and a description
of the virtual camera.

The description of the light scattering properties of the various surfaces is pro-
vided through the specification of their respective BRDFs, BTDFs and BSDFs, as
we have seen earlier in this chapter.

The description of each light source in the scene should include its type (i.e.
point, parallel, linear, area or solid shape light source), its position and direction
of emission, and its emittance characteristics (i.e. its power or intensity and its
colour).

Additionally, for each surface in the scene that is a light emitter we must de-
scribe its emittance distribution function.

“Comninos” — 2005/8/31 — 19:01 — page 394 — #78

394 Mathematical and Computer Programming Techniques for Computer Graphics

Finally, the description of the virtual camera should include, its position, its
direction of view, its up direction and its horizontal and vertical fields of view
(i.e. the aspect ratio of the frame), and its resolution.

Having got all this information the renderer evaluates the rendering equation in
order to generate an appropriate representation of the illumination in the virtual
scene.

Ideally, physically-based renderers should be able to produce a rendering of the
virtual scene which is indistinguishable from a photograph of its physical coun-
terpart. Thus, achieving the illusive holy-grail of photorealism. Photorealistic
results are best achieved by the accurate evaluation of global illumination effects,
such as glossy reflections and caustics (achieved through specular inter-object il-
lumination) and soft shadows, indirect illumination and colour bleeding (achieved
through diffuse inter-object illumination). In physically-based rendering correct-
ness of the resulting image is paramount, immaterial of the way in which it is
achieved.

There are two main approaches for achieving the production of photo-realistic
images. We can produce such images by using either an object-space approach
or an image space approach.

10.14.1 Object-Space Rendering Algorithms

Object-space approaches compute and store a representation of the outgoing ra-
diance function for each surface in the scene, in a pre-processing step. Then, in
order to generate an image from a given viewpoint, for each pixel of the image
we determine the visible surface or surfaces, using a scan-line, a depth-buffer or a
ray-casting visibility algorithm. The average radiance for this pixel is determined
by computing the average radiance radiated towards the camera from all the sur-
faces that are visible through the pixel using the stored radiance values computed
in the pre-processing step.

Some examples of object-space rendering algorithms include the basic diffuse
radiosity algorithm and other non-diffuse radiosity-style algorithms.

10.14.1.1 The Radiosity Algorithm

The radiosity method was first introduced by Goral et. al [Goral 84]. See also
[Cohen 85] and [Nishita 85]. Radiosity is an object-space physically based ren-
dering technique that deals exclusively with perfectly diffuse inter-object reflec-
tions (i.e. totally incoherent inter-object reflections). The surfaces of objects in
the scene can only be Lambertian reflectors or emitters. Transmitted light and
light reflected in a specular fashion cannot be handled by the basic radiosity
technique.

In static diffuse scenes, of this sort, the emittance distribution function (EDF)
and the BRDFs of the surfaces are direction independent and are only determined
by their spatial location and the wavelength of the light incident on them. This
simplification implies that the outgoing reflected radiance from a given point on
a surface will be perceived with the same intensity and colour regardless of the

“Comninos” — 2005/8/31 — 19:01 — page 395 — #79

Physically Based Lighting and Shading Models and Rendering Algorithms 395

viewing position. By reducing the dimension of the radiance, employing these
simplifications, it becomes feasible to store accurate object-space representations
of the radiance of complex scenes. This of course means that the output produced
by the pre-processing step can be used to render images from different viewpoints
in the scene.

With such diffuse environments it is more appropriate to use the radiosity
(i.e. radiant exitance) rather than the radiance to quantify the illumination at a
given location and wavelength.

Some non-diffuse radiosity-style algorithms compute the average radiance emit-
ted by each surface in the scene towards all other surfaces in the scene. See
[Aupperle 93] and [Stamminger 98]. Some other implementations use an angular
rather than a spatial parameterisation to represent the directional dependence of
the radiance. See [Immel 86] and [Sillion 91].

The major advantage of representing the scene illumination in object space is
that we can reuse the results of the radiance computation, output from the pre-
processing step of the these algorithms, to render images of the scene from dif-
ferent viewpoints. Thus these algorithms exhibit frame-to-frame coherence. 3D
graphics hardware can be used to accelerate the rendering stage of these algo-
rithms.

With these algorithms, a significant proportion of the pre-computed radiance
can often be reused even if the geometry of the light emission or the surface
scattering properties of the virtual scene are altered. See [George 90], [Chen 90]
and [Drettakis 97].

The main disadvantage of the object-space rendering algorithms is the exces-
sive amount of storage required to accurately represent the highly direction depen-
dant radiance functions required to represent specular inter-object illumination.
Even for the diffuse inter-object illumination of large virtual scenes, the storage
requirements of these algorithms become prohibitive.

10.14.2 Image-Space Rendering Algorithms

Image-space rendering algorithms compute the average incoming radiance at each
pixel on the fly, without relying on a pre-processing step to compute an object-
space representation of the radiance reflected from each surface of the virtual
scene. This family of algorithms solves the rendering equation for each pixel or
group of pixels in the rendered image. Although the underlying global illumi-
nation method used by all the image-space algorithms is basically the same, the
algorithms themselves are quite different. Examples of such algorithms are the
ray-tracing algorithm [Whitted 80], the distributed ray-tracing algorithm [Cook
84], the path-tracing algorithm [Kajiya 86][Dutré 94], the bi-directional path-
tracing algorithm [Lafortune 93][Veach 94], the Metropolis light transport algo-
rithm [Veach 97b] and the photon-mapping algorithm [Jensen 95a].

The major advantage of the image-space algorithms is that they require very
little storage, as they compute the visible surface solution on a per-pixel basis. In
general these algorithms are more suitable than the object-space algorithms for
more complex virtual scenes and can handle more complex illumination models.

“Comninos” — 2005/8/31 — 19:01 — page 396 — #80

396 Mathematical and Computer Programming Techniques for Computer Graphics

The more sophisticated algorithms of this type can handle both specular inter-
object and diffuse inter-object illumination, as well as, deal with volume rendering
for participating media.

Let us now examine the family of image-space rendering algorithms in more
detail.

10.14.2.1 The Recursive Ray-Tracing Algorithm

The concept of ray tracing first appeared in a 1971 paper by Goldstein and Nagel
[Goldstein 71]. In the early eighties, Whitted introduced the concept of recursive
ray tracing [Whitted 80].

Ray tracing is a simple and elegant algorithm that is able to handle specular
inter-object illumination. Thus, it deals with specular reflection and transmission
and generates sharp shadows.

For each pixel of the image, we spawn one primary ray that starts from the
viewing point and passes through the centre of the pixel. If this ray intersects
none of the surfaces in the scene, then the pixel is painted with the background
colour and we proceed to the next pixel. If the ray, however, intersects some of
the surfaces in the scene, we pick the surface whose intersection point is clos-
est to the observer. Once we have identified the closest surface, we compute its
unit normal at the point of intersection. This vector is then used in the shading
calculations.

How the light is reflected from a surface depends on the type of surface that
we are dealing with. If the surface is diffuse (rough), the reflected light will
depend only on the illumination arriving directly from the light sources in the
scene. Alternatively, if the surface is specular (smooth), the reflected light will
depend on the illumination arriving directly from the light sources and on the in-
direct illumination arriving on this surface after having been reflected off other
surfaces in the scene or been transmitted through the surface (if it is transpar-
ent). To discover if the point is directly illuminated, we have to trace a shadow
ray to each of the light sources. If the surface point is visible from a light
source, then it will receive direct illumination from this source, otherwise it
will not.

If the surface in question is smooth, then we recursively spawn a ray in the
reflection direction and if the surface is transparent, a second ray in the trans-
mission direction. We follow these rays repeating the process recursively until
we satisfy one of the recursion termination conditions. The recursion will ter-
minate when one of the three following conditions is met. When the ray hits
a rough surface, in which case the light reflected from this surface is returned
by the ray since this will be the incoming light at the point of origin of the ray.
When the ray misses all surfaces in the scene, in which case the ray returns the
background colour. Finally, when a user defined maximum level of recursion has
been reached, no new rays are generated. Upon returning from a recursive call we
accumulate all the calculated radiance contributions.

An outline of the recursive ray-tracing algorithm is presented in Algorithm
10.1. In this algorithm, the function emitter shader() computes the light emit-
ted by an emitter surface and the function direct shader() computes the direct
illumination component of the light reflected from the surface.

“Comninos” — 2005/8/31 — 19:01 — page 397 — #81

Physically Based Lighting and Shading Models and Rendering Algorithms 397

function recursive ray tracing renderer(scene, image)
{
for each pixel in the image do

{
level = 0;

generate a primary ray from the eye to the centre of the
pixel;

pixel colour = trace ray(primary ray);
}

} /* recursive ray tracing renderer */

function trace ray(ray)
{
find the closest point of intersection of the ray with a
surface of the scene;

if there are no intersections then return(background colour);

compute the unit normal of the closest surface at the point
of intersection;
if surface is emitter

then colour = emitter shader(ray, surface, point);
else colour = 0;

for each light source do
{
generate a shadow ray to the light source;

if light source is visible then
colour = colour
+ direct shader(point, surface, normal, light) / n lights;

}

if surface is specular then
{
level = level + 1;

if level > max level then return(colour);
{
generate the reflected ray;
colour = colour + trace ray(reflected ray);

}

if surface is transparent then
{
generate the transmitted ray;
colour = colour + trace ray(transmitted ray);

}
}

return(colour);
} /* trace ray */

Algorithm 10.1 The outline of the recursive ray-tracing rendering algorithm.

“Comninos” — 2005/8/31 — 19:01 — page 398 — #82

398 Mathematical and Computer Programming Techniques for Computer Graphics

10.14.2.2 The Distributed Ray-Tracing Algorithm

In 1984, Cook et. al introduced the distributed ray-tracing algorithm [Cook 84].
This algorithm is a refinement of the recursive ray-tracing algorithm that provided
correct and easy solutions to a number of previously unresolved problems, includ-
ing semi-coherent reflections and transmissions, shadows with penumbras, depth
of field and motion blur.

With distributed ray-tracing we spawn a number of primary rays for each pixel
using an appropriately selected probability. The precise probability distribution of
the spawned rays, as well as, their individual direction and origin depend on the
effect that we are attempting to simulate. For instance, to get a semi-coherent re-
flection (i.e. a fuzzy reflection) at a ray intersection point with a diffuse surface in-
stead of spawning a single reflected ray we spawn a number of rays stochastically
distributed around the mirror reflection direction. Similarly, to simulate a semi-
coherent transmission (i.e. translucency) instead of spawning a single transmitted
ray we spawn a number of rays stochastically distributed around the transmittance
direction.

To generate penumbras (i.e. soft shadows), which result from the illumination
produced by area light sources, instead of spawning a single shadow-ray towards
the light source we spawn a number of shadow-rays stochastically distributed on
the surface of the area light source. The illumination received from this light
source is then made proportional to the number of shadow rays that are unob-
structed by other surfaces in the scene.

An outline of the distributed ray-tracing algorithm is presented in Algorithm
10.2. In this algorithm, the function emitter shader() computes the light emit-
ted by an emitter surface and the function direct shader() computes the direct
illumination component of the light reflected from the surface.

function distributed ray tracing renderer(scene, image)
{
for each pixel in the image do

{
colour = 0;

for each primary ray sample do
{
generate a primary ray from the eye through a random
point in the pixel;

/* Extension for depth of field */
perturb the ray to account for the lens position;

/* Extension for motion blur */
pick a random time within the inter-frame interval to
trace the ray;

colour = colour + trace ray(primary ray);
}

“Comninos” — 2005/8/31 — 19:01 — page 399 — #83

Physically Based Lighting and Shading Models and Rendering Algorithms 399

pixel colour = colour / n ray samples;
}

} /* distributed ray tracing renderer */

function trace ray(ray)
{
find the closest point of intersection of the ray with a
surface of the scene;

if there are no intersections then return(background colour);

compute the unit normal of the closest surface at the point
of intersection;

if surface is emitter then
{
if surface is diffuse then

{
colour = 0;

for each ray sample do
{
stochastically perturb the ray direction;
colour = colour +

emitter shader(perturbed ray, surface, point)
/ n ray samples;

}
}

else
colour = emitter shader(ray, surface, point);

}
else
colour = 0;

for each light source do
{
direct colour = 0;

for every shadow ray do
{
generate a shadow ray to a stochastically selected point
on the light source;

if the light source is visible then
direct colour = direct colour +

direct shader(point, surface, normal,
light) / n shadow rays;

}
colour = colour + direct colour / n lights;

}
determine if the ray is reflected or absorbed using a Russian
roulette procedure;

if ray is absorbed then return(colour);

generate the reflected ray;

if surface is diffuse then

“Comninos” — 2005/8/31 — 19:01 — page 400 — #84

400 Mathematical and Computer Programming Techniques for Computer Graphics

{
for each ray sampledo

{
stochastically perturb the reflected ray direction;
colour = colour + trace ray(perturbed reflected ray)

/ n ray samples;
}

}
else
colour = colour + trace ray(reflected ray);

if surface is transparent then
{
generate the transmitted ray;

if surface is diffuse then
{
for each ray sample do

{
stochastically perturb the transmitted ray direction;
colour = colour + trace ray(perturbed transmitted ray)

/ n ray samples;
}

}
else
colour = colour + trace ray(transmitted ray);

}
return(colour);

} /* trace ray */

Algorithm 10.2 The outline of the distributed ray-tracing rendering algorithm.

This algorithm represents the first effort in an attempt to introduce a certain
degree of physical plausibility in the way the rendering equation is computed.
The physically based image-space renderers that we will examine next attempt to
be physically correct in the way they evaluate the rendering equation.

10.14.2.3 The Path-Tracing Algorithm

Path tracing was introduced by Kajiya in the mid-eighties to provide an efficient
way to solve the rendering equation for both local and global illumination [Kajiya
86].

Path tracing is concerned with solving the integration of light energy resulting
from the direct illumination arriving directly from area light sources and the in-
direct illumination arriving from other surfaces in the scene. These integration
problems are solved using the Monte Carlo integration method, which as we have
seen in Section 10.13, produces an estimate of the value of an integral by aver-
aging a number of random primary estimates of the value of the integral. In the
context of Monte Carlo ray-tracing algorithms, this means that we need to sto-
chastically spawn a large number of rays within the integration domain in order
to estimate the value of the integral representing the incoming light energy. As
with all Monte Carlo methods, by spawning more stochastically scattered rays

“Comninos” — 2005/8/31 — 19:01 — page 401 — #85

Physically Based Lighting and Shading Models and Rendering Algorithms 401

(i.e. by evaluating more randomly selected primary estimates) we improve the
accuracy of our result. Thus path-tracing can be seen as a progressive refinement
of the distributed ray-tracing algorithm examined above.

In distributed ray-tracing we spawn a number of stochastically positioned pri-
mary rays through the pixel. When one of these rays is reflected from or transmit-
ted through a diffuse (rough) surface it spawns a number of secondary rays, which
are stochastically distributed around the specular reflection or transmission direc-
tions. This process is repeated recursively until it satisfies one of the recursion
termination criteria. The recursion termination criteria are one of the following.
A reflected or transmitted ray does not intersect any of the surfaces of the scene.
Alternatively, a stochastic test, known as Russian roulette, is used to determine
if a ray is reflected/transmitted or absorbed. When a ray is absorbed, no further
rays are spawn. This recursive approach can very quickly lead to a combinatorial
explosion of secondary rays. For instance, starting with 100 primary rays, in a
perfectly diffuse scene, after the first reflective bounce we get 1002 = 10,000 rays,
after the second reflective bounce we get 1003 = 1,000,000 rays and so on.

To avoid this type of combinatorial explosion the number of rays spawn at each
bounce had to be kept to a minimum. Kajiya noticed that it was better to focus the
bulk of our computing effort on the first few lighting events that have undergone
the smallest number of reflection or transmission bounces. He decided that it was
a lot more cost effective to spawn a large number of primary rays though the pixel
and only spawn one ray for every secondary bounce stochastically distributed
around the reflection or transmission directions. With this approach we could
afford to spawn thousands of primary rays through each pixel. It is not uncommon
to spawn between 1,000 and 10,000 rays per pixel.

The only problem with this approach is that we need a large number of primary
rays to avoid noise in the generated image. This noise is related to the error in es-
timating the incoming radiance integral due to the use of Monte Carlo integration
method. The better behaved the incoming radiance function is, the fewer primary
rays we need to estimate its value. A well-balanced radiance function means that
that there are few bright highlights coming from specific directions in the scene.
Thus, in a perfectly diffuse environment we can get away with using as few as
100 primary rays per pixel. Trying to reduce the variance/standard deviation of
the Monte Carlo integration method, thus allowing us to reduce the number of
primary rays that are required to produce an accurate picture, remains an active
research topic.

An outline of the path-tracing algorithm is presented in Algorithm 10.3. In
this algorithm, the function emitter shader() computes the light emitted by an
emitter surface and the function direct shader() computes the direct illumination
component of the light reflected from the surface.

function path tracing renderer(scene, image)
{
for each pixel in the image do

{
colour = 0;

“Comninos” — 2005/8/31 — 19:01 — page 402 — #86

402 Mathematical and Computer Programming Techniques for Computer Graphics

for each primary ray sample do
{
generate a primary ray from the eye through a random
point in the pixel;

/* Extension for depth of field */
perturb the ray to account for the lens position;

/* Extension for motion blur */
pick a random time within the inter-frame interval to
trace the ray;

colour = colour + trace ray(primary ray);
}

pixel colour = colour / n ray samples;
}

} /* path tracing renderer */

function trace ray(ray)
{
find the closest point of intersection with a surface of the
scene;

if there are no intersections then return(background colour);

compute the unit normal of the closest surface at the point
of intersection;

if surface is emitter then
{
if surface is diffuse then

{
stochastically perturb the ray direction;
colour = emitter shader(perturbed ray, surface, point);

}
else
colour = emitter shader(ray, surface, point);

}
else
colour = 0;

for each light source do
{
generate a shadow ray to a stochastically selected point on
the light source;

if light source is visible then
colour = colour + direct shader(point, surface, normal,

light) / n lights;
}

determine if the ray is reflected, transmitted or absorbed
using a Russian roulette procedure;

if ray is absorbed then return(colour);

if surface is transparent and ray is transmitted then
{
compute the transmitted ray;

if surface is diffuse then

“Comninos” — 2005/8/31 — 19:01 — page 403 — #87

Physically Based Lighting and Shading Models and Rendering Algorithms 403

{
stochastically perturb transmitted ray;
colour = colour + trace ray(perturbed transmitted ray);

}
else
colour = colour + trace ray(transmitted ray);

}
else

{
compute the reflected ray;

if surface is diffuse then
{
stochastically perturb reflected ray;
colour = colour + trace ray(perturbed reflected ray);

}
else
colour = colour + trace ray(reflected ray);

}
return(colour);

} /* trace ray */

Algorithm 10.3 The outline of the path-tracing rendering algorithm.

10.14.2.4 The Bi-directional Path-Tracing Algorithm

The bi-directional path-tracing algorithm was first developed by Lafortune and
Willems [Lafortune 93] and a year later it was independently developed by Veach
and Guibas [Veach 94]. Although both algorithms achieve very similar results,
their underlying theoretical framework is quite different.

As we have seen above, with path tracing the primary estimator of the radiance
for a given pixel is calculated by tracing a primary ray from the viewing point
through the pixel being considered. At the intersection point of this ray with the
surface of the scene, closest to the eye, one or more shadow rays are traced to-
wards each of the light sources to determine the direct illumination contribution of
each source. This contribution is only accumulated if the light source and the in-
tersection point are mutually visible. Then, we use the Russian roulette stochastic
test to determine if the ray (incident on this surface) is absorbed or if it contin-
ues its random walk, being reflected/transmitted from surface to surface. This
process is repeated recursively until the ray misses all the surfaces in the scene
or is absorbed by a surface. The primary estimator determined in this way by a
single random walk is likely to have a large variance (i.e. it is a poor estimate of
the true value of the radiance). This large variance is mainly due to the way indi-
rect illumination is sampled. The path-tracing algorithm attempts to remedy this
by computing a more accurate secondary estimate that is the average of a large
number of primary estimates.

In a scene that is primarily illuminated by indirect illumination very few shadow
rays are likely to reach any given light source. This will cause a large variance in
both the primary and secondary estimates of the radiance due to direct illumina-
tion, resulting in high frequency noise in the rendered image. Bi-directional path
tracing attempts to resolve this problem by the following technique. Instead of

“Comninos” — 2005/8/31 — 19:01 — page 404 — #88

404 Mathematical and Computer Programming Techniques for Computer Graphics

screen

 eye pathlight source

 light path

 shadow rays

FIGURE 10.49. The geometry of bi-directional path tracing.

just tracing a random walk from the eye into the scene, known as the eye-path, in
parallel we also trace a random walk from a randomly selected light source into
the scene, known as the light-path. See Fig. 10.49.

In constructing the light-path, a light source is selected probabilistically de-
pending on its power (brightness). Thus, brighter light sources are more fre-
quently selected than dimmer sources. The starting point on the light source and
the starting direction of the light-path are also selected probabilistically depend-
ing on the direction of the power distribution of the source. Thus, directions to-
wards which the light source is brighter (i.e. emits more light) are selected more
frequently than directions in which the source is dimmer.

In constructing the eye-path, the starting direction of the primary ray from the
eye through the pixel is also selected probabilistically according to some random
distribution.

The construction of both the eye and light-paths proceeds as follows. When a
ray hits a surface it is reflected, transmitted or absorbed, depending on a probabil-
ity computed by a Russian roulette procedure. This process is repeated recursively
until the ray is absorbed or it misses all the surfaces in the scene.

When both the eye and light random walk paths have been constructed, we can
proceed with the computation of the primary estimate of the incoming radiance at
the pixel by following the eye-path and accumulating the radiance arriving at each
hit point (intersection point) on this path. To compute the radiance arriving at a
particular hit point, we connect this hit point with every hit point on the light-path
(including the first point, which is a point on the light source). This allows us
to accurately compute the incoming radiance contributions from both direct and
indirect illumination. Each shadow ray that is unobstructed by another surface
contributes to this computation. Having computed the incoming radiance at this
point, we can, in turn, compute the outgoing radiance from this point. Once we
have reached the end of the eye-path, the algorithm returns a primary estimate of
the incoming radiance at the pixel.

“Comninos” — 2005/8/31 — 19:01 — page 405 — #89

Physically Based Lighting and Shading Models and Rendering Algorithms 405

Once again, as this is a probabilistic estimate, a more accurate secondary esti-
mate of the radiance, incoming at the pixel, can be computed by averaging a large
number of primary estimates, which is achieved by spawning a large number of
such random walks per pixel.

An outline of the bi-directional path-tracing algorithm is presented in Algo-
rithm 10.4. This algorithm uses three primitive functions that are not shown,
namely: store light hit point(), store eye hit point() and accumulate shade().

function bidirectional path tracing renderer(scene, image)
{
for each pixel in the image do

{
colour = 0;

for each ray sample do
{
light path = generate light path(scene);

eye path = generate eye path(scene, pixel);

colour = colour + combine paths(light path, eye path);
}

pixel colour = colour / n ray samples;
}

} /* bidirectional path tracing renderer */

function generate light path(scene);
{
empty light path;

stochastically select a light source, a point on the source
and an initial direction for the light path;

trace light path(scene, light path, light ray, light energy);

return(light path);

} /* generate light path */

function trace light path(scene, path, ray, incoming energy);
{
compute intersection of the light ray with all the surfaces
in the scene and select the closest intersection point;

if no intersections exist then return();

determine if the ray is to be reflected, transmitted or
absorbed using a Russian roulette procedure;

if ray is absorbed then return();

if ray is transmitted and surface is transparent then
{
compute the transmitted ray and the outgoing energy from
the incoming energy and the surface BTDF;

“Comninos” — 2005/8/31 — 19:01 — page 406 — #90

406 Mathematical and Computer Programming Techniques for Computer Graphics

if surface is diffuse then
{
perturb transmitted ray;
trace light path(scene, path, perturbed transmitted ray,

outgoing energy);
}

else
trace light path(scene, path, transmitted ray,

outgoing energy);
}

else
{
store light hit point(path, intersection point,

incoming energy);

compute the reflected ray and the outgoing energy from the
incoming energy and the surface BRDF;

if surface is diffuse then
{
perturb reflected ray;
trace light path(scene, path, perturbed reflected ray,

outgoing energy);
}

else
trace light path(scene, path, reflected ray,

outgoing energy);
}

return();

} /* trace light path */

function generate eye path(scene, pixel);
{
empty eye path;

generate a primary eye ray from the eye through a random
point in the pixel area;

/* Extension for depth of field */
perturb the eye ray to account for the lens position;

/* Extension for motion blur */
pick a random time within the inter-frame interval to trace
the eye ray;

transmission factor = 1;

trace eye path(scene, eye path, eye ray, transmission factor);

return(eye path);

} /* generate eye path */

function trace eye path(scene, path, ray, transmission factor)
{
compute intersection of the eye ray with all the surfaces in
the scene and select the closest intersection point;

“Comninos” — 2005/8/31 — 19:01 — page 407 — #91

Physically Based Lighting and Shading Models and Rendering Algorithms 407

if no intersections exist then return();

determine if the ray is to be reflected, transmitted or
absorbed using a Russian roulette procedure;
if ray is absorbed then return();

if ray is transmitted and surface is transparent then
{
compute the transmitted ray and scale the
transmission factor using the surface BTDF;

if surface is diffuse then
{
perturb transmitted ray;
trace eye path(scene, path, perturbed transmitted ray,

transmission factor);
}

else
trace eye path (scene, path, transmitted ray,

transmission factor);
}

else
{
store eye hit point(path, intersection point,

transmission factor);

compute the reflected ray;

if surface is diffuse then
{
perturb reflected ray;
trace eye path(scene, path, perturbed reflected ray,

transmission factor);
}

else
trace eye path(scene, path, reflected ray,

transmission factor);
}

return();

} /* trace eye path */

function combine paths(light path, eye path)
{
path colour = 0;

trace path(light path, eye path, path colour);

return(path colour);

} /* combine paths */

function trace path(light path, eye path, colour)
{
if eye path.next node is not empty then

{
trace path(light path, eye path.next node, colour);

“Comninos” — 2005/8/31 — 19:01 — page 408 — #92

408 Mathematical and Computer Programming Techniques for Computer Graphics

for each node in the light path do
{
generate a shadow ray from the eye path node.point to the
light path node.point;

if these two points are mutually visible then
accumulate shade(eye path node, eye path node, colour);

}
}

return();

} /* trace path */

Algorithm 10.4 The outline of the bi-directional path-tracing rendering algorithm.

The store light hit point() function progressively builds the light-path by cre-
ating a linked list of light-path hit points, while the store eye hit point() function
progressively builds the eye-path by creating a linked list of eye-path hit points.

As can be seen from the function trace light path(), when the light-ray is re-
flected from an opaque surface, then a hit point is entered in the light-path and the
incoming light energy is recorded, and the energy of the reflected ray is attenuated
to account for the reflectance characteristics of the surface. But, when the light-
ray is transmitted through a transparent surface, then a hit point is not entered in
the light-path and the energy of the transmitted ray is attenuated to account for the
transmittance characteristics of the surface. See the left-hand side of Fig. 10.50.
Figure 10.51a shows that after the light path has been constructed we now have
one direct light source and three indirect light sources representing the four hit
points on the light-path.

Analogously, as can be seen from the function trace eye path(), when the
eye-ray is reflected from an opaque surface, then a hit point is entered in
the eye-path and the cumulative transmission factor is recorded. But, when the
eye-ray is transmitted through a transparent surface, then a hit point is not entered
in the eye-path and the cumulative transmission factor is attenuated to account for

FIGURE 10.50. Tracing the eye-path and the light-path.

“Comninos” — 2005/8/31 — 19:01 — page 409 — #93

Physically Based Lighting and Shading Models and Rendering Algorithms 409

(a) (b)

(d)(c)

FIGURE 10.51. Tracing the eye-path from the deepest to the shallowest hit point.

the transmittance characteristics of the surface (thus, accounting for the amount
of radiance being absorbed by this surface). See the right-hand side of Fig. 10.50.

The accumulate shade() function computes the reflected radiance outgoing
from a given eye-path hit point and arriving at the hit point that is positioned
immediately before it on the eye-path (i.e. the hit point that is one ray-bounce
closer to the eye than the given hit point). Thus, the computation of the reflected
radiance proceeds from the deepest eye-path hit point (i.e. the hit point which
is the largest number of bounces away from the eye) to the shallowest eye-path
hit point (i.e. the hit point which is the smallest number of bounces away from
the eye) and finally the eye. As this recursive computation proceeds, indirect
illumination arriving from deeper hit points of the eye-path, indirect illumination
arriving from light-path hit points and direct illumination arriving from the light
source are taken into account. See Fig. 10.51(a)–(d).

A more detailed description of this algorithm and the expressions for the cal-
culation of the illumination contributions can be found in [Lafortune 93].

10.14.2.5 The Metropolis Light Transport Algorithm

The Metropolis Light Transport (MLT) algorithm was introduced by Veach and
Guibas [Veach 97b]. This algorithm, which is used to solve the light transport
problem, is based on a Monte Carlo statistical simulation approach inspired by
the Metropolis sampling technique. The Metropolis sampling technique was first
used in computational physics by Metropolis and Ulam while they were working
on the Manhattan Project [Metropolis 49], [Metropolis 53].

“Comninos” — 2005/8/31 — 19:01 — page 410 — #94

410 Mathematical and Computer Programming Techniques for Computer Graphics

The general approach used in the MLT algorithm can be outlined as follows.
To render an image of a 3D scene, we start with a single light transport path,
known as the current path, and we progressively generate a set of alternative paths
by stochastically mutating the current path. We use an appropriately selected
probability, to accept or reject a mutated path, ensuring that the retained paths are
sampled with an order that reflects their statistical contribution to the ideal image.
Then, we estimate this ideal image by sampling a large number of the mutated
paths and by recording their positions on the image plane that is represented by a
2D array in memory.

The MLT algorithm is unbiased, it is capable of handling the most general geo-
metric and BSDF models, it is economical in storage and it can be significantly
faster than other unbiased algorithms. The MLT algorithm is very different from
both the path-tracing and the bi-directional path-tracing algorithms. Unlike other
Monte Carlo methods, instead of randomly sampling the value of a function in
order to estimate the value of its integral, the Metropolis method generates a dis-
tribution of samples to the unknown function value. To achieve this sampling
distribution the MLT algorithm starts with a random sampling of the space of all
light paths in the scene. These initial paths are generated using the bi-directional
path-tracing algorithm and are subsequently cloned and mutated in order to com-
pute the radiance of the final image.

The most important advantage of the MLP algorithm is that it explores the path
space locally, selecting more frequently mutations arrived at by applying minor
incremental modifications to the current path. Using this progressive refinement
approach has the following beneficial consequences. The average cost for each
sample path is relatively small, as very few rays are used. Once an important path
is identified, nearby paths are employed as well, thus spreading the cost of deter-
mining such a “good” path over many neighbouring paths. The set of mutation
operations applied, by the MLT algorithm, to a “good” path is easy to extend. By
selecting mutations that retain certain of the properties of a given “good” path
while changing other properties, we can take advantage of any type of coherence
that is present in the scene. In this way, it is often possible to deal with different
types of lighting problems more effectively by designing specialised mutations to
handle these particular situations.

The propensity of the MLT algorithm to concentrate on incremental changes
to a path, once it has found a “good” path, also leads to one of the main weak-
nesses of this algorithm. With scenes that do not exhibit space coherence, the
algorithm may be caught by one particular feature and be prevented from con-
verging quickly. Consider, for instance, a scene containing a surface with a grid
of holes lit from behind. The MLT algorithm can be “trapped” by one of the holes
and will fail to investigate properly the illumination from neighbouring holes.

A more detailed explanation of the algorithm can be found in [Veach 97a] and
[Veach 97b].

10.14.2.6 The Photon-Mapping Technique

The photon-mapping technique was developed by Jensen and Christensen as an
efficient alternative to pure Monte Carlo ray-tracing techniques [Jensen 95a]. This

“Comninos” — 2005/8/31 — 19:01 — page 411 — #95

Physically Based Lighting and Shading Models and Rendering Algorithms 411

technique de-couples the representation of the illumination from the representa-
tion of the geometry of the scene. Thus, allowing us to handle arbitrarily complex
geometric models and BRDFs.

To best visualise the photon map we may think of it as the cache of all the
light paths in the bi-directional path-tracing algorithm. The photon map could
indeed be used for this purpose. It is however used to estimate the illumination
in the scene based on an estimation of the light energy density. The estimation
error resulting from the use of the photon map, to estimate the illumination of
the scene, results in low frequency noise, as opposed to the high frequency noise
resulting from using the traditional Monte Carlo techniques. The density estima-
tion method that uses a photon map is much faster than the pure Monte Carlo
techniques. The main disadvantage, however, of this estimation method is that it
is biased.

The algorithm that generates, stores and uses illumination as points on the sur-
faces of objects in the scene is known as photon mapping and the data structure
that is used to store these illumination points is known as the photon map. The
technique that is used to generate the illumination points is known as the photon-
tracing algorithm. Thus, a renderer that uses the photon-mapping technique has
two distinct passes. The photon-mapping pass, which builds the photon map
data structure by spawning photon rays from the light sources and tracing them
through the objects in the scene and the rendering pass, which renders the scene
using the illumination information stored in the photon map (thus speeding up the
rendering process).

As this has proved to be a very influential algorithm, we will examine it in some
detail.

10.14.2.6.1 The Photon-Mapping Pass

The photon-mapping pass is an essential pre-processing step of any rendering
algorithm that uses the photon-mapping technique. During this pass photons are
emitted from the light sources, their paths are traced through the scene and when
they hit a diffuse surface their location and power are recorded in the photon map.

10.14.2.6.2 Emission of Photons

A large number of photons are emitted by each light source in the scene. The
power (i.e. the wattage) of a light source is divided equally among all the photons
that it emits. Thus, each emitted photon transports a fraction of the power of the
light source. The Jensen-Christensen model supports many different types of light
source.

Diffuse point light sources emit photons uniformly in all directions using one
of two Monte Carlo sampling techniques. Explicit sampling, which randomly
selects two spherical coordinate angles, and rejection sampling, which randomly
generates points inside a unit cube and selects the first such point that lies inside
the unit sphere.

Spherical light sources emit photons in all directions. First a random point is
selected on the surface of the light source sphere and then a random direction is

“Comninos” — 2005/8/31 — 19:01 — page 412 — #96

412 Mathematical and Computer Programming Techniques for Computer Graphics

selected on the hemisphere above this point. A similar procedure is followed for
polygonal square light sources.

For directed light sources, which are used to simulate very distant light sources,
we enclose the scene in a bounding sphere which when projected onto the ground
plane produces a circle. Random points in this circle can be used as the termi-
nating points of incoming photon beams from the direction of the parallel light
source.

Complex three-dimensional shapes can also be used as light sources. In this
case, the photon ray emission points and directions are selected using a rejection-
sampling scheme.

10.14.2.6.3 Scattering and Tracing of Photons

After a photon is emitted by a light source, it is traced through the scene by the
photon-tracing algorithm. The photon tracing algorithm works in a very similar
fashion to a ray tracing algorithm, except that photons distribute flux while rays
accumulate radiance. This is significant in the case of refraction, where radiance
changes according to the relative refractive index of the interface surface while
flux does not.

When a photon arrives at an interface surface it can be reflected, transmitted or
absorbed. This determination is made using a Russian roulette procedure, which
acts as an importance-sampling technique. Here, a probability distribution func-
tion serves to eliminate the statistically insignificant parts of the domain of our
problem.

10.14.2.6.4 Storage of Photons

As we have seen above, when a photon hits a specular surface it can be reflected,
transmitted or absorbed. When it hits a non-specular surface, however, it is stored
in the photon map. See Fig. 10.52. Photons represent incoming illumination (flux)
at a given point on the surface. Thus, we can use the photons, stored in the photon
map, to approximate the reflected illumination at several points on the surface.

non-specular surface

specular surfaces

photons that will be stored
in the photon map

light source

FIGURE 10.52. Photon tracing.

“Comninos” — 2005/8/31 — 19:01 — page 413 — #97

Physically Based Lighting and Shading Models and Rendering Algorithms 413

The photon map is stored as a left-balanced kd-tree data structure, which is
very efficient to traverse [Bentley 79]. Essentially, the kd-tree is an axis-aligned
binary space partition tree (BSP-tree). Each node of this tree stores a photon.
Each photon is represented by the x , y, z coordinates of the point of incidence of
the photon ray on a surface (which is stored as three floats), by its power (which
is stored as four bytes), by its direction vector (which is given by the θ and φ

angles and stored in compressed form as two bytes) and by a kd-tree flag (which
is stored as a short).

Once the photon-tracing algorithm is completed the kd-tree is balanced to speed
up the random access of its nodes.

10.14.2.6.5 Photon Density Estimation

The photon map represents the incoming flux on the surfaces of the scene. Each
photon can be thought of as transporting a package of energy that represents a
fraction of the power of the light source that emitted it. Thus, the photon map
contains information indicating that a given region of the scene has received some
direct or indirect illumination from a light source.

Looking at a single photon we can not tell how much light a given region has
received and we must compute the photon density ∂Φ/∂ A and to estimate the
irradiance for a small region surrounding a given point on a surface of the scene.
We can approximate the incoming flux Φi (x) at a point x on a surface of the
scene by finding the n photons, stored in the photon map, which are the closest
neighbours of this point. All these photons will be enclosed in a sphere of radius
rx and each photon will have power �Φp(ωp). See Fig. 10.53.

Now, the outgoing radiance Lr (x,ωx) reflected from this point can be approx-
imated as

Lr (x,ωx) ≈
n∑

p=1

fr
(
x,ωp,ωx

) ·�Φp
(
ωp
)

�A
(10.196)

photons stored in the photon map

surface

x

rx

FIGURE 10.53. Photons in the neighbourhood of point x.

“Comninos” — 2005/8/31 — 19:01 — page 414 — #98

414 Mathematical and Computer Programming Techniques for Computer Graphics

If we assume that the region around point x is flat, then the intersection of the
surface and the sphere containing the photons can be taken as

�A = π ·r2
x (10.197)

Substituting Eq. (10.197) into Eq. (10.196) we get an estimate of the outgoing
reflected radiance from point x · � Thus,

Lr (x,ωx) ≈ 1

π ·r2
x

n∑

p=1

fr
(
x,ωp,ωx

) ·�Φp(ωp) (10.198)

The accuracy of this estimate depends on the number of photons in the photon
map. The larger this number the better the estimate.

10.14.2.6.6 The Rendering Pass

The photon map created during the photon-tracing pass can now be used to render
an image of the scene. The renderer is composed of a simple ray tracer that uses
the radiance estimate to determine the reflected radiance component due to all the
diffuse reflections and a recursive ray tracer that determines the reflected radiance
component due to all the specular reflections and transmissions.

Unlike other Monte Carlo ray-tracing techniques, photon mapping is ideally
suited for rendering caustics. Caustics occur when light that has been reflected
from or transmitted through one or more smooth (specular) surfaces reaches a
rough (diffuse) surface.

To improve the quality of the rendered diffuse inter-object reflections, often
perceived as colour bleeding, we need to increase the number of photons that
are stored in the photon map and the number of photons that are included in the
neighbourhood of a given point when computing the diffuse component of the
reflected radiance estimate at this point.

For scenes that exhibit an even balance of specular and diffuse reflections we
can use two photon maps. One map, known as the global photon map, to store
the indirect illumination, and a second map, known as the caustics photon map,
to store caustics. The caustics photon map can be used by the recursive ray tracer
that computes the direct illumination.

The caustics photon map contains photons that have undergone at least one
specular reflection or transmission before arriving at a diffuse surface. After a
collision with a diffuse surface photons are absorbed. In the photon-tracing pass,
while populating the caustics photon map it is desirable to concentrate the emis-
sion of photons in the directions of specular surfaces in the scene. These could
be identified either manually (allowing more artistic control) or automatically by
the renderer. It is possible to use a projection map (from the point of view of the
light source) to determine in which directions shinny surfaces lie so that we can
concentrate the photon emissions in these directions.

The global photon map contains all the photons that reached a diffuse surface
in the scene. These photons represent direct and indirect illumination, as well as,
caustics. The rendering algorithm must ensure that the caustics term is not added
more than once in the rendering equation. The global photon map is populated

“Comninos” — 2005/8/31 — 19:01 — page 415 — #99

Physically Based Lighting and Shading Models and Rendering Algorithms 415

by tracing photons towards all the surfaces in the scene and storing them when
they reach a diffuse surface. Such photons may be absorbed or further reflected
or refracted to reach other surfaces.

The final image is rendered using a distributed ray-tracing algorithm. Here,
the incoming radiance at each pixel is computed by averaging a large number of
sample estimates. As we have seen earlier in this chapter, a BRDF, fr , is often
composed of a specular term, fr,s , and a diffuse term, fr,d . Thus,

fr (x,ωi ,ωo) = fr,s (x,ωi ,ωo) + fr,d (x,ωi ,ωo) (10.199)

Similarly, the incoming radiance can be thought of as the sum of three incom-
ing radiances. The incoming direct illumination radiance Li,l (x,ωi), which is
illumination arriving on the surface directly from the light sources. The incoming
caustics illumination radiance Li,c (x,ωi), which is indirect illumination arriv-
ing on the surface as a result of one or more specular reflections or transmissions.
The incoming indirect illumination radiance Li,d (x,ωi), which is indirect illu-
mination arriving on the surface as a result of one or more diffuse inter-object
reflections or transmissions. Thus, the incoming radiance can be written as

Li (x,ωi) = Li,l (x,ωi) + Li,c (x,ωi) + Li,d (x,ωi) (10.200)

Recall, from Section 10.7.3, that the outgoing reflected radiance from a point x
on a surface is given as

Lo (x,ωo) =
∫

H2
i

fr (x, ωi ,ωo) ·Li (x,ωi) · (ωi � Nx) ·∂ωi (10.201)

where Nx is the unit normal vector of the surface at point x.
Substituting Eqs. (10.199) and (10.200) into Eq. (10.201), we get

Lo (x,ωo) =
∫

H2
i

fr (x,ωi ,ωo) ·Li,l (x,ωi) ·(ωi � Nx)·∂ωi

+
∫

H2
i

fr,s (x,ωi ,ωo) · [Li,c (x,ωi) + Li,d (x,ωi)
] ·(ωi � Nx)·∂ωi

+
∫

H2
i

fr,d (x,ωi ,ωo) ·Li,c (x,ωi) ·(ωi � Nx)·∂ωi

+
∫

H2
i

fr,d (x,ωi ,ωo) ·Li,d (x,ωi) ·(ωi � Nx)·∂ωi (10.202)

This equation or some approximation of it is used by the ray tracer to compute
each sample estimate for the radiance incoming at a given point. At the closest
intersection of the primary ray emanating from the eye, we evaluate Eq. (10.202).
Ideally we would use the same equation at all subsequent ray bounces (ray hits),
but this would be computationally too expensive and in any case would not be the
most appropriate use of computing time. Thus, we try to use the accurate compu-
tation as infrequently as possible and use an approximate computation in all other
cases. An accurate computation is only used on the first bounce of the primary

“Comninos” — 2005/8/31 — 19:01 — page 416 — #100

416 Mathematical and Computer Programming Techniques for Computer Graphics

ray and on any subsequent bounces where the ray-surface intersection point is
closer to the ray-origin than a given threshold. This latter condition is necessary
to enhance the likelihood of accurate colour-bleeding occurring at convex corners
of the scene, where the distance between two ray bounces is short.

Next, let us consider the individual components of the outgoing radiance from
Eq. (10.202).

The direct illumination reflected radiance term, Lo,l (x,ωo), is given by

Lo,l (x,ωo) =
∫

H2
i

fr (x,ωi ,ωo) ·Li,l (x,ωi) ·(ωi � Nx)·∂ωi (10.203)

This term is frequently the most important part of the outgoing reflected ra-
diance, since it is responsible for depicting shadows (to which the eye is most
sensitive). So it must be computed accurately.

From every intersection point x shadow rays are cast towards each light source
in the scene. With area light sources, more than one shadow rays are required per
light source so as to generate convincing penumbra areas. This is an expensive
process. In an attempt to improve its efficiency the algorithm can be modified to
emit shadow photons (anti-photons) with negative light energy [Jensen 95b]. In
the photon-tracing pass, when the photon map is being populated, shadow photons
are emitted by each light source. When a shadow-photon ray is cast, starting from
the second closest ray-surface intersection and including all subsequent intersec-
tions we deposit a negative photon if the intersected surface is facing the light
source. In the rendering pass, if all the photons in the region of a surface point x
are positive, then the point is deemed to be visible by the light source, if all the
neighbouring photons are negative, then it is deemed to be hidden from this light
source, otherwise it is deemed to be in the penumbra region of this light source. In
the latter case we have to use a number of rays to discover the fraction of lighting
that the point receives from this light source. Thus, we are only forced to perform
the expensive shadow-ray casting operation for the regions of the scene that fall
within the penumbra areas associated with this particular light source. This im-
plementation of the algorithm requires a modification of the photon data structure
to identify the light source that emitted the photon and to indicate whether the
photon is positive or negative.

The specular illumination reflected radiance term, Lo,s (x,ωo), of the outgoing
radiance of Eq. (10.202) is given by

Lo,s (x,ωo) =
∫

H2
i

fr,s (x,ωi ,ωo) · [Li,c (x,ωi) + Li,d (x,ωi)
] · (ωi � Nx) ·∂ωi

(10.204)

This integral is evaluated using a Monte Carlo ray-tracing algorithm with an
importance sampling optimisation, which is based on the specular BRDF fr,s .
Importance sampling is an optimisation technique employed to improve the per-
formance of the Monte Carlo method [Jensen 95c].

“Comninos” — 2005/8/31 — 19:01 — page 417 — #101

Physically Based Lighting and Shading Models and Rendering Algorithms 417

The caustic illumination reflected radiance term, Lo,c (x,ωo), of the outgoing
radiance of Equ. (10.202) is given by

Lo,c (x,ωo) =
∫

H2
i

fr,d (x,ωi ,ωo) ·Li,c (x,ωi) ·(ωi � Nx)·∂ωi (10.205)

When an accurate value for Lo,c is required, then we evaluate this integral using
Monte Carlo integration and the contents of the caustics photon map. When only
an approximate value for Lo,c is required, then we do not evaluate this equation
at all but we rely on the caustics contribution included in the specular radiance
estimate from the global photon map.

Finally, the indirect illumination reflected radiance term, Lo,d (x,ωo), of the
outgoing radiance of Equ. (10.202) is given by

Lo,d (x,ωo) =
∫

H2
i

fr,d (x,ωi ,ωo) ·Li,d (x,ωi) ·(ωi � Nx)·∂ωi (10.206)

This outgoing radiance term represents light that since leaving the light source
has been reflected, at least once, from a diffuse surface, resulting in incoherent
(soft) illumination. When an accurate value for Lo,d is required, then we eval-
uate this integral using Monte Carlo ray tracing. This is done by spawning a
large number of rays, stochastically distributed around the reflection/transmission
direction, and averaging the computed radiance from all the primary estimates.
When only an approximate value for Lo,d is required, then we compute it using a
radiance estimate from the global photon map, which contains the direct, indirect
and caustic illumination contributions.

10.14.2.6.7 Observations

Photon mapping is a very elegant technique that allows us to handle many differ-
ent lighting phenomena and to generate photo-realistic images that are physically
based or at least physically plausible. In conclusion we note that:

• Photon mapping is an elegant rendering technique that provides a complete
global illumination solution for large scene geometries with complex material
properties.

• The photon mapping technique separates the storage of the photons from the
storage of the geometric representation of the scene. With complex scenes this
represents a clear advantage over object-space finite element methods of ren-
dering.

• Any rendering algorithm that uses photon maps must perform a final gather
(aggregation) of light flux which requires a number of expensive near neigh-
bourhood operations.

• Several optimisations exist that speed up the performance of this algorithm sig-
nificantly.

A more detailed description of this technique can be found in Jensen’s book
[Jensen 01b] on which the above discussion is based.

“Comninos” — 2005/8/31 — 19:01 — page 418 — #102

418 Mathematical and Computer Programming Techniques for Computer Graphics

10.14.3 Hybrid Multi-Pass Rendering Algorithms

A promising approach is to use a hybrid algorithm for rendering, which involves
multiple passes. The first pass of such an algorithm adopts an object-space ap-
proach and deals with the diffuse inter-object illumination problem, by comput-
ing and storing the outgoing radiance diffusely reflected from the surfaces of the
scene. The second pass of such an algorithm adopts an image-space approach and
deals with specular inter-object illumination, by accessing the pre-stored object-
space solution and by computing (on the fly) for each pixel the radiance con-
tributed by the specular inter-object illumination, which would be impossible to
compute and store in the first pass.

Such algorithms can be designed to take advantage of the strengths of both
object-space and image-space techniques.

Examples of such multi-pass algorithms are found in [Wallace 87], [Sillion 89],
[Chen 91], [Jensen 96] and [Suykens 99].

References

[Amanatides 84] Amanatides, J. Ray tracing with cones. Proceedings of SIGGRAPH 84.
Computer Graphics, Vol. 18, No. 3, p.p. 129–135, 1984.

[Ashikmin 00a] Ashikmin, M. and Shirley, P. An anisotropic Phong light reflection
model. Technical Report UUCS-00-014, Computer Science Depart-
ment, University of Utah, p.p. 1–11, June 2000.

[Ashikmin 00b] Ashikmin, M. and Shirley, P. An anisotropic phong BRDF model.
Journal of Graphics Tools, Vol. 5, No. 2, p.p. 25–32, 2000.

[Ashikmin 00c] Ashikmin, M., Premoze, S., and Shirley, P. A microfacet-based BRDF
generator, Proceedings of SIGGRAPH 2000, Computer Graphics, ACM
Press/ACM SIGGRAPH/Addison Wesley Longman, p.p. 65–74, 2000.

[Aupperle 93] Aupperle, L. and Hanrahan, P. A hierarchical illumination algorithm
for surfaces with glossy reflection”. Proceedings of SIGGRAPH 93,
Computer Graphics, Vol. 27, No. 4, p.p. 155–162 1993.

[Beckmann 63] Beckmann, P. and Spizzichino, A. The Scattering of Electromagnetic
Waves from Rough Surfaces. Pergamin Press, Oxford, England (1963).

[Bennett 61] Bennett, R. A. and Porteus, J. O. Relation between surface roughness
and specular reflectance at normal incidence, Journal of the Optical
Society of America, Vol. 51, p.p. 123–129, 1961.

[Bentley 79] Bentley, J. L. and Friedman, J. H. Data structures for range searching,
Computing Surveys, Vol. 11, No. 4, p.p. 397–409, 1979.

[Blinn 77] Blinn, J. F. Models of light reflection for computer synthesized pictures.
Proceedings of SIGGRAPH 77, Computer Graphics, Vol. 11, No. 2,
p.p. 192–198, 1977.

[Chen 90] Chen, S. E. Incremental radiosity: An extension of progressive radiosity
to an interactive image synthesis system. Proceedings of SIGGRAPH
90, Computer Graphics, Vol. 24, No. 4, p.p. 135–144, (1990).

[Chen 91] Chen, S. E., Rushmeier, H. E., Miller, G., and Turner, D. A progressive
multi-path method for global illumination, Proceedings of SIGGRAPH
91, Computer Graphics, Vol. 25, No. 4, p.p. 165–174, 1991.

[Clarke 85] Clarke, F. J. J. and Parry, D. J. Helmholz reciprocity: Its Vlvidity and
application to reflectometry, Lighting Research and Technology, Vol.
17, No. 1, p.p. 1–11, 1985.

“Comninos” — 2005/8/31 — 19:01 — page 419 — #103

Physically Based Lighting and Shading Models and Rendering Algorithms 419

[Cohen 93] Cohen, M. F. and Wallace, J. R. Radiosity and Realistic Image
Synthesis, Academic Press, San Diego, CA (1993).

[Cohen 85] Cohen, M. F. and Greenberg, D. P. The hemi-cube: A Rdriosity
solution for complex environments. Proceedings of SIGGRAPH 85,
Computer Graphics, Vol. 19, No. 3, p.p. 31–40, 1985.

[Cook 81] Cook, R. L. and Torrance, K. E. A reflection model for computer
graphics. Proceedings SIGGRAPH 81, Computer Graphics, Vol. 15,
No. 4, p.p. 307–316, 1981.

[Cook 82] Cook, R. L. and Torrance, K. E. A reflection model for computer
graphics. ACM Transactions on Graphics, Vol. 1, No. 1, p.p. 7–24,
1982.

[Cook 84] Cook, R., L., Porter, T. and Carpenter, L. Distributed ray tracing. Pro-
ceedings of SIGGRAPH 84, Computer Graphics, Vol. 18, No. 3, p.p.
137–145, 1984.

[Ditchburn 76] Ditchburn, R. W. Light, Vols. 1 and 2. Academic Press, London
(1976).

[Dorsey 99] Dorsey, J., Edelman, A., Jensen, H. W., Legakis, J., and Pedersen,
H. K. Modelling and rendering of weathered stone. Proceedings of
SIGGRAPH 99, pp. 225–234. Addison-Wesley, Reading, MA (1999).

[Drettakis 97] Drettakis, G. and Sillion, F., X. Interactive update of global illumi-
nation using a line-space hierarchy. Proceedings of SIGGRAPH 97.
Computer Graphics, Vol. 31, No. 4, p.p. 57–64, 1997.

[Duderstadt 79] Duderstadt, J. J. and Martin, W. R. Transport Theory. John Wiley &
Sons, New York (1979).

[Dutré 94] Dutré, Ph. and Willems, Y. D., Importance-Driven Monte Carlo light
tracing. Proceedings of the Fifth Eurographics Workshop on Render-
ing, Darmstadt, Germany, Eurographics Association, p.p. 185–194
(1994).

[Dutré 98] Dutré, Ph. Mathematical Framework and Monte Carlo Algorithms for
Global Illumination in Computer Graphics. Ph.D Thesis, University
of Leuven (1998).

[George 90] George, D. W., Sillion, F. X., and Greenberg, D., P. Radiosity
Redistribution for Dynamic Environments, IEEE, Computer Graphics
and Applications, Vol. 10, No. 4, p.p. 26–34, July 1990.

[Goldstein 71] Goldstein, R. A. and Nagel, R. 3-D Visual Simulation. Simulation,
p.p. 25–31 Jan 1971.

[Goral 84] Goral, C. M., Torrance, K. E., Greenberg, D. P., and Battaile, B. Mod-
eling the interaction of light between diffuse surfaces. Proceedings of
SIGGRAPH 84, Computer Graphics, Vol. 18, No. 3, p.p. 213–222,
1984.

[Hall 89] Hall, R. Illumination and Color in Computer Generated Imagery.
Springer-Verlag, New York (1989).

[Hanrahan 93] Hanrahan, P. and Krueger, W. Reflection from layered surfaces due to
subsurface scattering. Proceedings of SIGGRAPH 93, 165–174, ACM
Press, New York (1993).

[Immel 86] Immel, D. S., Cohen, M. F. and Greenberg, D. P. A radiosity
method for non-diffuse environments. Proceedings of SIGGRAPH 86,
Computer Graphics, Vol. 20, No. 4, p.p. 133–142, 1986.

[Jenkins 76] Jenkins, F. A. and White, H. E. Fundamentals of Optics. McGraw-
Hill, New York (1976).

[Jensen 95a] Jensen, H. W. and Christensen, N. J. Photon maps in bi-directional
Monte Carlo ray tracing of complex objects. Computers & Graphics,
Vol. 19, No. 2, p.p. 215–224, 1995.

“Comninos” — 2005/8/31 — 19:01 — page 420 — #104

420 Mathematical and Computer Programming Techniques for Computer Graphics

[Jensen 95b] Jensen, H. W. and Christensen, N. J. Efficiently rendering shadows
using the photon map. Proceedings of CompuGraphics 95, p.p.
285–291 Dec 1995.

[Jensen 95c] Jensen, H. W. Importance driven path tracing using the photon map.
Proceedings of the Eurographics Rendering Workshop 95, Euro-
graphics Association, p.p. 326– 335, June 1995.

[Jensen 96] Jensen, H. W. Global illumination using photon maps. Proceedings
of the Eurographics Rendering Workshop 1996. Springer-Verlag,
Vienna, p.p. 21–30, 1996.

[Jensen 99] Jensen, H. W., Legakis, J., and Dorsey, J. Rendering of wet mate-
rials, In: C. Lischinski and G. W. Larson (Eds.), Rendering Tech-
niques’99. Springer-Verlag, Vienna (1999).

[Jensen 01a] Jensen, H. W., Marschner, S., Levoy, M., and Hanrahan, P. A
practical model for subsurface light transport. Proceedings of
SIGGRAPH 2001, p.p. 399–408. Addison-Wesley, Reading MA
(2001).

[Jensen 01b] Jensen, H. W. Realistic Image Synthesis using Photon Mapping. A.
K. Peters Ltd., Natick, Massachusetts (2001).

[Kajiya 86] Kajiya, J. T. The rendering equation. Proceedings of SIGGRAPH
86, Computer Graphics, Vol. 20, No. 4, p.p. 143–150, 1986.

[Lafortune 93] Lafortune, E. P. and Willems, Y. D. Bi-directional path tracing.
Proceedings of the International Computer Graphics and Visual-
isation Techniques, CompuGraphics 93. Avlor, Portugal, p.p. 145–
153 1993.

[Lafortune 94] Lafortune, E. and Willems, Y. Using the modified Phong
reflectance model for physically based rendering, Technical Report
CW 194, Department of Computer Science, K.U., Leuven, p.p. 1–
18, Nov 1994.

[Lafortune 97] Lafortune, E. P. F., Foo, S. C., Torrance, K. E., and Greenberg D. P.
Non-linear approximation of reflectance functions. Proceedings of
SIGGRAPH 97, Computer Graphics, No. 31, p.p. 117–126, 1997.

[Lewis 93] Lewis, R. R. Making shaders more physically plausible.
Proceedings of the Fourth Eurographics Workshop on Rendering,
Paris, France. Eurographics Series EG 93 RW, pp. 47–62 June
1993.

[Metropolis 49] Metropolis, N. and Ulam, S. The Monte Carlo method, Journal of
the American Statistical Association, Vol. 44, No. 247, p.p. 335–
341, 1949.

[Metropolis 53] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A.
H., and Teller, E. Equations of state calculations by fast computing
machines, Journal of Chemical Physics 21, p.p. 1087–1091, 1953.

[Neumann 99a] Neumann, L., Neumann, A., and Szirmay-Kalos L. Compact
metallic reflectance models, Computer Graphics Forum (Euro-
graphics ’99). The Eurographics Association and Blackwell Pub-
lishers, Vol. 18, No. 3, p.p. 161–172, 1999.

[Neumann 99b] Neumann, L., Neumann, A., and Szirmay-Kalos L. Reflectance
models with fast importance sampling, Computer Graphics Forum,
Vol. 18, No. 4, p.p. 249–265, 1999.

[Nicodemus 77] Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginburg, I. W.,
and Limperis, T. Geometric considerations and nomenclature for
reflectance, Monograph 161, National Bureau of Standards (US)
Oct 1977.

“Comninos” — 2005/8/31 — 19:01 — page 421 — #105

Physically Based Lighting and Shading Models and Rendering Algorithms 421

[Nishita 85] Nishita, T. and Nakamae, E. Continuous tone representation of three-
dimensional objects taking account of shadows and inter-reflection.
Proceedings of SIGGRAPH 85, Computer Graphics, Vol. 19, No. 3,
p.p. 23–30, 1985.

[Palik 85] Palik, E. D. Handbook of Optical Constants of Solids. Academic
Press, New York, NY (1985).

[Pharr 00] Pharr, M. and Hanrahan, P. Monte Carlo evaluation of non-linear
scattering equations for subsurface reflection. Proceedings of SIG-
GRAPH 2000, pp. 75–84. Addison-Wesley, Reading, MA (2000).

[Sancer 69] Sancer, M. I. Shadow-corrected electromagnetic scattering from a
randomly rough surface, IEEE Transactions on Antennas and Prop-
agation, Vol. 17, No. 5, p.p. 577–585, 1969.

[Schlick 93] Schlick, C. A customizable reflectance model for everyday
rendering. Proceedings of the Fourth Eurographics Workshop on
Rendering. Series EG 93 RW. Paris, France, p.p. 73–84 June 1993.

[Shirley 91] Shirley, P. Physically Based Lighting Calculations for Computer
Graphics, Ph.D Thesis, University of Illinois at Urbana Champaign
Jan 1991.

[Sillion 89] Sillion, F. and Puech, C. A general two-pass method integrating spec-
ular and diffuse reflection. Proceedings of SIGGRAPH 89, Computer
Graphics, Vol. 23, No. 4, p.p. 335–344, 1989.

[Sillion 91] Sillion, F., Avro, J., Westin, S., and Greenberg, D. P. A global illumi-
nation solution for general reflectance distributions. Proceedings of
SIGGRAPH 91, Computer Graphics, Vol. 25, No. 4, p.p. 187–196
1991.

[Stamminger 98] Stamminger, M., Slusallek, Ph., and Seidel, P. H. Three point cluster-
ing for radiance computations. Proceedings of the Eurographics
Rendering Workshop 98. Eurographics Association, p.p. 211–222,
1998.

[Suykens 99] Suykens, F. and Willems, Y. D. Weighted multi-pass method for
global illumination. Proceedings of Eurographics 99, Computer
Graphics Forum, Vol. 18, No. 3, p.p. 209–220, 1999.

[Torrance 67] Torrance, K. E. and Sparrow, E. M. Theory of off-specular reflection
from roughened surfaces, Journal of the Optical Society of America,
Vol. 57, No. 9, p.p. 1105–1114, 1967.

[Veach 94] Veach, E. and Guibas, L. J. Bi-directional estimates for light trans-
port. Proceedings of the Fifth Eurographics Workshop on Rendering,
Darmstadt, Germany. Eurographics Association, p.p. 147–162 1994.

[Veach 97a] Veach, E. Robust Monte Carlo Methods for Light Transport. Ph.D
Thesis, Department of Computer Science, Stanford University
(1997).

[Veach 97b] Veach, E. and Guibas, L. J. Metropolis light transport. Proceedings
of SIGGRAPH 97, Computer Graphics, Vol. 31, No. 4, p.p. 65–76,
1997.

[Wallace 87] Wallace, J. R., Cohen, M. F., and Greenberg, D. P. A two-pass
solution to the rendering equation: A synthesis of ray tracing
and radiosity methods. Proceedings of SIGGRAPH 97, Computer
Graphics, Vol. 21, No. 4, p.p. 311–320, 1987.

[Whitted 80] Whitted, T. An improved illumination model for shaded display.
Communications of the ACM, Vol. 23, No. 6, p.p. 343–349, 1980.

[WWW 1] http://www.luxpop.com

http://www.luxpop.com

“Comninos” — 2005/8/31 — 18:23 — page 423 — #1

Appendix 1

A Simple Vector Algebra C Library

In this Appendix we examine a simple C library that implements all the vector
algebra operations we have defined in Chapter 2.

#include <stdio.h>
#include <math.h>

/*--*/

/*
* Three-dimensional vectors are stored as three doubles and a

* single byte header which is a vector type indicator.

*
* Temporary vectors have their type indicator set to 1 and

* Permanent vectors have their type indicator set to 2.

*
* All vector operations return temporary vectors so they can be

* nested without memory leakage. Each vector function checks its

* vector parameters and destroys them if they are found to be

* temporary.

*
* In its current implementation this library deals with 3D vectors

* and all vector components are stored as doubles.

*/

#define temporary_vector 1
#define permanent_vector 2

typedef double *vector_t;
typedef unsigned char *header_t;

/*
* Key to global constants:

*
* vector_length_bytes - Length of the vector components in

* bytes.

*
* vt_length_bytes - Length of the header excluding the

* filler bytes.

423

“Comninos” — 2005/8/31 — 18:23 — page 424 — #2

424 Mathematical and Computer Programming Techniques for Computer Graphics

* filler_length_bytes - Length of the filler in bytes.

*
* vt_displacement_bytes - Header displacement relative to

* first component of the vector.

* vector_displacement_bytes - Displacement of first vector

* component relative to the start of

* memory chunk allocated for storing

* the vector.

*/

#define vector_length_bytes sizeof(double)*3
#define vt_length_bytes sizeof(char)

#if (0)
/*
* Here the header is placed after the elements of the vector.

* This is the most memory efficient solution, as it requires

* only 25 bytes and no padding bytes.

*/

#define filler_length_bytes (0)
#define vt_displacement_bytes (sizeof(double)*3)
#define vector_displacement_bytes (0)
#endif

#if (1)
/*
* Here the header is placed before the elements of the vector.

* This method necessitates the introduction of some padding bytes.

* The filler bytes are need for the alignment of doubles by the

* HP C compiler and other compilers. Such compilers assume that a

* double starts at an address that is a multiple of 8 bytes. Thus,

* as our header is 1 byte long we must have a filler of 7 bytes.

* This method of storage requires 32 bytes to store a vector.

*/

#define filler_length_bytes (7)
#define vt_displacement_bytes (-1)
#define vector_displacement_bytes (8)
#endif

vector_t Vnew(char *function_name, int vector_type)
{
/*
* Create a new vector and return the address of its first element.

* For internal use only!

* function_name is the name the function that called this function.

*/
vector_t v; /* pointer to vector components */
header_t vt; /* pointer to vector type */

“Comninos” — 2005/8/31 — 18:23 — page 425 — #3

A Simple Vector Algebra C Library 425

char *a;

a = (char *) malloc(vector_length_bytes + vt_length_bytes
+ filler_length_bytes);

if (!a)
{
printf("%s: can not malloc vector!\n", function_name);
return(NULL);

}

a = a + vector_displacement_bytes;
v = (vector_t) a;

v[0] = 0.0;
v[1] = 0.0;
v[2] = 0.0;

vt = ((header_t) v) + vt_displacement_bytes;

*vt = (unsigned char) vector_type;

return(v);

} /* Vnew */

/*--*/

vector_t Vtemp(double x, double y, double z)
{
/*
* Create a temporary vector with the given components and return

* the address of its first element.

*/

vector_t v; /* pointer to vector components */

v = Vnew("Vtemp", temporary_vector);

if (v)
{
v[0] = x;
v[1] = y;
v[2] = z;

}

return(v);

} /* Vtemp */

/*--*/
vector_t Vperm(double x, double y, double z)
{

“Comninos” — 2005/8/31 — 18:23 — page 426 — #4

426 Mathematical and Computer Programming Techniques for Computer Graphics

/*
* Create a permanent vector with the given components and return

* the address of its first element.

*/

vector_t v; /* pointer to vector components */

v = Vnew("Vperm", permanent_vector);

if (v)
{
v[0] = x;
v[1] = y;
v[2] = z;
}

return(v);

} /* Vperm */

void Vfree(vector_t v)
{
/*
* Destroy a vector.

*
* Expects the address of the first element of the vector.

*/

if (!v)
{
printf("Vfree: invalid vector parameter!\n");

return;
}

free(((char *) v) - vector_displacement_bytes);

} /* Vfree */

/*--*/

void Vfree_if_temp(vector_t v)
{
/*
* Destroy a temporary vector.

*
* Expects the address of the first element of the vector.

*/

header_t vt; /* pointer to vector type */

if (!v)
{
printf("Vfree_if_temp: invalid vector parameter!\n");

“Comninos” — 2005/8/31 — 18:23 — page 427 — #5

A Simple Vector Algebra C Library 427

return;
}

vt = ((header_t) v) + vt_displacement_bytes;

if (*vt == temporary_vector) free(((char *) v)
- vector_displacement_bytes);

} /* Vfree_if_temp */

/*--*/

vector_t Vsave(vector_t v)
{
/*
* Convert a temporary vector into a permanent vector.

*/

header_t vt; /* pointer to vector type */

if (!v)
{
printf("Vsave: invalid vector parameter!\n");
return(NULL);

}

vt = ((header_t) v) + vt_displacement_bytes;

*vt = (unsigned char) permanent_vector;

return(v);

} /* Vsave */

/*--*/

double Vmagnitude(vector_t v)
{
/*
* Compute the magnitude of a vector.

*/

double m;

if (!v)
{
printf("Vmagnitude: Invalid vector parameter!\n");
return(0.0);

}

m = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);

Vfree_if_temp(v);

return(m);

“Comninos” — 2005/8/31 — 18:23 — page 428 — #6

428 Mathematical and Computer Programming Techniques for Computer Graphics

} /* Vmagnitude */

/*--*/

vector_t Vnormalise(vector_t vi)
{
/*
* Return the normalised version of the input vector.

*/

vector_t v; /* pointer to output vector components */
double m; /* magnitude of the input vector */

if (!vi)
{
printf("Vnormalise: invalid vector parameter!\n");
return(NULL);
}

v = Vnew("Vnormalise", temporary_vector);

if (v)
{
m = sqrt(vi[0]*vi[0] + vi[1]*vi[1] + vi[2]*vi[2]);

if (m <= 0) m = 1;

v[0] = vi[0] / m;
v[1] = vi[1] / m;
v[2] = vi[2] / m;
}

Vfree_if_temp(vi);

return(v);

} /* Vnormalise */

/*--*/

vector_t Vnegate(vector_t vi)
{
/*
* Return the negated version of the input vector.

*/
vector_t v; /* pointer to output vector components */

if (!vi)
{
printf("Vnegate: invalid vector parameter!\n");
return(NULL);
}

v = Vnew("Vnegate", temporary_vector);

“Comninos” — 2005/8/31 — 18:23 — page 429 — #7

A Simple Vector Algebra C Library 429

if (v)
{
v[0] = -vi[0];
v[1] = -vi[1];
v[2] = -vi[2];

}

Vfree_if_temp(vi);

return(v);

} /* Vnegate */

/*--*/

vector_t Vadd(vector_t v1, vector_t v2)
{
/*
* Add two vectors and return their sum (v1 + v2)

*/

vector_t v; /* pointer to vector components */

if ((!v1) || (!v2))
{
printf("Vadd: invalid vector parameter!\n");
return(NULL);

}

v = Vnew("Vadd", temporary_vector);

if (v)
{
v[0] = v1[0] + v2[0];
v[1] = v1[1] + v2[1];
v[2] = v1[2] + v2[2];

}

Vfree_if_temp(v1);
Vfree_if_temp(v2);

return(v);

} /* Vadd */

/*--*/

vector_t Vsubtract(vector_t v1, vector_t v2)
{
/*
* Subtract one vector from another and return their difference

* (v1 - v2).

*/

“Comninos” — 2005/8/31 — 18:23 — page 430 — #8

430 Mathematical and Computer Programming Techniques for Computer Graphics

vector_t v; /* pointer to vector components */

if ((!v1) || (!v2))
{
printf("Vsubtract: invalid vector parameter!\n");
return(NULL);
}

v = Vnew("Vadd", temporary_vector);

if (v)
{
v[0] = v1[0] - v2[0];
v[1] = v1[1] - v2[1];
v[2] = v1[2] - v2[2];
}

Vfree_if_temp(v1);
Vfree_if_temp(v2);

return(v);

} /* Vsubtract */

/*--*/

vector_t Vproduct_by_scalar(vector_t vi, double s)
{
/*
* Return the product of the input vector by a scalar.

*/

vector_t v; /* pointer to output vector components */

if (!vi)
{
printf("Vproduct_by_scalar: invalid vector parameter!\n");
return(NULL);
}

v = Vnew("Vproduct_by_scalar", temporary_vector);

if (v)
{
v[0] = vi[0] * s;
v[1] = vi[1] * s;
v[2] = vi[2] * s;
}

Vfree_if_temp(vi) ;
return(v);

} /* Vproduct_by_scalar */

“Comninos” — 2005/8/31 — 18:23 — page 431 — #9

A Simple Vector Algebra C Library 431

/*--*/

double Vdot_product(vector_t v1, vector_t v2)
{
/*
* Compute the dot product of the two input vectors.

*/

double dp; /* dot product */

if ((!v1) || (!v2))
{
printf("Vdot_product: invalid vector parameter!\n");
return(0.0);

}

dp = v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];

Vfree_if_temp(v1);
Vfree_if_temp(v2);

return(dp);

} /* Vdot_product */

/*--*/

vector_t Vcross_product(vector_t v1, vector_t v2)
{
/*
* Compute the cross product of the two input vectors.

*/

vector_t v; /* pointer to vector components */

if ((!v1) || (!v2))
{
printf("Vcross_product: invalid vector parameter!\n");
return(NULL);

}

v = Vnew("Vcross_product", temporary_vector);

if (v)
{
v[0] =v1[1] * v2[2] - v1[2] * v2[1];
v[1] =v1[2] * v2[0] - v1[0] * v2[2];
v[2] =v1[0] * v2[1] - v1[1] * v2[0];

}
Vfree_if_temp(v1);
Vfree_if_temp(v2);

return (v);

“Comninos” — 2005/8/31 — 18:23 — page 432 — #10

432 Mathematical and Computer Programming Techniques for Computer Graphics

} /* Vcross_product */

/*--*/

double Vtriple_scalar_product(vector_t v1, vector_t v2, vector_t v3)
{
/*
* Compute the triple scalar product of the three input vectors.

*/

double tsp; /* triple scalar product */

if ((!v1) || (!v2) || (!v3))
{
printf("Vtriple_scalar_product: invalid vector parameter!\n");
return(0.0);
}

tsp =v1[0] * (v2[1] * v3[2] - v2[2] * v3[1]) +
v1[1] * (v2[2] * v3[0] - v2[0] * v3[2]) +
v1[2] * (v2[0] * v3[1] - v2[1] * v3[0]);

Vfree_if_temp(v1);
Vfree_if_temp(v2);
Vfree_if_temp(v3);

return(tsp);

} /* Vtriple_scalar_product */

/*--*/

vector_t Vtriple_vector_product_1(vector_t v1, vector_t v2,
vector_t v3)

{
/*
* Compute the triple vector product (v1 x v2) x v3 of the three

* input vectors.

*/

vector_t v; /* pointer to components of the resulting vector */

if ((!v1) || (!v2) || (!v3))
{
printf("Vtriple_vector_product_1: invalid vector parameter!\n");
return(NULL);
}

v = Vcross_product(v1, v2);
v = Vcross_product(v, v3);

return(v);
} /* Vtriple_vector_product_1 */

“Comninos” — 2005/8/31 — 18:23 — page 433 — #11

A Simple Vector Algebra C Library 433

/*--*/

vector_t Vtriple_vector_product_2(vector_t v1, vector_t v2,
vector_t v3)

{
/*
* Compute the triple vector product v1 x (v2 x v3) of the three

* input vectors.

*/

vector_t v; /* pointer to components of the resulting vector */

if ((!v1) || (!v2) || (!v3))
{
printf("Vtriple_vector_product_2: invalid vector parameter!\n");
return(NULL);

}

v = Vcross_product(v2, v3);
v = Vcross_product(v1, v);

return(v);

} /* Vtriple_vector_product_2 */

/*--*/

double Vscalar_product_of_4_vectors(vector_t v1,
vector_t v2,
vector_t v3,
vector_t v4
)

{
/*
* Compute the scalar product of the four input vectors

* (v1 x v2) . (v3 x v4).

*/

vector_t va, vb; /* pointers to components of the temp cross
product vectors */

if ((!v1) || (!v2) || (!v3) || (!v4))
{
printf("Vscalar_product_of_4_vectors: invalid vector parameter!\n");
return(0.0);

}

va = Vcross_product(v1, v2);
vb = Vcross_product(v3, v4);

return(Vdot_product(va, vb));
} /* Vscalar_product_of_4_vectors */

“Comninos” — 2005/8/31 — 18:23 — page 434 — #12

434 Mathematical and Computer Programming Techniques for Computer Graphics

/*--*/

vector_t Vvector_product_of_4_vectors(vector_t v1,
vector_t v2,
vector_t v3,
vector_t v4
)

{
/*
* Compute the vector product of the four input vectors

* (v1 x v2) x (v3 x v4).

*/

vector_t va, vb; /* pointers to components of the temp cross
product vectors */

if ((!v1) || (!v2) || (!v3) || (!v4))
{
printf("Vvector_product_of_4_vectors: invalid vector parameter!\n");
return(NULL);
}

va = Vcross_product(v1, v2);
vb = Vcross_product(v3, v4);

return(Vcross_product(va, vb));

} /* Vvector_product_of_4_vectors */

/*--*/

void Vprint_debug(char *name, vector_t v)
{
/*
* Print the vector with out disposing of temporary vectors.

*/

header_t vt;

if (!v)
{
printf("Vprint_debug: invalid vector parameter!\n");
return;
}

printf("%s=[%f, %f, %f]", name, v[0], v[1], v[2]);

vt = ((header_t) v) + vt_displacement_bytes;
if (*vt == temporary_vector) printf(" temporary vector\n");
else printf(" permanent vector\n");

“Comninos” — 2005/8/31 — 18:23 — page 435 — #13

A Simple Vector Algebra C Library 435

} /* Vprint_debug */

/*--*/

void Vprint(char * name , vector_t v)
{
/*
* Print the vector and dispose of it if it is temporary.

*/

if (!v)
{
printf("Vprint: invalid vector parameter!\n");
return;

}

printf("%s=[%f, %f, %f]\n", name, v[0], v[1], v[2]);

Vfree_if_temp(v);

} /* Vprint */

/*--*/

/*
* Test main program.

*/

main()
{
vector_t v1, v2, v3;

v1 = Vtemp(1.5, 2.5, 3.5);
Vprint_debug("v1" , v1);

v1 = Vsave(v1);
Vprint_debug("v1" , v1);

v2 = Vperm(3.5, 2.5, 1.5);
Vprint_debug("v2" , v2);

Vprint("v1+v2 ", Vadd(v1, v2));

Vprint("v1-v2", Vsubtract(v1, v2));

v3 = Vsave(Vnegate(v2));
Vprint("-v3", v3);

v3 = Vsave(Vnormalise(v3));
Vprint("normalise(v3)", v3);
printf("|v3|=%f\n", Vmagnitude(v3));
printf("[4,0,-1].[2,-1,3]=%f\n", Vdot_product(Vtemp(4,0,-1),

Vtemp(2,-1,3)));

“Comninos” — 2005/8/31 — 18:23 — page 436 — #14

436 Mathematical and Computer Programming Techniques for Computer Graphics

Vprint("[2,1,0]x[2,-1,1]", Vcross_product(Vtemp(2,1,0),
Vtemp(2,-1, 1)));

printf("([2,-3,4]x[1,3,-1]).[3,-1,2]=%f\n",
Vtriple_scalar_product(Vtemp(2,-3,4),Vtemp(1,3,-1),
Vtemp(3,-1,2))

);

Vprint("([3,-2,1]x[-1,3,4])x[2,1,-3]",
Vtriple_vector_product_1(Vtemp(3,-2,1),Vtemp(-1,3,4),
Vtemp(2,1,-3))

);

Vprint("[3,-2,1]x([-1,3,4]x[2,1, -3])",
Vtriple_vector_product_2(Vtemp(3,-2,1),Vtemp(-1,3,4),
Vtemp(2,1,-3))

);

printf("([3,-2,1]x[-1,3,4]).([2,1,-3]x[-2,1,4])]=%f\n",
Vscalar_product_of_4_vectors(Vtemp(3,-2,1), Vtemp(-1,3,4),
Vtemp(-1,3,4), Vtemp(-2,-1,2))

);

Vprint("([3,-2,1]x[-1,3,4])x([2,1,-3]x[-2,1,4])",
Vvector_product_of_4_vectors(Vtemp(3,-2,1), Vtemp(-1,3,4),
Vtemp(2,1,-3), Vtemp(-2,-1,2))

);

Vfree(v1);
Vfree(v2);
Vfree(v3);
}

The above test main program produces the following results:

v1=[1.500000, 2.500000, 3.500000] temporary vector
v1=[1.500000, 2.500000, 3.500000] permanent vector
v2=[3.500000, 2.500000, 1.500000] permanent vector
v1+v2=[5.000000, 5.000000, 5.000000]
v1-v2=[-2.000000, 0.000000, 2.000000]
-v3=[-3.500000, -2.500000, -1.500000]
normalise(v3) = [-0.768350, -0.548821, -0.329293]
|v3|=1.000000
[4,0,-1].[2,-1,3]=5.000000
[2,1,0]x[2,-1,1]=[1.000000, -2.000000, -4.000000]
([2,-3,4]x[1,3,-1]).[3,-1,2]=-15.000000
([3,-2,1]x[-1,3,4])x[2,1,-3]=[32.000000, -19.000000, 15.000000]
[3,-2,1]x([-1,3,4]x[2,1,-3])=[9.000000, 8.000000, -11.000000]
([3,-2,1]x[-1,3,4]).([2,1,-3]x[-2,1,4])]=-15.000000
([3,-2,1]x[-1,3,4])x([2,1,-3]x[-2,1,4])=[-14.000000, -7.000000,

-35.000000]

“Comninos” — 2005/8/31 — 18:23 — page 437 — #15

Appendix 2

A Simple Matrix Algebra C Library

In this appendix we examine a simple C library that implements all the matrix
algebra operations we have defined in Chapter 3.

#include <stdio.h>
#include <math.h>
#include <string.h>

/*--*/

#define MOrder 3 /* Matrix Order */

typedef double matrix_t[MOrder][MOrder];

typedef struct {
matrix_t dummy_matrix;
} matrix_structure_t, *matrix_ptr_t;

#define M_copy_matrix(src, dst)\

*((matrix_ptr_t)(dst)) = *((matrix_ptr_t)(src))

typedef double vector_t[MOrder];

typedef struct {
vector_t dummy_vector;
} vector_structure_t, *vector_ptr_t;

#define M_copy_vector(src, dst)\

*((vector_ptr_t)(dst)) = *((vector_ptr_t)(src))

#define M_round_to_zero(x) ((fabs(x) > le-33) ? (x) : 0.0)

/*--*/

extern void M_print_matrix(char *name, matrix_t m);
extern void M_print_sub_matrix(char *name, matrix_t m, int order);

437

“Comninos” — 2005/8/31 — 18:23 — page 438 — #16

438 Mathematical and Computer Programming Techniques for Computer Graphics

/*--*/

void M_set_identity_matrix(matrix_t m)
{
int r, c;

for (r = 0; r < MOrder; r++)
for (c = 0; c < MOrder; c++)
if (r == c) m[r][c] = 1.0;
else m[r][c] = 0.0;

} /* M_set_identity_matrix */

/*--*/

void M_set_rc_reversal_matrix(matrix_t m)
{
int r, c;

for (r = 0; r < MOrder; r++)
for (c = 0; c < MOrder; c++)
if (r == (MOrder - (c + 1))) m[r][c] = 1.0;
else m[r][c] = 0.0;

} /* M_set_rc_reversal_matrix */

/*--*/

void M_set_scalar_matrix(matrix_t m, double s)
{
int r, c;

for (r = 0; r < MOrder; r++)
for (c = 0; c < MOrder; c++)
if (r == c) m[r][c] = s;
else m[r][c] = 0.0;

} /* M_set_scalar_matrix */

/*--*/

void M_set_zero_matrix(matrix_t m)
{
int r, c;

for (r = 0; r < MOrder; r++)
for (c = 0; c < MOrder; c++)
m[r][c] = 0.0;

} /* M_set_zero_matrix */

/*--*/

“Comninos” — 2005/8/31 — 18:23 — page 439 — #17

A Simple Matrix Algebra C Library 439

void M_transpose_matrix(matrix_t m, matrix_t tm)
{
int r, c;

for (r = 0; r < MOrder; r++)
for (c = 0; c < MOrder; c++)
tm[c][r] = m[r][c];

} /* M_transpose_matrix */

/*--*/

void M_matrix_add(matrix_t m1, matrix_t m2, matrix_t m3)
{
int r, c;

for (r = 0; r < MOrder; r++)
for (c = 0; c < MOrder; c++)
m3[r][c] = m1[r][c] + m2[r][c];

} /* M_matrix_add */

/*--*/

void M_matrix_subtract(matrix_t m1, matrix_t m2, matrix_t m3)
{
int r, c;

for (r = 0; r < MOrder; r++)
for (c = 0; c < MOrder; c++)
m3[r][c] = m1[r][c] - m2[r][c];

} /* M_matrix_subtract */

/*--*/

void M_matrix_by_scalar(matrix_t m1, double s, matrix_t m2)
{
int r, c;

for (r = 0; r < MOrder; r++)
for (c = 0; c < MOrder; c++)
m2[r][c] = m1[r][c] * s;

} /* M_matrix_by_scalar */

/*--*/

double M_dot_product(vector_t v1, vector_t v2)
{
double dp;
int e;

“Comninos” — 2005/8/31 — 18:23 — page 440 — #18

440 Mathematical and Computer Programming Techniques for Computer Graphics

dp = 0;
for (e = 0; e < MOrder; e++)
dp += v1[e] * v2[e];

return(dp);

} /* M_dot_product */

/*--*/

void M_tensor_product(vector_t v1, vector_t v2, matrix_t m)
{
int r, c;

for (r = 0; r < MOrder; r++)
for (c = 0; c < MOrder; c++)
m[r][c] = v1[r] * v2[c];

} /* M_tensor_product */

/*--*/

void M_matrix_by_vector(matrix_t m, vector_t v1, vector_t v2)
{
int r, c;

for (r = 0; r < MOrder; r++)
{
v2[r] = 0;

for (c = 0; c < MOrder; c++)
v2[r] += m[r][c] * v1[c];

}

} /* M_matrix_by_vector */

/*--*/

void M_vector_by_matrix(vector_t v1, matrix_t m, vector_t v2)
{
int r, c;

for (c = 0; c < MOrder; c++)
{
v2[c] = 0;

for (r =0; r < MOrder; r++)
v2[r] += v1[c] * m[r][c];

}

} /* M_vector_by_matrix */

/*--*/

“Comninos” — 2005/8/31 — 18:23 — page 441 — #19

A Simple Matrix Algebra C Library 441

void M_matrix_multiply(matrix_t m1, matrix_t m2, matrix_t m3)
{
int r1, c1, c2;

for (r1 = 0; r1 < MOrder; r1++)
for (c2 = 0; c2 < MOrder; c2++)
{
m3[r1][c2] = 0.0;

for (c1 =0; c1 < MOrder; c1++)
m3[r1][c2] += m1[r1][c1] * m2[c1][c2];

}

} /* M_matrix_multiply */

/*--*/

void M_minor_matrix(matrix_t m, int order, int i, int j,
matrix_t mm)

{
int r, c, mr, mc;

mr = -1;

for (r = 0; r < order; r++)
if (r != i)
{
mr++;
mc = -1;

for (c = 0; c < order; c++)
if (c != j)
{
mc++;
mm[mr][mc] = m[r][c];
}

}
} /* M_minor_matrix */

/*--*/

double M_determinant(matrix_t m, int order)
{
matrix_t mm;
double d;
int r;

if (order == 1) d = m[0][0];
else
{
d = 0;

for (r = 0; r < order; r++)

“Comninos” — 2005/8/31 — 18:23 — page 442 — #20

442 Mathematical and Computer Programming Techniques for Computer Graphics

{
M_minor_matrix(m, order, r, 0, mm);

d = d + pow(-1.0, (double) r) * m[r][0] *
M_determinant(mm, order-1);

}
}

return(d);

} /* M_determilnant */

/*--*/

void M_cofactor_matrix(matrix_t m, matrix_t cm)
{
matrix_t mm;
int r, c;
for (r = 0; r < MOrder; r++)
for (c = 0; c < MOrder; c++)
{
M_minor_matrix(m, MOrder, r, c, mm);

cm[r][c] = pow(-1.0, (double) (r+c)) * M_determinant(mm, MOrder-1);
}

} /* M_cofactor_matrix */

/*--*/

void M_adjugate_matrix(matrix_t m, matrix_t am)
{
matrix_t cm;

M_cofactor_matrix(m, cm);
M_transpose_matrix(cm, am);

} /* M_adjugate_matrix */

/*--*/

void M_inverse_matrix(matrix_t m, matrix_t im)
{
matrix_t am;
double d;
int r, c;

d = M_determinant(m, MOrder);

if (fabs(d) > 0.0)
{
M_adjugate_matrix(m, am);

for (r = 0; r < MOrder; r++)
for (c = 0; c < MOrder; c++)

“Comninos” — 2005/8/31 — 18:23 — page 443 — #21

A Simple Matrix Algebra C Library 443

im[r][c] = am[r][c] / d;
}

else
{
printf("M_inverse_matrix: Input matrix is singular!\n");

}
} /* M_inverse_matrix */

/*--*/

void M_solve_system(matrix_t A, vector_t C, vector_t X)
{
matrix_t im;
int r, c;

M_set_identity_matrix(im);
M_inverse_matrix(A, im);

for (r = 0; r < MOrder; r++)
{
X[r] = 0;

for (c = 0; c < MOrder; c++)
X[r] += im[r][c] * C[c];

}
} /* M_solve_system */

/*--*/

void M_print_matrix(char *name, matrix_t m)
{
char fs[512];
int r, c, l, ln;

l = strlen(name);
ln = (MOrder - 1) / 2;
sprintf(fs, "%%%ds", l);

for (r =0; r < MOrder; r++)
{
if (r != ln)
{
printf(fs, " ");
printf(" |");
}
else
{
printf(fs, name);
printf("=|");
}
for (c = 0; c < MOrder; c++)
printf(" % e", M_round_to_zero(m[r][c]));

“Comninos” — 2005/8/31 — 18:23 — page 444 — #22

444 Mathematical and Computer Programming Techniques for Computer Graphics

printf(" |\n");
}

printf("\n");

} /* M_print_matrix */

/*--*/

void M_print_sub_matrix(char *name, matrix_t m, int order)
{
char fs[512];
int r, c, l, ln;

l = strlen(name);
ln = (order - 1) / 2;
sprintf(fs, "%%%ds", l);

for (r =0; r < order; r++)
{
if (r != ln)
{
printf(fs, " ");
printf(" |");

}
else
{
printf(fs, name);
printf("=|");

}
for (c = 0; c < order; c++)
printf(" % e", M_round_to_zero(m[r][c]));

printf(" |\n");
}

printf("\n");

} /* M_print_sub_matrix */

/*--*/

void M_print_vector(char *name, vector_t v)
{
int e;

printf("%s=[", name);

for (e = 0; e < MOrder; e++)
printf(" %e", M_round_to_zero(v[e]));

printf("]\n\n");

} /* M_print_vector */

“Comninos” — 2005/8/31 — 18:23 — page 445 — #23

A Simple Matrix Algebra C Library 445

/*--*/

void M_print_sub_vector(char *name, vector_t v, int order)
{
int e;

printf("%s=[", name);

for (e = 0; e < order; e++)
printf(" %e", M_round_to_zero(v[e]));

printf("]\n\n");

} /* M_print_sub_vector */

/*--*/

/*
* Test main program.

*/

main ()
{
int i, j;
char s[25];
matrix_t a, b, c;

matrix_t test = {
{1.0, 2.0, 3.0},
{4.0, 5.0, 6.0),
{7.0, 8.0, 9.0}
};

matrix_t test_2 = {
{1.0, 2.0, 3.0},
{1.0, 0.0, 1.0},
{1.0, 1.0, 1.0}

};
matrix_t A = {

{3.0, 2.0, 1.0},
{2.0, 3.0, 1.0),
{1.0, 2.0, 3.0}

};
vector_t C = {39.0, 34.0, 26.0};
vector_t X;

M_set_identity_matrix(a);
M_set_zero_matrix(b);

M_copy_matrix(a, b);
M_print_matrix("b", b);

M_set_rc_reversal_matrix(a);
M_print_matrix("a", a);

“Comninos” — 2005/8/31 — 18:23 — page 446 — #24

446 Mathematical and Computer Programming Techniques for Computer Graphics

M_print_matrix("original matrix", test);
M_set_rc_reversal_matrix(b);

M_matrix_multiply(test, b, c);
M_print_matrix("column reversed matrix", c);

M_matrix_multiply(b, test, c);
M_print_matrix("row reversed matrix", c);

M_transpose_matrix(test, c);
M_print_matrix("transposed matrix", c);

M_print_sub_matrix("sub matrix", test, 2);

M_print_matrix("original matrix", test);
for (i = 0; i < MOrder; i++)
for (j = 0; j < MOrder; j++)
{
M_minor_matrix(test, MOrder, i, j, c);
sprintf(s, "minor[d][d] matrix", i, j);
M_print_sub_matrix(s, c, MOrder-1);
}

M_set_identity_matrix(a);
M_print_matrix("a", a);
printf("|a|=%f\n", M_determinant(a, MOrder));

M_print_matrix("test_2", test_2);
printf("|test_2|=%f\n\n", M_determinant(test_2, MOrder));

M_set_identity_matrix(a);
M_print_matrix("a", a);
M_inverse_matrix(a, b);
M_print_matrix("aˆ(-1)", b);
M_inverse_matrix(b, c);
M_print_matrix("(a"(-1))"(-!)", c);

M_print_matrix("A", A);
M_print_vector("C", C);
M_solve_system(A, C, X);
M_print_vector("Aˆ(-l)*C", X);
}

The above test main program produces the following results:

| 1.000000e+00 0.000000e+00 0.000000e+00 |
b=| 0.000000e+00 1.000000e+00 0.000000e+00 |

| 0.000000e+00 0.000000e+00 1.000000e+00 |

| 0.000000e+00 0.000000e+00 1.000000e+00 |
a=| 0.000000e+00 1.000000e+00 0.000000e+00 |

| 1.000000e+00 0.000000e+00 0.000000e+00 |

“Comninos” — 2005/8/31 — 18:23 — page 447 — #25

A Simple Matrix Algebra C Library 447

| 1.000000e+00 2.000000e+00 3.000000e+00 |
original matrix=| 4.000000e+00 5.000000e+00 6.000000e+00 |

| 7.000000e+00 8.000000e+00 9.000000e+00 |

| 3.000000e+00 2.000000e+00 1.000000e+00 |
column reversed matrix=| 6.000000e+00 5.000000e+00 4.000000e+00 |

| 9.000000e+00 8.000000e+00 7.000000e+00 |

| 7.000000e+00 8.000000e+00 9.000000e+00 |
row reversed matrix=| 4.000000e+00 5.000000e+00 6.000000e+00 |

| 1.000000e+00 2.0000Q0e+00 3.000000e+00 |

| 1.000000e+00 4.000000e+00 7.000000e+00 |
transposed matrix=| 2.000000e+00 5.000000e+00 8.000000e+00 |

| 3.000000e+00 6.000000e+00 9.000000e+00 |

sub matrix=| 1.000000e+00 2.000000e+00 |
| 4.000000e+00 5.000000e+00 |

| 1.000000e+00 2.000000e+00 3.000000e+00 |
original matrix=| 4.000000e+00 5.000000e+00 6.000000e+00 |

| 7.000000e+00 8.000000e+00 9.000000e+00 |

minor[0][0] matrix=| 5.000000e+00 6.000000e+00 |
| 8.000000e+00 9.000000e+00 |

minor[0][1] matrix=| 4.000000e+00 6.000000e+00 |
| 7.000000e+00 9.000000e+00 |

minor[0][2] matrix=| 4.000000e+00 5.000000e+00 |
| 7.000000e+00 8.000000e+00 |

minor[1][0] matrix=| 2.000000e+00 3.000000e+00 |
| 8.000000e+00 9.000000e+00 |

minor[1][1] matrix=| 1.000000e+00 3.000000e+00 |
| 7.000000e+00 9.000000e+00 |

minor[1][2] matrix=| 1.000000e+00 2.000000e+00 |
| 7.000000e+00 8.000000e+00 |

minor[2][0] matrix=| 2.000000e+00 3.000000e+00 |
| 5.000000e+00 6.000000e+00 |

minor[2][1] matrix=| 1.000000e+00 3.000000e+00 |
| 4.000000e+00 6.000000e+00 |

minor[2][2] matrix=| 1.000000e+00 2.000000e+00 |
| 4.000000e+00 5.000000e+00 |

| 1.000000e+00 0.000000e+00 0.000000e+00 |
a=| 0.000000e+00 1.000000e+00 0.000000e+00 |
| 0.000000e+00 0.000000e+00 1.000000e+00 |

“Comninos” — 2005/8/31 — 18:23 — page 448 — #26

448 Mathematical and Computer Programming Techniques for Computer Graphics

|a|=1.000000

| 1.000000e+00 2.000000e+00 3.000000e+00 |
test_2=| 1.000000e+00 0.000000e+00 1.000000e+00 |

| 1.000000e+00 1.000000e+00 1.000000e+00 |

|test_2|=2.000000

| 1.000000e+00 0.000000e+00 0.000000e+00 |
a=| 0.000000e+00 1.000000e+00 0.000000e+00 |

| 0.000000e+00 0.000000e+00 1.000000e+00 |

| 1.000000e+00 0.000000e+00 0.000000e+00 |
aˆ(-1)=| 0.000000e+00 1.000000e+00 0.000000e+00 |

| 0.000000e+00 0.000000e+00 1.000000e+00 |

| 1.000000e+00 0.000000e+00 0.000000e+00 |
(aˆ(-1))ˆ(-1)=| 0.000000e+00 1.000000e+00 0.000000e+00 |

| 0.000000e+00 0.000000e+00 1.000000e+00 |

| 3.000000e+00 2.000000e+00 1.000000e+00 |
A=| 2.000000e+00 3.000000e+00 1.000000e+00 |

| 1.000000e+00 2.000000e+00 3.000000e+00 |

C=[3.900000e+01 3.400000e+01 2.600000e+01]

Aˆ(-1)*C=[9.250000e+00 4.250000e+00 2.750000e+00]

“Comninos” — 2005/8/31 — 18:23 — page 449 — #27

Appendix 3

A Simple C Library for 2D
Transformations

In this appendix we examine a simple C library that implements all the 2D trans-
formations we have examined in Chapter 5.

#include <stdio.h>
#include <math.h>

/*--*/

/*
* Constants and typedefs for 2D transformation routines.

*/

typedef double g2d_matrix_t[3][3];

#define g2d_Pi 3.1415927 /* Pi */
#define g2d_DtoR 0.0174532925 /* Degrees to Radians */
#define g2d_RtoD 57.295778 /* Radians to Degrees */
#define g2d_ieee_small_single 3.4e-45 /* Small float near

zero */

/*--*/
/*!!*/
/*! General Matrix Routines !*/
/*!!*/
/*--*/

#define g2d_copy_matrix(src, dst) \
{ \
int r, c; \

\
for (r = 0; r < 3; r++) \
for (c = 0; c < 3; c++) \
(dst)[r][c] = (src)[r][c]; \

}

449

“Comninos” — 2005/8/31 — 18:23 — page 450 — #28

450 Mathematical and Computer Programming Techniques for Computer Graphics

/*--*/

#define g2d_set_unit_matrix(t) \
{ \
int r, c; \

\
for (r = 0; r < 3; r++) \
for (c = 0; c < 3; c++) \
if (r == c) (t)[r][c] = 1.0; \
else (t)[r][c] = 0.0; \
}

/*--*/

#define g2d_set_zero_matrix(t) \
{ \
int r, c; \

\
for (r = 0; r < 3; r++) \
for (c = 0; c < 3; c++) \
(t)[r][c] = 0.0; \

}

/*--*/

#define g2d_matrix_mutiply(ml, m2, m3) \
{ \
/* \

* Computes the product: m3 : = ml * m2. \

*/ \
\

int r1, c1, c2; \
\

for (r1 = 0; r1 < 3; r1++) \
for (c2 = 0; c2 < 3; c2++) \
{ \
(m3)[r1][c2] = 0.0; \

\
for (c1 = 0; c1 < 3; c1++) \
(m3)[r1][c2] += (ml)[r1][c1] * (m2)[c1][c2]; \

} \
}

/*--*/
/*!!*/
/*! 2D Initialise Transformation Routine !*/
/*!!*/
/*--*/

void g2d_initialise_tm(g2d_matrix_t t)
{
/*
* Initialises the transformation matrix (t) to the Identity matrix.

*/

“Comninos” — 2005/8/31 — 18:23 — page 451 — #29

A Simple C Library for 2D Transformations 451

int r, c;

for (r = 0; r < 3; r++)
for (c = 0; c < 3; c++)
if (r == c) t[r][c] = 1.0;
else t[r][c] = 0.0;

} /* g2d_initialise_tm */

/*--*/
/*!!*/
/*! 2D Global Transformation Routines !*/
/*!!*/
/*--*/

void g2d_concatenate(g2d_matrix_t ct, g2d_matrix_t t)
{
/*
* Computes the product; ct = ct * t.

*/

g2d_matrix_t h; /* Temporary matrix */
int r1, c1, c2;

for (r1 = 0; r1 < 3; r1++)
for (c2 = 0; c2 < 3; c2++)
{
h[r1][c2] = 0.0;

for (c1 = 0; c1 < 3; c1++)
h[r1][c2] += ct[r1][c1] * t[c1][c2];

}

g2d_copy_matrix(ct, h);

} /* g2d_concatenate */

/*--*/

void g2d_translate(g2d_matrix_t t, double dx, double dy)
{
/*
* Concatenates a global translation transformation into the

* transformation matrix (t).

*
* | t00 t01 0 | | 1 0 0 | | t00 t01 0 |

* | t10 t11 0 | *| 0 1 0 | = | t10 t11 0 |

* | t20 t21 1 | | dx dy 1 | | t20+dx t21+dy 1 |

*/

t[2][0] += dx;
t[2][1] += dy;

} /* g2d_translate */

“Comninos” — 2005/8/31 — 18:23 — page 452 — #30

452 Mathematical and Computer Programming Techniques for Computer Graphics

/*--*/

void g2d_scale(g2d_matrix_t t, double sx, double sy)
{
/*
* Concatenates a global scale relative the origin transformation

* into the transformation matrix (t).

*
* | t00 t01 0 | | sx 0 0 | | t00*sx t01*sy 0 |

* | t10 t11 0 | * | 0 sy 0 | = | t10*sx t11*sy 0 |

* | t20 t21 1 | | 0 0 1 | | t20*sx t21*sy 1 |

*/

int r;

for (r = 0; r < 3; r++)
{
t[r][0] *= sx;
t[r][1] *= sy;
}

} /* g2d_scale */

/*--*/

void g2d_rotate(g2d_matrix_t t, double a)
(
/*
* Concatenates a global rotation about the origin transformation

* into the transformation matrix (t).

*
* | t00 t01 0 | | cos(a) sin(a) 0 |

* | t10 t11 0 | * | -sin(a) cos(a) 0 | =

* | t20 t21 1 | | 0 0 1 |

*
* | t00*cos(a)-t01*sin(a) t00*sin(a)+t01*cos(a) 0 |

* | t10*cos(a)-t11*sin(a) t10*sin(a)+t11*cos(a) 0 |

* | t20*cos(a)-t21*sin(a) t20*sin(a)+t21*cos(a) 1 |

*
* The rotation angle (a) is given in degrees and must be

* converted to radians.

*/

g2d_matrix_t h; /* Temporary matrix */
int r;
double c, s;

c = cos(a * g2d_DtoR);
s = sin(a * g2d_DtoR);

/* Copy matrix (t) into matrix (h) */

g2d_copy_matrix(t, h);

“Comninos” — 2005/8/31 — 18:23 — page 453 — #31

A Simple C Library for 2D Transformations 453

for (r = 0; r < 3; r++)
{
t[r][0] = h[r][0] * c - h[r][1] * s;
t[r][1] = h[r][0] * s + h[r][1] * c;

}

} /* g2d_rotate */

/*--*/

void g2d_shear_x(g2d_matrix_t t, double a)
(
/*
* Concatenates a global shear transformation of the X-axis

* parallel to the Y-axis into the transformation matrix (t).

*
* | t00 t01 0 | | 1 tan(a) 0 | | t00 t00*tan(a)+t01 0 |

* | t10 t11 0 | * | 0 1 0 | = | t10 t10*tan(a)+t11 0 |

* | t20 t21 1 | | 0 0 1 | | t20 t20*tan(a)+t21 1 |

*
* The shearing angle (a) is given in degrees and must be converted

* to radians.

*/

double tangent;
int r;

if (!((a > -90.0) && (a < 90.0)))
{
printf("g2d_shear_x: the searing angle must be -90 < a <",

"90 degrees!\n");
return;

}

tangent = tan(a * g2d_DtoR);

for (r = 0; r < 3; r++)
t[r][1] += t[r][0] * tangent;

} /* g2d_shear_x */

/*--*/

void g2d_shear_y (g2d_matrix_t t, double a)
{
/*
* Concatenates a global shear transformation of the Y-axis

* parallel to the X-axis into the transformation matrix (t).

*
* | t00 t01 0 | | 1 0 0 | | t00-t01*tan(a) t01 0 |

* | t10 t11 0 | * | -tan(a) 1 0 | = | t10-t11*tan(a) t11 0 |

* | t20 t21 1 | | 0 0 1 | | t20-t21*tan(a) t21 1 |

*
* The shearing angle (a) is given in degrees and must be converted

“Comninos” — 2005/8/31 — 18:23 — page 454 — #32

454 Mathematical and Computer Programming Techniques for Computer Graphics

* to radians.

*/
double tangent;
int r;

if (!((a > -90.0) && (a < 90.0)))
{
printf("g2d_shear_y: the searing angle must be -90 < a <",

"90 degrees!\n");
return;
}

tangent = tan(a * g2d_DtoR);

for (r = 0; r < 3; r++)
t[r][0] -= t[r][1] * tangent;

} /* g2d_shear_y */

/*--*/

void g2d_scale_arbitrary(g2d_matrix_t t, double xc, double yc,
double sx, double sy)

{
/*
* Concatenates a global scale transformation about an arbitrary

* point <xc,yc> into the Transformation Matrix (t).

*
* Done in three steps:

*
* 1. Translate the centre to the origin.

* 2. Scale about the origin.

* 3. Translate the centre to its original position.

*/

g2d_translate(t, -xc, -yc);
g2d_scale(t, sx, sy);
g2d_translate(t, xc, yc);

} /* g2d_scale_arbitrary */

/*--*/

void g2d_rotate_arbitrary(g2d_matrix_t t, double xc, double yc,
double a)

{
/*
* Concatenates a global rotation transformation about an

* arbitrary point <xc,yc> into the transformation matrix (t).

*
* Done in three steps:

*
* 1. Translate the centre to the origin.

* 2. Rotate about the origin.

“Comninos” — 2005/8/31 — 18:23 — page 455 — #33

A Simple C Library for 2D Transformations 455

* 3. Translate the centre to its original position.

*/

g2d_translate(t, -xc, -yc);
g2d_rotate(t, a);
g2d_translate(t, xc, yc);

} /* g2d_rotate_arbitrary */

/*--*/

void g2d_reflect_arbitrary(g2d_matrix_t t, double x1,double y1,
double x2,double y2)

{
/*
* Concatenates a global reflection transformation about an

* arbitrary axis <<x1,y1>,<x2,y2>> into the transformation

* matrix (t).

*
* If the two points coincide, then this is a reflection about an

* arbitrary point and is done in three steps:

*
* 1. Translate the arbitrary point to the origin.

* 2. Reflect about the origin.

* 3. Translate the arbitrary point to its original position.

*
* If the two points are distinct, then this is a reflection about

* an arbitrary axis and is done in five steps:

*
* 1. Translate the point <x1,y1> to the origin.

* 2. Rotate the arbitrary axis until it coincides with the x-axis.

* 3. Reflect about the x-axis.

* 4. Undo the rotation of step 2.

* 5. Undo the translation of step 1.

*/

g2d_matrix_t m; /* Temporary matrix */
double h, dx, dy, s, c;

dx = x2 - x1;
dy = y2 - y1;
h = sqrt(dx * dx + dy * dy);

if (fabs(h) < g2d_ieee_small_single)
{
/*
* Reflection about an arbitrary point.

*/

g2d_translate(t, -x1, -y1);
g2d_scale(t, -1.0, -1.0);
g2d_translate(t, x1, y1);

}
else

“Comninos” — 2005/8/31 — 18:23 — page 456 — #34

456 Mathematical and Computer Programming Techniques for Computer Graphics

{
/*
* Reflection about an arbitrary axis.

*/

g2d_translate(t, -x1, -y1);

/* Set-up the rotation matrix */

c = dx / h;
s = dy / h;

m[0][0] = c; m[0][1] = -s; m[0][2] = 0.0;
m[1][0] = s; m[1][1] = c; m[1][2] = 0.0;
m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0;

g2d_concatenate(t, m);

g2d_scale(t, 1.0, -1.0);

/* Set-up the inverse rotation matrix */

m[0][1] = s;
m[1][0] = -s;

g2d_concatenate(t, m);
g2d_translate(t, x1, y1);
}

} /* g2d_reflect_arbitrary */

/*--*/
/*!!*/
/*! 2D Local Transformation Routines !*/
/*!!*/
/*--*/

void g2d_local_concatenate(g2d_matrix_t ct, g2d_matrix_t t)
{
/*
* Computes the products ct = t * ct.

*/

g2d_matrix_t h; /* Temporary matrix */
int r1, c1, c2 ;

for (r1 = 0; r1 < 3; r1++)
for (c2 = 0; c2 < 3; c2++)
{
h[r1][c2] = 0.0;

for (c1 = 0; c1 < 3; c1++)
h[r1][c2] += t[r1][c1] * ct[c1][c2];

}

“Comninos” — 2005/8/31 — 18:23 — page 457 — #35

A Simple C Library for 2D Transformations 457

g2d_copy_matrix(h, ct);

} /* g2d_local_concatenate */

/*--*/

void g2d_local_translate(g2d_matrix_t t, double dx, double dy)
{
/*
* Concatenates a local translation transformation into the

* transformation matrix (t).

*
* | 1 0 0 | | t00 t01 0 | | t00 t01 0 |

* | 0 1 0 | * | t10 t11 0 | = | t10 t11 0 |

* | dx dy 1 | | t20 t21 1 | | t00*dx+ t01*dx+ |

*/ | t10*dy+t20 t11*dy+t21 1 |

t[2][0] += (t[0][0] * dx + t[1][0] * dy);
t[2][1] += (t[0][1] * dx + t[1][1] * dy);

} /* g2d_local_translate */

/*--*/

void g2d_.local_scale(g2d_matrix_t t, double sx, double sy)
{
/*
* Concatenates a local scale relative to the local origin

* transformation into the transformation matrix (t).

*
* | sx 0 0 | | t00 t01 0 | | t00*sx t01*sx 0 |

* | 0 sy 0 | * | t10 t11 0 | = | t10*sy t11*sy 0 |

* | 0 0 1 | | t20 t21 1 | | t20 t21 1 |

*/

t[0][0] *= sx; t[0][1] *= sx;
t[1][0] *= sy; t[1][1] *= sy;

} /* g2d_local_scale */

/*--*/

void g2d_local_rotate(g2d_matrix_t t, double a)
{
/*
* Concatenates a local rotation about the local origin

* transformation into the transformation matrix (t).

*
* | cos(a) sin(a) 0 | | t00 t01 0 |

* | -sin(a) cos(a) 0 | * | t10 t11 0 | =

* | 0 0 1 | | t20 t21 1 |

*
* | t00*cos(a)+ t10*sin(a) t01*cos(a)+t11*sin(a) 0 |

“Comninos” — 2005/8/31 — 18:23 — page 458 — #36

458 Mathematical and Computer Programming Techniques for Computer Graphics

* | -t00*sin(a)+ t10*cos(a) -t01*sin(a)+t11*cos(a) 0 |

* | t20 t21 1 |

*
* The rotation angle (a) is given in degrees and must be

* converted to radians.

*/

g2d_matrix_t h; /* Temporary matrix */
double c, s;

c = cos(a * g2d_DtoR);
s = sin(a * g2d_DtoR);

/* Copy matrix (t) into matrix (h) */

g2d_copy_matrix(t, h);

t[0][0] = h[0][0] * c + h[1][0] * s;
t[1][0] = -h[0][0] * s + h[1][0] * c;

t[0][1] = h[0][1] * c + h[1][1] * s;
t[1][1] = -h[0][1] * s + h[1][1] * c;

} /* g2d_local_rotate */

/*--*/

void g2d_local_shear_x(g2d_matrix_t t, double a)
{
/*
* Concatenates a local shear transformation of the X-axis parallel

* to the Y-axis into the transformation matrix (t).

*
* | 1 tan(a) 0 | | t00 t01 0 | | t00+t10*tan(a) t01+t11*tan(a) 0 |

* | 0 1 0 |*| t10 t11 0 |=| t10 t11 0 |

* | 0 0 1 | | t20 t21 1 | | t20 t21 1 |

*
* The shearing angle (a) is given in degrees and must be converted

* to radians.

*/

double tangent;

if (!((a > -90.0) && (a < 90.0)))
{
printf("g2d_local_shear_x: the searing angle must be -90 < a <",

"90 degrees!\n");
return;
}

tangent = tan(a * g2d_DtoR);

t[0][0] += t[1][0] * tangent;
t[0][1] += t[1][1] * tangent;

“Comninos” — 2005/8/31 — 18:23 — page 459 — #37

A Simple C Library for 2D Transformations 459

} /* g2d_local_shear_x */

/*--*/

void g2d_local_shear_y(g2d_matrix_t t, double a)
{
/*
* Concatenates a local shear transformation of the Y-axis parallel

* to the X-axis into the transformation matrix (t).

*
* | 1 0 0 | | t00 t01 0 | | t00 t01 0 |

* | -tan(a) 1 0 |*| t10 t11 0 |=| -t00*tan(a)+ -t01*tan (a)+ |

* | 0 0 1 | | t20 t21 1 | | t10 t11 0 |

* | t20 t21 1 |

*
* The shearing angle (a) is given in degrees and must be converted

* to radians.

*/

double tangent;

if (!((a > -90.0) && (a < 90.0)))
{
printf("g2d_shear_ys the searing angle must be -90 < a <",

"90 degrees!\n");
return;

}

tangent = tan(a * g2d_DtoR);

t[1][0] -= t[0][0] * tangent;
t[1][1] -= t[0][1] * tangent;

} /* g2d_local_shear_y */

/*--*/

void g2d_local_scale_arbitrary(g2d_matrix_t t,
double xc,
double yc,
double sx,
double sy
)

{
/*
* Concatenates a local scale transformation about an arbitrary

* point <xc,yc> into the Transformation Matrix (t).

*
* Done in three steps:

*
* 1. Translate the centre to the local origin.

* 2. Scale about the local origin.

“Comninos” — 2005/8/31 — 18:23 — page 460 — #38

460 Mathematical and Computer Programming Techniques for Computer Graphics

* 3. Translate the centre to its original position.

*/

g2d_local_translate(t, -xc, -yc);
g2d_local_scale(t, sx, sy);
g2d_local_translate(t, xc, yc);

} /* g2d_local_scale_arbitrary */

/*--*/
void g2d_local_rotate_arbitrary(g2d_matrix_t t,

double xc,
double yc,
double a
)

{
/*
* Concatenates a local rotation transformation about an arbitrary

* point <xc,yc> into the transformation matrix (t).

*
* Done in three steps:

*
* 1. Translate the centre to the local origin.

* 2. Rotate about the local origin.

* 3. Translate the centre to its original position.

*/

g2d_local_translate(t, -xc, -yc);
g2d_local_rotate(t, a);
g2d_local_translate(t, xc, yc);

} /* g2d_local_rotate_arbitrary */

/*--*/

void g2d_local_reflect_arbitrary(g2d_matrix_t t,
double x1,
double y1,
double x2,
double y2
)

{
/*
* Concatenates a local reflection transformation about a local

* arbitrary axis <<x1,y1>,<x2 ,y2>> into the transformation

* matrix (t).

*
* If the two points coincide, then this is a reflection about an

* arbitrary point and is done in three steps:

*
* 1. Translate the arbitrary point to the local origin,

* 2. Reflect about the local origin.

* 3. Translate the arbitrary point to its original position.

*

“Comninos” — 2005/8/31 — 18:23 — page 461 — #39

A Simple C Library for 2D Transformations 461

* If the two points are distinct, then this is a Reflection about

* an arbitrary axis and is done in five steps:

*
* 1. Translate the point <x1,y1> to the local origin.

* 2. Rotate the arbitrary axis until it coincides with the local

* x-axis.

* 3. Reflect about local the x-axis.

* 4. Undo the rotation of step 2.

* 5. Undo the translation of step 1.

*/

g2d_matrix_t m; /* Temporary matrix */
double h, dx, dy, s, c;

dx = x2 - x1;
dy = y2 - y1;
h = sqrt(dx * dx + dy * dy);

if (fabs(h) < g2d_ieee_small_single)
{
/*
* Reflection about an arbitrary point.

*/

g2d_local_translate(t, -x1, -y1);
g2d_local_scale(t, -1.0, -1.0);
g2d_local_translate(t, x1, y1);

}
else
{
/*
* Reflection about an arbitrary axis.

*/

g2d_local_translate(t, -x1, -y1);

/* Set-up the rotation matrix */

c = dx / h;
s = dy / h;

m[0][0] = c; m[0][1] = -s; m[0][2] = 0.0;
m[1][0] = s; m[1][1] = c; m[1][2] = 0.0;
m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0;

g2d_local_concatenate(t, m);

g2d_local_scale(t, 1.0, -1.0);

/* Set-up the inverse rotation matrix */

m[0][1] = s;
m[1][0] = -s;

“Comninos” — 2005/8/31 — 18:23 — page 462 — #40

462 Mathematical and Computer Programming Techniques for Computer Graphics

g2d_local_concatenate(t, m);

g2d_local_translate(t, x1, y1);
}

} /* g2d_local_reflect_arbitrary */

/*--*/
/*!!*/
/*! 2D Viewing Transformation Routines !*/
/*!!*/
/*--*/

void g2d_viewing_transformation
(
g2d_matrix_t t, /* Transformation Matrix (In/Out) */
double wl, /* Window Limits (In) */
double wb,
double wr,
double wt,
int vl, /* Viewport Limits (In) */
int vb,
int vr,
int vt
)
{
/*
* Concatenates a viewing transformation into the transformation

* matrix (t).

*
* This version of the viewing transformation is defined by

* specifying the coordinates of the bottom-left and top-right

* corners of the window and the viewport.

*/

double sx, sy, dx, dy;

/*
* Compute the coefficients of the viewing transformation.

*
* Xs = sx * Xw + dx

* Ys = sy * Yw + dy

*/

sx = (vr - vl) / (wr - wl);
sy = (vt - vb) / (wt - wb);
dx = vl - sx * wl;
dy = vb - sy * wb;

/*
* Perform the matrix multiplication:

“Comninos” — 2005/8/31 — 18:23 — page 463 — #41

A Simple C Library for 2D Transformations 463

*
* | t00 t01 0 | | sx 0 0 | | t00*sx t01*sy 0 |

* | t10 t11 0 | * | 0 sy 0 | = | t10*sx t11*sy 0 |

* | t20 t21 1 | | dx dy 1 | | t20*sx+dx t21*sy+dy 1 |

*/

t[0][0] *= sx;
t[1][0] *= sx;
t[2][0] = t[2][0] * sx + dx;

t[0][1] *= sy;
t[1][1] *= sy;
t[2][1] = t[2][1] * sy + dy;

} /* g2d_viewing_transformation */

/*--*/

void g2d_viewing_transformation_sc
(
g2d_matrix_t t, /* Transformation Matrix (In/Out) */
double wsx, /* Window Size (In) */
double wsy,
double wcx, /* Window Centre (In) */
double wcy,
int vsx, /* Viewport Size (In) */
int vsy,
int vex, /* Viewport Centre (In) */
int vcy
)
{
/*
* Concatenates a viewing transformation into the transformation

* matrix (t).

*
* This version of the viewing transformation is defined by

* specifying the size and the coordinates of the centre of the

* window and the viewport.

*/

double wl, wr, wb, wt;
int vl, vr, vb, vt;

/*
* Compute the bottom-left and top-right corners of the Window and

* the Viewport.

*/

wl = wcx - wsx / 2;
wr = wl + wsx;
wb = wcy - wsy / 2;
wt = wb + wsy;

vl = vex - vsx / 2;

“Comninos” — 2005/8/31 — 18:23 — page 464 — #42

464 Mathematical and Computer Programming Techniques for Computer Graphics

vr = vl + vsx;
vb = vcy - vsy / 2;
vt = vb + vsy;

g2d_viewing_transformation(t, wl, wb, wr, wt, vl, vb, vr, vt);

} /* g2d_viewing_transformation_sc */

/*--*/
void g2d_viewing_transformation_sd
(
g2d_matrix_t t, /* Transformation Matrix (In/Out) */
double wsx, /* Window Size (In) */
double wsy,
double wdx, /* Window Displacement (In) */
double wdy,
int vsx, /* Viewport Size (In) */
int vsy,
int vdx, /* Viewport Displacement (In) */
int vdy
)

{
/*
* Concatenates a viewing transformation into the transformation

* matrix (t).

*
* This version of the viewing transformation is defined by

* specifying the size and the displacement of the window and the

* viewport.

*/

double wl, wr, wb, wt;
int vl, vr, vb, vt;

/*
* Compute the bottom-left and top-right corners of the window

* and the viewport.

*/
wl = wdx;
wr = wl + wsx;
wb = wdy;
wt = wb + wsy;

vl = vdx;
vr = vl + vsx;
vb = vdy;
vt = vb + vsy;

g2d_viewing_transformation(t, wl, wb, wr, wt, vl, vb, vr, vt);

} /* g2d_viewing_transformation_sd */

“Comninos” — 2005/8/31 — 18:23 — page 465 — #43

A Simple C Library for 2D Transformations 465

/*--*/
/*!!*/
/*! Apply 2D Viewing Transformation to Point Routines !*/
/*!!*/
/*--*/

void g2d_transform_point(g2d_matrix_t t, double *x, double *y)
{
/*
* Apply the transformation stored in matrix (t) to the point <x,y>,

* i.e. perform perform the vector by matrix multiplication:

*
* | t00 t01 0 |

* [x, y, 1] * | t10 t11 0 |=[x*t00+y*t10+t20, x*t01+y*t11+t21, 1]

* | t20 t21 1 |

*
*/

double ox, oy;

ox = *x;
oy = *y;

*x = ox * t[0][0] + oy * t[1][0] + t[2][0] ;

*y = ox * t[0][1] + oy * t[1][1] + t[2][1];

} /* g2d_transform_point */

“Comninos” — 2005/8/31 — 18:23 — page 467 — #45

Appendix 4

A Simple C Library for 3D
Transformations

In this appendix we examine a simple C library that implements all the 3D trans-
formations we have examined in Chapters 7 and 8.

#include <stdio.h>
#include <math.h>
#include <string.h>

/*--*/

/*
* Common Constants and typedefs associated with Transformations.

*/

typedef unsigned char boolean_t;

#define False (boolean_t) 0
#define True (boolean_t) 1

#define g3d_Pi 3.1415927
#define g3d_DtoR 0.0174532925 /* Degrees to Radians */
#define g3d_RtoD 57.295778 /* Radians to Degrees */

#define g3d_IEEE_small_single 3.4e-45 /* single precision real
near 0 */

#define g3d_small_e 0.0000005

typedef double g3d_matrix_t[4][4];
typedef double g3d_vector_t[3];
typedef double g4d_vector_t[4];

/*
* Constants and typedef for Choen and Sutherland 3D line clipping

* routine.

*/

#define g3d_small_t 0.000000005

467

“Comninos” — 2005/8/31 — 18:23 — page 468 — #46

468 Mathematical and Computer Programming Techniques for Computer Graphics

#define g3d_z_displacement 0.0005

typedef unsigned char g3d_region_code_t;

#define g3d_left_plane ((g3d_region_code_t) 1)
#define g3d_right_plane ((g3d_region_code_t) 2)
#define g3d_bottom_plane ((g3d_region_code_t) 4)
#define g3d_top_plane ((g3d_region_code_t) 8)

/*--*/
/*!!*/
/*! General Vector Macros !*/
/*!!*/
/*--*/

#define Mg3d_vector_set(v, x, y, z) \
{ \
(v)[0] = x; \
(v)[1] = y; \
(v)[2] = z; \
}

/*--*/

#define Mg3d_vector_copy(src, dst) \
{ \
(dst)[0] = (src)[0]; \
(dst)[1] = (src)[1]; \
(dst)[2] = (src)[2]; \
}

/*--*/

#define Mg3d_vector_magnitude(v) \
(sqrt((v)[0] * (v)[0] + (v)[1] * (v)[1] + (v)[2] * (v)[2]))

/*--*/

#define Mg3d_vector_normalise(v) \
{ \
double m; \

\
m = sqrt((v)[0] * (v)[0] + (v)[1] * (v)[1] + (v)[2] * (v)[2]); \

\
if (m <= 0.0) m = 1.0; \

\
(v)[0] /= m; \
(v)[1] /= m; \
(v)[2] /= m; \
}

/*--*/

“Comninos” — 2005/8/31 — 18:23 — page 469 — #47

A Simple C Library for 3D Transformations 469

#define Mg3d_vector_dot(v1, v2) \
((v1)[0] * (v2)[0] + (v1)[1] * (v2)[1] + (v1)[2] * (v2)[2])

/*--*/

#define Mg3d_vector_cross(v1, v2, v3) \
{ \
(v3)[0] = (v1)[1] * (v2)[2] - (v1)[2] * (v2)[1]; \
(v3)[1] = (v1)[2] * (v2)[0] - (v1)[0] * (v2)[2]; \
(v3)[2] = (v1)[0] * (v2)[1] - (v1)[1] * (v2)[0]; \
}

/*--*/
/*!!*/
/*! General Matrix Routines !*/
/*!!*/
/*--*/

void g3d_initialize_matrix(g3d_matrix_t tm) /* Transformation
Matrix (Out) */

{
/*
* Initialises the Matrix (tm) to the Identity Matrix.

*/

int r, c;

for (r = 0; r <= 3; r++)
for (c = 0; c <= 3; c++)
if (r == c) tm[r][c] = 1.0;
else tm[r][c] = 0.0;

} /* g3d_initialize_matrix */

/*--*/

void g3d_matrix_multiply(g3d_matrix_t m1, /* (In) */
g3d_matrix_t m2, /* (In) */
g3d_matrix_t m3 /* (Out) */
)

{
/*
* Computes the product: m3 := m1 * m2.

*/

int r1, c1, c2;

for (r1 = 0; r1 <= 3; r1++)
for (c2 = 0; c2 <= 3; c2++)
{
m3[r1][c2] = 0.0;
for (c1 = 0; c1 <= 3; c1++)
m3[r1][c2] += m1[r1][c1] * m2[c1][c2];

}

“Comninos” — 2005/8/31 — 18:23 — page 470 — #48

470 Mathematical and Computer Programming Techniques for Computer Graphics

} /* g3d_matrix_multiply */

/*--*/

void g3d_concatenate(g3d_matrix_t tm, /* Transformation Matrix
(In/Out) */

g3d_matrix_t t /* Transformation Matrix
(In) */

)
{
/*
* Computes the product: tm := tm * t.

*/

g3d_matrix_t h;
int r1, c1, c2;

for (r1 = 0; r1 <= 3; r1++)
for (c2 = 0; c2 <= 3; c2++)
{
h[r1][c2] = 0.0;

for (c1 = 0; c1 <= 3; c1++)
h[r1][c2] += tm[r1][c1] * t[c1][c2];

}

memcpy(tm, h, sizeof(g3d_matrix_t));

} /* g3d_concatenate */

/*--*/

void g3d_invert_matrix(g3d_matrix_t tm) /* Transformation Matrix
(In/Out) */

{
g3d_matrix_t cm;
double a, b, c, d, e, f, det;
int ri, ci;

/* Compute the Cofactor Matrix of the 4*4 Transformation Matrix */

a = tm[2][2] * tm[3][3] - tm[3][2] * tm[2][3];
b = tm[1][2] * tm[3][3] - tm[3][2] * tm[1][3];
c = tm[1][2] * tm[2][3] - tm[2][2] * tm[1][3];
d = tm[0][2] * tm[3][3] - tm[3][2] * tm[0][3];
e = tm[0][2] * tm[2][3] - tm[2][2] * tm[0][3];
f = tm[0][2] * tm[1][3] - tm[1][2] * tm[0][3];

cm[0][0] = tm[1][1] * a - tm[2][1] * b + tm[3][1] * c;
cm[1][0] = tm[2][1] * d - tm[0][1] * a - tm[3][1] * e;
cm[2][0] = tm[0][1] * b - tm[1][1] * d + tm[3][1] * f;
cm[3][0] = tm[1][1] * e - tm[0][1] * c - tm[2][1] * f;

cm[0][1] = tm[2][0] * b - tm[1][0] * a - tm[3][0] * c;

“Comninos” — 2005/8/31 — 18:23 — page 471 — #49

A Simple C Library for 3D Transformations 471

cm[1][1] = tm[0][0] * a - tm[2][0] * d + tm[3][0] * e;
cm[2][1] = tm[1][0] * d - tm[0][0] * b - tm[3][0] * f;
cm[3][1] = tm[0][0] * c - tm[1][0] * e + tm[2][0] * f;

a = tm[2][1] * tm[3][3] - tm[3][1] * tm[2][3];
b = tm[1][1] * tm[3][3] - tm[3][1] * tm[1][3];
c = tm[1][1] * tm[2][3] - tm[2][1] * tm[1][3];
d = tm[0][1] * tm[3][3] - tm[3][1] * tm[0][3];
e = tm[0][1] * tm[2][3] - tm[2][1] * tm[0][3];
f = tm[0][1] * tm[1][3] - tm[1][1] * tm[0][3];

cm[0][2] = tm[1][0] * a - tm[2][0] * b + tm[3][0] * c;
cm[1][2] = tm[2][0] * d - tm[0][0] * a - tm[3][0] * e;
cm[2][2] = tm[0][0] * b - tm[1][0] * d + tm[3][0] * f;
cm[3][2] = tm[1][0] * e - tm[0][0] * c - tm[2][0] * f;

a = tm[2][1] * tm[3][2] - tm[3][1] * tm[2][2];
b = tm[1][1] * tm[3][2] - tm[3][1] * tm[1][2];
c = tm[1][1] * tm[2][2] - tm[2][1] * tm[1][2];
d = tm[0][1] * tm[3][2] - tm[3][1] * tm[0][2];
e = tm[0][1] * tm[2][2] - tm[2][1] * tm[0][2];
f = tm[0][1] * tm[1][2] - tm[1][1] * tm[0][2];

cm[0][3] = tm[2][0] * b - tm[1][0] * a - tm[3][0] * c;
cm[1][3] = tm[0][0] * a - tm[2][0] * d + tm[3][0] * e;
cm[2][3] = tm[1][0] * d - tm[0][0] * b - tm[3][0] * f;
cm[3][3] = tm[0][0] * c - tm[1][0] * e + tm[2][0] * f;

/* Now Compute the Determinant of the Matrix */

det = tm[0][0]*cm[0][0] + tm[1][0]*cm[1][0] + tm[2][0]*cm[2][0]
+ tm[3][0]*cm[3][0];

if (fabs(det) <= g3d_IEEE_small_single)
{
printf("g3d_invert_matrix: The matrix is Singular!\n");
return;

}

for (ri = 0; ri <= 3; ri++)
for (ci = 0; ci <= 3; ci++)
tm[ri][ci] = cm[ci][ri] / det;

} /* g3d_invert_matrix */

/*--*/
boolean_t g3d_compute_inverse_matrix
(
g3d_matrix_t tm, /* Transformation Matrix (In) */
g3d_matrix_t itm /* Inverse Transformation Matrix (Out) */
)
{
g3d_matrix_t cm;

“Comninos” — 2005/8/31 — 18:23 — page 472 — #50

472 Mathematical and Computer Programming Techniques for Computer Graphics

double a, b, c, d, e, f, det;
int ri, ci;
boolean_t result;

/* Compute the Cofactor Matrix of the 4*4 Transformation Matrix */

a = tm[2][2] * tm[3][3] - tm[3][2] * tm[2][3];
b = tm[1][2] * tm[3][3] - tm[3][2] * tm[1][3];
c = tm[1][2] * tm[2][3] - tm[2][2] * tm[1][3];
d = tm[0][2] * tm[3][3] - tm[3][2] * tm[0][3];
e = tm[0][2] * tm[2][3] - tm[2][2] * tm[0][3];
f = tm[0][2] * tm[1][3] - tm[1][2] * tm[0][3];

cm[0][0] = tm[1][1] * a - tm[2][1] * b + tm[3][1] * c;
cm[1][0] = tm[2][1] * d - tm[0][1] * a - tm[3][1] * e;
cm[2][0] = tm[0][1] * b - tm[1][1] * d + tm[3][1] * f;
cm[3][0] = tm[1][1] * e - tm[0][1] * c - tm[2][1] * f;

cm[0][1] = tm[2][0] * b - tm[1][0] * a - tm[3][0] * c;
cm[1][1] = tm[0][0] * a - tm[2][0] * d + tm[3][0] * e;
cm[2][1] = tm[1][0] * d - tm[0][0] * b - tm[3][0] * f;
cm[3][1] = tm[0][0] * c - tm[1][0] * e + tm[2][0] * f;

a = tm[2][1] * tm[3][3] - tm[3][1] * tm[2][3];
b = tm[1][1] * tm[3][3] - tm[3][1] * tm[1][3];
c = tm[1][1] * tm[2][3] - tm[2][1] * tm[1][3];
d = tm[0][1] * tm[3][3] - tm[3][1] * tm[0][3];
e = tm[0][1] * tm[2][3] - tm[2][1] * tm[0][3];
f = tm[0][1] * tm[1][3] - tm[1][1] * tm[0][3];

cm[0][2] = tm[1][0] * a - tm[2][0] * b + tm[3][0] * c;
cm[1][2] = tm[2][0] * d - tm[0][0] * a - tm[3][0] * e;
cm[2][2] = tm[0][0] * b - tm[1][0] * d + tm[3][0] * f;
cm[3]l2] = tm[1][0] * e - tm[0][0] * c - tm[2][0] * f;

a = tm[2][1] * tm[3][2] - tm[3][1] * tm[2][2];
b = tm[1][1] * tm[3][2] - tm[3][1] * tm[1][2];
c = tm[1][1] * tm[2][2] - tm[2][1] * tm[1][2];
d = tm[0][1] * tm[3][2] - tm[3][1] * tm[0][2];
e = tm[0][1] * tm[2][2] - tm[2][1] * tm[0][2];
f = tm[0][1] * tm[1][2] - tm[1][1] * tm[0][2];

cm[0][3] = tm[2][0] * b - tm[1][0] * a - tm[3][0] * c;
cm[1][3] = tm[0][0] * a - tm[2][0] * d + tm[3][0] * e;
cm[2][3] = tm[1][0] * d - tm[0][0] * b - tm[3][0] * f;

/* Now Compute the Determinant of the Matrix */
det = tm[0][0]*cm[0][0] + tm[1][0]*cm[1][0] + tm[2][0]*cm[2][0]

+ tm[3][0]*cm[3][0];

result = (fabs(det) > g3d_IEEE_small_single);

if (!result) return(result);

“Comninos” — 2005/8/31 — 18:23 — page 473 — #51

A Simple C Library for 3D Transformations 473

for (ri = 0; ri <= 3; ri++)
for (ci = 0; ci <= 3; ci++)
itm[ri][ci] = cm[ci][ri] / det;

return(result);

} /* g3d_compute_inverse_matrix */
void g3d_concatenate_inverse(g3d_matrix_t tm, /* Transformation

Matrix (In/Out) */
g3d_matrix_t t /* Transformation

Matrix (In) */
)

{
/*
* Computes the product: tm := tm * tˆ(-l).

*/

g3d_matrix_t it, h;
int r1, c1, c2;

memcpy(it, t, sizeof(g3d_matrix_t));

g3d_invert_matrix(it);

for (r1 = 0; r1 <= 3; r1++)
for (c2 = 0; c2 <= 3; c2++)
{
h[r1][c2] = 0.0;

for (c1 = 0; c1 <= 3; c1++)
h[r1][c2] += tm[r1][c1] * it[c1][c2];

}

memcpy(tm, h, sizeof(g3d_matrix_t));

} /* g3d_concatenate_inverse */

/*--*/

void g3d_concatenate_transpose
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_matrix_t t /* Transformation Matrix (In) */
)
{
/*
* Computes the product: tm := tm * transpose(t).

*/

g3d_matrix_t h;
int r1, c1, c2;

for (r1 = 0; r1 <= 3; r1++)

“Comninos” — 2005/8/31 — 18:23 — page 474 — #52

474 Mathematical and Computer Programming Techniques for Computer Graphics

for (c2 = 0; c2 <= 3; c2++)
{
h[r1][c2] = 0.0;

for (c1 = 0; c1 <= 3; c1++)
h[r1][c2] += tm[r1][c1] * t[c2][c1];

}

memcpy(tm, h, sizeof(g3d_matrix_t));

} /* g3d_concatenate_transpose */

/*--*/

void g3d_local_concatenate(g3d_matrix_t tm, /* Transformation
Matrix (In/Out) */

g3d_matrix_t t /* Transformation
Matrix (In) */

)
{
/* Computes the product: tm := t * tm */

g3d_matrix_t m;
int r1, c1, c2;

for (r1 = 0; r1 <= 3; r1++)
for (c2 = 0; c2 <= 3; c2++)
{
m[r1][c2] = 0.0;

for (c1 = 0; c1 <= 3; c1++)
m[r1][c2] += t[r1][c1] * tm[c1][c2];

}

memcpy(tm, m, sizeof(g3d_matrix_t));

} /* g3d_local_concatenate */

/*--*/

void g3d_local_concatenate_inverse
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_matrix_t t /* Transformation Matrix (In) */
)
{
/* Computes the product: tm := tˆ(-l) * tm */

g3d_matrix_t it, m;
int r1, c1, c2;

memcpy(it, t, sizeof(g3d_matrix_t));

g3d_invert_matrix(it);

“Comninos” — 2005/8/31 — 18:23 — page 475 — #53

A Simple C Library for 3D Transformations 475

for (r1 = 0; r1 <= 3; r1++)
for (c2 = 0; c2 <= 3; c2++)
{
m[r1][c2] = 0.0;

for (c1 = 0; c1 <= 3; c1++)
m[r1][c2] += it[r1][c1] * tm[c1][c2];

}

memcpy(tm, m, sizeof(g3d_matrix_t));

} /* g3d_local_concatenate_inverse */

/*--*/

void g3d_local_concatenate_transpose
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_matrix_t t /* Transformation Matrix (In) */
)
{
/* Computes the product: tm := transpose(t) * tm */

g3d_matrix_t m;
int r1, c1, c2;

for (r1 = 0; r1 <= 3; r1++)
for (c2 = 0; c2 <= 3; c2++)
{
m[r1][c2] = 0.0;

for (c1 = 0; c1 <= 3; c1++)
m[r1][c2] += t[c1][r1] * tm[c1][c2];

}

memcpy(tm, m, sizeof(g3d_matrix_t));

} /* g3d_local_concatenate_transpose */

/*--*/
/*!!*/
/*! 3D Global Transformation Routines !*/
/*!!*/
/*--*/

void g3d_translate(g3d_matrix_t tm, /* Transformation Matrix
(In/Out) */

double dx, /* Displacements (In) */
double dy,
double dz
)

{
/* Concatenates a Translation Transformation into the

“Comninos” — 2005/8/31 — 18:23 — page 476 — #54

476 Mathematical and Computer Programming Techniques for Computer Graphics

* Transformation Matrix(tm)

*/
g3d_matrix_t m; /* Temporary Matrix */
int r;

memcpy(m, tm, sizeof(g3d_matrix_t));

for (r = 0; r <= 3; r++)
{
tm[r][0] += m[r][3] * dx;
tm[r][1] += m[r][3] * dy;
tm[r][2] += m[r][3] * dz;
}

} /* g3d_translate */

void g3d_scale(g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
double sx, /* Scale Factors (In) */
double sy,
double sz
)

{
/*
* Concatenates a Scale relative the Origin Transformation into the

* Transformation Matrix (tm).

*/

int r;

for (r = 0; r <= 3; r++)
{
tm[r][0] *= sx;
tm[r][1] *= sy;
tm[r][2] *= sz;
}

} /* g3d_scale */

/*--*/

void g3d_rotate_x(g3d_matrix_t tm, /* Transformation Matrix
(In/Out) */

double angle /* Rotation Angle in Degrees
(In) */

)
{
/*
* Concatenates a Rotation about the X-Axis Transformation into the

* Transformation Matrix (tm).

*/

g3d_matrix_t m; /* Temporary Matrix */
double cosine, sine;
int r;

memcpy(m, tm, sizeof(g3d_matrix_t));

“Comninos” — 2005/8/31 — 18:23 — page 477 — #55

A Simple C Library for 3D Transformations 477

cosine = cos(angle * g3d_DtoR);
sine = sin(angle * g3d_DtoR);

for (r = 0; r <= 3; r++)
{
tm[r][1] = m[r][1] * cosine + m[r][2] * sine;
tm[r][2] = m[r][2] * cosine - m[r][1] * sine;

}
} /* g3d_rotate_x */

/*--*/

void g3d_rotate_y(g3d_matrix_t tm, /* Transformation Matrix
(In/Out) */

double angle /* Rotation Angle in Degrees
(In) */

)
{
/*
* Concatenates a Rotation about the Y-Axis Transformation into the

* Transformation Matrix (tm).

*/

g3d_matrix_t m; /* Temporary Matrix */
double cosine, sine;
int r;

memcpy(m, tm, sizeof(g3d_matrix_t));

cosine = cos(angle * g3d_DtoR);
sine = sin(angle * g3d_DtoR);

for (r = 0; r <= 3; r++)
{
tm[r][0] = m[r][0] * cosine - m[r][2] * sine;
tm[r][2] = m[r][2] * cosine + m[r][0] * sine;
}
} /* g3d_rotate_y */

/*--*/

void g3d_rotate_z(g3d_matrix_t tm, /* Transformation Matrix
(In/Out) */

double angle /* Rotation Angle in Degrees
(In) */

)
{
/*
* Concatenates a Rotation about the Z-Axis Transformation into the

* Transformation Matrix (tm).

*/

g3d_matrix_t m; /* Temporary Matrix */

“Comninos” — 2005/8/31 — 18:23 — page 478 — #56

478 Mathematical and Computer Programming Techniques for Computer Graphics

double cosine, sine;
int r;

memcpy(m, tm, sizeof(g3d_matrix_t));

cosine = cos(angle * g3d_DtoR);
sine = sin(angle * g3d_DtoR);

for (r = 0; r <= 3; r++)
{
tm[r][0] = m[r][0] * cosine + m[r][1] * sine;
tm[r][1] s m[r][1] * cosine - m[r][0] * sine;
}

} /* g3d_rotate_z */

/*--*/

void g3d_shear_x_parallel_to_y
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
double angle /* Shear Angle in Degrees (In) */
)
{
/*
* Concatenates a Shear Transformation of the X-Axis parallel to the

* Y-Axis into the Transformation Matrix (tm).

*/

double tangent;
int r;

tangent = tan(angle * g3d_DtoR);

for (r = 0; r <= 3; r++)
tm[r][1] -= tm[r][0] * tangent;

} /* g3d_shear_x_parallel_to_y */

/*--*/

void g3d_shear_x_parallel_to_z
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
double angle /* Shear Angle in Degrees (In) */
)
{
/*
* Concatenates a Shear Transformation of the X-Axis parallel to the

* Z-Axis into the Transformation Matrix (tm).

*/

double tangent;
int r;

“Comninos” — 2005/8/31 — 18:23 — page 479 — #57

A Simple C Library for 3D Transformations 479

tangent = tan(angle * g3d_DtoR);

for (r = 0; r <= 3; r++)
tm[r][2] += tm[r][0] * tangent;

} /* g3d_shear_x_parallel_to_z */

/*--*/

void g3d_shear_y_parallel_to_x
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
double angle /* Shear Angle in Degrees (In) */
)
{
/*
* Concatenates a Shear Transformation of the Y-Axis parallel to

* the X-Axis into the Transformation Matrix (tm).

*/

double tangent;
int r;

tangent = tan(angle * g3d_DtoR);

for (r = 0; r <= 3; r++)
tm[r][0] += tm[r][1] * tangent;

} /* g3d_shear_y_parallel_to_x */

/*--*/

void g3d_shear_y_parallel_to_z
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
double angle /* Shear Angle in Degrees (In) */
)
{
/*
* Concatenates a Shear Transformation of the Y-Axis parallel to

* the Z-Axis into the Transformation Matrix (tm).

*/

double tangent;
int r;

tangent = tan(angle * g3d_DtoR);

for (r = 0; r <= 3; r++)
tm[r][2] -= tm[r][1] * tangent;

} /* g3d_shear_y_parallel_to_z */

/*--*/

“Comninos” — 2005/8/31 — 18:23 — page 480 — #58

480 Mathematical and Computer Programming Techniques for Computer Graphics

void g3d_shear_z_parallel_to_x
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
double angle /* Shear Angle in Degrees (In) */
)
{
/*
* Concatenates a Shear Transformation of the Z-Axis parallel to

* the X-Axis into the Transformation Matrix (tm).

*/

double tangent;
int r;

tangent = tan(angle * g3d_DtoR);

for (r = 0; r <= 3; r++)
tm[r][0] -= tm[r][2] * tangent;

} /* g3d_shear_z_parallel_to_x */

/*--*/

void g3d_shear_z_parallel_to_y
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
double angle /* Shear Angle in Degrees (In) */
)
{
/*
* Concatenates a Shear Transformation of the Z-Axis parallel to

* the Y-Axis into the Transformation Matrix (tm).

*/

double tangent;
int r;

tangent = tan(angle * g3d_DtoR);

for (r = 0; r <= 3; r++)
tm[r][1] += tm[r][2] * tangent;

} /* g3d_shear_z_parallel_to_y */

/*--*/

void g3d_aim_x_axis
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t V, /* Aim Direction Unit Vector (In) */
g3d_vector_t U /* Up Direction Unit Vector (In) */
)
{

“Comninos” — 2005/8/31 — 18:23 — page 481 — #59

A Simple C Library for 3D Transformations 481

/*
* Concatenates into the Transformation Matrix (tm) a Global Aim

* transformation which causes the Global X-axis to be aligned to

* the aim in the direction of the unit vector (V). The (U) vector

* represents the relative up direction unit vector with respect to

* the (V) vector.

*/

g3d_matrix_t A; /* Aim transformation matrix */
g3d_vector_t X, /* Local Axes */

Y,
Z;

/* Compute the new orientation of the transformed local axes */

Mg3d_vector_copy(V, X);
Mg3d_vector_normalise(X);

Mg3d_vector_cross(U, X, Y);
Mg3d_vector_normalise(Y);

Mg3d_vector_cross(X, Y, Z);
Mg3d_vector_normalise(Z);

/* Construct the aim transformation matrix */

A[0][0] = X[0]; A[0][1] = X[1]; A[0][2] = X[2]; A[0][3] = 0;
A[1][0] = Y[0]; A[1][1] = Y[1]; A[1][2] = Y[2]; A[1][3] = 0;
A[2][0] = Z[0]; A[2][1] = Z[1]; A[2][2] = Z[2]; A[2][3] = 0;
A[3][0] = 0; A[3][1] = 0; A[3][2] = 0; A[3][3] = 1;

/* Concatenate the aim transformation with the (tm) transformation
matrix */

g3d_concatenate(tm, A);

} /* g3d_aim_x_axis */

/*--*/

void g3d_aim_y_axis
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t V, /* Aim Direction Unit Vector (In) */
g3d_vector_t U /* Up Direction Unit Vector (In) */
)
{
/*
* Concatenates into the Transformation Matrix (tm) a Global Aim

* transformation which causes the Global Y-axis to be aligned to

* the aim in the direction of the unit vector (V). The (U) vector

* represents the relative up direction unit vector with respect to

* the (V) vector.

*/

“Comninos” — 2005/8/31 — 18:23 — page 482 — #60

482 Mathematical and Computer Programming Techniques for Computer Graphics

g3d_matrix_t A; /* Aim transformation matrix */
g3d_vector_t X, /* Local Axes */

Y,
Z;

/* Compute the new orientation of the transformed local axes */

Mg3d_vector_copy(V, Y);
Mg3d_vector_normalise(Y);

Mg3d_vector_cross(Y, U, X);
Mg3d_vector_normalise(X);

Mg3d_vector_cross(X, Y, Z);
Mg3d_vector_normalise(Z);

/* Construct the aim transformation matrix */

A[0][0] = X[0]; A[0][1] = X[1]; A[0][2] = X[2]; A[0][3] = 0;
A[1][0] = Y[0]; A[1][1] = Y[1]; A[1][2] = Y[2]; A[1][3] = 0;
A[2][0] = Z[0]; A[2][1] = Z[1]; A[2][2] = Z[2]; A[2][3] = 0;
A[3][0] = 0; A[3][1] = 0; A[3][2] = 0; A[3][3] = 1;

/* Concatenate the aim transformation with the (tm) transformation
matrix */

g3d_concatenate(tm, A);

} /* g3d_aim_y_axis */

/*--*/
void g3d_aim_z_axis
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t V, /* Aim Direction Unit Vector (In) */
g3d_vector_t U /* Up Direction Unit Vector (In) */
)
{
/*
* Concatenates into the Transformation Matrix (tm) a Global Aim

* transformation which causes the Global Z-axis to be aligned to

* the aim in the direction of the unit vector (V). The (U) vector

* represents the relative up direction unit vector with respect to

* the (V) vector.

*/

g3d_matrix_t A; /* Aim transformation matrix */
g3d_vector_t X, /* Local Axes */

Y,
Z;

/* Compute the new orientation of the transformed local axes */

“Comninos” — 2005/8/31 — 18:23 — page 483 — #61

A Simple C Library for 3D Transformations 483

Mg3d_vector_copy(V, Z);
Mg3d_vector_normalise(Z);

Mg3d_vector_cross(u, Z, Y);
Mg3d_vector_normalise(Y);

Mg3d_vector_cross(Y, Z, X);
Mg3d_vector_normalise(X);

/* Construct the aim transformation matrix */

A[0][0] = X[0]; A[0][1] = X[1]; A[0][2] = X[2]; A[0][3] = 0;
A[1][0] = Y[0]; A[1][1] = Y[1]; A[1][2] = Y[2]; A[1][3] = 0;
A[2][0] = Z[0]; A[2][1] = Z[1]; A[2][2] = Z[2]; A[2][3] = 0;
A[3][0] = 0; A[3][1] = 0; A[3][2] = 0; A[3][3] = 1;

/* Concatenate the aim transformation with the (tm) transformation
matrix */

g3d_concatenate(tm, A);
} /* g3d_aim_z_axis */

/*--*/

void g3d_reflect_about_arbitrary_point
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t C /* Centre of Reflection (In) */
)
{
/*
* Concatenates a Global Reflection Transformation about an

* arbitrary point (C) into the Transformation Matrix (tm).

*
* Done in three steps:

*
* 1. Translate the centre to the origin.

*
* 2. Reflect about the origin.

*
* 3. Translate the centre to its original position.

*/

g3d_translate(tm, -C[0], -C[1], -C[2]);
g3d_scale(tm, -1.0, -1.0, -1.0);
g3d_translate(tm, C[0], C[1], C[2]);

} /* g3d_reflect_about_arbitrary_point */

/*--*/

void g3d_scale_about_arbitrary_point
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */

“Comninos” — 2005/8/31 — 18:23 — page 484 — #62

484 Mathematical and Computer Programming Techniques for Computer Graphics

g3d_vector_t C, /* Centre of Scale (In) */
double sx, /* Scale Factors (In) */
double sy,
double sz
)
{
/*
* Concatenates a Global Scale Transformation about an arbitrary

* point (C) into the Transformation Matrix (tm).

*
* Done in three steps:

*
* 1. Translate the centre to the origin.

*
* 2. Scale about the origin.

*
* 3. Translate the centre to its original position.

*/

g3d_translate(tm, -C[0], -C[1], -C[2]);
g3d_scale(tm, sx, sy, sz);
g3d_translate(tm, C[0], C[1], C[2]);

} /* g3d_scale_about_arbitrary_point */

/*--*/

void g3d_reflect_about_arbitrary_axis
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t P, /* Point on the Arbitrary Axis (In) */
g3d_vector_t D /* Direction Unit Vector of the Arbitrary

Axis (In) */
)
{
g3d_matrix_t A; /* Aim transformation matrix */
g3d_vector_t V, /* Aim Direction Unit Vector */

U, /* Relative Up Direction Unit Vector */
X, /* Local Axes */
Y,
Z;

/*
* Concatenates a Global Reflection Transformation about an

* arbitrary Axis into the Transformation Matrix (tm).

*
* The Arbitrary Axis is defined by a point (P) and a direction

* unit vector (D).

*
* This transformation is constructed by the following five steps:

*
* Step 1. Translate the point (P) to the origin.

*/

“Comninos” — 2005/8/31 — 18:23 — page 485 — #63

A Simple C Library for 3D Transformations 485

g3d_translate(tm, -P[0], -P[1], -P[2]);

/*
* Step 2. Align the unit vector (V) with the with the X-axis, using

* the inverse of the aiming transformation that would align

* the X-axis with vector (V).

*/

/* Copy and normalise the Direction Vector of the arbitrary Axis */

Mg3d_vector_copy(D, V);
Mg3d_vector_normalise(V);

/*
* Determine the relative up direction unit vector (U). No need to

* worry about gimbal lock here as step 4 reverses step 2.

*/

if(
(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] -1.0) <= g3d_IEEE_small_single)
)

{
/* When (V == Z), set U = -X */

Mg3d_vector_set(U, -1.0, 0.0, 0.0);
}
else
if(

(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] + 1.0) <= g3d_IEEE_small_single)
)

{
/* When (V == -Z), set U = X */

Mg3d_vector_set(U, 1.0, 0.0, 0.0);
}
else
{
/* Otherwise, set U = Z */

Mg3d_vector_set(U, 0.0, 0.0,1.0);
}

/* Compute the new orientation of the transformed local axes */

Mg3d_vector_copy(V, X);
Mg3d_vector_normalise(X);

Mg3d_vector_cross(U, X, Y);
Mg3d_vector_normalise(Y);

“Comninos” — 2005/8/31 — 18:23 — page 486 — #64

486 Mathematical and Computer Programming Techniques for Computer Graphics

Mg3d_vector_cross(X, Y, Z);
Mg3d_vector_normalise(Z);

/* Construct the aim transformation matrix */

A[0][0] = X[0]; A[0][1] = X[1]; A[0][2] = X[2]; A[0][3] = 0;
A[1][0] = Y[0]; A[1][1] = Y[1]; A[1][2] = Y[2]; A[1][3] = 0;
A[2][0] = Z[0]; A[2][1] = Z[1]; A[2][2] = Z[2]; A[2][3] = 0;
A[3][0] = 0; A[3][1] = 0; A[3][2] = 0; A[3][3] = 1;

/* Concatenate the aim transformation with the (tm) transformation
matrix */

g3d_concatenate_transpose(tm, A);

/*
* Step 3. Reflect about the X-axis.

*/

g3d_scale(tm, 1.0, -1.0, -1.0);

/*
* Step 4. Return vector (V) to its original orientation, by

* applying the inverse of the transformation from

* step 2.

*/

g3d_concatenate(tm, A);

/*
* Step 5. Translate point (P) to its original position, by

* applying the inverse of the transformation from

* step 1.

*/

g3d_translate(tm, P[0], P[1], P[2]);

} /* g3d_reflect_about_arbitrary_axis */

/*--*/

void g3d_rotate_about_arbitrary_axis
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t P, /* Point on the Arbitrary Axis (In) */
g3d_vector_t D, /* Direction Unit Vector of the Arbitrary

Axis (In) */
double angle /* Rotation Angle in Degrees (In) */
)
{
g3d_matrix_t A; /* Aim transformation matrix */
g3d_vector_t V, /* Aim Direction Unit Vector */

U, /* Relative Up Direction Unit Vector */

“Comninos” — 2005/8/31 — 18:23 — page 487 — #65

A Simple C Library for 3D Transformations 487

X, /* Local Axes */
Y
Z;

/*
* Concatenates a Global Rotation Transformation about an arbitrary

* Axis into the Transformation Matrix (tm).

*
* The Arbitrary Axis is defined by a point (P) and a direction unit

* vector (D).

*
* This transformation is constructed by the following five steps:

*

* Step 1. Translate the point (P) to the origin.

*/

g3d_translate(tm, -P[0], -P[1], -P[2]);

/*
* Step 2. Align the unit vector (V) with the with the X-axis, using

* the inverse of the aiming transformation that would align

* the X-axis with vector (V).

*/

/* Copy and normalise the Direction Vector of the arbitrary Axis */

Mg3d_vector_copy(D, V);
Mg3d_vector_normalise(V);

/*
* Determine the relative up direction unit vector (U). No need to

* worry about gimbal lock here as step 4 reverses step 2.

*/

if(
(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] -1.0) <= g3d_IEEE_small_single)
)

{
/* When (V == Z), set U = -X */

Mg3d_vector_set(U, -1.0, 0.0, 0.0);
}
else
if(

(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] + 1.0) <= g3d_IEEE_small_single)
)

{
/* When (V == -Z), set U = X */

“Comninos” — 2005/8/31 — 18:23 — page 488 — #66

488 Mathematical and Computer Programming Techniques for Computer Graphics

Mg3d_vector_set(U, 1.0, 0.0, 0.0);
}

else
{
/* Otherwise, set U = Z */

Mg3d_vector_set(U, 0.0, 0.0,1.0);
}

/* Compute the new orientation of the transformed local axes */

Mg3d_vector_copy(V, X);
Mg3d_vector_normalise(X);

Mg3d_vector_cross(U, X, Y);
Mg3d_vector_normalise(Y);

Mg3d_vector_cross(X, Y, Z);
Mg3d_vector_normalise(Z);

/* Construct the aim transformation matrix */

A[0][0] = X[0]; A[0][1] = X[1]; A[0][2] = X[2]; A[0][3] = 0;
A[1][0] = Y[0]; A[1][1] = Y[1]; A[1][2] = Y[2]; A[1][3] = 0;
A[2][0] = Z[0]; A[2][1] = Z[1]; A[2][2] = Z[2]; A[2][3] = 0;
A[3][0] = 0; A[3][1] = 0; A[3][2] = 0; A[3][3] = 1;

/* Concatenate the aim transformation with the (tm) transformation
matrix */

g3d_concatenate_transpose(tm, A);

/*
* Step 3. Rotate about the X-axis.

*/

g3d_rotate_x(tm, angle);

/*
* Step 4. Return vector (V) to its original orientation, by

* applying the inverse of the transformation from

* step 2.

*/

g3d_concatenate(tm, A);

/*
* Step 5. Translate point (P) to its original position, by

* applying the inverse of the transformation from

* step 1.

*/

g3d_translate(tm, P[0], P[1], P[2]);

“Comninos” — 2005/8/31 — 18:23 — page 489 — #67

A Simple C Library for 3D Transformations 489

} /* g3d_rotate_about_arbitrary_axis */

/*--*/

void g3d_scale_along_arbitrary_axis
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t P, /* Point on the Arbitrary Axis (In) */
g3d_vector_t D, /* Direction Unit Vector of the Arbitrary */

Axis (In) */
double sf /* Scale Factor (In) */
)
{
g3d_matrix_t A; /* Aim transformation matrix */
g3d_vector_t V, /* Aim Direction Unit Vector */

U, /* Relative Up Direction Unit Vector */
X, /* Local Axes */
Y,
Z;

/*
* Concatenates a Global Scaling Transformation along an arbitrary

* Axis into the Transformation Matrix (tm).

*
* The Arbitrary Axis is defined by a point (P) and a direction

* unit vector (D).

*
* This transformation is constructed by the following five steps:

*
* Step 1. Translate the point (P) to the origin.

*/

g3d_translate(tm, -P[0], -P[1], -P[2]);

/*
* Step 2. Align the unit vector (V) with the X-axis, using

* the inverse of the aiming transformation that would

* align the X-axis with vector (V).

*/

/* Copy and normalise the Direction Vector of the arbitrary Axis */

Mg3d_vector_copy(D, V);
Mg3d_vector_normalise(V);

/*
* Determine the relative up direction unit vector (U). No need to

* worry about gimbal lock here as step 4 reverses step 2.

*/

if(
(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&

“Comninos” — 2005/8/31 — 18:23 — page 490 — #68

490 Mathematical and Computer Programming Techniques for Computer Graphics

(fabs(V[2] -1.0) <= g3d_IEEE_small_single)
)
{
/* When (V == Z), set U = -X */

Mg3d_vector_set(U, -1.0, 0.0, 0.0);
}

else
if(

(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] + 1.0) <= g3d_IEEE_small_single)
)

{
/* When (V == -Z), set U = X */

Mg3d_vector_set(U, 1.0, 0.0, 0.0);
}

else
{
/* Otherwise, set U = Z */

Mg3d_vector_set(U, 0.0, 0.0,1.0);
}

/* Compute the new orientation of the transformed local axes */

Mg3d_vector_copy(V, X);
Mg3d_vector_normalise(X);

Mg3d_vector_cross(U, X, Y);
Mg3d_vector_normalise(Y);

Mg3d_vector_cross(X, Y, Z);
Mg3d_vector_normalise(Z);

/* Construct the aim transformation matrix */

A[0][0] = X[0]; A[0][1] = X[1]; A[0][2] = X[2]; A[0][3] = 0;
A[1][0] = Y[0]; A[1][1] = Y[1]; A[1][2] = Y[2]; A[1][3] = 0;
A[2][0] = Z[0]; A[2][1] = Z[1]; A[2][2] = Z[2]; A[2][3] = 0;
A[3][0] = 0; A[3][1] = 0; A[3][2] = 0; A[3][3] = 1;

/* Concatenate the aim transformation with the (tm) transformation
matrix */

g3d_concatenate_transpose(tm, A);

/*
* Step 3. Scale along the X-axis.

*/

g3d_scale(tm, sf, 1.0,1.0);

“Comninos” — 2005/8/31 — 18:23 — page 491 — #69

A Simple C Library for 3D Transformations 491

/*
* Step 4. Return vector (V) to its original orientation, by

* applying the inverse of the transformation from

* step 2.

*/

g3d_concatenate(tm, A);

/*
* Step 5. Translate point (P) to its original position, by

* applying the inverse of the transformation from

* step 1.

*/

g3d_translate(tm, P[0], P[1], P[2]);

} /* g3d_scale_along_arbitrary_axis */

void g3d_translate_along_arbitrary_axis
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t P, /* Point on the Arbitrary Axis (In) */
g3d_vector_t D, /* Direction Unit Vector of the Arbitrary

Axis (In) */
double dd /* Displacement (In) */
)
{
g3d_matrix_t A; /* Aim transformation matrix */
g3d_vector_t V, /* Aim Direction Unit Vector */

U, /* Relative Up Direction Unit Vector */
X, /* Local Axes */
Y,
Z;

/*
* Concatenates a Global Translation Transformation along an

* arbitrary Axis into the Transformation Matrix (tm).

*
* The Arbitrary Axis is defined by a point (P) and a direction

* unit vector (D).

* This transformation is constructed by the following five steps:

*
* Step 1. Translate the point (P) to the origin.

*/

g3d_translate(tm, -P[0], -P[1], -P[2]);

/*
* Step 2. Align the unit vector (V) with the with the X-axis, using

* the inverse of the aiming transformation that would align

* the X-axis with vector (V).

*/

/* Copy and normalise the Direction Vector of the arbitrary Axis */

“Comninos” — 2005/8/31 — 18:23 — page 492 — #70

492 Mathematical and Computer Programming Techniques for Computer Graphics

Mg3d_vector_copy(D, V);
Mg3d_vector_normalise(V);

/*
* Determine the relative up direction unit vector (U). No need to

* worry about gimbal lock here as step 4 reverses step 2.

*/

if(
(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] -1.0) <= g3d_IEEE_small_single)
)
{
/* When (V == Z), set U = -X */

Mg3d_vector_set(U, -1.0, 0.0, 0.0);
}

else
if(

(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] + 1.0) <= g3d_IEEE_small_single)
)

{
/* When (V == -Z), set U = X */

Mg3d_vector_set(U, 1.0, 0.0, 0.0);
}

else
{
/* Otherwise, set U = Z */

Mg3d_vector_set(U, 0.0, 0.0,1.0);
}

/* Compute the new orientation of the transformed local axes */

Mg3d_vector_copy(V, X);
Mg3d_vector_normalise(X);

Mg3d_vector_cross(U, X, Y);
Mg3d_vector_normalise(Y);

Mg3d_vector_cross(X, Y, Z);
Mg3d_vector_normalise(Z);

/* Construct the aim transformation matrix */

A[0][0] = X[0]; A[0][1] = X[1]; A[0][2] = X[2]; A[0][3] = 0;
A[1][0] = Y[0]; A[1][1] = Y[1]; A[1][2] = Y[2]; A[1][3] = 0;
A[2][0] = Z[0]; A[2][1] = Z[1]; A[2][2] = Z[2]; A[2][3] = 0;

“Comninos” — 2005/8/31 — 18:23 — page 493 — #71

A Simple C Library for 3D Transformations 493

A[3][0] = 0; A[3][1] = 0; A[3][2] = 0; A[3][3] = 1;

/* Concatenate the aim transformation with the (tm) transformation
matrix */

g3d_concatenate_transpose(tm, A);

/*
* Step 3. Translate along the X-axis.

*/

g3d_translate(tm, dd, 0.0, 0.0);

/*
* Step 4. Return vector (V) to its original orientation, by

* applying the inverse of the transformation from

* step 2.

*/

g3d_concatenate(tm, A);

/*
* Step 5. Translate point (P) to its original position, by

* applying the inverse of the transformation from

* step 1.

*/
g3d_translate(tm, P[0], P[1], P[2]);

} /* g3d_translate_along_arbitrary_axis */

/*--*/

void g3d_reflect_about_arbitrary_plane
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t P, /* Point on the Arbitrary Plane (In) */
g3d_vector_t N /* Unit Normal Vector of the Arbitrary

Plane (In) */
)
{
g3d_matrix_t A; /* Aim transformation matrix */
g3d_vector_t V, /* Aim Direction Unit Vector */

U, /* Relative Up Direction Unit Vector */
X, /* Local Axes */
Y,
Z;

/*
* Concatenates a Global Reflection Transformation about an arbitrary

* Plane into the Transformation Matrix (tm).

*
* The Arbitrary Plane is defined by a point (P) and the direction

* unit vector of its normal (N).

*

“Comninos” — 2005/8/31 — 18:23 — page 494 — #72

494 Mathematical and Computer Programming Techniques for Computer Graphics

* This transformation is constructed by the following five steps:

*
* Step 1. Translate the point (P) to the origin.

*/

g3d_translate(tm, -P[0], -P[1], -P[2]);

/*
* Step 2. Align the unit vector (V) with the with the X-axis, using

* the inverse of the aiming transformation that would align

* the X-axis with vector (V).

*/

/* Copy and normalise the Normal Vector of the arbitrary Plane */

Mg3d_vector_copy(N, V);
Mg3d_vector_normalise(V);

/*
* Determine the relative up direction unit vector (U). No need to

* worry about gimbal lock here as step 4 reverses step 2.

*/
if(

(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] -1.0) <= g3d_IEEE_small_single)
)
{
/* When (V == Z), set U = -X */

Mg3d_vector_set(U, -1.0, 0.0, 0.0);
}

else
if(

(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] + 1.0) <= g3d_IEEE_small_single)
)

{
/* When (V == -Z), set U = X */

Mg3d_vector_set(U, 1.0, 0.0, 0.0);
}

else
{
/* Otherwise, set U = Z */

Mg3d_vector_set(U, 0.0, 0.0,1.0);
}

/* Compute the new orientation of the transformed local axes */

Mg3d_vector_copy(V, X);

“Comninos” — 2005/8/31 — 18:23 — page 495 — #73

A Simple C Library for 3D Transformations 495

Mg3d_vector_normalise(X);

Mg3d_vector_cross(U, X, Y);
Mg3d_vector_normalise(Y);

Mg3d_vector_cross(X, Y, Z);
Mg3d_vector_normalise(Z);

/* Construct the aim transformation matrix */

A[0][0] = X[0]; A[0][1] = X[1]; A[0][2] = X[2]; A[0][3] = 0;
A[1][0] = Y[0]; A[1][1] = Y[1]; A[1][2] = Y[2]; A[1][3] = 0;
A[2][0] = Z[0]; A[2][1] = Z[1]; A[2][2] = Z[2]; A[2][3] = 0;
A[3][0] = 0; A[3][1] = 0; A[3][2] = 0; A[3][3] = 1;

/* Concatenate the aim transformation with the (tm) transformation
matrix */

g3d_concatenate_transpose(tm, A);

/*
* Step 3. Reflect about the YZ-plane.

*/
g3d_scale(tm, -1.0,1.0,1.0);

/*
* Step 4. Return vector (V) to its original orientation, by

* applying the inverse of the transformation from

* step 2.

*/

g3d_concatenate(tm, A);

/*
* Step 5. Translate point (P) to its original position, by

* applying the inverse of the transformation from

* step 1.

*/

g3d_translate(tm, P[0], P[1], P[2]);

} /* g3d_reflect_about_arbitrary_plane */

/*--*/
/*!!*/
/*! 3D Local Transformation Routines !*/
/*!!*/
/*--*/

void g3d_local_translate(g3d_matrix_t tm, /* Transformation Matrix
(In/Out) */

double dx, /* Displacements (In) */
double dy,
double dz
)

“Comninos” — 2005/8/31 — 18:23 — page 496 — #74

496 Mathematical and Computer Programming Techniques for Computer Graphics

{
/*
* Concatenates a Local Translation Transformation into the

* Transformation Matrix (tm).

*/

int c;

for (c = 0; c <= 3; c++)
tm[3][c] = tm[0][c] * dx + tm[1][c] * dy + tm[2][c] * dz + tm[3][c];

} /* g3d_local_translate */

/*--*/

void g3d_local_scale(g3d_matrix_t tm, /* Transformation Matrix
(In/Out) */

double sx, /* Scale Factors (In) */
double sy,
double sz
)

{
/*
* Concatenates a Scale relative the Local Origin Transformation

* into the Transformation Matrix (tm).

*/

int c;

for (c = 0; c <= 3; c++)
{
tm[0][c] *= sx;
tm[1][c] *= sy;
tm[2][c] *= sz;
}

} /* g3d_local_scale */

/*--*/

void g3d_local_rotate_x(g3d_matrix_t tm, /* Transformation
Matrix (In/Out) */

double angle /* Rotation Angle in
Degrees (In) */

)
{
/*
* Concatenates a Rotation about the Local X-Axis Transformation

* into the Transformation Matrix (tm).

*/

g3d_matrix_t m; /* Temporary Matrix */
double cosine, sine;
int c;

“Comninos” — 2005/8/31 — 18:23 — page 497 — #75

A Simple C Library for 3D Transformations 497

/* Copy Matrix (tm) into Matrix (m) */

memcpy(m, tm, sizeof(g3d_matrix_t));

cosine = cos(angle * g3d_DtoR);
sine = sin(angle * g3d_DtoR);

for (c == 0; c <= 3; c++)
{
tm[1][c] = m[1][c] * cosine - m[2][c] * sine;
tm[2][c] = m[1][c] * sine + m[2][c] * cosine;

}
} /* g3d_local_rotate_x */

/*--*/

void g3d_local_rotate_y(g3d_matrix_t tm, /* Transformation
Matrix (In/Out) */

double angle /* Shear Angle in
Degrees (In) */

)
{
/*
* Concatenates a Rotation about the Local Y-Axis Transformation

* into the Transformation Matrix (tm).

*/

g3d_matrix_t m; /* Temporary Matrix */
double cosine, sine;
int c;

/* Copy Matrix (tm) Into Matrix (m) */

memcpy(m, tm, sizeof(g3d_matrix_t));

cosine = cos(angle * g3d_DtoR);
sine = sin(angle * g3d_DtoR);

for (c = 0; c <= 2; c++)
{
tm[0][c] = m[0][c] * cosine + m[2][c] * sine;
tm[2][c] = m[2][c] * cosine - m[0][c] * sine;

}
} /* g3d_local_rotate_y */

/*--*/

void g3d_local_rotate_z(g3d_matrix_t tm, /* Transformation
Matrix (In/Out) */

double angle /* Shear Angle in
Degrees (In) */

)
{

“Comninos” — 2005/8/31 — 18:23 — page 498 — #76

498 Mathematical and Computer Programming Techniques for Computer Graphics

/*
* Concatenates a Rotation about the Local Z-Axis Transformation

* into the Transformation Matrix (tm).

*/

g3d_matrix_t m; /* Temporary Matrix */
double cosine, sine;
int c;

/* Copy Matrix (tm) into Matrix (m) */

memcpy(m, tm, sizeof(g3d_matrix_t));

cosine = cos(angle * g3d_DtoR);
sine = sin(angle * g3d_DtoR);

for (c = 0; c <= 2; c++)
{
tm[0][c] = m[0][c] * cosine - m[1][c] * sine;
tm[1][c] = m[0][c] * sine + m[1][c] * cosine;
}

} /* g3d_local_rotate_z */
/*--*/

void g3d_local_shear_x_parallel_to_y
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
double angle /* Shear Angle in Degrees (In) */
)
{
/*
* Concatenates a Local Shear Transformation of the X-Axis parallel

* to the Y-Axis into the Transformation Matrix (tm).

*/

double tangent;
int c;

tangent = tan(angle * g3d_DtoR);

for (c = 0; c <= 3; c++)
tm[0][c] -= tm[1][c] * tangent;

} /* g3d_local_shear_x_parallel_to_y */

/*--*/

void g3d_local_shear_x_parallel_to_z
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
double angle /* Shear Angle in Degrees (In) */
)
{

“Comninos” — 2005/8/31 — 18:23 — page 499 — #77

A Simple C Library for 3D Transformations 499

/*
* Concatenates a Local Shear Transformation of the X-Axis parallel

* to the Z-Axis into the Transformation Matrix (tm).

*/

double tangent;
int c;
tangent = tan(angle * g3d_DtoR);

for (c = 0; c <= 3; c++)
tm[0][c] += tm[2][c] * tangent;

} /* g3d_local_shear_x_parallel_to_z */

/*--*/

void g3d_local_shear_y_parallel_to_x
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
double angle /* Shear Angle in Degrees (In) */
)
{
/*
* Concatenates a Local Shear Transformation of the Y-Axis parallel

* to the X-Axis into the Transformation Matrix (tm).

*/

double tangent;
int c;

tangent = tan(angle * g3d_DtoR);

for (c = 0; c <= 3; c++)
tm[1][c] += tm[0][c] * tangent;

} /* g3d_local_shear_y_parallel_to_x */

/*--*/

void g3d_local_shear_y_parallel_to_z
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
double angle /* Shear Angle in Degrees (In) */
)
{
/*
* Concatenates a Local Shear Transformation of the Y-Axis parallel

* to the Z-Axis into the Transformation Matrix (tm).

*/

double tangent;
int c;

“Comninos” — 2005/8/31 — 18:23 — page 500 — #78

500 Mathematical and Computer Programming Techniques for Computer Graphics

tangent = tan(angle * g3d_DtoR);

for (c = 0; c <= 3; c++)
tm[1][c] -= tm[2][c] * tangent;

} /* g3d_local_shear_y_parallel_to_z */

/*--*/

void g3d_local_shear_z_parallel_to_x
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
double angle /* Shear Angle in Degrees (In) */
)
{
/*
* Concatenates a Local Shear Transformation of the Z-Axis parallel

* to the X-Axis into the Transformation Matrix (tm).

*/

double tangent;
int c;

tangent = tan(angle * g3d_DtoR);

for (c = 0; c <= 3; c++)
tm[2][c] -= tm[0][c] * tangent;

} /* g3d_local_shear_z_parallel_to_x */

/*--*/

void g3d_local_shear_z_parallel_to_y
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
double angle /* Shear Angle in Degrees (In) */
)
{
/*
* Concatenates a Local Shear Transformation of the Z-Axis parallel

* to the Y-Axis into the Transformation Matrix (tm).

*/

double tangent;
int c;

tangent = tan(angle * g3d_DtoR);

for (c =; 0; c <= 3; c++)
tm[2][c] += tm[1][c] * tangent;

} /* g3d_local_shear_z_parallel_to_y */

/*--*/

“Comninos” — 2005/8/31 — 18:23 — page 501 — #79

A Simple C Library for 3D Transformations 501

void g3d_local_aim_x_axis
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t V, /* Aim Direction Unit Vector (In) */
g3d_vector_t U /* Up Direction Unit Vector (In) */
)
{
/*
* Concatenates into the Transformation Matrix (tm) a Local Aim

* transformation which causes the Local X-axis to be aligned to

* the aim in the direction of the unit vector (V). The (U)

* vector represents the relative up direction unit vector with

* respect to the (V) vector.

*/

g3d_matrix_t A; /* Aim transformation matrix */
g3d_vector_t X, /* Local Axes */

Y,
Z;

/* Compute the new orientation of the transformed local axes */

Mg3d_vector_copy(V, X);
Mg3d_vector_normalise(X);

Mg3d_vector_cross(U, X, Y);
Mg3d_vector_normalise(Y);

Mg3d_vector_cross(X, Y, Z);
Mg3d_vector_normalise(Z);

/* Construct the aim transformation matrix */

A[0][0] = X[0]; A[0][1] = X[1]; A[0][2] = X[2]; A[0][3] = 0;
A[1][0] = Y[0]; A[1][1] = Y[1]; A[1][2] = Y[2]; A[1][3] = 0;
A[2][0] = Z[0]; A[2][1] = Z[1]; A[2][2] = Z[2]; A[2][3] = 0;
A[3][0] = 0; A[3][1] = 0; A[3][2] = 0; A[3][3] = 1;

/* Concatenate the aim transformation with the (tm) transformation
matrix */

g3d_local_concatenate(tm, A);

} /* g3d_local_aim_x_axis */

/*--*/

void g3d_local_aim_y_axis
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t V, /* Aim Direction Unit Vector (In) */
g3d_vector_t U /* Up Direction Unit Vector (In) */

“Comninos” — 2005/8/31 — 18:23 — page 502 — #80

502 Mathematical and Computer Programming Techniques for Computer Graphics

)
{
/*
* Concatenates into the Transformation Matrix (tm) a Local Aim

* transformation which causes the Local Y-axis to be aligned to

* the aim in the direction of the unit vector (V). The (U)

* vector represents the relative up direction unit vector

* with respect to the (V) vector.

*/

g3d_matrix_t A; /* Aim transformation matrix */
g3d_vector_t X, /* Local Axes */

Y,
Z;

/* Compute the new orientation of the transformed local axes */

Mg3d_vector_copy(V, Y);
Mg3d_vector_normalise(Y);

Mg3d_vector_cross(Y, U, X);
Mg3d_vector_normalise(X);

Mg3d_vector_cross(X, Y, Z);
Mg3d_vector_normalise(Z);

/* Construct the aim transformation matrix */

A[0][0] = X[0]; A[0][1] = X[1]; A[0][2] = X[2]; A[0][3] = 0;
A[1][0] = Y[0]; A[1][1] = Y[1]; A[1][2] = Y[2]; A[1][3] = 0;
A[2][0] = Z[0]; A[2][1] = Z[1]; A[2][2] = Z[2]; A[2][3] = 0;
A[3][0] = 0; A[3][1] = 0; A[3][2] = 0; A[3][3] = 1;

/* Concatenate the aim transformation with the (tm) transformation
matrix */

g3d_local_concatenate(tm, A);

} /* g3d_local_aim_y_axis */

/*--*/

void g3d_local_aim_z_axis
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t V, /* Aim Direction Unit Vector (In) */
g3d_vector_t U /* Up Direction Unit Vector (In) */
)
{
/*
* Concatenates into the Transformation Matrix (tm) a Local Aim

* transformation which causes the Local Z-axis to be aligned to

* the aim in the direction of the unit vector (V). The (U)

* vector represents the relative up direction unit vector

“Comninos” — 2005/8/31 — 18:23 — page 503 — #81

A Simple C Library for 3D Transformations 503

* with respect to the (V) vector.

*/

g3d_matrix_t A; /* Aim transformation matrix */
g3d_vector_t X, /* Local Axes */

Y,
Z;

/* Compute the new orientation of the transformed local axes */

Mg3d_vector_copy(V, Z);
Mg3d_vector_normalise(Z);

Mg3d_vector_cross(U, Z, Y);
Mg3d_vector_normalise(Y);

Mg3d_vector_cross(Y, Z, X);
Mg3d_vector_normalise(X);

/* Construct the aim transformation matrix */

A[0][0] = X[0]; A[0][1] = X[1]; A[0][2] = X[2]; A[0][3] = 0;
A[1][0] = Y[0]; A[1][1] = Y[1]; A[1][2] = Y[2]; A[1][3] = 0;
A[2][0] = Z[0]; A[2][1] = Z[1]; A[2][2] = Z[2]; A[2][3] = 0;
A[3][0] = 0; A[3][1] = 0; A[3][2] = 0; A[3][3] = 1;

/* Concatenate the aim transformation with the (tm) transformation
matrix */

g3d_local_concatenate(tm, A);

} /* g3d_local_aim_z_axis */

/*--*/

void g3d_local_reflect_about_arbitrary_point
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t C /* Centre of Reflection (In) */
)
{
/*
* Concatenates a Local Reflection Transformation about an

* arbitrary point (C) into the Transformation Matrix (tm).

*
* Done in three steps:

*
* 1. Translate the centre to the origin.

*
* 2. Reflect about the origin.

*
* 3. Translate the centre to its original position.

*/

“Comninos” — 2005/8/31 — 18:23 — page 504 — #82

504 Mathematical and Computer Programming Techniques for Computer Graphics

g3d_local_translate(tm, -C[0], -C[1], -C[2]);
g3d_local_scale(tm, -1.0, -1.0, -1.0);
g3d_local_translate(tm, C[0], C[1], C[2]);

} /* g3d_local_reflect_about_arbitrary_point */

/*--*/

void g3d_local_scale_about_arbitrary_point
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t C, /* Centre of Scale (In) */
double sx, /* Scale Factors (In) */
double sy,
double sz
)
{
/*
* Concatenates a Local Scale Transformation about an arbitrary

* point (C) into the Transformation Matrix (tm).

*
* Done in three steps:

*
* 1. Translate the centre to the origin.

*
* 2. Scale about the origin.

*
* 3. Translate the centre to its original position.

*/

g3d_local_translate(tm, -C[0], -C[1], -C[2]);
g3d_local_scale(tm, sx, sy, sz);
g3d_local_translate(tm, C[0] C[1], C[2]);

} /* g3d_local_scale_about_arbitrary_point */

/*--*/

void g3d_local_reflect_about_arbitrary_axis
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t P, /* Point on the Arbitrary Axis (In) */
g3d_vector_t D /* Direction Unit Vector of the Arbitrary

Axis (In) */
)
{
g3d_matrix_t A; /* Aim transformation matrix */
g3d_vector_t V, /* Aim Direction Unit Vector */

U, /* Relative Up Direction Unit Vector */
X, /* Local Axes */
Y,
Z;

“Comninos” — 2005/8/31 — 18:23 — page 505 — #83

A Simple C Library for 3D Transformations 505

/*
* Concatenates a Local Reflection Transformation about an arbitrary

* Axis into the Transformation Matrix (tm).

*
* The Arbitrary Axis is defined by a point (P) and a direction unit

* vector (D).

*
* This transformation is constructed by the following five steps:

*
* Step 1. Translate the point (P) to the origin.

*/

g3d_local_translate(tm, -P[0], -P[1], -P[2]);

/*
* Step 2. Align the unit vector (V) with the with the X-axis,

* using the inverse of the aiming transformation that

* would align the X-axis with vector (V).

*/

/* Copy and normalise the Direction Vector of the arbitrary Axis */

Mg3d_vector_copy(D, V);
Mg3d_vector_normalise(V);

/*
* Determine the relative up direction unit vector (U). No need to

* worry about gimbal lock here as step 4 reverses step 2.

*/

if(
(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] -1.0) <= g3d_IEEE_small_single)
)

{
/* When (V == Z), set U = -X */

Mg3d_vector_set(U, -1.0, 0.0, 0.0);
}
else
if(

(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] + 1.0) <= g3d_IEEE_small_single)
)

{
/* When (V == -Z), set U = X */

Mg3d_vector_set(U, 1.0, 0.0, 0.0);
}
else
{

“Comninos” — 2005/8/31 — 18:23 — page 506 — #84

506 Mathematical and Computer Programming Techniques for Computer Graphics

/* Otherwise, set U = Z */

Mg3d_vector_set(U, 0.0, 0.0,1.0);
}

/* Compute the new orientation of the transformed local axes */

Mg3d_vector_copy(V, X);
Mg3d_vector_normalise(X);

Mg3d_vector_cross(U, X, Y);
Mg3d_vector_normalise(Y);

Mg3d_vector_cross(X, Y, Z);
Mg3d_vector_normalise(Z);

/* Construct the aim transformation matrix */

A[0][0] = X[0]; A[0][1] = X[1]; A[0][2] = X[2]; A[0][3] = 0;
A[1][0] = Y[0]; A[1][1] = Y[1]; A[1][2] = Y[2]; A[1][3] = 0;
A[2][0] = Z[0]; A[2][1] = Z[1]; A[2][2] = Z[2]; A[2][3] = 0;
A[3][0] = 0; A[3][1] = 0; A[3][2] = 0; A[3][3] = 1;

/* Concatenate the aim transformation with the (tm) transformation
matrix */

g3d_local_concatenate_transpose(tm, A);

/*
* Step 3. Reflect about the X-axis.

*/

g3d_local_scale(tm, 1.0, -1.0, -1.0);

/*
* Step 4. Return vector (V) to its original orientation,

* by applying the inverse of the transformation

* from step 2.

*/

g3d_local_concatenate(tm, A);

/*
* Step 5. Translate point (P) to its original position,

* by applying the inverse of the transformation

* from step 1.

*/

g3d_local_translate(tm, P[0], P[1], P[2]);

} /* g3d_local_reflect_about_arbitrary_axis */

/*--*/

“Comninos” — 2005/8/31 — 18:23 — page 507 — #85

A Simple C Library for 3D Transformations 507

void g3d_local_rotate_about_arbitrary_axis
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t P, /* Point on the Arbitrary Axis (In) */
g3d_vector_t D, /* Direction Unit Vector of the Arbitrary

Axis (In) */
double angle /* Rotation Angle in Degrees (In) */
)
{
g3d_matrix_t A; /* Aim transformation matrix */
g3d_vector_t V, /* Aim Direction Unit Vector */

U, /* Relative Up Direction Unit Vector */
X, /* Local Axes */
Y,
Z;

/*
* Concatenates a Local Rotation Transformation about an arbitrary

* Axis into the Transformation Matrix (tm).

*
* The Arbitrary Axis is defined by a point (P) and a direction unit

* vector (D).

*
* This transformation is constructed by the following five steps:

*
* Step 1. Translate the point (P) to the origin.

*/

g3d_local_translate(tm, -P[0], -P[1], -P[2]);

/*
* Step 2. Align the unit vector (V) with the with the X-axis,

* using the inverse of the aiming transformation that

* would align the X-axis with vector (V).

*/

/* Copy and normalise the Direction Vector of the arbitrary Axis */

Mg3d_vector_copy(D, V);
Mg3d_vector_normalise(V);

/*
* Determine the relative up direction unit vector (U). No need to

* worry about gimbal lock here as step 4 reverses step 2.

*/

if(
(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] -1.0) <= g3d_IEEE_small_single)
)

{
/* When (V == Z), set U = -X */

“Comninos” — 2005/8/31 — 18:23 — page 508 — #86

508 Mathematical and Computer Programming Techniques for Computer Graphics

Mg3d_vector_set(U, -1.0, 0.0, 0.0);
}

else

if(
(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] + 1.0) <= g3d_IEEE_small_single)
)

{
/* When (V == -Z), set U = X */

Mg3d_vector_set(U, 1.0, 0.0, 0.0);
}

else
{
/* Otherwise, set U = Z */

Mg3d_vector_set(U, 0.0, 0.0,1.0);
}

/* Compute the new orientation of the transformed local axes */
Mg3d_vector_copy(V, X);
Mg3d_vector_normalise(X);

Mg3d_vector_cross(U, X, Y);
Mg3d_vector_normalise(Y);

Mg3d_vector_cross(X, Y, Z);
Mg3d_vector_normalise(Z);

/* Construct the aim transformation matrix */

A[0][0] = X[0]; A[0][1] = X[1]; A[0][2] = X[2]; A[0][3] = 0;
A[1][0] = Y[0]; A[1][1] = Y[1]; A[1][2] = Y[2]; A[1][3] = 0;
A[2][0] = Z[0]; A[2][1] = Z[1]; A[2][2] = Z[2]; A[2][3] = 0;
A[3][0] = 0; A[3][1] = 0; A[3][2] = 0; A[3][3] = 1;

/* Concatenate the aim transformation with the (tm) transformation
matrix */

g3d_local_concatenate_transpose(tm, A);

/*
* Step 3. Rotate about the X-axis.

*/

g3d_local_rotate_x(tm, angle);

/*
* Step 4. Return vector (V) to its original orientation,

* by applying the inverse of the transformation

* from step 2.

“Comninos” — 2005/8/31 — 18:23 — page 509 — #87

A Simple C Library for 3D Transformations 509

*/

g3d_local_concatenate(tm, A);

/*
* Step 5. Translate point (P) to its original position,

* by applying the inverse of the transformation

* from step 1.

*/

g3d_local_translate(tm, P[0], P[1], P[2]);

} /* g3d_local_rotate_about_arbitrary_axis */

/*--*/

void g3d_local_scale_along_arbitrary_axis
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t P, /* Point on the Arbitrary Axis (In) */
g3d_vector_t D, /* Direction Unit Vector of the Arbitrary

Axis (In) */
double sf /* Scale Factor (In) */
)
{
g3d_matrix_t A; /* Aim transformation matrix */
g3d_vector_t V, /* Aim Direction Unit Vector */

U, /* Relative Up Direction Unit Vector */
X, /* Local Axes */
Y,
Z;

/*
* Concatenates a Local Scaling Transformation along an arbitrary

* Axis into the Transformation Matrix (tm).

*
* The Arbitrary Axis is defined by a point (P) and a direction

* unit vector (D).

*
* This transformation is constructed by the following five steps:

*
* Step 1. Translate the point (P) to the origin.

*/

g3d_local_translate(tm, -P[0], -P[1], -P[2]);

/*
* Step 2. Align the unit vector (V) with the with the X-axis,

* using the inverse of the aiming transformation that

* would align the X-axis with vector (V).

*/

/* Copy and normalise the Direction Vector of the arbitrary Axis */

“Comninos” — 2005/8/31 — 18:23 — page 510 — #88

510 Mathematical and Computer Programming Techniques for Computer Graphics

Mg3d_vector_copy(D, V);
Mg3d_vector_normalise(V);

/*
* Determine the relative up direction unit vector (U). No need to

* worry about gimbal lock here as step 4 reverses step 2.

*/

if(
(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] -1.0) <= g3d_IEEE_small_single)
)
{
/* When (V == Z), set U = -X */

Mg3d_vector_set(U, -1.0, 0.0, 0.0);
}

else
if(

(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] + 1.0) <= g3d_IEEE_small_single)
)

{
/* When (V == -Z), set U = X */

Mg3d_vector_set(U, 1.0, 0.0, 0.0);
}

else
{
/* Otherwise, set U = Z */

Mg3d_vector_set(U, 0.0, 0.0,1.0);
}

/* Compute the new orientation of the transformed local axes */

Mg3d_vector_copy(V, X);
Mg3d_vector_normalise(X);

Mg3d_vector_cross(U, X, Y);
Mg3d_vector_normalise(Y);

Mg3d_vector_cross(X, Y, Z);
Mg3d_vector_normalise(Z);

/* Construct the aim transformation matrix */

A[0][0] = X[0]; A[0][1] = X[1]; A[0][2] = X[2]; A[0][3] = 0;
A[1][0] = Y[0]; A[1][1] = Y[1]; A[1][2] = Y[2]; A[1][3] = 0;
A[2][0] = Z[0]; A[2][1] = Z[1]; A[2][2] = Z[2]; A[2][3] = 0;
A[3][0] = 0; A[3][1] = 0; A[3][2] = 0; A[3][3] = 1;

“Comninos” — 2005/8/31 — 18:23 — page 511 — #89

A Simple C Library for 3D Transformations 511

/* Concatenate the aim transformation with the (tm) transformation
matrix */

g3d_local_concatenate_transpose(tm, A);

/*
* Step 3. Scale along the X-axis.

*/

g3d_local_scale(tm, sf, 1.0,1.0);

/*
* Step 4. Return vector (V) to its original orientation,

* by applying the inverse of the transformation

* from step 2.

*/

g3d_local_concatenate(tm, A);

/*
* Step 5. Translate point (P) to its original position,

* by applying the inverse of the transformation

* from step 1.

*/

g3d_local_translate(tm, P[0], P[1], P[2]);

} /* g3d_local_scale_along_arbitrary_axis */

/*--*/

void g3d_local_translate_along_arbitrary_axis
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t P, /* Point on the Arbitrary Axis (In) */
g3d_vector_t D, /* Direction Unit Vector of the Arbitrary

Axis (In) */
double dd /* Displacement (In) */
)
{
g3d_matrix_t A; /* Aim transformation matrix */
g3d_vector_t V, /* Aim Direction Unit Vector */

U, /* Relative Up Direction Unit Vector */
X, /* Local Axes */
Y,
Z;

/*
* Concatenates a Local Translation Transformation along an

* arbitrary Axis into the Transformation Matrix (tm).

*
* The Arbitrary Axis is defined by a point (P) and a direction unit

* vector (D).

*

“Comninos” — 2005/8/31 — 18:23 — page 512 — #90

512 Mathematical and Computer Programming Techniques for Computer Graphics

* This transformation is constructed by the following five steps:

*
* Step 1. Translate the point (P) to the origin.

*/

g3d_local_translate(tm, -P[0], -P[1], -P[2]);

/*
* Step 2. Align the unit vector (V) with the with the X-axis,

* using the inverseof the aiming transformation that

* would align the X-axis with vector (V).

*/

/* Copy and normalise the Direction Vector of the arbitrary Axis */

Mg3d_vector_copy(D, V);
Mg3d_vector_normalise(V);

/*
* Determine the relative up direction unit vector (U). No need to

* worry about gimbal lock here as step 4 reverses step 2.

*/

if(
(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] -1.0) <= g3d_IEEE_small_single)
)
{
/* When (V == Z), set U = -X */

Mg3d_vector_set(U, -1.0, 0.0, 0.0);
}

else
if(

(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] + 1.0) <= g3d_IEEE_small_single)
)

{
/* When (V == -Z), set U = X */

Mg3d_vector_set(U, 1.0, 0.0, 0.0);
}

else
{
/* Otherwise, set U = Z */

Mg3d_vector_set(U, 0.0, 0.0,1.0);
}

/* Compute the new orientation of the transformed local axes */

Mg3d_vector_copy(V, X);

“Comninos” — 2005/8/31 — 18:23 — page 513 — #91

A Simple C Library for 3D Transformations 513

Mg3d_vector_normalise(X);

Mg3d_vector_cross(U, X, Y);
Mg3d_vector_normalise(Y);

Mg3d_vector_cross(X, Y, Z);
Mg3d_vector_normalise(Z);

/* Construct the aim transformation matrix */

A[0][0] = X[0]; A[0][1] = X[1]; A[0][2] = X[2]; A[0][3] = 0;
A[1][0] = Y[0]; A[1][1] = Y[1]; A[1][2] = Y[2]; A[1][3] = 0;
A[2][0] = Z[0]; A[2][1] = Z[1]; A[2][2] = Z[2]; A[2][3] = 0;
A[3][0] = 0; A[3][1] = 0; A[3][2] = 0; A[3][3] = 1;

/* Concatenate the aim transformation with the (tm) transformation
matrix */

g3d_local_concatenate_transpose(tm, A);

/*
* Step 3. Translate along the X-axis.

*/

g3d_local_translate(tm, dd, 0.0, 0.0);

/*
* Step 4. Return vector (V) to its original orientation,

* by applying the inverse of the transformation

* from step 2.

*/

g3d_local_concatenate(tm, A);

/*
* Step 5. Translate point (P) to its original position,

* by applying the inverse of the transformation

* from step 1.

*/

g3d_local_translate(tm, P[0], P[1], P[2]);

} /* g3d_local_translate_along_arbitrary_axis */

/*--*/

void g3d_local_reflect_about_arbitrary_plane
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t P, /* Point on the Arbitrary Plane (In) */
g3d_vector_t N /* Unit Normal Vector of the Arbitrary

Plane (In) */
)
{

“Comninos” — 2005/8/31 — 18:23 — page 514 — #92

514 Mathematical and Computer Programming Techniques for Computer Graphics

g3d_matrix_t A; /* Aim transformation matrix */
g3d_vector_t V, /* Aim Direction Unit Vector */

U, /* Relative Up Direction Unit Vector */
X, /* Local Axes */
Y,
Z;

/*
* Concatenates a Local Reflection Transformation about an arbitrary

* Plane into the Transformation Matrix (tm).

* The Arbitrary Plane is defined by a point (P) and the direction

* unit vector of its normal (N).

*
* This transformation is constructed by the following five steps:

*
* Step 1. Translate the point (P) to the origin.

*/

g3d_local_translate(tm, -P[0], -P[1], -P[2]);

/*
* Step 2. Align the unit vector (V) with the with the X-axis,

* using the inverse of the aiming transformation that

* would align the X-axis with vector (V).

*/

/* Copy and normalise the Normal Vector of the arbitrary Plane */

Mg3d_vector_copy(N, V);
Mg3d_vector_normalise(V);

/*
* Determine the relative up direction unit vector (U). No need to

* worry about gimbal lock here as step 4 reverses step 2.

*/

if(
(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] -1.0) <= g3d_IEEE_small_single)
)
{
/* When (V == Z), set U = -X */

Mg3d_vector_set(U, -1.0, 0.0, 0.0);
}

else
if(

(fabs(V[0]) <= g3d_IEEE_small_single) &&
(fabs(V[1]) <= g3d_IEEE_small_single) &&
(fabs(V[2] + 1.0) <= g3d_IEEE_small_single)
)

{
/* When (V == -Z), set U = X */

“Comninos” — 2005/8/31 — 18:23 — page 515 — #93

A Simple C Library for 3D Transformations 515

Mg3d_vector_set(U, 1.0, 0.0, 0.0);
}
else
{
/* Otherwise, set U = Z */

Mg3d_vector_set(U, 0.0, 0.0,1.0);
}

/* Compute the new orientation of the transformed local axes */

Mg3d_vector_copy(V, X);
Mg3d_vector_normalise(X);

Mg3d_vector_cross(U, X, Y);
Mg3d_vector_normalise(Y);

Mg3d_vector_cross(X, Y, Z);
Mg3d_vector_normalise(Z);

/* Construct the aim transformation matrix */

A[0][0] = X[0]; A[0][1] = X[1]; A[0][2] = X[2]; A[0][3] = 0;
A[1][0] = Y[0]; A[1][1] = Y[1]; A[1][2] = Y[2]; A[1][3] = 0;
A[2][0] = Z[0]; A[2][1] = Z[1]; A[2][2] = Z[2]; A[2][3] = 0;
A[3][0] = 0; A[3][1] = 0; A[3][2] = 0; A[3][3] = 1;

/* Concatenate the aim transformation with the (tm) transformation
matrix */

g3d_local_concatenate_transpose(tm, A);

/*
* Step 3. Reflect about the YZ-plane.

*/

g3d_local_scale(tm, -1.0,1.0,1.0);

/*
* Step 4. Return vector (V) to its original orientation,

* by applying the inverse of the transformation

* from step 2.

*/

g3d_local_concatenate(tm, A);

/*
* Step 5. Translate point (P) to its original position,

* by applying the inverse of the transformation

* from step 1.

*/

g3d_local_translate(tm, P[0l, P[1], P[2]);

“Comninos” — 2005/8/31 — 18:23 — page 516 — #94

516 Mathematical and Computer Programming Techniques for Computer Graphics

} /* g3d_local_reflect_about_arbitrary_plane */

/*--*/
/*!!*/
/*! Apply Transformation to Point Routines !*/
/*!!*/
/*--*/

void g3d_transform_3D_point(g3d_matrix_t tm, /* Transformation
Matrix (In) */

g3d_vector_t P /* Point (In/Out) */
)

{
/* Apply the Transformation Matrix (tm) to the Point P=[x, y, z] */
double x, y, z;

x = P[0];
y = P[1];
z = P[2];

P[0] = x * tm[0][0] + y * tm[1][0] + z * tm[2][0] + tm[3][0];
P[1] = x * tm[0][1] + y * tm[1][1] + z * tm[2][1] + tm[3][1];
P[2] = x * tm[0][2] + y * tm[1][2] + z * tm[2][2] + tm[3][2];

} /* g3d_transform_3D_point */

/*--*/

void g3d_transform_4D_point(g3d_matrix_t tm, /* Transformation
Matrix (In) */

g4d_vector_t P /* Point (In/Out) */
)

{
/* Apply the Transformation Matrix (tm) to the Homogeneous Point

P=[x, y, z, w] */

double x, y, z, w;

x = P[0];
y = P[1];
z = P[2];
w = P[3];

P[0] = x * tm[0][0] + y * tm[1][0] + z * tm[2][0] + w * tm[3][0];
P[1] = x * tm[0][1] + y * tm[1][1] + z * tm[2][1] + w * tm[3][1];
F[2] = x * tm[0][2] + y * tm[1][2] + z * tm[2][2] + w * tm[3][2];
P[3] = x * tm[0][3] + y * tm[1][3] + z * tm[2][3] + w * tm[3][3];

} /* g3d_transform_4D_point */

/*--*/
/*!!*/
/*! 3D Viewing Transformation Routines !*/

“Comninos” — 2005/8/31 — 18:23 — page 517 — #95

A Simple C Library for 3D Transformations 517

/*!!*/
/*--*/

void g3d_viewing_transformation
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t Vp, /* Viewing Point (In) */
g3d_vector_t Cp, /* Centre Point (In) */
g3d_vector_t U /* Up Direction Unit Vector (In) */
)
{
/*
* Concatenates the Viewing Transformation into the Transformation

* Matrix(tm).

*
* The Viewing Transformation is defined by the Viewing Point

* Vp=[vx, vy, vz], the Centre Point Cp=[cx, cy, vz] and the

* relative up direction unit vector U=[ux, uy, uz]. This form

* of the viewing transformation prevents gimbal lock.

*
* Done in two steps:

*
* 1. Apply the inverse of the transformation that would translate

* the origin of the new eye-space axes to the Viewing Point

* V=[vx, vy, vz]. This is equivalent translating the Viewing

* point to the origin of the object-space.

*
* 2. Re-arrange these new axes so that the z-axis points in the

* direction of the viewing axis and that they form a left-

* handed basis. Apply the inverse of this transformation.

* (See section 7.2)

*/

g3d_matrix_t A; /* Aim transformation matrix */
g3d_vector_t V, /* Aim Direction Unit Vector */

X, /* Local Axes */
Y,
Z;

/*
* Step 1.

*/

g3d_translate(tm, -Vp[0], -Vp[1], -Vp[2]);

/*
* Step 2.

*/

/* Compute the unit vector V that points in the direction of the
Viewing Axis */

V[0] = Cp[0] - Vp[0];
V[1] = Cp[1] - Vp[1];

“Comninos” — 2005/8/31 — 18:23 — page 518 — #96

518 Mathematical and Computer Programming Techniques for Computer Graphics

V[2] = Cp[2] - Vp[2];

if (Mg3d_vector_magnitude(V) <= g3d_IEEE_small_single)
{
printf("g3d_viewing_transformation: Distance between the Vp and",

"Cp is too small! \n");
return;
}

Mg3d_vector_normalise(V);

/* Set-up the original orientations of the X and Y axes */

Mg3d_vector_set(X, 1.0, 0.0, 0.0);
Mg3d_vector_set(Y, 0.0, 1.0, 0.0);

/* Aim the local Z-axis along the V vector */

Mg3d_vector_copy(V, Z);

Mg3d_vector_cross(U, Z, X);
Mg3d_vector_normalise(X);

Mg3d_vector_cross(Z, X, Y);
Mg3d_vector_normalise(Y);

/* Reverse the direction of the local X-axis */

X[0] = -X[0];
X[1] = -X[1];
X[2] = -X[2];

/* Set-up the transpose (in this case also the inverse) of the
aim transformation */

A[0][0] = X[0]; A[0][1] = Y[0]; A[0][2] = Z[0]; A[0][3] = 0;
A[1][0] = X[1]; A[1][1] = Y[1]; A[1][2] = Z[1]; A[1][3] = 0;
A[2][0] = X[2]; A[2][1] = Y[2]; A[2][2] = Z[2]; A[2][3] = 0;
A[3][0] = 0; A[3][1] = 0; A[3][2] = 0; A[3][3] = 1;

} /* g3d_viewing_transformation */

/*--*/

void g3d_viewing_transformation_V2
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
g3d_vector_t Vp, /* Viewing Point (In) */
g3d_vector_t Cp /* Centre Point (In) */
)
{
/*
* Concatenates the Viewing Transformation defined by the Viewing

* Point Vp=[vx, vy, vz] and the Centre Point C=[cx, cy, cz] into

“Comninos” — 2005/8/31 — 18:23 — page 519 — #97

A Simple C Library for 3D Transformations 519

* the Transformation Matrix (tm).

*
* Done in four steps:

*
* 1. Translate the Viewing Point Vp=[vx, vy, vz] to the origin of

* the Object Space.

*
* 2. Rearrange the new axes so that we have a left-handed

* coordinate system.

*
* 3. Rotate the new axes about the Ye-axis by an angle <theta>,

* so that the Ze-axis points towards the point Cp=[cx, cy, vz].

*
* 4. Rotate the new axes about the xe-axis by an angle <phi>,

* so that the Ze-axis points towards the Centre Point

* Cp=[cx, cy, cz].

*/

g3d_matrix_t R, Rx, Ry;
double dx, dy, dz, d2d, d3d, cos_theta, sin_theta, cos_phi,

sin_phi;

/*
* Step 1.

*/

dx = Vp[0] - Cp[0];
dy = Vp[1] - Cp[1];
dz = Vp[2] - Cp[2];

d2d = sqrt(dx * dx + dy * dy);
d3d = sqrt(dx * dx + dy * dy + dz * dz);

if (d3d <= g3d_IEEE_small_single)
{
printf("g3d_viewing_transformation: Distance between the Vp and",

"Cp is too small! \n");
return;

}

g3d_translate(tm, -Vp[0], -Vp[1], -Vp[2]);

/*
* Step 2.

*/

R[0][0] = -1.0; R[0][1] = 0.0; R[0][2] = 0.0; R[0][3] = 0.0;
R[1][0] = 0.0; R[1][1] = 0.0; R[1][2] = -1.0; R[1][3] = 0.0;
R[2][0] = 0.0; R[2][1] = 1.0; R[2][2] = 0.0; R[2][3] = 0.0;
R[3][0] = 0.0; R[3][1] = 0.0; R[3][2] = 0.0; R[3][3] = 1.0;

g3d_concatenate(tm, R);

/*

“Comninos” — 2005/8/31 — 18:23 — page 520 — #98

520 Mathematical and Computer Programming Techniques for Computer Graphics

* Step 3.

*/

if (d2d > g3d_IEEE_small_single)
{
cos_theta = dy / d2d;
sin_theta = dx / d2d;

g3d_initialize_matrix(Ry);
Ry[0][0] = cos_theta; Ry[0][2] = sin_theta;
Ry[2][0] = -sin_theta; Ry[2][2] = cos_theta;

g3d concatenate(tm, Ry);
}

/*
* Step 4.

*/

cos_phi = d2d / d3d;
sin_phi = dz / d3d;

g3d_initialize_matrix(Rx);

Rx[1][1] = cos_phi; Rx[1][2] = -sin_phi;
Rx[2][1] = sin_phi; Rx[2][2] = cos_phi;

g3d_concatenate(tm, Rx);

} /* g3d_viewing_transformation_V2 */

/*--*/

void g3d_polar_viewing_transformation
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
double vcd, /* Viewing to Centre Point Distance (In) */
double aa, /* Azimuth Angle (In) */
double ia, /* Incidence Angle (In) */
double ta, /* Twist Angle (In) */
g3d_vector_t Cp /* Centre Point (In) */
)
{
/*
* Concatenates the Polar Viewing Transformation defined by:

*
* 1. the Viewing to Centre Point distance,

* 2. the Azimuth angle (aa),

* 3. the Incidence angle (ia),

* 4. the Twist angle (ta) and

* 5. The Centre Point (Cp)

*
* into the Transformation Matrix (tm).

*

“Comninos” — 2005/8/31 — 18:23 — page 521 — #99

A Simple C Library for 3D Transformations 521

* The Azimuth angle lies in the x-y plane is measured from

* the y-axis.

* The Incidence angle lies in a plane perpendicular to the x-y

* plane is measured from the z-axis.

* The Twist angle rotates the camera around the Viewing Axis using

* a right-handed rule.

*
* This transformation is done in seven steps:

*
* 1. Translate the Centre Point (Cp) to the origin of the

* Object Space.

*
* 2. Compute the coordinates of the new Viewing Point

* [vx, vy, vz],

*
* 3. Translate the Viewing Point [vx, vy, vz] to the origin of

* the Object Space.

*
* 4. Rearrange the new axes so that we have a left-handed

* coordinate system.

*
* 5. Rotate the new axes about the Ye-axis by the azimuth angle,

* so that the new negative Ze-axis points towards point

* [0, 0, vz].

*
* 6. Rotate the new axes about the Xe-axis by the complement of

* the incidence angle (i.e. 90-ia), so that the new negative

* Ze-axis points towards the origin.

*
* 7. Rotate the new axes about the Ze-axis by the twist angle.

*/

g3d_matrix_t R;
double vx, vy, vz, d2d;

/*
* Step 1.

*/

if (vcd <= g3d_IEEE_small_single)
{
printf("g3d_polar_viewing_transformation: (vcd) distance is",

"too small!\n");
return;

}

g3d_translate(tm, -Cp[0] -Cp[1], -Cp[2]);

/*
* Step 2.

*/

d2d = vcd * sin(ia * g3d_DtoR);

“Comninos” — 2005/8/31 — 18:23 — page 522 — #100

522 Mathematical and Computer Programming Techniques for Computer Graphics

vz = vcd * cos(ia * g3d_DtoR);
vx = d2d * sin(aa * g3d_DtoR);
vy = d2d * cos(aa * g3d_DtoR);

/*
* Step 3.

*/

g3d_translate(tm, -vx, -vy, -vz);

/*
* Step 4.

*/

R[0][0] = -1.0; R[0][1] = 0.0; R[0][2] = 0.0; R[0][3] = 0.0;
R[1][0] = 0.0; R[1][1] = 0.0; R[1][2] = -1.0; R[1][3] = 0.0;
R[2][0] = 0.0; R[2][1] = 1.0; R[2][2] = 0.0; R[2][3] = 0.0;
R[3][0] = 0.0; R[3][1] = 0.0; R[3][2] = 0.0; R[3][3] = 1.0;

g3d_concatenate(tm, R);

/*
* Step 5.

*/

g3d_rotate_y(tm, aa);

/*
* Step 6.

*/

g3d_rotate_x(tm, 90 - ia);

/*
* Step 7.

*/

g3d_rotate_z(tm, ta);

} /* g3d_polar_viewing_transformation */

/*--*/
/*!!*/
/*! 3D Projection Transformation Routines !*/
/*!!*/
/*--*/

void g3d_orthographic_projection
(
g3d_matrix_t tm /* Transformation Matrix (In/Out) */
)
{
/*
* Concatenates the Orthographic Projection Transformation into the

“Comninos” — 2005/8/31 — 18:23 — page 523 — #101

A Simple C Library for 3D Transformations 523

* Transformation Matrix (tm).

*/

tm[0][2] = 0.0;
tm[1][2] = 0.0;
tm[2][2] = 0.0;
tm[3][2] = 0.0;

} /* g3d_orthographic_projection */

/*--*/

void g3d_oblique_projection
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
double a1, /* Oblique Projection Angles in Degrees (In) */
double a2
)
{
/*
* Concatenates the Oblique Projection Transformation into the

* Transformation Matrix (tm).

*/

g3d_matrix_t h;
double l, a, b;
int r;

l = 1.0 / tan(a1 * g3d_DtoR);
a = l * cos(a2 * g3d_DtoR);
b = l * sin(a2 * g3d_DtoR);

memcpy(h, tm, sizeof(g3d_matrix_t));

for (r = 0; r <= 3; r++)
{
tm[r][0] = h[r][0] + h[r][2] * a;
tm[r][1] = h[r][1] + h[r][2] * b;
tm[r][2] = 0.0;

}
} /* g3d_oblique_projection */

/*--*/

void g3d_perspective_projection
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
double vd /* Viewing Distance (In) */
)
{
/*
* Concatenates the Perspective Projection Transformation into the

* Transformation Matrix (tm).

“Comninos” — 2005/8/31 — 18:23 — page 524 — #102

524 Mathematical and Computer Programming Techniques for Computer Graphics

*/

int r;

if (vd > g3d_IEEE_small_single)
{
for (r = 0; r <= 3; r++)
tm[r][3] = tm[r][2] / vd;

}
else
printf("g3d_perspective_projection: The Viewing Distance is",

"too small!\n");

} /* g3d_perspective_projection */

/*--*/

void g3d_perspective_projection_fv
(
g3d_matrix_t tm, /* Transformation Matrix (In/Out) */
double vay, /* View Angle in the y direction (In) */
double xya, /* x/y Aspect Ratio which determines

fov_x (In) */
double nz, /* Near Clipping Plane Z (In) */
double fz /* Far Clipping Plane Z (In) */
)
{
/*
* Concatenates the Perspective Projection Transformation into the

* Transformation Matrix (tm).

*
* In this transformation the Viewing Pyramid is truncated by the

* near and far clipping planes to form a Frustum of Vision.

*
* This version of the Perspective Projection transformation

* incorporates the Eye-Space to Clip-Space transformation.

*/

g3d_matrix_t P;
double cvay, /* Cotangent of the View Angle in the

y direction */
dz; /* Depth in z */

if (xya < g3d_IEEE_small_single)
{
printf("g3d_perspective_projection_fv: The x to y aspect ratio

is too small!\n");
return;
}

if ((fz - nz) < g3d_IEEE_small_single)
{
printf("g3d_perspective_projection_fv: The near and far planes",

"are too close!\n");

“Comninos” — 2005/8/31 — 18:23 — page 525 — #103

A Simple C Library for 3D Transformations 525

return;
}

/*
* Compute the cotangent of the Field of View angle.

*/

cvay = 1.0 / tan(vay / 2.0 * g3d_DtoR);
dz = fz - nz;

/*
* Set-up the Perspective Projection Matrix.

*/

P[0][0] = cvay / xya; P[0][1] = 0.0; P[0][2] = 0.0;
P[1][0] = 0.0; P[1][1] = cvay; P[1][2] = 0.0;
P[2][0] = 0.0; P[2][1] = 0.0; P[2][2] = fz / dz;
P[3][0] = 0.0; P[3][1] = 0.0; P[3][2] = -fz * nz / dz;

P[0][3] = 0.0;
P[1][3] = 0.0;
P[2][3] = 1.0;
P[3][3] = 0.0;

g3d_concatenate(tm, P);

} /* g3d_perspective_projection_fv */

/*--*/
/*!!*/
/*! 3D Clipping Routines !*/
/*!!*/
/*--*/

boolean_t g3d_clip_point(double *x, /* Test Point (In/Out) */
double *y,
double *z
)

{
boolean_t inside;

inside = (
(-(*z) <= (*x)) &&
((*x) <= (*z)) &&
(-(*z) <= (*y)) &&
((*y) <= (*z))
);

/*
* If the point is visible add a small displacement to its

* z-coordinate in order to prevent a potential zero divide

* in the perspective division.

*/

“Comninos” — 2005/8/31 — 18:23 — page 526 — #104

526 Mathematical and Computer Programming Techniques for Computer Graphics

if (inside) (*z) += g3d_z_displacement;

return (inside);

} /* g3d_clip_point */

/*--*/

void g3d_set_clip_code(double x,
double y,
double z,
g3d_region_code_t *c
)

{

*c=0;

if (x < -z) *c = g3d_left_plane; else
if (x > z) *c = g3d_right_plane;

if (y < -z) *c |= g3d_bottom_plane; else
if (y > z) *c |= g3d_top_plane;

} /* g3d_set_clip_code */

/*--*/

boolean_t g3d_clip_line_cs(double *x1, /* Test Line (In/Out) */
double *y1,
double *z1,
double *x2,
double *y2,
double *z2
)

{
/*
* Clip a 3D line segment in the clip-space coordinate system.

*/

boolean_t result;
g3d_region_code_t c, c1, c2, done;
double x, y, z, t;

result = False;

done = 0;

g3d_set_clip_code(*x1, *y1, *z1, &c1);
g3d_set_clip_code(*x2, *y2, *z2, &c2);

while ((c1 !== 0) || (c2 != 0))
{
if (c1 & c2) return(result); /* Trivial Rejection */

/*

“Comninos” — 2005/8/31 — 18:23 — page 527 — #105

A Simple C Library for 3D Transformations 527

* Line segment is at least partially outside the clipping pyramid.

*/

if (c1 == 0) c = c2;
else c = c1;

if (c & g3d_left_plane)
{
/*
* Compute the intersection with y = -z clipping plane.

*/

if (done & g3d_left_plane) return(result);
else done |= g3d_left_plane;

t = *x1 - *x2 - *z2 + *z1;

if (fabs(t) < g3d_small_t) t = g3d_small_t;

t = (*z1 + *x1) / t;

x = -z;
y = t * (*y2 - *y1) + *y1;
z = t * (*z2 - *z1) + *z1;
}
else

if (c & g3d_right_plane)
{
/*
* Compute the intersection with y = +z clipping plane.

*/

if (done & g3d_right_plane) return(result);
else done |= g3d_right_plane;

t = *x2 - *x1 - *z2 + *z1;

if (fabs(t) < g3d_small_t) t = g3d_small_t;

t = (*z1 - *x1) / t;

x = z;
y = t * (*y2 - *y1) + *y1;
z = t * (*z2 - *z1) + *z1;
}
else

if (c & g3d_bottom_plane)
{
/*
* Compute the intersection with y = -z clipping plane.

*/

“Comninos” — 2005/8/31 — 18:23 — page 528 — #106

528 Mathematical and Computer Programming Techniques for Computer Graphics

if (done & g3d_bottom_plane) return(result);
else done | = g3d_bottom_plane;

t = *y1 - *y2 - *z2 + *z1;

if (fabs(t) < g3d_small_t) t = g3d_small_t;

t = (*z1 + *y1) / t;

x = t * (*x2 - *x1) + *x1;
y = -z;
z = t * (*z2 - *z1) + *z1;

}
else
if (c & g3d_top_plane)
{
/*
* Compute the intersection with y = +z clipping plane.

*/

if (done & g3d_top_plane) return(result);
else done |= g3d_top_plane;

t = *y2 - *y1 - *z2 + *z1;

if (fabs(t) < g3d_small_t) t = g3d_small_t;

t = (*z1 - *y1) / t;

x = t * (*x2 - *x1) + *x1;
y = Z;
z = t * (*z2 - *z1) + *z1;

}

/*
* Recomputed the code.

*/

if (c == c1)
{

*x1 = x;

*y1 = y;

*z1 = Z;

g3d_set_clip_code(x, y, z, &c1);
}
else
{

*x2 = x;

*y2 = y;

*z2 = z;

g3d_set_clip_code(x, y, z, &c2);
}

“Comninos” — 2005/8/31 — 18:23 — page 529 — #107

A Simple C Library for 3D Transformations 529

} /* while loop */

/*
* Add a small displacement to the z-coordinates of the line

* segment in order to prevent a potential zero divide in the

* perspective division.

*/

*z1 += g3d_z_displacement;

*z2 += g3d_z_displacement;

return(True);

} / * g3d_clip_line_cs */

�

�

“Comninos” — 2005/8/31 — 20:02 — page 531 — #1
�

�

�

�

�

�

Index

A

absolute value of a number, 30
absorption, 324

coefficient, 370
index, 370

active edge, 303
active edge list, 303
adjugate matrix, 139
affine transformation, 181, 226
ajoint matrix, 139
algebra of sets, 22
algebraic number, 28
ambient light, 306
ambient light reflection, 306
amplitude, 322

reflection coefficient, 365
transmission coefficient, 363

angle
eye, 308
highlight, 309
incidence, 309
of incidence, 308, 325
of reflection, 308, 325
of shear, 171, 232-238
orientation, 268
phase, 309, 365
projection, 268
reflection, 309

angular
frequency, 323
perspective, 272
velocity, 323

anisotropic surface, 328

antiparallel vectors, 67
antisymmetric matrix, 122
area

of a differential spherical patch, 339
of the projected polygon, 293

area-coherence property, 296
arrow notation, 357
Ashikmin-Shirley

diffuse BRDF, 382
reflection model, 384
shader, 382
specular BRDF, 382

axiom, 1
axonometric projections, 264-267

B

base vectors, 74
basis, 74

Cartesian, 77
of a vector space, 158
orthogonal, 75
orthonormal, 75
right-handed, 75

bi-conical reflectance function, 358
bi-directional

path-tracing algorithm, 403
reflectance distribution function, 351
reflectance function, 358
scattering distribution function, 358
scattering surface reflectance

distribution function, 354
transmission distribution function,

353

531

�

�

“Comninos” — 2005/8/31 — 20:02 — page 532 — #2
�

�

�

�

�

�

532 Index

bi-hemispherical reflectance function,
358

bijection, 45
bijective

function, 45
mapping, 45

binary space partition tree, 413
binormal vector, 332
bitangent vector, 332
Blinn’s specular reflection function, 310
bound vector, 71
boundary representation, 393
bounded set, 35
BRDF, 351
BRDF properties

energy conservation property, 356
Helmholtz reciprocity property, 355
non-negativity property, 355
symmetry property, 355

Brewster’s angle, 367
bridging edges, 205
brightness, 348
BSDF, 354
BSP-tree, 413
BSSRDF, 350
BTDF, 353

C

cabinet projection, 268
camera, 253
cardinal number of a set, 63
cardinality of a set, 62, 63
Cartesian

basis, 77
coordinates, 77
product of sets, 37

caustic illumination reflected radiance
term, 417

caustics, 414
photon map, 411

cavalier projection, 268
central projection, 190
centre

of projection, 260
point, 254

change of basis
transformation, 158, 162
transformation matrix, 160

clip polygon, 219
clipped polygon, 204
clipper polygon, 204
clipping,

2D polygon clipping, 202-223
3D line clipping, 277-286
a 2D line segment to a rectangular

boundary, 194
a 2D point to a rectangular boundary,

194
bridging edge, 205
clip polygon, 219
clipped polygon, 204
clipper polygon, 204
Cohen-Sutherland 2D line-clipping

algorithm, 197
false vertex, 219
holding list, 219
hole contours, 220
intersection vertex, 219
outline contours, 219
perpendicular distance from a point

to a line, 209
point of intersection of two lines, 208
subject polygon, 219
Sutherland-Hodgman 2D

polygon-clipping algorithm, 203
trivial acceptance, 198,279
trivial rejection, 198,279
unclipped polygon, 204
Weiler-Atherton 2D

polygon-clipping algorithm, 219
clip-space coordinate system, 279
closed interval, 32
closed-open interval, 32
closure, 25
co-domain of a function, 39
coefficient

of ambient reflection, 306, 375
of diffuse reflection, 307, 375, 382
of specular reflection, 308, 375, 382

cofactor
matrix, 138
of an element of a matrix, 138

Cohen-Sutherland
2D line-clipping algorithm, 197
3D line-clipping algorithm, 279

coherent
illumination, 386

�

�

“Comninos” — 2005/8/31 — 20:02 — page 533 — #3
�

�

�

�

�

�

Index 533

coherent (continued)
image, 359
reflection, 359
transmission, 359

collinear vectors, 67
column matrix, 119
column-reversal matrix, 148
column-reversed matrix, 148
comparable sets, 8
complex number, 28
colour bleeding, 386, 394, 414, 416
complementarity principle, 319
complimentary error function, 379
components of a vector, 74

relative to an orthogonal basis, 75
relative to an non-orthogonal basis,

92
composite

function, 48
transformation, 166, 167, 172

composition of functions, 48
computer image synthesis, 291
concatenation

of 2D global transformations, 185
of 2D local transformations, 186
of 2D transformations, 165
of transformation matrices, 181

conceptual camera model, 253
condition, 5
conducting materials, 325
conductors, 325
conformable, 128
conformal, 128
conformant, 128
conformity, 128
conical-directional reflectance function,

358
conical-hemispherical reflectance

function, 358
conjecture, 1
conjugate error function, 379
constant function, 47
Cook-Torrance shader, 378
coordinate diagram, 37
coordinate system

2D transformations of the, 186
3D transformations of the, 252
clip-space, 279
device, 275

coordinate system (continued)
image-space, 253
left-handed, 254
normalised, 187
object-space, 253
projection-space, 253
right-handed, 254
screen, 187
screen-space, 253, 275
world, 187
world-space, 253

coordinates
Cartesian, 77
polar, 169
spherical, 332

Copenhagen interpretation of quantum
theory, 319

correlation distance, 380
cosine of the angle between two

lines, 106
planes, 106
vectors, 82

cotangent space, 338
critical angle, 328, 367
cross product of vectors, 84
current path, 410

D

decomposition of a vector according to
a basis, 95

degenerate interval, 33
delta-x-order, 303
depth-buffer, 294, 303
depth-coherence property, 302
determinant of a matrix, 132
determinant rules, 134

conditions for a zero determinant,
137

decomposition rule, 136
equality rule, 137
factor rule, 135
interchange rule, 135
linear combinations rule, 136
product rule, 136
transposition rule, 134

device coordinate system, 275
diagonal matrix, 120

�

�

“Comninos” — 2005/8/31 — 20:02 — page 534 — #4
�

�

�

�

�

�

534 Index

dielectric
constant, 327
materials, 325

differentiable manifold, 337
differential

area, 342
projected area, 344
radiant flux, 343
radiant power, 343
solid angle, 339, 343

diffuse
emission, 386
inter-object illumination, 386, 394
inter-object reflection, 386
inter-object transmission, 386
light reflection, 306, 375
point light sources, 411
reflection model, 360
reflection, 306, 325

dimension of a vector space, 157
dimetric projection, 266
Dirac’s delta function, 362
direct

illumination model, 385, 386
illumination reflected radiance term,

416
directed light sources, 412
directed segment, 66

initial point of, 66
terminal point of, 66

direction
cosines of a vector, 82
of vector, 65
of view, 254
ratios of a vector, 82

directional diffuse surface, 372
directional-conical reflectance function,

358
directional-hemispherical reflectance

function, 358
directional-hemispherical reflectance,

356
dispersion, 325
displacement vector, 66
distance

between two non-parallel lines, 105
between two parallel lines, 104
between two points in space, 101
of a point from a line, 103

distance (continued)
of a point from a plane, 106

distributed ray-tracing algorithm, 398
disturbance of a material, 324
domain of a function, 39
dot product of vectors, 78
dual identity, 24
duality principle, 24

E

edge record, 302
electromagnetic

radiation, 320
spectrum, 320

elementary column transformations,
116

empty set, 6
equality

of matrices, 124
of sets, 6

emission of photons, 411
emittance distribution function, 393
emitted

radiance, 387
radiosity, 391

emitter surface, 387
energy

density, 348
of a photon, 341
preservation, 330

equidirectional vectors, 67
equinumerous sets, 63
equipollent sets, 62
equipotent sets, 62
equivalent sets, 62
error function, 380
estimand, 391
estimate, 391
Euclid’s postulates, 2
Euler diagram, 8
excitation, 324
excitons, 324
exclusive or, 15
explicit sampling technique, 411
external reflection, 363
eye angle, 309
eye-path, 404

�

�

“Comninos” — 2005/8/31 — 20:02 — page 535 — #5
�

�

�

�

�

�

Index 535

F

face, 291
facet, 291
false, 1
false vertex, 219
family of indexed sets, 58
finite element radiosity rendering

algorithms, 386
fish-eye lens, 276
flat polygon shading, 305, 309
flux, 341
frame-buffer, 294, 303
free vector, 71
frequency, 322
Fresnel effect, 363
function, 38

bijective, 45
co-domain of a, 39
composite, 48
constant, 47
domain of a, 39
formal definition of a, 39
graph of a, 54
identity, 48
injective, 43
inverse, 52
inverse of a, 49
many-to-one, 43
one-to-one, 43
onto, 44
range of a, 43
restricted, 39
surjective, 44

functions
composition of, 48
equality of, 41
types of, 43

fuzzy reflection, 398

G

Gauss function, 379
Gaussian elimination, 116
general relativity theory, 319
generalised set

intersection, 60
union, 60

generator of a set, 157
geometric attenuation factor, 378

geometry function, 390
global

Cartesian frame, 333
frame of reference, 184
frame transformations, 184
illumination model, 385, 387
photon map, 414
transformations, 184

gloss angle, 380
glossiness, 308
glossy

reflection model, 359
reflections, 372
surface, 308, 372

Gouraud smooth shading, 305, 309
graph of a function, 54

H

hemispherical-conical reflectance
function, 358

hemispherical-directional reflectance
function, 358

hidden-line
drawing, 291
elimination algorithm, 294

hidden-surface elimination algorithm,
294

highlight angle, 309
holding list, 220
hole contours, 219
homogeneous

coordinates, 190
point, 190

homogenised point, 187
homogenous materials, 324
Horn’s specular reflection function, 309
Householder transformation matrix, 361
hybrid multi-pass rendering algorithms,

418
hypothesis, 1

I

ideal
diffuse reflection model, 359
specular reflection model, 359

identity
function, 48

�

�

“Comninos” — 2005/8/31 — 20:02 — page 536 — #6
�

�

�

�

�

�

536 Index

identity (continued)
matrix, 120
transformation, 48

illuminance, 343
illuminating hemisphere, 337, 340
illumination models, 385
image-space

algorithms, 295
approach, 394
coordinate system, 253
rendering algorithms, 395-417

implicit functional representation, 393
importance sampling, 416
incandescent surface, 387
incidence angle, 309
incident illuminating hemisphere, 353
incoherent

illumination, 386
image, 359
reflection, 359
transmission, 359

incoming
caustics illumination radiance, 415
direct illumination radiance, 415
indirect illumination radiance, 415
radiance, 345, 389

index set, 58
indexed

family of sets, 59
set, 58

indirect illumination
model, 385, 387
reflected radiance term, 417

inequalities, 29
inequality property

of addition, 29
of antisymmetry, 29
of division, 30
of multiplication, 30
of trichotomy, 29
of reflexivity, 29
of subtraction, 29

injection, 43
injective function, 43
inner product of vectors, 78
insulators, 325
integer number, 25, 28
interface surface, 325
internal reflection, 363

interval
closed, 32
degenerate, 33
lower bound of, 32
lower limit of, 32
of real numbers, 32
open, 32
upper bound of, 32
upper limit of, 32
zero-length, 33

intensity
array, 303
attenuation function, 311

intersection vertex, 219
intersector polygon, 297
inverse

function, 52
matrix, 132, 140
of a function, 49
of a vector, 68

invertible matrix, 132, 140
irrational number, 25, 27
isometric projection, 264
isotropic

BRDF, 351
surface, 332

K

kd-tree, 413
Kronecker δ (delta), 79, 120
Kronecker’s symbol, 79, 120

L

Lambert’s law, 306
Lambertian diffuse reflection model,

359
Lambertian reflection, 306
Laplace’s recursive expansion rule, 133
leading diagonal of a matrix, 119
left triangular matrix, 123
left-balanced kd-tree, 408
left-handed coordinate system, 254
lemma, 2
length of a vector, 78, 80
light

absorption, 325
emission, 347

�

�

“Comninos” — 2005/8/31 — 20:02 — page 537 — #7
�

�

�

�

�

�

Index 537

light (continued)
reflection, 325
refraction, 322
scattering, 325, 329
transmission, 322
transport equation, 389, 390

light-path, 404
line diagram, 11
line equation defined by

a position vector and a direction
vector, 97

two position vectors, 96
linear

combination of vectors, 72, 156
dependence of vectors, 72, 156
independence of vectors, 72, 156
linear transformation, 226
simultaneous equations, 128, 146
space, 153

list-priority algorithms, 295, 299
list-priority, 299
local

frame of reference, 184
frame transformations, 184
illumination model, 385, 386
surface Cartesian frame, 331
transformations, 184

logical proposition, 5
lower

bound of interval, 32
bounded set, 35
illuminating hemisphere, 340
limit of interval, 32
triangular matrix, 123

luminosity, 348
luminous intensity, 348

M

magnitude
of a vector product, 87
of a vector, 65, 66, 78, 80

main diagonal of a matrix, 119
many-to-one function, 43
mapping, 41

bijective, 45
many-to-one, 43
one-to-one, 43
onto, 44

matrix
addition, 125
adjugate, 140
ajoint, 140
algebra theorems, 142, 147-148
antisymmetric, 122
cofactor of an element of a, 138
cofactor, 138
column, 119
column-reversal, 148
column-reversed, 148
conformable, 128
conformal, 128
conformant, 128
definition of a, 118
determinant of a, 132
diagonal, 120
equality, 124
identity, 120
inverse of a, 132, 140
invertible, 132, 140
leading diagonal of a, 119
left triangular, 123
lower triangular, 123
main diagonal of a, 119
minor of a, 131
multiplication with a matrix, 129
multiplication with a scalar, 126
multiplication with a vector, 128
non-invertible, 132, 140
null, 120
operations, 125
order, 118
orthogonal, 146
power of a, 128
principal diagonal of a, 119
reciprocal of a, 132, 140
regular, 132, 140
right triangular, 123
row, 119
row-reversal, 148
row-reversed, 148
scalar, 124
secondary diagonal of a, 119
singular, 132, 140
skew-symmetric, 122
square, 119
subtraction, 125
symmetric, 122

�

�

“Comninos” — 2005/8/31 — 20:02 — page 538 — #8
�

�

�

�

�

�

538 Index

matrix (continued)
trace of a, 119
trailing diagonal of a, 119
transpose of a, 121
triangular, 123
type, 118
unit, 120
upper triangular, 123
zero, 120
representation of 2D transformations,

178
matrix algebra axioms and rules,

149-151
Metropolis light transport algorithm,

409
micro-facet slope distribution function,

378, 380
minor of a matrix, 131
mirror-like reflection, 325
MLT, 409
modified Phong shader, 378
modulus of a number, 30
Monte Carlo

estimate, 391
integration, 391
method, 391
ray-tracing rendering algorithms, 388

multiplication
of a matrix by a matrix, 129
of a matrix by a scalar, 126
of a matrix by a vector, 128
of a scalar by a vector, 74
of a vector by a vector, 127

multi-view orthographic projection, 262
mutated path, 410

N

natural number, 25, 27
negative vector, 68
Newell, Newell and Sancha algorithm,

299
Newell’s plane equation, 292
non-homogenous materials, 324
non-invertible matrix, 132, 140
normalised vector, 80
normalising a vector, 80
null

matrix, 120

null (continued)
set, 6
vector, 66

number
absolute value of a, 30
algebraic, 28
complex, 28
integer, 25
irrational, 25, 27
modulus of a, 30
natural, 25, 27
rational, 25
real, 26
sets, 25
transcendental, 28
whole, 25

O

object-space
algorithms, 295
approach, 394
coordinate system, 253
rendering algorithms, 394-395

oblique
projection matrix, 270
projection, 267

one-point perspective projection, 272
one-to-one

correspondence, 45
function, 43
mapping, 43

onto
function, 44
mapping, 44

opaque materials, 325
open interval, 32
open-closed interval, 32
operator, 41
opposite vectors, 67
ordered

2-tuple, 36
3-tuple, 36
n-tuple, 36
pair, 36
triple, 36
triplet, 36

orientation
angle, 268

�

�

“Comninos” — 2005/8/31 — 20:02 — page 539 — #9
�

�

�

�

�

�

Index 539

orientation (continued)
vector, 71

orthogonal
basis, 75
matrix, 146

orthographic
projection matrix, 267
projection, 262-267

orthonormal basis, 75
outer product of vectors, 84
outgoing radiance, 345, 387
outline contours, 219

P

parallel
perspective projection, 272
projection, 260, 262-271
vectors, 67

participating
materials, 325
media, 325

path-tracing algorithm, 400
perfect mirror specular reflection

model, 359
period, 322
permeability, 327
permittivity, 324, 327
perpendicular distance from a point to a

line, 102, 209
perspective

depth, 287
projection, 260, 271
projection matrix, 270

phase
angle, 309, 365, 369
shift, 365, 369

Phong
shader, 375
smooth shading, 305, 315

Phong’s lighting model, 311-313
for coloured light sources, 312
for distant light sources, 311
for multiple light sources, 311

phosphorescent surface, 387
photoelectric effect, 319
photon, 319

density estimation, 413
energy, 319

photon (continued)
map, 411
mapping technique, 411
mapping, 411
rays, 411
volume density, 345

photon-mapping
pass, 411
technique, 411

photon-tracing algorithm, 412
physically-based rendering algorithms,

393
pixel, 294
planar geometric projection, 261
Planck’s constant, 323
plane of incidence, 363
polarisation of light, 363
plane equation defined by

a position vector and a normal vector,
98

three position vectors, 99
p-obscures-q test, 301
P-polarised light, 363
point of intersection of two lines, 208
polygon

clipping, 202-203
rule, 70
span, 303

polygon-index order, 303
position vector, 71
postulate, 1
power

of a matrix, 128
set of a set, 63

primary
estimator, 391
ray, 396

primitive transformation, 167
principal diagonal of a matrix, 119
product

Cartesian, 37
cross, 84, 127
dot, 78, 127
dyadic, 127
inner, 78
of 2D transformations, 165
of a matrix by a matrix, 129
of a matrix by a scalar, 126
of a matrix by a vector, 128

�

�

“Comninos” — 2005/8/31 — 20:02 — page 540 — #10
�

�

�

�

�

�

540 Index

product (continued)
outer, 84
scalar, 78
tensor, 127
triple scalar, 88
triple vector, 90

projected
incident irradiance, 348
irradiance, 347
solid angle, 340, 346, 349

projection
angle, 268
axonometric, 264-267
cabinet, 268
cavalier, 268
central, 190
centre of, 260
dimetric, 266
isometric, 268
multi-view orthographic, 262
oblique, 267
oblique projection matrix, 270
of a vector, 81
one-point perspective, 272
orthographic, 262-267
orthographic projection matrix, 267
parallel, 260, 262-271
parallel perspective, 272
perspective, 260, 271
perspective projection matrix, 273
planar geometric, 261
plane, 260
transformation, 253, 260-277

projective map, 192
projectors, 260
proof, 2
proper

subset, 7
superset, 7

properties of
real number intervals, 34
vector products, 86

proposition, 1

Q

quadrature, 391
quanta, 320

R

radiance, 344
radiant

energy, 341
exitance, 344
flux, 341
intensity, 344, 347-348
power, 341

radiosity, 344
algorithm, 394
equation, 391

range of a function, 43
raster scan display, 294
rational number, 25
real number, 26

interval, 32
interval arithmetic, 34
line, 26

reciprocal matrix, 132, 140
recursive ray-tracing algorithm, 396
reflectance

coefficient, 366
equation, 355

reflectance function
bi-conical, 358
bi-directional, 358
bi-hemispherical, 358
conical-directional, 358
conical-hemispherical, 358
directional-conical, 358
directional-hemispherical, 358
hemispherical-conical, 358
hemispherical-directional, 358

reflected
illuminating hemisphere, 353
radiance, 388

reflection model
glossy, 359
ideal specular, 359
Lambertian diffuse, 359
perfect mirror specular, 359

reflection, 325
angle, 309
function, 349
models, 305-313, 359
vector, 335

reflectivity, 367; see also reflectance
coefficient

�

�

“Comninos” — 2005/8/31 — 20:02 — page 541 — #11
�

�

�

�

�

�

Index 541

refraction, 325
refractive index, 327
regular matrix, 132, 140
rejection sampling technique, 411
relative permittivity, 327
relativistic mass, 323
renderer, 295
rendering, 295

algorithms, 294-305
equation, 385
pass, 411, 414

rest energy, 324
restricted function, 39
resultant vector, 69
retro-reflection, 325
right triangular matrix, 123
right-handed coordinate system, 254
RMS roughness, 380
root mean square roughness, 380
rough specular surface, 372
row matrix, 119
row-reversal matrix, 148
row-reversed matrix, 148
Russian roulette procedure, 401, 403,

412

S

Sancer’s geometric attenuation
function, 380

scalar, 65
field, 153
matrix, 124
multiplication, 68

scalar product
of four vectors, 91
of two collinear vectors, 82
of two orthogonal vectors, 82
of two vector products, 91
of two vectors, 78

scan-convert, 303
scattering, 325, 349

and tracing of photons, 412
equation, 354
function, 349

screen subdivision algorithm, 296
screen-space coordinate system, 253,

275

secondary
diagonal of a matrix, 119
estimate, 391

semi-coherent
reflections, 372
surface, 372

set
bounded, 35
cardinal number of a, 63
cardinality of a, 62, 63
complement of a, 18
difference, 13
element, 4
empty, 6
equality, 6
finite, 4, 6
generator of a, 157
index, 58
infinite, 4, 6
intersection, 12
lower bounded, 35
mapping of a, 41
member, 4
membership, 5
notation, 4
null, 6
operator on a, 41
power set of a, 63
size of a, 62
span of a, 157
spanning set of a, 157
specification, 4
tabular form, 4
theory theorems, 19-23, 53-54
transformation on a, 41
unbounded, 35
union, 11
universal, 8
upper bounded, 35

set-comprehension form, 4
sets

algebra of, 22
Cartesian product of, 37
comparable, 8
disjoint, 8
equinumerous, 63
equipollent, 62
equipotent, 62
equivalent, 62

�

�

“Comninos” — 2005/8/31 — 20:02 — page 542 — #12
�

�

�

�

�

�

542 Index

sets (continued)
family of indexed, 58
generalised intersection of, 60
generalised union of, 60
indexed family of, 59
indexed, 58
symmetric difference of two, 14

shade value, 313
shaded image, 291
shading

algorithm, 294
techniques, 305, 313-316

shadow ray, 396, 398, 403, 416
simple rendering algorithm, 295
single scan-line depth-buffer algorithm,

302
singleton, 33
singular matrix, 132, 140
size of a set, 62
skew-symmetric matrix, 122
Snell’s law, 328
solid

angle, 338
representation, 393

span of a vector space, 157
spanning set of a vector space, 157
special relativity theory, 319
spectral

flux, 341
radiant energy, 341
radiant flux, 341

specular
emission, 386
illumination reflected radiance term,

416
inter-object illumination, 386, 394
inter-object reflection, 386
inter-object transmission, 386
light reflection, 306, 308
reflection function, 308
reflection model, 361
reflection, 308, 325
sharpness, 308

speed
invariant mass, 323
of light, 322

spherical
coordinates of a vector, 333
light sources, 411

S-polarised light, 363
square

light sources, 412
matrix, 119

steradian, 338
steradians, 338
storage of photons, 412
subject polygon, 219
subset, 6
subsurface scattering, 325, 330, 349,

351, 383
superset, 7
surface

field radiance, 345
radiance, 345
reflectance function, 356
transmittance function, 358

surface type
directional diffuse, 372
glossy, 372
rough specular, 372
semi-coherent, 372
wide and narrow diffuse, 372

surjection, 44
surjective function, 44
surrounder polygon, 297
Sutherland-Hodgman 2D polygon-

clipping algorithm, 203
symmetric matrix, 122

T

tangent space, 334
telephoto lens, 276
theorem, 2
theory of light, 317
three-point

form, 389, 390
perspective projection, 271

topological sort, 299
total internal reflection, 328, 367
totally

coherent reflection, 360
coherent transmission, 360
incoherent reflection, 360
incoherent transmission, 360

trace of a matrix, 119
trailing diagonal of a matrix, 119
transcendental number, 28

�

�

“Comninos” — 2005/8/31 — 20:02 — page 543 — #13
�

�

�

�

�

�

Index 543

transformation, 41
between general bases, 158
between orthonormal bases, 161

transformations,
2D, 165-190
2D global frame of reference, 184
2D global frame transformations, 184
2D global transformations, 184
2D local frame of reference, 184
2D local frame transformations, 184
2D local transformations, 184
2D primitive, 167
2D reflection about an arbitrary axis,

175
2D reflection about the origin, 172
2D reflection about the x-axis, 172
2D reflection about the y-axis, 172
2D rotation about an arbitrary point,

174, 182
2D rotation about the origin, 168, 180
2D scaling about an arbitrary point,

173
2D scaling about the origin, 167, 180
2D shearing along the x-axis, 171,

180
2D shearing along the y-axis, 171,

180
2D transformation matrix properties,

181
2D transformations of the coordinate

system, 186
2D transformations of the frame of

reference, 186
2D translation, 168, 180
2D viewing, 187
2D viewporting, 188
2D windowing, 187
3D, 225-290
3D aiming the local x-axis, 242
3D aiming the local y-axis, 243
3D aiming the local z-axis, 244
3D aiming, 244-244
3D change of frame of reference,

238-241
3D composite transformations

relative to a major axis, 246
3D composite transformations

relative to a major plane, 249

transformations (continued)
3D composite transformations

relative to a plane, 249-251
3D composite transformations

relative to a point, 245-246
3D composite transformations

relative to an arbitrary axis, 248
3D composite transformations

relative to an arbitrary plane,
250

3D composite transformations
relative to an arbitrary point,
246

3D composite transformations
relative to an axis parallel to a
major axis, 247

3D composite transformations
relative to an axis, 246-249

3D composite transformations
relative to the origin of the
frame, 245

3D composite, 245-251
3D local frame, 251
3D primitive, 226-238
3D reflection about an arbitrary axis,

248
3D reflection about an arbitrary

plane, 250
3D reflection about an arbitrary

point, 246
3D reflection about an axis parallel to

a major axis, 247
3D reflection about the origin of the

frame, 245
3D reflection about the x-axis, 246
3D reflection about the y-axis, 246
3D reflection about the z-axis, 246
3D reflection about xy-plane, 249
3D reflection about xz-plane, 249
3D reflection about yz-plane, 249
3D rotation about a coordinate axis,

228-231
3D rotation about an arbitrary axis,

248
3D rotation about an axis parallel to a

major axis, 247
3D rotation about the x-axis, 229

�

�

“Comninos” — 2005/8/31 — 20:02 — page 544 — #14
�

�

�

�

�

�

544 Index

transformations (continued)
3D rotation about the y-axis, 230
3D rotation about the z-axis, 228
3D scaling about the origin, 227
3D scaling along an arbitrary axis,

248
3D scaling along an axis parallel to a

major axis, 247
3D shearing the x-axis parallel to the

y-axis, 232
3D shearing the x-axis parallel to the

z-axis, 233
3D shearing the y-axis parallel to the

x-axis, 234
3D shearing the y-axis parallel to the

z-axis, 235
3D shearing the z-axis parallel to the

x-axis, 236
3D shearing the z-axis parallel to the

y-axis, 237
3D shearing, 231-238
3D transformations of the coordinate

system, 252
3D transformations of the frame of

reference, 252
3D translation along an arbitrary

axis, 248
3D translation, 227
affine, 226
composite 2D, 166, 167, 172
concatenation of 2D global, 185
concatenation of 2D local, 186
concatenation of 2D, 165
concatenation of the matrices of 2D,

181
linear, 226
matrix representation of 2D, 178
product of 2D, 165
projection, 253, 260-277
viewing, 253, 255-259
viewporting, 253

translucent materials, 325
transmission, 320

angle, 327
models, 359
vector, 335

transmittance
coefficient, 366
equation, 354

transmitted illuminating hemisphere,
353

transparent materials, 325
transport theory, 342
transpose matrix, 121
transverse wave, 321
triangle rule, 69
triangular matrix, 123
trimetric projection, 266
triple

products of vectors, 88
scalar product, 88
vector product, 90

trivial acceptance, 198, 279
trivial rejection, 198, 279
true, 1
two-point perspective projection, 272

U

unbound vector, 71
unbounded set, 35
unclipped polygon, 204
unit matrix, 120
universal set, 8
upper

bound of interval, 32
bounded set, 35
illuminating hemisphere, 340
limit of interval, 32
triangular matrix, 123

V

vanishing point, 271-272
vector, 65

addition, 69, 74
bases, 74
bound, 71
components of a, 74
difference, 70
direction cosines of a, 82
direction of a, 65
direction ratios of a, 82
displacement, 66
equation of a line, 71
free, 71
inverse of a, 68
length of a, 78, 80
magnitude of a, 65, 66, 80
multiplication of a scalar by a, 74

�

�

“Comninos” — 2005/8/31 — 20:02 — page 545 — #15
�

�

�

�

�

�

Index 545

vector (continued)
negative, 68, 77
normalised, 80
normalising a, 80
null, 66
orientation, 71
position, 71
product of vectors, 84
projection of a, 81
resultant, 69
subtraction, 70, 74
unbound, 71
zero, 66

vectors
antiparallel, 67
base, 74
collinear, 67
cosine of the angle between two, 82
cross product of, 84
dot product of, 78
equality of, 74
equidirectional, 67
inner product of, 78
linear combination of, 72
linear dependence of, 72
linear independence of, 72
opposite, 67
outer product of, 84
parallel, 67
scalar product of collinear, 82
scalar product of orthogonal, 82
scalar product of, 78
triple products of, 88
triple scalar product of, 88
triple vector product of, 90
vector product of two, 84

vector algebra axioms and rules,
110-113

vector equation
of the line, 96, 97
of the plane, 98, 99

vector product, 84
magnitude of a, 87
of four vectors, 91
of two vector products, 91
properties of a, 86

vector space
basis of a, 157
definition, 154-156
dimension of a, 157

span of a, 157
spanning set of a, 157
transformation between bases of a,

158
transformation between orthonormal

bases of a, 161
Venn diagram, 8
viewing

axis, 254
distance, 255
point, 254
pyramid 255, 277
transformation, 253, 255-259

viewport, 255
viewporting transformation, 253
visibility function, 389
visibility-ordering, 299

W

Warnock algorithm, 296
wave number, 323
wavelength, 322
wave-particle duality theory, 319
wavicle, 319
Weiler-Atherton 2D polygon-clipping

algorithm, 219
wide and narrow diffuse surface, 372
wide-angle lens, 276
window, 255
wire-frame drawing, 295
world-space coordinate system, 253

X

XOR, 15
x-order, 303

Y

y-bucket
list, 302
sort, 302

Z

z-buffer, 294, 303
zero

matrix, 120
vector, 66

zero-length interval, 33

�

�

“Comninos” — 2005/8/31 — 20:02 — page 546 — #16
�

�

�

�

�

�

546 Index

Symbols

A, 28
C, 28
N, 27
R, 26
Q, 26
T, 28
Z, 28
↑↑, 67
↑↓, 67
||, 67
|, 4
:, 4
∈, 5
�∈, 5
Ø, 6
∪, 11
∩, 12
⊂, 7
⊆, 6
⊃, 7
⊇, 7
�, 14
⊕, 15
⊗, 84
×, 25, 37
◦, 48
∼, 62
-, 13

2D

clipping
a line segment to a rectangular

boundary, 194
a point to a rectangular boundary,

194
Cohen-Sutherland 2D line-clipping

algorithm, 197
composite transformation, 166, 167,

172
concatenation

of global transformations, 185
of local transformations, 186
of transformation matrices, 181
of transformations, 165

global
frame of reference, 184
frame transformations, 184

global (continued)
transformations, 184

homogeneous
coordinates, 190
point, 190

homogenised point, 191
local

frame of reference, 184
frame transformations, 184
transformations, 184

matrix representation of
transformations, 178

normalised coordinate system, 187
perpendicular distance from a point to a

line, 209
point of intersection of two lines, 208
polygon clipping, 202-223
primitive transformation, 167
product of transformations, 165
screen coordinate system, 187
transformation, 165

matrix properties, 181
of reflection about an arbitrary axis,

175
of reflection about the origin, 172
of reflection about the x-axis, 172
of reflection about the y-axis, 172
of rotation about an arbitrary point,

174, 182
of rotation about the origin, 168, 180
of scaling about an arbitrary point,

173
of scaling about the origin, 167, 180
of shearing along the x-axis, 171, 180
of shearing along the y-axis, 171, 181
of the coordinate system, 186
of the frame of reference, 186
of translation, 168, 180
viewing, 187
viewporting, 188
windowing, 187

Weiler-Atherton 2D polygon-clipping
algorithm, 219

world coordinate system, 187

3D

affine transformation, 226
aiming transformations, 244-244

�

�

“Comninos” — 2005/8/31 — 20:02 — page 547 — #17
�

�

�

�

�

�

Index 547

change of frame of reference
transformation, 238-241

Cohen-Sutherland 3D line-clipping
algorithm, 279

composite transformations, 245-251
relative to a major axis, 246
relative to a major plane, 249
relative to a plane, 249-251
relative to a point, 245-246
relative to an arbitrary axis, 248
relative to an arbitrary plane, 250
relative to an arbitrary point, 246
relative to an axis parallel to a major

axis, 247
relative to an axis, 246-249
relative to the origin of the frame,

245
global frame of reference, 238, 251
line clipping, 277-286
linear transformation, 226
local frame

of reference, 238, 251
transformations, 251

primitive transformations, 226-238
shearing transformations, 231-238
transformation, 225

of aiming the local x-axis, 242
of aiming the local y-axis, 243
of aiming the local z-axis, 244
of reflection about an arbitrary axis,

248
of reflection about an arbitrary plane,

250
of reflection about an arbitrary point,

246
of reflection about an axis parallel to

a major axis, 247
of reflection about the origin of the

frame, 245

of reflection about the x-axis, 246
of reflection about the y-axis, 246
of reflection about the z-axis, 246
of reflection about xy-plane, 249
of reflection about xz-plane, 249
of reflection about yz-plane, 249
of rotation about a coordinate axis,

228-231
of rotation about an arbitrary axis,

248
of rotation about an axis parallel to a

major axis, 247
of rotation about the x-axis, 229
of rotation about the y-axis, 230
of rotation about the z-axis, 228
of scaling about the origin, 227
of scaling along an arbitrary axis, 248
of scaling along an axis parallel to a

major axis, 247
of shearing the x-axis parallel to the

y-axis, 232
of shearing the x-axis parallel to the

z-axis, 233
of shearing the y-axis parallel to the

x-axis, 234
of shearing the y-axis parallel to the

z-axis, 235
of shearing the z-axis parallel to the

x-axis, 236
of shearing the z-axis parallel to the

y-axis, 237
of translation along an arbitrary axis,

248
of translation, 227
of the coordinate system, 252
of the frame of reference, 252

	Cover
	Mathematical and Computer Programming Techniques for Computer Graphics (Springer, 2006)
	ISBN 978-1-8233-902-9
	Preface
	Acknowledgements
	Contents
	Some Definitions of Terms

	Set Theory Survival Kit
	1.1 Some Basic Notations and Definitions
	1.1.1 Sets and Elements
	1.1.2 Notation and Set Specification
	1.1.3 Set Membership
	1.1.4 Finite and Infinite Sets

	1.2 Equality of Sets
	1.3 The Null Set or Empty Set
	1.4 Subsets
	1.5 Supersets
	1.6 Proper Subsets and Supersets
	1.7 Comparable Sets
	1.8 The Universal Set
	1.9 Disjoint Sets
	1.10 Venn-Euler Diagrams
	1.11 Line Diagrams
	1.12 Basic Set Operations
	1.12.1 Set Union
	1.12.2 Set Intersection
	1.12.3 Set Difference
	1.12.4 The Symmetric Difference of Two Sets
	1.12.5 The Complement of a Set

	1.13 The Algebra of Sets
	1.13.1 The Rules of the Algebra of Sets
	1.13.2 The Duality Principle

	1.14 Numbers and Sets
	1.14.1 Classes of Numbers
	1.14.2 Closure
	1.14.3 The Set of Real Numbers R
	1.14.4 The Set of Rational Numbers Q
	1.14.5 The Set of Irrational Numbers Q�
	1.14.6 The Set of Natural Numbers N
	1.14.7 The Set of Integer Numbers Z
	1.14.8 Other useful Sets of Numbers
	1.14.8.1 The Set of Complex Numbers C
	1.14.8.2 The Set of Algebraic Numbers A
	1.14.8.3 The Set of Transcendental Numbers T

	1.14.9 Ordering Relations or Inequalities
	1.14.10 The Absolute Value or Modulus of a Number
	1.14.11 Real Number Intervals
	1.14.12 Properties of Real Number Intervals
	1.14.13 Real Number Interval Arithmetic
	1.14.14 Bounded and Unbounded Real Number Sets

	1.15 Ordered Pairs and Ordered n-tuples
	1.16 The Cartesian Product of Sets
	1.17 Functions
	1.17.1 The Formal Definition of a Function
	1.17.2 Mappings, Operators and Transformations
	1.17.3 Equality of Functions
	1.17.4 The Range of a Function
	1.17.5 Different Types of Functions
	1.17.5.1 Many-to-One Functions
	1.17.5.2 Injective Functions or One-to-One Functions
	1.17.5.3 Surjective Functions or Onto Functions
	1.17.5.4 Bijective Functions or One-to-One Correspondences

	1.17.6 Constant Functions
	1.17.7 The Identity Function or Identity Transformation
	1.17.8 The Composition or Product of Functions
	1.17.9 The Inverse of a Function
	1.17.9.1 Applying the Inverse of a Function to an Element of its Co-domain
	1.17.9.2 Applying the Inverse of a Function to a Subset of its Co-domain

	1.17.10 The Inverse Function
	1.17.11 Theorems on the Inverse Function
	1.17.12 The Graph of a Function
	1.17.13 The Redefinition of a Function as a Set of OrderedPairs

	1.18 Families of Indexed Sets
	1.19 The Generalised Set Union and Intersection Operations
	1.19.1 The Negation of the Generalised Set Operations
	1.19.2 Some Algebraic Rules for the Generalised SetOperations

	1.20 The Cardinality or Size of a Set
	1.20.1 Equivalent Sets
	1.20.2 The Cardinal Number or Cardinality of a Set

	1.21 The Power Set of a Set

	Vector Algebra Survival Kit
	2.1 Some Basic Definitions and Notation
	2.2 Multiplication of a Vector by a Scalar
	2.3 Vector Addition
	2.4 Position Vectors and Free Vectors
	2.5 The Vector Equation of a Line
	2.6 Linear Dependence/Independence of Vectors
	2.7 Vector Bases
	2.8 The Components of a Vector
	2.8.1 Multiplication of a Vector by a Scalar
	2.8.2 Vector Addition
	2.8.3 Vector Equality

	2.9 Orthogonal, Orthonormal and Right-Handed Vector Bases
	2.10 Cartesian Bases and Cartesian Coordinates
	2.11 The Length of a Vector
	2.12 The Scalar Product of Vectors
	2.13 The Scalar Product Expressed in Terms of its Components
	2.14 Properties and Applications of the Scalar Product
	2.14.1 The Magnitude of a Vector Using its Components
	2.14.2 Normalising a Vector
	2.14.3 The Projection of a Vector onto Another
	2.14.4 The Cosine of the Angle Between two Vectors
	2.14.5 The Scalar Product of Collinear Vectors
	2.14.6 The Scalar Product of Orthogonal Vectors

	2.15 The Direction Ratios and Direction Cosines of a Vector
	2.16 The Vector Product of two Vectors
	2.17 The Vector Product Expressed in Terms of its Components
	2.18 Properties of the Vector Product
	2.18.1 The Geometric Interpretation of the Vector Product
	2.18.2 The Magnitude of the Vector Product in Terms ofits Components
	2.18.3 The Square of the Magnitude of the Vector Product
	2.18.4 The Magnitude of the Sine of the Angle betweenTwo Vectors

	2.19 Triple Products of Vectors
	2.19.1 The Triple Scalar Product
	2.19.2 The Triple Vector Product
	2.19.3 The Scalar Product of Two Vector Products
	2.19.4 The Vector Product of Two Vector Products

	2.20 The Components of a Vector Relativeto a Non-orthogonal Basis
	2.21 The Decomposition of a Vector According to a Basis
	2.22 The Vector Equation of the Line Revisited
	2.22.1 The Line Defined by Two Position Vectors
	2.22.2 The Line Defined by a Position Vector and Direction Vector

	2.23 The Vector Equation of the Plane
	2.23.1 The Plane Defined by a Position Vectorand a Normal Vector
	2.23.2 The Plane Defined by Three Position Vectors

	2.24 Some Applications of Vector Algebra in AnalyticalGeometry
	2.24.1 The Distance Between Two Points in Space
	2.24.2 The Perpendicular Distance from a Point to a Line
	2.24.3 The Distance of a Point from a Line
	2.24.4 The Distance Between Two Parallel Lines
	2.24.5 The Distance Between Two Non-Parallel Lines
	2.24.6 The Cosine of the Angle between Two Lines
	2.24.7 The Cosine of the Angle between Two Planes
	2.24.8 The Distance of a Point from a Plane
	2.24.9 The Point of Intersection of a Line and a Plane

	2.25 Summary of Vector Algebra Axioms and Rules
	Multiplication of a Vector by a Scalar
	Vector Addition
	The Scalar Product of Vectors
	The Vector Product of Two Vectors
	The Triple Scalar Product
	The Triple Scalar P
	The Triple Vector Product
	The Scalar Product of Two Vector Products
	The Vector Product of Two Vector Products

	2.26 A Simple Vector Algebra C Library

	Matrix Algebra Survival Kit
	3.1 The Definition of a Matrix
	3.2 Square Matrices
	3.3 Diagonal Matrices
	3.4 The Identity Matrix
	3.5 The Zero or Null Matrix
	3.6 The Transpose of a Matrix
	3.7 Symmetric and Antisymmetric Matrices
	3.8 Triangular Matrices
	3.9 Scalar Matrices
	3.10 Equality of Matrices
	3.11 Matrix Operations
	3.11.1 Addition and Subtraction of Matrices
	3.11.2 Multiplication of a Matrix by a Scalar
	3.11.3 Multiplication of a Vector by a Vector
	3.11.4 Multiplication of a Matrix by a Vector
	3.11.5 Multiplication of Two Matrices
	3.11.6 Powers of Matrices
	3.11.7 Axioms and Rules of Matrix Multiplication

	3.12 The Minor of a Matrix
	3.13 The Determinant of a Matrix
	3.14 The Computational Rules of Determinants
	3.14.1 The Transposition Rule
	3.14.2 The Interchange Rule
	3.14.3 The Factor Rule
	3.14.4 The Linear Combinations Rule
	3.14.5 The Decomposition Rule
	3.14.6 The Product Rule
	3.14.7 The Equality Rule
	3.14.8 The Conditions for a Zero Determinant

	3.15 The Cofactor of an Element of a Matrix and the Cofactor Matrix
	3.16 The Ajoint Matrix or Adjugate Matrix
	3.17 The Reciprocal or Inverse of a Matrix
	3.17.1 Justification of the Definition of the Inverse

	3.18 A Theorem on Invertible Matrices and their Determinants
	3.19 Axioms and Rules of Matrix Inversion
	3.20 Solving a System of Linear Simultaneous Equations
	3.21 Orthogonal Matrices
	3.22 Two Theorems on Vector by Matrix Multiplication
	3.23 The Row-/Column-Reversal Matrix
	3.23.1 Summary of Matrix Algebra Axioms and Rules
	Matrix Addition/Subtraction
	Matrix by Scalar Multiplication
	Vector by Vector Multiplication
	Matrix Multiplication
	Matrix Inversion

	3.24 A Simple Matrix Algebra C Library

	Vector Spaces or Linear Spaces
	4.1 Definition of a Scalar Field
	Closure of a Vector Space
	Closure of a Scalar Field
	Addition of Scalars
	Multiplication of Scalars

	4.2 Definition of a Vector Space
	Closure of a Vector Space
	Addition of Vectors
	Multiplication of a Vector by a Scalar
	Vector Space of Real Numbers
	Vector Space of 2D Vectors
	Vector Space of 3D Vectors
	Vector Space of m × n Matrices

	4.3 Linear Combinations of Vectors
	4.4 Linear Dependence and Linear Independence of Vectors
	4.5 Spans and Bases of a Vector Space
	4.6 Transformations Between Bases
	4.7 Transformations Between Orthonormal Bases
	4.8 Alternative Notation for Change of Basis Transformations

	Two-Dimensional Transformations
	5.1 Definition of a 2D Transformation
	5.2 Concatenation of Transformations
	5.3 2D Graphics Transformations
	5.4 2D Primitive Transformations
	5.4.1 Scaling Transformation Relative to the Origin
	5.4.2 Translation Transformation
	5.4.3 Rotation Transformation about the Origin
	5.4.4 Shearing Transformation Along the x-Axis
	5.4.5 Shearing Transformation Along the y-Axis

	5.5 2D Composite Transformations
	5.5.1 Reflection Transformations About One- or Two-Coordinate Axes
	5.5.2 Scaling Transformation About an Arbitrary Point
	5.5.3 Rotation Transformation About an Arbitrary Point
	5.5.4 Reflection Transformation About an Arbitrary Axis

	5.6 Sign of the Angles in Transformations
	5.7 Some Important Observations
	5.8 Matrix Representation of 2D Transformations
	5.9 Matrix Representation of Primitive Transformations
	5.10 Some Transformation Matrix Properties
	5.11 Concatenation of Transformation Matrices
	5.12 Local Frame and Global Frame Transformations
	5.12.1 Concatenation of Global Transformations
	5.12.2 Concatenation of Local Transformations

	5.13 Transformations of the Frame of Reference or Coordinate System
	5.14 Viewing Transformation
	5.14.1 Windowing Transformation
	5.14.2 Viewporting Transformation

	5.15 Homogeneous Coordinates
	5.16 A Simple C Library for 2D Transformations

	Two-Dimensional Clipping
	6.1 Clipping a 2D Point to a Rectangular Clipping Boundary
	6.2 Clipping a 2D Line Segment to a Rectangular Clipping Boundary
	6.3 The Cohen and Sutherland 2D Line-Clipping Algorithm
	6.4 2D Polygon Clipping
	6.4.1 The Sutherland and Hodgman Polygon-Clipping Algorithm
	Finding the Point of Intersection of Two Lines
	Finding the Perpendicular Distance from a Point to a Line

	6.4.2 The Weiler and Atherton Polygon-Clipping Algorithm

	References

	Three-Dimensional Transformations
	7.1 Introduction
	7.2 Primitive 3D Transformations
	7.2.1 Scaling Transformation Relative to the Origin
	7.2.2 Translation Transformation
	7.2.3 Rotation About a Coordinate Axis
	7.2.3.1 Rotation About the Z-Axis
	7.2.3.2 Rotation About the X-Axis
	7.2.3.3 Rotation About the Y-Axis

	7.2.4 Shearing Transformations
	7.2.4.1 Shearing the X-Axis Parallel to the Y-Axis (sx �y)
	7.2.4.2 Shearing the X-Axis Parallel to the Z-Axis (sx �z)
	7.2.4.3 Shearing the Y-Axis Parallel to the X-Axis (sy �x)
	7.2.4.4 Shearing the Y-Axis Parallel to the Z-Axis (sy �z)
	7.2.4.5 Shearing the Z-Axis Parallel to the X-Axis (sz �x)
	7.2.4.6 Shearing the Z-Axis Parallel to the Y-Axis (sz �y)

	7.3 Global and Local Frames of Reference
	7.4 Aiming Transformations
	7.4.1 Aiming the Local X-Axis in the Direction of an Arbitrary Unit Vector V
	7.4.2 Aiming the Local Y-Axis in the Direction of an Arbitrary Unit Vector V
	7.4.3 Aiming the Local Z-Axis in the Direction of an Arbitrary Unit Vector V

	7.5 Composite Transformations
	7.5.1 Composite Transformations Relative to a Point
	7.5.2 Composite Transformations Relative to an Axis
	7.5.2.1 Composite Transformations Relative to a Major Axis
	7.5.2.2 Composite Transformations Relative to an Axis Parallel to a Major Axis
	7.5.2.3 Composite Transformations Relative to an Arbitrary Axis

	7.5.3 Composite Transformations Relative to a Plane
	7.5.3.1 Composite Transformations Relative to a Major Plane
	7.5.3.2 Composite Transformations Relative to an Arbitrary Plane

	7.6 Local Frame and Global Frame Transformations
	7.7 Transformations of the Frame of Reference or Coordinate System
	References

	Viewing and Projection Transformations
	8.1 Conceptual Camera Model
	8.2 Viewing Transformation
	8.3 Projection Transformation
	8.4 Projection Transformation Matrix
	8.5 Parallel Projections
	8.5.1 Orthographic Projections
	8.5.1.1 Multi-View Orthographic Projections
	8.5.1.2 Axonometric Projections
	8.5.1.2.1 Isometric Projections
	8.5.1.2.2 Dimetric Projections
	8.5.1.2.3 Trimetric Projections

	8.5.1.3 Orthographic Projection Matrix

	8.5.2 Oblique Projections
	8.5.2.1 Oblique Projection Matrix

	8.6 Perspective Projections
	8.6.1 Perspective Projection Matrix

	8.7 Screen or Device Coordinate System
	8.8 3D Line Clipping
	8.9 Perspective Depth
	8.10 Simple C Library for 3D Transformations

	3D Rendering
	9.1 Introduction
	9.2 Rendering Algorithms
	9.2.1 A Simple Rendering Algorithm
	9.2.2 Warnock (Screen Subdivision) Algorithm
	9.2.3 Newell, Newell and Sancha Algorithm
	9.2.4 Single Scan-Line Depth-Buffer Algorithm

	9.3 Reflection Models and Shading Techniques
	9.3.1 Ambient Light Reflection
	9.3.2 Diffuse Light Reflection
	9.3.3 Specular Light Reflection
	9.3.3.1 Horn’s Method for Computing the Specular Reflection Function
	9.3.3.2 Blinn’s Method for Computing the Specular Reflection Function

	9.3.4 Phong’s Lighting Model
	9.3.4.1 Simulating Multiple Light Sources
	9.3.4.2 Simulating Distant Light Sources
	9.3.4.3 Coloured Light Sources

	9.4 Shading Techniques
	9.4.1 Flat Polygon Shading Technique
	9.4.2 Gouraud Smooth Shading Technique
	9.4.3 Phong Smooth Shading Technique

	References

	Physically Based Lighting and Shading Models and Rendering Algorithms
	10.1 Evolution of the Theory of Light
	10.2 Nature of Light
	10.3 Interaction of Light with Various Materials
	10.3.1 Light Reflection
	10.3.2 Light Refraction and Transmission
	10.3.3 Total Internal Reflection
	10.3.4 Light Scattering and Absorption
	10.3.5 Subsurface Scattering

	10.4 Some Useful Concepts, Definitions and Conventions
	10.4.1 Spherical Coordinates of a Vector
	10.4.2 Determining the Reflection Vector
	10.4.3 Determining the Transmission Vector
	10.4.4 Illuminating Hemisphere and Solid Angles

	10.5 Some Basic Terminology of Lighting
	10.6 Light Emission
	10.7 The Scattering and Reflection Functions
	10.7.1 Bi-directional Scattering Surface Reflectance Distribution Function (BSSRDF)
	10.7.2 Bi-directional Reflectance Distribution Function (BRDF)
	10.7.3 Reflectance, Transmittance and Scattering Equations
	10.7.4 Properties of the BRDFs
	10.7.4.1 Non-Negativity Property
	10.7.4.2 Symmetry Property or the Helmholtz Reciprocity Property
	10.7.4.3 Energy Conservation Property

	10.8 Reflectance Function of a Surface
	10.9 Transmittance Function of a Surface
	10.10 Reflection and Transmission Models
	10.10.1 Diffuse Reflection Model
	10.10.2 Specular Reflection Model
	10.10.3 Fresnel Effect
	10.10.4 Glossy or Semi-coherent Reflections

	10.11 Some Classical and Physically Plausible Shading Models
	10.11.1 Phong Shader
	10.11.2 Modified Phong Shader
	10.11.3 The Cook-Torrance Shader
	10.11.4 The Ashikmin-Shirley Shader

	10.12 Illumination Models and the Rendering Equation
	10.12.1 Local or Direct Illumination Model
	10.12.2 Global or Indirect Illumination Model

	10.13 Monte Carlo Method and Monte Carlo Integration
	10.14 Physically-Based Rendering Algorithms
	10.14.1 Object-Space Rendering Algorithms
	10.14.1.1 The Radiosity Algorithm

	10.14.2 Image-Space Rendering Algorithms
	10.14.2.1 The Recursive Ray-Tracing Algorithm
	10.14.2.2 The Distributed Ray-Tracing Algorithm
	10.14.2.3 The Path-Tracing Algorithm
	10.14.2.4 The Bi-directional Path-Tracing Algorithm
	10.14.2.5 The Metropolis Light Transport Algorithm
	10.14.2.6 The Photon-Mapping Technique
	10.14.2.6.1 The Photon-Mapping Pass
	10.14.2.6.2 Emission of Photons
	10.14.2.6.3 Scattering and Tracing of Photons
	10.14.2.6.4 Storage of Photons
	10.14.2.6.5 Photon Density Estimation
	10.14.2.6.6 The Rendering Pass
	10.14.2.6.7 Observations

	10.14.3 Hybrid Multi-Pass Rendering Algorithms

	References

	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Index

