Computer Graphics:
Programming, Problem Solving,
and Visual Communication

Dr. Steve Cunningham
Computer Science Department
Cdlifornia State University Stanislaus
Turlock, CA 95382

copyright © 2002, Steve Cunningham
All rights reserved

These notes are a draft of atextbook for an introductory computer graphics course that emphasizes
graphics programming and is intended for undergraduate students who have a sound background
in programming. Its goa is to introduce fundamental concepts and processes for computer
graphics, give students experience in computer graphics programming using the OpenGL
application programming interface (API), and show the power of visual communication and of
computer graphics in the sciences.

The contents below represent a relatively mature version of these notes, athough some
reorganization of the material is still expected and some additional topics may be developed. We
hope you will find these notes to be helpful in learning computer graphics and encourage you to
give us feedback with the feedback pages at the end of the notes.

CONTENTS:

Getting Started
 WhatisagraphicsAPI?
* Overview of the book
e What iscomputer graphics?
. The 3D Graphics Pipeline
3D model coordinate systems
- 3D world coordinate system
- 3D eye coordinate system
- Clipping
- Projections
- 2D eye coordinates
- 2D screen coordinates
- Overdl viewing process
- Different implementation, same result
Summary of viewing advantages
. A basic OpenGL program
The structure of the main() program using OpenGL
- Modd space
- Modéding transformation
- 3D world space
- Viewing transformation
- 3D eye space
- Projections
- 2D eye space
- 2D screen space
Another way to see the program
. OpenGL extensions

Chapter 1. Viewing and Projection

e Introduction

* Fundamenta model of viewing

» Definitions

- Setting up the viewing environment
Defining the projection
View volumes
Cd culating the perspective transformation
Defining the window and viewport
» Some aspects of managing the view
- Hidden surfaces

3/24/02 Page 2

- Double buffering

- Clipping planes

Stereo viewing

Implementation of viewing and projection in OpenGL
- Defining awindow and viewport
Reshaping the window

Defining a viewing environment
Defining perspective projection
Defining an orthogonal projection
Managing hidden surface viewing
Setting double buffering

- Defining clipping planes
Implementing a stereo view
Questions

Exercises

Experiments

Chapter 2: Principles of Modeling

Introduction

Simple Geometric Modeling

Introduction

Definitions

Some examples

- Point and points

Line segments

Connected lines

Triangle

Sequence of triangles
Quadrilatera

Sequence of quads

General polygon

Polyhedron

Aliasing and antidiasing
Normals

Data structures to hold objects
Additional sources of graphic objects
- A wordtothewise

Transformations and modeling

Introduction

Definitions

- Transformations

- Composite transformations

- Transformation stacks and their manipulation
- Compiling geometry

A word to thewise

Scene graphs and modeling graphs

3/24/02

Introduction

A brief summary of scene graphs

- Anexample of modeling with a scene graph

The viewing transformation

The scene graph and depth testing

Using the modeling graph for coding

- Example

- Using standard objects to create more complex scenes

Page 3

Chapter 3:

Questions
Exercises
Experiments

The OpenGL mode for specifying geometry
Point and points mode
- Line segments
- Linestrips
- Lineloops
- Triangle
- Seguence of triangles
- Quads
- Quad strips
- Genera polygon
- Antidiasng
The cube we will usein many examples
Addltl onal objects with the OpenGL toolkits
GLU quadric objects
> GLU cylinder
> GLU disk
> GLU sphere
- TheGLUT objects
An example
A word to the wise
Transformationsin OpenGL
Code examples for transformations
- Simpletransformations
- Transformation stacks
- Inverting the eyepoint transformation
- Creating display lists

Chapter 4: Mathematicsfor Modeling

Coordinate systems and points
Points, lines, and line segments
Distance from apoint to aline

Line segments and parametric curves
Vectors

Dot and cross products of vectors
Reflection vectors

Transformations

Planes and half-spaces

Distance from a point to a plane
Polygons and convexity

Polyhedra

Collision detection

Polar, cylindrical, and spherical coordinates
Higher dimensions?

Chapter 5: Color and Blending

3/24/02

Introduction
Definitions

- The RGB cube
- Luminance

Implementing Modeling in OpenGL

Page 4

- Other color models

- Color depth

- Color gamut

- Color blending with the alpha channel

- Challengesin blending

- Modding transparency with blending

- Indexed color

- Using color to create 3D images

Some examples

- Anobject with partially transparent faces
Color in OpenGL

- Enabling blending

A word to the wise

Code examples

- A mode with parts having afull spectrum of colors
- TheHSV cone

- The HLSdouble cone

- Anobject with partially transparent faces
Questions

Exercises

Experiments

Chapter 6: Visual Communication

3/24/02

Introduction
General issuesin visual communication
- Use appropriate representation for your information
- Keep your images focused
- Useappropriate presentation levels for your information
- Useappropriate forms for your information
- Bevery careful to be accurate with your information
- Understand and respect the cultural context of your audience
- Makeyour interactions reflect familiar and comfortable rel ationships between cause
and effect
Shape
- Comparing shape and color encodings
Color
- Emphasis colors
- Background colors
- Color deficienciesin audiencd
- Naturdistic color
- Pseudocolor and color ramps
- Implementing color ramps
- Using color ramps
- Tolight or not to light
- Higher dimensions
Dimensions
Image context
- Choosing an appropriate view
- Legendsto help communicate your encodings
- Labelsto help communicate your problem
Motion
- Leaving traces of motion
- Mation blurring
Interactions

Page 5

Cultural context of the audience
Accuracy
Output media
Implementing some of these ideasin OpenGL
- Using color ramps
- Legendsand labels
- Creating traces
- Using the accumulation buffer
A word to the wise

Chapter 7. Graphical Problem Solving in Science

Introduction

Examples

Diffusion

- Temperaturesin abar

- Spread of disease

Function graphing and applications
Parametric curves and surfaces
Graphical objectsthat are the results of limit processes
Scdar fields

Representation of objects and behaviors
- Gaslaws and diffusion principles
- Molecular display

- Monte Carlo modeling process
4D graphing

- Volumedata

- Vector fields

Graphing in higher dimensions
Data-driven graphics

Code examples

- Diffusion

Function graphing

Parametric curves and surfaces
Limit processes

Scaar fields

Representation of objects and behaviors
Molecular display

Monte Carlo modeling

4D graphing

Higher dimensional graphing
Data-driven graphics

Credits

Chapter 8. The Rendering Pipeline

3/24/02

Introduction

The pipeline

The rendering pipeline for OpenGL

- Texture mapping in the rendering pipeline

- Per-fragment operations

- Some extensions to OpenGL

- Animplementation of the rendering pipeline in agraphics card
The rasterization process

Page 6

Chapter 9: Lighting and Shading
Lighting

Definitions

- Ambient, diffuse, and specular light

- Surface normals

Light properties

Positional lights

Spotlights

Attenuation

Directional lights

- Positiona and moving lights

Materials
Shadl ng

Definitions

- Flat shading

- Smooth shading

Examples of flat and smooth shading
Calculating per-vertex normals

- Averaging polygon normals

- Anaytic computations

Other shading models

- Vertex and pixel shaders

Global [llumination
Local [Hlumination

Lights and materialsin OpenGL

- Specifying and defining lights
Defining materials

Setting up a sceneto use lighting
Using GLU quadric objects

Code for the example
A word to thewise

- Shading example
Questions

Exercises

Experiments

Chapter 10: Event Handling

3/24/02

Introduction

Definitions

Some examples of events
- keypress events
mouse events

menu events

window events
system events
software events

The vocabulary of interaction
A word to thewise
Eventsin OpenGL
Callback registering
Some details

Code examples

- ldle event callback

An example: lights of al three primary colors applied to awhite surface

Page 7

- Keyboard callback

- Menu callback

- Mouse calback for object selection
Mouse callback for mouse motion

The MUI (Micro User Interface) Facility

Introduction
Definitions
- Menu bars
- Buttons
- Radio buttons
- Text boxes
- Horizontal diders
- Veticd diders
Text labels
Us ng the MUI functionality
Some examples
Installing MUI for Windows
A word to the wise

Chapter 11: Texture Mapping

3/24/02

Introduction

Definitions

- 1D texture maps

- 2D texture maps

- 3D texture maps

- Associating a vertex with atexture point

- Therelation between the color of the object and the color of the texture map

Other meanings for texture maps
Creatl ng atexture map
- Getting an image as a texture map
- Generating a synthetic texture map
Texture mapping and billboards
Interpolation for texture maps
Antidiasing in texturing
MIP mapping
Multitexturing
Using billboards
Texture mapping in OpenGL
- Associating vertices and texture points
- Capturing atexture from the screen
- Texture environment
- Texture parameters
- Getting and defining atexture map
- Texture coordinate control
- Textureinterpolation
- Texture mapping and GLU quadrics
Some examples
- The Chromadepth™ process
- Using 2D texture mapsto add interest to a surface
- Environment maps
A word to the wise
Code examples
- A 1D color ramp
- Animageon asurface

Page 8

- Anenvironment map
- Multitexturing code
Questions

Exercises

Experiments

Chapter 12: Dynamics and Animation

Introduction

Definitions

Keyframe animation

- Tempord aliasing

- Building an animation

Some examples

- Moving objectsin your model

- Moving parts of objectsin your model

- Moving the eye point or the view frame in your model
- Changing features of your models

Some points to consider when doing animations with OpenGL
Code examples

A word to thewise

Chapter 13: High-Performance Graphics Techniques

Definitions
Techniques
- Hardware avoidance
- Designing out visible polygons
- Culling polygons
- Avoiding depth comparisons
- Front-to-back drawing
- Binary space partitioning
- Clever use of textures
- System speedups
- Leve of detail
- Reducing lighting computation
- Fog
Collision detection
A word to the wise

Chapter 14: Object Selection

Introduction

Picking in OpenGL
Definitions

Making picking work
The pick matrix
Using the back color buffer to do picking
A sdlection example
A word to the wise
Questions

Exercises
Experiments

Chapter 15: Interpolation and Spline Modeling

3/24/02

Introduction
- Interpolations

Page 9

- Extending interpolations to more control points
Interpolations in OpenGL

- Automatic normal and texture generation with evaluators
- Additional techniques

Definitions

Some examples

- Spline curves

- Spline surfaces

A word to the wise

Chapter 16: Per-Pixel Operations

Introduction

Definitions

Ray casting

Ray tracing

Ray tracing and global illumination
Volume rendering

Fractal images

Iterated function systems

Per-pixel operations supported by OpenGL

Chapter 17: Hardcopy

Introduction

Definitions

- Digitd images

- Print

- Film

- Video

- Digita video

- 3D object prototyping
The STL file

A word to the wise

Appendices

Appendix I: PDB file format
Appendix Il: CTL file format
Appendix 111: STL file format

References and Resour ces

References
Resources

Evaluation

3/24/02

Instructor’ s evaluation
Student’ s evaluation

Page 10

Because thisis a draft of atextbook for an introductory, API-based computer graphics course, the
author recognizes that there may be some inaccuracies, incompleteness, or clumsiness in the
presentation and apologizes for these in advance. Further development of these materials, as well
as source code for many projects and additional examples, is ongoing continuously. All such
materials will be posted as they are ready on the author’ s Web site:
http://ww. cs. csust an. edu/ ~r sc/ NSF/

Y our comments and suggestions will be very helpful in making these materias as useful as
possible and are solicited; please contact

Steve Cunningham
California State University Stanislaus
rsc@s. csustan. edu

This work was supported by National Science Foundation grant DUE-9950121. All
opinions, findings, conclusions, and recommendations in this work are those of the author
and do not necessarily reflect the views of the National Science Foundation. The author
also gratefully acknowledges sabbatical support from California State University Stanislaus
and thanks the San Diego Supercomputer Center, most particularly Dr. Michael J. Bailey,
for hosting this work and for providing significant assistance with both visualization and
science content. Ken Brown, a student of the author’s, provided invaluable and much-
appreciated assistance with several figures and concepts in this manuscript. The author
also thanks students Ben Eadington, Jordan Maynard, and Virginia Muncy for their
contributions through examples, and a number of others for valuable conversations and
suggestions on these notes.

3/24/02 Page 11

Chapter 0: Getting Started

This book is intended for a beginning course in computer graphics for students with a sound
programming background but no previous computer graphics experience. It includes a few
features that are not found in most beginning courses:

» Thefocusis on computer graphics programming with a graphics API, and in particular
discusses the OpenGL API. Many of the fundamental algorithms and techniques that are at
the root of computer graphics are covered only at the level they are needed to understand
guestions of graphics programming. This differs from most computer graphics textbooks
that place a great deal of emphasis on understanding these algorithms and techniques. We
recognize the importance of these for persons who want to develop a deep knowledge of the
subject and suggest that a second graphics course can provide that knowledge. We believe
that the experience provided by API-based graphics programming will help you understand
the importance of these algorithms and techniques as they are developed and will equip you
to work with them more fluently than if you met them with no previous background.

» We focus on 3D graphics to the almost complete exclusion of 2D techniques. It has been
traditional to start with 2D graphics and move up to 3D because some of the algorithms and
techniques have been easier to grasp at the 2D level, but without that concern it seems easier
simply to start with 3D and discuss 2D as a specia case.

 Because we focus on graphics programming rather than algorithms and techniques, we have
fewer instances of data structures and other computer science techniques. This means that
these notes can be used for a computer graphics course that can be taken earlier in astudent’s
computer science studies than the traditional graphics course. Our basic premiseisthat this
course should be quite accessible to a student with a sound background in programming a
sequential imperative language, particularly C.

» These notes include an emphasis on the scene graph as afundamental tool in organizing the
modeling needed to create a graphics scene. The concept of scene graph alows the student to
design the transformations, geometry, and appearance of a number of complex components
in away that they can be implemented quite readily in code, even if the graphics API itself
does not support the scene graph directly. Thisis particularly important for hierarchica
modeling, but it provides a unified design approach to modeling and has some very useful
applications for placing the eye point in the scene and for managing motion and animation.

» These notesinclude an emphasis on visual communication and interaction through computer
graphicsthat is usually missing from textbooks, though we expect that most instructors
include this somehow in their courses. We believe that a systematic discussion of this
subject will help prepare students for more effective use of computer graphicsin their future
professional lives, whether thisisin technical areasin computing or isin areas where there
are significant applications of computer graphics.

* Many, if not mogt, of the examples in these notes are taken from sources in the sciences, and
they include two chapters on scientific and mathematical applications of computer graphics.
This makes the notes useable for courses that include science students as well as making
graphics students aware of the breadth of areas in the sciences where graphics can be used.

This set of emphases makes these notes appropriate for courses in computer science programs that
want to develop ties with other programs on campus, particularly programs that want to provide
science students with a background that will support development of computational science or
scientific visualization work.

What is agraphics API?

The short answer isthat an API is an Application Programming Interface—a set of tools that allow
aprogrammer to work in an application area. Thusa graphics API isaset of tools that allow a
programmer to write applications that use computer graphics. These materials are intended to
introduce you to the OpenGL graphics APl and to give you a number of examples that will help

you understand the capabilities that OpenGL provides and will alow you to learn how to integrate
graphics programming into your other work.

Overview of the book

The book is organized along fairly traditiona lines, treating projection, viewing, modeling,
rendering, lighting, shading, and many other aspects of the field, emphasizing 3D graphics and
interactive techniques. It also includes an emphasis on using computer graphics to address real
problems and to communicate results effectively to the viewer. Aswe move through this material,
we describe some genera principles in computer graphics and show how the OpenGL API
provides the graphics programming tools that implement these principles. We do not spend time
describing in depth the agorithms behind the techniques or the way the techniques are
implemented; your instructor will provide these if he or she finds it necessary. Instead, the book
focuses on describing the concepts behind the graphics and on using a graphics API (application
programming interface) to carry out graphics operations and create images.

The book will give beginning computer graphics students a good introduction to the range of
functionality available in a modern computer graphics API. They are based on the OpenGL AP,
but we have organized the general outline so that they could be adapted to fit another API as these
are developed.

The key concept in the book, and in the computer graphics programming course, is the use of
computer graphics to communicate information to an audience. We usually assume that the
information under discussion comes from the sciences, and include a significant amount of material
on modelsin the sciences and how they can be presented visually through computer graphics. Itis
tempting to use the word “visualization” somewhere in the title of this document, but we would
reserve that word for material that is fully focused on the science with only a sidelight on the
graphics; because we reverse that emphasis, the role of visualization is in the application of the

graphics.

We have tried to match the sequence of chapters to the sequence we would expect to be used in an
introductory course, and in some cases, the presentation of one module will depend on your
knowing the content of an earlier chapter. However, in other cases it will not be critical that earlier
chapters have been covered. It should be pretty obvious if other chapters are assumed, and we
may make that assumption explicit in some modules.

What is Computer Graphics?

We view computer graphics as the art and science of creating synthetic images by programming the
geometry and appearance of the contents of the images, and by displaying the results of that
programming on appropriate display devices that support graphical output. The programming may
be done (and in these notes, is assumed to be done) with the support of a graphics API that does
most of the detailed work of rendering the scene that the programming defines.

The work of the programmer is to develop representations for the geometric entities that are to
make up the images, to assembl e these entities into an appropriate geometric space where they can
have the proper relationships with each other as needed for the image, to define and present the
look of each of the entities as part of that scene, to specify how the scene is to be viewed, and to
specify how the scene as viewed is to be displayed on the graphic device. These processes are
supported by the 3D graphics pipeline, as described below, which will be one of our primary tools
in understanding how graphics processes work.

In addition to the work mentioned so far, there are two other important parts of the task for the
programmer. Because a static image does not present as much information as a moving image, the

3/24/02 Page 0.2

programmer may want to design some motion into the scene, that is, may want to define some
animation for theimage. And because a user may want to have the opportunity to control the
nature of the image or the way the image is seen, the programmer may want to design ways for the
user to interact with the scene asit is presented.

All of these topics will be covered as later chapters develop these ideas, using the OpenGL
graphics API asthe basis for implementing the actual graphics programming.

The 3D Graphics Pipeline

The 3D computer graphics pipeline is simply a process for converting coordinates from what is
most convenient for the application programmer into what is most convenient for the display
hardware. We will explore the details of the steps for the pipeline in the chapters below, but here
we outline the pipeline to help you understand how it operates. The pipelineis diagrammed in
Figure 0.1, and we will start to sketch the various stages in the pipeline here, with more detail
given in subsequent chapters.

3D Model
Coordinates

Model Transformation

s

3D World
Coordinates

Viewing Transformation

3

3D Eye
Coordinates

3D Clipping

‘T

3D Eye
Coordinates

Projection

“

2D Eye
Coordinates

Window-to-Viewport Mapping

2D Screen
Coordinates

Figure 0.1: The graphics pipeline’s stages and mappings

3D model coordinate systems

The application programmer starts by defining a particular object about a loca origin that lies
somewhere in or around the object. Thisiswhat would naturally happen if the object was created
with some sort of modeling or computer-aided design system or was defined by a mathematical
function. Modeling something about its local origin involves defining it in terms of model
coordinates, a coordinate system that is used specifically to define a particular graphical object.
Because the coordinate system is part of an object’ s design, it may be different for every part of a
scene. In order to integrate each object, built with its own coordinates, into a single overall 3D

3/24/02 Page 0.3

world space, the object must be placed in the world space by using an appropriate modeling
transformation.

Modeling transformations, like al the transformations we will describe throughout the book, are
functions that move objects while preserving their geometric properties. The transformations that
are available to usin a graphics system are rotations, translations, and scaling. Rotations hold a
line through the origin of a coordinate system fixed and rotate all the pointsin a scene by afixed
angle around the line, translations add a fixed value to each of the coordinates of each pointin a
scene, and scaling multiplies each coordinate of a point by afixed value. These will be discussed
in much more detail in the chapter on modeling below. All transformations may be represented as
matrices, so sometimes in a graphics APl you will see amention of a matrix; this almost always
means that atransformation is involved.

In practice, graphics programmers use arelatively small set of simple, built-in transformations and
build up the model transformations through a sequence of these simple transformations. Because
each transformation works on the geometry it sees, we see the effect of the associative law for
functions; in apiece of code represented by metacode such as

transformone(...);

transformiwo(...);

transformrhree(...);

geometry(...);
we seethat t ransf or nirhr ee is applied to the origind geometry, t r ansf or nTwo to the
results of that transformation, and t r ansf or nOne to the results of the second transformation.
Lettingt 1, t2, and t 3 bethe threetransformations, respectively, we see by the application of
the associative law for function composition that

t1(t2(t3(geonetry))) = (t1*t2*t3)(geonetry)
This shows us that in a product of transformations, applied by multiplying on the left, the
transformation nearest the geometry is applied first, and that this principle extends across multiple
transformations. Thiswill be very important in the overall understanding of the overall order in
which we operate on scenes, as we describe at the end of this section.

The modeling transformation for an object in a scene can change over time to create motion in a
scene. For example, in arigid-body animation, an object can be moved through the scene just by
changing its model transformation between frames. This change can be made through standard
built-in facilities in most graphics APIs, including OpenGL ; we will discuss how thisis done later.

3D world coordinate system

The 3D coordinate system shared by all the objects in the scene is called the world coordinate
system. By considering every component of the scene as sharing this single world, we can treat
the scene uniformly as we develop the presentation of the scene through the graphics display
device to the user. The scene is amaster design element that contains both the geometry of the
objects placed in it and the geometry of lights that illuminate it. Note that the world coordinate
system often is considered to have actual dimensions as it may well model some real-world
environment. This coordinate system exists without any reference to a viewer, however; the
viewer is added at the next stage.

3D eye coordinate system

Once the 3D world has been created, an application programmer would like the freedom to allow
an audience to view it from any location. But graphics viewing models typically require a specific
orientation and/or position for the eye at this stage. For example, the system might require that the
eye position be at the origin, looking in —Z (or sometimes +Z). So the next step in the pipelineis
the viewing transformation, in which the coordinate system for the scene is changed to satisfy this

3/24/02 Page 0.4

requirement. Theresult isthe 3D eye coordinate system. We can think of this process as grabbing
the arbitrary eye location and all the 3D world objects and diding them around to realign the spaces
so that the eye ends up at the proper place and looking in the proper direction. The relative
positions between the eye and the other objects have not been changed; all the parts of the scene are
simply anchored in a different spot in 3D space. Because standard viewing models may also
specify a standard distance from the eyepoint to some fixed “look-at” point in the scene, there may
also be some scaling involved in the viewing transformation. The viewing transformation is just a
transformation in the same sense as modeling transformations, although it can be specified in a
variety of ways depending on the graphics API. Because the viewing transformation changes the
coordinates of the entire world space in order to move the eye to the standard position and
orientation, we can consider the viewing transformation to be the inverse of whatever
transformation placed the eye point in the position and orientation defined for the view. We will
take advantage of this observation in the modeling chapter when we consider how to place the eye
in the scene’ s geometry.

Clipping

At this point, we are ready to clip the object against the 3D viewing volume. The viewing volume
isthe 3D volume that is determined by the projection to be used (see below) and that declares what
portion of the 3D universe the viewer wants to be able to see. This happens by defining how much
of the scene should be visible, and includes defining the left, right, bottom, top, near, and far
boundaries of that space. Any portions of the scene that are outside the defined viewing volume
are clipped and discarded. All portions that are inside are retained and passed along to the
projection step. In Figure 0.2, it is clear that some of the world and some of the helicopter lie
outside the viewable space, but note how the front of the image of the ground in the figure is
clipped—is made invisible in the scene—because it is too closeto the viewer’ seye. Thisisabit
difficult to see, but look at the cliffs at the upper left of the scene to see a clipped edge.

Figure 0.2: Clipping on the Left, Bottom, and Right

Clipping is done as the scene is projected to the 2D eye coordinates in projections, as described
next. Besides ensuring that the view includes only the things that should be visible, clipping aso
increases the efficiency of image creation because it eliminates some parts of the geometry from the
rest of the display process.

3/24/02 Page 0.5

Projections

The 3D eye coordinate system still must be converted into a 2D coordinate system before it can be
mapped onto a graphics display device. The next stage of the pipeline performs this operation,
called aprojection. Before discussing the actual projection, we must think about what we will
actually see in the graphic device. Imagine your eye placed somewhere in the scene, looking in a
particular direction. Y ou do not see the entire scene; you only see what liesin front of your eye
and within your field of view. This spaceis called the viewing volume for your scene, and it
includes a bit more than the eye point, direction, and field of view; it also includes a front plane,
with the concept that you cannot see anything closer than this plane, and a back plane, with the
concept that you cannot see anything farther than that plane. In Figure 0.3 we see two viewing
volumes for the two kinds of projections that we will discussin a moment.

Figure 0.3: Parallel and Perspective Viewing Volumes, with Eyeballs

There are two kinds of projections commonly used in computer graphics. One maps al the points
in the eye space to the viewing plane by simply ignoring the value of the z-coordinate, and as a
result all points on aline paralel to the direction of the eye are mapped to the same point on the
viewing plane. Such aprojection iscaled aparalld projection, and it has the effect that the viewer
can read accurate dimensions in the x- and y-coordinates. It is common for engineering drawings
to present two parallel projections with the second including a 90° rotation of the world space so
accurate z-coordinates can also be seen. The other projection acts asif the eye were asingle point
and each point in the scene is mapped along a line from the eye to that point, to a point on a plane
in front of the eye, which isthe classical technique of artists when drawing with perspective. Such
aprojection is called a perspective projection. And just as there are paralel and perspective
projections, there are paralld (also called orthographic) and perspective viewing volumes. In a
paralel projection, objects stay the same size asthey get farther away. In aperspective projection,
objects get smaller as they get farther away. Perspective projections tend to look more realistic,
while parallel projections tend to make objects easier to line up. Each projection will display the
geometry within the region of 3-space that is bounded by the right, left, top, bottom, back, and
front planes described above. The region that is visible with each projection is often called its view
volume. Aswe seein Figure 0.3, the viewing volume of a parallel projection is arectangular
region (here shown as a solid), while the viewing volume of a perspective projection has the shape
of apyramid that is truncated at the top (also shown asa solid). Thiskind of shapeisatruncated
pyramid and is sometimes called a frustum.

3/24/02 Page 0.6

While the viewing volume describes the region in space that is included in the view, the actual view
iswhat is displayed on the front clipping space of the viewing volume. Thisisa2D spaceand is
essentially the 2D eye space discussed below. Figure 0.4 presents a scene with both parallel and
perspective projections; in this example, you will have to look carefully to see the differences!

Figure 0.4: the same scene as presented by a parallel projection (left)
and by a perspective projection (right)

2D eye coordinates

The space that projection mapsto is a two-dimensional real-coordinate space that contains the
geometry of the original scene after the projection is applied. Because asingle point in 2D eye
coordinates corresponds to an entire line segment in the 3D eye space, depth information islost in
the projection and it can be difficult to perceive depth, particularly if aparallel projection was used.
Eveninthat case, however, if we display the scene with a hidden-surface technique, object
occlusion will help us order the content in the scene. Hidden-surface techniques are discussed in a
later chapter.

2D screen coordinates

Thefinal step in the pipeline is to change units so that the object is in a coordinate system
appropriate for the display device. Because the screenisadigital device, this requires that the real
numbers in the 2D eye coordinate system be converted to integer numbers that represent screen
coordinate. Thisis done with a proportional mapping followed by atruncation of the coordinate
values. Itiscalled the window-to-viewport mapping, and the new coordinate space is referred to
as screen coordinates, or display coordinates. When this step is done, the entire scene is now
represented by integer screen coordinates and can be drawn on the 2D display device.

Note that this entire pipeline process converts vertices, or geometry, from one form to another by
means of several different transformations. These transformations ensure that the vertex geometry
of the scene is consistent among the different representations as the scene is developed, but
computer graphics aso assumes that the topol ogy of the scene stays the same. For instance, if two
points are connected by aline in 3D model space, then those converted points are assumed to
likewise be connected by alinein 2D screen space. Thus the geometric relationships (points,
lines, polygons, ...) that were specified in the origina model space are all maintained until we get
to screen space, and are only actually implemented there.

3/24/02 Page 0.7

Overall viewing process

Let'slook at the overall operations on the geometry you define for a scene as the graphics system
works on that scene and eventually displaysit to your user. Referring again to Figure 0.1 and
omitting the clipping and window-to-viewport process, we see that we start with geometry, apply
the modeling transformation(s), apply the viewing transformation, and finally apply the projection
to the screen. This can be expressed in terms of function composition as the sequence
projection(view ng(transformation(geonetry))))
or, as we noted above with the associative law for functions and writing function composition as
multiplication,
(projection * viewing * transformation) (geonetry).
In the same way we saw that the operations nearest the geometry were performed before operations
further from the geometry, then, we will want to define the projection first, the viewing next, and
the transformations last before we define the geometry they are to operate on. We will see this
sequence as a key factor in the way we structure a scene through the scene graph in the modeling
chapter later in these notes.

Different implementation, same result

Warning! This discussion has shown the concept of how a vertex travels through the graphics
pipeline. There are several ways of implementing thistravel, any of which will produce a correct
display. Do not be disturbed if you find out a graphics system does not manage the overall
graphics pipeline process exactly as shown here. The basic principles and stages of the operation
are still the same.

For example, OpenGL combines the modeling and viewing transformations into a single
transformation known as the modelview matrix. This will force us to take a little different
approach to the modeling and viewing process that integrates these two steps. Also, graphics
hardware systems typicaly perform a window-to-normalized-coordinates operation prior to
clipping so that hardware can be optimized around a particular coordinate system. In this case,
everything else stays the same except that the final step would be normalized-coordinate-to-
viewport mapping.

In many cases, we ssmply will not be concerned about the details of how the stages are carried out.
Our goal will be to represent the geometry correctly at the modeling and world coordinate stages, to
specify the eye position appropriately so the transformation to eye coordinates will be correct, and
to define our window and projections correctly so the transformations down to 2D and to screen
space will be correct. Other detailswill be left to a more advanced graphics course.

Summary of viewing advantages

One of the classic questions beginners have about viewing a computer graphics image is whether to
use perspective or orthographic projections. Each of these has its strengths and its weaknesses.
Asaquick guide to start with, here are some thoughts on the two approaches:

Orthographic projections are at their best when:
* Itemsin the scene need to be checked to seeif they line up or are the same size
» Linesneed to be checked to seeif they are parallel
» Wedo not care that distance is handled unredlistically
* Weare not trying to move through the scene
Per spective projections are at their best when:
* Redlism counts
* Wewant to move through the scene and have aview like a human viewer would have
» Wedo not carethat it isdifficult to measure or align things

3/24/02 Page 0.8

In fact, when you have some experience with each, and when you know the expectations of the
audience for which you' re preparing your images, you will find that the choice is quite natural and
will have no problem knowing which is better for a given image.

A basic OpenGL program

Our example programs that use OpenGL have some strong similarities. Each isbased on the
GLUT utility toolkit that usually accompanies OpenGL systems, so al the sample codes have this
fundamental similarity. (If your version of OpenGL does not include GLUT, its source code is
available online; check the page at
http://www. reality.sgi.com opengl/glut3/glut3.h

and you can find out whereto get it. Y ou will need to download the code, compileit, and install it
in your system.) Similarly, when we get to the section on event handling, we will use the MUI
(micro user interface) toolkit, although thisis not yet developed or included in this first draft
release.

Like most worthwhile APIs, OpenGL is complex and offers you many different ways to express a
solution to a graphical problem in code. Our examples use a rather limited approach that works
well for interactive programs, because we believe strongly that graphics and interaction should be
learned together. When you want to focus on making highly realistic graphics, of the sort that
takes a long time to create a single image, then you can readily give up the notion of interactive
work.

So what isthe typical structure of a program that would use OpenGL to make interactive images?
We will display this structure-only example in C, aswe will with all our examplesin these notes.
OpenGL isnot realy compatible with the concept of object-oriented programming because it
maintains an extensive set of state information that cannot be encapsulated in graphics classes,
while object-oriented design usually calls for objects to maintain their own state. Indeed, as you
will see when you look at the example programs, many functions such as event callbacks cannot
even deal with parameters and must work with global variables, so the usual practiceisto create a
global application environment through global variables and use these variables instead of
parameters to pass information in and out of functions. (Typically, OpenGL programs use side
effects—passing information through external variables instead of through parameters—because
graphics environments are complex and parameter lists can become unmanageable.)

In the code below, you will see that the main function involves mostly setting up the system. This
isdonein two ways:. first, setting up GLUT to create and place the system window in which your
work will be displayed, and second, setting up the event-handling system by defining the callbacks
to be used when events occur. After thisis done, main calls the main event loop that will drive all
the program operations, as described in the chapter below on event handling.

The full code example that follows this outline a so discusses many of the details of these functions
and of the callbacks, so we will not go into much detail here. For now, the things to note are that
the reshape callback sets up the window parameters for the system, including the size, shape, and
location of the window, and defines the projection to be used in the view. Thisiscalled first when
the main event loop is entered as well as when any window activity happens (such asresizing or
dragging). The reshape callback requests a redisplay when it finishes, which calls the display
callback function, whose task is to set up the view and define the geometry for the scene. When
thisisfinished, OpenGL is finished and goes back to your computer system to see if there has
been any other graphics-related event. If there has, your program should have a calback to
manage it; if there has not, then the idle event is generated and the idle callback function is called;
this may change some of the geometry parameters and then aredisplay isagain called.

3/24/02 Page 0.9

#i nclude <G/ glut. h> /1 alternately "glut.h" for Mcintosh
/1 other includes as needed

/1 typedef and gl obal data section
/1 as needed

/1 function tenplate section
voi d doMyl nit(void);
voi d di splay(void);
void reshape(int,int);
voi d idle(void);
/1 others as defined

/] initialization function
void doMyl nit(void) {
set up basic OpenG. paraneters and environment
set up projection transformation (ortho or perspective)

/1 reshape function
voi d reshape(int w, int h) {
set up projection transformati on with new w ndow
di nensions w and h
post redisplay

}

/1 display function
voi d di splay(void){
set up viewing transformation as in |later chapters
define the geonetry, transfornmations, appearance you need
post redispl ay

}

/1 idle function
void idle(void) {
updat e anyt hi ng that changes between steps of the program
post redispl ay

}

/1 other graphics and application functions
/1 as needed

/1 main function -- set up the system turn it over to events
void main(int argc, char** argv) {
/1 initialize systemthrough GLUT and your own initialization
glutlnit(&argc, argv);
glutlinitD spl ayMbde (GLUT_DOUBLE | GLUT_RGB);
gl utlni t WndowSi ze(wi ndW wi ndH) ;
gl utlnit WndowPosi tion(topLeftX topLeftY);
gl ut Creat eW ndow(" A Sanpl e Program');
doMylnit ();
/1 define callbacks for events as needed; this is pretty mnim
gl ut Di spl ayFunc(di spl ay) ;
gl ut ReshapeFunc(reshape);
gl utldl eFunc(idle);
/1 go into main event | oop
gl ut Mai nLoop() ;

3/24/02 Page 0.10

Now that we have seen a basic structure for an OpenGL program, we will present a complete,
working program and will analyze the way it represents the graphics pipeline described earlier in
this chapter, while describing the details of OpenGL that it uses. The program is the simple
simulation of temperatures in auniform metal bar that is described in the later chapter on graphical
problem-solving in science, and we will only analyze the program structure, not its function. It
creates the image shown in Figure 0.5.

Figure 0.5: heat distribution in abar

The code we will discussis given below. We will segment it into components so you may see the
different ways the individual pieces contribute to the overall graphics operations, and then we will
discuss the pieces after the code listing.

/1 Exanple - heat flow in a thin rectangul ar body

/] first section of code is declarations and initialization
/1l of the variables and of the system

#include "glut.h" // <GL/glut.h> for w ndows
#i ncl ude <stdlib. h>

#i ncl ude <stdio. h>

#i ncl ude <mat h. h>

#defi ne ROAS 10 /1 body is ROASXCOLS (unitl ess) squares
#defi ne COLS 30

#defi ne AMBI ENT 25.0;// anmbi ent tenperature, degrees Cel sius
#define HOT 50.0 /1 hot tenperature of heat-source cell
#define COLD 0.0 [/ cold tenperature of cold-sink cell
#defi ne NHOTS 4

#defi ne NCOLDS 5

GLfl oat angle = 0.0;
GLfl oat tenps[ROAS] [COLS], back[ROAS+2] [COLS+2] ;
GLfl oat theta = 0.0, vp = 30.0;
/'l set |ocations of fixed hot and cold spots on the bar
i nt hotspots[NHOTS] [2] =
{ {ROWS/ 2, 0}, { ROWS/ 2- 1, 0}, { ROWS/ 2- 2, 0}, {0, 3*COLS/ 4} };
i nt col dspot s[NCOLDS] [2] =
{ {ROWs-1, COLS/ 3}, {ROWs-1, 1+COLS/ 3}, {ROWs-1, 2+COLS/ 3},
{ROWS- 1, 3+COLS/ 3}, {ROWSs-1, 4+COLS/ 3} };
int myW n;

void myinit(void);

voi d cube(void);

voi d di spl ay(void);
void reshape(int, int);
voi d ani mat e(voi d);

3/24/02 Page 0.11

void myinit(void)
{
int i,j;

gl Enabl e (GL_DEPTH TEST);
gl Cl earColor(0.6, 0.6, 0.6, 1.0);

[/l set up initial tenperatures in cells
for (i=0; i<ROW5; 1++) {
for (j=0; j < COLS; j++) {
temps[i][]J] = AMBI ENT;

for (i=0; i<NHOTS; i++)
tenps[hotspots[l] [O]][hotspots[i][1]]=HOT; }
for (i=0; NCOLDS; i ++)

} tenps[coldspots[l][O]][coIdspots[l][l]]-COLD }

/! This section creates a cube in nmodel coordi nates

// Unit cube in first octant
voi d cube (void)

{
typedef GLfloat point [3];
point v[8] =
{0.0, 0.0, 0.0}, {0.0, 0.0, 1.0},
{0.0, 1.0, 0.0}, {0.0, 1.0, 1.0},
{1.0, 0.0, 0.0}, {1.0, 0.0, 1.0},
{1.0, 1.0, 0.0}, {1.0, 1.0, 1.0} }

gl Begi n (GL_QUAD_ STRIP)
gl Vertex3fv(v]
gl Vertex3fv(v]
gl Vertex3fv(v]
gl Vertex3fv(v]
gl Vertex3fv(v]
gl Vertex3fv(v]
gl Vertex3fv(v]
gl Vertex3fv(v]

gl End();

~NOWNEFL OOl -h
— N

gl Begin (GL_QUAD_
gl Vertex3fv(v]
gl Vertex3fv(v]
gl Vertex3fv(v]

STRI P) ;
1
3
5
gl Vertex3fv(v[7
4
6
0
2

gl Vertex3fv(v]

gl Vertex3fv(v]

gl Vertex3fv(v]

gl Vertex3fv(v]
gl End() ;

N N N e e N N

void display(void)
#define SCALE 10.0

3/24/02 Page 0.12

int i,j;
gl Cl ear (GL_COLOR_BUFFER BI T | GL_DEPTH_BUFFER BI T);

/1l This short section defines the view ng transformation

gl Mat ri xMode(GL_MODELVI EW ;

gl Loadl dentity();

[/ eye poi nt center of view up

gl uLookAt (vp, vp/2., vp/4., 0.0, 0.0, 0.0, 0.0, 0.0, 1.0);

/1 Draw the bars
for (i = 0; i < ROAS;, i++)
for (j =0, j < COLS; j++)
gl Col or3f(temps[i][j]/HOT, 0.0, 1.0-tenps[i][j]/HOT);
/1 hotter redder; colder bluer
/]l Here is the nodeling transformation for each itemin the display

gl PushMatri x();

gl Transl atef ((float)i-(fl oat) RONS/ 2. 0,
(float)j-(float)COLS/2.0,0.0);

// 0.1 cold, 4.0 hot

gl Scal ef (1.0, 1.0, 0.1+3.9*tenps[i][]j]/HOT);

cube();

gl PopMatri x();

}
}
gl ut SwapBuf fers();

void reshape(int w,int h)

/1l This defines the projection transformation

gl Vi ewport (0, 0, (GLsi zei)w, (GLsi zei) h);

gl Matri xI\/bde(GL PROJECTI ON) ;

gl Loadl dentity();

gl uPerspective(60.0, (float)w/ (float)h, 1.0, 300.0);

}

voi d ani mate(voi d)

/1 This function is called whenever the systemis idle; it nakes
/1 changes in the data so that the next image is changed

int i, j, m
fl oat fllter[3][3] ={

{ o. , 0.125, 0. :
{ 0.125 , 0.5, 0.125 },
{ o. . 0.125, 0. b}

/[l increment tenperatures throughout the materi al
for (i=0; i<ROWs; i++) // backup tenps up to recreate it

for (j=0; j<COLS; |++)

back[i +1][j+1] = tenps[i][j]; // |eave boundaries on back

[/ fill boundaries with adjacent values from original tenmps[]][]
for (i=1; i<ROWS+2; i++) {

back[i][O] =back[i]][1];

back[i][COLS+1] =back[i][COLS];

for (j=0; j<COLS+2; j++) {

3/24/02 Page 0.13

back[O][j] = back[1][]];
]E)ack[ROWS+1] [j] =back[ROWS] [];

for (i=0; i<ROWS; i++) // diffusion based on back val ues
for (j=0; j<COLS; |++) {
temps[i][]j]=0.0;
for (m=-1; nme=1; mt+)
for (n=-1; n<=1; n++)
tenps[i][]j] +=back[i+1+m [j+1+n]*filter[m1l][n+l];

for} (i =0; 1<NHOTS; i ++)
tenps[hotspots[i][0]][hotspots[i][1]]=HOT; }
for (i=0; i<NCOLDS; i ++)

t enps|[col dspots[i][0]][col dspots[i][1]]=COLD; }

[/ finished updating tenps; now do the display
gl ut Post Redi spl ay();

}
void main(int argc, char** argv)

/1l Initialize the GLUT system and define the w ndow

glutlnit(&argc, argv);

gl utlnitDi spl ayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_ DEPTH);
gl utlnitW ndowSi ze(500, 500) ;

gl utl ni t WndowPosition(50,50);

myW n = gl ut Creat eW ndow(" Tenperature in bar");

myinit();

/1 define the event call backs and enter main event | oop

gl ut Di spl ayFunc(di spl ay) ;

gl ut ReshapeFunc(reshape);

gl ut I dl eFunc(ani mat e) ;

gl ut Mai nLoop(); /* enter event |oop */

}

The structureof thenmai n() program using OpenGL

The mai n() program in an OpenGL-based application looks somewhat different from the
programs we probably have seen before. This function has several key operations: it sets up the
display mode, defines the window in which the display will be presented, and does whatever
initialization is needed by the program. It then does something that may not be familiar to you: it
defines a set of event callbacks, which are functions that are called by the system when an event
ocCCurs.

When you set up the display mode, you indicate to the system all the special features that your
program will use at some point. In the example here,
gl ut1nitDisplayMde (GLUT_DOUBLE | GLUT _RGB | GLUT_DEPTH);
you tell the system that you will be working in double-buffered mode, will use the RGB color
model, and will be using depth testing. Some of these have to be enabled before they are actually
used, asthe depth testing isinthenmyl ni t () function with
gl Enabl e(GL_DEPTH_TEST) .

3/24/02 Page 0.14

Setting up the window (or windows—OpenGL will let you have multiple windows open) is
handled by a set of GLUT calls that positions the window, defines the size of the window, and
gives atitle to the window. As the program runs, the window may be reshaped by the user, and
thisis handled by ther eshape() function.

The way OpenGL handles event-driven programming is described in much more detail in alater
chapter, but for now you need to realize that GLUT-based OpenGL (which isall we will describe
in this book) operates entirely from events. For each event that the program is to handle, you need
to define a callback function herein mai n() . When the main event loop is started, a reshape
event is generated to create the window and a display event is created to draw an image in the
window. If any other events have callbacks defined, then those callback functions are invoked
when the events happen. The reshape callback allows you to move the window or change its size,
and is called whenever you do any window manipulation. Theidle callback allows the program to
create a sequence of images by doing recomputations whenever the system isidle (is not creating
an image or responding to another event), and then redisplaying the changed image.

Model space

The function cube() above defines a unit cube with sides parallel to the coordinate axes, one
vertex at the origin, and one vertex at (1,1,1). Thiscube s created by defining an array of points
that are the eight vertices of such a cube, and then using the gl Begi n(). .. gl End()
construction to draw the six squares that make up the cube through two quad strips. This is
discussed in the chapter on modeling with OpenGL ; for now, note that the cube usesits own set of
coordinates that may or may not have anything to do with the space in which we will define our
metallic strip to smulate hesat transfer.

Modding transformation

The modeling transformation isfound inthe di spl ay() function, and isquite simple: it defines
the fundamental transformations that are to be applied to the basic geometry units as they are placed
into theworld. In our example, the basic geometry unit is a cube, and the cube is scaled in Z (but
notin X or Y) and isthen trandated by X and Y (but not Z). The order of the transformations, the
way each is defined, and the pushMat ri x() / popMat ri x() operations are described in the
later chapter on modeling in OpenGL. For now it suffices to see that the transformations are
defined in order to make a cube of the proper height to represent the temperature. If you were
observant, you also noted that we also set the color for each cube based on the temperature.

3D world space

The 3D world space for this program is the space in which the graphical objects live after they have
been placed by the modeling transformations. The trandations give us one hint as to this space; we
see that the x-coordinates of the trandated cubes will lie between - ROAS/ 2 and ROAS/ 2, while
the y-coordinates of these cubes will lie between - COLS/ 2 and COLS/ 2. Because ROAS and
COLS are 30 and 10, respectively, the x-coordinates will lie between -15 and 15 and the y-
coordinates will lie between -5 and 5. The low z-coordinate is 0 because that is never changed
when the cubes are scaled, while the high z-coordinate is never larger then 4. Thus the entire bar
liesin theregion between-15and 15in x, -5and 5iny,and 0O and 4 in z. (Actually, thisis not
quite correct, but it is adequate for now; you are encouraged to find the small error.)

Viewing transformation

The viewing transformation is defined at the beginning of the di spl ay() function above. The
code identifies that it is setting up the modelview matrix, sets that matrix to the identity (a

3/24/02 Page 0.15

transformation that makes no changes to the world), and then specifies the view. A view is
specified in OpenGL withthe gl uLookAt () call:

gl uLookAt (ex, ey, ez, Ix, ly, Iz, ux, uy, uz);
with parameters that include the coordinates of eye position (ex, ey, ez), the coordinates of the
point a which theeyeislooking (I x, 1y, | z), and the coordinates of avector that defines the
“up” direction for theview (ux, uy, uz). Thisisdiscussed in more detall in the chapter below
on viewing.

3D eye space

There is no specific representation of the 3D eye space in the program, because thisis simply an
intermediate stage in the production of the image. We can see, however, that we had set the center
of view to the origin, which is the center of ou