
Leen Ammeraal · Kang Zhang

Computer
Graphics
for Java
Programmers
 Third Edition

Computer Graphics for Java Programmers

Leen Ammeraal • Kang Zhang

Computer Graphics for Java
Programmers

Third Edition

Leen Ammeraal
Kortenhoef, The Netherlands

Kang Zhang
Department of Computer Science
The University of Texas at Dallas
Richardson, TX, USA

ISBN 978-3-319-63356-5 ISBN 978-3-319-63357-2 (eBook)
DOI 10.1007/978-3-319-63357-2

Library of Congress Control Number: 2017947160

© Springer International Publishing AG 2017
1st edition: © John Wiley & Sons Ltd 1998
2nd edition: © John Wiley & Sons Ltd 2007
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with
regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

It has been 10 years since the publication of the second edition. The programming

language, Java, has now developed into its maturity, being the language of choice in

many industrial and business domains. Yet the skills of developing computer

graphics applications using Java are surprisingly lacked in the computer science

curricula. Though no longer active in classroom teaching, the first author has

developed and published several Android applications using Java, the main lan-

guage for Android developers. The second author has taught Computer Graphics at

his current university for the past 17 years using the first and second editions of

this textbook, apart from his previous years in Australia using different textbooks.

We feel strongly a need for updating the book.

This third edition continues the main theme of the first two editions, that is,

graphics programming in Java, with all the source code, except those for exercises,

available to the reader. Major updates in this new edition include the following:

1. The contents of all chapters are updated according to the authors’ years of

classroom experiences and recent feedback from our students.

2. Hidden-line elimination and hidden-face elimination are merged into a single

chapter.

3. A new chapter on color, texture, and lighting is added, as Chap. 7.

4. The companion software package, CGDemo, that demonstrates the working of

different algorithms and concepts introduced in the book, is enhanced with two

new algorithms added and a few bugs fixed.

5. A set of 37 video sessions (7–11 min each) in MOOC (Massive Open Online

Course) style, covering all the topics of the textbook, is supplemented.

6. A major exercise, split into four parts, on implementing the game of Tetris is

added at the end of four relevant chapters.

Many application examples illustrated in this book could be readily

implemented using Java 3D or OpenGL without any understanding of the internal

working of the implementation, which we consider undesirable for computer

science students. We therefore believe that this textbook continues to serve as an

indispensable introduction to the foundation of computer graphics, and more

v

importantly, how various classic algorithms are designed. It is essential for com-

puter science students to learn the skills on how to optimize time-critical algorithms

and how to develop elegant algorithmic solutions.

The example programs can be downloaded from the Internet at:

http://home.kpn.nl/ammeraal/

or at:

http://www.utdallas.edu/~kzhang/BookCG/

Finally, we would like to thank the UT-Dallas colleague Pushpa Kumar, who has

been using this textbook to teach undergraduate Computer Graphics class and

provided valuable feedback. We are grateful to Susan Lagerstrom-Fife of Springer

for her enthusiastic support and assistance in publishing this edition.

Kortenhoef, The Netherlands Leen Ammeraal

Richardson, TX, USA Kang Zhang

vi Preface

http://home.kpn.nl/ammeraal/
http://www.utdallas.edu/~kzhang/BookCG/

Contents

1 Elementary Concepts . 1

1.1 Pixels and Device Coordinates . 1

1.2 Logical Coordinates . 7

1.3 Anisotropic and Isotropic Mapping Modes 12

1.4 Defining a Polygon Through Mouse Interaction 19

Exercises . 24

2 Applied Geometry . 29

2.1 Vectors . 29

2.2 Inner Product and Vector Product . 31

2.3 The Orientation of Three Points . 34

2.4 Polygons and Their Areas . 37

2.5 Point-in-Polygon Test . 40

2.6 Triangulation of Polygons . 43

2.7 Point-on-Line Test . 53

2.8 Projection of a Point on a Line . 55

2.9 Distance Between a Point and a Line . 57

Exercises . 58

3 Geometrical Transformations . 63

3.1 Matrix Multiplication . 63

3.2 Linear Transformations . 64

3.3 Translations . 70

3.4 Homogeneous Coordinates . 71

3.5 Inverse Transformations and Matrix Inversion 72

3.6 Rotation About an Arbitrary Point . 73

3.7 Changing the Coordinate System . 78

3.8 Rotations About 3D Coordinate Axes . 79

3.9 Rotation About an Arbitrary Axis . 80

Exercises . 87

vii

4 Classic 2D Algorithms . 91

4.1 Bresenham Line Drawing . 91

4.2 Doubling the Line-Drawing Speed . 97

4.3 Circle Drawing . 102

4.4 Cohen–Sutherland Line Clipping . 106

4.5 Sutherland–Hodgman Polygon Clipping 112

4.6 Bézier Curves . 118

4.7 B-Spline Curve Fitting . 128

Exercises . 134

5 Perspective and 3D Data Structure . 137

5.1 Introduction . 137

5.2 Viewing Transformation . 139

5.3 Perspective Transformation . 143

5.4 A Cube in Perspective . 145

5.5 Specification and Representation of 3D Objects 149

5.6 Some Useful Classes . 156

5.7 A Program for Wireframe Models . 172

5.8 Automatic Generation of Object Specification 177

Exercises . 185

6 Hidden-Line and Hidden-Face Removal . 191

6.1 Hidden-Line Algorithm . 191

6.2 Backface Culling . 195

6.3 Painter’s Algorithm . 200

6.4 Z-Buffer Algorithm . 207

Exercises . 220

7 Color, Texture, and Shading . 225

7.1 Color Theories . 225

7.2 Additive and Subtractive Colors . 227

7.3 RGB Representation . 230

7.4 HSV and HSL Color Models . 234

7.5 Transparency . 237

7.6 Texture . 239

7.7 Surface Shading . 242

Exercises . 251

8 Fractals . 253

8.1 Koch Curves . 253

8.2 String Grammars . 257

8.3 Mandelbrot Set . 268

8.4 Julia Set . 278

Exercises . 279

viii Contents

Appendix A: Interpolation of 1/z . 281

Appendix B: Class Obj3D . 285

Appendix C: Hidden-Line Tests and Implementation 293

Appendix D: Several 3D Objects . 313

Appendix E: Hints and Solutions to Exercises . 349

Bibliography . 383

Index . 385

Contents ix

Chapter 1

Elementary Concepts

This book is primarily about computer graphics programming and related mathe-

matics. Rather than discussing general graphics subjects for end users or how to use

graphics software, we will cover more fundamental subjects, required for graphics

programming. In this chapter, we will first understand and appreciate the nature of

discreteness of displayed graphics on computer screens. We will then see that x- and
y-coordinates need not necessarily be pixel numbers, also known as device coordi-

nates. In many applications, logical coordinates are more convenient, provided we

can convert them to device coordinates before displaying on the screen. With input

from a mouse, we would also need the inverse conversion, i.e. converting device

coordinates to logical coordinates, as we will see at the end of this chapter.

1.1 Pixels and Device Coordinates

The most convenient way of specifying a line segment on a computer screen is by

providing the coordinates of its two endpoints. In mathematics, coordinates are real

numbers, but primitive line-drawing routines may require these to be integers. This is

the case, for example, in the Java language, to be used throughout this book. The Java

AbstractWindows Toolkit (AWT) provides the classGraphics containing the method

drawLine, which we use as follows to draw the line segment connecting A and B:

g.drawLine(xA, yA, xB, yB);

The graphics context g in front of the method is normally supplied as a parameter

of the paint method in the program, and the four arguments of drawLine are

integers, ranging from zero to some maximum value. The above call to drawLine
produces exactly the same line on the screen as this one:

g.drawLine(xB, yB, xA, yA);

© Springer International Publishing AG 2017

L. Ammeraal, K. Zhang, Computer Graphics for Java Programmers,
DOI 10.1007/978-3-319-63357-2_1

1

We will now use statements such as the above in a complete Java program.

Fortunately, you need not type these programs yourself, since they are available

from the Internet, as specified in the Preface. It will also be necessary to install the

Java Development Kit (JDK). If you are not yet familiar with Java, you should

consult other books, such as those mentioned in the Bibliography. This book

assumes you to be fluent in basic Java programming.

The following program draws the largest possible rectangle in a canvas. The

color red is used to distinguish this rectangle from the frame border:

// RedRect.java: The largest possible rectangle in red.

import java.awt.*;

import java.awt.event.*;

public class RedRect extends Frame {

public static void main(String[] args) {new RedRect();}

RedRect() {

super("RedRect");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {Sytem.exit(0);}

});

setSize(300, 150);

add("Center", new CvRedRect());

setVisible(true);

}

}

class CvRedRect extends Canvas {

public void paint(Graphics g) {

Dimension d = getSize();

int maxX = d.width - 1, maxY = d.height - 1;

g.drawString("d.width = " + d.width, 10, 30);

g.drawString("d.height = " + d.height, 10, 60);

g.setColor(Color.red);

g.drawRect(0, 0, maxX, maxY);

}

}

The call to drawRect almost at the end of this program has the same effect as

these four lines:

g.drawLine(0, 0, maxX, 0); // Top edge

g.drawLine(maxX, 0, maxX, maxY); // Right edge

g.drawLine(maxX, maxY, 0, maxY); // Bottom edge

g.drawLine(0, maxY, 0, 0); // Left edge

2 1 Elementary Concepts

The program contains two classes:

RedRect: The class for the frame, also used to close the application.

CvRedRect: The class for the canvas, in which we display graphics output.

However, after compiling the program by entering the command

javac RedRect.java

we notice that three class files have been generated: RedRect.class, CvRedRect.
class and RedRect$1.class. The third one is referred to as an anonymous class since
it has no name in the program. It is produced by the following program segment:

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

});

which enables the user of the program to terminate it in the normal way. The

argument of the method addWindowListener must be an object of a class that

implements the interface WindowListener. This implies that this class must define

seven methods, one of which is windowClosing. The base class WindowAdapter
defines these seven methods as do-nothing functions. In the above program seg-

ment, the argument of addWindowListener denotes an object of an anonymous

subclass of WindowAdapter. In this subclass we override the method

windowClosing.
The RedRect constructor shows that the frame size is set to 400 � 200. If we do

not modify this size (by dragging a corner or an edge of the window), the canvas

size is somewhat smaller than the frame. After compilation, we run the program by

typing the command

java RedRect

which, with the given frame size, produces the largest possible red rectangle, shown

in Fig. 1.1 just inside the frame.

The blank area in a frame, which we use for graphics output, is referred to as a

canvas, which is a subclass, such as CvRedRect in program RedRect.java, of the
AWT class Canvas. If, instead, we displayed the output directly in the frame, we

Fig. 1.1 Largest possible

rectangle and canvas

dimensions

1.1 Pixels and Device Coordinates 3

would have a problem with the coordinate system: its origin would be in the top-left

corner of the frame; in other words, the x-coordinates increase from left to right and

y-coordinates from top to bottom. Although there is a method getInsets to obtain the
widths of all four borders of a frame so that we could compute the dimensions of the

client rectangle ourselves, we prefer to use a canvas.

The tiny screen elements that we can assign a color are called pixels (short for
picture elements), and the integer x- and y-values used for them are referred to as

device coordinates. Although there are 200 pixels on a horizontal line in the entire

frame, only 192 of these lie on the canvas, the remaining 8 being used for the left

and right borders. On a vertical line, there are 100 pixels for the whole frame, but

only 73 for the canvas. Apparently, the remaining 27 pixels are used for the title bar

and the top and bottom borders. Since these numbers may differ on different Java

implementations and the user can change the window size, it is desirable that our

program can determine the canvas dimensions. We do this by using the getSize
method of the class Component, which is a superclass of Canvas. The following

program lines in the paint method show how to obtain the canvas dimensions and

how to interpret them:

Dimension d = getSize();

int maxX = d.width - 1, maxY = d.height - 1;

The getSize method of Component (a superclass of Canvas) supplies us with the

numbers of pixels on horizontal and vertical lines of the canvas. Since we start

counting at zero, the highest pixel numbers, maxX and maxY, on these lines are one
less than these numbers of pixels. Remember that this is similar with arrays in Java

and C. For example, if we write:

int[] a = new int[8];

the highest possible index value is 7, not 8. In such cases, the “index” is always one

less than “size”. Figure 1.2 illustrates this for a very small canvas, which is only

8 pixels wide and 4 high, showing a much enlarged screen grid structure. It also

shows that the line connecting the points (0, 0) and (7, 3) is approximated by a set of

eight pixels.

Fig. 1.2 Pixels as

coordinates in a 8 � 4

canvas (with maxX ¼ 7

and maxY ¼ 3)

4 1 Elementary Concepts

The big dots approximating the line denote pixels that are set to the foreground

color. By default, this foreground color is black, while the background color is

white. These eight pixels are made black as a result of this call:

g.drawLine(0, 0, 7, 3);

In the program RedRect.java, we used the following call to the drawRectmethod

(instead of four calls to drawLine):

g.drawRect(0, 0, maxX, maxY);

In general, the call:

g.drawRect(x, y, w, h);

draws a rectangle with (x, y) as its top-left and (x + w, y + h) as its bottom-right

corners. In other words, the third and fourth arguments of the drawRect method

specify the width and height, rather than the bottom-right corner, of the rectangle to

be drawn. Note that this rectangle is w + 1 pixels wide and h + 1 pixels high. The

smallest possible square, consisting of 2 � 2 pixels, is drawn by this call:

g.drawRect(x, y, 1, 1);

To put only one pixel on the screen, we cannot use drawRect, because nothing at
all appears if we try to set the third and fourth arguments of this method to zero.

Curiously enough, Java does not provide a special method for this purpose, so we

have to use this method:

g.drawLine(x, y, x, y);

Note that the method:

g.drawLine(xA, y, xB, y);

draws a horizontal line consisting of jxB – xAj + 1 pixels.

In mathematics, lines are continuous without thickness, but are discrete and at

least one pixel thick in computer graphics output. This difference in the interpre-

tation of the notion of lines may not cause any problems if the pixels are very small

in comparison with what we are drawing. However, we should be aware that there

may be such problems in special cases, as Fig. 1.3a illustrates. Suppose that we have

to draw a filled square ABCD of, say, 4 � 4 pixels, consisting of the bottom-right

triangle ABC and the upper-left triangle ACD, which we want to paint in dark gray

and light gray, respectively, without drawing any lines. Strangely enough, it is not

clear how this can be done: if we make the diagonal AC light gray, triangle ABC

contains fewer pixels than triangle ACD; if we make AC dark gray, it is the other

way round.

1.1 Pixels and Device Coordinates 5

A much easier but still non-trivial problem, illustrated in Fig. 1.3b, is filling a

checker-board with, say, dark and light gray squares instead of black and white

ones. Unlike squares in mathematics, those on the computer screen deserve special

attention with regard to the edges belonging or not belonging to the filled regions.

We have seen that the call:

g.drawRect(x, y, w, h);

draws a rectangle with corners (x, y) and (x + w, y + h). The method fillRect, on the

other hand, fills a slightly smaller rectangle. The call:

g.fillRect(x, y, w, h);

assigns the current foreground color to a rectangle consisting of w � h pixels. This

rectangle has (x, y) as its top-left and (x + w � 1, y + h � 1) as its bottom-right

corner. To obtain a generalization of Fig. 1.3b, the following method, checker,
draws an n � n checker board, with (x, y) as its top-left corner and with dark gray

and light gray squares, each consisting of w� w pixels. The bottom-left square will

always be dark gray because for this square we have i ¼ 0 and j ¼ n � 1, so that

i + n � j ¼ 1:

void checker(Graphics g, int x, int y, int n, int w) {

for (int i=0; i<n; i++)

for (int j=0; j<n; j++) {

g.setColor((i + n - j) % 2 == 0 ?

Color.lightGray : Color.darkGray);

g.fillRect(x + i * w, y + j * w, w, w);

}

}

If we wanted to draw only the edges of each square, also in dark gray and light

gray, we would have to replace the above call to fillRect with

g.drawRect(x + i * w, y + j * w, w - 1, w - 1);

in which the last two arguments are w – 1 instead of w.

Fig. 1.3 Small filled

regions

6 1 Elementary Concepts

1.2 Logical Coordinates

The Direction of the y-axis

As Fig. 1.2 shows, the origin of the device-coordinate systems lies at the top-left

corner of the canvas, so that the positive y-axis points downward. This is reasonable
for text output, that starts at the top and increases y as we go to the next line of text.
However, this direction of the y-axis is different from typical mathematical practice

and therefore often inconvenient in graphics applications. For example, in a dis-

cussion about a line with a positive slope, we expect to go upward when moving

along this line from left to right. Fortunately, we can arrange for the positive

y direction to be reversed by performing this simple transformation:

y 0 ¼ maxY � y

Continuous Versus Discrete Coordinates

Instead of the discrete (integer) coordinates at the lower, device oriented level, we

often wish to use continuous (floating-point) coordinates at the higher, problem-

oriented level. Other usual terms are device and logical coordinates, respectively.
Writing conversion routines to compute device coordinates from the corresponding

logical ones and vice versa is a bit tricky. We must be aware that there are two

solutions to this problem: rounding and truncating, even in the simple case in which

increasing a logical coordinate by one results in increasing the device coordinate

also by one. We wish to write the following methods:

iX(x), iY(y): converting the logical coordinates x and y to device coordinates;

fx(x), fy(y): converting the device coordinates X and Y to logical coordinates.

One may notice that we have used lower-case letters to represent logical coordi-

nates and capital letters to represent device coordinates. This will be the convention

used throughout this book. With regard to x-coordinates, the rounding solution

could be:

int iX(float x){return Math.round(x);}

float fx(int x){return (float)x;}

For example, with this solution we have

iX 2:8ð Þ ¼ 3 and fx 3ð Þ ¼ 3:0

The truncating solution could be:

int iX(float x){return (int)x;} // Not used in

float fx(int x){return (float)x + 0.5F;} // this book.

1.2 Logical Coordinates 7

With these conversion functions, we would have

iX 2:8ð Þ ¼ 2 and fx 3ð Þ ¼ 2:5

We will use the rounding solution throughout this book, since it is the better choice

if logical coordinates frequently happen to be integer values. In these cases the

practice of truncating floating-point numbers will often lead to worse results than

those with rounding.

Apart from the above methods iX and fx (based on rounding) for x-coordinates,
we need similar methods for y-coordinates, taking into account the opposite direc-

tions of the two y-axes. At the bottom of the canvas the device y-coordinate is maxY
while the logical y-coordinate is 0, which may explain the two expressions of the

form maxY – . . . in the following methods:

int iX(float x){return Math.round(x);}

int iY(float y){return maxY - Math.round(y);}

float fx(int x){return (float)x;}

float fy(int y){return (float)(maxY - y);}

Figure 1.4 shows a fragment of a canvas, based on maxY ¼ 16.

The pixels are drawn as black dots, each placed in the center of a square of

dashed lines and the device-coordinates (X, Y) are placed between parentheses near
each dot. For example, the pixel with device coordinates (8, 2), at the upper-right

corner of this canvas fragment, has logical coordinates (8.0, 14.0). We have:

iX(8.0) = Math.round(8.0) = 8

iY(14.0) = 16 - Math.round(14.0) = 2

fx(8) = (float)8 = 8.0

fy(2) = (float)(16 - 2) = 14.0

Fig. 1.4 Logical and device coordinates, based on ymax ¼ 16

8 1 Elementary Concepts

The dashed square around this dot denotes all points (x, y) satisfying

7:5 � x < 8:5
13:5 � y < 14:5

All these points are converted to the pixel (8, 2) by our methods iX and iY.
Let us demonstrate this way of converting floating-point logical coordinates to

integer device coordinates in a program that begins by drawing an equilateral

triangle ABC, with the side AB at the bottom and point C at the top. Then, using

q ¼ 0:05
p ¼ 1� q ¼ 0:95,

we compute the new points A0, B0 and C0 near A, B and C and lying on the sides AB,

BC and CA, respectively, writing:

xA1 = p * xA + q * xB;

yA1 = p * yA + q * yB;

xB1 = p * xB + q * xC;

yB1 = p * yB + q * yC;

xC1 = p * xC + q * xA;

yC1 = p * yC + q * yA;

We then draw the triangle A0B0C0, which is slightly smaller than ABC and turned

a little counter-clockwise. Applying the same principle to triangle A0B0C0 to obtain

a third triangle, A00B00C00, and so on, until 50 triangles have been drawn, the result

will be as shown in Fig. 1.5.

Fig. 1.5 Triangles, drawn inside each other

1.2 Logical Coordinates 9

If we change the dimensions of the window, new equilateral triangles appear,

again in the center of the canvas and with dimensions proportional to the size of this

canvas. Without floating-point logical coordinates and with a y-axis pointing

downward, this program would have been less easy to write:

// Triangles.java: This program draws 50 triangles inside

// each other.

import java.awt.*;

import java.awt.event.*;

public class Triangles extends Frame {

public static void main(String[] args) {new Triangles();}

Triangles() {

super("Triangles: 50 triangles inside each other");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

});

setSize(600, 400);

add("Center", new CvTriangles());

setVisible(true);

}

}

class CvTriangles extends Canvas {

int maxX, maxY, minMaxXY, xCenter, yCenter;

void initgr() {

Dimension d = getSize();

maxX = d.width - 1; maxY = d.height - 1;

minMaxXY = Math.min(maxX, maxY);

xCenter = maxX / 2; yCenter = maxY / 2;

}

int iX(float x) {return Math.round(x);}

int iY(float y) {return maxY - Math.round(y);}

public void paint(Graphics g) {

initgr();

float side = 0.95F * minMaxXY, sideHalf = 0.5F * side,

h = sideHalf * (float) Math.sqrt(3),

xA, yA, xB, yB, xC, yC, xA1, yA1, xB1, yB1, xC1, yC1, p, q;

q = 0.05F; p = 1 - q;

xA = xCenter - sideHalf; yA = yCenter - 0.5F * h;

10 1 Elementary Concepts

xB = xCenter + sideHalf; yB = yA;

xC = xCenter; yC = yCenter + 0.5F * h;

for (int i = 0; i < 50; i++) {

g.drawLine(iX(xA), iY(yA), iX(xB), iY(yB));

g.drawLine(iX(xB), iY(yB), iX(xC), iY(yC));

g.drawLine(iX(xC), iY(yC), iX(xA), iY(yA));

xA1 = p * xA + q * xB; yA1 = p * yA + q * yB;

xB1 = p * xB + q * xC; yB1 = p * yB + q * yC;

xC1 = p * xC + q * xA; yC1 = p * yC + q * yA;

xA = xA1; xB = xB1; xC = xC1;

yA = yA1; yB = yB1; yC = yC1;

}

}

}

In the canvas class CvTriangles there is a method initgr. Together with the other
program lines that precede the paint method in this class, initgr may also be useful

in other programs.

It is important to notice that, on each triangle edge, the computed floating-point

coordinates, not the integer device coordinates derived from them, are used for

further computations. This principle, which applies to many graphics applications,

can be depicted as follows:

which is in contrast to the following scheme, which we should avoid. Here int
device coordinates containing rounding-off errors are used not only for graphics

output but also for further computations, so that such errors will accumulate:

In summary, we compare and contrast the logical and device coordinate systems in

the following table, in terms of (1) the convention used in the text, but not in Java

programs, of this book, (2) the data types of the programming language, (3) the

coordinate value domain, and (4) the direction of positive y-axis:

Coordinate system Convention Data type Value domain Positive y-axis

Logical Lower-case letters float Continuous Upward

Device Upper-case letters integer Discrete Downward

1.2 Logical Coordinates 11

1.3 Anisotropic and Isotropic Mapping Modes

Mapping a Continuous Interval to a Sequence of Integers

Suppose we want to map an interval of real logical coordinates, such as

0 � x � 10:0

to the set of integer device coordinates {0, 1, 2, . . ., 9}. Unfortunately, the method:

int iX(float x){return Math.round(x);}

used in the previous section, is not suitable for this purpose because for any

x greater than 9.5 (and not greater than 10) it returns 10, which does not belong

to the allowed sequence 0, 1, ..., 9. In particular, it gives:

ix(10.0) = 10

while we want:

ix(10.0) = 9

This suggests that in an improved method iX we should use a multiplication

factor of 0.9. We can also come to this conclusion by realizing that there are only

nine small intervals between ten pixels labeled 0, 1, . . .9, as Fig. 1.6 illustrates. If

we define the pixel width (¼ pixelWidth) as the distance between two successive

pixels on a horizontal line, the above interval 0 � x � 10 of logical coordinates

(being real numbers) corresponds to 9 � pixelWidth. So in this example we have:

9� pixelWidth ¼ 10:0 the length of the interval of logical coordinatesð Þ
pixelWidth ¼ 10=9 ¼ 1:111 . . .

In general, if a horizontal line of our canvas consists of n pixels, numbered 0, 1,

. . ., maxX (where maxX ¼ n � 1), and the corresponding (continuous) interval of

logical coordinates is 0 � x � rWidth, we can use the following method:

int iX(float x){return Math.round(x/pixelWidth);}

where pixelWidth is computed beforehand as follows:

maxX = n - 1;

pixelWidth = rWidth/maxX;

12 1 Elementary Concepts

In the above example the integer n is equal to the interval length rWidth, but it is
often desirable to use logical coordinates x and y satisfying

0 � x � rWidth
0 � y � rHeight

where rWidth and rHeight are real numbers, such as 10.0 and 7.5, respectively,

which are quite different from the numbers of pixels that lie on horizontal and

vertical lines. It will then be important to distinguish between isotropic and

anisotropic mapping modes, as we will discuss in a moment.

As for the simpler method:

int iX(float x){return Math.round(x);}

of the previous section, this can be regarded as a special case of the improved one

we have just seen, provided we use pixelWidth ¼ 1, that is rWidth ¼ maxX, or
rWidth ¼ n � 1. For example, if the drawing rectangle is 100 pixels wide, so that

n ¼ 100 and we can use the pixels 0, 1, 2, . . ., 99 ¼ maxX on a horizontal line, this

simpler method iX works correctly if it is applied to logical x-coordinates satisfying

0 � x � rWidth ¼ 99:0

The point to be noticed is that, due to the value pixelWidth ¼ 1, the logical width is

99.0 here although the number of available pixels is 100.

Anisotropic Mapping Mode

The term anisotropic mapping mode implies that the scale factors for x and y are not
necessarily equal, as the following code segment shows:

10 logical units

Logical x

Pixel number X

9 ´ pixel Width

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

Fig. 1.6 Pixels lying 10/9 logical units apart

1.3 Anisotropic and Isotropic Mapping Modes 13

Dimension d = getSize();

maxX = d.width - 1; maxY = d.height - 1;

pixelWidth = rWidth/maxX;

pixelHeight = rHeight/maxY;

...

int iX(float x){return Math.round(x/pixelWidth);}

int iY(float y){return maxY - Math.round(y/pixelHeight);}

float fx(int x){return x * pixelWidth;}

float fy(int y){return (maxY - y) * pixelHeight;}

We will use this in a demonstration program. Regardless of the window dimen-

sions, the largest possible rectangle in this window has the logical dimensions

10.0 � 7.5. After clicking on a point of the canvas, the logical coordinates are

shown as in Fig. 1.7.

Since there are no gaps between this largest possible rectangle and the window

edges, we can only see this rectangle in Fig. 1.7 with some difficulty. In contrast,

the screen will show this rectangle very clearly because we will make it red instead

of black. Although the window dimensions in Fig. 1.7 have been altered by the

user, the logical canvas dimensions are still 10.0 � 7.5. The text displayed in the

window shows the coordinates of the point near the upper-right corner of the

rectangle, as the cross-hair cursor indicates. If the user clicks exactly on that

corner, the coordinate values 10.0 and 7.5 are displayed. This demonstration

program is listed below.

Fig. 1.7 Logical coordinates with anisotropic mapping mode

14 1 Elementary Concepts

// Anisotr.java: The anisotropic mapping mode.

import java.awt.*;

import java.awt.event.*;

public class Anisotr extends Frame {

public static void main(String[] args) {new Anisotr();}

Anisotr() {

super("Anisotropic mapping mode");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

});

setSize(400, 300);

add("Center", new CvAnisotr());

setCursor(Cursor.getPredefinedCursor(

Cursor.CROSSHAIR_CURSOR));

setVisible(true);

}

}

class CvAnisotr extends Canvas {

int maxX, maxY;

float pixelWidth, pixelHeight, rWidth = 10.0F, rHeight = 7.5F,

xP = -1, yP;

CvAnisotr() {

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent evt) {

xP = fx(evt.getX()); yP = fy(evt.getY());

repaint();

}

});

}

void initgr() {

Dimension d = getSize();

maxX = d.width - 1; maxY = d.height - 1;

pixelWidth = rWidth / maxX; pixelHeight = rHeight / maxY;

}

int iX(float x) {return Math.round(x / pixelWidth);}

int iY(float y) {return maxY - Math.round(y / pixelHeight);}

float fx(int x) {return x * pixelWidth;}

float fy(int y) {return (maxY - y) * pixelHeight;}

1.3 Anisotropic and Isotropic Mapping Modes 15

public void paint(Graphics g) {

initgr();

int left = iX(0), right = iX(rWidth),

bottom = iY(0), top = iY(rHeight);

if (xP >= 0)

g.drawString(

"Logical coordinates of selected point: " +

xP + " " + yP, 20, 100);

g.setColor(Color.red);

g.drawLine(left, bottom, right, bottom);

g.drawLine(right, bottom, right, top);

g.drawLine(right, top, left, top);

g.drawLine(left, top, left, bottom);

}

}

With the anisotropic mapping mode, the actual length of a vertical unit can be

different from that of a horizontal unit. This is the case in Fig. 1.7: although the

rectangle is 10 units wide and 7.5 units high, its real height is less than 0.75 of its

width. In particular, the anisotropic mapping mode is not suitable for drawing

squares, circles and other shapes that require equal units in the horizontal and

vertical directions.

Isotropic Mapping Mode

We can arrange for horizontal and vertical units to be equal in terms of their real

size by using the same scale factor for x and y. Let us use the term drawing
rectangle for the rectangle with dimensions rWidth and rHeight, in which we

normally draw graphical output. Since these logical dimensions are constant, so is

their ratio, which is not the case with that of the canvas dimensions. It follows that,

with the isotropic mapping mode, the drawing rectangle will in general not be

identical with the canvas. Depending on the current window size, either the top and

bottom or the left and right edges of the drawing rectangle lie on those of the

canvas.

Since it is normally desirable for a drawing to appear in the center of the canvas,

it is often convenient with the isotropic mapping mode to place the origin of the

logical coordinate system in that center. This implies that we will use the following

logical-coordinate intervals:

�½rWidth � x � þ½rWidth
�½rHeight � y � þ½rHeight

16 1 Elementary Concepts

Our methods iX and iYwill map each logical coordinate pair (x, y) to a pair (X, Y) of
device coordinates, where

X2 0; 1; 2; . . . ;maxXf g
Y2 0; 1; 2; . . . ;maxYf g

To obtain the same scale factor for x and y, we compute rWidth/maxX and rHeight/
maxY and take the larger of these two values. This maximum value, pixelSize, is
then used in the methods iX and iY, as shown below:

Dimension d = getSize();

int maxX = d.width - 1, maxY = d.height - 1;

pixelSize = Math.max(rWidth/maxX, rHeight/maxY);

centerX = maxX/2; centerY = maxY/2;

...

int iX(float x){return Math.round(centerX + x/pixelSize);}

int iY(float y){return Math.round(centerY - y/pixelSize);}

float fx(int x){return (x - centerX) * pixelSize;}

float fy(int y){return (centerY - y) * pixelSize;}

We will use this code in a program that draws a square, two corners of which

touch either the midpoints of the horizontal canvas edges or those of the vertical

ones. It also displays the coordinates of a point on which the user clicks, as the left

window of Fig. 1.8 shows.

In this illustration, we pay special attention to the corners of the drawn square

that touch the boundaries of the drawing rectangle. These corners do not lie on the

window frame, but just inside it. For the square on the left we have:

Fig. 1.8 Windows after changing their sizes

1.3 Anisotropic and Isotropic Mapping Modes 17

Figure 1.8, left Logical coordinate y Device coordinate iY(y)

Top corner +rHeight/2 0

Bottom corner –rHeight/2 maxY

By contrast, with the square that has been drawn in the narrow window on the

right, it is the corners on the left and the right that lie just within the frame:

Figure 1.8, right Logical coordinate x Device coordinate iX(x)

Left corner –rWidth/2 0

Right corner +rWidth/2 maxX

The following program uses a drawing rectangle with logical dimensions

rWidth ¼ rHeight ¼ 10.0. If we replaced this value 10.0 with any other positive

constant, the output would be the same.

// Isotrop.java: The isotropic mapping mode.

// Origin of logical coordinate system in canvas

// center; positive y-axis upward.

// Square (turned 45 degrees) just fits into canvas.

// Mouse click displays logical coordinates of

// selected point.

import java.awt.*;

import java.awt.event.*;

public class Isotrop extends Frame {

public static void main(String[] args) {new Isotrop();}

Isotrop() {

super("Isotropic mapping mode");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

});

setSize(400, 300);

add("Center", new CvIsotrop());

setCursor(Cursor.getPredefinedCursor(

Cursor.CROSSHAIR_CURSOR));

setVisible(true);

}

}

class CvIsotrop extends Canvas {

int centerX, centerY;

float pixelSize, rWidth = 10.0F, rHeight = 10.0F,

xP = 1000000, yP;

18 1 Elementary Concepts

CvIsotrop() {

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent evt) {

xP = fx(evt.getX()); yP = fy(evt.getY());

repaint();

}

});

}

void initgr() {

Dimension d = getSize();

int maxX = d.width - 1, maxY = d.height - 1;

pixelSize = Math.max(rWidth / maxX, rHeight / maxY);

centerX = maxX / 2; centerY = maxY / 2;

}

int iX(float x) {return Math.round(centerX + x / pixelSize);}

int iY(float y) {return Math.round(centerY - y / pixelSize);}

float fx(int x) {return (x - centerX) * pixelSize;}

float fy(int y) {return (centerY - y) * pixelSize;}

public void paint(Graphics g) {

initgr();

int left = iX(-rWidth / 2), right = iX(rWidth / 2),

bottom = iY(-rHeight / 2), top = iY(rHeight / 2),

xMiddle = iX(0), yMiddle = iY(0);

g.drawLine(xMiddle, bottom, right, yMiddle);

g.drawLine(right, yMiddle, xMiddle, top);

g.drawLine(xMiddle, top, left, yMiddle);

g.drawLine(left, yMiddle, xMiddle, bottom);

if (xP != 1000000)

g.drawString("Logical coordinates of selected point: " + xP

+ " " + yP, 20, 100);

}

}

1.4 Defining a Polygon Through Mouse Interaction

We will use the conversion methods of the previous program in a more interesting

application, which enables the user to define a polygon by clicking on points to

indicate the positions of the vertices. Figure 1.9 shows such a polygon, with twenty

vertices, labeled 0, 1, 2, . . ., 19. The user has defined these vertices by clicking at

their positions. The first vertex, labeled 0, shows a tiny square. To indicate that the

1.4 Defining a Polygon Through Mouse Interaction 19

polygon is complete, the user can either click on vertex 0 again in the tiny square, or

use the right mouse button to define the last vertex, 19 in this example; in the latter

case vertex 19 is automatically connected with vertex 0.

The large rectangle surrounding the polygon is the drawing rectangle: only

vertices inside this rectangle are guaranteed to appear again if the user changes

the dimensions of the window. As usual, the user can change the dimensions of the

window by dragging its edges or corners. It is then desirable that the picture in the

window stays reasonably centered in the window, that it will not be truncated when

the window gets too small for its original dimensions, and that its aspect ratio (ratio
width: height) will not change. Figure 1.9 shows that these requirements are met in

the program DefPoly.java and in particular in its canvas class CvDefPoly. We now

summarize the requirements for this program:

• The first vertex is drawn as a tiny square.

• If a later vertex is inside the tiny square, the drawing of one polygon is complete.

Alternatively, clicking a point with the right mouse button makes this point the

final vertex of the polygon.

• Only vertices in the drawing rectangle are drawn.

• The drawing rectangle (see Fig. 1.9 left and right) is either as high or as wide as

the window, yet maintaining its height/width ratio regardless of the window

shape.

• When the user changes the shape of the window, the size of the drawn polygon

changes in the same way as that of the drawing rectangle, as does the surround-

ing white space of the polygon.

We will use the isotropic mapping mode to implement this program, and use a data

structure called vertex vector to store the vertices of the polygon to be drawn. We

then design the program with the following algorithmic steps:

1. Activate the mouse;

2. When the left mouse button is pressed

Fig. 1.9 Polygon defined by user

20 1 Elementary Concepts

2.1. Get x- and y-coordinates at where the mouse is clicked;

2.2. If it is the first vertex

Then empty vertex vector;

Else If the vertex is inside the tiny square (the first vertex)

Then finish the current polygon;

Else store this vertex in vertex vector (i.e. not last vertex);

3. When the right mouse button is pressed

3.1. Get x- and y-coordinates at where the mouse is clicked;

3.2. Store this vertex in vertex vector; it is the last vertex;

3.3. Finish the current polygon;

4. Draw the polygon using the vertices in vertex vector.

The last step to draw all the polygon vertices can be detailed as follows:

1. Obtain the dimensions of the drawing rectangle based on logical coordinates;

2. Draw the drawing rectangle;

3. Get the first vertex from vertex vector;

4. Draw a tiny square at the vertex location;

5. Draw a line between every two consecutive vertices stored in vertex vector.

In both the left and the right windows of Fig. 1.9, despite their different dimensions,

the drawing rectangle has a width of 10 and a height of 7.5 logical units, as the

canvas class CvDefPoly of the following program shows:

// DefPoly.java: Drawing a polygon.

// Uses: CvDefPoly (discussed below).

import java.awt.*;

import java.awt.event.*;

public class DefPoly extends Frame {

public static void main(String[] args) {new DefPoly();}

DefPoly() {

super("Define polygon vertices by clicking");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

});

setSize(500, 300);

add("Center", new CvDefPoly());

setCursor(Cursor.getPredefinedCursor(Cursor.

CROSSHAIR_CURSOR));

setVisible(true);

}

}

1.4 Defining a Polygon Through Mouse Interaction 21

The class CvDefPoly, used in this program, is listed below. We define this class

in a separate file, CvDefPoly.java, so that it is easier to use elsewhere, as we will see
in Sect. 2.6:

// CvDefPoly.java: To be used in other program files.

// A class that enables the user to define

// a polygon by clicking the mouse.

// Uses: Point2D (discussed below).

import java.awt.*;

import java.awt.event.*;

import java.util.*;

class CvDefPoly extends Canvas {

Vector v = new Vector();

float x0, y0, rWidth = 10.0F, rHeight = 7.5F, pixelSize;

boolean ready = true;

int centerX, centerY;

CvDefPoly() {

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent evt) {

float xA = fx(evt.getX()), yA = fy(evt.getY());

if (ready) {

v.removeAllElements();

x0 = xA; y0 = yA;

ready = false;

}

float dx = xA - x0, dy = yA - y0;

if (v.size() > 0 &&

dx * dx + dy * dy < 20 * pixelSize * pixelSize)

ready = true;

else

v.addElement(new Point2D(xA, yA));

// Right mouse button indicates the final vertex:

if(evt.getModifiers()==InputEvent.BUTTON3_MASK) {

ready = true;

}

repaint();

}

});

}

22 1 Elementary Concepts

void initgr() {

Dimension d = getSize();

int maxX = d.width - 1, maxY = d.height - 1;

pixelSize = Math.max(rWidth / maxX, rHeight / maxY);

centerX = maxX / 2; centerY = maxY / 2;

}

int iX(float x) {return Math.round(centerX + x / pixelSize);}

int iY(float y) {return Math.round(centerY - y / pixelSize);}

float fx(int x) {return (x - centerX) * pixelSize;}

float fy(int y) {return (centerY - y) * pixelSize;}

public void paint(Graphics g) {

initgr();

int left = iX(-rWidth / 2), right = iX(rWidth / 2),

bottom = iY(-rHeight / 2), top = iY(rHeight / 2);

g.drawRect(left, top, right - left, bottom - top);

int n = v.size();

if (n == 0)

return;

Point2D a = (Point2D) (v.elementAt(0));

// Show tiny rectangle around first vertex:

g.drawRect(iX(a.x) - 2, iY(a.y) - 2, 4, 4);

for (int i = 1; i <= n; i++) {

if (i == n && !ready)

break;

Point2D b = (Point2D) (v.elementAt(i % n));

g.drawLine(iX(a.x), iY(a.y), iX(b.x), iY(b.y));

g.drawRect(iX(b.x) - 2, iY(b.y) - 2, 4, 4);

// Tiny rectangle

a = b;

g.drawString(""+(i%n), iX(b.x), iY(b.y));

// Display vertex number as text.

}

}

}

The class Point2D, used in the above file, will also be useful in other programs,

so that we define this in another separate file, Point2D.java:

// Point2D.java: Class for points in logical coordinates.

class Point2D {

float x, y;

Point2D(float x, float y){this.x = x; this.y = y;}

}

1.4 Defining a Polygon Through Mouse Interaction 23

After a complete polygon has been shown (which is the case when the user has

revisited the first vertex), the user can once again click a point. The polygon then

disappears and that point will then be the first vertex of a new polygon.

Note that the comment line:

// Uses: CvDefPoly (discussed below).

occurring in the fileDefPoly.java, does not imply that adding the class CvDefPoly is
sufficient. It is meant to refer to the file CvDefPoly.java. All classes defined in that

file are required and so are the classes that are subsequently referred to. Since.

// Uses: Point2D (discussed below).

occurs in the file CvDefPoly.java, the program DefPoly.java also requires the class

Point2D. Comments such as those above are very helpful if different directories are

used, for example, one for each chapter. However, since class names are unique

throughout this book, it is possible to place all program files in the same directory.

In this way, each required class will be available.

Exercises

1.1 The calls

g.drawLine(10, 20, 100, 50);

g.drawRect(120, 10, 8, 5);

g.fillRect(140, 10, 8, 5);

give results as shown in Fig. 1.10. How many pixels are put on the screen by

each of them?

1.2 Replace the triangles of program Triangles.java with squares and draw a great

many of them, arranged in a chessboard, as shown in Fig. 1.11.

As usual, this chessboard consists of n � n normal squares (with horizontal

and vertical edges), where n¼ 8. Each of these actually consists of k squares of
different sizes, with k ¼ 10. Finally, the value q ¼ 0.2 (and p ¼ 1 � q ¼ 0.8)

Fig. 1.10 Line, drawn and

filled rectangles

24 1 Elementary Concepts

was used to divide each edge into two parts with ratio p : q (see also program

Triangles.java of Sect. 1.2), but the interesting pattern of Fig. 1.11 was

obtained by reversing the roles of p and q in half of the n � n ‘normal’ squares,
which is similar to the black and whites squares of a normal chessboard. Your

program should accept the values n, k and q as program arguments.

1.3 Draw a set of concentric pairs of squares, each consisting of a square with

horizontal and vertical edges and one rotated through 45�. Except for the

outermost square, the vertices of each square are the midpoints of the edges

of its immediately surrounding square, as Fig. 1.12 shows. It is required that all

lines are exactly straight, and that vertices of smaller squares lie exactly on the

edges of larger ones.

1.4 Write a program that draws a pattern of hexagons, as shown in Fig. 1.13.

The vertices of a (regular) hexagon lie on its so-called circumscribed circle.

The user must be able to specify the radius of this circle by clicking a point near

the upper-left corner of the drawing rectangle. Then the distance between that

point and that corner is to be used as the radius of the circle just mentioned.

There must be as many hexagons of the specified size as possible and the

margins on the left and the right must be equal. The same applies to the upper

and lower margins, as Fig. 1.13 shows.

Fig. 1.11 A chessboard of squares

Exercises 25

Fig. 1.12 Concentric squares

Fig. 1.13 Hexagons

26 1 Elementary Concepts

1.5 Write a class Lines containing a static method dashedLine to draw dashed lines,

in such a way that we can write

Lines.dashedLine(g, xA, yA, xB, yB, dashLength);

where g is a variable of type Graphics, xA, yA, xB, yB are the device coordi-

nates of the endpoints A and B, and dashLength is the desired length (in device
coordinates) of a single dash. There should be a dash, not a gap, at each

endpoint of a dashed line. Figure 1.14 shows eight dashed lines drawn in this

way, with dashLength ¼ 20.

1.6 Write a program to draw the interface of the Game of Tetris, as shown in

Fig. 1.15. The game involves playing with different shapes, each composed of

four squares. The main area (large rectangle) should be sized as 10 � 20

squares (i.e. 10 squares wide and 20 squares high). The small rectangle on

the right shows the “next shape” that will soon appear in the main area (a red

“L” shape in the example). If you have not played Tetris before, you may find

useful information on the Web (e.g. http://en.wikipedia.org/wiki/Tetris).

Your tasks include:

• Draw everything shown in this figure (the position of each component,

e.g. rectangle, does not have to be exactly the same as in the figure).

• If the mouse cursor moves inside the main area, “PAUSE” (in a large font) will

be displayed; and if the cursor moves out of the area, “PAUSE” will disappear.

Fig. 1.14 Dashed lines

Exercises 27

http://en.wikipedia.org/wiki/Tetris

• Change of the window dimension will only possibly change the size, but not the

relative position and aspect ratio of any component.

• If the button “QUIT” is pressed, the program terminates and quits (this should

not be the quit from the window’s standard pull-down menu).

Fig. 1.15 The Tetris interface

28 1 Elementary Concepts

Chapter 2

Applied Geometry

Before proceeding with specific computer graphics subjects, we will discuss related

mathematics, which will be frequently used in this book. You can skip the first two

sections of this chapter if you are familiar with vectors. After this general part, we

will discuss several useful algorithms, needed for the exercises at the end of this

chapter and for the topics in the later chapters. For example, Chap. 6 will present

approaches on how to handle polygons that are the faces of 3D solid objects. Since

polygons in general are difficult to handle, we will divide them into triangles, as

discussed in Sect. 2.6.

2.1 Vectors

We begin with the mathematical notion of a vector, which should not be confused

with the standard class Vector, available in Java to store an arbitrary number of

objects. Recall that we have used this Vector class in Sect. 1.4 to store polygon

vertices.

A vector is a directed line segment, characterized by its length and its direction

only. Figure 2.1 shows two representations of the same vector a ¼ PQ ¼ b ¼ RS.

Thus a vector is not altered by a translation (or shift as a non-technical term).

The sum c of the vectors a and b, written

c ¼ aþ b

can be obtained as the diagonal of a parallelogram, with a, b and c starting at the

same point, as shown in Fig. 2.2.

The length of a vector a is denoted by jaj. A vector with zero length is the zero

vector, written 0. The notation –a is used for the vector that has length jaj and whose
direction is opposite to that of a. For any vector a and real number c, the vector ca
has length jcjjaj. If a¼ 0 or c¼ 0, then ca¼ 0; otherwise ca has the direction of a if

© Springer International Publishing AG 2017

L. Ammeraal, K. Zhang, Computer Graphics for Java Programmers,
DOI 10.1007/978-3-319-63357-2_2

29

c> 0 and the opposite direction if c< 0. For any vectors u, v,w and real numbers c,
k, we have

uþ v ¼ vþ u

uþ vð Þ þ w ¼ uþ vþ wð Þ
uþ 0 ¼ u

uþ �uð Þ ¼ 0

c uþ vð Þ ¼ cuþ cv

cþ kð Þu ¼ cuþ ku

c kuð Þ ¼ ckð Þu
1u ¼ u

0u ¼ 0

Figure 2.3 shows three unit vectors i, j and k in a 3-dimensional space. They are

mutually perpendicular and have length 1. Their directions are the positive

Fig. 2.1 Two equal vectors

Fig. 2.2 Vector addition

Fig. 2.3 Right-handed

coordinate system

30 2 Applied Geometry

directions of the coordinate axes. We say that i, j and k form a triple of orthogonal

unit vectors. The coordinate system is right-handed, which means that if a rotation

of i in the direction of j through 90� corresponds to turning a right-handed screw,

then k has the direction in which the screw advances.

We often choose the origin O of the coordinate system as the initial point of all

vectors. Any vector v can be written as a linear combination of the unit vectors i, j,
and k:

v ¼ xiþ yjþ zk

The real numbers x, y and z are the coordinates of the endpoint P of vector v ¼ OP.

We often write this vector v as

v ¼ x y z½ � oras v ¼ x; y; zð Þ

The numbers x, y, z are sometimes called the elements or components of vector v.
The possibility of writing a vector as a sequence of coordinates, such as (x, y, z)

for three-dimensional space, has led to the use of this term for sequences in general.

This explains the name Vector for a standard Java class. The only aspect this Vector
class has in common with the mathematical notion of vector is that both are related

to sequences.

2.2 Inner Product and Vector Product

Inner Product

The inner product or dot product of two vectors a and b is a real number, written as

a � b and defined as

a � b ¼ aj j bj j cos γ if a 6¼ 0 and b 6¼ 0

a � b ¼ 0 if a ¼ 0 or b ¼ 0
ð2:1Þ

where γ is the angle between a and b. It follows from the first equation that a � b is

also zero if γ ¼ 90�. Applying this definition to the unit vectors i, j and k, we find

i � i ¼ j � j ¼ k � k ¼ 1

i � j ¼ j � i ¼ j � k ¼ k � j ¼ k � i ¼ i � k ¼ 0
ð2:2Þ

Setting b ¼ a in Eq. (2.1), we have a � a ¼ jaj2, so

aj j ¼ √ a � aj j

2.2 Inner Product and Vector Product 31

Some important properties of inner products are

c ku � vð Þ ¼ ck u � vð Þ
cuþ kvð Þ � w ¼ cu � wþ kv � w

u � v ¼ v � u
u � u ¼ 0 only if u ¼ 0

The inner product of two vectors u ¼ [u1 u2 u3] and v ¼ [v1 v2 v3] can be computed

as

u � v ¼ u1v1 þ u2v2 þ u3v3

We can prove this by developing the right-hand side of the following equality as the

sum of nine inner products and then applying Eq. (2.2):

u � v ¼ u1iþ u2jþ u3kð Þ � v1iþ v2jþ v3kð Þ

Vector Product

The vector product or cross product of two vectors a and b is written

a� b

and is a vector v with the following properties. If a ¼ cb for some scalar c, then
v ¼ 0. Otherwise the length of v is equal to

vj j ¼ aj j bj j sin γ

where γ is the angle between a and b, and the direction of v is perpendicular to both
a and b and is such that a, b and v, in that order, form a right-handed triple. This

means that if a is rotated through an angle γ < 180� in the direction of b, then v has
the direction of the advancement of a right-handed screw if turned in the same way.

Note that the length jvj is equal to the area of a parallelogram of which the vectors

a and b can act as edges, as Fig. 2.4 shows.

The following properties of vector products follow from this definition:

kað Þ � b ¼ k a� bð Þ for any real numberk
a� bþ cð Þ ¼ a� bþ a� c

a� b ¼ � b� a

In general, a � (b � c) 6¼ (a � b) � c. Applying our definition of vector product to

the unit vectors i, j, k (see Fig. 2.3), we have

32 2 Applied Geometry

i� i ¼ 0 j� j ¼ 0 k� k ¼ 0

i� j ¼ k j� k ¼ i k� i ¼ j

j� i ¼ �k k� j ¼ �i i� k ¼ �j

Using these vector products in the expansion of

a� b ¼ a1iþ a2jþ a3kð Þ � b1iþ b2jþ b3kð Þ

we obtain

a� b ¼ a2b3 � a3b2ð Þiþ a3b1 � a1b3ð Þjþ a1b2 � a2b1ð Þk

which can be written as

a� b ¼ a2 a3

b2 b3

����
����iþ a3 a1

b3 b1

����
���� jþ a1 a2

b1 b2

����
����k

We write this in a form that is easy to remember:

a� b ¼
i j k

a1 a2 a3

b1 b2 b3

�������

�������
This is a mnemonic aid rather than a true determinant, since the elements of the first

row are vectors instead of numbers.

If a and b are neighboring sides of a parallelogram, as shown in Fig. 2.4, the area

of this parallelogram is the length of vector a � b. This follows from our definition

of vector product, according to which ja � bj ¼ jajjbj sin γ is the length of vector

a � b.

Fig. 2.4 Vector product a � b

2.2 Inner Product and Vector Product 33

2.3 The Orientation of Three Points

We will now introduce a concept that will be very useful in three-dimensional

computer graphics. Suppose that we are given an ordered triple (A, B, C) of three

points in the xy-plane and we want to know their orientation; in other words, we

wish to know whether we turn counter-clockwise or clockwise when visiting these

points in the given order. Figure 2.5 shows the possibilities, which we also refer to

as positive and negative orientations, respectively.
There is a third possibility, namely that the points A, B and C lie on a straight

line. We will consider the orientation to be zero in this case. If we plot the points on

paper, we see immediately which of these three cases applies, but we now need a

means to find the orientation by computation, using only the given coordinates xA,
yA, xB, yB, xC, yC.

Let us define the two vectors a ¼ CA and b¼ CB, as shown in Fig. 2.6. Clearly,

the orientation of the original points A, B and C is positive if we can turn the vector

a counter-clockwise through a positive angle less than 180� to obtain the direction

of the vector b. Since vectors are determined by their directions and lengths only,

Fig. 2.5 Counter-clockwise (left) and clockwise (right) orientation of A, B, C

Fig. 2.6 Using vectors

a and b instead of triangle

edges CA and CB

34 2 Applied Geometry

not their locations, we may let them start at the origin O instead of at point C, as

Fig. 2.6 shows. Although this orientation problem is essentially two-dimensional,

and can be solved using only 2D concepts, as we will see in a moment, it is

convenient to use 3D space. As usual, the unit vectors i, j and k have the directions

of the positive x-, y- and z-axes. In Fig. 2.6, we imagine the vector k, like i and

j starting at O, and pointing towards us. Denoting the endpoints of the translated

vectors a and b, starting at O, by (a1, a2, 0) and (b1, b2, 0), we have

a ¼ a1iþ a2jþ 0k

b ¼ b1iþ b2jþ 0k

and

a� b ¼
i j k

a1 a2 0

b1 b2 0

�������

�������
¼ a1 a2

b1 b2

����
���� k ¼ a1b2 � a2b1ð Þk

This expresses the fact that a� b is a vector perpendicular to the xy-plane and either
in the same direction as

k ¼ i� j

or in the opposite direction, depending on the sign of a1b2 � a2b1. If this expression
is positive, the relationship between a and b is similar to that of i and j: we can turn
a counter-clockwise through an angle less than 180� to obtain the direction of b, in

the same way as we can do this with i to obtain j. In general, we have

a1b2 � a2b1

> 0 : orientation of A, B and C positive counter-clockwiseð Þ
¼ 0 : A,B and C lie on the same line

< 0 : orientation of A, B and C negative clockwiseð Þ

8>><
>>:

An Alternative, Two-Dimensional Solution

It would be unsatisfactory if we were unable to solve the above orientation problem

by using only two-dimensional concepts. To provide such an alternative solution,

we use the angles α between vector a and the positive x-axis and β between b and

this axis (see Fig. 2.6). Then the orientation we are interested in depends upon the

angle β� α. If this angle lies between 0 and π, the orientation is clearly positive, but
it is negative if this angle lies between π and 2π (or between –π and 0). We can

express this by saying that the orientation in question depends on the value of sin

(β � α) rather than on the angle β � α itself. More specifically, the orientation has

the same sign as

2.3 The Orientation of Three Points 35

sin β � αð Þ ¼ sin β cos α� cos β sin α ¼ b2
bj j

a1
aj j �

b1
bj j

a2
aj j ¼

a1b2 � a2b1
aj j bj j

Since the denominator in this expression is the product of two vector lengths, it is

positive, so that we have again found that the orientation of A, B and C and

a1b2 � a2b1 have the same sign. Due to unfamiliarity with the above trigonometric

formula, some readers may find the former, more visual 3D approach easier to

remember.

A Useful Java Method

We will often use the method area2, listed in the Java class Tools2D shown below.

This method is based on the results we have found. It takes three arguments of class

Point2D, discussed at the end of Chap. 1. Note that, in accordance with Java

convention, we use lower-case variable names a, b, c for the points A, B and C:

// Tools2D.java: Class to be used in other program files.

// Uses: Point2D (Section 1.4).

import java.util.Vector;

class Tools2D {

static float area2(Point2D a, Point2D b, Point2D c) {

return (a.x - c.x) * (b.y - c.y) -

(a.y - c.y) * (b.x - c.x);

}

static float distance2(Point2D p, Point2D q) {

float dx = p.x - q.x, dy = p.y - q.y;

return dx * dx + dy * dy;

}

static boolean insideTriangle(Point2D a, Point2D b, Point2D c,

Point2D p){ // ABC is assumed to be counter-clockwise

return area2(a, b, p) >= 0 &&

area2(b, c, p) >= 0 &&

area2(c, a, p) >= 0;

}

}

As we will see in Sect. 2.4, this method area2 computes the area of the triangle

ABC multiplied by 2, or, if A, B and C are clockwise, by �2. If we are interested

only in the orientation of the points A, B and C, each of type Point2D, we can write:

36 2 Applied Geometry

if (Tools2D.area2(a, b, c) > 0) {

... // A, B and C counter-clockwise

}

else {

...

// A, B and C clockwise (unless the area2 method return 0;

// in that case A, B and C lie on the same line).

}

We will discuss the method insideTriangle of this class in Sect. 2.5. The method

distance2 computes the square of the distance between two points. In many

applications we can use this square as well as the distance itself, saving the square

root computation. For example, to test whether point A or point B is nearer to

point P, we may write.

if (Tools2D.distance2(a, p) < Tools2D.distance2(b, p))

...

Obviously, we would need to use the sqrt method to compute the distance

between A and P, writing, for example,

float d = (float)Math.sqrt(Tools2D.distance2(a, p));

2.4 Polygons and Their Areas

A polygon is a sequence P0, P1, . . ., Pn–1 of vertices, where n � 3, with associated

edges P0P1, P1P2, . . ., Pn�2Pn�1, Pn�1P0. In this book we will restrict ourselves to

simple polygons, that is, polygons of which nonadjacent edges do not intersect.

Figure 2.7 shows two simple and two non-simple polygons, for all of which n ¼ 5.

Besides non-simple polygons, such as those in Fig. 2.7c, d, we usually also

ignore polygons in which three successive vertices lie on the same line. A vertex of

Fig. 2.7 Two simple and two non-simple polygons

2.4 Polygons and Their Areas 37

a polygon is said to be convex if the interior angle between the two edges meeting at

that vertex is less than 180�. If all vertices of a polygon are convex, the polygon

itself is said to be convex, as is the case with Fig. 2.7a. Non-convex vertices are

referred to as concave or reflex. If a polygon has at least one concave vertex, the

polygon is said to be concave. Figure 2.7b shows a concave polygon because the

vertex in the middle is concave. All triangles are convex, and each polygon has at

least three convex vertices.

If we are given the vertices P0, P1, . . ., Pn–1 of a polygon, it may be desirable to

determine if this vertex sequence is counter-clockwise. If we know that the second

vertex, P1, is convex, we can simply write

if (Tools2D.area2(p[0], p[1], p[2]) > 0)

... // Counter-clockwise

else

... // Clockwise

The problem is more interesting if no information about any convex vertex is

available. We then have to detect such a vertex. This is an easy task, since any

vertex whose x- or y-coordinate is extreme is convex. For example, we can use a

vertex whose x-coordinate is not greater than that of any other vertex. If we do not

want to exclude the case of three successive vertices lying on the same line, we

must pay special attention to the case of three such vertices having the minimum x-
coordinate. Therefore, among all vertices with an x-coordinate equal to this mini-

mum value, we choose the lowest one, that is, the one with the least y-coordinate.
The following method is based on this idea:

static boolean ccw(Point2D[] p) {

int n = p.length, k = 0;

for (int i=1; i<n; i++)

if (p[i].x <= p[k].x &&

(p[i].x < p[k].x || p[i].y < p[k].y))

k = i;

// p[k] is a convex vertex.

int prev = k - 1, next = k + 1;

if (prev == -1) prev = n - 1;

if (next == n) next = 0;

return Tools2D.area2(p[prev], p[k], p[next]) > 0;

}

We should be aware that one very strange situation is still possible: all n vertices
may lie on the same line. In that case, the method ccw will return the value false.

We will use this method in Sect. 2.6, in which program PolyTria.java will divide
a user-provided polygon into triangles.

38 2 Applied Geometry

The Area of a Polygon

As we have seen in Fig. 2.4, the cross product a � b is a vector whose length is

equal to the area of a parallelogram of which a and b are two edges. Since this

parallelogram is the sum of two triangles of equal area, it follows that for Fig. 2.6

we have

2 Area ΔABCð Þ ¼ a� bj j ¼ a1 a2
b1 b2

����
���� ¼ a1b2 � a2b1

Note that this is valid only if A, B and C are labeled counter-clockwise; if this is not

necessarily the case, we have to use the absolute value of a1b2 � a2b1. Since
a1 ¼ xA � xC, a2 ¼ yA � yC, b1 ¼ xB � xC, b2 ¼ yB � yC, we can also write

2Area ΔABCð Þ ¼ xA � xCð Þ yB � yCð Þ � yA � yCð Þ xB � xCð Þ

After working this out, we find that we can replace this with

2Area ΔABCð Þ ¼ xAyB � yAxBð Þ þ xByC � yBxCð Þ þ xCyA � yCxAð Þ

Although the latter expression seems hardly an improvement, it is useful to deduct

a general form for computing the area of any polygon, convex or concave.

For a polygon with vertices P0, P1, . . ., Pn�1, labeled counter-clockwise, we can

derive:

2 Area P0 . . . Pn�1ð Þ ¼
Xn�1

i¼0

xiyiþ1 � yixiþ1

� �

where (xi, yi) are the coordinates of Pi and Pn is the same vertex as P0. As you can

see, our last formula for the area of a triangle is a special case of this general one, in

which the area of a polygon is expressed directly in terms of the coordinates of its

vertices. A complete proof of this formula is beyond the scope of this book.

Java Code

As we have seen in Sect. 2.3, we use the method area2 to determine the orientation

of three points A, B and C. Recall that the digit 2 in the name area2 indicates that

we have to divide the return value by 2 to obtain the area of triangle ABC, that is,

if A, B and C are counter-clockwise; otherwise, we have to take the absolute value

jarea2(A, B, C)/2j.
The same applies to the following method area2, whose return value divided by

2 gives the area, possibly preceded by a minus sign, of a polygon.

2.4 Polygons and Their Areas 39

static float area2(Point2D[] pol) {

int n = pol.length,

j = n - 1;

float a = 0;

for (int i=0; i<n; i++) {

// i == j + 1

// (or j = n - 1 and i = 0)

a += pol[j].x * pol[i].y - pol[j].y * pol[i].x;

j = i;

}

return a;

}

Note that this second area2 method provides another means of deciding the

orientation of a polygon vertex sequence: this orientation is counter-clockwise if

area2 returns a positive value and clockwise if it returns a negative one. However,

the method ccw discussed in Sect. 2.4 is faster, especially if n is large, because for

most vertices it only performs the comparison

p[i].x <= p[k].x

while area2 performs some more time-consuming arithmetic operations for each

vertex.

We could add this second method area2 to the class Tools2D, but you will not

find it in our final version of this class because we will never use it in this book.

Since we will use Tools2D several times, we prefer to omit superfluous methods for

economic reasons.

2.5 Point-in-Polygon Test

A Point Inside A Triangle

Determining the orientation of three points as we have just been discussing is useful

in a test to see if a given point P lies within a triangle ABC. As Fig. 2.8 shows, this is

the case if the orientation of the triangles ABP, BCP and CAP is the same as that of

triangle ABC.

Let us assume that we know that the orientation of ABC is counter-clockwise.

We can then call the following method to test if P lies within triangle ABC (or on an

edge of it):

40 2 Applied Geometry

static boolean insideTriangle(Point2D a, Point2D b, Point2D c,

Point2D p) { // ABC is assumed to be counter-clockwise

return

Tools2D.area2(a, b, p) >= 0 &&

Tools2D.area2(b, c, p) >= 0 &&

Tools2D.area2(c, a, p) >= 0;

}

In this form, the method insideTriangle also returns the value true if P lies on an

edge of the triangle ABC. If this is not desired, we should replace > ¼ 0 with >0.

The above form is the one we will need in later chapters, which is used to

triangulate complicated polygonal faces of 3D objects.

Incidentally, with a floating-point value x, we might consider replacing a test of

the form x > ¼ 0 with x > ¼ � eps and x > 0 with x > eps, where eps is a small

positive value, such as 10�6. In this way a very small rounding-off error (less

than eps) in the value of x will not affect the result of the test. This is not done here
because the above method insideTriangle works well for our applications.

A Point Inside A Polygon

The notion of orientation is also useful when we need to determine whether a given

point P lies within a polygon. It will then be convenient if a method is available

which accepts both the polygon in question and point P as arguments, and returns

true if P lies inside and false if it lies outside the polygon. If P lies on a polygon

edge, we do not care: in that case the method may return true or false. The method

we will discuss is based on the idea of drawing a horizontal half-line, which starts at

P and extends only to the right. The number of intersections of this horizontal half-

line with polygon edges is odd if P lies within the polygon and even if it lies outside

it. Imagine that we move to the right, starting at point P. Then our state changes

from inside to outside and vice versa each time we cross a polygon edge. The total

Fig. 2.8 Orientation used

to test if P lies within

triangle ABC

2.5 Point-in-Polygon Test 41

number of changes is therefore odd if P lies within the polygon and even if it lies

outside the polygon. It is not necessary to visit all intersections strictly from left to

right; the only thing we want to know is whether there are an odd or an even number

of intersections on a horizontal line through P and to the right of P. However, we

must be careful with special cases, shown in Fig. 2.9.

We simply ignore horizontal polygon edges, even if they have the same y-
coordinate as P, as is the case with edge 4–5 in this example. If a vertex occurring

as a ‘local maximum or minimum’ happens to have the same y-coordinate as P, as is
the cases with the vertices 8 and 12 in this example, it is essential that this is either

ignored or counted twice. We can realize this by using the edge from vertex i to
vertex i + 1 only if

yi � yP < yiþ1 or yiþ1 � yP < yi

This implies that the lower endpoint of a non-horizontal edge is regarded as part of

the segment, but the upper endpoint is not. For example, in Fig. 2.9, vertex 8 (with

y8 ¼ yP) is not counted at all because it is the upper endpoint of both edge 7–8 and

edge 8–9. By contrast, vertex 12 (with y12 ¼ yP) is the lower endpoint of the edges
11–12 and 12–13 and thus counted twice. Therefore, in this example, we count the

intersections of the half-line through P with the seven edges 2–3, 3–4, 5–6, 6–7,

10–11, 11–12, 12–13 and with no others.

Since we are considering only a half-line, we must impose another restriction on

the set of edges satisfying the above test, selecting only those whose point of

intersection with the half-line lies to the right of P. One way of doing this is by

using the method area2 to determine the orientation of a sequence of three points.

For example, this orientation is counter-clockwise for the triangle 2–3-P in Fig. 2.9,

implying that P lies to the left of edge 2–3. It is also counter-clockwise for the

triangle 7–6-P. In both cases, the lower endpoint of an edge, its upper endpoint and

point P, in that order, are counter-clockwise. The following method is based on

these principles:

static boolean insidePolygon(Point2D p, Point2D[] pol)

{ int n = pol.length, j = n - 1;

boolean b = false;

float x = p.x, y = p.y;

Fig. 2.9 Polygon and half-

line starting at P

42 2 Applied Geometry

for (int i=0; i<n; i++)

{ if (pol[j].y <= y && y < pol[i].y &&

Tools2D.area2(pol[j], pol[i], p) > 0 ||

pol[i].y <= y && y < pol[j].y &&

Tools2D.area2(pol[i], pol[j], p) > 0) b = !b;

j = i;

}

return b;

}

This static method, like some others in this chapter, could be added to the class

Tools2D (see Sect. 2.3).

The Contains Method of Polygon Class

There is a standard class Polygon, which has a member named contains to perform
about the same task as the above method insidePolygon. However, it is based on

integer coordinates. For example, to test if a point P(xP, yP) lies within the triangle
with vertices A(20, 15), B(100, 30) and C(80, 150), we can use the following

fragment:

int[] x = {20, 100, 80}, y = {15, 30, 150}; // A, B, C

Polygon p = new Polygon(x, y, 3);

if (p.contains(xP, yP)) ... // P lies within triangle ABC.

If P lies exactly on a polygon edge, the value returned by this method contains of
the class Polygon can be true or false.

2.6 Triangulation of Polygons

In many graphics applications, such as those to be discussed in Chap. 6, it is

desirable to divide a polygon into triangles. This triangulation problem can be

solved in many ways. We will discuss an algorithm that attempts to produce

triangles without very small angles. In other words, we want these triangles to

approximate equilateral ones. More precisely, the smallest of the angles occurring

in all these triangles should be as large as possible. The work will be done by the

method triangulate of a class Polygon2D. A polygon, given in the form of an array

of Point2D elements (see Sect. 1.4), and containing the polygon vertices in counter-

clockwise order, is stored in this class. The resulting triangles will be stored in an

array, each element of which is of type Tria, defined as

2.6 Triangulation of Polygons 43

class Tria {

int iA, iB, iC;

Tria(int i, int j, int k){iA = i; iB = j; iC = k;}

}

and containing the three vertex numbers of a triangle. So we will perform triangu-

lation as follows:

Point2D[] p = new Point2D[n];

... // Store the polygon in array p

Polygon2D polygon = new Polygon2D(p);

Tria[] t = polygon.triangulate();

Figure 2.10 shows a polygon with four vertices, known as a quadrangle, with
vertex numbers 0, 1, 2, 3. In this case, the array elements p[j] contain the Point2D
object for the coordinates of vertex j (j ¼ 0, 1, 2, 3). After creating the object

polygon and using the triangulate method to produce array t, as shown in the above
program fragment, we have

t 0½ �:iA ¼ 0, t 0½ �:iB ¼ 1, t 0½ �:iC ¼ 3

t 1½ �:iA ¼ 3, t 1½ �:iB ¼ 1, t 2½ �:iC ¼ 2

Note that vertices are visited in counter-clockwise order, both for the quadrangle

and for the two triangles. Another interesting point is the choice of diagonal 1–3. If,

instead, diagonal 0–2 had been chosen, much smaller angles would have occurred at

the vertices 0 and 2. Finally, we see that the number of triangles is 2 less than n, the
number of polygon vertices. This is a general rule: a polygon with n vertices is

divided into n � 2 triangles.

In the first part of the algorithm we do not yet worry about the choice of the

diagonals, other than the obvious requirement that they must completely lie inside

the polygon. It works as follows. Traversing the vertices of the polygon in counter-

clockwise order, for every three successive vertices P, Q and R of which Q is a

convex vertex (interior angle less than 180�), we cut the triangle PQR off the

polygon if this triangle does not contain any of the other polygon vertices. For

example, starting with polygon ABCDE in Fig. 2.11, we cannot cut triangle ABC,

because ABC contains vertex D. Nor is triangle CDE a good candidate, because D

3

0

2

1

Fig. 2.10 Triangulation of

a quadrangle

44 2 Applied Geometry

is not a convex vertex. There are no such problems with triangle BCD, so that we

will cut this off the polygon, reducing the polygon ABCDE to the simpler one

ABDE.

Proceeding in the same way with the polygon ABDE and so on, we will succeed

in dividing the polygon into triangles, but, in general, this way of triangulating may

produce awkward results because of some very small angles, as demonstrated in

Fig. 2.12.

Instead, we prefer triangles of which the smallest angle is as large as possible.

Such a division of polygons (or, in general, a set of points) is known as Delaunay
triangulation, named after Boris Nikolaevich Delaunay (1890–1980). Figure 2.13

demonstrates this.

A

D
B

C
EFig. 2.11 Cutting off a

triangle

0 6

5

8

92

10

11

1

7

3

4

Fig. 2.12 Too small angles

in some triangles

2.6 Triangulation of Polygons 45

We will see later that triangulation is used in 3D graphics to approximate curved

surfaces. Such approximations are best done with Delaunay triangulation. Surpris-

ingly, this can be achieved in an elegant way, known as diagonal flipping. Starting
with a set of triangles produced in a naı̈ve way, we look for a quadrangle PQRS,

with diagonal PR as a common edge of the two adjacent triangles PQR and RSP,

and we look if there are better triangles with diagonal QS instead of PR. This is

clearly the case in Fig. 2.14: we prefer the triangles PQS and SQR to those just

mentioned. In general, replacing PR with QS is desirable if (and only if) the sum of

the angles Q and S is greater than 180�. A proof of this is beyond the scope of this

book.

0 6

5

8

9
2

10

11

1

7

3

4

Fig. 2.13 Delaunay triangulation

Fig. 2.14 Diagonal flipping: replacing PR with QS

46 2 Applied Geometry

After having replaced two triangles with two better ones that form the same

quadrangle, we repeat the search process, searching all triangles again. After all, a

triangle created by diagonal flipping may later successfully be combined with

another adjacent triangle. This is implemented in the class Polygon2D, listed
below.

// Polygon2D: A class to triangulate a polygon.

import java.util.Vector;

public class Polygon2D {

Point2D[] vertices;

int[] nrs;

int n;

Polygon2D(Point2D[] p) {

vertices = p;

n = p.length;

nrs = new int[n];

for (int i=0; i<n; i++)

nrs[i] = i;

}

Polygon2D(Point2D[] p, int[] index) { // Used for 3D applications

vertices = p;

n = index.length;

nrs = index;

}

float angle(Point2D a, Point2D b, Point2D c){

// Return angle ABC, using dot product u . v = |u||v|cos angle

double xBA = a.x - b.x, yBA = a.y - b.y,

xBC = c.x - b.x, yBC = c.y - b.y,

dotproduct = xBA * xBC + yBA * yBC,

lenBA = Math.sqrt(xBA * xBA + yBA * yBA),

lenBC = Math.sqrt(xBC * xBC + yBC * yBC),

cosB = dotproduct / (lenBA * lenBC);

return (float)Math.acos(cosB);

}

boolean flippingDesirable(int iP, int iQ, int iR, int iS) {

// Currently, diagonal PR divides quadrangle PQRS into

// two triangles. Is the alternative diagonal QS a

// better choice?

Point2D vP = vertices[iP], vQ = vertices[iQ],

vR = vertices[iR], vS = vertices[iS];

2.6 Triangulation of Polygons 47

// Compute the angles at the opposite vertices Q and S.

// Flipping is desirable if (angle Q) + (angle S) > pi

return angle(vP, vQ, vR) + angle(vR, vS, vP) > Math.PI;

}

boolean anyFlipping(Tria[] trias) {

if (trias.length < 2)

return false;

for (int i=0; i<trias.length; i++){

int[] t = {trias[i].iA, trias[i].iB, trias[i].iC};

for (int j=i+1; j<trias.length; j++){

int[] u = {trias[j].iA, trias[j].iB, trias[j].iC};

// Look for a common edge of triangles t and u

for (int h=0; h<3; h++){

for (int k=0; k<3; k++){

if (t[h] == u[k] &&

t[(h+1)%3] == u[(k+2)%3]){

int iP = t[(h+1)%3], iQ = t[(h+2)%3],

iR = t[h], iS = u[(k+1)%3];

if (flippingDesirable(iP, iQ, iR, iS)){

trias[i] = new Tria(iP, iQ, iS);

trias[j] = new Tria(iS, iQ, iR);

return true;

}

}

}

}

}

}

return false;

}

Tria[] triangulate(){

Tria[] tr = new Tria[n - 2];

int[] next = new int[n];

for (int i = 0; i < n; i++)

next[i] = (i + 1) % n;

for (int k = 0; k < n - 2; k++) {

// Find a suitable triangle, consisting of two edges

// and an internal diagonal:

Point2D a, b, c;

boolean triaFound = false;

int iA = 0;

48 2 Applied Geometry

int count = 0;

while (!triaFound && ++count < n) {

int iB = next[iA], iC = next[iB];

int nA = Math.abs(nrs[iA]),

nB = Math.abs(nrs[iB]),

nC = Math.abs(nrs[iC]);

a = vertices[nA];

b = vertices[nB];

c = vertices[nC];

if (Tools2D.area2(a, b, c) >= 0) {

// Edges AB and BC; diagonal AC.

// Test to see if no other polygon vertex

// lies within triangle ABC:

int j = next[iC];

int nj = Math.abs(nrs[j]);

while (j != iA &&

(nj == nA || nj == nB || nj == nC) ||

!Tools2D.insideTriangle(a, b, c,

vertices[nj])){

j = next[j];

nj = Math.abs(nrs[j]);

}

if (j == iA) {

// Triangle ABC contains no other vertex:

tr[k] = new Tria(nA, nB, nC);

next[iA] = iC;

triaFound = true;

}

}

iA = next[iA];

}

if (count == n)

{ System.out.println("Not a simple polygon" +

" or vertex sequence not counter-clockwise.");

System.exit(1);

}

}

while (anyFlipping(tr))

; // Keep flipping diagonals as long as this is

// desirable

return tr;

}

}

2.6 Triangulation of Polygons 49

You may have noticed that this class contains two Polygon2D constructors. In

this chapter, we will use only the first. When dealing with 3D objects in Chap. 6, we

will use the second, which is useful if we want to use only one array of Point2D
objects to store the vertices of several polygons. Then the second argument, index,
of this constructor, indicates which of all those vertices comprise the polygon that is

to be triangulated. Actually, the first constructor, with only the array p as an

argument, builds such an array, internally named nrs. Initially, for a polygon of

n vertices, it is assumed that this polygon has the vertex numbers 0, 1, . . ., n � 1,

which are stored in the array nrs. So both now and in later chapters, the polygon has

the following vertex numbers:

vertices[nrs[0]], vertices[nrs[1]],. . ., vertices[nrs[n – 1]]

We also use the array next, so we can easily deal with the vertices in counter-

clockwise order. Initially,

next i½ � ¼ iþ 1for i ¼ 0, 1, . . . , n� 2

next i� 1½ � ¼ 0

This is achieved by means of the following fragment:

for (int i = 0; i < n; i++)

next[i] = (i + 1) % n;

This use of the modulo operator % for cyclic traversing the vertices of polygons

and triangles is often used in this program, so it is essential to understand it. The

introduction of this array next enables us to deal with reduced polygons after

triangles have been cut off. You can see this happening in the fragment.

if (j == iA) { // Triangle ABC contains no other vertex:

tr[k] = new Tria(nA, nB, nC);

next[iA] = iC;

triaFound = true;

}

For example if the polygon has 5 vertices, numbered 0, 1, 2, 3, 4, and triangle

2-3-4 is cut off the polygon, vertex 4 replaces vertex 3 as the successor of vertex

2, so we make next[2] ¼ 4.

To see this class Polygon2D and the triangulate method in action, we will use a

demonstration program, PolyTria.java. It allows the user to define a polygon, in the
same way as we did with program DefPoly.java in Sect. 1.4, but this time this

polygon will be divided into triangles, which appear in different colors.

50 2 Applied Geometry

This program, PolyTria.java, uses the above classes Tria and Tools2D, as well as
the class CvDefPoly, which occurs in program DefPoly.java of Sect. 1.4. In our

subclass, CvPolyTria, we apply the method ccw, discussed in Sect. 2.4, to the given
polygon to examine the orientation of its vertex sequence. If this happens to be

clockwise, we put the vertices in reverse order in the array p, so that the vertex

sequence will be counter-clockwise in this array, which we can then safely pass on

to the Polygon2D constructor:

// PolyTria.java: Drawing a polygon and dividing it into triangles.

// Uses: CvDefPoly, Point2D (Section 1.4),

// Tools2D (Section 2.3), Tria, Polygon2D (discussed above).

import java.awt.*;

import java.awt.event.*;

public class PolyTria extends Frame {

public static void main(String[] args) {new PolyTria();}

PolyTria() {

super("Define polygon vertices by clicking");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);}

});

setSize(1500, 900);

add("Center", new CvPolyTria());

setCursor(Cursor.getPredefinedCursor

(Cursor.CROSSHAIR_CURSOR));

setVisible(true);

}

}

class CvPolyTria extends CvDefPoly { // see Section 1.4

public void paint(Graphics g) {

int n = v.size(); // v is defined in superclass CvDefPoly

if (n >= 3 && ready) {

Point2D[] p = new Point2D[n];

for (int i = 0; i < n; i++)

p[i] = (Point2D) v.elementAt(i);

// If not counter-clockwise, reverse the order:

if (!ccw(p))

for (int i = 0; i < n; i++)

p[i] = (Point2D) v.elementAt(n - i - 1);

2.6 Triangulation of Polygons 51

Polygon2D polygon = new Polygon2D(p);

Tria[] t = polygon.triangulate();

initgr();

if (t != null) {

for (int j = 0; j < t.length; j++) {

g.setColor(new Color(rand(), rand(), rand()));

int iA = t[j].iA, iB = t[j].iB, iC = t[j].iC;

int[] x = new int[3], y = new int[3];

x[0] = iX(p[iA].x); y[0] = iY(p[iA].y);

x[1] = iX(p[iB].x); y[1] = iY(p[iB].y);

x[2] = iX(p[iC].x); y[2] = iY(p[iC].y);

g.fillPolygon(x, y, 3);

}

}

}

g.setColor(Color.black);

super.paint(g);

}

int rand() {return (int) (Math.random() * 256);}

static boolean ccw(Point2D[] p) {

int n = p.length, k = 0;

for (int i = 1; i < n; i++)

if (p[i].x <= p[k].x &&

(p[i].x < p[k].x || p[i].y < p[k].y))

k = i;

// p[k] is a convex vertex.

int prev = k - 1, next = k + 1;

if (prev == -1) prev = n - 1;

if (next == n) next = 0;

return Tools2D.area2(p[prev], p[k], p[next]) > 0;

}

}

The canvas class CvPolyTria is a subclass of CvDefPoly so that the

construction of a polygon with vertices specified by the user is done in the

same way as in Sect. 1.4. In this subclass, we call the method triangulate to

construct the array tr of triangles. These are then displayed in colors generated

with a random number generator, so that we can clearly distinguish them, as shown

in Fig. 2.15.

52 2 Applied Geometry

2.7 Point-on-Line Test

Testing whether a point P lies on a given line is very simple if this line is given as an

equation, say,

axþ by ¼ h ð2:3Þ

Then all we need to do is to test whether the coordinates of P satisfy this

equation. Due to the discrete nature of the screen (as discussed in Chap. 1), such

a test may fail if P is not exactly one of the pixels on the line. It may therefore be

wise to be a little tolerant, so that we may write.

if (Math.abs(a * p.x + b * p.y - h) < eps) // P on the line

where eps is a small positive value, such as 10�5.

If the line is not given by an equation but by two points A and B on it, we can use

the above test after deriving an equation for the line, writing

x y 1

xA yA 1

xB yB 1

�������

�������
¼ 0

which gives the following coefficients for Eq. (2.3):

17

16

15
14

18

19

20

0

1 2 5

6

7
10

12

11

13

9

8

3 4

21

Fig. 2.15 Triangulation of a polygon

2.7 Point-on-Line Test 53

a ¼ yA � yB

b ¼ xB � xA

h ¼ xByA � xAyB

Instead, we can benefit from the area2 method. After all, if and only if P lies on the

line through A and B, the triangle ABP is degenerated and has a zero area. We can

therefore write.

if (Math.abs(Tools2D.area2(a, b, p)) < eps) // P on line AB

A Point on a Line Segment

Given three points A, B and P, we may want to determine whether P lies on the

closed line segment AB. The adjective closed here means that we include the

endpoints A and B, so that the question is to be answered affirmatively if P lies

between A and B or coincides with one of these points. We assume that A and B are

different points, i.e., xA 6¼ xB or yA 6¼ yB. If xA 6¼ xB we test whether xP lies between
xA and xB; if not, we test whether yP lies between yA and yB, where in both cases the
word between includes the points A and B themselves. This test is sufficient if P lies

on the infinite line AB. Otherwise, we also have to perform the above test, which is

done in the following method:

static boolean onSegment(Point2D a, Point2D b, Point2D p) {

double eps = 1e-2;

return

(a.x != b.x &&

(a.x <= p.x && p.x <= b.x || b.x <= p.x && p.x <= a.x)

|| a.x == b.x &&

(a.y <= p.y && p.y <= b.y || b.y <= p.y && p.y <= a.y))

&& Math.abs(Tools2D.area2(a, b, p)) < eps;

}

The expression following return relies on the and-operator && having higher

precedence than the or-operator ||. Since both operators && and | | evaluate the

second operand only if it is necessary, this test is more efficient than it looks. For

example, if xA 6¼ xB the test on the line of the form (a.y < ¼ . . .) is not evaluated at
all. The positive constant eps ¼ 1e–2 (¼ 10�2) in the above code may be replaced

with a smaller or larger one, depending on the application needs.

Instead of testing if P lies on the segment AB, we may want to apply a similar

test to the projection P0 of P on AB, as Fig. 2.16 shows.We can solve this problem

by computing the dot product of the vectors AB and AP. This dot product AB � AP
is equal to 0 if P0 � A (P0 coincides with A) and it is equal to AB � AB ¼ AB2 if

54 2 Applied Geometry

P0 � B. For any value of this dot product between these two values, P lies between A

and B. We can write this as follows in a program, where len2 corresponds to

AB �AB, inprod corresponds toAB �AP, and eps is some very small positive value:

// Does P’ (P projected on AB) lie on the closed segment AB?

static boolean projOnSegment(Point2D a, Point2D b, Point2D p) {

double eps = 1e-2,

ux = b.x - a.x, uy = b.y - a.y,

len2 = ux * ux + uy * uy,

inprod = ux * (p.x - a.x) + uy * (p.y - a.y);

return inprod > -eps && inprod < len2 + eps;

}

To determine whether P0 lies on the open segment AB (not including A and B),

we replace the return statement with

return inprod > eps && inprod < len2 - eps;

2.8 Projection of a Point on a Line

Suppose that again a line l and a point P (not on l) are given and that we want to

compute the projection P0 of P on l (see Fig. 2.16). This point P0 has three interesting
properties:

1. P0 is the point on l that is closest to P.

2. The length of PP0 is the distance between P and l (see also Sect. 2.9).

3. PP0 and l are perpendicular.

We discuss two solutions: one for a line l given by two points A and B, and the other

for l given as the equation x � n ¼ h.
With given points A and B on line l, the situation is as shown in Fig. 2.16. Recall

that in Sect. 2.7 we discussed the method projOnSegment to test if the projection P0

of P on the line through A and B lies between A and B. In that method, we did not

Fig. 2.16 Projection P0 of P on line AB between A and B

2.8 Projection of a Point on a Line 55

actually compute the position of P0. We will now do this (see Fig. 2.16), first by

introducing the vector u of length 1 and direction AB:

u ¼ 1

ABj j AB

Then the length of the projection AP0 of AP is equal to

λ ¼ AP � u

which we use to compute

AP0 ¼ λu

Doing this straightforwardly would require a square-root operation in the compu-

tation of the distance between A and B, used in the computation of u. Fortunately,

we can avoid this by rewriting the last equation, using the two preceding ones:

AP0 ¼ AP � uð Þ u¼ AP � 1

ABj jAB
� �

1

ABj jAB¼
1

ABj j2 AP � ABð Þ AB

The advantage of the last form is that the square of the segment length AB is easier

to compute than that length itself. The following method, which returns the

projection P0 of P on AB, demonstrates this:

// Compute P’ (P projected on AB):

static Point2D projection(Point2D a, Point2D b, Point2D p) {

float vx = b.x - a.x, vy = b.y - a.y, len2 = vx * vx + vy * vy,

inprod = vx * (p.x - a.x) + vy * (p.y - a.y);

return new Point2D(a.x + inprod * vx/len2,

a.y + inprod * vy/len2);

}

Let us now consider a line l given by its equation, which we again write as

x � n ¼ h

where

n ¼ a
b

� �
and x ¼ x

y

� �

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
¼ 1

56 2 Applied Geometry

Using the ‘signed distance’

d ¼ OP � n� h

as illustrated by Fig. 2.17 of the next section, we can write the following vector

equation to compute the desired projection P0 of P on l:

OP0 ¼ OP� dn ¼ xP
yP

� �
� d

a
b

� �

This should make the following method clear:

// Compute P’, the projection of P on line l given as

// ax + by = h, where a * a + b * b = 1

static Point2D projection(float a, float b, float h, Point2D p) {

float d = p.x * a + p.y * b - h;

return new Point2D(p.x - d * a, p.y - d * b);

}

2.9 Distance Between a Point and a Line

We can find the distance between a point P and a line l in different ways, depending
on the way the line is specified. If two points A and B of the line are given, we can

find the distance between a point P and the (infinite) line l through A and B by using

the method Tools2D.area2 defined in Sect. 2.3:

distance between P and line AB ¼ d ¼ area2 A;�B;�Pð Þj j
ABj j

Fig. 2.17 Distance between point P and line l

2.9 Distance Between a Point and a Line 57

This follows from the fact that the absolute value of area2(A, B, P) denotes the area
of the parallelogram formed by A, B and P, as shown in Fig. 2.17a. This area is also

equal to the product of the parallelogram’s base AB and its height d. We can

therefore compute d in the above way.

If the line l is given as an equation, we assume this to be in the form

axþ by ¼ h

where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
¼ 1

If the latter condition is not satisfied, we only have to divide a, b and h by the above
square root. We can then write the above equation of line l as the dot product

x � n ¼ h

where

n ¼ a
b

� �
and x ¼ x

y

� �

The normal vector n is perpendicular to line l and has length 1. For any vector x,

starting at O, the dot product x � n is the projection of vector x on n. This also

applies if the endpoint of x lies on line l, as shown in Fig. 2.17b; in this case we have
x � n ¼ h. We find the desired distance between point P and line l by projecting OP

also on n and computing the difference of the two projections:

Distance betweenPand line l ¼ OP � n� hj j ¼ axP þ byP � hj j

Although Fig. 2.17b applies to the case h > 0, this equation is also valid if h is

negative or zero, or if O lies between line l and the line through P parallel to l. Both
OP � n and h are scale factors for the same vector n. The absolute value of the

algebraic difference of these two scale factors is the desired distance between P

and l.

Exercises

2.1. Write a program that draws a square ABCD. The points A and B are

arbitrarily specified by the user by clicking the mouse button. The orientation

of the points A, B, C and D should be counter-clockwise.

2.2. Write a program that, for four points A, B, C and P,

• draws a triangle formed by ABC and a small cross showing the position of

P; and

58 2 Applied Geometry

• displays a line of text indicating which of the following three cases

applies: P lies (a) inside ABC, (b) outside ABC, or (c) on an edge of ABC.

The user will specify the four points by clicking.

2.3. The same as Exercise 2.2, but, instead of displaying a line of text, the program

computes the distances of P to the (infinite) lines AB, BC and CA, and draws

the shortest possible line that connects P with the nearest of those three lines.

2.4. Write a program that computes the intersection point of two (infinite) lines

AB and CD. The user will specify the points A, B, C and D by clicking. Draw

a small circle around the intersection point. If the two lines AB and CD do not

have a unique intersection point (because they are parallel or coinciding),

display a line of text indicating this.

2.5. Write a program that constructs the bisector of the angle ABC (which divides

the angle at B into two equal angles). After the user has specified the points A,

B and C by clicking, the program should compute the intersection point D of

this bisector with the opposite side AC, and draw both triangle ABC and

bisector BD.

2.6. Write a program that draws the circumscribed circle (also known as the

circumcircle) of a given triangle ABC; this circle passes through the

points A, B and C. These points will be specified by the user by clicking

the mouse button. Remember, the three perpendicular bisectors of the three

edges of a triangle all pass through one point, the circumcenter, which is the

center of the circumscribed circle.

2.7. Write a program that, for three given points P, Q and R specified by the user,

draws a circular arc, starting at P, passing through Q and ending at R (see also

Exercise 2.1).

2.8. Construct a fillet to replace a sharp corner with a rounded one, as illustrated

by the solid lines and the arc in Fig. 2.14. The four points A, B, C and D are

specified by the user by clicking the mouse. Point D may or may not lie on

AB; if it does not, it is projected onto AB, giving D’, as Fig. 2.18 illustrates.

The arc starts at point D’.

Fig. 2.18 Fillet

Exercises 59

2.9. Construct the inscribed circle (or incircle) of a given triangle ABC. The

center of this circle lies on the point of intersection of the (internal) bisectors

of the three angles A, B and C. Draw also the three excircles, which, like the
incircle, are tangent to the sides of the triangle, as shown in Fig. 2.19. The

centers of the excircles lie on the points of intersection of the external

bisectors of the angles A, B and C.

2.10. Write a program that draws a tree of Pythagoras as shown in Fig. 2.20. Two

vertices A and B, the basis of the tree, are specified by the user by pressing a

mouse button. Then both a square ABCD and an isosceles, right-angled

triangle DCE, with right angle E, is constructed. The orientation of both

A
B

C

Fig. 2.19 Incircle and

excircles of triangle ABC

60 2 Applied Geometry

ABCD and DCE is counter-clockwise. Finally, the points D and E form the

basis of another tree of Pythagoras, and so do the points E and C. Use a

recursive method, which does nothing at all if the two supplied basis points

are closer together than some limit.

Fig. 2.20 Tree of Pythagoras

Exercises 61

Chapter 3

Geometrical Transformations

To understand perspective projection, to be discussed in Chap. 5, we need to be

familiar with 3D rotations. These and other transformations will be discussed in this

chapter. They are closely related to matrix multiplication, which is the subject we

start with.

3.1 Matrix Multiplication

A matrix (plural matrices) is a rectangular array of numbers enclosed in brackets

(or parentheses). For example,

2 0 0:1 3

1 4 2 10

" #

is a 2 � 4 matrix: it consists of two rows and four columns. If a matrix consists of

only one row, we call it a row matrix or row vector. In the same way, we use the

term column matrix or column vector for a matrix that has only one column.

If A and B are matrices and the number of columns of A is equal to the number of

rows of B, we can compute the matrix product AB. This product is another matrix,

which has as many rows as A and as many columns as B. We will discuss this in

detail for a particular case with regard to the dimensions of A and B: we will use a
2� 3 matrix A and a 3� 4 matrix B. Then the product C¼ AB exists and is a 2� 4

matrix. It will be clear that the matrix product AB can be computed for A and B of

other dimensions in a similar way, provided the number of columns of A is equal to

the number of rows of B.

© Springer International Publishing AG 2017

L. Ammeraal, K. Zhang, Computer Graphics for Java Programmers,
DOI 10.1007/978-3-319-63357-2_3

63

Writing

A ¼ a11 a12 a13

a21 a22 a23

" #

and similar expressions for both the matrix B and the product matrix C ¼ AB,
we have

a11 a12 a13

a21 a22 a23

" # b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

2
64

3
75 ¼ c11 c12 c13 c14

c21 c22 c23 c23

" #

Each element cij (found in row i and column j of the product matrix C) is equal to
the dot product of the ith row of A and the jth column of B. For example, to find c23,
we need the numbers a21, a22 and a23 in the second row of A and b13, b23 and b33 in
the third column of B. Using these two sequences as vectors, we can compute their

dot product, finding

c23 ¼ a21; a22; a23ð Þ � b13; b23; b33ð Þ ¼ a21b13 þ a22b23 þ a23b33ð Þ:

In general, the elements of the above matrix C are computed as follows:

cij ¼ ai1; ai2; ai3ð Þ � b1j; b2j; b3j
� � ¼ ai1b1j þ ai2b2j þ ai3b3j

3.2 Linear Transformations

A transformation T is a mapping

v ! Tv ¼ v0

such that each vector v (in the vector space we are dealing with) is assigned its

unique image v0. Let us begin with the xy-plane and associate with each vector v the
point P, such that

v ¼ OP

Then the transformation T is also a mapping

P ! P0

for each point P in the xy-plane, where OP0 ¼ v0.

64 3 Geometrical Transformations

A transformation is said to be linear if the following is true for any two vectors

v and w and for any real number λ:

T vþ wð Þ ¼ T vð Þ þ T wð Þ
T λvð Þ ¼ λT vð Þ

By using λ ¼ 0 in the last equation, we find that, for any linear transformation, we

have

T 0ð Þ ¼ 0

We can write any linear transformation as a matrix multiplication. For example,

consider the following linear transformation:

x0 ¼ 2x

y0 ¼ xþ y

(

We can write this as the matrix product

x0

y0

" #
¼ 2 0

1 1

" #
x

y

" #
ð3:1Þ

or as the following:

x0 y0½ � ¼ x y½ � 2 1

0 1

" #
ð3:2Þ

The above notation (3.1) is normally used in standard mathematics textbooks; in

computer graphics and other applications in which transformations are combined,

the notation (3.2) is also popular because it avoids a source of mistakes, as we will

see in a moment. We will therefore adopt this notation, using row vectors.

It is interesting to note that, in (3.2), the rows of the 2 � 2 transformation matrix

are the images of the unit vectors (1, 0) and (0, 1), respectively, while these images

are the columns in (3.1). You can easily verify this by substituting [1 0] and [0

1] for [x y] in (3.2), as the bold matrix elements below illustrate:

2 1½ � ¼ 1 0½ � 2 1

0 1

" #

0 1½ � ¼ 0 1½ � 2 1

0 1

" #

This principle also applies to other linear transformations. It provides us with a

convenient way of finding the transformation matrices.

3.2 Linear Transformations 65

Rotation

To rotate all points in the xy-plane about O through the angle φ, we can now easily

write the transformation matrix, using the rule we have just been discussing. We

simply find the images of the unit vectors (1, 0) and (0, 1). As we know from

elementary trigonometry, rotating the points P(1, 0) and Q(0, 1) about O through the

angle φ gives P0(cos φ, sin φ) and Q0(�sin φ, cos φ). It follows that (cos φ, sin φ)
and (�sin φ, cos φ) are the desired images of the unit vectors (1, 0) and (0, 1), as

Fig. 3.1 illustrates.

Then all we need to do is to write these two images as the rows of our rotation

matrix:

x0 y0½ � ¼ x y½ � cosφ sinφ

� sinφ cosφ

" #
ð3:3Þ

A Programming Example

To see rotation in action, let us rotate an arrow about the origin O. Before this

rotation, the arrow is vertical, points upward and can be found to the right of O. We

will rotate this angle through 120� about the origin O, which is the center of the

canvas. Figure 3.2 shows the coordinate axes (intersecting in O) and the arrow

before and after the rotation.

If we change the dimensions of the window, the origin remains in the center and

the sizes of the arrows and of the circle on which they lie change accordingly, while

this circle remains a circle.

Recall that we have also placed the origin in the center of the canvas in the

Isotrop.java program in Sect. 1.3, when dealing with the isotropic mapping mode.

The following program also uses this mapping mode and contains the same

methods iX and iY for the conversion from logical to device coordinates:

Fig. 3.1 Rotation of unit

vectors

66 3 Geometrical Transformations

// Arrow.java: Arrow rotated through 120 degrees about the logical

// origin O, which is the center of the canvas.

import java.awt.*;

import java.awt.event.*;

public class Arrow extends Frame {

public static void main(String[] args) {new Arrow();}

Arrow() {

super("Arrow rotated through 120 degrees about origin");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

});

setSize(500, 300);

add("Center", new CvArrow());

setVisible(true);

}

}

class CvArrow extends Canvas {

int centerX, centerY, currentX, currentY;

float pixelSize, rWidth = 100.0F, rHeight = 100.0F;

void initgr() {

Dimension d = getSize();

int maxX = d.width - 1, maxY = d.height - 1;

pixelSize = Math.max(rWidth / maxX, rHeight / maxY);

centerX = maxX / 2; centerY = maxY / 2;

}

Fig. 3.2 Arrow before and after rotation through 120� about the origin

3.2 Linear Transformations 67

int iX(float x) {return Math.round(centerX + x / pixelSize);}

int iY(float y) {return Math.round(centerY - y / pixelSize);}

void moveTo(float x, float y) {currentX = iX(x); currentY = iY(y);}

void lineTo(Graphics g, float x, float y) {

int x1 = iX(x), y1 = iY(y);

g.drawLine(currentX, currentY, x1, y1);

currentX = x1; currentY = y1;

}

void drawArrow(Graphics g, float[] x, float[] y) {

moveTo(x[0], y[0]);

lineTo(g, x[1], y[1]);

lineTo(g, x[2], y[2]);

lineTo(g, x[3], y[3]);

lineTo(g, x[1], y[1]);

}

public void paint(Graphics g) {

float r = 40.0F;

float[] x = {r, r, r - 2, r + 2}, y = {-7, 7, 0, 0};

initgr();

// Show coordinate axes:

moveTo(30, 0); lineTo(g, 0, 0); lineTo(g, 0, 30);

// Show initial arrow:

drawArrow(g, x, y);

float phi = (float) (2 * Math.PI / 3),

c = (float) Math.cos(phi), s = (float) Math.sin(phi),

r11 = c, r12 = s, r21 = -s, r22 = c;

for (int j = 0; j < 4; j++) {

float xNew = x[j] * r11 + y[j] * r21,

yNew = x[j] * r12 + y[j] * r22;

x[j] = xNew; y[j] = yNew;

}

// Arrow after rotation:

drawArrow(g, x, y);

}

}

The logical coordinates of the four relevant points of the arrow are stored in the

arrays x and y, and the variables r11, r12, r21 and r22 denote the elements of the

rotation matrix. When programming rotations, we should be careful with two

points. First, with a constant angle φ, we should compute cos φ and sin φ only

once, even though they occur twice in the rotation matrix. Second, a serious and

68 3 Geometrical Transformations

frequently occurring error is modifying x[j] too early, that is, while we still need the
old value for the computation of y[j], as the following, incorrect fragment shows:

x[j] = x[j] * r11 + y[j] * r21; // ???

y[j] = x[j] * r12 + y[j] * r22;

There is no such problem if we use temporary variables xNew and yNew
(although only the former is really required), as is done in the program.

Scaling

Suppose that we want to perform scaling with scale factors sx for x and sy for y and
with point O remaining at its place; the latter is also expressed by referring to O as a

fixed point or by a scaling with reference to O. This can obviously be written as.

x0 ¼ sxx

y0 ¼ syy

(

which can also be written as a very simple matrix multiplication:

x0 y0½ � ¼ x y½ �
sx 0

0 sy

" #

There are some important special cases:

sx ¼ sy ¼ �1 gives a reflection about O;

sx ¼ 1, sy ¼ �1 gives a reflection about the x-axis;
sx ¼ �1, sy ¼ 1 gives a reflection about the y-axis.

Shearing

Consider the linear transformation given by

1; 0ð Þ ! 1; 0ð Þ
0; 1ð Þ ! a; 1ð Þ

Since the images of the unit vectors appear as the rows of the transformation matrix,

we can write this transformation, known as shearing, as

x0 y0½ � ¼ x y½ � 1 0

a 1

� �

3.2 Linear Transformations 69

or

x0 ¼ xþ ay

y0 ¼ y

(

This set of equations expresses that each point (x, y) moves a distance ay to the

right, which has the effect of shearing along the x-axis, as illustrated in Fig. 3.3.

We can use this transformation to turn regular characters into italic ones; for

example, L becomes L.
Shearing along the y-axis, also depicted in Fig. 3.3, can be similarly expressed as

x0 y0½ � ¼ x y½ � 1 b

0 1

" #

or

x0 ¼ x

y0 ¼ bxþ y

(

3.3 Translations

Shifting all points in the xy-plane a constant distance in a fixed direction is referred

to as a translation. This is another transformation, which we can write as:

x0 ¼ xþ a
y0 ¼ yþ b

We refer to the number pair (a, b) as the shift vector, or translation vector. Although
this transformation is a very simple one, it is not linear, as we can easily see by the

fact that the image of the origin (0, 0) is (a, b), while this can only be the origin itself
with linear transformations. Consequently, we cannot obtain the image (x0, y0) by

Fig. 3.3 Shearing effects

(dashed lines) on a square

object (solid lines)

70 3 Geometrical Transformations

multiplying (x, y) by a 2 � 2 transformation matrix T, which prevents us from

combining such a matrix with other transformation matrices to obtain composite

transformations. Fortunately, there is a solution to this problem as described in the

following section.

3.4 Homogeneous Coordinates

To express all the transformations introduced so far as matrix multiplications in

order to combine various transformation effects, we add one more dimension. As

illustrated in Fig. 3.4, the extra dimension W makes any point P ¼ (x, y) of normal

coordinates to have a whole family of homogeneous coordinate representations (wx,
wy, w) for any value of w except 0. For example, (3, 6, 1), (0.3, 0.6, 0.1), (6, 12, 2),

(12, 24, 4) and so on, represent the same point in two-dimensional space. Similarly,

4-tuples of coordinates represent points in three-dimensional space. When a point is

mapped onto the W ¼ 1 plane, in the form (x, y, 1), it is said to be homogenized. In
the above example, point (3, 6, 1) is homogenized, and the numbers 3, 6 and 1 are

homogeneous coordinates.
In general, to convert a point from normal coordinates to homogeneous coordi-

nates, add a new dimension to the right with value 1. To convert a point from

homogeneous coordinates to normal coordinates, divide all the dimension values by

the rightmost dimension value, and then discard the rightmost dimension.

Having introduced homogeneous coordinates, we are able to describe a transla-

tion by a matrix multiplication using a 3� 3 instead of a 2� 2 matrix. Using a shift

vector (a, b), we can write the translation of Sect. 3.3 as the following matrix

product:

x0 y0 1½ � ¼ x y 1½ �
1 0 0

0 1 0

a b 1

2
64

3
75 ð3:4Þ

Fig. 3.4 A homogeneous

coordinate system with the

plane W ¼ 1

3.4 Homogeneous Coordinates 71

Since we cannot multiply a 3 � 3 by a 2 � 2 matrix, we will also add a row and a

column to linear transformation matrices if we want to combine these with trans-

lations (and possibly with other nonlinear transformations). These additional rows

and columns simply consist of zeros followed by a one at the end. For example, we

can use the following equation instead of (3.3) (of Sect. 3.2) for a rotation about O

through the angle φ:

x0 y0 1½ � ¼ x y 1½ �
cosφ sinφ 0

� sinφ cosφ 0

0 0 1

2
64

3
75 ð3:5Þ

3.5 Inverse Transformations and Matrix Inversion

A linear transformation may or may not be reversible. For example, if we perform a

rotation about the origin through an angle φ and let this follow by another rotation,

also about the origin but through the angle –φ, these two transformations cancel

each other out. Let us denote the rotation matrix of Eq. (3.3) (of Sect. 3.2) by R.
It then follows that the inverse rotation, through the angle –φ instead of φ, is
described by the equation

x0 y0½ � ¼ x y½ � R�1

where

R�1 ¼ cos �φð Þ sin �φð Þ
� sin �φð Þ cos �φð Þ

" #
¼ cosφ � sinφ

sinφ cosφ

" #

The second equality in this equation is based on

cos � φ ¼ cos φ

sin � φ ¼ � sinφ

Matrix R�1 is referred to as the inverse of matrix R. In general, if a matrix A has an

inverse, this is written A�1 and we have

AA�1 ¼ A�1A ¼ I

where I is the identity matrix, consisting of zero elements except for the main

diagonal, which contains elements one. For example, in the case of a rotation

through φ, followed by one through –φ, we have

72 3 Geometrical Transformations

RR�1 ¼ cosφ sinφ

� sinφ cosφ

" #
cosφ � sinφ

sinφ cosφ

" #
¼ 1 0

0 1

" #
¼ I

The identity matrix clearly maps each point to itself, that is,

x y½ �I ¼ x y½ �
Not all linear transformations are reversible. For example, the one that projects each

point onto the x-axis is not. This transformation is described by

x0 ¼ x

y0 ¼ 0

(

which we can also write as

x0 y0½ � ¼ x y½ � 1 0

0 0

" #

The 2 � 2 matrix in this equation has no inverse. This corresponds to the impos-

sibility to reverse the linear transformation in question: since any two point P1(x, y1)
and P2(x, y2) have the same image P0(x, 0), it is impossible to find a unique point P

of which P0 is the image.

A (square) matrix has an inverse if and only if its determinant is nonzero. For

example, the determinant

cosφ sinφ

� sinφ cosφ

�����
�����

is equal to cos φ� cos φ – (�sin φ� sin φ)¼ cos2 φ + sin2 φ ¼ 1. Since this value

is nonzero for any angle φ, the corresponding matrix

cosφ sinφ

� sinφ cosφ

" #

has an inverse.

Exercise 3.4 shows how to compute the inverse of any 2 � 2 matrix that has a

nonzero determinant. A useful application of this follows in Exercise 3.5.

3.6 Rotation About an Arbitrary Point

So far we have only performed rotations about the origin O. A rotation about any

point other than O is not a linear transformation, since it does not map the origin

onto itself. It can nevertheless be described by a matrix multiplication, provided we

3.6 Rotation About an Arbitrary Point 73

use homogeneous coordinates. A rotation about the point C(xC, yC) through the

angle φ can be performed in three steps:

1. A translation from C to O, described by [x0 y0 1] ¼ [x y 1]T�1, where

T�1 ¼
1 0 0

0 1 0

�xC �yC 1

2
64

3
75

2. A rotation about O through the angle φ described by [x0 y0 1]¼ [x y 1]RO,

where

RO ¼
cosφ sinφ 0

� sinφ cosφ 0

0 0 1

2
64

3
75

3. A translation from O to C, described by [x0 y0 1] ¼ [x y 1]T, where

T ¼
1 0 0

0 1 0

xC yC 1

2
64

3
75

Note that we deliberately use the notations T�1 and T, since these two

matrices are each other’s inverse. This is understandable, since the operations

of translating from C to O and then back from C to O cancel each other out.

The purpose of listing the above three matrices is that we can combine them

by forming their product. Therefore, the desired rotation about point C through

the angle φ can be described by

x0 y0 1½ � ¼ x y 1½ �R

where

R ¼ T�1ROT ¼
1 0 0

0 1 0

�xC �yC 1

2
64

3
75

cosφ sinφ 0

� sinφ cosφ 0

0 0 1

2
64

3
75

1 0 0

0 1 0

xC yC 1

2
64

3
75

¼
cosφ sinφ 0

� sinφ cosφ 0

�xC cosφþ yC sinφþ xC �xC sinφ� yC cosφþ yC 1

2
64

3
75

ð3:6Þ

74 3 Geometrical Transformations

An Application

To see this general type of rotation in action, we will now discuss a program which

rotates an arrow through 30� about a point selected by the user. Initially, one arrow,
pointing vertically upward, appears in the center of the canvas. As soon as the user

presses a mouse button, a second arrow appears. This is the image of the first one,

resulting from a rotation through an angle of 30� about the cursor position. This

position is displayed as a crosshair cursor in Fig. 3.5.

This action can be done repeatedly, in such a way that the most recently rotated

arrow is again rotated when the user clicks, and this last rotation is performed about

the most recently selected point. Since the rotation is counter-clockwise, the new

arrow would have appeared below the old one in Fig. 3.5 if the user had selected a

point to the right instead of to the left of the first arrow. Program ArrowPt.java
shows how this rotation is computed.

// ArrowPt.java: Arrow rotated through 30 degrees

// about a point selected by the user.

import java.awt.*;

import java.awt.event.*;

public class ArrowPt extends Frame {

public static void main(String[] args) {

new ArrowPt();

}

ArrowPt() {

super("Arrow rotated about arbitrary point");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

});

Fig. 3.5 Arrow before and after rotation through 30� about a point selected by the user

3.6 Rotation About an Arbitrary Point 75

setSize(500, 300);

add("Center", new CvArrowPt());

setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));

setVisible(true);

}

}

class CvArrowPt extends Canvas {

int centerX, centerY, currentX, currentY;

float pixelSize, xP = 1e9F, yP, rWidth = 100.0F, rHeight = 100.0F;

float[] x = {0, 0, -2, 2}, y = {-7, 7, 0, 0};

CvArrowPt() {

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent evt) {

xP = fx(evt.getX()); yP = fy(evt.getY());

repaint();

}

});

}

void initgr() {

Dimension d = getSize();

int maxX = d.width - 1, maxY = d.height - 1;

pixelSize = Math.max(rWidth / maxX, rHeight / maxY);

centerX = maxX / 2; centerY = maxY / 2;

}

int iX(float x) {return Math.round(centerX + x / pixelSize);}

int iY(float y) {return Math.round(centerY - y / pixelSize);}

float fx(int x) {return (x - centerX) * pixelSize;}

float fy(int y) {return (centerY - y) * pixelSize;}

void moveTo(float x, float y) {

currentX = iX(x); currentY = iY(y);

}

void lineTo(Graphics g, float x, float y) {

int x1 = iX(x), y1 = iY(y);

g.drawLine(currentX, currentY, x1, y1);

currentX = x1; currentY = y1;

}

76 3 Geometrical Transformations

void drawArrow(Graphics g, float[] x, float[] y) {

moveTo(x[0], y[0]);

lineTo(g, x[1], y[1]);

lineTo(g, x[2], y[2]);

lineTo(g, x[3], y[3]);

lineTo(g, x[1], y[1]);

}

public void paint(Graphics g) {

initgr();

// Show initial arrow:

drawArrow(g, x, y);

if (xP > 1e8F)

return;

float phi = (float) (Math.PI / 6),

c = (float) Math.cos(phi), s = (float) Math.sin(phi),

r11 = c, r12 = s,

r21 = -s, r22 = c,

r31 = -xP * c + yP * s + xP, r32 = -xP * s - yP * c + yP;

for (int j = 0; j < 4; j++) {

float xNew = x[j] * r11 + y[j] * r21 + r31,

yNew = x[j] * r12 + y[j] * r22 + r32;

x[j] = xNew; y[j] = yNew;

}

// Arrow after rotation:

drawArrow(g, x, y);

}

}

In contrast to program Arrow.java of Sect. 3.2, this new program ArrowPt.java
uses the 3 � 3 rotation matrix displayed in Eq. (3.6), as you can see in the fragment

float xNew = x[j] * r11 + y[j] * r21 + r31,

yNew = x[j] * r12 + y[j] * r22 + r32;

The matrix elements r31 and r32 of the third row of the matrix depend on

the point (xP, yP), selected by the user and acting as the center C(xC, yC) in

our previous discussion. As in program Isotrop.java of Sect. 1.3, the device

coordinates of the selected point P are converted to logical coordinates by the

methods fx and fy.

3.6 Rotation About an Arbitrary Point 77

3.7 Changing the Coordinate System

In the preceding sections, we have used a fixed coordinate system and applied

transformations to points given by their coordinates for that system, using certain

computations. We can use exactly the same computations for a different purpose,

leaving the points unchanged but changing the coordinate system. It is then

important to bear in mind that the direction in which the coordinate system

moves is opposite to that of the point movement. We can see this very clearly in

the case of a translation. In Fig. 3.6a we have a normal translation with any point P

(x, y) mapped to its image P0(x0, y0), where

x0 ¼ xþ a

y0 ¼ yþ b

which can be written in matrix form as shown in Eq. (3.4) (of Sect. 3.4). In Fig. 3.6b

we do not map the point P to another point but we express the position of this point

in the x0y0-coordinate system, while it coordinates x and y are given. As you can see,
a translation upward and to the right in (a), corresponds with a movement of the

coordinate system downward and to the left in (b): these two directions are exactly

each other’s opposite. It follows that the inverse translation matrix would have

applied if, in (b), we had moved the axes in the same direction as that of the point

translation. The same principle applies to other transformations, such as rotations,

for which the inverse of the transformation matrix exists. We will use this principle

in the next section.

Fig. 3.6 (a) Translation and (b) change of coordinates

78 3 Geometrical Transformations

3.8 Rotations About 3D Coordinate Axes

Let us use a right-handed three-dimensional coordinate system, with the positive x-
axis pointing toward us, the y-axis pointing to the right and the z-axis pointing

upward, as shown in Fig. 3.7.

This figure also shows what we mean by rotations about the axes. A rotation

about the z-axis through a given angle implies a rotation of all points in the xy-plane
through that angle. For example, if this angle is 90�, the image of all points of the

positive x-axis will be those of the positive y-axis. In the same way, a rotation about

the x-axis implies a similar rotation of the yz-plane and a rotation about the y-axis
implies a similar rotation of the zx-plane. Note that we deliberately write zx in that

order: when we are dealing with the x-, y- and z-axes in a cyclic way, x follows z. It
is important to remember this when we have to write down the transformation

matrices for the rotations about the x-, y- and z-axis through the angle φ:

Rx ¼
1 0 0

0 cosφ sinφ

0 � sinφ cosφ

2
64

3
75

Ry ¼
cosφ 0 � sinφ

0 1 0

sinφ 0 cosφ

2
64

3
75

Rz ¼
cosφ sinφ 0

� sinφ cosφ 0

0 0 1

2
64

3
75

These matrices are easy to construct. Matrix Rz is derived in a trivial way from the

well-known 2 � 2 rotation matrix of Eq. (3.3) (of Sect. 3.2). If you check this

carefully, you will not find the other two matrices difficult. First, there is a 1 on the

Fig. 3.7 Rotations about

coordinate axes

3.8 Rotations About 3D Coordinate Axes 79

main diagonal in the position that corresponds to the axis of rotation (1 for x, 2 for

y and 3 for z). The other elements in the same row or column as this matrix element

1 are equal to 0. Second, we use the elements of the 2� 2 matrix just mentioned for

the remaining elements of the 3 � 3 matrices, beginning just to the right and below

the element 1, if that is possible, If not, we remember that x follows z. For example,

in Ry, the first element, cos φ, of this imaginary 2 � 2 matrix is placed in row 3 and

column 3 because the element 1 has been placed in row 2 and column 2. Then, since

we cannot place sin φ to the right of this element cos φ as we would like, we place it

instead in column 1 of the same third row. In the same way, we cannot place –sin φ
below cos φ, as it occurs in Eq. (3.3), so instead we put it in the first row of the same

third column, and so on.

We should remember that the above matrices should be applied to row vectors.

For example, using the above matrix Rx, we write

x0 y0 z0½ � ¼ x y z½ �Rx

to obtain the image (x0, y0, z0) of point (x, y, z) when the latter is subjected to a

rotation about the x-axis through an angle φ.

3.9 Rotation About an Arbitrary Axis

To prepare for a three-dimensional rotation about an arbitrary axis, let us first

perform such a rotation about an axis through the origin O. Actually, the rotation

will take place about a vector, so that we can define its orientation, as illustrated by

Fig. 3.8.

Fig. 3.8 Rotation about a

vector starting in O

80 3 Geometrical Transformations

If a point is rotated about the vector v through a positive angle α, this rotation
will be such that it corresponds to a movement in the direction of the vector in the

same way as turning a (right-handed) screw corresponds to its forward movement.

Instead of its Cartesian coordinates (v1, v2, v3), we will use the angles θ and φ to

specify the direction of the vector v. The length of this vector is irrelevant to our

present purpose. As you can see in Fig. 3.8, θ is the angle between the positive x-
axis and the projection of v in the xy-plane and φ is the angle between the positive z-
axis and vector v. If v1, v2 and v3 are given and we want to find θ and φ, we can

compute them in Java in the following way, writing theta for θ and phi for φ:

theta = Math.atan2(v2, v1);

phi = Math.atan2(Math.sqrt(v1 * v1 + v2 * v2), v3);

We will now derive a rather complicated 3 � 3 rotation matrix, which describes

the rotation about the vector v through an angle α. First, wewill change the coordinate
system such that v will lie on the positive z-axis. This can be done in two steps:

1. A rotation about the z-axis, such that the horizontal component of v lies on the

new x-axis.
2. A rotation of the coordinate system about the new y-axis though the angle φ.

As discussed at the end of the previous section, coordinate transformations require

the inverses of the matrices that we would use for normal rotations of points.

Referring to Sect. 3.8, we now have to use the following matrices Rz
�1 and Ry

�1

for the above steps 1 and 2, respectively:

R�1
z ¼

cos θ � sin θ 0

sin θ cos θ 0

0 0 1

2
64

3
75

R�1
y ¼

cosφ 0 sinφ

0 1 0

� sinφ 0 cosφ

2
64

3
75

To combine these two coordinate transformations, we have to use the product of

these two matrices. Before doing this matrix multiplication, let us first find the

matrices of some more operations that are required.

Now that the new positive z-axis has the same direction as the vector v, the

desired rotation about v through the angle α is also a rotation about the z-axis
through that angle, so that, expressed in the new coordinates, we have the following

rotation matrix:

Rv ¼
cos α sin α 0

� sin α cos α 0

0 0 1

2
64

3
75

3.9 Rotation About an Arbitrary Axis 81

Although this may seem to be the final operation, we must bear in mind that we

want to express the image point P0 of an original point P in terms of the original

coordinate system. This implies that the first two of the above three transformations

are to be followed by their inverse transformations, in reverse order. Therefore, in

this order, we have to use the following two matrices after the three above:

Ry ¼
cosφ 0 � sinφ

0 1 0

sinφ 0 cosφ

2
64

3
75

Rz ¼ �
cos θ sin θ 0

sin θ cos θ 0

0 0 1

2
64

3
75

The resulting matrix R, to be used in the equation

x0 y0 z0½ � ¼ x y z½ �R

to perform a rotation about v through the angle α, can now be found as follows:

R ¼ Rz
�1Ry

�1RvRyRz ¼
r11 r12 r13

r21 r22 r23

r31 r32 r33

2
64

3
75

where the matrix elements rij are rather complicated expressions in φ, θ and α.
Before discussing how to compute these, let us first turn to the original problem,

which was the same as the above, except that we want to use any point A(a1, a2, a3)
as the start point of vector v. We can do this by performing, in this order:

• a translation that shifts the point A to the origin O;

• the desired rotation using the above matrix R;
• the inverse of the translation just mentioned.

As discussed in Sects. 3.4 and 3.6, we need to use homogeneous coordinates in

order to describe translations by matrix multiplications. Since we use 3 � 3 matri-

ces for linear transformations in three-dimensional space, we have to use 4 � 4

matrices in connection with these homogenous coordinates. Based on the coordi-

nates a1, a2 and a3 of the point A on the axis of rotation, the following matrix

describes the translation from A to O:

T�1 ¼

1 0 0 0

0 1 0 0

0 0 1 0

�a1 �a2 �a3 1

2
66664

3
77775

82 3 Geometrical Transformations

After this translation, we perform the rotation about the vector v, which starts at

point A, using the above matrix R, which we write as R* after adding an additional

row and column in the usual way:

R∗ ¼

r11 r12 r13 0

r21 r22 r23 0

r31 r32 r33 0

0 0 0 1

2
66664

3
77775

Finally, we use a translation from O back to A:

T ¼

1 0 0 0

0 1 0 0

0 0 1 0

a1 a2 a3 1

2
66664

3
77775

Writing RGEN for the desired general (4 � 4) rotation matrix, we have

RGEN ¼ T�1R∗T

Since RGEN is a 4 � 4 matrix, we use it as follows:

x0 y0 z0 1½ � ¼ x y z 1½ �RGEN

Implementation

Since we are now dealing with points in three-dimensional space, let us begin with

defining the following class to represent such points:

// Point3D.java: Representation of a point in 3D space.

class Point3D {

float x, y, z;

Point3D(double x, double y, double z) {

this.x = (float) x; this.y = (float) y; this.z = (float) z;

}

}

As we normally have a great many points that are to be rotated, it is worthwhile

to compute the matrix RGEN beforehand. Although this could be done numerically,

it is also possible to make our program slightly faster by doing this symbolically,

that is, by expressing all matrix elements rij of RGEN in six constant values for the

3.9 Rotation About an Arbitrary Axis 83

rotation: the angles φ, θ and α and the coordinates a1, a2 and a3 of point A on

the axis of rotation. Instead of writing these matrix elements here in the usual

mathematical formulas (which would be quite complicated), we may as well

immediately present the resulting Java code. This has been done in the class

Rotate3D below.

The actual rotation is performed by the rotate method, which is called as

many times as there are relevant points (usually the vertices of polyhedra). Prior

to this, the method initRotate is called only once, to build the above matrix RGEN.

There are actually twomethods initRotate, of whichwe can choose one aswe like. The
first accepts two points A and B to specify the directed axis of rotation AB and

computes the angles θ and φ. The second accepts these two angles themselves instead

of point B:

// Rota3D.java: Class used in other program files

// for rotations about an arbitrary axis.

// Uses: Point3D (discussed above).

class Rota3D {

static double r11, r12, r13, r21, r22, r23,

r31, r32, r33, r41, r42, r43;

/* The method initRotate computes the general rotation matrix

| r11 r12 r13 0 |

R = | r21 r22 r23 0 |

| r31 r32 r33 0 |

| r41 r42 r43 1 |

to be used as [x1 y1 z1 1] = [x y z 1] R

by the method ’rotate’.

Point (x1, y1, z1) is the image of (x, y, z).

The rotation takes place about the directed axis

AB and through the angle alpha.

*/

static void initRotate(Point3D a, Point3D b, double alpha) {

double v1 = b.x - a.x, v2 = b.y - a.y, v3 = b.z - a.z,

theta = Math.atan2(v2, v1),

phi = Math.atan2(Math.sqrt(v1 * v1 + v2 * v2), v3);

initRotate(a, theta, phi, alpha);

}

static void initRotate(Point3D a, double theta, double phi,

double alpha) {

double cosAlpha, sinAlpha, cosPhi, sinPhi, cosTheta, sinTheta,

cosPhi2, sinPhi2, cosTheta2, sinTheta2, c,

a1 = a.x, a2 = a.y, a3 = a.z;

84 3 Geometrical Transformations

cosPhi = Math.cos(phi); sinPhi = Math.sin(phi);

cosPhi2 = cosPhi * cosPhi; sinPhi2 = sinPhi * sinPhi;

cosTheta = Math.cos(theta); sinTheta = Math.sin(theta);

cosTheta2 = cosTheta * cosTheta; sinTheta2 = sinTheta * sinTheta;

cosAlpha = Math.cos(alpha); sinAlpha = Math.sin(alpha);

c = 1.0 - cosAlpha;

r11 = cosTheta2 * (cosAlpha * cosPhi2 + sinPhi2)

+ cosAlpha * sinTheta2;

r12 = sinAlpha * cosPhi + c * sinPhi2 * cosTheta * sinTheta;

r13 = sinPhi * (cosPhi * cosTheta * c - sinAlpha * sinTheta);

r21 = sinPhi2 * cosTheta * sinTheta * c - sinAlpha * cosPhi;

r22 = sinTheta2 * (cosAlpha * cosPhi2 + sinPhi2)

+ cosAlpha * cosTheta2;

r23 = sinPhi * (cosPhi * sinTheta * c + sinAlpha * cosTheta);

r31 = sinPhi * (cosPhi * cosTheta * c + sinAlpha * sinTheta);

r32 = sinPhi * (cosPhi * sinTheta * c - sinAlpha * cosTheta);

r33 = cosAlpha * sinPhi2 + cosPhi2;

r41 = a1 - a1 * r11 - a2 * r21 - a3 * r31;

r42 = a2 - a1 * r12 - a2 * r22 - a3 * r32;

r43 = a3 - a1 * r13 - a2 * r23 - a3 * r33;

}

static Point3D rotate(Point3D p) {

return new Point3D(

p.x * r11 + p.y * r21 + p.z * r31 + r41,

p.x * r12 + p.y * r22 + p.z * r32 + r42,

p.x * r13 + p.y * r23 + p.z * r33 + r43);

}

}

Note that the actual rotation of points is done very efficiently in the method

rotate at the end of this class. This is important because it will be called for each

relevant point of the object to be rotated. Remember, the more time-consuming

method initRotate is called only once.

Let us now see this class Rota3D in action. Although it can be used for any

rotation axis and any angle of rotation, it is used here only in a very simple way so

that we can easily check the result, even without graphics output. As Fig. 3.9 shows,

we have chosen the axis AB parallel to the diagonals 0–2 and 4–6 of the cube. The

cube has a height 1 and point A has coordinates (0, 0, 2).

The following program uses the above classes Point3D and Rota3D to perform

the rotation shown in Fig. 3.9:

3.9 Rotation About an Arbitrary Axis 85

// Rota3DTest.java: Rotating a cube about an axis

// parallel to a diagonal of its top plane.

// Uses: Point3D, Rota3D (discussed above).

public class Rota3DTest {

public static void main(String[] args) {

Point3D a = new Point3D(0, 0, 2), b = new Point3D(1, 1, 2);

double alpha = Math.PI;

// Specify AB as directed axis of rotation

// and alpha as the rotation angle:

Rota3D.initRotate(a, b, alpha);

// Vertices of a cube; 0, 1, 2, 3 at the bottom,

// 4, 5, 6, 7 at the top. Vertex 0 at the origin O:

Point3D[] v = {

new Point3D(0, 0, 0), new Point3D(1, 0, 0),

new Point3D(1, 1, 0), new Point3D(0, 1, 0),

new Point3D(0, 0, 1), new Point3D(1, 0, 1),

new Point3D(1, 1, 1), new Point3D(0, 1, 1)};

System.out.println(

"Cube rotated through 180 degrees about line AB,");

System.out.println("where A = (0, 0, 2) and B = (1, 1, 2)");

System.out.println("Vertices of cube:");

System.out.println(" Before rotation After rotation");

Directed axis
of rotation

Rotation through
180° about AB

Fig. 3.9 Rotation of a cube

about the axis AB

86 3 Geometrical Transformations

for (int i = 0; i < 8; i++) {

Point3D p = v[i];

// Compute P1, the result of rotating P:

Point3D p1 = Rota3D.rotate(p);

System.out.println(i + ": " +

p.x + " " + p.y + " " + p.z + " " +

f(p1.x) + " " + f(p1.y) + " " + f(p1.z));

}

}

static double f(double x) {return Math.abs(x) < 1e-10 ? 0.0 : x;}

}

Since we have not yet discussed how to produce perspective views, we produce

only text output in this program, as listed below:

Cube rotated through 180 degrees about line AB,

where A = (0, 0, 2) and B = (1, 1, 2)

Vertices of cube:

Before rotation After rotation

0: 0.0 0.0 0.0 0.0 0.0 4.0

1: 1.0 0.0 0.0 0.0 1.0 4.0

2: 1.0 1.0 0.0 1.0 1.0 4.0

3: 0.0 1.0 0.0 1.0 0.0 4.0

4: 0.0 0.0 1.0 0.0 0.0 3.0

5: 1.0 0.0 1.0 0.0 1.0 3.0

6: 1.0 1.0 1.0 1.0 1.0 3.0

7: 0.0 1.0 1.0 1.0 0.0 3.0

Exercises

3.1. In Sect. 3.2 we discussed scaling with reference to the origin O, that is, with O

as a fixed point. It is also possible to use a different fixed point, say, C(xC, yC),
but, for such a scaling in two-dimensional space, we need a 3 � 3 matrix

M (and homogenous coordinates), writing

x0 y0 1½ � ¼ x y 1½ �M

Using scale factors sx and sy for x and y again, find this matrix M.

Hint: You can perform a translation from C to O, followed by a scaling as

discussed in Sect. 3.2, but described by a 3 � 3 matrix, followed by a

translation back from O to C. Alternatively, you can start with the following

system of equations, which shows very clearly what actually happens:

Exercises 87

x0 � xC ¼ sx x� xCð Þ
y0 � yC ¼ sy y� yCð Þ

(

3.2. Describe scaling in three-dimensional space with reference to a point C and

three scale factors sx, sy and sz. Find the 4 � 4 matrix (similar to matrix M of

Exercise 3.1) for this transformation.

3.3. How can you apply shearing with reference to a point other than O (such that

this point will remain at its place)? Write a program that draws a square and an

approximated circle, both before and after shearing, setting the constant a used
at the end of Sect. 3.2 equal to 0.5. Apply shearing to these two figures with

reference to their centers; in other words, the center of the square will remain at

its place and so will the center of the circle.

3.4. (This exercise prepares for the next one.) If the determinant D ¼ a11a22 –

a12a21 of the matrix

A ¼ a11 a12

a21 a22

" #

is nonzero, then the matrix

A�1 ¼
a22
D

�a12
D

�a21
D

a11
D

2
64

3
75

is the inverse of A, that is, AA�1 ¼ A�1A ¼ I ¼ 1 0

0 1

� �
. Prove this.

3.5. Our way of testing whether a given point P lies in a triangle ABC, discussed in

Sect. 2.5, resulted in the method insideTriangle, which assumes that A, B and

C are counter-clockwise. Develop a different method for the same purpose,

based on the vectors a ¼ (a1, a2) ¼ CA and b ¼ (b1, b2) ¼ CB (see Fig. 2.6 in

Sect. 2.3). Let us write

CP ¼ p ¼ p1; p2ð Þ ¼ λaþ μb

or, in the form of a matrix product,

p1 p2½ � ¼ λ μ½ � a1 a2

b1 b2

" #
ð3:7Þ

Since we saw in Exercise 3.4 how to compute the inverse of a 2� 2 matrix,

we can now compute λ and μ as follows:

88 3 Geometrical Transformations

λ μ½ � ¼ p1 p2½ � a1 a2

b1 b2

" #�1

ð3:8Þ

The point P lies in triangle ABC (or on one of its edges) if and only if λ� 0,

μ � 0 and λ + μ � 1. Write the class TriaTest, which we can use as follows:

Point2D a, b, c, p; ...

TriaTest tt = new TriaTest(a, b, c);

if (tt.area2() != 0 && tt.insideTriangle(p)) ...

// Point P within triangle ABC.

As in Sect. 2.3, the method area2 returns twice of the area of triangle ABC,
preceded by a minus sign if ABC is clockwise. This return value is also equal

to the determinant of the 2 � 2 matrix in Eq. (3.7). We must not call the

TriaTest method insideTriangle if this determinant is zero, since in that case

the inverse matrix of Eq. (3.8) does not exist (see Exercise 3.4).

Exercises 89

Chapter 4

Classic 2D Algorithms

Although programming is a creative activity, we can sometimes benefit from well-

known algorithms, that provide more elegant solutions and optimizations than those

we would have been able to invent ourselves. This is no different in computer

graphics. This chapter presents several well-known graphics algorithms for

(a) computing the coordinates of pixels that comprise lines and circles,

(b) clipping lines and polygons, and (c) drawing smooth curves. These are the

most primitive operations in computer graphics and should be executed as fast as

possible. Therefore, the algorithms in this chapter ought to be optimized to avoid

time-consuming executions, such as multiplication, division, and operations on

floating point numbers.

4.1 Bresenham Line Drawing

Although, in Java, we can simply use the method drawLine to draw straight lines, it

would be unsatisfactory if we had no idea how this method works. We will now

discuss how to draw a straight line given the coordinates of its two endpoints by

drawing appropriate individual pixels on the screen. We will be using integer

coordinates, but when discussing the slope of a line it would be very inconvenient

if we had to use a y-axis pointing downward, as is the case with the Java device

coordinate system. Therefore, following the mathematical convention, the positive

y-axis will point upward in our discussion.

Unfortunately, Java lacks a method with the sole purpose of drawing a pixel on

the screen, so that we define the following rather strange method to achieve this:

© Springer International Publishing AG 2017

L. Ammeraal, K. Zhang, Computer Graphics for Java Programmers,
DOI 10.1007/978-3-319-63357-2_4

91

void putPixel(Graphics g, int x, int y) {

g.drawLine(x, y, x, y);

}

Recalling several other Java methods we learned in Chap. 1, we could also use

g.fillRect(x, y, 1, 1)

to achieve the same result, that is, drawing a single pixel at (x, y).
We will now develop a drawLine method of the form

void drawLine(Graphics g, int xP, int yP, int xQ, int yQ) {

...

}

which only uses the above putPixel method for the actual graphics output.

Figure 4.1 shows a line segment with endpoints P(1, 1) and Q(12, 5), as well as

the pixels that we have to compute to approximate this line. To draw this line, we

then write

drawLine(g, 1, 1, 12, 5);

Let us first solve the problem for situations such as Fig. 4.1, in which point Q lies

to the right and not lower than point P. More precisely, we will be considering the

special case

xP < xQ

yP � yQ

yQ � yP � xQ � xP

ð4:1Þ

Fig. 4.1 Grid points approximating a line segment

92 4 Classic 2D Algorithms

where the last condition expresses that the angle of inclination of line PQ is

not greater than 45�. We then wish to find exactly one integer y for each of the

integers

xP, xP þ 1, xP þ 2, . . . , xQ

Except for the first and the last (which are given as yP and yQ) the most straight-

forward way of computing these y-coordinates is by using the slope

m ¼ yQ � yP
xQ � xP

ð4:2Þ

so that, for each of the given integer x-coordinates, we can find the desired integer y-
coordinate by rounding the value

yexact ¼ yP þ m x� xPð Þ

to the nearest integer. Since two such successive x-coordinates differ by 1, the

corresponding difference of two successive values of yexact is equal to m. Figure 4.2
shows this interpretation of m, as well as that of the ‘error’

d ¼ yexact � y ð4:3Þ

Since d is the error we make by rounding yexact to the nearest integer, we can require
d to satisfy the following condition:

�0:5 < d � þ0:5 ð4:4Þ

Fig. 4.2 Slope m and

error d

4.1 Bresenham Line Drawing 93

The following first version of the desired drawLine method is based on this

observation:

void drawLine1(Graphics g, int xP, int yP, int xQ, int yQ) {

int x = xP, y = yP;

float d = 0, m = (float)(yQ - yP)/(float)(xQ - xP);

for (;;) {

putPixel(g, x, y);

if (x == xQ) break;

x++;

d += m;

if (d >= 0.5){y++; d--;}

}

}

This version is easy to understand if we pay attention to Fig. 4.2. Since the first

call to putPixel applies to point P, we begin with the error d ¼ 0. In each step of the

loop, x is increased by 1. Assuming for the moment that ywill not change, it follows
from Eq. (4.3) that the growth of d will be the same as that of yexact, which explains
why d is increased by m. We then check the validity of this assumption in the

following if-statement. If d has become greater than 0.5, this violates Eq. (4.4), so

that we apply a correction, consisting of increasing y and decreasing d by 1. The

latter action makes Eq. (4.4) valid again. By doing these two actions at the same

time, Eq. (4.3) also remains valid.

We use drawLine1 as a basis for writing a faster version, which no longer uses

type float. This is possible because the slope variable m represents a rational

number, that is, an integer numerator divided by an integer denominator, as

Eq. (4.2) shows. Since the other float variable, d, starts with the value zero and is

altered only by adding m and �1 to it, it is also a rational number. In view of both

the denominator xQ – xP of these rational numbers and the constant 0.5 used in the

if-statement, we will apply the scaling factor

c ¼ 2 xQ � xP
� �

to m, to d and to this constant 0.5, introducing the int variables M and D instead of

the float variables m and d. We will also use the Δx instead of the constant 0.5.

These new values M, D and Δx are c times as large as m, d and 0.5, respectively:

M ¼ cm ¼ 2 yQ � yP
� �

D ¼ cd

Δx ¼ xQ � xP ¼ c� 0:5

In this way we obtain the following integer version, which is very similar to the

previous one and equivalent to it but faster. In accordance with the Java naming

94 4 Classic 2D Algorithms

conventions for variables, we write m and d again instead of M and D, and dx
instead of Δx:

void drawLine2(Graphics g, int xP, int yP, int xQ, int yQ) {

int x = xP, y = yP, d = 0, dx = xQ - xP, c = 2 * dx,

m = 2 * (yQ - yP);

for (;;) {

putPixel(g, x, y);

if (x == xQ) break;

x++;

d += m;

if (d >= dx){y++; d -= c;}

}

}

Having dealt with this special case, with points P and Q satisfying Eq. (4.1), we

now turn to the general problem, without any restrictions with regard to the relative

positions of P and Q. To solve this, we have several symmetric cases to consider.

As long as

j yQ � yP j�j xQ � xP j

we can again use x as the independent variable, that is, we can increase or decrease

this variable by one in each step of the loop. In the opposite case, with lines that

have an angle of inclination greater than 45�, we have to interchange the roles of

x and y to prevent the selected pixels from lying too far apart. All this is realized in

the general line-drawing method drawLine below. We can easily verify that this

version plots exactly the same points approximating line PQ as version drawLine2
if the coordinates of P and Q satisfy (4.1).

void drawLine(Graphics g, int xP, int yP, int xQ, int yQ) {

int x = xP, y = yP, d = 0, dx = xQ - xP, dy = yQ - yP,

c, m, xInc = 1, yInc = 1;

if (dx < 0){xInc = -1; dx = -dx;}

if (dy < 0){yInc = -1; dy = -dy;}

if (dy <= dx) {

c = 2 * dx; m = 2 * dy;

if (xInc < 0) dx++;

for (;;) {

putPixel(g, x, y);

if (x == xQ) break;

x += xInc;

d += m;

if (d >= dx){y += yInc; d -= c;}

}

}

4.1 Bresenham Line Drawing 95

else {

c = 2 * dy; m = 2 * dx;

if (yInc < 0) dy++;

for (;;) {

putPixel(g, x, y);

if (y == yQ) break;

y += yInc;

d += m;

if (d >= dy){x += xInc; d -= c;}

}

}

}

Just before executing one of the above two for-statements, an if-statement

is executed in the cases that x or y decreases instead of increases, which is

required to guarantee that drawing PQ always plots exactly the same points as

drawing QP.

The idea of drawing sloping lines by means of only integer variables was first

realized by Bresenham; his name is therefore associated with this algorithm.

The above drawLine method is very easy to use if we are dealing with the

floating-point logical-coordinate system used so far. For example, in Sect. 5, there

will be a program ClipPoly.java, in which the following method occurs:

void drawLine(Graphics g, float xP, float yP, float xQ, float yQ) {

g.drawLine(iX(xP), iY(yP), iX(xQ), iY(yQ));

}

Here our own method drawLine calls the Java method drawLine of the class

Graphics. If, instead, we want to use our own method drawLine with four int
arguments, listed above, we can replace the last three program lines with

void drawLine(Graphics g, float xP, float yP, float xQ, float yQ) {

drawLine(g, iX(xP), iY(yP), iX(xQ), iY(yQ)); // int coordinates

}

provided that we also add the method putPixel, listed at the beginning of

this section. This may at first be confusing because there are now two drawLine
methods of our own. As the comment after the above call to drawLine
indicates, the Java compiler will select our Bresenham method drawLine because

there is an argument g, followed by four arguments of type int. It is also interesting
to note that the direction of the positive y-axis in our discussion causes no

practical problem.

96 4 Classic 2D Algorithms

4.2 Doubling the Line-Drawing Speed

As one of the primitive graphics operations, line drawing should be performed as

rapidly as possible. In fact, graphics hardware is typically benchmarked by the

speed in which it generates lines. Bresenham’s line algorithm is simple and efficient

in generating lines. The algorithm works incrementally by computing the position

of the next pixel to be drawn. Hence it iterates as many times as the number of

pixels in the line it generates. The double-step line-drawing algorithm by Rokne,

Wyvill, and Wu [22] aims at reducing the number of iterations by half, by

computing the positions of the next two pixels.

Let us again start with the lines within the slope range of [0, 1] and consider the

general case of any slopes later (as Exercise 4.2). For a line PQ, starting from P, we

increment the x coordinate by two pixels instead of one as in Bresenham’s algo-
rithm. All the possible positions of the two pixels in the above slope range form four

patterns, expressed in a 2 � 2 mesh illustrated in Fig. 4.3. It has been mathemat-

ically proven that patterns 1 and 4 would never occur on the same line, implying

that a line would possibly involve patterns 1, 2 and 3, or patterns 2, 3 and

4, depending the slope of the line. The lines within the slope range of [0,½) involve

patterns 1, 2, and 3 (an example depicted as a solid line in Fig. 4.4), and lines within

the slope range of (½, 1] involve patterns 2, 3 and 4 (an example as a dotted line).

At the exact slope of ½, the line involves either pattern 2 or 3, not 1 or 4.

Fig. 4.3 Four double-step patterns when 0� slope �1

ABC, pattern 1

ABE, pattern 2

ADE, pattern 3

ADF, pattern 4Fig. 4.4 Choice of patterns

based on initial error d and

slope m

4.2 Doubling the Line-Drawing Speed 97

Figure 4.4 shows four sloping lines, all passing through the same point at a

distance d above the point A. By approximating this common point of the four lines

we make an error d ¼ yexact – y, which should not be greater than 0.5.

Since the slope of a line is equal to m, the exact y-coordinate of that line is equal
to d + m at its point of intersection with BD, and d + 2 m at its point of intersection

with CF, as indicated in Fig. 4.4 for the lowest of the four lines. With these two

points of intersection lying closer to BC than to DE, it is clear that this lowest

sloping line should be approximated by the points A, B, C, that is, by pattern 1 of

Fig. 4.3. Thus we have

if d + 2 m < 0.5, we use pattern 1 (ABC).

Otherwise, we use point E instead of C if E is the best approximation of the point

where the sloping line intersects CF, that is, if 0.5 � d + 2 m � 1.5. However, we

should now also pay attention to the point where the sloping line intersects

BD. Comparing d + m with 0.5 determines whether B or D should be taken.

More precisely,

if 0.5� d + 2m< 1.5 (so that point E is to be used), we choose B or D as follows:

if d + m < 0.5, we use pattern 2 (ABE);

if d + m � 0.5, we use pattern 3 (ADE).

Finally, there is this remaining case:

if d + 2 m � 1.5, we use pattern 4 (ADF).

As in the previous section when discussing Bresenham’s algorithm, we begin with a

preliminary method that still uses floating-point variables to make it easier

to understand, so it is not yet optimized for speed. This version also works for

lines drawn from right to left, that is, when xQ < xP, as well as for lines with

negative slopes. However, the absolute value of the slope should not be greater than

1. So doubleStep1 applies only to endpoints P and Q that satisfy the following

conditions:

xQ 6¼ xP

j yQ � yP j�j xQ � xP j

It is wise to begin with the simplest case

xP < xQ

0 � yQ � yP � xQ � xP

when you read the following code for the first time:

98 4 Classic 2D Algorithms

void doubleStep1(Graphics g, int xP, int yP, int xQ, int yQ) {

int dx, dy, x, y, yInc;

if (xP >= xQ) {

if (xP == xQ) // Not allowed because we divide by (dx = xQ - xP)

return;

// xP > xQ, so swap the points P and Q

int t;

t = xP; xP = xQ; xQ = t;

t = yP; yP = yQ; yQ = t;

}

// Now xP < xQ

if (yQ >= yP){yInc = 1; dy = yQ - yP;} // Normal case, yP < yQ

else {yInc = -1; dy = yP - yQ;}

dx = xQ - xP; // dx > 0, dy > 0

float d = 0, // Error d = yexact - y

m = (float)dy/(float)dx; // m <= 1, m = |slope|

putPixel(g, xP, yP);

y = yP;

for (x=xP; x<xQ-1;) {

if (d + 2 * m < 0.5) { // Pattern 1:

putPixel(g, ++x, y);

putPixel(g, ++x, y);

d += 2 * m; // Error increases by 2m, since y remains

// unchanged and yexact increases by 2m

}

else

if (d + 2 * m < 1.5) { // Pattern 2 or 3

if (d + m < 0.5) { // Pattern 2

putPixel(g, ++x, y);

putPixel(g, ++x, y += yInc);

d += 2 * m - 1; // Because of ++y, the error is now

// 1 less than with pattern 1

}

else { // Pattern 3

putPixel(g, ++x, y += yInc);

putPixel(g, ++x, y);

d += 2 * m - 1; // Same as pattern 2

}

}

else { // Pattern 4:

putPixel(g, ++x, y += yInc);

putPixel(g, ++x, y += yInc);

d += 2 * m - 2; // Because of y += 2, the error is now

// 2 less than with pattern 1

}

}

4.2 Doubling the Line-Drawing Speed 99

if (x < xQ) // x = xQ - 1

putPixel(g, xQ, yQ);

}

Before the above for-loop is entered, there is a call to putPixel for x ¼ xP. The
loop terminates as soon as the test

x < xQ � 1

fails. This test is executed for the following values of x:

xP, xP þ 2, xP þ 4, and so on:

If it succeeds, putPixel is called for the next two values of x, not for the value of

x used in the test. There are two cases to consider. If xQ � xP is even, the test still
succeeds when x¼ xQ� 2, and putPixel is executed for both x¼ xQ� 1 and x¼ xQ,
after which we are done and the next test, with x ¼ xQ, fails. On the other hand, if

xQ � xP is odd, the test succeeds when x ¼ xQ � 3, and putPixel is called for both

x ¼ xQ � 2 and x ¼ xQ � 1, after which the test fails with x ¼ xQ � 1. Then, after

loop termination, the remaining call to putPixel is executed in the following

if-statement:

if (x < xQ)

putPixel(g, xQ, yQ);

We will now derive a fast, integer version from the above method doubleStep1.
Let us use the notation

Δx ¼ xQ � xP

Δy ¼ yQ � yP

so that slope m ¼ Δy/Δx. We now want to introduce an int variable v, in such a way
that the test

d þ 2m < 0:5 ð4:5Þ

reduces to

v < 0 ð4:6Þ

To achieve this, we start writing (4.5) as d + 2m� 0.5< 0 and, since this inequality

contains the two fractions m ¼ Δy/Δx and 0.5, we multiply both sides of it by 2Δx,
obtaining

2dΔxþ 4Δy� Δx < 0

100 4 Classic 2D Algorithms

Therefore, instead of the floating-point error variable d¼ yexact � y, we will use the
integer variable v, which relates to d as follows:

v ¼ 2dΔxþ 4Δy� Δx ð4:7Þ

We can now replace the test (4.5) with the more efficient one (4.6). It follows from

(4.7) that increasing d by 2 m is equivalent to increasing v by 2Δx � 2 m, which is

equal to 4Δy. This explains both the test v < 0 and adding dy4 to v in the for-loop

below. These operations on the variable v are marked by comments of the form

// Equivalent to . . ., as are some others, which are left to the reader to verify.

void doubleStep2(Graphics g, int xP, int yP, int xQ, int yQ) {

int dx, dy, x, y, yInc;

if (xP >= xQ) {

if (xP == xQ) // Not allowed because we divide by (dx = xQ - xP)

return;

int t; // xP > xQ, so swap the points P and Q

t = xP; xP = xQ; xQ = t;

t = yP; yP = yQ; yQ = t;

}

// Now xP < xQ

if (yQ >= yP){yInc = 1; dy = yQ - yP;}

else {yInc = -1; dy = yP - yQ;}

dx = xQ - xP;

int dy4 = dy * 4, v = dy4 - dx, dx2 = 2 * dx, dy2 = 2 * dy,

dy4Minusdx2 = dy4 - dx2, dy4Minusdx4 = dy4Minusdx2 - dx2;

putPixel(g, xP, yP);

y = yP;

for (x=xP; x<xQ-1;) {

if (v < 0) { // Equivalent to d + 2 * m < 0.5

putPixel(g, ++x, y); // Pattern 1

putPixel(g, ++x, y);

v += dy4; // Equivalent to d += 2 * m

}

else

if (v < dx2) { // Equivalent to d + 2 * m < 1.5

// Pattern 2 or 3

if (v < dy2) { // Equivalent to d + m < 0.5

putPixel(g, ++x, y); // Pattern 2

putPixel(g, ++x, y += yInc);

v += dy4Minusdx2; // Equivalent to d += 2 * m - 1

}

else {

putPixel(g, ++x, y += yInc); // Pattern 3

putPixel(g, ++x, y);

v += dy4Minusdx2; // Equivalent to d += 2 * m - 1

}

}

4.2 Doubling the Line-Drawing Speed 101

else {

putPixel(g, ++x, y += yInc); // Pattern 4

putPixel(g, ++x, y += yInc);

v += dy4Minusdx4; // Equivalent to d += 2 * m - 2

}

}

if (x < xQ)

putPixel(g, xQ, yQ);

}

Remember, the above method doubleStep2 works only if jyQ� yPj � jxQ� xPj.
In Exercise 4.2 the reader is to generalize the method to work for any line and add a

simple interface to allow the user to enter lines.

Like Bresenham’s line algorithm, the above double-step algorithm computes on

integers only. For long lines, it is supposed to outperform Bresenham’s algorithm
by nearly two folds (to be evaluated in Exercise 4.3). One can further optimize the

algorithm to achieve another two folds of speed-up by taking advantage of the

symmetry around the midpoint of the given line. We leave this as an exercise for

interested readers. The double-step algorithm can in fact be generalized to draw

circles, which will be left for users’ own exploration by consulting the papers by

Wu and Rokne [25] and by Rokne, Wyvill, and Wu [22] listed in Bibliography at

the end of the book. Adapting Bresenham’s algorithm for circles will be the topic of

the next section.

4.3 Circle Drawing

In this section we will ignore the normal way of drawing a circle in Java by a call of

the form

g.drawOval(xC - r, yC - r, 2 * r, 2 * r);

since it is our goal to construct such a circle, with center C(xC, yC) and radius

r ourselves, where the coordinates of C and the radius are given as integers.

If speed is not a critical factor, we can apply the method drawLine to a great

many neighboring points (x, y), computed as

x ¼ xC þ r cos φ

y ¼ yC þ r sin φ

where

φ ¼ i� 2π

n
i ¼ 0; 1; 2; . . . ; n� 1ð Þ

102 4 Classic 2D Algorithms

for some large value of n. Instead of the above two ways of drawing a circle, we will
develop a method of the form

void drawCircle(Graphics g, int xC, int yC, int r) {

...

}

which uses only the method putPixel of the previous section as a graphics ‘prim-

itive’, and which is an implementation of Bresenham’s algorithm for circles. The

circle drawn in this way will be exactly the same as that produced by the above call

to drawOval. In both cases, x will range from xC – r to xC + r, including these two

values, so that 2r + 1 different values of x will be used.
As in the previous sections, we begin with a simple case: we use the origin of the

coordinate system as the center of the circle, and, dividing the circle into eight arcs

of equal length, we restrict ourselves to one of these, the arc PQ. The points P(0, r)
and Q(r/√2, r/√2) are shown in Fig. 4.5.

The equation of this circle is

x2 þ y2 ¼ r2 ð4:8Þ

Figure 4.6 shows the situation, including the grid of pixels, for the case r ¼ 8.

Beginning at the top at point P, with x¼ 0 and y¼ r, we will use a loop in which we
increase x by 1 in each step; as in the previous section, we need some test to decide

whether we can leave y unchanged. If not, we have to decrease y by 1.

Since, just after increasing x by one, we have to choose between (x, y) and
(x, y � 1), we could simply compute both

Fig. 4.5 Arc PQ of a circle

with origin O and radius r

4.3 Circle Drawing 103

x2 þ y2 and x2 þ y� 1ð Þ2

to see which lies closer to r2. Note that this can be done by using only integer

arithmetic, so that in principle our problem is solved. To make our algorithm faster,

we will avoid computing the squares x2 and y2, by introducing the three new,

nonnegative integer variables u, v and E denoting the differences between two

successive squares and the ‘error’:

u ¼ xþ 1ð Þ2 � x2 ¼ 2xþ 1 ð4:9Þ
v ¼ y2 � y� 1ð Þ2 ¼ 2y� 1 ð4:10Þ

E ¼ x2 þ y2 � r2 ð4:11Þ

Initially, we have x¼ 0 and y¼ r, so that u¼ 1, v¼ 2r – 1 and E¼ 0. In each step in

the loop, we increase x by one, as previously discussed. Since, according to

Eq. (4.9), this will increase the value of x2 by u, we also have to increase E by

u to satisfy Eq. (4.11). We can also see from Eq. (4.9) that increasing x by 1 implies

that we have to increase u by 2. We now have to decide whether or not to decrease

y by one. If we do, Eq. (4.10) indicates that the square y2 decreases by v, so that

according to Eq. (4.11) E also has to decrease by v. Since we want the absolute

value of the error E to be as small as possible, the test we are looking for can be

written

E� vj j < Ej j ð4:12Þ

We will decrease y by 1 if and only if this test succeeds. It is interesting that we can
write the condition (4.12) in a simpler form, by first replacing it with the equivalent

test

E� vð Þ2 < E2

Fig. 4.6 Pixels that

approximate the arc PQ

104 4 Classic 2D Algorithms

which can be simplified to

v v� 2Eð Þ < 0

Since v is positive, we can simplify this further to

v < 2E

On the basis of the above discussion, we can now write the following method to

draw the arc PQ (in which we write e instead of E):

void arc8(Graphics g, int r) {

int x = 0, y = r, u = 1, v = 2 * r - 1, e = 0;

while (x <= y) {

putPixel(g, x, y);

x++; e += u; u += 2;

if (v < 2 * e){y--; e -= v; v -= 2;}

}

}

Equations (4.10) and (4.11) show that in the case of decreasing y by 1, we have to
decrease E by v and v by 2, as implemented in the if-statement. Note the symmetry

between the three actions (related to y) in the if-statement and those (related to x) in
the preceding program line.

The method arc8 is the basis for our final method, drawCircle, listed below.

Besides drawing a full circle, it is also more general than arc8 in that it allows an

arbitrary point C to be specified as the center of the circle. The comments in this

method indicate directions of the compass. For example, NNE stands for north-

northeast, which we use to refer to the arc between the north and the northeast

directions (see Fig. 4.5). As usual, we think of the y-axis pointing upward, so that

y ¼ r corresponds to north:

void drawCircle(Graphics g, int xC, int yC, int r) {

int x = 0, y = r, u = 1, v = 2 * r - 1, e = 0;

while (x < y) {

putPixel(g, xC + x, yC + y); // NNE

putPixel(g, xC + y, yC - x); // ESE

putPixel(g, xC - x, yC - y); // SSW

putPixel(g, xC - y, yC + x); // WNW

x++; e += u; u += 2;

if (v < 2 * e){y--; e -= v; v -= 2;}

4.3 Circle Drawing 105

if (x > y) break;

putPixel(g, xC + y, yC + x); // ENE

putPixel(g, xC + x, yC - y); // SSE

putPixel(g, xC - y, yC - x); // WSW

putPixel(g, xC - x, yC + y); // NNW

}

}

This version has been programmed in such a way that putPixel will not visit the
same pixel more than once. This is important if we want to use the XOR paint mode,

writing

g.setXORMode(Color.white);

before the call to drawCircle. Setting the paint mode in this way implies that black

pixels are made white and vice versa, so that we can remove a circle in the same

way as we draw it. It is then essential that a single call to drawCircle does not put
the same pixel twice on the screen, for then it would be erased the second time. To

prevent pixels from being used twice, the eight calls to putPixel in the loop are

divided into two groups of four: those in the first group draw the arcs 0, 2, 4 and

6 (see Fig. 4.5), which include the starting points (0, r), (r, 0), (0, �r) and (�r, 0).
The arcs 1, 3, 5 and 7 of the second group do not include these starting points

because these calls to putPixel take place after x has been increased. As for the

endpoint of each arc, we take care (a) that x is not greater than y for any call to

putPixel, and (b) that the situation x ¼ y is covered by at most one of these two

groups of putPixel calls. This situation will occur, for example, if r¼ 6; in this case

the following eight points (relative to the center of the circle) are selected in this

order, as far as the northeast quadrant of the circle (NNE and ENE) is concerned:
(0, 6), (6, 1), (1, 6), (6, 2), (2, 6), (5, 3), (3, 5), (4, 4). In this situation the test after

while terminates the loop. In contrast, the situation x ¼ y will not occur if r ¼ 8,

since in this case the 11 points (0, 8), (8, 1), (1, 8), (8, 2), (2, 8), (7, 3), (3, 7), (7, 4),

(4, 7), (6, 5), (5, 6) are chosen, in that order. The loop now terminates because the

break-statement in the middle of it is executed.

4.4 Cohen–Sutherland Line Clipping

In this section we will discuss how to draw line segments only as far as they lie

within a given rectangle. For example, given a point P inside and a point Q outside a

rectangle. It is then our task to draw only the line segment PI, where I is the point of

intersection of PQ and the rectangle, as shown in Fig. 4.7. The rectangle is given by

the four numbers xmin, xmax, ymin and ymax. These four values and the coordinates of

P and Q are floating-point logical coordinates, as usual.

106 4 Classic 2D Algorithms

Since PQ intersects the upper edge of the rectangle in I, we have

yI ¼ ymax

As the triangles PAI and PBQ are similar, we can write

xI � xP
yI � yP

¼ xQ � xP
yQ � yP

After replacing yI with ymax and multiplying both sides of this equation by ymax – yP,
we easily obtain

xI ¼ xP þ ymax � yPð Þ xQ � xPð Þ
yQ � yP
� �

so that we can draw the desired line segment PI.

This easy way of computing the coordinates of point I is based on several facts

that apply to Fig. 4.7, but that must not be relied on in a general algorithm. For

example, if Q lies farther to the right, it may not be immediately clear whether the

point of intersection lies on the upper edge y ¼ ymax or on the right edge x ¼ xmax.

In general, there are many more cases to consider. The logical decisions needed to

find out which actions to take make line clipping an interesting topic from an

algorithmic point of view. The Cohen–Sutherland algorithm solves this problem in

an elegant and efficient way. We will express this algorithm in Java.

The four lines x¼ xmin, x¼ xmax, y¼ ymin, y¼ ymax divide the xy-plane into nine
regions. With any point P(x, y) we associate a four-bit code

b3b2b1b0

identifying that region, as Fig. 4.8 shows.

Fig. 4.7 Line segment PQ to be clipped

4.4 Cohen–Sutherland Line Clipping 107

For any point (x, y), the above four-bit code is defined as follows:

b3 ¼ 1 if and only if x < xmin

b2 ¼ 1 if and only if x > xmax

b1 ¼ 1 if and only if y < ymin

b0 ¼ 1 if and only if y > ymax

Based on this code, the Cohen–Sutherland algorithm replaces the endpoints P and Q

of a line segment, if they lie outside the rectangle, with points of intersection of PQ

and the rectangle, that is, if there are such points of intersection. This is done in a

few steps. For example, in Fig. 4.8, the following steps are taken:

1. Since P lies to the left of the left rectangle edge, it is replacedwith P0 (on x¼ xmin),

so that only P0Q remains to be dealt with.

2. Since P0 lies below the lower rectangle edge, it is replaced with P00 (on y¼ ymin),

so that P00Q remains to be dealt with.

3. Since Q lies to the right of the right rectangle edge, it is replaced with Q0

(on x ¼ xmax), so that P00Q0 remains to be dealt with.

4. Line segment P00Q0 is drawn.

The steps 1, 2 and 3 are done in a loop, which can terminate in two ways:

• If the four-bit codes of P (or P0 or P00, which we again refer to as P in

the program) and of Q are equal to zero; the (new) line segment PQ is then

drawn.

• If the two four-bit codes contain a 1-bit in the same position; this implies

that P and Q are on the same side of a rectangle edge, so that nothing has to

be drawn.

Fig. 4.8 Code values

108 4 Classic 2D Algorithms

The method clipLine in the following program shows this in greater detail:

// ClipLine.java: Cohen-Sutherland line clipping.

import java.awt.*;

import java.awt.event.*;

public class ClipLine extends Frame {

public static void main(String[] args) {new ClipLine();}

ClipLine() {

super("Click on two opposite corners of a rectangle");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

});

setSize(500, 300);

add("Center", new CvClipLine());

setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CUR SOR));

setVisible(true);

}

}

class CvClipLine extends Canvas {

float xmin, xmax, ymin, ymax, rWidth = 10.0F, rHeight = 7.5F,

pixelSize;

int maxX, maxY, centerX, centerY, np = 0;

CvClipLine() {

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent evt) {

float x = fx(evt.getX()), y = fy(evt.getY());

if (np == 2) np = 0;

if (np == 0) {xmin = x; ymin = y;

}

else {

xmax = x; ymax = y;

if (xmax < xmin) {

float t = xmax; xmax = xmin; xmin = t;

}

if (ymax < ymin) {

float t = ymax; ymax = ymin; ymin = t;

}

}

np++;

repaint();

}

});

}

4.4 Cohen–Sutherland Line Clipping 109

void initgr() {

Dimension d = getSize();

maxX = d.width - 1; maxY = d.height - 1;

pixelSize = Math.max(rWidth / maxX, rHeight / maxY);

centerX = maxX / 2; centerY = maxY / 2;

}

int iX(float x) {return Math.round(centerX + x / pixelSize);}

int iY(float y) {return Math.round(centerY - y / pixelSize);}

float fx(int x) {return (x - centerX) * pixelSize;}

float fy(int y) {return (centerY - y) * pixelSize;}

void drawLine(Graphics g, float xP, float yP, float xQ, float yQ) {

g.drawLine(iX(xP), iY(yP), iX(xQ), iY(yQ));

}

int clipCode(float x, float y) {

return (x < xmin ? 8 : 0) | (x > xmax ? 4 : 0) |

(y < ymin ? 2 : 0) | (y > ymax ? 1 : 0);

}

void clipLine(Graphics g, float xP, float yP, float xQ, float yQ,

float xmin, float ymin, float xmax, float ymax) {

int cP = clipCode(xP, yP), cQ = clipCode(xQ, yQ);

float dx, dy;

while ((cP | cQ) != 0) {

if ((cP & cQ) != 0) return;

dx = xQ - xP; dy = yQ - yP;

if (cP != 0) {

if ((cP & 8) == 8) {yP += (xmin - xP) * dy / dx; xP = xmin;}

else

if ((cP & 4) == 4) {yP += (xmax - xP) * dy / dx; xP = xmax;}

else

if ((cP & 2) == 2) {xP += (ymin - yP) * dx / dy; yP = ymin;}

else

if ((cP & 1) == 1) {xP += (ymax - yP) * dx / dy; yP = ymax;}

cP = clipCode(xP, yP);

}

else if (cQ != 0) {

if ((cQ & 8) == 8) {yQ += (xmin - xQ) * dy / dx; xQ = xmin;}

else

if ((cQ & 4) == 4) {yQ += (xmax - xQ) * dy / dx; xQ = xmax;}

else

if ((cQ & 2) == 2) {xQ += (ymin - yQ) * dx / dy; yQ = ymin;}

else

110 4 Classic 2D Algorithms

if ((cQ & 1) == 1) {xQ += (ymax - yQ) * dx / dy; yQ = ymax;}

cQ = clipCode(xQ, yQ);

}

}

drawLine(g, xP, yP, xQ, yQ);

}

public void paint(Graphics g) {

initgr();

if (np == 1) { // Draw horizontal and vertical lines through

// first defined point:

drawLine(g, fx(0), ymin, fx(maxX), ymin);

drawLine(g, xmin, fy(0), xmin, fy(maxY));

}

else

if (np == 2) { // Draw rectangle:

drawLine(g, xmin, ymin, xmax, ymin);

drawLine(g, xmax, ymin, xmax, ymax);

drawLine(g, xmax, ymax, xmin, ymax);

drawLine(g, xmin, ymax, xmin, ymin);

// Draw 20 concentric regular pentagons, as

// far as they lie within the rectangle:

float rMax = Math.min(rWidth, rHeight) / 2,

deltaR = rMax / 20, dPhi = (float) (0.4 * Math.PI);

for (int j = 1; j <= 20; j++) {

float r = j * deltaR;

// Draw a pentagon:

float xA, yA, xB = r, yB = 0;

for (int i = 1; i <= 5; i++) {

float phi = i * dPhi;

xA = xB; yA = yB;

xB = (float) (r * Math.cos(phi));

yB = (float) (r * Math.sin(phi));

clipLine(g, xA, yA, xB, yB, xmin, ymin, xmax, ymax);

}

}

}

}

}

The program draws 20 concentric (regular) pentagons, as far as these lie within a

rectangle, which the user can define by clicking on any two opposite corners.

4.4 Cohen–Sutherland Line Clipping 111

When he or she clicks for the third time, the situation is the same as at the

beginning: the screen is cleared and a new rectangle can be defined, in which

again parts of 20 pentagons appear, and so on. As usual, if the user changes the

window dimensions, the size of the result is changed accordingly. Figure 4.9 shows

the situation just after the pentagons are drawn.

If we look at the while-loop in the method clipLine, it seems that this code is

somewhat inefficient because of the divisions dy/dx and dx/dy inside that loop while
dx and dy are not changed in it. However, we should bear in mind that dx or dy may

be zero. The if-statements in the loop guarantee that no division by dx or dy will be
performed if that variable is zero. Besides, this loop is different from most other

program loops in that the inner part is usually executed only once or not at all, and

rarely more than once.

4.5 Sutherland–Hodgman Polygon Clipping

In contrast to line clipping, discussed in the previous section, we will now deal with

polygon clipping, which is different in that it converts a polygon into another one

within a given rectangle, as Figs. 4.10 and 4.11 illustrate.

The program that we will discuss draws a fixed rectangle and enables the user to

specify the vertices of a polygon by clicking, in the same way as discussed in

Sect. 1.4. As long as the first vertex, in Fig. 4.10 on the left, is not selected for the

second time, successive vertices are connected by polygon edges. As soon as the first

vertex is selected again, the polygon is clipped, as Fig. 4.11 shows. Some vertices of

the original polygon do not belong to the clipped one. On the other hand, the latter

polygon has some new vertices, which are all points of intersection of the edges of

the original polygon and those of the rectangle. In general, the number of vertices of

the clipped polygon can be greater than, equal to or less than that of the original one.

In Fig. 4.11 there are five new polygon edges, which are part of the rectangle edges.

Fig. 4.9 Demonstration of program ClipLine.java

112 4 Classic 2D Algorithms

The program that produced Fig. 4.11 is based on the Sutherland–Hodgman

algorithm, which first clips all polygon edges against one rectangle edge, or rather,

the infinite line through such an edge. This results in a new polygon, which is then

clipped against the next rectangle edge, and so on. Figure 4.12 shows a rectangle

and a polygon, ABCDEF. Starting in vertex A, we find that AB intersects the

line x ¼ xmax in point I, which will be a new vertex of the clipped polygon. The

same applies to point J, the point of intersection of DE with the same vertical

rectangle edge.

Fig. 4.10 Nine polygon vertices defined; final edge not yet drawn

Fig. 4.11 Polygon completed and clipped

4.5 Sutherland–Hodgman Polygon Clipping 113

Let us refer to the original polygon as the input polygon and the new one as the

output polygon. We represent each polygon by a sequence of successive vertices.

Let us start with the right rectangle edge and treat it as an infinite clipping line, that

can be expressed as x ¼ xmax, and see how to clip the polygon against this line. In

general, when working on one clipping line, we ignore all other rectangle edges.

Initially, the output polygon is empty. When following all successive polygon

edges such as AB, we focus on the endpoint, B, and decide as follows which points

will belong to the output polygon:

If A and B lie on different sides of the clipping line, the point of intersection, I, is added to

the output polygon. Regardless of this being the case, B is added to the output polygon if

and only if it lies on the same side of the clipping line as the rectangle.

Starting with the directed edge AB in Fig. 4.12, point I is the first to be added to the

output polygon. Vertex B is not added because it is not on the same side of the

clipping line as the rectangle, and the same applies to the endpoints of the following

directed edges, BC and CD. When dealing with edge DE, we first add J and then E

to the output polygon since they are both on the same side of the clipping line as the

rectangle. The endpoints of the next two edges, EF and FA lie on the same side of

the clipping line as the rectangle and are therefore added to the output polygon. In

this way we obtain the vertices I, J, E, F, and A, in that order. We then use this

output polygon as the input polygon to clip against the top rectangle edge. Using the

same method as described above on the right edge, we obtain the vertices I, J, K,

L, F, and A, which forms the output polygon IJKLFA. Although in this example

IJKLFA is the desired clipped polygon, it will in general be necessary to use the

output polygon as input for working with another rectangle edge. The program

below shows an implementation in Java:

// ClipPoly.java: Clipping a polygon.

// Uses: Point2D (Section 1.4).

import java.awt.*;

import java.awt.event.*;

import java.util.*;

Fig. 4.12 The Sutherland–

Hodgman algorithm

114 4 Classic 2D Algorithms

public class ClipPoly extends Frame {

public static void main(String[] args) {new ClipPoly(); }

ClipPoly() {

super("Define polygon vertices by clicking");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

});

setSize(500, 300);

add("Center", new CvClipPoly());

setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));

setVisible(true);

}

}

class CvClipPoly extends Canvas {

Poly poly = null;

float rWidth = 10.0F, rHeight = 7.5F, pixelSize;

int x0, y0, centerX, centerY;

boolean ready = true;

CvClipPoly() {

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent evt) {

int x = evt.getX(), y = evt.getY();

if (ready) {

poly = new Poly();

x0 = x; y0 = y;

ready = false;

}

if (poly.size() > 0 &&

Math.abs(x - x0) < 3 && Math.abs(y - y0) < 3)

ready = true;

else

poly.addVertex(new Point2D(fx(x), fy(y)));

repaint();

}

});

}

void initgr() {

Dimension d = getSize();

int maxX = d.width - 1, maxY = d.height - 1;

pixelSize = Math.max(rWidth / maxX, rHeight / maxY);

centerX = maxX / 2; centerY = maxY / 2;

}

4.5 Sutherland–Hodgman Polygon Clipping 115

int iX(float x) {return Math.round(centerX + x / pixelSize);}

int iY(float y) {return Math.round(centerY - y / pixelSize);}

float fx(int x) {return (x - centerX) * pixelSize;}

float fy(int y) {return (centerY - y) * pixelSize;}

void drawLine(Graphics g, float xP, float yP, float xQ, float yQ) {

g.drawLine(iX(xP), iY(yP), iX(xQ), iY(yQ));

}

void drawPoly(Graphics g, Poly poly) {

int n = poly.size();

if (n == 0) return;

Point2D a = poly.vertexAt(n - 1);

for (int i = 0; i < n; i++) {

Point2D b = poly.vertexAt(i);

drawLine(g, a.x, a.y, b.x, b.y);

a = b;

}

}

public void paint(Graphics g) {

initgr();

float xmin = -rWidth / 3, xmax = rWidth / 3,

ymin = -rHeight / 3, ymax = rHeight / 3;

// Draw clipping rectangle:

g.setColor(Color.blue);

drawLine(g, xmin, ymin, xmax, ymin);

drawLine(g, xmax, ymin, xmax, ymax);

drawLine(g, xmax, ymax, xmin, ymax);

drawLine(g, xmin, ymax, xmin, ymin);

g.setColor(Color.black);

if (poly == null) return;

int n = poly.size();

if (n == 0) return;

Point2D a = poly.vertexAt(0);

if (!ready) { // Show tiny rectangle around first vertex:

g.drawRect(iX(a.x) - 2, iY(a.y) - 2, 4, 4);

// Draw incomplete polygon:

for (int i = 1; i < n; i++) {

Point2D b = poly.vertexAt(i);

drawLine(g, a.x, a.y, b.x, b.y);

a = b;

}

}

116 4 Classic 2D Algorithms

else {

poly.clip(xmin, ymin, xmax, ymax);

drawPoly(g, poly);

}

}

}

class Poly {

Vector<Point2D> v = new Vector<Point2D>();

void addVertex(Point2D p) {v.addElement(p);}

int size() {return v.size();}

Point2D vertexAt(int i) {

return (Point2D) v.elementAt(i);

}

void clip(float xmin, float ymin, float xmax, float ymax) {

// Sutherland-Hodgman polygon clipping:

Poly poly1 = new Poly();

int n;

Point2D a, b;

boolean aIns, bIns;

// Tells whether A or B is on the same side as the rectangle

// Clip against x == xmax:

if ((n = size()) == 0) return;

b = vertexAt(n - 1);

for (int i = 0; i < n; i++) {

a = b; b = vertexAt(i);

aIns = a.x <= xmax; bIns = b.x <= xmax;

if (aIns != bIns)

poly1.addVertex(new Point2D(xmax,

a.y + (b.y - a.y) * (xmax - a.x) / (b.x - a.x)));

if (bIns) poly1.addVertex(b);

}

v = poly1.v; poly1 = new Poly();

// Clip against x == xmin:

if ((n = size()) == 0) return;

b = vertexAt(n - 1);

for (int i = 0; i < n; i++) {

a = b; b = vertexAt(i);

aIns = a.x >= xmin; bIns = b.x >= xmin;

4.5 Sutherland–Hodgman Polygon Clipping 117

if (aIns != bIns)

poly1.addVertex(new Point2D(xmin,

a.y + (b.y - a.y) * (xmin - a.x) / (b.x - a.x)));

if (bIns) poly1.addVertex(b);

}

v = poly1.v; poly1 = new Poly();

// Clip against y == ymax:

if ((n = size()) == 0) return;

b = vertexAt(n - 1);

for (int i = 0; i < n; i++) {

a = b; b = vertexAt(i);

aIns = a.y <= ymax; bIns = b.y <= ymax;

if (aIns != bIns)

poly1.addVertex(new Point2D(a.x +

(b.x - a.x) * (ymax - a.y) / (b.y - a.y), ymax));

if (bIns) poly1.addVertex(b);

}

v = poly1.v; poly1 = new Poly();

// Clip against y == ymin:

if ((n = size()) == 0) return;

b = vertexAt(n - 1);

for (int i = 0; i < n; i++) {

a = b; b = vertexAt(i);

aIns = a.y >= ymin; bIns = b.y >= ymin;

if (aIns != bIns)

poly1.addVertex(new Point2D(a.x +

(b.x - a.x) * (ymin - a.y) / (b.y - a.y), ymin));

if (bIns) poly1.addVertex(b);

}

v = poly1.v; poly1 = new Poly();

}

}

The Sutherland–Hodgman algorithm can be adapted for clipping regions other

than rectangles and for three-dimensional applications.

4.6 Bézier Curves

There are many algorithms for constructing curves. A particularly elegant and

practical one is based on specifying four points that completely determine a curve

segment: two endpoints and two control points. Curves constructed in this way are

referred to as (cubic) Bézier curves. In Fig. 4.13, we have the endpoints P0 and P3,

118 4 Classic 2D Algorithms

the control points P1 and P2, and the curve constructed on the basis of these four

points.

Writing a method to draw this curve is surprisingly easy, provided we use

recursion. As Fig. 4.14 shows, we compute six midpoints, namely:

• A, the midpoint of P0P1
• B, the midpoint of P2P3
• C, the midpoint of P1P2
• A1, the midpoint of AC

• B1, the midpoint of BC

• C1, the midpoint of A1B1

After this, we can divide the original task of drawing the Bézier curve P0P3 (with

control points P1 and P2) into two simpler tasks:

• drawing the Bézier curve P0C1, with control points A and A1

• drawing the Bézier curve C1P3, with control points B1 and B

Fig. 4.13 Bézier curve

based on four points

Fig. 4.14 Constructing

points for two smaller curve

segments

4.6 Bézier Curves 119

The two tasks need to be done only if the original points P0 and P3 are further apart

than some small distance, say, ε. Otherwise, we simply draw the straight line P0P3.

Since we are using pixels on a raster, we can also base the test just mentioned on

device coordinates: we will simply draw a straight line from P0 to P3 if and only if

the corresponding pixels are neighbors or identical, writing.

if (Math.abs(x0 - x3) <= 1 && Math.abs(y0 - y3) <= 1)

g.drawLine(x0, y0, x3, y3);

else ...

The recursive method bezier in the following program shows an implementation

of this algorithm. The program expects the user to specify the four points P0, P1, P2
and P3, in that order, by clicking the mouse. After the fourth point, P3, has been

specified, the curve is drawn. Any new mouse clicking is interpreted as the first

point, P0, of a new curve; the previous curve simply disappears and another curve

can be constructed in the same way as the first one, and so on.

// Bezier.java: Bezier curve segments.

// Uses: Point2D (Section 1.4).

import java.awt.*;

import java.awt.event.*;

public class Bezier extends Frame {

public static void main(String[] args) {new Bezier();}

Bezier() {

super("Define endpoints and control points of curve segment");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

});

setSize(500, 300);

add("Center", new CvBezier());

setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));

setVisible(true);

}

}

class CvBezier extends Canvas {

Point2D[] p = new Point2D[4];

int np = 0, centerX, centerY;

float rWidth = 10.0F, rHeight = 7.5F, eps = rWidth / 100F,

pixelSize;

120 4 Classic 2D Algorithms

CvBezier() {

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent evt) {

float x = fx(evt.getX()), y = fy(evt.getY());

if (np == 4) np = 0;

p[np++] = new Point2D(x, y);

repaint();

}

});

}

void initgr() {

Dimension d = getSize();

int maxX = d.width - 1, maxY = d.height - 1;

pixelSize = Math.max(rWidth / maxX, rHeight / maxY);

centerX = maxX / 2; centerY = maxY / 2;

}

int iX(float x) {return Math.round(centerX + x / pixelSize);}

int iY(float y) {return Math.round(centerY - y / pixelSize);}

float fx(int x) {return (x - centerX) * pixelSize;}

float fy(int y) {return (centerY - y) * pixelSize;}

Point2D middle(Point2D a, Point2D b) {

return new Point2D((a.x + b.x) / 2, (a.y + b.y) / 2);

}

void bezier(Graphics g, Point2D p0, Point2D p1, Point2D p2,

Point2D p3) {

int x0 = iX(p0.x), y0 = iY(p0.y),

x3 = iX(p3.x), y3 = iY(p3.y);

if (Math.abs(x0 - x3) <= 1 && Math.abs(y0 - y3) <= 1)

g.drawLine(x0, y0, x3, y3);

else {

Point2D

a = middle(p0, p1), b = middle(p3, p2), c = middle(p1, p2),

a1 = middle(a, c), b1 = middle(b, c), c1 = middle(a1, b1);

bezier(g, p0, a, a1, c1);

bezier(g, c1, b1, b, p3);

}

}

public void paint(Graphics g) {

initgr();

int left = iX(-rWidth / 2), right = iX(rWidth / 2),

bottom = iY(-rHeight / 2), top = iY(rHeight / 2);

g.drawRect(left, top, right - left, bottom - top);

4.6 Bézier Curves 121

for (int i = 0; i < np; i++) {

// Show tiny rectangle around point:

g.drawRect(iX(p[i].x) - 2, iY(p[i].y) - 2, 4, 4);

if (i > 0)

// Draw line p[i-1]p[i]:

g.drawLine(iX(p[i - 1].x), iY(p[i - 1].y),

iX(p[i].x), iY(p[i].y));

}

if (np == 4) bezier(g, p[0], p[1], p[2], p[3]);

}

}

Since this program uses the isotropic mapping mode with a logical coordinate

ranges 0–10.0 for x and 0–7.5 for y, we should only use a rectangle whose height is
75% of its width. As in Sects. 1.3 and 1.4, we place this rectangle in the center of the

screen and make it as large as possible. It is shown in Fig. 4.15; if the four points for

the curve are chosen within this rectangle, they will be visible regardless of how the

size of the window is changed by the user. The same applies to the curve, which is

automatically scaled, in the same way as we did in Sects. 1.3 and 1.4.

This way of constructing a Bézier curve may look like magic. To understand

what is going on, we must be familiar with the notion of parametric representation,
which, in 2D, we can write as

x ¼ f tð Þ
y ¼ g tð Þ

(

where t is a parameter, which we may think of as time. Variable t ranges from 0 to 1:

as if we move from P0 to P3 with constant velocity, starting at t ¼ 0 and finishing at

Fig. 4.15 A constructed Bézier curve

122 4 Classic 2D Algorithms

t ¼ 1. At time t ¼ 0.5 we are half-way. With cubic Bézier curves, both f(t) and g(t)
are 3rd degree polynomials in t.

Before we proceed, let us pay some attention to expressions such as

A ¼ 1

2
P0 þ P1ð Þ

to compute the midpoint A of line segment P0P1. The points in such expressions

actually denote vectors, which enables us to form their sum and to multiply them by

a scalar. Without this shorthand notation, we would have to write

OA ¼ 1

2
OP0 þOP1ð Þ

which would be rather awkward. Let us write each Pi as the column vector

Pi ¼
P i½ �:x
P i½ �:y

 !

(where we have taken the liberty of mixing mathematical and programming nota-

tions). In the same way, we combine the above functions f(t) and g(t), writing

B tð Þ ¼ x

y

 !
¼ f tð Þ

g tð Þ

 !

Then the cubic Bézier curve is defined as follows:

B tð Þ ¼ 1� tð Þ3P0 þ 3t 1� tð Þ2P1 þ 3t2 1� tð ÞP2 þ t3P3 ð4:13Þ

Substituting 0 and 1 for t, we find B(0) ¼ P0 and B(1) ¼ P3. Before discussing the

relation between this definition and the recursive midpoint construction, let us see

this definition in action. It enables us to replace the recursive method bezierwith the
following non-recursive one:

void bezier1(Graphics g, Point2D[] p) {

int n = 200;

float dt = 1.0F/n, x = p[0].x, y = p[0].y, x0, y0;

for (int i=1; i<=n; i++) {

float t = i * dt, u = 1 - t,

tuTriple = 3 * t * u,

c0 = u * u * u,

c1 = tuTriple * u,

c2 = tuTriple * t,

c3 = t * t * t;

4.6 Bézier Curves 123

x0 = x; y0 = y;

x = c0*p[0].x + c1*p[1].x + c2*p[2].x + c3*p[3].x;

y = c0*p[0].y + c1*p[1].y + c2*p[2].y + c3*p[3].y;

g.drawLine(iX(x0), iY(y0), iX(x), iY(y));

}

}

This method produces the same curve as that by bezier, provided we also replace
the call to bezier with this one:

bezier1(g, P);

We will discuss a more efficient non-recursive method, bezier2, equivalent to
bezier1, at the end of this section.

Since B(t) denotes the position at time t, the derivative B0(t) of this function

(which is also a column vector depending on t) can be regarded as the velocity.
After some algebraic manipulation and differentiating, we find

B0 tð Þ ¼ �3 t� 1ð Þ2P0 þ 3 3t� 1ð Þ t� 1ð ÞP1 � 3t 3t� 2ð ÞP2 þ 3t2P3 ð4:14Þ

which gives

B0 0ð Þ ¼ 3 P1 � P0ð Þ
B0 1ð Þ ¼ 3 P3 � P2ð Þ

These two results are velocity vectors at the starting point P0 and the endpoint P3.

They show that the direction in which the curve is drawn along the vectors P0P1 and

P2P3, as Fig. 4.16 illustrates.

Fig. 4.16 Velocity at the

points P0 and P3

124 4 Classic 2D Algorithms

We have been discussing two entirely different ways to construct a curve

between the points P0 and P3, and, without an experiment, it is not clear that

these curves are identical. For the time being, we will distinguish between the

two curves and refer to them as

• the midpoint curve, constructed by a recursive process of computing midpoints,

and implemented in the method bezier;
• the analytical curve, given by Eq. (4.13) and implemented in the method

bezier1.

Although both methods are based on the four points P0, P1, P2 and P3, the ways we

compute hundreds of curve points (to connect them by tiny straight lines) are very

different. It would be unsatisfactory if it remained a mystery why these curves are

identical. Let us therefore briefly discuss a way to prove this fact.

Using the function B(t) of Eq. (4.13), we find

B 0:5ð Þ ¼ 1

8
P0 þ 3P1 þ 3P3 þ P3ð Þ

Since point C1 in Fig. 4.14 was used to divide the whole midpoint curve into two

smaller curves, we might suspect that C1 and B(0.5) are two different expressions

for the same point. We verify this by expressing C1 in terms of the four given points,

using Fig. 4.14.

Because C1 is the midpoint of A1B1 and both A1 and B1 are also midpoints, and

so on, we find

A ¼ 1

2
P0 þ P1ð Þ

B ¼ 1

2
P2 þ P3ð Þ

C ¼ 1

2
P1 þ P2ð Þ

ð4:15Þ

A1 ¼ 1

2
Aþ Cð Þ ¼ 1

4
P0 þ 2P1 þ P2ð Þ

B1 ¼ 1

2
Cþ Bð Þ ¼ 1

4
P1 þ 2P2 þ P3ð Þ

ð4:16Þ

C1 ¼ 1

2
A1 þ B1ð Þ ¼ 1

8
P0 þ 3P1 þ 3P2 þ P3ð Þ ð4:17Þ

which is indeed the expression that we also had found for B(0.5). This proves that
point C1, which obviously belongs to the midpoint curve, also lies on the analytical

curve. Besides P0 and P3, there is now only one point, C1, of which we have proved

that it lies on both curves, so it seems we are still far away from the proof that these

curves are identical. However, we can now apply the same argument recursively,

4.6 Bézier Curves 125

which would enable us to find as many points that lie on both curves as we like.

Restricting ourselves to the first half of each curve, we focus on the points P0, A, A1

and C1, which we can again use to construct both midpoint and analytical curves.

For the latter we use the following equation, which is similar to Eq. (4.13):

b uð Þ ¼ 1� uð Þ3P0 þ 3u 1� uð Þ2Aþ 3u2 1� uð ÞA1 þ u3C1 ð4:18Þ

It is then obvious that b(0) ¼ P0, b(1) ¼ C1 and b(0.5) is identical with a midpoint

(between P0 and C1) used in the recursive process, in the same way as B(0.5) being
identical with the midpoint C1. There is one remaining difficulty: is the analytical

curve given by Eq. (4.18) really the same as the first part of that given by Eq. (4.13)?

We will show that this is indeed the case. Using u ¼ 2 t (since u ¼ 1 and t ¼ 0.5 at

point C1) we have

b uð Þ ¼ B tð Þ

To verify this, note that, according to Eq. (4.18), we have

b uð Þ ¼ b 2tð Þ ¼ 1� 2tð Þ3P0 þ 6t 1� 2tð Þ2Aþ 12t2 1� 2tð ÞA1 þ 8t3C1

Using Eqs. (4.15), (4.16) and (4.17), we can write the last expression as

1� 2tð Þ3P0 þ 3t 1� 2tð Þ2 P0 þ P1ð Þ þ 3t2 1� 2tð Þ P0 þ 2P1 þ P2ð Þ
þ t3 P0 þ 3P1 þ 3P2 þ P3ð Þ

Rearranging this formula, we find that it is equal to the expression for B(t) in

Eq. (4.13), which is what we had to prove.

Building Smooth Curves from Curve Segments

Suppose that we want to combine two Bézier curve segments, one based on the four

points P0, P1, P2, P3 and the other on Q0, Q1, Q2 and Q3, in such a way that the

endpoint P3 of the first segment coincides with the starting point Q0 of the second.

Then the combined curve will be smoothest if the final velocity B0(1) (see Fig. 4.16)
of the first segment is equal to the initial velocity B0(0) of the second. This will be
the case if the point P3 (¼ Q0) lies exactly in the middle of the line segment P2Q1.

The high degree of smoothness obtained in this way is referred to as second-order

continuity. It implies that not only the two segments have the same tangent in their

common point P3 ¼ Q0, but also the curvature is continuous in this point. By

contrast, we have first-order continuity if P3 lies on the line segment P2Q1 but not in

the middle of it. In this case, although the curve looks reasonably smooth because

both segments have the same tangent in the common point P3 ¼ Q0, there is a

discontinuity in the curvature in this point.

126 4 Classic 2D Algorithms

Matrix Notation

It will be clear that we can write Eq. (4.13) as follows:

B tð Þ ¼ 1� tð Þ3 3t 1� tð Þ2 3t2 1� tð Þ t3
� �

P0

P1

P2

P3

2
66664

3
77775 ð4:19Þ

Since the row vector in this matrix product is equal to

�t3 þ 3t2 � 3tþ 1 3t3 � 6t2 þ 3t �3t3 þ 3t2 t3
� �

we can also write it as the product of a simpler row vector, [t3 t2 t 1], and a

4 � 4 matrix, obtaining the following result for the Bézier curve:

B tð Þ ¼ t3 t2 t 1
� �

�1 3 �3 1

3 �6 3 0

�3 3 0 0

1 0 0 0

2
66664

3
77775

P0

P1

P2

P3

2
66664

3
77775 ð4:20Þ

As we know, any matrix product ABC of three matrices is equal to both (AB)C and

A(BC). If we do the first matrix multiplication first, as in (AB)C, Eq. (4.20) reduces
to Eq. (4.19). On the other hand, if we do the second first, as in A(BC), we obtain the
following result:

B tð Þ ¼ �P0 þ 3P1 � 3P2 þ P3ð Þt3 þ 3 P0 � 2P1 þ P3ð Þt2 � 3 P1 � P0ð Þtþ P0

This is interesting because it provides us with a very efficient way of drawing a

Bézier curve segment, as the following improved method shows:

void bezier2(Graphics g, Point2D[] p) {

int n = 200;

float dt = 1.0F/n,

cx3 = -p[0].x + 3 * (p[1].x - p[2].x) + p[3].x,

cy3 = -p[0].y + 3 * (p[1].y - p[2].y) + p[3].y,

cx2 = 3 * (p[0].x - 2 * p[1].x + p[2].x),

cy2 = 3 * (p[0].y - 2 * p[1].y + p[2].y),

cx1 = 3 * (p[1].x - p[0].x),

cy1 = 3 * (p[1].y - p[0].y),

cx0 = p[0].x,

cy0 = p[0].y,

x = p[0].x, y = p[0].y, x0, y0;

4.6 Bézier Curves 127

for (int i=1; i<=n; i++) {

float t = i * dt;

x0 = x; y0 = y;

x = ((cx3 * t + cx2) * t + cx1) * t + cx0;

y = ((cy3 * t + cy2) * t + cy1) * t + cy0;

g.drawLine(iX(x0), iY(y0), iX(x), iY(y));

}

}

The above computation of x and y is an application of Horner’s rule, according
to which we can efficiently compute polynomials by using the right-hand rather

than the left-hand side of the following equation:

a3t
3 þ a2t

2 þ a1tþ a0 ¼ a3tþ a2ð Þtþ a1ð Þtþ a0

Although bezier2 does not look simpler than bezier1, it is much more efficient

because of the reduced number of arithmetic operations in the for-loop. With a large

number of steps, such as n ¼ 200 in these versions bezier1 and bezier2, it is the
number of operations inside the loop that counts, not the preparatory actions that

precede the loop.

3D Curves

Although the curves discussed here are two-dimensional, three-dimensional curves

can be generated in the same way. We simply add a z-component to B(t) and to the

control points, and compute this in the same way as the x- and y-components are

computed. The possibility of generating curves that do not lie in a plane is related to

the degree 3 of the polynomials we have been discussing. If the four given points do

not lie in the same plane, the generated cubic curve segment does not either. By

contrast, quadratic curves are determined by only three points, which uniquely

define a plane (unless they are collinear); the quadratic curve through those three

points lies in that plane. In other words, polynomial curves can be non-planar only if

they are at least of degree 3.

4.7 B-Spline Curve Fitting

Besides the techniques discussed in the previous section, there are other ways of

generating curves x¼ f(t), y¼ g(t), where f and g are polynomials in t of degree 3. A
popular one, known as B-splines, has the characteristic that the generated curve will
normally not pass through the given points. We will refer to all these points as

control points. A single segment of such a curve, based on four control points A, B,

128 4 Classic 2D Algorithms

C and D looks rather disappointing in that it seems to be related only to B and

C. This is shown in Fig. 4.17, in which, from left to right, the points A, B, C and D

are again marked with tiny squares.

However, a strong point in favor of B-splines is that this technique makes it easy

to draw a very smooth curve consisting of many curve segments. To avoid confu-

sion, note that each curve segment consists of many straight line segments. For

example, Fig. 4.17 shows one curve segment, which consists of 50 line segments.

Since four control points are required for a single curve segment we have

Number of control points ¼ Number of curve segmentsþ 3

Figure 4.18 seems to violate this rule, since there are five curve segments, and it

looks as if there are only six control points. However, two of these were used twice.

This curve was constructed by clicking first on the lower-left vertex (¼ point 0),

followed by clicking on the upper-left one (¼ point 1), then the upper-right one (¼
point 2), and so on, following the polygon counter-clockwise. Altogether, the eight

control points 0, 1, 2, 3, 4, 5, 0, 1 were selected, in that order. If after this, a key on

the keyboard is pressed, only the curve is redrawn, not the control points and the

lines that connect them.

If we had clicked on yet another control point (point 2, at the top, right), we

would have had a closed curve. In general, to produce a closed curve, there must be

three overlapping vertices, that is, two overlapping polygon edges. As you can see

in Fig. 4.18, the curve is very smooth indeed: we have second-order continuity, as

discussed in the previous section. Recall that this implies that even the curvature is

continuous in the points where two adjacent curve segments meet. As the part of the

curve near the lower-right corner shows, we can make the distance between a curve

and the given points very small by supplying several points close together.

Fig. 4.17 Single B-spline segment, based on four points

4.7 B-Spline Curve Fitting 129

The mathematics for B-splines can be expressed by the following matrix equa-

tion, similar to Eq. (4.20):

B tð Þ ¼ 1

6
t3 t2 t 1
� �

�1 3 �3 1

3 �6 3 0

�3 0 3 0

1 4 1 0

2
66664

3
77775

P0

P1

P2

P3

2
66664

3
77775 ð4:21Þ

If we have n control points P0, P1, . . ., Pn–1, (n � 4) then, strictly speaking,

Eq. (4.21) applies only to the first curve segment. For the second, we have to

replace the points P0, P1, P2 and P3 in the column vector with P1, P2, P3 and P4, and

so on. As with Bézier curves, the variable t ranges from 0 to 1 for each curve

segment. Multiplying the above 4 � 4 matrix by the column vector that follows it,

we obtain

B tð Þ ¼ 1

6
t3 t2 t 1
� �

�P0 þ 3P1 � 3P2 þ P3

3P0 � 6P1 þ 3P2

�3P0 þ 3P2

P0 þ 4P1 þ P2

2
666664

3
777775

or

B tð Þ ¼ 1

6
�P0 þ 3P1 � 3P2 þ P3ð Þt3 þ 1

2
P0 � 2P1 þ P2ð Þt2þ

1

2
�P0 þ P2ð Þtþ 1

6
P0 þ 4P1 þ P2ð Þ

Fig. 4.18 B-spline curve consisting of five curve segments

130 4 Classic 2D Algorithms

The following program is based on this equation. The user can click any number of

points, which are used as the points P0, P1, . . ., Pn–1. The first curve segment appears

immediately after the fourth control point, P3, has been defined, and each additional

control point causes a new curve segment to appear. To show only the curve, the

user can press any key, which also terminates the input process. After this, we can

generate another curve by clicking again. The old curve then disappears.

Figures 4.17 and 4.18 have been produced by this program:

// Bspline.java: B-spline curve fitting.

// Uses: Point2D (Section 1.4).

import java.awt.*;

import java.awt.event.*;

import java.util.*;

public class Bspline extends Frame {

public static void main(String[] args) {new Bspline();}

Bspline() {

super("Define points; press any key after the final one");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e){

System.exit(0);

}

});

setSize(500, 300); add("Center", new CvBspline());

setCursor(Cursor.getPredefinedCursor(

Cursor.CROSSHAIR_CURSOR));

setVisible(true);

}

}

class CvBspline extends Canvas {

Vector<Point2D> V = new Vector<Point2D>();

int np = 0, centerX, centerY;

float rWidth = 10.0F, rHeight = 7.5F, eps = rWidth / 100F,

pixelSize;

boolean ready = false;

CvBspline() {

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent evt) {

float x = fx(evt.getX()), y = fy(evt.getY());

if (ready) {

V.removeAllElements();

np = 0;

ready = false;

}

4.7 B-Spline Curve Fitting 131

V.addElement(new Point2D(x, y));

np++; repaint();

}

});

addKeyListener(new KeyAdapter() {

public void keyTyped(KeyEvent evt) {

evt.getKeyChar();

if (np >= 4) ready = true;

repaint();

}

});

}

void initgr() {

Dimension d = getSize();

int maxX = d.width - 1, maxY = d.height - 1;

pixelSize = Math.max(rWidth / maxX, rHeight / maxY);

centerX = maxX / 2; centerY = maxY / 2;

}

int iX(float x){return Math.round(centerX + x / pixelSize);}

int iY(float y){return Math.round(centerY - y / pixelSize);}

float fx(int x){return (x - centerX) * pixelSize;}

float fy(int y){return (centerY - y) * pixelSize;}

void bspline(Graphics g, Point2D[] p) {

int m = 50, n = p.length;

float xA, yA, xB, yB, xC, yC, xD, yD, a0, a1, a2, a3,

b0, b1, b2, b3, x = 0, y = 0, x0, y0;

boolean first = true;

for (int i = 1; i < n - 2; i++) {

xA = p[i-1].x; xB = p[i].x;

xC = p[i+1].x; xD = p[i+2].x;

yA = p[i-1].y; yB = p[i].y;

yC = p[i+1].y; yD = p[i+2].y;

a3 = (-xA + 3 * (xB - xC) + xD) / 6;

b3 = (-yA + 3 * (yB - yC) + yD) / 6;

a2 = (xA - 2 * xB + xC)/2; b2 = (yA - 2 * yB + yC)/2;

a1 = (xC - xA) / 2; b1 = (yC - yA) / 2;

a0 = (xA + 4 * xB + xC)/6; b0 = (yA + 4 * yB + yC)/6;

for (int j = 0; j <= m; j++) {

x0 = x; y0 = y;

float t = (float) j / (float) m;

132 4 Classic 2D Algorithms

x = ((a3 * t + a2) * t + a1) * t + a0;

y = ((b3 * t + b2) * t + b1) * t + b0;

if (first) first = false;

else

g.drawLine(iX(x0), iY(y0), iX(x), iY(y));

}

}

}

public void paint(Graphics g) {

initgr();

int left = iX(-rWidth / 2), right = iX(rWidth / 2),

bottom = iY(-rHeight / 2), top = iY(rHeight / 2);

g.drawRect(left, top, right - left, bottom - top);

Point2D[] p = new Point2D[np]; V.copyInto(p);

if (!ready) {

for (int i = 0; i < np; i++) {

// Show tiny rectangle around point:

g.drawRect(iX(p[i].x) - 2, iY(p[i].y) - 2, 4, 4);

if (i > 0) // Draw line p[i-1]p[i]:

g.drawLine(iX(p[i - 1].x), iY(p[i - 1].y),

iX(p[i].x), iY(p[i].y));

}

}

if (np >= 4) bspline(g, p);

}

}

To see why B-splines are so smooth, you should differentiate B(t) twice and

verify that, for any curve segment other than the final one, the values of B(1), B0

(1) and B00(1) at the endpoints of these segments are equal to the values B(0), B0

(0) and B00(0) at the start point of the next curve segment. For example, for the

continuity of the curve itself we find

B 1ð Þ ¼ 1

6
�P0 þ 3P1 � 3P2 þ P3ð Þ þ 1

2
P0 � 2P1 þ P2ð Þ þ 1

2
�P0 þ P2ð Þ

þ 1

6
P0 þ 4P1 þ P2ð Þ

¼ 1

6
P1 þ 4P2 þ P3ð Þ

for the first curve segment, based on P0, P1, P2 and P3, while we can immediately

see that we obtain exactly this value if we compute B(0) for the second curve

segment, based on P1, P2, P3 and P4.

4.7 B-Spline Curve Fitting 133

Exercises

4.1 Replace the drawLine method based on Bresenham’s algorithm and listed

almost at the end of Sect. 1 with an even faster version that benefits from the

symmetry of the two halves of the line. For example, with endpoints P and Q

satisfying Eq. (4.1), and using the integer value xMid halfway between xP and

xQ, we can let the variable x run from xP to xMid and also use a variable x2,
which at the same time runs backward from xQ to xMid. In each iteration of the

loop, x is increased by 1 and x2 is decreased by 1. Note that there will be either
one point or two points in the middle of the line, depending on the number of

pixels to be plotted being odd or even. Be sure that no pixel of the line is

omitted and that no pixel is put twice on the screen. To test the latter, you can

use XOR mode so that writing the same pixel twice would have the same effect

as omitting a pixel.

4.2 Generalize the method doubleStep2 (of Sect. 2), to make it work for any lines.

The program should allow the user to enter the two endpoints of each line

through mouse-clicking. It should take as many lines as the user enters. Make

sure to take care of termination condition, i.e. a line with an odd number of

pixels should stop just before the last pixel (i.e. the 2nd endpoint) and simply

draw the last pixel after exiting the loop.

4.3 Add Bresenham’s algorithm into the code of Ex. 4.2 to compare the perfor-

mance of the two algorithms. For each line specified in Ex. 4.2, your program

should draw the line twice, in blue color using Bresenham’s algorithm and in

red color using the double-step algorithm. Your program should also display

the time taken (using the Java method nanoTime) for each algorithm. Your

timer should start as the first statement (after declarations) and finish as the last

statement inside the implemented drawLine method. The displayed times may

read like

“Bresenham: xxx ns”

“Double-Step: xxx ns”

on a separate area of the canvas, not on the command line.

4.4 Since normal pixels are very small, they do not show very clearly which of

them are selected by Bresenham’s algorithms. Use a grid to simulate a screen

with a very low resolution. Demonstrate both the method drawLine (with g as

its first argument) of Sect. 1 and the method drawCircle of Sect. 3. Only the

gridpoints of your grid are to be used as the centers of ‘superpixels’. The
method putPixel is to draw a small circle with such a center and the distance

dGrid of two neighboring gridpoints as its diameter. Do not change the

methods drawLine and drawCircle that we have developed, but use dGrid,
just mentioned, in a method putPixel that is very different from the one shown

at the beginning of Sect. 1. Figure 4.19 shows a grid (with dGrid¼ 10) and both

a line and a circle drawn in this way. As in Fig. 4.1, the line shown here has the

endpoints P(1, 1) and Q(12, 5) but this time the positive y-axis points

134 4 Classic 2D Algorithms

downward and the origin is the upper-left corner of the drawing rectangle. The

circle has radius r ¼ 8, and is approximated by the same pixels as shown in

Fig. 4.6 for one eighth of this circle. The line and circle were produced by the

following calls to the methods drawLine and drawCircle of Sects. 1 and 3 (but

with a different method putPixel):

drawLine(g, 1, 1, 12, 5); // g, xP, yP, xQ, yQ

drawCircle(g, 23, 10, 8); // g, xC, yC, r

4.5 In the Bezier.java we constructed only one curve segment, using the points P0,

P1, P2 and P3. Extend this program to enable the user to draw very smooth

curves consisting of more than one segment. After the first segment has been

drawn, the second one is based on these points Q0, Q1, Q2 and Q3 (similar to P0,

P1, P2 and P3):

• Q0 is identical with P3; clicking on P3 acts as a signal that we want to start

another curve segment.

• Q1 is not specified by the user, but is automatically constructed by reflecting

P2 about P3; in other words, P3 (¼ Q0) will be the midpoint of P2Q1. This

principle will make the curve very smooth.

• Q2 and Q3 are defined in the usual way, that is, by clicking on these points.

It should also be possible to specify a third curve segment by starting at Q3,

and so on. When the curve (consisting of an arbitrary number of segments) is

completed, the user clicks on a point other than the final one of the last segment.

This will be the starting point (similar of P0) of an entirely new curve (to be

drawn in addition to the previous one), unless, after this, the user clicks on this

new point once again: this clicking twice on the same point will be the signal

that the drawing is ready. As soon as a curve is completed, it is to be drawn

without displaying any straight lines connecting control points and without any

little squares marking these points.

Fig. 4.19 Bresenham

algorithms for a line and

for a circle (see also

Figs. 4.1 and 4.6)

Exercises 135

4.6 Extend the program Bspline.java of Sect. 7. Supply a grid, with visible

gridpoints lying, say, 10 pixels apart, horizontally and vertically. Any control

point specified by the user using the mouse should be pulled to the nearest

gridpoint. This makes it easier for the user to specify two or more points that lie

on the same horizontal or vertical line. Apart from using a grid, your program

will also be different from Bspline.java in that it must be able to store several

B-spine curves instead of only one. The following characters are to be

interpreted as commands:

+ Increase the distance between gridpoints by one.

– Decrease the distance between gridpoints by one.

n After this command, start with a new curve, retaining the previous ones.

d Delete the last curve.

g Change the visibility status of gridpoints (visible/invisible).

c Show only the curves, without any control points or lines connecting these.

4.7 Implement a restricted version of Bresenham’s line-drawing algorithm as a

demonstration. The purpose of the exercise is to visualize how this algorithm

works by showing its stepwise execution on an exaggerated screen area as a

10 � 10 grid. Draw the grid on the left half of the drawing space and the main

body of method drawLine2 (listed in Sect. 1) on the right half with text font size
of 14. At the bottom of the drawing space, add both a button labeled Step and a
small space for displaying the values of the program variables dx, c, m, d, x and
y. When the user clicks on two intersection points P and Q, satisfying Eq. (4.1),

on the grid, a thin line is drawn and the initial values of the program variables

d and m are displayed. Just after the definition of point Q, the call to putPixel is
highlighted (by coloring or boxing the statement), indicating that this program

line is next to be executed. Then whenever the user clicks on Step, the

highlighted program line is executed, the next program line in the right half

is highlighted, and the values of d, x and y are updated. Each time putPixel is
executed, a filled circle is drawn on the appropriate grid intersection

(representing a pixel on the line).

136 4 Classic 2D Algorithms

Chapter 5

Perspective and 3D Data Structure

We now turn to the exciting subject of 3D graphics. As soon as we know how to

compute the perspective image of a single point, we can easily produce more

interesting images. To obtain the perspective image of a straight line, we simply

connect the images of its endpoints, using the fact that the image of a straight line is

also a straight line. In this chapter, the computation of the perspective image of a

point is done in two steps: a viewing transformation followed by a perspective

transformehation.

5.1 Introduction

In Fig. 5.1 a two-dimensional representation of a cube is shown along with some

auxiliary lines. Although AB is a horizontal edge, it is not a horizontal line in the

picture. Lines in 3D space that are horizontal and parallel meet in the picture in a

so-called vanishing point. All these vanishing points lie on the same line, which is

called the horizon. Horizon and vanishing points refer to the 2D image space, not to

the 3D object space. For many centuries these concepts have been used by artists to

draw realistic images of three-dimensional objects. This way of representing three-

dimensional objects is usually referred to as perspective.
The invention of photography offered a new (and easier) way of producing

images in perspective. There is a strong analogy between a camera used in pho-

tography and the human eye. Our eye is a very sophisticated instrument of which a

camera is an imitation. In the following discussion the word eye may be replaced

with camera.
It is obvious that the image will depend upon the position of the eye. An

important aspect is the distance between the eye and the object, since the effect

of perspective will be inversely proportional to this distance. If the eye is close to

the object, the effect of perspective is strong, as shown in Fig. 5.2a. Here we can

very clearly see that in the image the extensions of parallel line segments meet.

© Springer International Publishing AG 2017

L. Ammeraal, K. Zhang, Computer Graphics for Java Programmers,
DOI 10.1007/978-3-319-63357-2_5

137

Besides the classical and the photographic method, there is a way of producing

perspective images based on analytical geometry. Let us write X and Y for 2D and x,
y and z for 3D coordinates.

If we want to produce a drawing in perspective, we are given a great many points

P(x, y, z) of the object and we want their images P0(X, Y) in the picture. Thus all we
need is a mapping from the world coordinates (x, y, z) of a point P to the screen
coordinates (X, Y) of its central projection P0. We imagine a screen between the

object and the eye E. For every point P of the object the line PE intersects the screen

at point P0. It is convenient to perform this mapping in two stages. The first is called

a viewing transformation; point P is left at its place, but we change from world

coordinates to so-called eye coordinates. The second stage is called a perspective
transformation. This is a proper transformation from P to P0, combined with a

transition from the three-dimensional eye coordinates to the two-dimensional

screen coordinates:

World coordinates xw; yw; zwð Þ
Viewing transformation ↓

Eye coordinates xe; ye; zeð Þ
Perspective transformation ↓

Screen coordinates X; Yð Þ

Vanishing point Horizon Vanishing point

Fig. 5.1 Vanishing points on the horizon

Fig. 5.2 (a) Eye nearby
and (b) eye far away

138 5 Perspective and 3D Data Structure

5.2 Viewing Transformation

To perform the viewing transformation we must be given an object and a viewpoint

E. Let us require that the world-coordinate system be right-handed. It is convenient

if its origin O lies more or less centrally in the object; we then view the object from

E to O. We will assume this to be the case; in practice this might require a

coordinate transformation consisting of decreasing the original world coordinates

by the coordinates of the central object point. We will include this very simple

coordinate transformation in our program, without writing it down in mathematical

notation.

Let the viewpoint E be given by its spherical coordinates ρ (¼ rho), θ (¼ theta),
φ (¼ phi), relative to the world-coordinate system. Thus its world-coordinates are

xE ¼ ρ sin φ cos θ

yE ¼ ρ sin φ sin θ

zE ¼ ρ cos φ

ð5:1Þ

as shown in Fig. 5.3.

The direction of vector EO (¼ �OE) is said to be the viewing direction. From
our eye at E we can only see points within some cone whose axis is EO and whose

apex is E. If the Cartesian coordinates xE, yE, zE of viewpoint E were given, we

could derive the spherical coordinates from them as follows:

rho = Math.sqrt(xE * xE + yE * yE + zE * zE);

theta = Math.atan2(yE, xE);

phi = Math.acos(zE/rho);

Our final objective will be to compute the screen coordinates X, Y, where we

have an X-axis and a Y-axis, lying in a screen between E and O and perpendicular to

Fig. 5.3 Spherical

coordinates of viewpoint E

5.2 Viewing Transformation 139

the viewing direction EO. This is why the eye-coordinate system, which we will

deal with first, will have its xe-axis and ye-axis perpendicular to EO, leaving the

ze-axis in the direction of OE. The origin of the eye-coordinate system is viewpoint E,

as shown in Fig. 5.4. Viewing from E to O, we find the positive xe-axis pointing to the
right and the positive ye-axis upwards. These directions will later enable us to

establish screen axes in the same directions. We could have used a positive ze-axis
pointing from E to O; on the one hand this is attractive because it makes the ze-
coordinates of all object points positive, but, on the other, it would have required a

left-handed eye-coordinate system. In this book we will use a right-handed

eye-coordinate system (as shown in Fig. 5.4) to avoid confusion with regard to the

use of the cross product, taking the minus sign of ze-coordinates into the bargain.
The viewing transformation can be written as a matrix multiplication, for which

we need the 4 � 4 viewing matrix V:

xe ye ze 1½ � ¼ xw yw zw 1½ �V ð5:2Þ

To find V, we imagine this transformation to be composed of three elementary ones,

for which the matrices can easily be written down. Matrix V will be the product of

these three matrices. Each of the three transformations is in fact a change of

coordinates and has therefore a matrix which is the inverse of the matrix for a

similar point transformation.

1. Moving the origin from O to E

We perform a translation of the coordinate system such that viewpoint E becomes

the new origin. The matrix for this change of coordinates is

T ¼

1 0 0 0

0 1 0 0

0 0 1 0

�xE �yE �zE 1

2
66664

3
77775

ð5:3Þ

(Do not confuse xE, yE, zE, the world coordinates of viewpoint E, with xe, ye, ze, the
eye coordinates of any point.) The new coordinate system is shown in Fig. 5.5.

Fig. 5.4 Eye-coordinate

system

140 5 Perspective and 3D Data Structure

2. Rotating the coordinate system about the z-axis

Starting with Fig. 5.5 we rotate the coordinate system about the z-axis through the

angle θ + 90�, so the new x-axis points to the right and is perpendicular to the

vertical plane through E and O. The matrix for this change of coordinates is the

same as that for a rotation of points through the angle�(θ + 90�), that is,�θ � 90�.
We obtain the 4 � 4 matrix Rz for this rotation by using a 2 � 2 matrix for this

purpose, as discussed in Sect. 3.2, and adding the third and fourth columns and rows

of a 4 � 4 unit matrix:

Rz ¼

cos �θ � 90
�� �

sin �θ � 90
�� �

0 0

� sin �θ � 90
�� �

cos �θ � 90
�� �

0 0

0 0 1 0

0 0 0 1

2
666664

3
777775

¼

� sin θ � cos θ 0 0

cos θ � sin θ 0 0

0 0 1 0

0 0 0 1

2
66664

3
77775

ð5:4Þ

If you find the simplifications

cos �θ � 90
�� � ¼ � sin θ and sin �θ � 90

�� � ¼ � cos θ

difficult, it will be helpful to plot the two angles of this formula in a unit circle for

some value of θ, as Fig. 5.6 illustrates.

After applying the above matrix Rz, the new position of the x-, y- and z-axes is as
shown in Fig. 5.7.

3. Rotating the coordinate system about the x-axis

Since the z-axis is to have the direction OE, we now rotate the coordinate system

about the x-axis through the angle φ. The dashed line near the positive z-axis in

Fig. 5.5 Situation before

rotation about the z-axis

5.2 Viewing Transformation 141

Fig. 5.7 indicates the new y-axis after this rotation. A rotation about the x-axis, in
such a way that the y-axis goes towards the z-axis is a positive one: it corresponds to
a right-handed screw moving into the direction of the positive x-axis. However,
since we are performing a coordinate transformation instead of rotating points, we

have to use �φ instead of φ as the angle of rotation, so that we obtain the following

rotation matrix:

Rx ¼

1 0 0 0

0 cos �φð Þ sin �φð Þ 0

0 � sin �φð Þ cos �φð Þ 0

0 0 0 1

2
66664

3
77775
¼

1 0 0 0

0 cosφ � sinφ 0

0 sinφ cosφ 0

0 0 0 1

2
66664

3
77775

ð5:5Þ

After this final rotation, we have obtained the eye-coordinate system with xe-, ye-
and ze-axes, which we have already seen in Fig. 5.4. Multiplying the above matrices

T, Rz and Rx, we obtain the desired viewing matrix:

Fig. 5.6 Relating the sine

and cosine of �θ � 90� to
those of θ

Fig. 5.7 Situation before

rotation about x-axis

142 5 Perspective and 3D Data Structure

V ¼ TRzRx ¼

� sin θ � cosφ cos θ sinφ cos θ 0

cos θ � cosφ sin θ sinφ sin θ 0

0 sinφ cosφ 0

0 0 �ρ 1

2
66664

3
77775

ð5:6Þ

Recall that we use this matrix in Eq. (5.2), to compute the eye coordinates xe, ye and
ze from the given world coordinates xw, yw and zw.

The viewing transformation, which we have now dealt with, is to be followed by

the perspective transformation to be discussed in the next section. However, we

could also use the eye coordinates xe and ye, simply ignoring ze. In that case we have
a so-called orthographic projection. Every point P of the object is then projected

into a point P0 by drawing a line from P, perpendicular to the plane through the x-
axis and the y-axis. It can also be regarded as the perspective image we obtain if the

viewpoint is infinitely far away. An example of such a picture is the cube in

Fig. 5.2b. Parallel lines remain parallel in pictures obtained by orthographic pro-

jection. Such pictures are very often used in practice because with conventional

methods they are easier to draw than real perspective images.

On the other hand, bringing some perspective into the picture will make it much

more realistic. Our viewing transformation will therefore be followed by the

perspective transformation, which will involve surprisingly little computation.

5.3 Perspective Transformation

You might have the impression that we are only half-way, and that in this section

we will need as much mathematics as in Sect. 5.2. However, most of the work has

already been done. Since we will not use world coordinates in this section, there

will be no confusion if we denote eye coordinates simply by (x, y, z) instead of

(xe, ye, ze).
In Fig. 5.8 we have chosen a point Q, whose eye coordinates are (0, 0, �d) for

some positive value d.
Our screen will be the plane z ¼ �d, that is, the plane through Q and perpen-

dicular to the z-axis. Then the screen-coordinate system has Q as its origin, and its

X- and Y-axes are parallel to the x- and y-axes. For every object point P, the image

point P0 is the intersection of line PE and the screen. To keep Fig. 5.8 simple, we

consider a point P whose y-coordinate is zero. However, the following equations to
compute its screen coordinate X are also valid for other y-coordinates. In Fig. 5.8

the triangles EPR and EP0Q are similar. Hence

P
0
Q

EQ
¼ PR

ER

5.3 Perspective Transformation 143

so we have

X

d
¼ x

�z

(Recall that z-coordinates of object points are negative, so that �z is a positive

value.) In other words,

X ¼ �d � x
z

ð5:7Þ

In the same way we can derive

Y ¼ �d � y
z

ð5:8Þ

At the beginning of Sect. 5.2 we have chosen the origin O of the world-coordinate

system to be a central point of the object. The origin Q of the screen-coordinate

system will be central in the image because the z-axis of the eye-coordinate system
is a line through E and O, which intersects the screen at Q. We must bear in mind

that Eqs. (5.7 and 5.8) can be used in this form only if the origin Q of the screen

coordinate system (with X- and Y-axes) lies in the center of the screen. If this origin
lies instead in the lower-left corner of the screen and the screen has width w and

height h, we have to add w/2 and h/2 to Eqs. (5.7 and 5.8), respectively.

We still have to specify the distance d between viewpoint E and the screen.

Roughly speaking, we have

d

ρ
¼ image size

object size

Fig. 5.8 Screen and eye

coordinates

144 5 Perspective and 3D Data Structure

which follows from the similarity of the triangles EP1
0P20 and EP1P2 in Fig. 5.9.

Thus we have

d ¼ ρ � image size

object size
ð5:9Þ

This equation should be applied to both the horizontal and the vertical directions. It

should be interpreted only as a means to obtain an indication about an appropriate

value for d. A three-dimensional object may have a complicated shape, and it may

not be clear how its size is to be measured. We then use a rough estimation of the

object size, such as the maximum of its length, width and height. The image size in

Eq. (5.9) should be taken somewhat smaller than the screen.

5.4 A Cube in Perspective

We will now discuss a complete Java program, which draws a perspective repre-

sentation of a cube, as shown in Fig. 5.10. Such representations, with all edges

visible, are called wire-frame models.

To specify this cube in a program, we assign numbers to its vertices, as shown in

Fig. 5.11. The center of the cube coincides with the origin O and its edges have

length 2, which implies that the x-, y- and z-coordinates of its eight vertices are

equal to +1 or �1

The following program produces the wire-frame model of Fig. 5.10. We store

the world, eye and screen coordinates for each of the eight vertices of the cube in the

class Obj:

Fig. 5.9 Image size and object size

5.4 A Cube in Perspective 145

// CubePers.java: A cube in perspective.

// Uses: Point2D (Section 1.4), Point3D (Section 3.9).

import java.awt.*;

import java.awt.event.*;

public class CubePers extends Frame {

public static void main(String[] args) {new CubePers();}

CubePers() {

super("A cube in perspective");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

});

Fig. 5.11 Vertex numbers

and coordinate axes

Fig. 5.10 Output of program CubePers.java

146 5 Perspective and 3D Data Structure

setLayout(new BorderLayout());

add("Center", new CvCubePers());

Dimension dim = getToolkit().getScreenSize();

setSize(dim.width / 2, dim.height / 2);

setLocation(dim.width / 4, dim.height / 4);

setVisible(true);

}

}

class CvCubePers extends Canvas {

int centerX, centerY;

Obj obj = new Obj();

int iX(float x) {

return Math.round(centerX + x);

}

int iY(float y) {

return Math.round(centerY - y);

}

void line(Graphics g, int i, int j) {

Point2D p = obj.vScr[i], q = obj.vScr[j];

g.drawLine(iX(p.x), iY(p.y), iX(q.x), iY(q.y));

}

public void paint(Graphics g) {

Dimension dim = getSize();

int maxX = dim.width - 1, maxY = dim.height - 1,

minMaxXY = Math.min(maxX, maxY);

centerX = maxX / 2; centerY = maxY / 2;

obj.d = obj.rho * minMaxXY / obj.objSize;

obj.eyeAndScreen();

// Horizontal edges at the bottom:

line(g, 0, 1); line(g, 1, 2); line(g, 2, 3); line(g, 3, 0);

// Horizontal edges at the top:

line(g, 4, 5); line(g, 5, 6); line(g, 6, 7); line(g, 7, 4);

// Vertical edges:

line(g, 0, 4); line(g, 1, 5); line(g, 2, 6); line(g, 3, 7);

}

}

5.4 A Cube in Perspective 147

class Obj { // Contains 3D object data

float rho, theta = 0.3F, phi = 1.3F, d, objSize,

v11, v12, v13, v21, v22, v23, v32, v33, v43;

// Elements of viewing matrix V

Point3D[] w; // World coordinates

Point2D[] vScr; // Screen coordinates

Obj() {

w = new Point3D[8];

vScr = new Point2D[8];

// Bottom surface:

w[0] = new Point3D(1, -1, -1);

w[1] = new Point3D(1, 1, -1);

w[2] = new Point3D(-1, 1, -1);

w[3] = new Point3D(-1, -1, -1);

// Top surface:

w[4] = new Point3D(1, -1, 1);

w[5] = new Point3D(1, 1, 1);

w[6] = new Point3D(-1, 1, 1);

w[7] = new Point3D(-1, -1, 1);

objSize = (float) Math.sqrt(12F);

// = sqrt(2 * 2 + 2 * 2 + 2 * 2)

// = distance between two opposite vertices.

rho = 5 * objSize; // For reasonable perspective effect

}

void initPersp() {

float costh = (float) Math.cos(theta),

sinth = (float) Math.sin(theta),

cosph = (float) Math.cos(phi),

sinph = (float) Math.sin(phi);

v11 = -sinth; v12 = -cosph * costh; v13 = sinph * costh;

v21 = costh; v22 = -cosph * sinth; v23 = sinph * sinth;

v32 = sinph; v33 = cosph;

v43 = -rho;

}

void eyeAndScreen() {

initPersp();

for (int i = 0; i < 8; i++) {

Point3D p = w[i];

float x = v11 * p.x + v21 * p.y,

y = v12 * p.x + v22 * p.y + v32 * p.z,

z = v13 * p.x + v23 * p.y + v33 * p.z + v43;

148 5 Perspective and 3D Data Structure

vScr[i] = new Point2D(-d * x / z, -d * y / z);

}

}

}

As discussed in Sect. 5.3 (see point Q in Fig. 5.8), the perspective transformation

is simplest if we use a coordinate system with the origin in the center of the screen

and with a y-axis pointing upward. To convert such (floating-point) coordinates to

the low-level Java coordinates, of type int, we again use the methods iX and iY. As
usual, these are based on the values of centerX, centerY and maxY, which are

computed in the paint method before this method uses iX and iY.
The paint method also computes the screen distance d (stored in obj), using

Eq. (5.9). After calling the Obj method eyeAndScreen to compute eye and screen

coordinates, we use our method line to draw all 12 cube edges.

In the class Obj, the arrays w and vScr contain the world and the screen

coordinates, respectively, of the cube vertices. Recall that we use the matrix

multiplication of Eq. (5.2) to compute the eye coordinates from the given world

coordinates stored in w. We then use these eye coordinates to compute the screen

coordinates for the array vScr. Figure 5.11 is helpful in specifying the coordinate

values stored in the array w and the vertex numbers used in calls to the linemethod.

5.5 Specification and Representation of 3D Objects

We will now discuss the way we will specify and represent 3D objects. In most

cases these will be solid objects such as a cube, or a sphere approximated by a

polyhedron, and we will use their polygonal faces to specify them. We will also

show how to specify (a) holes in such faces, (b) line segments that are not

necessarily edges of faces, and (c) polygons that are not boundary faces of solid

objects and therefore, depending on the viewpoint, visible on both sides.

In all these cases, we will use input files consisting of two parts: a list of vertices,

each in the form of a nonnegative vertex number followed by three real numbers,

the world coordinates of that vertex. The second part consists of an input line of the

form

Faces:

followed by sequences of vertex numbers, each sequence followed by a period ’.’.

Let us first deal with the most common case, with each such sequence consisting

of three or more vertex numbers specifying a polygon that is a face of a solid 3D

object. For each polygon, when viewed from outside the object, the vertex sequence

must be counter-clockwise. This orientation must also apply to the first three

vertices of each sequence; in other words, the second number of each sequence

must denote a convex vertex. The files we are discussing can be used as input for

5.5 Specification and Representation of 3D Objects 149

four programs in this book: Wireframe (Sect. 5.7), Hlines (Sect. 6.1), Painter
(Sect. 6.3), and ZBuf (Sect. 6.4).

Our first example is the cube of Fig. 5.11, with the origin O in its center. With

vertex numbers as shown in the figure, we can specify this cube as follows:

0 1 -1 -1

1 1 1 -1

2 -1 1 -1

3 -1 -1 -1

4 1 -1 1

5 1 1 1

6 -1 1 1

7 -1 -1 1

Faces:

0 1 5 4.

1 2 6 5.

2 3 7 6.

3 0 4 7.

4 5 6 7.

3 2 1 0.

In the first part, the vertex numbers need not be in ascending order, and neither

need they be consecutive. We might increase the vertex numbers 4, 5, 6, 7 by

10, put the lines for these vertices at the top, followed by the those for the other

vertices with numbers multiplied by 10, giving the following file, which specifies

the same 3D object and gives the same graphical result when supplied to the four

programs mentioned above:

40 1 -1 1

50 1 1 1

60 -1 1 1

70 -1 -1 1

10 1 -1 -1

11 1 1 -1

12 -1 1 -1

13 -1 -1 -1

Faces:

10 11 50 40.

11 12 60 50.

12 13 70 60.

13 10 40 70.

40 50 60 70.

13 12 11 10.

The above original specification used a vertex number 0. It may be a good idea to

avoid this, as we will see shortly. From now on the lowest vertex number used in

our examples will be 1, not 0.

150 5 Perspective and 3D Data Structure

Holes and Invisible Line Segments

It is often desirable to accept object faces that contain holes. For example, consider

the solid letter A of Fig. 5.12, the front face of which is not a proper polygon

because there is a triangular hole in it. The same applies to the (identical) face on

the back. Each vertex i of the front face is connected with vertex i + 10 of the back

face (1 � i � 10).

We can turn the front face into a polygon by introducing a very narrow gap, say,

between the vertices 7 and 10, as shown in Fig. 5.13. After doing this, we could try

to specify this new polygon as.

1 2 3 4 5 6 7 10 9 8 10 7.

Fig. 5.12 Solid letter A

Fig. 5.13 A polygon

5.5 Specification and Representation of 3D Objects 151

Note that this requires the gap (7, 10) to have width zero, so that there is only one

vertex (7) at the top. On the other hand, only a real gap makes it clear that the vertex

numbers (10, 9, 8) occur in that order in the above input line: just follow the vertices

in Fig. 5.13, starting at vertex 1.

If we really specified the front face in the above way, the line (7, 10) would be

regarded as a polygon edge and therefore appear as a line in the output of the

programs Wireframe of Sect. 5.7 and HLines of the next chapter. This is clearly

undesirable. To prevent this from happening, we adopt the convention of writing a

minus sign in front of the second vertex of a pair, indicating that this pair denotes a

line segment that, although being an edge of a polygon, is not to be drawn. We do

this with the ordered pairs (7, 10) and (10, 7) in the above input line, writing

(7, �10) and (10, �7), so that we use the following input line instead of the

above one:

1 2 3 4 5 6 7 -10 9 8 10 -7.

It will now be clear why it makes sense to avoid using 0 as a vertex number: line

segment (7, 10) is not drawn here because of the negative value in (7, �10), but,

since �0 ¼ 0, there would have been no such negative value in this number pair if

we had used 0 instead of 10.

The solid letter A of Fig. 5.12 (without vertex numbers and axes) is obtained by

applying program HLines of the next chapter to the following input file letterA.dat,
in which the extra minus signs occur in the first two lines after the word Faces:

1 0 -30 0

2 0 -20 0

3 0 -16 8

4 0 16 8

5 0 20 0

6 0 30 0

7 0 0 60

8 0 -12 16

9 0 12 16

10 0 0 40

11 -10 -30 0

12 -10 -20 0

13 -10 -16 8

14 -10 16 8

15 -10 20 0

16 -10 30 0

17 -10 0 60

18 -10 -12 16

19 -10 12 16

20 -10 0 40

Faces:

152 5 Perspective and 3D Data Structure

1 2 3 4 5 6 7 -10 9 8 10 -7.

11 17 -20 18 19 20 -17 16 15 14 13 12.

2 12 13 3.

3 13 14 4.

15 5 4 14.

8 9 19 18.

8 18 20 10.

19 9 10 20.

6 16 17 7.

11 1 7 17.

11 12 2 1.

15 16 6 5.

(Note that this use of minus signs applies only to vertex numbers in the second

part of an input file. In the first part, minus signs can only occur in coordinate

values, where they have their usual meaning.)

Implementing this idea is very simple. For example, because of the minus sign

that precedes vertex number 10 in

... 7 -10 ...

we do not store line segment (7, 10) in the data structure that will be discussed

later. In other respects, we simply ignore these minus signs. Therefore the set of

triangles resulting from the above complete set of input data (for the solid letter A)

is the same as when there had been no minus signs in front of any vertex numbers.

Besides for holes, we can also use these minus signs for the approximation of

curved surfaces, omitting drawn polygon diagonals in the image, as we will see in

Appendix D.

Individual Faces and Line Segments

Although we usually draw polygons that are boundary faces of solid objects, we

sometimes want to draw very thin (finite) planes, here also called faces. Examples

are sheets of paper and a cube made of very thin material, of which the top face is

removed, as shown in Fig. 5.14.

Since such faces have two visible sides, we specify each face twice: counter-

clockwise for the side we are currently viewing and clockwise for the side that is

currently invisible but may become visible when we change the viewpoint. For

example, the front face of the cube of Fig. 5.14 is specified twice in the input file:

1 2 3 4.

4 3 2 1.

5.5 Specification and Representation of 3D Objects 153

Although the user supplies polygons in input files as object faces, we deal

primarily with line segments, referred to as PQ in the previous section. Besides

the polygons and the triangles resulting from them, we also store the edges of the

polygons as line segments. It is also desirable to be able to draw line segments that

are not edges of polygons.

Examples of such ‘loose’, individual line segments are the axes of a 3D coordi-

nate system. Sometimes we want to define the edges of polygons as individual line

segments, to prevent such polygons from obscuring other line segments, displaying

objects as wire-frame models. An example of this is shown in Fig. 5.15. Here we

have a solid pyramid fitting into a cube. Obviously, the pyramid would not be

Fig. 5.14 A hollow cube

Fig. 5.15 Solid pyramid in wire-frame cube

154 5 Perspective and 3D Data Structure

visible if the cube was solid; we therefore prefer the latter to be displayed as a

wireframe model. To provide an input file for this pyramid, we begin by assigning

vertex numbers, as shown in Fig. 5.16.

These vertex numbers occur in the following input file:

1 0 0 0

2 2 0 0

3 2 2 0

4 0 2 0

5 0 0 2

6 2 0 2

7 2 2 2

8 0 2 2

9 1 1 2

Faces:

1 4 3 2.

1 2 9.

2 3 9.

3 4 9.

4 1 9.

1 5.

2 6.

3 7.

4 8.

5 6.

6 7.

7 8.

8 5.

After the word Faces, we begin with the square bottom face and the four

triangular faces of the pyramid. After this, four vertical and four horizontal cube

Fig. 5.16 Vertex numbers

of pyramid and cube

5.5 Specification and Representation of 3D Objects 155

edges follow, each specified by its two endpoints. It follows that the word Faces in
our input files should not be taken too literally: this Faces section may include pairs

of vertex numbers, which are not faces at all but line segments not necessarily

belonging to faces.

Since line segments can occur not only as edges of faces but also individually,

we will use the array connect of objects of the Java class Vector to store them in our

program. Each line segment will be stored only once. For example, the edge 3-9 of

the pyramid of Fig. 5.16 is part of the faces 2-3-9 and 3-4-9, but it would be

inefficient to draw it twice. By using a special data structure for line segments, we

can ensure that this edge is stored only once. This array connect for our example of

a pyramid in a cube is shown in Fig. 5.17.

An array element connect[i] referring to an Vector object containing the integer

j implies that there is a line segment (i, j) to be drawn. By requiring that i is less than
j, we ensure that each line segment is stored only once. For example, connect
[1] refers to the array containing the integers 2, 4, 9 and 5. This indicates that the

following line segments start at vertex 1 (each ending at a vertex that has a number

higher than 1): 1-2, 1-4, 1-9 and 1-5, which is in accordance with Fig. 5.16. The next

element, connect[2] refers to three vertex numbers, 3, 9 and 6. Although, besides

2-3, 2-9 and 2-6, there is also a line segment 2–1 (see Fig. 5.16), this is not included

here because 2 is greater than 1 and this segments has already been stored as line

segment 1-2.

5.6 Some Useful Classes

To avoid duplication of code, we will now discuss some classes (Input, Obj3D,
Tria, Polygon3D, Canvas3D and Fr3D) that we will frequently use later.

0

1

2

3

4

5

6

7

8

7

8

9

4

3

2

6

8

9

9

4

7

6

9 5

8

9

connectFig. 5.17 Internal

representation of line

segments

156 5 Perspective and 3D Data Structure

Input: A Class for File Input Operations

The first class we will discuss is Input. It is not really specific for computer graphics,

but useful for any programming task that involves reading data from a text file in a

simple way. We will use it to read data for 3D objects, specified in a particular

format. There is an Input constructor that accepts the name of an input file as an

argument, as well as a constructor without any arguments to read data from the

keyboard. To demonstrate how easy it is to use this class, let us suppose we are

given a text file containing only numbers and that we want to write a program that

reads this file to compute the sum of these numbers. For example, this text file, say,

example.txt, may have the following contents:

2.5 6

200 100

Then the desired program is shown below:

// Sum.java: Demonstrating the class Input by computing the sum

// of all numbers in the text file example.txt (which contains

// only numbers and whitespace characters).

public class Sum {

public static void main(String[] args) {

float x, s=0;

Input inp = new Input("example.txt");

for (;;) {

x = inp.readFloat();

if (inp.fails()) break;

s += x;

}

System.out.println("The computed sum is " + s);

if (!inp.eof())

System.out.println("Input file missing or incorrect.");

}

}

After compiling and executing this program in a directory that also contains the

files Input.java and example.txt, the following output line is displayed:

The computed sum is 308.5

This example demonstrates the use of the Input constructor and of the methods

readFloat and fails. The complete class Input, listed below, shows that it contains

some other useful methods as well:

5.6 Some Useful Classes 157

// Input.java: A class to read numbers and characters from text

files.

// Methods of this class, available for other program files:

// Input(fileName) (constructor; open input file)

// Input() (constructor; prepare for input from keyboard)

// readInt() (read an integer)

// readFloat() (read a float number)

// readChar() (read a character)

// readString() (read a string between double quotes)

// skipRest() (skip all remaining characters of current line)

// fails() (input operation failed)

// eof() (failure because of end of file)

// clear() (reset error flag)

// close() (close input file)

// pushBack(ch) (push character ch back into the input stream)

import java.io.*;

class Input {

private PushbackInputStream pbis;

private boolean ok = true;

private boolean eoFile = false;

Input() {pbis = new PushbackInputStream(System.in);}

Input(String fileName) {

try {

InputStream is = new FileInputStream(fileName);

pbis = new PushbackInputStream(is);

} catch (Exception ioe) {ok = false;}

}

int readInt() {

boolean neg = false;

char ch;

do {ch = readChar();} while (Character.isWhitespace(ch));

if (ch == ’-’) {neg = true; ch = readChar();}

if (!Character.isDigit(ch)) {

pushBack(ch);

ok = false;

return 0;

}

int x = ch - ’0’;

for (;;) {

ch = readChar();

if (!Character.isDigit(ch)) {

158 5 Perspective and 3D Data Structure

pushBack(ch);

break;

}

x = 10 * x + (ch - ’0’);

}

return (neg ? -x : x);

}

float readFloat() {

char ch;

int nDec = -1;

boolean neg = false;

do {ch = readChar();} while (Character.isWhitespace(ch));

if (ch == ’-’) {

neg = true;

ch = readChar();

}

if (ch == ’.’) {

nDec = 1;

ch = readChar();

}

if (!Character.isDigit(ch)) {

ok = false;

pushBack(ch);

return 0;

}

float x = ch - ’0’;

for (;;) {

ch = readChar();

if (Character.isDigit(ch)) {

x = 10 * x + (ch - ’0’);

if (nDec >= 0) nDec++;

}

else if (ch == ’.’ && nDec == -1)

nDec = 0;

else

break;

}

while (nDec > 0) {x *= 0.1; nDec--;}

if (ch == ’e’ || ch == ’E’) {

int exp = readInt();

if (!fails()) {

while (exp < 0) {x *= 0.1; exp++;}

while (exp > 0) {x *= 10; exp--;}

}

}

5.6 Some Useful Classes 159

else

pushBack(ch);

return (neg ? -x : x);

}

char readChar() {

int ch = 0;

try {

ch = pbis.read();

if (ch == -1) {eoFile = true; ok = false;}

}

catch (Exception ioe) {ok = false;}

return (char) ch;

}

String readString() { // Read first string between quotes (").

String str = "";

char ch;

do ch = readChar(); while (!(eof() || ch == ’"’));

// Initial quote

for (;;) {

ch = readChar();

if (eof() || ch == ’"’) // Final quote (end of string)

break;

str += ch;

}

return str;

}

void skipRest() { // Skip rest of line

char ch;

do ch = readChar(); while (!(eof() || ch == ’\n’));

}

boolean fails() {return !ok;}

boolean eof() {return eoFile;}

void clear() {

ok = true;

}

void close() {

if (pbis != null)

try {pbis.close();} catch (Exception ioe) {ok = false;}

}

160 5 Perspective and 3D Data Structure

void pushBack(char ch) {

try {pbis.unread(ch);} catch (Exception ioe) {ok = false;}

}

}

Using a call to readChar immediately after using readInt or readFloat causes
the character immediately after the number to be read. To realize this, we use the

standard Java class PushbackInputStream, which enables us to push back, or

‘unread’ the last character that we have read and that does not belong to the number

we are reading.

After an attempt to read a number by using readInt or readFloat, we can call the
fails method to check whether that attempt was successful. If fails returns true, a
nonnumeric character, such as a period in the second part of our input files, may

have been read. It is then still possible to read that character by using readChar. The
clear method resets the error flag, so that we can resume input, using fails again.
The method fails also returns true if an input operation fails because the end of the

file is encountered during a call to one of the methods readInt, readFloat and
readChar. In that case, the eof method also returns true. We can use the method

readString to read a string surrounded by double quotes (“), as we will do in

Chap. 8. To skip all remaining characters of the current input line, we use the

method skipRest.

Obj3D: A Class to Store 3D Objects

Let us now discuss how the above class Input is used to read input files in the

method readObject of the class Obj3D. We will discuss a simplified version of this

method. In this fragment each sequence of three dots (. . .) denotes code that is

irrelevant in this discussion because it does not perform any input operations:

private boolean readObject(Input inp) {

for (;;) {

int i = inp.readInt();

if (inp.fails()){inp.clear(); break;}

...

float x = inp.readFloat(),

y = inp.readFloat(),

z = inp.readFloat();

addVertex(i, x, y, z);

}

...

do { // Skip the line "Faces:"

ch = inp.readChar(); count++;

} while (!inp.eof() && ch != ’\n’);

5.6 Some Useful Classes 161

...

// Build polygon list:

for (;;) {

Vector vnrs = new Vector();

for (;;) {

int i = inp.readInt();

if (inp.fails()){inp.clear(); break;}

...

vnrs.addElement(new Integer(i));

}

ch = inp.readChar();

if (ch != ’.’) break;

// Ignore input lines with only one vertex number:

if (vnrs.size() >= 2)

polyList.addElement(new Polygon3D(vnrs));

}

inp.close();

return true;

}

We will use the class Obj3D to store all data of 3D objects, along with their 2D

representations, in such a way that this data is easy to use in our programs. As for

the vertices, we store three representations of them:

‘Vector’ w of Point3D elements:

world coordinates

Array e of Point3D elements:

eye coordinates

Array vScr of Point2D elements:

screen coordinates

Recall that the classes Point2D and Point3D were discussed in Sects. 1.4 and 3.9.

Since we read the world coordinates from an input file without knowing in advance

how many vertices there will be, we use a Vector (in the sense of Java) for them.

This is different with the eye and screen coordinates. Since we compute these

ourselves after reading the world coordinates of all vertices, we know the size of the

arrays e and vScr for them, so that we can allocate memory for them. We use the

vertex numbers to indicate the positions in w, e, and vScr. In other words, with an

input line of the form

i x y z

we can find these world coordinates x, y and z of vertex i in the Point3D object

(Point3D)w.elementAt(i)

162 5 Perspective and 3D Data Structure

We use the Obj3D method eyeAndScreen to compute the corresponding eye

coordinates and store them in the Point3D object

e[i]

This method also computes the corresponding screen coordinates and stores

them in the Point2D object

vScr[i]

It follows that w.size(), e.length and vScr.length will be one higher than the

highest vertex number that is in use.

We will use the methods getE() and getVScr() for access to the arrays e and vScr.
The Vector object w will not be used at all outside the class Obj3D.

Another useful method ofObj3D is planeCoeff. For each face (or polygon) of the
object, it computes the coefficients a, b, c and h of the equation

axþ byþ cz ¼ h ð5:10Þ

which describes the plane in which this face lies. Using the first three vertices A, B

and C of a polygon, we compute the normal vector n ¼ (a, b, c) of the plane as the
vector product AB � AC (see Sect. 2.2), which we scale such that

a2 þ b2 þ c2 ¼ 1

Using the inner product (see Sect. 2.2) of n and a vector x ¼ EP for any point P in

the plane, we can write (5.10) as

n � x ¼ h

in which h is positive if the sequence A, B and C is clockwise, that is, if ABC is a

back face. On the other hand, if ABC is not a back face, h is negative and the

sequence A, B and C is counter-clockwise. Recall that the positive z-axis (in the

eye-coordinate system) points towards us, as is more or less the case with the

normal vector n of a visible face. However, the vector x points the other way, from

E to P, which implies that the inner product n� x ¼ h will be negative for a visible

face and positive for a back face. The absolute value of h is the distance between the
eye E and the plane in question (see Exercise 6.5). We will use the coefficients a, b,
c and h on several occasions. In the class Obj3D, the method planeCoeff computes

these coefficients, after which they are stored in Polygon3D objects, as we will see

shortly.

Since the file Obj3D.java is considerably larger than the program files we have

seen so far, it is not listed here but you can find it in Appendix B. Here is a summary

of all methods of this class that we can use outside it:

5.6 Some Useful Classes 163

boolean read(String fName)// Reads a 3D object file, if possible.

Vector getPolyList() // Returns polyList, the list of faces.

String getFName() // File name of current object.

Point3D[] getE() // Eye coordinates e of vertices.

Point2D[] getVScr() // Screen coordinates vScr of vertices.

Point2D getImgCenter() // Center of image in screen coordinates.

float getRho() // Rho, the viewing distance.

float getD() // d, scaling factor, also screen distance.

float eyeAndScreen // Computes eye and screen coordinates and

//returnsmaximumscreen-coordinaterange.

void planeCoeff() // Computes the coefficients a, b, c, h

// for all faces.

boolean vp(Canvas cv, float dTheta, float dPhi, float fRho)

// Changes the viewpoint.

int colorCode(double a, double b, double c)

// Computes the color code of a face.

We will discuss the method colorCode in detail in Sect. 7.7. The public Obj3D
method read calls the private method readObject, discussed above, as the following
fragment shows:

boolean read(String fName) {

Input inp = new Input(fName);

...

return readObject(inp); // Read from inp into obj

}

As we have seen in the simplified version of readObject, this method starts by

repeatedly reading four numbers, i, x, y and z, and calls the method addVertex,
which keeps track of the minimum and maximum values of x, y and z. The loop in

which this reading of four numbers takes place terminates when an attempt to read a

vertex number i fails because of the word Faces. The minimum and maximum

coordinate values just mentioned are required for a call to the private method

shiftToOrigin, which reduces all world-coordinates such that the origin of the

coordinate center will coincide with the center of the bounding box of the object.

After skipping the rest of the line on which we encounter the word Faces, we
enter a loop to read vertex-number sequences representing polygons. Vertex num-

bers in these sequences may be preceded by a minus sign, as discussed in the

previous section.

Since we will often refer to the class Obj3D, let us have a look at a simplified

version of it:

// Obj3D.java: A 3D object and its 2D representation.

// Uses: Point2D (Section 1.4), Point3D (Section 3.9),

// Polygon3D, Input (Section 5.6).

164 5 Perspective and 3D Data Structure

class Obj3D {

...

private Vector w = new Vector(); // World coordinates

private Point3D[] e; // Eye coordinates

private Point2D[] vScr; // Screen coordinates

private Vector polyList = new Vector(); // Polygon3D objects

...

private void addVertex(int i, float x, float y, float z) {

...

}

...

}

Recall that the complete version is listed in Appendix B.

Tria: A Class to Store Triangles by Their Vertex Numbers

We will often store large sets of triangles, the vertices of which have numbers in the

same way as letters are normally used in geometry. Since several triangles may

share some vertices, it would not be efficient to store the coordinates of each vertex

separately for every triangle. For example, suppose in 3D space we have a triangle

with vertices 1, 2 and 3 and another triangle with vertices 1, 4 and 2. It will then be

efficient to set up a table with the x-, y- and z-coordinates of the four vertices 1, 2,

3 and 4, and denote the triangles only by their vertex numbers. The following class

is used to represent triangles in this way:

// Tria.java: Triangle represented by its vertex numbers.

class Tria {

int iA, iB, iC;

Tria(int i, int j, int k){iA = i; iB = j; iC = k;}

}

If there had been no 3D programs in this book other than that for wireframe

models, as discussed in Sect. 5.7, it would not have been necessary to store poly-

gons, let alone triangles, as we are now discussing. We could then have restricted

ourselves to the edges of 3D objects, that is, to line segments. We will nevertheless

store the faces of the objects in this chapter, to prepare for some more interesting

programs that do not display hidden lines and faces.

5.6 Some Useful Classes 165

Polygon3D: A Class to Store 3D Polygons

Almost at the end of the Obj3D method readObject you may have noticed the

following statement:

polyList.addElement(new Polygon3D(vnrs));

Here a new Polygon3D object is created in which the vertex numbers of a

polygon are stored. This object is then added to the Vector object polyList, a private
variable of the class Obj3D. The class Polygon3D contains a number of methods

that we will not use in this chapter. These are related to triangles resulting from

polygons and they will be useful in the next chapter, in which we will be dealing

with algorithms to eliminate hidden lines and faces. Thanks to the above class Tria,
the coordinates of the vertices of each triangle are not duplicated. Since these

coordinates are stored in arrays that are data members of the Obj3D class, we

only need to store the numbers iA, iB and iC of the vertices here. Although, in Sect.

2.6, we have already used a method triangulate to divide a polygon into triangles,

we will need a slightly different one now that we are representing vertices by

numbers referring to the Obj3D class. This special method for triangulation is part

of the class Polygon3D, listed below:

// Polygon3D.java: Polygon in 3D, represented by vertex numbers

// referring to coordinates stored in an Obj3D object.

// Uses: Point2D (Section 1.4), Tria, Obj3D(Section 5.6).

import java.util.*;

class Polygon3D {

private int[] nrs;

private double a, b, c, h;

private Tria[] t;

Polygon3D(Vector<Integer> vnrs) {

int n = vnrs.size();

nrs = new int[n];

for (int i = 0; i < n; i++)

nrs[i] = ((Integer) vnrs.elementAt(i)).intValue();

}

int[] getNrs() {return nrs;}

double getA() {return a;}

double getB() {return b;}

double getC() {return c;}

double getH() {return h;}

166 5 Perspective and 3D Data Structure

void setAbch(double a, double b, double c, double h) {

this.a = a; this.b = b; this.c = c; this.h = h;

}

Tria[] getT() {return t;}

Tria[] triangulate(Obj3D obj) {

// Successive vertex numbers (CCW) in vector nrs.

// Resulting triangles will be put in array t.

Point2D[] vScr = obj.getVScr();

Polygon2D polygon = new Polygon2D(vScr, nrs);

t = polygon.triangulate();

return t;

}

}

The vertex numbers of the given polygon are available in the array nrs, while
those of each resulting triangle are stored in an element of the array t. The method

triangulate of this class Polygon3D is rather simple because we can benefit from the

method triangulate of the class Polygon2D, discussed in Sect. 2.6.

Canvas3D: An Abstract Class to Adapt the Java Class Canvas

The canvas classes we will be using will contain the methods getObj and setObj, to
retrieve and store a reference to an Obj3D object. In view of a separate frame class,

Fr3D, we need to define the following abstract class:

// Canvas3D.java: Abstract class.

import java.awt.*;

abstract class Canvas3D extends Canvas {

abstract Obj3D getObj();

abstract void setObj(Obj3D obj);

boolean specularDesired; // Not used until Chapter 6

}

Remember, abstract classes are only useful to create subclasses, not to define

objects. Any (non-abstract) subclass of Canvas3D is simply a subclass of the

standard class Canvas, except that it is guaranteed to define the methods getObj
and setObj. For example, in the next section we will discuss a class CvWireframe of
which the first line reads.

class CvWireframe extends Canvas3D

5.6 Some Useful Classes 167

By writing here Canvas3D instead of Canvas, we are obliged to define the

methods getObj and setObj in this CvWireframe class, and in return we are allowed
to call these two methods for any object of class CvWireframe. We will clarify the

use of the abstract class Canvas3D further at the end of this section.

Fr3D: A Frame Class for 3D Programs

The class Fr3D will be used in four 3D programs of this book, Wireframe.java
(Sect. 5.7), HLines.java (Sect. 6.1), Painter.java (Sect. 6.3) and ZBuf.java
(Sect. 6.4). Since these programs will have the same menus, it makes sense to let

them share the file Fr3D.java, listed below, in which much of the code is related to

these menus. The Java compiler accepts the calls cv.getObj() and cv.setObj(obj) in
this file because, as Canvas3D is an abstract class, the actual type of cv can only be a
subclass of it. As we have just seen, this implies that this subclass will define the

methods getObj and setObj:

// Fr3D.java: Frame class to deal with menu commands and other

// user actions.

import java.awt.*;

import java.awt.event.*;

class Fr3D extends Frame implements ActionListener {

protected MenuItem open, exit, eyeUp, eyeDown, eyeLeft, eyeRight,

incrDist, decrDist, phongChoice;

protected String sDir;

protected Canvas3D cv;

protected Menu mF, mV;

private MenuItem exportHPGL;

private Boolean hiddenLines, lineDrawing;

Fr3D(String argFileName, Canvas3D cv, String textTitle) {

super(textTitle);

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

});

this.cv = cv;

MenuBar mBar = new MenuBar();

setMenuBar(mBar);

mF = new Menu("File"); mV = new Menu("View");

mBar.add(mF); mBar.add(mV);

hiddenLines = cv instanceof CvHLines;

lineDrawing = hiddenLines || cv instanceof CvWireframe;

168 5 Perspective and 3D Data Structure

open = new MenuItem("Open", new MenuShortcut(KeyEvent.VK_O));

eyeDown = new MenuItem("Viewpoint Down",

new MenuShortcut(KeyEvent.VK_DOWN));

eyeUp = new MenuItem("Viewpoint Up",

new MenuShortcut(KeyEvent.VK_UP));

eyeLeft = new MenuItem("Viewpoint to Left",

new MenuShortcut(KeyEvent.VK_LEFT));

eyeRight = new MenuItem("Viewpoint to Right",

new MenuShortcut(KeyEvent.VK_RIGHT));

incrDist = new MenuItem("Increase viewing distance",

newMenuShortcut(KeyEvent.VK_INSERT));

decrDist = new MenuItem("Decrease viewing distance",

new MenuShortcut(KeyEvent.VK_DELETE));

exit = new MenuItem("Exit", new MenuShortcut(KeyEvent.VK_Q));

mF.add(open); mF.add(exit);

mV.add(eyeDown); mV.add(eyeUp);

mV.add(eyeLeft); mV.add(eyeRight);

mV.add(incrDist); mV.add(decrDist);

open.addActionListener(this);

exit.addActionListener(this);

eyeDown.addActionListener(this);

eyeUp.addActionListener(this);

eyeLeft.addActionListener(this);

eyeRight.addActionListener(this);

incrDist.addActionListener(this);

decrDist.addActionListener(this);

if (hiddenLines){

exportHPGL = new MenuItem("Export HP-GL");

mF.add(exportHPGL); // mF defined in Fr3D

exportHPGL.addActionListener(this);

}

else

if (!lineDrawing) {

phongChoice = new MenuItem(

(cv.specularDesired?"Diffuse":"Specular")+"illumination");

mV.add(phongChoice);

phongChoice.addActionListener(this);

}

add("Center", cv);

Dimension dim = getToolkit().getScreenSize();

setSize(dim.width / 2, dim.height / 2);

5.6 Some Useful Classes 169

setLocation(dim.width / 4, dim.height / 4);

if (argFileName != null) {

Obj3D obj = new Obj3D();

if (obj.read(argFileName)) {cv.setObj(obj); cv.repaint();}

else {

System.out.println("Cannot open input file " + argFileName);

}

}

cv.setBackground(new Color(180, 180, 255));

setVisible(true);

}

void vp(float dTheta, float dPhi, float fRho) {// Viewpoint

Obj3D obj = cv.getObj();

if (obj == null || !obj.vp(cv, dTheta, dPhi, fRho))

Toolkit.getDefaultToolkit().beep();

}

public void actionPerformed(ActionEvent ae) {

if (ae.getSource() instanceof MenuItem) {

MenuItem mi = (MenuItem) ae.getSource();

if (mi == open) {

FileDialog fDia = new FileDialog(Fr3D.this, "Open",

FileDialog.LOAD);

fDia.setDirectory(sDir);

fDia.setFile("*.dat");

fDia.setVisible(true);

String sDir1 = fDia.getDirectory();

String sFile = fDia.getFile();

String fName = sDir1 + sFile;

Obj3D obj = new Obj3D();

if (obj.read(fName)) {

sDir = sDir1;

cv.setObj(obj);

cv.repaint();

}

}

else {

if (mi == exit) System.exit(0); else

if (mi == eyeDown) vp(0, .1F, 1); else

if (mi == eyeUp) vp(0, -.1F, 1); else

if (mi == eyeLeft) vp(-.1F, 0, 1); else

if (mi == eyeRight) vp(.1F, 0, 1); else

if (mi == incrDist) vp(0, 0, 2); else

170 5 Perspective and 3D Data Structure

if (mi == decrDist) vp(0, 0, .5F); else

if (mi == phongChoice) {

cv.specularDesired = !cv.specularDesired;

phongChoice.setLabel(

(cv.specularDesired?"Diffuse":"Specular")+"illumination");

cv.repaint();

}

else

if (mi == exportHPGL) {

Obj3D obj = cv.getObj();

if (obj != null) {

((CvHLines)cv).setHPGL(new HPGL(obj));

cv.repaint();

}

}

}

}

}

}

Some menu items and associated program code will not be used in this chapter,

but they are already inserted here so in the next chapter we need not update this

Fr3D class. Notice the use of the abstract class Canvas3D in the line.

Fr3D(String argFileName, Canvas3D cv, String textTitle)

almost at the beginning of class Fr3D. We cannot replace Canvas3D with Canvas
here because then the compiler would not accept the statement

cv.setObj(obj);

in the if-statement near the end of the Fr3D constructor. After all, setObj is not a
method of the standard Java class Canvas. Since, in the next section we will actually
be using the class CvWireframe, of which setObj is really a method, it is tempting to

write CvWireframe instead of Canvas3D. This would indeed work, but then we

would not be able to use the class Fr3D also in programs with canvas classes other

than CvWireframe, as we will do in the next chapter. We now see that the abstract

class Canvas3D is very useful. It is general enough to be used in several of our

programs and yet less general than the standard Canvas class in that it ‘promises’ an
implementation of the methods setObj and getObj. We will discuss some aspects of

the class Fr3D in the next chapter, when we will be using it.

5.6 Some Useful Classes 171

5.7 A Program for Wireframe Models

It is now time to see the classes of the previous section in action. A relatively simple

way of displaying 3D objects, bounded by polygons, is by drawing all the edges of

these polygons, as we did for a cube in Sect. 5.4. The classes we have just seen

enable us to write a general program Wireframe.java, which can read input files by

using a menu commandOpen and which enable the user to view the object from any

reasonable viewpoint, by using either menu commands or the keyboard. The

comment lists all classes that Wireframe.java, directly or indirectly, uses. Since

the program does not hide object edges that, for opaque objects, are invisible, its

practical usefulness will be limited. It is nevertheless presented here as an intro-

duction, demonstrating many aspects that will recur in more practical but also more

sophisticated programs in the next chapter. As you can see both in program file

Fr3D.java of the previous section and in Fig. 5.13, there will be two menus, File
and View. There are two menu items, Open and Exit, in the Filemenu, and six in the

View menu. The latter enables the user to change the viewpoint, as shown in

Fig. 5.13. These eight menu items will be available in all four 3D programs

(Wireframe, HLines, Painter and ZBuf) discussed in this book. In each, an object

of the frame class Fr3D, listed in the previous section, is created in themainmethod

as shown for the class Wireframe below.

// Wireframe.java: Perspective drawing using an input file that lists

// vertices and faces.

// Uses: Point2D (Section 1.4), Tools2D (Section 2.3),

// Point3D (Section 3.9).

// Input, Obj3D, Tria, Polygon3D, Canvas3D, Fr3D (Section 5.6),

// CvWireframe (Section 5.7).

import java.awt.*;

public class Wireframe extends Frame {

public static void main(String[] args) {

new Fr3D(args.length > 0 ? args[0] : null, new CvWireframe(),

"Wire-frame model");

}

}

This rather simple program file accepts an optional program argument, which

may be supplied to specify the name of the input file. This is what the first argument,

a conditional expression, of the Fr3D constructor is about. The second argument of

this constructor generates an object of class CvWireframe, which does almost all the

work. Finally, the third argument specifies the text, hereWire-frame model, that we
want to appear in the title bar of the window. The class CvWireframe is listed

below:

172 5 Perspective and 3D Data Structure

// CvWireframe.java: Canvas class for class Wireframe.

import java.awt.*;

import java.util.*;

class CvWireframe extends Canvas3D {

private int maxX, maxY, centerX, centerY;

private Obj3D obj;

private Point2D imgCenter;

Obj3D getObj() {return obj;}

void setObj(Obj3D obj) {this.obj = obj;}

int iX(float x) {return Math.round(centerX + x - imgCenter.x);}

int iY(float y) {return Math.round(centerY - y + imgCenter.y);}

public void paint(Graphics g) {

if (obj == null) return;

Vector<Polygon3D> polyList = obj.getPolyList();

if (polyList == null) return;

int nFaces = polyList.size();

if (nFaces == 0) return;

Dimension dim = getSize();

maxX = dim.width - 1; maxY = dim.height - 1;

centerX = maxX / 2; centerY = maxY / 2;

// ze-axis towards eye, so ze-coordinates of

// object points are all negative.

// obj is a java object that contains all data:

// - Vector w (world coordinates)

// - Array e (eye coordinates)

// - Array vScr (screen coordinates)

// - Vector polyList (Polygon3D objects)

// Every Polygon3D value contains:

// - Array ’nrs’ for vertex numbers

// - Values a, b, c, h for the plane ax+by+cz=h.

// (- Array t (with nrs.length-2 elements of type Tria))

obj.eyeAndScreen(dim);

// Computation of eye and screen coordinates.

imgCenter = obj.getImgCenter();

obj.planeCoeff(); // Compute a, b, c and h.

Point2D[] vScr = obj.getVScr();

g.setColor(Color.black);

5.7 A Program for Wireframe Models 173

for (int j = 0; j < nFaces; j++) {

Polygon3D pol = polyList.elementAt(j);

int nrs[] = pol.getNrs();

for (int iA = 0; iA < nrs.length; iA++) {

int iB = (iA + 1) % nrs.length;

int na = Math.abs(nrs[iA]), nb = nrs[iB];

// abs in view of minus signs discussed in Section 5.5.

if (nb >= 0) {

Point2D a = vScr[na], b = vScr[nb];

g.drawLine(iX(a.x), iY(a.y), iX(b.x), iY(b.y));

}

}

}

}

}

Thanks to the other classes discussed in the previous section, this program file

is rather small. However, due to the object-oriented character of Java, the flow

of control of the whole program may not be immediately clear. In particular, you

may wonder how starting the program leads to reading a 3D object file and

displaying the desired image. Let us begin with the main method in the file

Writeframe.java. Here an Fr3D object is created by calling its constructor, and a

CvWireframe object is created at the same time in the second argument of this Fr3D
constructor call. As we have seen in the previous section, the first line of class Fr3D
reads

class Fr3D extends Frame implements ActionListener {

which indicates that this class contains a method actionPerformed. This method is

called when a menu command is given. In particular, the use of the Open command

in the File menu gives rise to the execution of a fragment that causes a standard

dialog box for ‘Open file’ to appear, as you can see in the method actionPerformed.
This fragment contains the following:

Obj3D obj = new Obj3D();

if (obj.read(fName)) {

sDir = sDir1;

cv.setObj(obj);

cv.repaint();

}

Here we see that the Obj3Dmethod read is called, with the file name supplied by

the user supplied as an argument, so that this method can read any 3D object

174 5 Perspective and 3D Data Structure

provided by the user. We also find here a call to setObj, a method defined in the

above class CvWireframe as

void setObj(Obj3D obj){this.obj = obj;}

As a result, the CvWireframe class gets access to the Obj3D object that contains

all data for the real 3D object. The above if-statement also contains a call to the

standard Java Canvas method repaint, which causes the method paint of our

CvWireframe class to be called. The actual computation and display of the image

is done in this method paint, although much of the computation work is delegated to

methods of other classes. An example of this is the statement

obj.eyeAndScreen(dim);

which calls the Obj3D method eyeAndScreen to compute the eye and screen

coordinates of the object.

A Demonstration

It is now time to see the program Wireframe.java in action. For example, let us use

the object with vertices 1, 2, . . ., 6, shown in Fig. 5.18.

With dimensions 1, 3 and 5 for, respectively, the thickness, the width and the

height of the object, the following data file specifies it:

Fig. 5.18 Object and

vertex numbers

5.7 A Program for Wireframe Models 175

1 1 0 0

2 1 3 0

3 0 3 0

4 0 0 0

5 1 0 5

6 0 0 5

Faces:

1 2 5.

3 4 6.

2 3 6 5.

1 5 6 4.

1 4 3 2.

Running program Wireframe.java and opening the above input file produces a

window that shows a default 3D view of the object defined by this input file.

Figure 5.19 shows the window after the user has clicked on the View menu.

By moving the viewpoint, using the Viewpoint to Right command from the View
menu or its shortcut Ctrl + Arrow right, a number of times we obtain a different

view of the same object, as shown in Fig. 5.20.

Note that the program chooses a default viewing distance which is quite reason-

able. If desired we can increase or decrease this distance using the last two

commands from the View menu.

Fig. 5.19 Default view of object

176 5 Perspective and 3D Data Structure

5.8 Automatic Generation of Object Specification

As long as 3D objects do not have too many vertices and the vertex coordinates are

easily available, it is not difficult to create 3D specifications as input files by

entering all data manually, using a text editor. This is the case, for example, with

the solid letter A, as previously discussed. If there are many vertices, which is

normally the case if we approximate curved surfaces, we had better generate 3D

data files by special programs. This section explains how to automatically generate

3D specifications through an example. The generated specification files are

accepted not only by the program Wireframe.java of the previous section, but

also by the programs HLines.java,Painter.java, ZBuf.java, discussed in Chap. 6.

Most illustrations in this chapter have been obtained by using HLines.java.
Many 3D objects are bounded by curved surfaces. We can approximate these by

a set of polygons. An example is a hollow cylinder as shown in Fig. 5.21 on the

right. Both representations of hollow cylinders (or rather, hollow prisms) of this

figure were obtained by running the program Cylinder.java, which we will be

discussing, followed by the execution of program HLines.java. Although the object
shown on the left in Fig. 5.21 is a (hollow) prism, not a cylinder, we will consis-

tently use the term cylinder in this discussion.

The user will be able to enter the diameters of both the (outer) cylinder and the

(inner) cylindrical hole. If the latter, smaller diameter is zero, our program will

produce a solid cylinder instead of a hollow one. For simplicity, we will ignore this

Fig. 5.20 Same object viewed from the back

5.8 Automatic Generation of Object Specification 177

special case, with only half the number of vertices, in our discussion below, but

simply implement it in the program.

For some sufficiently large integer n (not less than 3), we choose n equidistant

points on the outer circle (with radius R) of the top face, and we choose n similar

points on the bottom face. Then we approximate the outer cylinder by a prism

whose vertices are these 2n points. The inner circle (of the cylindrical hole) has

radius r (<R). The hollow cylinder has height h. Let us use the z-axis of our

coordinate system as the cylinder axis. The cylindrical hole is approximated by

rectangles in the same way as the outer cylinder. The bottom face lies in the plane

z ¼ 0 and the top face in the plane z ¼ h. A vertex of the bottom face lies on the

positive x-axis. Let us set h ¼ 1. Then for given values n, R, and r, the object to be

drawn and its position are then completely determined. We shall first deal with the

case n¼ 6 and generalize this later for arbitrary n. We number the vertices as shown

in Fig. 5.22.

For each vertex i of the top face there is a vertical edge that connects it with

vertex i + 6. We can specify the top face by the following sequence:

1 2 3 4 5 6 -18 17 16 15 14 13 18 -6.

Fig. 5.21 Hollow cylinders with n ¼ 6 (left) and n ¼ 60 (right)

Fig. 5.22 Vertex numbering

178 5 Perspective and 3D Data Structure

Here the pairs (6, �18) and (18, �6) denote an artificial edge, as previously

discussed. The bottom face on the right is viewed here from the positive z-axis, but
in reality only the other side is visible. The orientation of this bottom face is

therefore opposite to what we see in Fig. 5.22 on the right, so that we can specify

this face as.

12 11 10 9 8 7 -19 20 21 22 23 24 19 -7.

Since n ¼ 6, we have 12 ¼ 2n, 18 ¼ 3n and 24 ¼ 4n, so the above sequences are
special cases of

1 2 . . . n �3n 3n�1 3n�2 . . . 2nþ 1 3n �n:

and

2n 2n�1 . . . nþ 1 � 3nþ1ð Þ 3nþ2 3nþ3 . . . 4n 3nþ1 � nþ1ð Þ:

Let us define

δ ¼ 2π

n

Since, in Fig. 5.22, on the left, vertex 6 lies on the positive x-axis and according to

geometry in Fig. 5.23 (outer circle), the Cartesian coordinates of the vertices on the

top face are as follows:

xi ¼ R cos iδ

yi ¼ R sin iδ i ¼ 1; . . . ; n; outer circleð Þ
zi ¼ h

Fig. 5.23 Calculating

vertex coordinates

5.8 Automatic Generation of Object Specification 179

xi ¼ r cos i� 2nð Þδ
yi ¼ r sin i� 2nð Þδ i ¼ 2nþ 1; . . . ; 3n; inner circleð Þ
zi ¼ h

For the bottom face we have

xi ¼ xi�n

yi ¼ yi�n i ¼ nþ 1; . . . ; 2n; 3nþ 1; . . . ; 4nð Þ
zi ¼ 0

A program based on the above analysis can be written in any programming

language. Using Java for this purpose, we can choose between an old fashioned,

text-line oriented solution and a graphical user interface with, for example, a dialog

box with text fields and a button as shown in Fig. 5.24.

This dialog box contains a title bar, and seven so-called components: three labels
(that is, static text in the gray area), three text fields in which the user can enter data,

and an OK button. Programming the layout of a dialog box in Java can be done in

several ways, none of which is particularly simple. Here we do this by using three

panels:

• Panel p1 at the top, or North, for both the label Number of vertices on outer circle
and a text field in which this number is to be entered.

• Panel p2 in the middle, or Center, for the label Diameters D and d (cylinder is
hollow if d > 0) and two text fields for these diameters.

• Panel p3 at the bottom, or South, for the label Generate 3D object file? and an

OK button.

Since there are only a few components in each panel, we can use the default

FlowLayout layout manager for the placements of these components in the panels.

By contrast, the panels are placed above one another by using BorderLayout, as the
above words North, Center and South, used in the program as character strings,

indicate. As in many other graphics programs in this book, we use two classes in

this program, but this time there is a dialog class instead of a canvas class. Another

Fig. 5.24 Dialog box for (possibly hollow) cylinder

180 5 Perspective and 3D Data Structure

difference is that we do not display the frame, but restrict the graphical output to the

dialog box. (We cannot omit the frame class altogether because the Dialog con-

structor requires a ‘parent frame’ as an argument.) Recall that we previously used

calls to setSize, setLocation and show in the constructor of the frame class. We

simply omit these calls to prevent the frame from appearing on the screen. Obvi-

ously, we must not omit such calls in the constructor of our dialog class, called

DlgCylinder in the program. As for the generation of the hollow cylinder itself, as

discussed above, this can be found in the method genCylinder, which follows this

constructor:

// Cylinder.java: Generating an input file for a

// (possibly hollow) cylinder.

import java.awt.*;

import java.awt.event.*;

import java.io.*;

public class Cylinder extends Frame {

public static void main(String[] args) {new Cylinder();}

Cylinder() {new DlgCylinder(this);}

}

class DlgCylinder extends Dialog {

TextField tfN = new TextField(5);

TextField tfOuterDiam = new TextField(5);

TextField tfInnerDiam = new TextField(5);

Button button = new Button(" OK ");

FileWriter fw;

DlgCylinder(Frame fr) {

super(fr, "Cylinder (possibly hollow); height = 1", true);

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {

dispose();

System.exit(0);

}

});

Panel p1 = new Panel(), p2 = new Panel(), p3 = new Panel();

p1.add(new Label("Number of vertices on outer circle: "));

p1.add(tfN);

p2.add(new Label(

"Diameters D and d (cylinder is hollow if d > 0): "));

p2.add(tfOuterDiam); p2.add(tfInnerDiam);

p3.add(new Label("Generate 3D object file?"));

p3.add(button);

setLayout(new BorderLayout());

5.8 Automatic Generation of Object Specification 181

add("North", p1);

add("Center", p2);

add("South", p3);

button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent ae) {

int n = 0;

float dOuter = 0, dInner = 0;

try {

n = Integer.valueOf(tfN.getText()).intValue();

dOuter =

Float.valueOf(tfOuterDiam.getText()).floatValue();

dInner =

Float.valueOf(tfInnerDiam.getText()).floatValue();

if (dInner < 0) dInner = 0;

if (n < 3 || dOuter <= dInner)

Toolkit.getDefaultToolkit().beep();

else {

try {

genCylinder(n, dOuter / 2, dInner / 2);

} catch (IOException ioe) {

}

dispose();

System.exit(0);

}

} catch (NumberFormatException nfe) {

Toolkit.getDefaultToolkit().beep();

}

}

}});

Dimension dim = getToolkit().getScreenSize();

setSize(3 * dim.width / 4, dim.height / 4);

setLocation(dim.width / 8, dim.height / 8);

setVisible(true);

}

void genCylinder(int n, float rOuter, float rInner)

throws IOException {

int n2 = 2 * n, n3 = 3 * n, n4 = 4 * n;

fw = new FileWriter("Cylinder.dat");

double delta = 2 * Math.PI / n;

for (int i = 1; i <= n; i++) {

double alpha = i * delta,

cosa = Math.cos(alpha), sina = Math.sin(alpha);

182 5 Perspective and 3D Data Structure

for (int inner = 0; inner < 2; inner++) {

double r = (inner == 0 ? rOuter : rInner);

if (r > 0)

for (int bottom = 0; bottom < 2; bottom++) {

int k = (2 * inner + bottom) * n + i;

// Vertex numbers for i = 1:

// Top: 1 (outer) 2n+1 (inner)

// Bottom: n+1 (outer) 3n+1 (inner)

wi(k); // w = write, i = int, r = real

wr(r * cosa); wr(r * sina); // x and y

wi(1 - bottom); // bottom: z = 0; top: z = 1

fw.write("\r\n");

}

}

}

fw.write("Faces:\r\n");

// Top boundary face:

for (int i = 1; i <= n; i++) wi(i);

if (rInner > 0) {

wi(-n3); // Invisible edge

for (int i = n3 - 1; i >= n2 + 1; i--) wi(i);

wi(n3); wi(-n); // Invisible edge again.

}

fw.write(".\r\n");

// Bottom boundary face:

for (int i = n2; i >= n + 1; i--) wi(i);

if (rInner > 0) {

wi(-(n3 + 1));

for (int i = n3 + 2; i <= n4; i++) wi(i);

wi(n3 + 1); wi(-(n + 1));

}

fw.write(".\r\n");

// Vertical, rectangular faces:

for (int i = 1; i <= n; i++) {

int j = i % n + 1;

// Outer rectangle:

wi(j); wi(i); wi(i + n); wi(j + n); fw.write(".\r\n");

if (rInner > 0) { // Inner rectangle:

wi(i + n2); wi(j + n2); wi(j + n3); wi(i + n3);

fw.write(".\r\n");

}

}

fw.close();

}

5.8 Automatic Generation of Object Specification 183

void wi(int x) throws IOException {

fw.write(" " + String.valueOf(x));

}

void wr(double x) throws IOException {

if (Math.abs(x) < 1e-9) x = 0;

fw.write(" " + String.valueOf((float) x));

// float instead of double to reduce the file size

}

}

The number 60 entered in the top text field of Fig. 5.24 refers to the hollow

cylinder shown in Fig. 5.24 on the right. The hollow prism shown on the left in this

figure is obtained by replacing 60 with 6. In that case the following file is generated:

1 0.75 1.299038 1

7 0.75 1.299038 0

13 0.5 0.8660254 1

19 0.5 0.8660254 0

2 -0.75 1.299038 1

8 -0.75 1.299038 0

14 -0.5 0.8660254 1

20 -0.5 0.8660254 0

3 -1.5 0.0 1

9 -1.5 0.0 0

15 -1.0 0.0 1

21 -1.0 0.0 0

4 -0.75 -1.299038 1

10 -0.75 -1.299038 0

16 -0.5 -0.8660254 1

22 -0.5 -0.8660254 0

5 0.75 -1.299038 1

11 0.75 -1.299038 0

17 0.5 -0.8660254 1

23 0.5 -0.8660254 0

6 1.5 0.0 1

12 1.5 0.0 0

18 1.0 0.0 1

24 1.0 0.0 0

Faces:

1 2 3 4 5 6 -18 17 16 15 14 13 18 -6.

12 11 10 9 8 7 -19 20 21 22 23 24 19 -7.

2 1 7 8.

13 14 20 19.

3 2 8 9.

184 5 Perspective and 3D Data Structure

14 15 21 20.

4 3 9 10.

15 16 22 21.

5 4 10 11.

16 17 23 22.

6 5 11 12.

17 18 24 23.

1 6 12 7.

18 13 19 24.

Recall that we have already discussed the first two lines that follow the word

Faces. More interesting examples on generating input files for different 3D objects

can be found in Appendix D.

Exercises

5.1 Modify program CubePers.java of Sect. 5.4 in such a way that, with the given
viewpoint, only the visible edges are drawn as solid black lines; draw the

other, invisible lines in a different color, or, as usually in mechanical engi-

neering, as dashed lines (see Exercise 1.5).

5.2 Use a fillPolygon method to display only the top, right and front faces of

Fig. 5.10 as filled polygons of different colors.

5.3 To prepare for Exercise 5.5, extend program CubePers.java of Sect. 5.4 so

that two cubes beside each other are generated.

5.4 Use the class Rota3D of Sect. 3.9 to apply animation with double buffering to
the cube of Sect. 5.4, using a rotation about some line, say, 0–6 (see Fig. 5.11)

through some small angle. If you are unfamiliar with animation in Java or with

the Java class Image, required for double buffering, you will find the program
Anim.java in Appendix E helpful.

5.5 As Exercise 5.4, but the rotation is to be applied to the two cubes of Exercise

5.3. Use different axes of rotation and increase the rotation angles for the two

cubes by different amounts, so that the cubes seem to rotate independently of

each other, with different speeds. Figure 5.25 shows a snapshot of the two

cubes, each rotating about one of its vertical edges.

In the following exercises you are asked to generate input files as discussed

in Sect. 5.5. The illustrations below, however, were obtained using program

HLines of Chap. 6. You can also try this program to get better graphical results

with it than with programWireframe of Sect. 5.7. The same applies to the two

hidden-face programs Painter and ZBuf, also discussed in Chap. 6.

5.6 Write a program BookView.java that can generate a data file for an open book.
Enable the user to supply the number of sheets, the page width and height, and

the name of the output file as program arguments. For example, the files

Exercises 185

bookv4.dat and bookv150.dat for the books shown in Fig. 5.26 were obtained

by executing the following commands:

java BookView 4 15 20 bookv4.dat

java BookView 150 15 20 bookv150.dat

Apply the program HLines.java to it to generate HP-GL files. Import these

files in a text processor or drawing program, as was done twice for Fig. 5.26.

5.7 Write a program to generate a globe model of a sphere, as shown in Fig. D.4 of

Appendix D. Enable the user to supply n as a program argument.

5.8 Write a program to generate a semi-sphere, as shown in Fig. 5.27.

5.9 Generate a great many cubes that are placed beside, behind and above each

other (see Fig. 5.28).

5.10 Generate a data file for two tori (the plural form of torus) as shown in

Fig. 5.29.

5.11 Write a program to generate a spiral staircase, as shown in Fig. 5.30.

Fig. 5.25 Screenshot of two cubes rotating about vertical axes

Fig. 5.26 Two open books; numbers of sheets: 4 on the left and 150 on the right

186 5 Perspective and 3D Data Structure

Fig. 5.27 A semi-sphere

Fig. 5.28 A cube of cubes

Fig. 5.29 Two tori

Exercises 187

5.12 Enhance your adapted Tetris program (from Exercise 1.6 in Chap. 1) to

include the following steps and functionality:

• Randomly select one of the seven shapes, as shown in Fig. 5.31, to be

displayed in the center at the top of “Main area” and randomly select a

different shape to be displayed in “Next shape”. The starting orientation of

the shape can be fixed.

Fig. 5.30 A spiral staircase

Fig. 5.31 Tetris: seven shapes

188 5 Perspective and 3D Data Structure

• The shape at the top of “Main area” moves down (falls) at a constant speed.

Once the shape’s lowest edge or point touches the bottom of “Main area”

or the top edge or a point of another shape, it stops moving and stays there.

• When the cursor is outside of “Main area”, each click on the left mouse

button moves the falling shape to the left by one square, and similarly, the

right button moves the shape to the right by one square. A forward scroll of

the mouse wheel will rotate the shape clockwise and a backward scroll will

rotate the shape counter-clockwise, both through 90�. If the mouse cursor

moves inside “Main area”, the falling stops, i.e. a pause.

Exercises 189

Chapter 6

Hidden-Line and Hidden-Face Removal

The previous chapter has discussed the specification of 3D objects and their

perspective view in preparation for this chapter. We will now first consider line

drawings of 3D objects, that engineers usually wish to use. Such line drawings

typically display the lines on the back, i.e. invisible lines or hidden lines, as dashed
lines. Although line drawings might look rather dull compared with colored repre-

sentations of such objects, there are many technical applications for which they are

desired. The first part of this chapter will discuss how to identify hidden lines and

omit them in line drawings. The chapter will then describe how backfaces,

i.e. invisible faces or hidden faces, could be identified by several algorithms. The

viewpoint will be taken care of automatically, so that the hidden faces of an object

are omitted regardless of the chosen viewpoint. Besides, a face may be only partly

visible, for example, if we have two cubes, with the nearer one partly hiding the

farther one. The problem of displaying only the visible portions of faces will also be

solved in this chapter.

6.1 Hidden-Line Algorithm

Although the faces of a 3D object can be polygons with any number of vertices, we

will triangulate these polygons and use the resulting triangles instead. Suppose we

are given a set of line segments PQ and a set of triangles ABC in terms of the eye

and screen coordinates of all points P, Q, A, B and C. Our task is to draw each line

segment PQ as far as none of the triangles ABC obscures them. A line segment

(or line, for short) may be completely visible, completely invisible or partly visible.

For example, in Fig. 6.1, line 1 is completely visible because it lies in front of the

triangle on the left and is unrelated to the other two triangles. In contrast, line 2 lies

behind the triangle in the middle and is therefore completely invisible. Finally, lines

3 and 4 are not completely visible, but some parts of them are.

© Springer International Publishing AG 2017

L. Ammeraal, K. Zhang, Computer Graphics for Java Programmers,
DOI 10.1007/978-3-319-63357-2_6

191

There is another important case: since the edges of the triangles are also line

segments, it will frequently occur that a line segment is an edge of the triangle under

consideration. Such line segments are to be considered visible, as far as that triangle

is concerned. For example, consider the letter L in Fig. 6.2, with the following data

file letterL.dat:

1 20 0 0

2 20 50 0

3 0 50 0

4 0 0 0

5 20 0 10

6 20 40 10

7 0 40 10

8 0 0 10

Fig. 6.1 Triangles and line segments

Fig. 6.2 A nonconvex

polyhedron

192 6 Hidden-Line and Hidden-Face Removal

9 20 40 80

10 20 50 80

11 0 50 80

12 0 40 80

Faces:

1 2 10 9 6 5.

3 4 8 7 12 11.

2 3 11 10.

7 6 9 12.

4 1 5 8.

9 10 11 12.

5 6 7 8.

1 4 3 2.

Here the only line segment that is partly visible and partly invisible is the line 7-8,

which intersects the face 1-2-10-9-6-5, or rather one of the triangles (6-10-9, for

example) of which it consists. In the image, the line 7-8 intersects the edge 6-9 of

that triangle in point I, which divides this line into the visible part 8-I and the

invisible one I-7.

Given the faces of the object, we build a set of triangles and a set of line

segments. Then for each line segment PQ, we call a method lineSegment, which
draws any parts of PQ that are visible. This method is recursive and can be

represented in a flowchart in Fig. 6.3, where the numbered tests performed in

different steps will be individually discussed in Appendix C.1 and the boxes with

double edges denote recursive calls.

This flowchart is equivalent to the following pseudo code, in which I and J are

points (between P and Q) on line segment PQ. On the screen we view I and J as

intersecting points of PQ with edges of triangle ABC:

void lineSegment(line PQ, set s of triangles) {

Search set s for a triangle ABC that obscures PQ (or part of it)

If no such triangle found,

Draw PQ

Else {

If triangle ABC leaves part PI of PQ visible

lineSegment(PI,theremainingtrianglesofs); //Recursivecall

If triangle ABC leaves JQ of PQ visible

lineSegment(JQ,theremainingtrianglesofs); //Recursivecall

}

}

According to both the flowchart and this pseudo code, the loop that searches the set

of triangles terminates as soon as a triangle ABC is found that obscures PQ. If ABC

obscures PQ completely, no other action is required. If ABC obscures PQ partly, the

parts that are possibly visible are dealt with recursively, using the remaining

6.1 Hidden-Line Algorithm 193

triangles. Note that in these cases the remaining triangles of the current loop are not

applied to the whole line segment PQ anymore. The line PQ is drawn only if none of

the triangles obscures it, that is, after the loop is completed.

The flowchart in Fig. 6.3 refers to tests 1–9. The first eight of them determine

whether the given line segment PQ is completely or partially obscured by a triangle

ABC. If ABC completely hides PQ, then, as far as PQ is concerned, we can ignore

the remaining triangles. On the other hand, if ABC leaves PQ completely visible,

we still have to test the visibility of PQ with regard to the remaining triangles. Only

if none of all triangles hides PQ completely or partially can we conclude that PQ is

really visible.

As soon as a triangle is found that partially hides PQ, test 9 will apply. One of the

three cases (a), (b) and (c) shown in Fig. 6.4 must apply.

Fortunately, the intersection points I and J have been obtained in the previous

case. If PI is visible, i.e. the cases in Fig. 6.4a, b, PI and the remaining triangles are

sent to the recursive call (also shown in the flowchart of Fig. 6.3). Otherwise, if JQ

is visible, i.e. the cases in Fig. 6.4b, c, JQ and the remaining triangles are sent to the

Fig. 6.3 Flowchart for

lineSegment method

194 6 Hidden-Line and Hidden-Face Removal

recursive call. The details of the above nine tests and their Java implementations

can be found in Appendix C. The program HLines.java, listed there, uses many

classes that we have discussed in connection with program Wireframe.java of the

previous chapter. Figure 6.5 shows the same object as that of Figs. 5.18, 5.19,

and 5.20, but without three object edges that are hidden.

6.2 Backface Culling

Starting from this section, we will focus on the faces rather than on the edges of

objects. For example, a cube is represented by its twelve edges in wireframe

representation, but, for opaque objects, (in most cases) by three of its six faces.

The three other faces, on the back and therefore known as backfaces, are invisible,
so we can ignore them.

Fig. 6.4 Three cases where line segment PQ is partially blocked by triangle ABC

Fig. 6.5 Simple object displayed with HLines.java

6.2 Backface Culling 195

A backface can be detected by investigating the orientation of its vertices. To

begin with, we specify each face counter-clockwise, when viewed from outside the

object. For example, we denote the top face of the cube of Fig. 5.11 as the counter-

clockwise vertex sequence 4, 5, 6, 7, or, for example, 6, 7, 4, 5, but not 6, 5, 4, 7, for

that would be clockwise. In contrast, we can specify the bottom face of the cube as

the sequence 0, 3, 2, 1, which is counter-clockwise when this face is viewed from

the outside but clockwise in our perspective image. Here we see that the orientation

of the bottom face in the image is different from that in 3D space, when the object is

viewed from the outside (that is, from below). This is because this bottom face is a

backface. We use this principle to tell backfaces from visible faces. The method

area2 in the class Tools2D, discussed in Sect. 2.3, will now be very useful. Recall

that the complete version of class Tools2D can be found in Sect. 2.3.

Note that we should use screen coordinates in the test we have just been

discussing. If we used the xe- and ye-coordinates instead (ignoring the ze-coordinate;
see Fig. 5.4), this test about the orientation of the vertices would be equivalent to

testing whether the normal vector, perpendicular to the face in question and

pointing outward, would point more or less towards us or away from us, that is,

whether that vector would have a positive or a negative ze-component. This test

would be correct with orthographic (or parallel) projection but not necessarily with

central projection, which we are using. Exercise 6.5 deals with this subject in

greater detail.

This time we will use the Graphics methods setColor and fillPolygon, to display
each face, if it is visible, in a color that is unique for that face. Just before we do this

(in the paint method) we test whether the face we are dealing with is visible; if it is

not, it is a backface so that we can ignore it. To demonstrate that this really works,

we will modify the viewpoint (by altering the angles θ and φ) each time the user

presses a mouse button:

// Backface.java: A cube in perspective with backface culling.

// Uses: Point2D (Section 1.4), Point3D (Section 3.9),

// Tools2D (Section 2.3).

import java.awt.*;

import java.awt.event.*;

public class Backface extends Frame {

public static void main(String[] args) {new Backface();}

Backface() {

super("Press mouse button ...");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

});

196 6 Hidden-Line and Hidden-Face Removal

add("Center", new CvBackface());

Dimension dim = getToolkit().getScreenSize();

setSize(dim.width / 2, dim.height / 2);

setLocation(dim.width / 4, dim.height / 4);

setVisible(true);

}

}

class CvBackface extends Canvas {

int centerX, centerY;

ObjFaces obj = new ObjFaces();

Color[] color = {Color.blue, Color.green, Color.cyan,

Color.magenta, Color.red, Color.yellow};

float dPhi = 0.1F;

CvBackface() {

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent evt) {

obj.theta += 0.1F;

obj.phi += dPhi;

if (obj.phi > 2 || obj.phi < 0.3)

dPhi = -dPhi;

repaint();

}

});

}

int iX(float x) {return Math.round(centerX + x);}

int iY(float y) {return Math.round(centerY - y);}

public void paint(Graphics g) {

Dimension dim = getSize();

int maxX = dim.width - 1, maxY = dim.height - 1,

minMaxXY = Math.min(maxX, maxY);

centerX = maxX / 2; centerY = maxY / 2;

obj.d = obj.rho * minMaxXY / obj.objSize;

obj.eyeAndScreen();

Point2D[] p = new Point2D[4];

for (int j = 0; j < 6; j++) {

Polygon pol = new Polygon();

Square sq = obj.f[j];

for (int i = 0; i < 4; i++) {

int vertexNr = sq.nr[i];

p[i] = obj.vScr[vertexNr];

pol.addPoint(iX(p[i].x), iY(p[i].y));

}

6.2 Backface Culling 197

g.setColor(color[j]);

if (Tools2D.area2(p[0], p[1], p[2]) > 0)

g.fillPolygon(pol);

}

}

}

class ObjFaces { // Contains 3D object data of cube faces

float rho, theta = 0.3F, phi = 1.3F, d;

Point3D[] w; // World coordinates

Point3D[] e; // Eye coordinates

// (e = wV where V is a 4 x 4 matrix)

Point2D[] vScr; // Screen coordinates

Square[] f; // The six (square) faces of a cube.

float v11, v12, v13, v21, v22, v23, v32, v33, v43,

// Elements of viewing matrix V.

xe, ye, ze, objSize;

ObjFaces() {

w = new Point3D[8];

e = new Point3D[8];

vScr = new Point2D[8];

f = new Square[6];

// Bottom surface:

w[0] = new Point3D(1, -1, -1);

w[1] = new Point3D(1, 1, -1);

w[2] = new Point3D(-1, 1, -1);

w[3] = new Point3D(-1, -1, -1);

// Top surface:

w[4] = new Point3D(1, -1, 1);

w[5] = new Point3D(1, 1, 1);

w[6] = new Point3D(-1, 1, 1);

w[7] = new Point3D(-1, -1, 1);

f[0] = new Square(0, 1, 5, 4); // Front

f[1] = new Square(1, 2, 6, 5); // Right

f[2] = new Square(2, 3, 7, 6); // Back

f[3] = new Square(3, 0, 4, 7); // Left

f[4] = new Square(4, 5, 6, 7); // Top

f[5] = new Square(0, 3, 2, 1); // Bottom

objSize = (float) Math.sqrt(12F);

// distance between two opposite vertices.

rho = 3 * objSize; // For reasonable perspective effect

}

198 6 Hidden-Line and Hidden-Face Removal

void initPersp() {

float costh = (float) Math.cos(theta),

sinth = (float) Math.sin(theta),

cosph = (float) Math.cos(phi),

sinph = (float) Math.sin(phi);

v11 = -sinth; v12 = -cosph * costh; v13 = sinph * costh;

v21 = costh; v22 = -cosph * sinth; v23 = sinph * sinth;

v32 = sinph; v33 = cosph;

v43 = -rho;

}

void eyeAndScreen() {

initPersp();

for (int i = 0; i < 8; i++) {

Point3D p = w[i];

float x = v11 * p.x + v21 * p.y;

float y = v12 * p.x + v22 * p.y + v32 * p.z;

float z = v13 * p.x + v23 * p.y + v33 * p.z + v43;

Point3D Pe = e[i] = new Point3D(x, y, z);

vScr[i] = new Point2D(-d * Pe.x / Pe.z, -d * Pe.y / Pe.z);

}

}

}

class Square {

int nr[];

Square(int iA, int iB, int iC, int iD) {

nr = new int[4];

nr[0] = iA; nr[1] = iB; nr[2] = iC; nr[3] = iD;

}

}

If you do not use the Java classpath variable, you should make sure that the files

Point2D.class, Point3D.class and Tools2D.class (or the corresponding .java files)

are in the same directory as this program. We now initially obtain the image of a

cube with red, green and blue visible faces, as shown in Fig. 6.6. By pressing the

mouse button, the viewpoint changes, which has the same effect as a rotation of the

cube. If we do this several times, the backfaces become visible one by one: yellow,

cyan and magenta for the faces that are initially at the bottom, at the back and at the

left, respectively.

We will use backface culling in the programs that follow. This technique is

worthwhile because it reduces the number of polygons that may be visible drasti-

cally and it is inexpensive compared with some more time-consuming algorithms to

be discussed later in this chapter. However, using only backface culling is not

sufficient, since it does not work for non-convex solids, that is, any object that has at

6.2 Backface Culling 199

least one non-convex polygon as its face. As Fig. 6.2 illustrates, the solid letter L is

not convex, since the line that connects, for example, vertices 1 and 11 does not lie

completely inside the object. In that example, rectangle 5-6-7-8 is not a backface,

but it is only partly visible. It is also possible for a frontface (with vertex numbers in

counter-clockwise order) to be completely invisible, since it may be hidden by

another frontface that is nearer to the viewer. Backface culling may also fail in

such cases.

6.3 Painter’s Algorithm

It is an attractive idea to solve the hidden-face problem by displaying all polygons in

a specific order, namely first the most distant one, then the second furthest, and so on,

finishing with the one that is closest to the viewpoint. Painters sometimes follow the

same principle, particularly when working with oil paintings. They typically start

with the background and paint a new layer for objects on the foreground later, so that

the overlapped parts of objects in the background, painted previously, are covered by

the current layer and thus become invisible. This algorithm is therefore known as the

painter’s algorithm. It is based on the assumption that each triangle can be assigned a

ze-coordinate, which we can use to sort all triangles. One way of obtaining such

a ze-coordinate for a triangle ABC is by computing the average of the three

ze-coordinates of A, B and C. However, there is a problem, illustrated in Fig. 6.7.

Each of the three triangles is partly obscured by another, so we cannot satisfactorily

place them in any order, that is, from back to front (see also Figs. 6.12 and 6.13 for

Fig. 6.6 Result of backface culling

200 6 Hidden-Line and Hidden-Face Removal

the similar case of three rectangular beams). Consequently, the naı̈ve approach just

suggested will fail in this case. Surprisingly, it gives good results in many other

cases, such as the solid letter L in Fig. 6.2 and sphere and cone in Fig. 6.9. It is also

very fast.

The program Painter.java is listed below. If you compile and run this program,

all classes defined in the program files Point2D.java, Point3D.java, Obj3D.java,
etc., must be available, as the comment below indicates. Recall our discussion of

this subject at the end of Chap. 1.

// Painter.java: Perspective drawing using an input file that lists

// vertices and faces. Based on the Painter’s algorithm.

// Uses: Fr3D (Section 5.6) and CvPainter (Section 6.3),

// Point2D (Section 1.4), Point3D (Section 3.9),

// Obj3D, Polygon3D, Tria, Fr3D, Canvas3D (Section 5.6).

import java.awt.*;

public class Painter extends Frame {

public static void main(String[] args) {

new Fr3D(args.length > 0 ? args[0] : null, new CvPainter(),

"Painter");

}

}

In the above Fr3D constructor call, the first argument is a conditional expression to

check if the user has used the option of specifying an input file as a program

argument in the command line. (This is not required, since the user can also use the

File menu to open input files). The second argument of the constructor call just

mentioned creates an object of class CvPainter, which is listed below in the

separate file CvPainter.java. The third argument specifies the window title Painter
that will appear.

Fig. 6.7 Triangles, each of

which partly obscures

another

6.3 Painter’s Algorithm 201

// CvPainter.java: Used in the file Painter.java.

import java.awt.*;

import java.util.*;

class CvPainter extends Canvas3D {

private int maxX, maxY, centerX, centerY;

private Obj3D obj;

private Point2D imgCenter;

Obj3D getObj() {return obj;}

void setObj(Obj3D obj) {this.obj = obj;}

int iX(float x) {return Math.round(centerX + x - imgCenter.x);}

int iY(float y) {return Math.round(centerY - y + imgCenter.y);}

void sort(Tria[] tr, int[] colorCode, float[] zTr, int l, int r) {

int i = l, j = r, wInt;

float x = zTr[(i + j) / 2], w;

Tria wTria;

do {

while (zTr[i] < x) i++;

while (zTr[j] > x) j--;

if (i < j) {

w = zTr[i]; zTr[i] = zTr[j]; zTr[j] = w;

wTria = tr[i]; tr[i] = tr[j]; tr[j] = wTria;

wInt = colorCode[i]; colorCode[i] = colorCode[j];

colorCode[j] = wInt;

i++;

j--;

}

else if (i == j) {i++; j--;}

} while (i <= j);

if (l < j) sort(tr, colorCode, zTr, l, j);

if (i < r) sort(tr, colorCode, zTr, i, r);

}

public void paint(Graphics g) {

if (obj == null) return;

obj.setSpecular(specularDesired);

// specularDesired defined in Canvas3D

Vector<Polygon3D> polyList = obj.getPolyList();

if (polyList == null) return;

int nFaces = polyList.size();

if (nFaces == 0) return;

202 6 Hidden-Line and Hidden-Face Removal

Dimension dim = getSize();

maxX = dim.width - 1; maxY = dim.height - 1;

centerX = maxX / 2; centerY = maxY / 2;

// ze-axis towards eye, so ze-coordinates of

// object points are all negative.

// obj is a java object that contains all data:

// - Vector w (world coordinates)

// - Array e (eye coordinates)

// - Array vScr (screen coordinates)

// - Vector polyList (Polygon3D objects)

// Every Polygon3D value contains:

// - Array ’nrs’ for vertex numbers

// - Values a, b, c, h for the plane ax+by+cz=h.

// - Array t (with nrs.length-2 elements of type Tria)

// Every Tria value consists of the three vertex

// numbers iA, iB and iC.

obj.eyeAndScreen(dim);

// Computation of eye and screen coordinates.

imgCenter = obj.getImgCenter();

obj.planeCoeff(); // Compute a, b, c and h.

// Construct an array of triangles in

// each polygon and count the total number

// of triangles:

int nTria = 0;

for (int j = 0; j < nFaces; j++) {

Polygon3D pol = polyList.elementAt(j);

if (pol.getNrs().length < 3 || pol.getH() >= 0) continue;

// if (pol.triangulate(obj) != null)

// nTria += pol.getT().length;

nTria += pol.triangulate(obj).length;

}

Tria[] tr = new Tria[nTria];

int[] colorCode = new int[nTria];

float[] zTr = new float[nTria];

int iTria = 0;

Point3D[] e = obj.getE();

Point2D[] vScr = obj.getVScr();

for (int j = 0; j < nFaces; j++) {

Polygon3D pol = polyList.elementAt(j);

if (pol.getNrs().length < 3 || pol.getH() >= 0) continue;

6.3 Painter’s Algorithm 203

int cCode =

obj.colorCodePhong(pol.getA(), pol.getB(), pol.getC());

g.setColor(new Color(cCode));

Tria[] t = pol.getT();

for (int i = 0; i < t.length; i++) {

Tria tri = t[i];

tr[iTria] = tri;

colorCode[iTria] = cCode;

float zA = e[tri.iA].z,

zB = e[tri.iB].z,

zC = e[tri.iC].z;

zTr[iTria++] = zA + zB + zC;

}

}

if (nTria > 0)

sort(tr, colorCode, zTr, 0, nTria - 1);

for (iTria = 0; iTria < nTria; iTria++) {

Tria tri = tr[iTria];

Point2D a = vScr[tri.iA],

b = vScr[tri.iB],

c = vScr[tri.iC];

int cCodeAll = colorCode[iTria];

g.setColor(new Color(cCodeAll));

int[] x = {iX(a.x), iX(b.x), iX(c.x)};

int[] y = {iY(a.y), iY(b.y), iY(c.y)};

g.fillPolygon(x, y, 3);

}

}

}

We use a special method, sort, to sort the triangles; it is based on the well-known

and efficient quicksort algorithm, discussed in detail in Algorithms and Data
Structures in C ++ (Ammeraal 1996). Before calling sort, we build three arrays:

Array element Type Contains

tr[iTria] Tria The three vertex numbers of the triangle

colorCode[iTria] int Value between 0 and 255

zTr[iTria] float Value representing ze-coordinate of triangle

For a given subscript value iTria, the three array elements in the first column

of this table belong to the same triangle. We may regard them as members of

the same record, of which zTr is the key. During sorting, whenever two elements

204 6 Hidden-Line and Hidden-Face Removal

zTr[i] and zTr[j] are swapped, we swap tr[i] and tr[j] as well as colorCode[i] and
colorCode[j] at the same time. It seems reasonable to use the average of the three ze-
coordinates a triangle’s vertices as the ze-coordinate of that triangle, but we may

simply use the sum instead of the average. Recall that the positive ze-axis points
towards us, so that all ze values that we use are negative: the stronger negative it is,
the further the triangle is. It follows that we have to paint the triangles in increasing

order of their ze-coordinates, or, equivalently, in decreasing order of their absolute

values.

For each polygon, a color shade is computed by the method colorCodePhong, to
be discussed in detail in Sect. 7.7. As the class CvPainter in the program

Painter.java shows, there is a call to colorCodePhong in the method paint for
every polygon just before entering the (inner) loop that, for a given polygon, deals

with all its triangles. Within the loop, all the triangles of that polygon, their color

code, and each triangle’s distance, are stored in the three arrays tr, colorCode and
zTr, discussed above. After this has been done for all polygons, the triangles are

sorted on their distances stored in zTr, and then displayed in order of decreasing

distance.

Next, we demonstrate the application of the painter’s algorithm to some simple

3D objects, with the implementation of user operations. As Fig. 6.8 shows, we will

allow the user to change the viewpoint E, characterized by its spherical coordinates.

Immediately after an input file has been opened, these coordinates have the

following (default) values:

Fig. 6.8 Program Painter.java applied to file letterL.dat

6.3 Painter’s Algorithm 205

ρ ¼ 3� the distance between two opposite vertices of a box in which the object fits

θ ¼ 0:3 radians � 17�ð Þ
φ ¼ 1:3 radians � 74�ð Þ

If the user gives the menu command Viewpoint Down the value of φ is increased

by 0.1 radians (� 6�). Similarly, Viewpoint Up decreases φ by 0.1 radians, while

Viewpoint Left and Viewpoint Right decreases and increases θ by 0.1 radians,

respectively. The same effects can be achieved by using one of the four arrow

keys, #, ", and!, together with the Ctrl-key, as indicated in the menu. Figure 6.8

shows the screen when the input file letterL.dat, discussed in Sect. 6.1, has been

read by program Painter.java and the user has used the Viewpoint Up command six

times, so that we view the object from a higher viewpoint than in the initial

situation. Recall that we saw the View menu also in Sect. 5.7 for the program

Wireframe. It is also available in program HLines of Sect. 6.1. For the programs

Painter and ZBuf (to be discussed in the next section) the View menu has the new

menu item Specular illumination, which we will discuss in Chap. 7.

The File menu, not shown in Fig. 6.8, consists of the following commands:

Open Ctrl+O

Exit Ctrl+Q

If several input files are available, the user can switch to another object by using the

Open command (or Ctrl +O), as usual. The simplicity of our file format makes it

easy to generate such files by other programs, as discussed in Sect. 5.8 and

Appendix D. In particular, mathematically well-defined solids, such as the sphere

and the cone of Fig. 6.9, are very suitable for this. Incidentally, this example

demonstrates that what we call a ‘three-dimensional object’ may consist of several

solids. Note, however, that the input-file format requires that all vertices, in this

example of both the sphere and the cone, must be defined in the first part of the file

and all faces in the second. In other words, the line with the word Faces must occur

only once in the file. This example also shows that curved surfaces can be approx-

imated by a great many flat faces. In this example, there are altogether 4954 vertices

and 5100 faces. Here the command Viewpoint Down has been used five times and

the command Viewpoint Right twice.
An object will normally appear with a reasonable perspective effect, but the user

will be able to increase or decrease the viewing distance by using menu commands

or their shortcuts, Ctrl+Insert and Ctrl+Delete, as Fig. 6.8 shows.

As you can see in Figs. 6.8 and 6.9, the chosen background color is light blue like

the sky, and all faces of the object are yellow. The source of light is far away, left at

the top, so that the upper and the left faces are bright yellow, while those on the right

and on the bottom are much darker.

To start the program, we can supply the (initial) input file as a program

argument. For example, if the first 3D object to be displayed is given by the file

letterL.dat, we can start the program by entering

java Painter letterL.dat

206 6 Hidden-Line and Hidden-Face Removal

Alternatively, we can enter

java Painter

and use the Open command in the File menu (or Ctrl+O) to specify the input file

letterL.dat. With either way of starting the program, we can switch to another object

by using this Open command.

As discussed at the beginning of this section, the painter’s algorithm will fail in

some cases, such as the three triangles in Fig. 6.7. We will therefore discuss another

algorithm for hidden-face removal in the next section.

6.4 Z-Buffer Algorithm

If the images of two faces F1 and F2 overlap, we may consider two questions with

regard to the correct representation of these faces:

1. Which pixels would be used for both F1 and F2 if each face were completely

visible?

2. For each of these pixels, which of the corresponding points in F1 and F2 is

nearer?

The Z-buffer algorithm deals with these questions in a general and elegant way.

Recall that we are using an eye-coordinate system, with z-coordinates denoting the

Fig. 6.9 Sphere and cone

6.4 Z-Buffer Algorithm 207

distance to the viewpoint E. We consider a points P in 3D-space and its

corresponding projection P0 in 2D-space, where we use central projection with

the viewpoint E as the center of projection. In other words, each line PE is a ray of

light, intersecting the screen in P0. We are especially interested in such points that

are the centers of pixels.

The Z-buffer algorithm is based on a large two-dimensional array that stores z-
coordinates. Using the variable dim as the current canvas dimension, we define the

following array, also known as a Z-buffer, for this purpose:

private float buf[][];

buf = new float[dim.width][dim.height];

We initialize array buf with values corresponding to points that are very far away.

As before, we ignore backfaces. For each of the remaining faces we compute all

pixels on the screen and their z-values on the face. For each pixel P0(ix, iy), we test
whether the corresponding point P in 3D–space is nearer than buf[ix][iy] indicates.
If it is, we put this pixel on the screen, using the color for the face in question,

computed as in the previous section, while updating buf[ix][iy] at the same time:

For each face F (and its image, consisting of a set of pixels):

For each pixel P0(ix, iy), corresponding with a 3D point P of F:

If P is nearer than the distance stored in buf[ix][iy] indicates, {

set pixel P0 to the color for face F;

update buf[ix][iy] so that it refers to the distance of P.

}

In this discussion, the words distance and near refer to the z-coordinates in the

eye-coordinate system. (Since we use no other 3D coordinates here, we simply

write z instead of ze here.) There are two aspects that make the implementation of

the above algorithm a bit tricky:

1. Since the z-axis points towards us, the larger z is, the shorter the distance.
2. It is necessary to use 1/z instead of z for linear interpolation.

Let us take a look at this rather surprising point 2. Suppose we are given the ze-
coordinates of two points A and B in 3D-space and the central projections A0 and B0

of these points on the screen. Besides, some point P0 on the screen, lying on A0B0, is
given and we have

xP
0 ¼ xA

0 þ λ xB
0 � xA

0ð Þ
yP
0 ¼ yA

0 þ λ yB
0 � yA

0ð Þ

where xP
0, and so on, are screen coordinates. We are then interested in the point P

(in 3D-space) of which P0 is the central projection. Since we want to know how far

P is away, our goal is to compute zP. (After this, we can also compute the 3D

coordinates xP¼ – xP
0zP/d and yP¼ – yP

0zP/d, using Eqs. (5.7) and (5.8) of Sect. 5.3,

208 6 Hidden-Line and Hidden-Face Removal

https://doi.org/10.1007/978-3-319-63357-2_5#Equ7
https://doi.org/10.1007/978-3-319-63357-2_5#Equ8

where we wrote X and Y instead of x0 and y0). Curiously enough, to compute this eye

coordinate zP by interpolation, we need to use the inverse values of the z-
coordinates:

1

zP
¼ 1

zA
þ λ

1

zB
� 1

zA

� �

Wewill simply use this result here; it is discussed in more detail in Appendix A. Let

us write

zPi ¼ 1

zP

which we write as zPi (equal to 1/zP) in the program. Using the same convention

(zAi¼ 1/zA, etc.) for other variables and writing xA, yA etc. for screen coordinates,

we compute the centroid D(xD, yD) along with its inverse z-value zDi for each

triangle ABC as follows:

xD = (xA + xB + xC)/3;

yD = (yA + yB + yC)/3;

zDi = (zAi + zBi + zCi)/3;

This centroid will be the basis for computing zi-values for other points of the

triangle by linear interpolation. To do this, we are interested in how much zPi
increases if P moves one pixel to the right. This quantity, which we may write as

∂zi/∂x or simply as dzdx in the program, is constant for the whole triangle. We will

use this value, as well as its counterpart dzdy¼∂zi/∂y indicating how much zPi
increases if P moves one pixel upward, that is, if the screen coordinate yP is

increased by 1. It is useful to think of the triples x, y and zi (where x and y are

screen coordinates and zi¼ 1/z) as points in a plane of an imaginary 3D space. We

can then denote this plane as

axþ byþ czi ¼ k ð6:1Þ

Writing this in the form zi¼ (k – ax – by)/c and applying partial differentiation to zi,
we obtain

∂zi
∂x
¼ �a

c
ð6:2Þ

∂zi
∂y
¼ �b

c
ð6:3Þ

To find a, b and c, remember that (a, b, c) in Eq. (6.1) is the normal vector of the

plane of triangle ABC (in the imaginary space we are dealing with). We define the

vectors

6.4 Z-Buffer Algorithm 209

u ¼ AB ¼ u1; u2; u3ð Þ
v ¼ AC ¼ v1; v2; v3ð Þ

where

u1 ¼ xB � xA v1 ¼ xC � xA

u2 ¼ yB � yA v2 ¼ yC � yA

u3 ¼ zBi � zAi v3 ¼ zCi � zAi

Then the vector product

u� v ¼
i j k

u1 u2 u3

v1 v2 v3

�������

�������
(see Sect. 2.2) is also perpendicular to triangle ABC, so that we can compute the

desired values a, b and c of (6.1), (6.2) and (6.3) as the coefficients of i, j and k,

respectively, finding

a ¼ u2v3 � u3v2

b ¼ u3v1 � u1v3

c ¼ u1v2 � u2v1

So much for the computation of dzdx¼∂zi/∂x and dzdy¼∂zi/∂y, which we will

use to compute zPi for each point P of triangle ABC, as we will see below.

To prepare for traversing all relevant scan lines for triangle ABC, such as LR in

Fig. 6.10, we compute the y-coordinates yTop and yBottom of the vertices at the top

and the bottom of this triangle. For all pixels that comprise triangle ABC on the

screen, we have to compute the z-coordinate of the corresponding point in 3D

space. In view of the enormous number of those pixels, we should do this as

efficiently as possible. Working from the bottom of the triangle to the top, when

dealing with a scan line, we traverse all its pixels from left to right. Figure 6.10

Fig. 6.10 Triangle ABC

and scan line LR

210 6 Hidden-Line and Hidden-Face Removal

shows a situation in which all pixels of triangle ABC below the scan line LR have

already been handled.

For each scan line at level y (yBottom � y � yTop), we find the points of

intersection L and R with triangle ABC as follows. We introduce the points I, J

and K, which are associated with the triangle edges BC, CA and AB, respectively.

Initially, we set the program variables xI, xJ and xK to 1030, and xI1, xJ1 and xK1 to
–1030. Then, if y lies between yB and yC or is equal to one of these values, we

compute the point of intersection of the scan line with BC, and we assign the x-
coordinate of this point to both xI and xI1. In the same way we possibly update xJ,
xJ1 for CA and xK and xK1 for AB. After this, each of the variables xI, xJ and xK is

equal either to its original value 1030 or to the x-coordinate of the scan line in

question with BC, CA and AB, respectively. The same applies to the other three

variables, except that these may still have a different original value, –1030. We can

now easily find xL and xR:

xL ¼ min xI; xJ; xKð Þ
xR ¼ max xI1; xJ1; xK1ð Þ

So far, we have been using floating-point, logical coordinates y, xL and xR. Since
we have to deal with pixels, we convert these to the (integer) device coordinates iY,
iXL and iXR as follows:

int iy = iY(y), iXL = iX(xL+0.5), iXR = iX(xR-0.5);

Adding 0.5 to xL and subtracting it from xR is done to prevent clashes between

neighboring triangles of different colors: the pixel (iXR, y) belonging to triangle

ABC should preferably not also occur as a pixel (iXL, y) of the right-hand neighbor
of this triangle, because it would then not be clear which color to use for this pixel.

Before entering the loop for all pixels iXL, iXL + 1, . . ., iXR for the scan line on level

y, we compute the inverse z-value zi¼ zLi for the pixel (iXL, y). Theoretically, this
value is

zLi ¼ zDi þ y� yDð Þ ∂z
∂y
þ xL � xDð Þ ∂z

∂x

In the program we modify this a little, giving a little more weight to the centroid D

of the triangle:

double zi = 1.01 * zDi + (y - yD) * dzdy + (xL - xD) * dzdx;

This modification is useful in some special cases of which we will give an example

at the end of this section.

6.4 Z-Buffer Algorithm 211

Starting at the left end (iXL, y) of a scan line with the above z-value zi¼ zLi, we
could now write the loop for this scan line as follows:

for (int x=iXL; x<=iXR; x++) {

if (zi < buf[x][iy]) { // ’<’ means ’nearer’

g.drawLine(x, iy, x, iy);

buf[x][iy] = (float)zi;

}

zi += dzdx;

}

Along a horizontal line LR, shown in Fig. 6.10, we compute the inverse z-coordi-
nate, zi. If this is less than the contents of the array element buf[x][y], we put a pixel
on the screen and update that array element.

The above test zi < buf[x][y] may at first look confusing. Since the positive z-
axis of the eye coordinate system points towards us, we have:

• the larger the z-coordinate of a point, the nearer this point is to the eye.

However, we are using inverse values zi¼ 1/z, so that the above is equivalent to

• the less the zi-value of a point, the nearer it is to the eye.

A complicating factor is that we are using negative z-coordinates, but the above also
applies to negative numbers. The following example for two points P and Q will

make the situation clear:

P nearby Q far away

zP ¼ �10 > zQ ¼ �20
ziP ¼ 1=zP ¼ �0:1 < ziQ ¼ 1=zQ ¼ �0:05

Another curious aspect of the above fragment is that putting a pixel on the screen is

done here by drawing a line of only one pixel. It is strange that Java does not supply

a more elementary routine, say, putPixel, for this purpose. However, we can do

much better by delaying this ‘putPixel’ operation until we know for how many

adjacent pixels it is to be used; in other words, we build horizontal line segments in

memory, storing their leftmost x-values and displaying these segments if we can no

longer extend it on the right. This implies that even if there were a putPixelmethod,

we would not use it, but rather draw horizontal line segments, consisting of some

pixels we have recently been dealing with. Instead of the above for-loop we will

actually use an ‘optimized’ but functionally equivalent fragment, as we will discuss

in a moment. The program ZBuf.java is listed below.

// ZBuf.java: Perspective drawing using an input file that

// lists vertices and faces.

// Z-buffer algorithm used for hidden-face elimination.

212 6 Hidden-Line and Hidden-Face Removal

// Uses: CvZBuf (see below),

// Point2D (Section 1.4), Point3D (Section 3.9) and

// Obj3D, Polygon3D, Tria, Fr3D, Canvas3D (Section 5.6).

import java.awt.*;

public class ZBuf extends Frame {

public static void main(String[] args) {

new Fr3D(args.length > 0 ? args[0] : null, new CvZBuf(),

"ZBuf");

}

}

The class CvZBuf is defined in the following separate file:

// CvZBuf.java: Canvas class for ZBuf.java.

import java.awt.*;

import java.util.*;

class CvZBuf extends Canvas3D {

private int maxX, maxY, centerX, centerY,

maxX0 = -1, maxY0 = -1;

private float buf[][];

private Obj3D obj;

private Point2D imgCenter;

int iX(float x) {

return Math.round(centerX + x - imgCenter.x);

}

int iY(float y) {

return Math.round(centerY - y + imgCenter.y);

}

Obj3D getObj() {

return obj;

}

void setObj(Obj3D obj) {

this.obj = obj;

}

public void paint(Graphics g) {

if (obj == null)

return;

obj.setSpecular(specularDesired);

6.4 Z-Buffer Algorithm 213

// specularDesired defined in Canvas3D

Vector<Polygon3D> polyList = obj.getPolyList();

if (polyList == null)

return;

int nFaces = polyList.size();

if (nFaces == 0)

return;

float xe, ye, ze;

Dimension dim = getSize();

maxX = dim.width - 1;

maxY = dim.height - 1;

centerX = maxX / 2;

centerY = maxY / 2;

// ze-axis towards eye, so ze-coordinates of

// object points are all negative. Since screen

// coordinates x and y are used to interpolate for

// the z-direction, we have to deal with 1/z instead

// of z. With negative z, a small value of 1/z means

// a small value of |z| for a nearby point. We there-

// fore begin with large buffer values 1e30:

if (maxX != maxX0 || maxY != maxY0) {

buf = new float[dim.width][dim.height];

maxX0 = maxX;

maxY0 = maxY;

}

for (int iy = 0; iy < dim.height; iy++)

for (int ix = 0; ix < dim.width; ix++)

buf[ix][iy] = 1e30F;

obj.eyeAndScreen(dim);

imgCenter = obj.getImgCenter();

obj.planeCoeff(); // Compute a, b, c and h.

Point3D[] e = obj.getE();

Point2D[] vScr = obj.getVScr();

for (int j = 0; j < nFaces; j++) {

Polygon3D pol = polyList.elementAt(j);

if (pol.getNrs().length < 3 || pol.getH() >= 0)

continue;

int cCode = obj.colorCodePhong(

pol.getA(), pol.getB(), pol.getC());

g.setColor(new Color(cCode));

pol.triangulate(obj);

214 6 Hidden-Line and Hidden-Face Removal

Tria[] t = pol.getT();

for (int i = 0; i < t.length; i++) {

Tria tri = t[i];

int iA = tri.iA, iB = tri.iB, iC = tri.iC;

Point2D a = vScr[iA], b = vScr[iB], c = vScr[iC];

double zAi = 1 / e[iA].z, zBi = 1 / e[iB].z,

zCi = 1 / e[iC].z;

// We now compute the coefficients a, b and c

// (written here as aa, bb and cc)

// of the imaginary plane ax + by + czi = h,

// where zi is 1/z (and x, y and z are

// eye coordinates. Then we compute

// the partial derivatives dzdx and dzdy:

double u1 = b.x - a.x, v1 = c.x - a.x,

u2 = b.y - a.y, v2 = c.y - a.y,

cc = u1 * v2 - u2 * v1;

if (cc <= 0)

continue;

double xA = a.x, yA = a.y, xB = b.x, yB = b.y,

xC = c.x, yC = c.y,

xD = (xA + xB + xC) / 3,

yD = (yA + yB + yC) / 3,

zDi = (zAi + zBi + zCi) / 3,

u3 = zBi - zAi, v3 = zCi - zAi,

aa = u2 * v3 - u3 * v2, bb = u3 * v1 - u1 * v3,

dzdx = -aa / cc, dzdy = -bb / cc,

yBottomR = Math.min(yA, Math.min(yB, yC)),

yTopR = Math.max(yA, Math.max(yB, yC));

int yBottom = (int) Math.ceil(yBottomR),

yTop = (int) Math.floor(yTopR);

for (int y = yBottom; y <= yTop; y++) {

// Compute horizontal line segment (xL, xR)

// for coordinate y:

double xI, xJ, xK, xI1, xJ1, xK1, xL, xR;

xI = xJ = xK = 1e30;

xI1 = xJ1 = xK1 = -1e30;

if ((y - yB) * (y - yC) <= 0 && yB != yC)

xI = xI1 = xC + (y-yC)/(yB-yC) * (xB-xC);

if ((y - yC) * (y - yA) <= 0 && yC != yA)

xJ = xJ1 = xA + (y-yA)/(yC-yA) * (xC-xA);

6.4 Z-Buffer Algorithm 215

if ((y - yA) * (y - yB) <= 0 && yA != yB)

xK = xK1 = xB + (y-yB)/(yA-yB) * (xA-xB);

// xL = xR = xI;

xL = Math.min(xI, Math.min(xJ, xK));

xR = Math.max(xI1, Math.max(xJ1, xK1));

int iy = iY(y), iXL = iX((float) (xL + 0.5)),

iXR = iX((float) (xR - 0.5));

double zi =

1.01* zDi + (y-yD)*dzdy + (xL-xD)*dzdx;

/*

for (int x=iXL; x<=iXR; x++) {

if (zi < buf[x][iy]) { // < is nearer

g.drawLine(x, iy, x, iy);

buf[x][iy] = (float)zi;

}

zi += dzdx; }

*/

// The above comment code is optimized below:

// ---

boolean leftmostValid = false;

int xLeftmost = 0;

for (int ix = iXL; ix <= iXR; ix++) {

if (zi < buf[ix][iy]) { // < means nearer

if (!leftmostValid) {

xLeftmost = ix;

leftmostValid = true;

}

buf[ix][iy] = (float) zi;

} else

if (leftmostValid) {

g.drawLine(xLeftmost, iy, ix - 1, iy);

leftmostValid = false;

}

zi += dzdx;

}

if (leftmostValid)

g.drawLine(xLeftmost, iy, iXR, iy);

// ---

}

}

}

}

}

216 6 Hidden-Line and Hidden-Face Removal

Almost at the end of this program, the fragment between the two lines // – is a more

efficient version than the for-loop in the comment that precedes it. In that for-loop,

each line LR is drawn pixel by pixel. In the more efficient version that follows,

however, the line LR is drawn by one or more line segments depending on how

much the line LR is blocked by the triangles that are nearer. In the best case, where

no triangle is in front of the line, the line is drawn by a simple call to the drawLine
method. Scanning through each horizontal line from left to right, we use a Boolean

variable leftmostValid to record if we have found a leftmost point that is not blocked

by any other triangle. If so, we keep scanning and updating the Z-buffer until we

encounter the first point that is further away than the corresponding Z-buffer value,

such as I in Fig. 6.11. We then draw the line up to the point just before that blocked

point (I). We meanwhile set leftmostValid to false, entering the line segment, such

as IJ in Fig. 6.11. Continuing scanning through until the first visible point, such as J,
is found, we record J as the new leftmost point and set leftmostValid to true. This

process continues to reach R, and the last line segment, such as JR, is drawn if it is

not blocked.

Figure 6.12 demonstrates that the Z-buffer algorithm can also be used in cases in

which the painter’s algorithm fails. The latter is illustrated by Fig. 6.13. (See also

the three triangles in Fig. 6.7).

In Appendix D (Sect. D.5) we will develop a program that enables us to display

the surfaces of functions of two variables. Files generated by this program are also

accepted by the program ZBuf.java, as Fig. 6.14 demonstrates:

Here we are using faces each with two sides, as discussed in Sect. 5.5. The way

these are used here requires a correction in the computation of zi. Recall that we
have introduced the factor 1.01 in the following statement:

double zi = 1.01 * zDi + (y - yD) * dzdy + (xL - xD) * dzdx;

Without this factor, some incorrect dark pixels would appear on the boundary, also

referred as the silhouette, of the (yellow) object and the (light blue) background.

Fig. 6.11 Illustration of

more efficient version

6.4 Z-Buffer Algorithm 217

Fig. 6.12 Z-buffer algorithm applied to three beams

Fig. 6.13 Painter’s algorithm failing

218 6 Hidden-Line and Hidden-Face Removal

To understand this, we note that in Fig. 6.15 point P lies on the boundary of two

triangles T1 and T2.

The nearer triangle, T1, is visible and its color is bright yellow because it lies on

the upper side of the surface. Triangle T2 lies on the lower side and would appear

almost black on the screen if it were not obscured by T1. Point P, belonging to both

triangles, is used twice to determine the color of the corresponding pixel on the

basis of the zi value of P. In both cases, this value is the same or almost the same, so

that it is not clear which color will be used for this pixel. To solve this problem, we

use the factor 1.01 instead of 1 in the above computation of zi. Because of this, the
zi-value for P when taken as a point of T1 will now be slightly less than when P is

regarded as a point of T2. As a result, the light yellow color will be used for the pixel

in question.

Fig. 6.14 Function of two variables

Viewing direction
Eye

T1

T2

P

Light
Fig. 6.15 Point P

belonging to triangles of

very different colors

6.4 Z-Buffer Algorithm 219

Exercises

6.1. Use a normal editor or text processor to create a data file, to be used with

program HLines.java, for the object consisting of both a horizontal square and
a vertical line through its center, as shown twice in Fig. 6.16. On the left the

viewpoint is above the square (as it is by default), while the situation on

the right, with the viewpoint below the square, has been obtained by using

the Viewpoint Down command of the View menu (or by pressing Ctrl + #).
6.2. Hidden-line removal works correctly for the problem in Exercise 6.1 because

the vertical line passes through edges of the triangles produced by triangula-

tion of the square. Change the horizontal square to a horizontal triangle and use

HLines.java to display the object with the same vertical line through the

triangle. The object may not be displayed properly like those in Fig. 6.16.

Explain why and find a simple solution.

6.3. The same as Exercise 6.1 for Fig. 6.17, which shows two very thin square

rings. Again, the object is shown twice to demonstrate that there are four

potentially visible faces.

6.4. Write a program HLinesDashed.java similar to HLines.java but, instead of

omitting hidden lines, draws them as dashed lines. For example, when applied

to the file letterA.dat, discussed in Sect. 5.5, it produces the result of Fig. 6.18

(after changing the viewpoint). An easy way of doing this is by letting the

method lineSegment in your class CvHLinesDashed first draw the whole line

PQ as a dashed line, so these dashed lines, or parts of them, will later

be overwritten by normally drawn lines if the line segments in question

Fig. 6.16 Line passing

through the center of a

square

Fig. 6.17 Two thin square

rings

220 6 Hidden-Line and Hidden-Face Removal

happen to be visible. Note that this should happen only for calls to lineSegment
from the paint method, not for recursive calls. You can use a method

dashedLine similar to that of Exercise 1.5.

6.5. The problem of backface culling cannot generally be solved by testing whether

the ze-component of the normal vector of a face in question is positive or

negative. Recall that we are using the equation

axþ byþ cz ¼ h

for the plane of each face, in which n¼ (a, b, c) is the normal vector of that

face, pointing outward. Using also the vector x¼ (x, y, z), we can write the

above equation as

n � x ¼ h

Figure 6.19 shows the geometrical interpretation of n, x and h. For a visible
face, the inner product h is negative because n and x point in opposite

directions. By contrast, h is positive for a backface.

Although in most cases c, the third component of the vector n, is positive
for a visible face and negative for a backface, there are situations in which this

is not true. Give an example of such a situation, with a detailed explanation.

How does backface culling based on the signs of h and (incorrectly) of c relate
to that based on the orientation of point sequences?

6.6. Apply animation with double buffering to a cube, as in Exercise 5.4, but use

colored faces.

6.7. Apply animation to two colored cubes (see Exercises 5.5 and 6.2. Even if one

partially hide the other, this problem can be solved by backface culling,

Fig. 6.18 Hidden lines

represented by dashed lines

Exercises 221

provided the farther cube is drawn before the nearer one. This is demonstrated

in Fig. 6.20; here the Graphics methods fillPolygon and drawPolygon are

applied to each visible face. By drawing the edges of such faces in black, we

make sure that we can clearly distinguish the colored faces if, in reproductions,

shades of gray are used instead of colors.

6.8. In the program file Obj3D.java, the direction of the light vector (sunX, sunY,
sunZ) pointing to the source of light was arbitrarily chosen. Even without

moving the object (by rotating it, for example), we can obtain an exciting

effect by using animation to change this vector, so that the source of light

rotates. Extend the program Painter.java to realize this. An easy way of doing

this is by using spherical coordinates sunTheta and sunPhi and radius 1 for a

light vector of unit length, similar to the spherical coordinates θ, φ and ρ,
shown in Fig. 5.3, and increasing, say, sunTheta by 0.02 radians every 50 ms.

Face

E

n

x h

Fig. 6.19 Geometrical

interpretation of x, n and h,
where h is negative

Fig. 6.20 Two rotating cubes, generated by backface culling

222 6 Hidden-Line and Hidden-Face Removal

6.9. Write a 3D data file (using a text editor) for the steps shown in Fig. 6.21. Apply

the programs Painter.java and ZBuf.java to it. Can you write a program to

generate such data files? In such a program, the number of steps and the

dimensions should preferably be variable.

Fig. 6.21 Steps

Exercises 223

Chapter 7

Color, Texture, and Shading

Making computer graphics interesting and useful for a wide range of applications,

color is a complex topic and may be interpreted in the context of visual psychology,

physiology, or optics. In computer graphics, we will not discuss the physical

properties and principles of color, rather, we focus on how to present colors in a

way that they closely match those in the nature. We will introduce the RGB (Red,

Green, Blue) model and its representation inside modern computers and the alter-

native but also commonly used HSL (Hue, Saturation, Luminance) model. The

chapter then discusses the blending approach to model the transparency effects and

how texture and lighting models are implemented.

7.1 Color Theories

There are mainly two competing color theories, i.e. trichromatic color theory and

opponent color theory.

According to the trichromatic color theory, the human eye contains three types

of light-sensitive receptors called cones and rods. One type of the receptor is most

sensitive to red light, one type is most sensitive to green light, and one type is most

sensitive to blue light. All the other colors could be obtained by mixing these three

colors. Opponent color theory, on the other hand, states that human eyes could

perceive light in three opposing components, i.e., light vs. dark, red vs. green, and

blue vs. yellow. One could not sense the mixtures of red and green, or blue and

yellow. Therefore, in reality, there is no such a color perceivable by human that is

reddish green, or bluish yellow.

Computer graphics is based on the trichromatic color theory, adopting red,

green, and blue (RGB) as the three primary colors. The trichromatic color theory

is therefore often referred to as the RGB color system. Based on the RGB system,

all perceivable colors could be represented in a three-dimensional space as an RGB

cube, illustrated in Fig. 7.1. Every color could now be mapped onto a position in

© Springer International Publishing AG 2017

L. Ammeraal, K. Zhang, Computer Graphics for Java Programmers,
DOI 10.1007/978-3-319-63357-2_7

225

this 3D space, expressed as (r, g, b), where r, g, and b are real numbers

between 0 and 1. For example, (0.3, 0.8, 0.5) is a point in the 3D space, uniquely

representing a specific color.

Any given color C could then be expressed as

C ¼ rRþ gGþ bB

Or simply

C ¼ r; g; bð Þ

where r, g, and b represent the intensities of red, green, and blue respectively. This

implies that every color is a linear combination of red, green, and blue.

The combination of two colors C1¼ (r1, g1, b1) and C2¼ (r2, g2, b2) can be

written as

r1 þ r2ð ÞRþ g1 þ g2ð ÞGþ b1 þ b2ð ÞB

The RGB system matches the physical design of computer monitors, each made

with a pattern of three types of phosphor emitting red, green, and blue light upon

being excited by an electron beam. Each phosphor emits light intensities, expressed

by r, g, and b as above, based on the energy of the electron beam that is directed at

it. Note that the human perception of light and real-world colors are far more

complex than what the RGB system could represent. The RGB system is so far

the best and most feasible model for computer graphics. Some colors perceivable

by the human eye could not be represented by the RGB system, nor be printed on

paper.

Fig. 7.1 (a) The 3D space for the RGB color model. (b) Viewed along principal diagonal

226 7 Color, Texture, and Shading

7.2 Additive and Subtractive Colors

To explain the operation mechanism and relationships of colors, we consider the

two types of color mixing: additive and subtractive. The behavior of light mixtures

could be interpreted by additive color, and the behavior of paint, ink, dye, or

pigment mixtures, could be interpreted by subtractive color. Additive and subtrac-

tive other systems have three primary colors which usually cause confusion for

beginners in computer graphics. We will explain these two systems of colors in

details in this section.

Additive Color

We start by considering the additive color system as the one without any light and

thus having a black background. An additive color is the result of adding different

amounts of red, green, and blue together. The mixture of the maximal intensities of

all the three primary colors should generate white, as shown in Fig. 7.2a as the

overlap of all the three circles. Equal mixing of two of the three primary colors

would generate secondary colors, i.e. cyan, magenta, and yellow, which are shown

as three overlapped areas, each between two primary colors.

The additive color mixing process is like adding together the colors in light to

create new colors. This is exactly the principle in televisions, that mixes red light,

green light, and blue light to generate an image. Apart from television, display

monitors and projectors are all based on the additive color principle. Since the

intensity information for each of the three colors is preserved, the image color is

preserved as well.

Fig. 7.2 Additive (a) and subtractive (b) color systems

7.2 Additive and Subtractive Colors 227

The three primary colors in light correspond to the red, green, and blue cones in

the human eye, and thus are also the primary colors of the additive color system.

Subtractive Color

The subtractive color system is usually used in arts and design. It works just like

mixing of color paints. The word “subtractive” here may be confusing as one may

think of mixing color paints is like adding them up. The colors on objects we

perceive are due to the corresponding colors in the light and we may consider to

start with full light which is essentially white. All unneeded colors are subtracted

(or filtered out as shown in Fig. 7.3) without entering our eyes.

Now we can consider the relationship between additive colors and subtractive

colors. The three secondary colors in additive color system, i.e. cyan, magenta, and

yellow (CMY), are obtained by subtracting the corresponding primary colors, and

are therefore the primary colors in the subtractive color system.

Consider Fig. 7.3, cyan, magenta, and yellow (CMY) may be considered three

primary colors in front of a white light source, after other colors have been filtered

out from white. This principle can be explained by inserting three filters between a

white light source (1, 1, 1) and a human eye. We assume the level of needed CMY

mixing is expressed as (0.5, 0.3, 0.4). The first cyan filter removes 50% of red from

white, yielding the RGB expression of (0.5, 1, 1) for cyan. The cyan light then

passes through the magenta filter that removes 30% of green, yielding the RGB

expression of (0.5, 0.7, 1) for magenta. Finally, magenta passes through the yellow

filter that removes 40% of blue, yielding the RGB expression of (0.5, 0.7, 0.6) for

yellow. The RGB expression of (0.5, 0.7, 0.4) is equivalent to the color of (0.5, 0.3,

0.4) in the CYM system, which is exactly what we needed.

Fig. 7.3 The subtracting process in the subtractive color system

228 7 Color, Texture, and Shading

Considering the cost and practicality, most printers support CMYK color, where

K refers to the level of black in the color mix. In theory, equal mix of three primary

colors would generate black, though in practice, no true black can be created. Using

the pure black ink for printers is apparently cheaper than combining three primary

colors, apart from providing true black. The amount of ink needed for black is also

minimized.

Since the RGB system and CMY system complement each other, their relation-

ships could be simply expressed as the following:

c;m; yð Þ ¼ 1; 1; 1ð Þ � r; g; bð Þ

where (1, 1, 1) represents white in the RGB space; inversely,

r; g; bð Þ ¼ 1; 1; 1ð Þ � c;m; yð Þ

where (1, 1, 1) represents black in the CMY space.

In summary, additive color system uses red, green, and blue (RGB) to represent

the colors of real world objects. Subtractive color system uses cyan, magenta, and

yellow (CMY) to represent the colors of light. The primary colors of the subtractive

color system are the secondary colors of the additive color system. The additive

RGB color system is adopted in computer graphics and displayed on computer

monitors, directly supported by the hardware.

Application of Color Systems

The art community has studied various color theories, such as that of Munsell [17],

long before the computer graphics field. Artists use color as one of their most

essential means of conveying ideas. The Munsell [18] color system specifies colors

in three dimensions, i.e. hue, value, and chroma, and suggests how to make

balanced and harmonious color combinations. Some artists tend to choose colors

for their psychological impact, for example, purple to convey horror, pink for joy,

and green for envy. Kandinsky calls black the symbol of death and white that of

birth. He also systematically associates colors with lines and basic geometric

shapes. Media research provides other colors’ emotional connotations, for example,

lime green and avocado indicating nausea, yellow combined with black implying a

warning and sometimes power, and blue representing the most likable color.

As a direct application of computer graphics, visualization uses color to encode

various data attributes, according to human color perception. The following exam-

ple demonstrates that information visualization can usefully apply our commonly

understood color system used in painting, i.e. the subtractive CMY system. Art

students, however, usually like to use the three primary colors they are familiar

with, i.e. red, yellow, and blue (RYB). To assist the general public who are typically

used to the color concepts in painting, Gossett and Chen [12] proposed using

7.2 Additive and Subtractive Colors 229

subtractive color system with red, yellow, and blue as primary colors for visualizing

multi-attribute information. For example, to visualize the presence of three differ-

ent racial populations (traits) in a state with one color representing each trait, the

RGB map (in Figure 3 of Zhang [26]) displays Arizona as white due to the presence

of all the three traits in the state. Common sense would then suggest that white

implies the absence of any trait. In contrast, the RYB map displays a more

meaningful brown color for Arizona. They use an RYB interpolation cube to

convert from RGB colors to the corresponding RYB colors.

7.3 RGB Representation

In modern raster display systems, the number of different colors that can be

supported depends on the display storage and screen resolution. The display storage

is also called the frame buffer, where each frame is of the size of the entire screen.

There are two approaches in storing colors in the frame buffer. The first approach

stores the color codes of red, green, and blue directly into the frame buffer, while

the second approach uses a color look up table (CLUT) to store color codes, which

could be uniquely retrieved based on the positions of individual pixels on screen.

In the first approach, the size of the frame buffer is exactly the same as that of the

screen, so that there is one-to-one correspondence between the pixels in the two.

Therefore, retrieving a color code is extremely fast. Assuming each pixel has only

one bit to encode colors, only two colors could be represented, such as black and

white. The most basic color display monitor has to have at least three bits per pixel

to represent colors, as listed in Table 7.1 for a simple color scheme. In the

following, we will explain the RGB color display principle using this simple

color coding scheme.

Each of the 3 bit positions is used to control the display intensity of the

corresponding electron gun in an RGB display monitor. In this case, the intensity

is either 1 or 0, i.e. on or off. The eight color codes represent exactly the eight

vertices of the RGB cube in Fig. 7.1. Adding more bits per pixel to the frame buffer

increases the number of colors that can be displayed on the screen. For example,

with 6 bits per pixel, 2 bits can be used for each color. This would provide 4 different

Table 7.1 Given 3 bits per

pixel dedicated to colors, one

possible color coding scheme

Color code Red Green Blue Displayed color

0 0 0 0 Black

1 0 0 1 Blue

2 0 1 0 Green

3 0 1 1 Cyan

4 1 0 0 Red

5 1 0 1 Magenta

6 1 1 0 Yellow

7 1 1 1 White

230 7 Color, Texture, and Shading

intensities for each of the three primary colors, making a total of 64(¼4� 4� 4)

colors for each pixel. This also implies more storage required for the frame buffer.

The following program draws three circles of the primary colors (Red, Green

and Blue) of the additive color system, together with their intersected regions

displaying the secondary colors and white (when all the three bits are 1). The

displayed colors, as shown in Fig. 7.2a, have the color codes of 1–7 as illustrated in

Table 7.1. The program drawing color interactions in the subtractive color system

could be similarly written and the corresponding colors are shown in Fig. 7.2b.

Although our monitors are capable of displaying many more colors, this partic-

ular program chooses to display only 7 most basic colors, without making the full

use of the available bits.

// ColorCirles.java: draw three circles with primary colors Red,

// Green and Blue and their intersections with additive colors.

import java.awt.*;

import java.awt.event.*;

import java.awt.geom.*;

public class ColorCircles extends Frame {

public static void main(String[] args){new ColorCircles();}

ColorCircles() {

super("Additive Color System");

addWindowListener(new WindowAdapter(){

public void windowClosing(WindowEvent e){System.exit(0);}});

setSize(400, 400);

add("Center", new CvColorCircles());

setVisible(true);

}

}

class CvColorCircles extends Canvas {

public void paint(Graphics g) {

super.paint(g);

final int RED = 0xFF0000, GREEN = 0x00FF00, BLUE = 0x0000FF;

Shape circleTop = new Ellipse2D.Double(100, 43, 200, 200);

Shape circleLeft = new Ellipse2D.Double(50, 130, 200, 200);

Shape circleRight = new Ellipse2D.Double(150, 130, 200, 200);

Area top = new Area(circleTop);

Area left = new Area(circleLeft);

Area right = new Area(circleRight);

Area intersectTopLeft = new Area(top);

intersectTopLeft.intersect(left);

Area intersectLeftRight = new Area(left);

intersectLeftRight.intersect(right);

Area intersectTopRight = new Area(top);

7.3 RGB Representation 231

intersectTopRight.intersect(right);

Area intersectCenter = new Area(intersectTopLeft);

intersectCenter.intersect(right);

setBackground(Color.black);

Graphics2D g2 = (Graphics2D)g;

g2.setColor(new Color(RED));

g2.fill(top);

g2.setColor(new Color(GREEN));

g2.fill(left);

g2.setColor(new Color(BLUE));

g2.fill(right);

g2.setColor(new Color(RED + GREEN)); // Yellow

g2.fill(intersectTopLeft);

g2.setColor(new Color(GREEN + BLUE)); // Cyan

g2.fill(intersectLeftRight);

g2.setColor(new Color(RED + BLUE)); // Magenta

g2.fill(intersectTopRight);

g2.setColor(new Color(RED + GREEN + BLUE)); // White

g2.fill(intersectCenter);

g2.setColor(Color.black);

g2.draw(circleTop);

g2.draw(circleLeft);

g2.draw(circleRight);

}

}

Having introduced the additive and subtractive color synthesis systems, our next

question is how the RGB system is implemented in a modern digital computer

system.

Most color monitors on the market nowadays support the so-called true color,

that is 24-bit color. A 32-bit color monitor typically allocates 8 bits for red, 8 bits

for green, 8 bits for blue, and 8 bits for the transparency (usually called the alpha
channel). The alpha channel indicates how transparent the graphical element is to

which the color is assigned, when overlaid on other elements, to be discussed in

more details in Sect. 7.5. The 8 bits for each of red, green, and blue gives

256 different color shades. The combined 24-bit RGB true color space gives 224

or 16,777,216 different color variations.

The required storage for a high resolution system is fairly high. For example, a

1024� 1024 image at 32-bit depth would require 4 MB of storage, calculated as

follows: 1024 pixels� 1024 pixels¼ 1048576 pixels on screen, and each pixel uses

32 bits (¼4 bytes) for color coding, making the total number of bytes needed to

represent an image 4� 1048576¼ 4 MB.

Although 16 millions of different color variations sound sufficient for any

application, they are in fact not when it comes to color gradients. The 24-bit true

color space may sometimes fail in creating smooth gradients and instead generate

232 7 Color, Texture, and Shading

bands of color, known as color banding effect. Therefore in recent years, the

concept of deep color becomes available to support 30/36/48 bits color per pixel

for three RGB colors, or 10/12/16 bits per channel. Adding an alpha channel

correspondingly makes it 40/48/64 bits per pixel.

With a 64-bit system, everything is doubled. Each of red, green and blue planes

is represented by 16 bits, implying a total of 216¼ 65 , 536 levels of color shades for

each color. Therefore, the storage for an image with 64-bit per pixel would require

8 MB. The constant drop in memory prices around the world means that the storage

requirement would not be a major problem.

In the middle range, a 16-bit color system typically dedicates 5 bits each for red,

green, and blue, making a total of 215¼ 32 , 768 colors. The remaining 1 bit is used

for transparency.

The lowest resolution, i.e. 8-bit color, system is still widely used, particularly in

embedded systems due to its low cost and low storage requirement. Such a system

commonly devotes 3 bits for red, 3 bits for green, and 2 bits for blue.

As mentioned earlier, color lookup tables (CLUT) are an alternative method for

providing a large number of color options to the user without requiring a large

frame buffer. For example, the color lookup table for an 8-bit per pixel display is

shown in Fig. 7.4, where each pixel has an 8-bit color index. In this example, each

pixel can have any of the 256 distinct colors and each table entry uses 24 bits to

specify an RGB color (8 bits for red, 8 bits for green, 8 bits for blue). Figure 7.4

illustrates that a value of 196 stored at the pixel position (x, y) points to the

corresponding location in the CLUT. This location stores a hexadecimal value of

0�021031 (binary 0000 0010 0001 0000 0011 0001), which is equivalent to the

decimal value of 135217. The binary representation of 0�021031 consists of three

8-bit color codes for RGB, specifying the color intensities (0�02, 0�10 and 0�31,

respectively) of the three electron guns in a color monitor.

The original aim of color look up tables (CLUT, Fig. 7.4) was mainly for the

economic use of color storage and, as an added benefit, obtaining flexible color

ranges. As the storage hardware becomes increasingly cheap, the first objective is

no longer that important. Instead, the second benefit is now used by many popular

imaging software, such as Photoshop. For example, the last few versions of

Photoshop include a tool called LUT (or Look Up Tables). The user could think

Fig. 7.4 Color look-up table (CLUT)

7.3 RGB Representation 233

of LUT as a way to apply a color scheme to a photo, such as mostly reddish colors.

This type of technique is often used in the video industry in creating special effects.

Typical RGB input devices include color TV sets, video cameras, digital cam-

eras, image scanners, and game stations. Typical RGB output devices include

computer monitors, smartphones, color TV sets (some with color LED displays),

video projectors, and large screens.

7.4 HSV and HSL Color Models

Apart from the aforementioned RGB and CMY color models, other popular color

models include HSV and HSL models. Here, H is for hue, the prime color of the

light; S for saturation or chroma, measuring the purity of a hue, i.e. the percentage

of gray; V for value and L for lightness or luminosity, measuring the relative degree

of black or white mixed with a given hue. To explain the three terms in real life, we

might use hue to tell the difference between a red delicious apple and a gold

delicious apple; use saturation to differentiate black coffee from white coffee;

and use lightness to differentiate a bread from a toast.

Hue is measured between 0� and 360�, and equals 0� for pure red, 120� for pure
green, and 240� for pure blue. With an equal mix of pure red and pure green, hue is

60�, yielding yellow. Similarly, an equal mix of pure green and pure blue produces

cyan, for which hue is 180�.
Luminance (or intensity or brightness) equals average of maximal and minimal

intensities of red, green, and blue, measuring the overall brightness of light.

Saturation (or chroma) measures relative intensity of the brightest primary color

versus least bright primary color in the range of 0 and 1.

The 3-dimensional space representing the HSV model can be easily derived by

relating the HSV parameters to the directions in the RGB cube shown in Fig. 7.1a.

Viewing the RGB cube along the diagonal from the white vertex toward the black

vertex (origin of the 3D space), the outline of the cube is a hexagon as demonstrated

in Fig. 7.1b. The six vertices along the outline correspond directly to the six hues in

the HSVmodel. This hexagon forms 360� starting from pure red at 0� counterclock-
wise. It is used as the top face of a hexcone, where the vertical axis through

the center of the hexcone measures the parameter V (value), as shown in Fig. 7.5

on the left. V varies from 0 at the apex of the hexcone, representing black, to 1.0 at

the hexagon plane, representing white.

The saturation parameter S varies from 0 at the center V axis, representing the

gray level line, to 1.0 at boundary of the hexagon, representing a pure color. If both

V and S are non-zero, the hue H varies from 0 to 360�.
The HSL model is similar to HSV model, except it is represented by a double-

hexcone, shown in Fig. 7.5 on the right. The luminance parameter L replaces value

V as the central axis. The bottom apex represents black where L¼ 0 and the top

apex represents white where L¼ 1.0. Pure colors lie on the L¼ 0.5 plane, and thus

the grayscale values are along the L axis.

234 7 Color, Texture, and Shading

Although more intuitive, both the HSV and HSL models do not correspond to

displaying and printing, so to use for such purposes, some kind of conversion

method is needed. For both color models, we will now discuss how H, S and V or

L can be computed if the values R, G and B are given.

While the given values of R, G and B range from 0 to 255, we prefer ranges from

0 to 1, so we will use

r ¼ R

255

g ¼ G

255

b ¼ B

255

We now compute the largest and the smallest of these three color values and also

their difference:

cmax ¼ max r; g; bð Þ
cmin ¼ min r; g; bð Þ
Δ ¼ cmax � cmin

Fig. 7.5 3D representation of HSV and HSL color models

7.4 HSV and HSL Color Models 235

Then, for both the HSV and the HSL color models, we can now compute the hue H.
First we compute a value h less than 6. If Δ¼ 0 , h¼ 0. If Δ 6¼ 0, the value of

h depends on which of the r, g and b values is the largest:

h ¼

g� b

Δ
, if cmax ¼ r

b� r

Δ
þ 2, if cmax ¼ g

g� b

Δ
þ 4, if cmax ¼ b

8>>>>>><
>>>>>>:

Then

H ¼ h� 60
�
, if h � 0

hþ 6ð Þ � 60
�
, if h < 0

(

The three cases in the computation of h correspond to parts of the horizontal

hexagon in Fig. 7.5, each part consisting of two equilateral triangles. For example,

if cmax¼ g, the hue will be between yellow and cyan, and, in particular, if then

b¼ r, it will be green, with h¼ 2 and H¼ 120º.

For the HSV model, we have

S ¼
0, if cmax ¼ 0

Δ
cmax

, if cmax 6¼ 0

8<
:

and

V ¼ cmax

These values of S and V are expressed as fractions. For example, if S¼ 0.75, this is

the same as 75%.

For the HSL model, we compute cmin, cmax, Δ and H the same way as above.

Then we obtain L and S as follows:

L ¼ cmin þ cmax

2

S ¼

0, if L ¼ 0 or L ¼ 1

Δ

2L
, if 0 < L � 0:5

Δ

2� 2L
, if0:5 < L < 1

8>>>><
>>>>:

Again, L and S need to be multiplied by 100% if a percentage is desired.

236 7 Color, Texture, and Shading

7.5 Transparency

When two or more colors overlaying on each other, there is a question on whether a

later drawn color should completely overwrite the previous color in the overlapping

area, or let the underneath color partially or completely show through. This question

is like asking whether the top color is transparent or not.

Many computer graphics APIs support the concept of transparency. With trans-

parency as a parameter, color is no longer represented as a RGB triple, but rather a

quadruple (r, g, b, a), where a is the transparency level. To be more precise,

“transparency” here should really be called “blending”, since the effect of trans-

parency is in fact modeled by using color blending. Color blending compares the

color of the pixel to be drawn with the current color of that pixel, and then decides

the final color to be used for the pixel based on a predefined blending function.

Therefore, in the so-called RGBA model, any color object also has a color blending
property, represented by translucent pixels. Instead of simply associating 1 extra bit

of data with each pixel to simply indicate it being either completely transparent or

not, the graphics system can associate 4, 8, 16, or some other number of bits with

each pixel. This leads to 16, 256, or 65,536 possible levels of translucency, ranging

from fully transparent (0) to fully opaque (16, 256, or 65,536). Recall Sect. 7.3 on

the RGB representation, these transparency bits are really no different from the bits

used to represent the red, green, and blue components of each pixel.

The transparency bits measure the blending level, and make the a parameter in

the above quadruple (r, g, b, a), called the alpha value, set between 0.0 and 1.0,

determining opacity. Assuming a standard blending function used, if the alpha

value is 1.0, the new color to be drawn is completely opaque, implying that the

existing color is overwritten by the new color. Similarly, if the alpha value is 0.0,

the new color is completely transparent so that it is completely taken over by the

existing color. With an alpha value between 0.0 and 1.0, the new color is combined

with the existing color based on the blending function to produce a transparency

effect.

In Java 2D, one can assign alpha values to drawing operations so that the

underlying graphics partially shows through shapes or images. This is done by

setting a transparency level by creating an AlphaComposite object and then passing
the AlphaComposite object to the setComposite method of the Graphics2D object.

To create an AlphaComposite object, we make a call to Alpha-Composite.
getInstance with two parameters, i.e. the composing rule and an alpha value. Of

the eight compositing rules for the AlphaComposite API, SRC_OVER is the most

commonly used. The SRC_OVER compositing rule places the source color over the

destination color and blends them based on the transparency of the source, using the

formula that will be discussed later in this section.

The following program demonstrates the use of the AlphaComposite API for

11 levels of transparency from being fully transparent to fully opaque, i.e. alpha

value from 0.0 to 1.0 with 10 increments of 0.1. The resulting transparency effects

are shown in Fig. 7.6, where a blue circle is partially overlapping a red square.

7.5 Transparency 237

// Transparency.java: draws 11 blue circles over 11 red squares,

// with transparency alpha changed from 0.0 to 1.0

import java.awt.*;

import java.awt.event.*;

import java.awt.geom.*;

public class Transparency extends Frame {

public static void main(String[] args){new Transparency();}

Transparency() {

super("Java 2D Transparency.");

addWindowListener(new WindowAdapter()

{publicvoidwindowClosing(WindowEvente){System.exit(0);}});

setSize(1040, 150);

add("Center", new CvTransparency());

setVisible(true);

}

}

class CvTransparency extends Canvas {

private static int gap=20,width=60,offset=10,deltaX=gap+width

+offset;

private Ellipse2D blueCircle = new Ellipse2D.Double(gap+offset,

gap+offset, width+offset, width+offset);

private Rectangle redSquare = new Rectangle(gap, gap, width, width);

private AlphaComposite makeComposite(float alpha) {

int type = AlphaComposite.SRC_OVER;

return(AlphaComposite.getInstance(type, alpha));

}

private void drawShapes(Graphics2D g2, float alpha) {

Composite myComposite = g2.getComposite();

g2.setPaint(Color.red);

g2.fill(redSquare);

g2.setComposite(makeComposite(alpha));

g2.setPaint(Color.blue);

g2.fill(blueCircle);

g2.setComposite(myComposite);

}

Fig. 7.6 Different levels of transparency

238 7 Color, Texture, and Shading

public void paint(Graphics g) {

super.paint(g);

Graphics2D g2 = (Graphics2D)g;

for(int i=0; i<11; i++) {

drawShapes(g2, i*0.1F);

g2.translate(deltaX, 0);

}

}

}

Returning to the concept of transparency modeled by blending, in reality, there is

no such a thing as a translucent pixel. On a computer display, a pixel is either on or

off; and cannot be partially on. In order to give the appearance of transparency, the

graphics system composite (blend) transparent pixels with the pixels that are

beneath them. If a source color Cs has a transparency level defined by the alpha

value α, when Cs is painted over a destination color Cd, the two colors are combined

to produce a new color C. The combination is defined by some simple mathematical

formula, such as the following:

C ¼ Csαþ Cd 1� αð Þ

If Cs is fully opaque, α is 1 and C is simply the source color Cs. On the other hand, if

Cs is fully transparent, α is 0 and C is simply the destination color Cd. If α is

somewhere between fully opaque and fully transparent, C is a combination of the

source and destination colors. The computation is performed independently on each

of the red, green, and blue colors. Such a simple mathematical formula can

effectively produce blended colors that appear visually convincing, just like trans-

lucent colors.

7.6 Texture

To create realistic images, one can add texture onto a 2D polygon, or the surface of

a 3D object. Texture mapping can be considered another way of defining colors to

fill a polygon. This process is similar to applying patterned paper to a plain white

wall when decorating a house.

The color of each pixel in the applied polygon is calculated by including

information from an array of values called a texture map. The texture map can be

1-dimensional, 2-dimensional or 3-dimensional. For example, a 1-D texture may be

used to create a pattern for coloring a line. A 3D texture may specify a solid block of

a 3D pattern which could be used to sculpt a 3D object. Mapping 2D textures to

surfaces finds the most applications and is therefore a widely studied topic. We

therefore focus on 2D texturing in this section.

7.6 Texture 239

Conceptually there are two spaces in textural mapping: the usual 2D screen

space in which graphics objects are displayed, and the texture space that keeps the

texture map, as illustrated in Fig. 7.7. When a texture map (bottom left in Fig. 7.7) is

properly pasted onto an object in the 2D screen space (top left), a textured object is

created (the textured ellipse on the right). The two spaces are realized in two

graphics contexts in Java (e.g. gi and g2 in Texture.java below). The key to a

proper texture mapping is to establish a link and precise alignment between the two

spaces.

To determine the texture color for a texture mapped pixel, texture filtering is

performed using the colors of nearby texture elements, which are usually called

textels. It is called textels rather than pixel in order to emphasize its role in texture

filtering. Since the textured surface may be at an arbitrary distance and orientation

relative to the viewer, one pixel does not usually correspond directly to one textel.

Some form of filtering has to be applied to determine the best color for the pixel.

When more than one texture is used at a time on a polygon or surface, it is called

multi-texturing. For example, to avoid recalculating that lighting every time a

surface is rendered, a texture known as light map may be used to light the surface.

Bump mapping is another useful multi-texture technique, that could generate

realistic image effects for complex surfaces. A bump map distorts the normal

vector during the shading process to draw the surface with small variations in

shape, such as rough concrete. It shows lighting details in addition to the usual

texture coloring. As the modern GPU technology has become increasingly more

powerful, complex bump mapping can now be generated in real time and thus is

often used in computer games.

The following program generates three images as shown in Fig. 7.8:

– A vertical stripe of repeated color gradient from yellow to blue;

– A text string “TEXTURE” applied with a generated texture image of 6� 6

pixels (gray background with a red angle); and

– A rectangle filled with a texture defined by an image file.

In this example, a rectangle of 700� 220 pixels is filled with repeated images, each

of 50� 55 pixels given in the image file mondrian.png, so in Fig. 7.8 this image

occurs 14� 4 times.

Fig. 7.7 Texture mapping

240 7 Color, Texture, and Shading

// Texture.java: draw (1) a vertical strip of repeated color gradient,

// (2) a texture created using BufferedImagepaint, and applied on a

// text string "TEXTURE", and (3) a texture defined by an image file.

import java.awt.*;

import java.awt.event.*;

import java.awt.geom.*;

import java.awt.image.*;

import java.io.*;

import java.net.URL;

import javax.imageio.*;

public class Texture extends Frame {

public static void main(String[] args){new Texture();}

Texture() {

super("Java 2D Texture.");

addWindowListener(new WindowAdapter()

{publicvoidwindowClosing(WindowEvente){System.exit(0);}});

setSize(800, 450);

add("Center", new CvTexture());

setVisible(true);

}

}

Fig. 7.8 Examples of color gradient and texture mapping

7.6 Texture 241

class CvTexture extends Canvas {

private BufferedImage image;

public void paint(Graphics g) {

super.paint(g);

Graphics2D g2 = (Graphics2D)g;

// Gradient Strip

GradientPaint gp =

new GradientPaint(20,100,Color.yellow,20,160,Color.blue,true);

g2.setPaint(gp);

g2.fillRect(20, 20, 30, 350);

// Generating texture of 6x6 pixels

image = new BufferedImage(6, 6, BufferedImage.TYPE_INT_RGB);

Graphics2D gi = image.createGraphics();

gi.setColor(Color.gray);

gi.fillRect(0,0,6,6);

gi.setColor(Color.red);

gi.drawLine(0,0,6,3);

gi.drawLine(0,6,6,3);

TexturePaint tp = new TexturePaint(image,

new Rectangle(50,20,6,6));

g2.setPaint(tp);

Font f = new Font("Arial", Font.BOLD, 150);

g2.setFont(f);

g2.drawString("TEXTURE", 70, 130);

// Image file as texture

URLurl=getClass().getClassLoader().getResource("mondrian.png");

try {

image = ImageIO.read(url);

} catch (IOException ex) {

ex.printStackTrace();

}

tp = new TexturePaint(image, new Rectangle2D.Double(70,150,

image.getWidth(), image.getHeight()));

g2.setPaint(tp);

Shape rectangle = new Rectangle(70,150,700,220);

g2.fill(rectangle);

}

}

7.7 Surface Shading

To make a 3D object appear to have volume and to be photorealistic, we could use

shading, by painting the surface with light. In computer graphics, shading refers to

the process of determining the color of a face (polygon) of a 3D object to create a

photorealistic effect, based on the face’s angle to lights and distance from lights.

242 7 Color, Texture, and Shading

When light casts onto the surface of an object, it could be absorbed, reflected or

refracted. The absorbed light is transformed into the heat, while reflected and

refracted light are visible to the human eye so that the object could be seen. To

model such effects, we build mathematical models rather than complex physical

models, which are generally called the shading models. The models to be discussed

in this section are all the so-called “local” models in the sense that they do not

consider secondary reflections. In other words, light reflected from several surfaces

before reaching the eye is not considered.

Based on the principals of optical physics, a shading model determines how to

color the surface of a given object. When light shines on an object surface, there are

three components. First, the light can be reflected through the object surface to the

space, resulting in reflection. Secondly, for a transparent body, the light can

penetrate the object and come out from the other side, resulting in refraction.
Finally, part of the light is absorbed by the object surface and converted into

heat. Among these three components, only the reflection and refraction can enter

the human eye to produce a visual effect.

Reflection and refraction on the object surface determine the color of the object.

Specifically, the intensity of reflection and refraction determines the brightness of

the surface of the object. Reflection and refraction contain different wavelengths

of light that determine the surface color of the object, which in turn depends on

the incident light and the degree of absorption of light at different wavelengths.

For example, when a beam of white light is illuminated on a surface of an opaque

object that absorbs any wavelengths but the red wavelength, the surface of the

object is red. However, if a beam of green light illuminates the object, the object

appears black. Therefore, without light, it makes no sense to discuss the color of

an object.

Therefore, to accurately calculate the surface of the reflection and refraction, the

need to know the incident light intensity at each wavelength and the surface of the

object on each wavelength of light absorption rate, that is, to understand the spectral

distribution of incident light and the reflectivity of the surface of the object and the

transmittance. This is related to the nature, shape, quantity and position of the light

source, but also to many factors such as geometric shape, optical property, surface

texture, and even physiological and psychological visual factors. It is not possible to

calculate all these accurately, so we need to find out the main factors, establish the

mathematical model, and choose the appropriate model according to the

application.

Simple shading models assume point light sources, opaque objects with smooth

surface, so that refraction and scattered ambient light are negligible. The part being

absorbed by the object would not generate any visual effect, hence simple shading

models only consider the effect of reflection.

7.7 Surface Shading 243

Flat Shading

Flat shading is a shading model where the faces (polygons) of a 3D object have no

corrective algorithm for reflection of light. Therefore, each of the faces reflects as

a flat surface, giving a blocky look and feel to the model, and thus known as

flat shading. Comparing with more complex shading models, such as Gouraud,

Phong, Blinn-Phong, or Lambert, flat shading requires relatively little computa-

tional overhead and thus runs fast. It therefore generates least realistic looking 3D

objects.

We now use the simplest flat shading model to color each polygon (and for all

triangles of which it consists) based on its orientation in relation to the light source.

Let us consider a polygon in a plane with equation

axþ byþ cz ¼ h,

where N¼ (a, b, c), perpendicular to that plane, is normalized (that is, a2 + b2 + c2

¼ 1). We can then obtain a color code by computing the dot product of N and the

normalized light vector L. The latter is a vector (also of length 1) pointing from the

object to the sun (that is, to the light source, assumed to be infinitely far away).

Expressed in eye coordinates, we will use

L ¼ 1=√3
� � �1; 1; 1ð Þ

Recall that in the eye coordinate system the x-axis points from the object toward us,

so the minus sign in this choice of L means that the sun’s position is in front of the

object. Clearly, the higher the value of the dot product (N � L), the brighter the

polygon should be displayed. The vectors N and L are shown in Fig. 7.9.

Fig. 7.9 Vector L, pointing to the sun, and normal vector N of a face

244 7 Color, Texture, and Shading

Ambient Light

Without any source of light, an object would still be visible as its surface has a bit of

shade. This could be considered an indirect result of many light sources, having

been reflected many times and diffused around the space, known as ambient light. A
major characteristic of ambient light is its omni-directional, with a fixed intensity

and color which equally affect all objects in the scene.

We can use a constant to simulate ambient light, using the formula:

IA ¼ LAMA

where LA is the intensity of ambient light and MA is the object’s ambient reflection

coefficient, ranging between 0.0–1.0 for each of R, G, and B, determined by the

material property of the object. Under the same ambient light, the light intensity of

the surface of an object may not be the same, and thus is modeled by MA.

Diffuse Shading and Lambertian Model

Under many circumstances, light has a direction, such as sunlight. Given a rela-

tively rough surface, light is reflected from the surface in all directions in equal

intensity or luminance. This type of reflection in many angles is called diffuse
reflection, in contrast to specular reflection at a single angle (see Phong

Shading next).

The intensity of diffuse reflection could be approximated by the Lambertian

reflection that models an ideal diffusely reflecting surface. A Lambertian surface

should have the same perceived brightness and color from all viewing directions if

the surface is uniformly lit. Such a surface obeys Lambert’s cosine law, which states
that the intensity of the diffuse reflection on a surface is proportional to the cosine of

the angle between the direction of light and the surface’s normal vector.

Assume that Id is the intensity of the light hitting the surface, N is the normal

vector at point P of the surface, and θ is the angle between N and L (as shown in

Fig. 7.10). According to Lambert’s Cosine Law, the intensity of diffuse reflection at
P is given by:

Idiffuse ¼ IdKd cos θ ¼ IdKd L �Nð Þ

where Kd(0<Kd< 1) is the diffuse reflection coefficient. This formula implies that

the intensity of diffuse reflection is only influenced by the angle of incoming light

and has no relation to the angle of reflection, i.e. the viewpoint’s position.
The intensity is the highest if the normal vector points in the same direction as

the light vector (i.e. cos 0¼ 1), the surface is perpendicular to the light’s direction). It
is the lowest if the normal vector is perpendicular to the light vector (i.e. cos 90

� ¼ 0),

7.7 Surface Shading 245

the surface is in parallel with the light’s direction). If cosθ< 0, the light source comes

from the backside of the surface, and thus does not reach the point P.

In a RGB color system, the diffuse reflection coefficient Kd has three compo-

nents, Kdr, Kdg, Kdb, corresponding to the coefficients for red, green, and blue

respectively. The three coefficient components together represent the color of the

surface. Similarly, we could also divide Id into three components Ir,Ig, Ib and color

the surface by assigning the three values.

Phong Lighting Model

The above Lambertian reflection works well for rough surfaces, such as wall and

paper, but does not work for metal surfaces that may shine under a light source,

since it does not consider reflection from the surface.

When light casts on a smooth surface, there is a specular reflection, commonly

known as highlight. Assume again N to be the normal vector at point P of the

surface, while ϕ(0�ϕ� π/2) is the angle between N and the vector V pointing

toward the viewer. The light ray (�L)c reflects at the other side (R) ofN at the same

angle θ (Fig. 7.11).

To compute the vector R, we consider the rhombus shown in Fig. 7.12, a

parallelogram with four sides of length 1. Since both the light vector L and the

normal vectorN have length 1, the projection of L onN is equal to L �N¼ cos θ, and
the vector sum L +R has length 2(L �N). Therefore we can compute

R ¼ 2 L �Nð ÞN� L

The Phong lighting model computes the specular reflection using the following

formula:

Ispec ¼ IdKs cosφð Þn ¼ IdKs V � Rð Þn

Fig. 7.10 Diffuse

reflection

246 7 Color, Texture, and Shading

where Id is the intensity of the light hitting the surface, Ks is the specular reflection

coefficient, and n is the Phong exponent. This formula implies that specular

reflection depends on the viewing direction, as well as the intensity of incident

light. Given Id and Ks, when the direction of the viewpoint V lines up with the

reflection R, i.e. ϕ¼ 0, the highlight is the strongest. The highlight falls off

gradually when the viewpoint V moves away from R.
Adding all the above three lights together, i.e. ambient, diffuse, and specular, we

can obtain a more realistic looking scene under the Phong lighting model:

I ¼ Iambient þ Idiffuse þ Ispecular

where

Iambient ¼ IaKa

Idiffuse ¼ IdKd cos θ ¼ IdKd L �Nð Þ
Ispecular ¼ IdKs cosϕð Þn ¼ IdKs V � Rð Þn

Fig. 7.11 Specular

reflection

Fig. 7.12 Light, normal

and reflection vectors

7.7 Surface Shading 247

The Phong lighting model is the simplest and also the most popular lighting and

shading model in 3D computer graphics. It is flexible in achieving a wide range of

visual effects and easy to implement in both software and hardware. In fact,

almost all the graphics hardware and game stations implement the Phong shading

model.

Java Example

The class Obj3D, listed in Appendix B, contains the implementation of the above

theory. The following method of this class computes the illumination of a

polygon. It depends only on the normal vector of the polygon, so the x, y and

z components of this vector are supplied as arguments. Since we are using eye

coordinates (see Fig. 5.4) and the viewing vector V points from the object towards

the viewpoint, we have V¼ (0, 0, 1). We choose the light vector, also in eye

coordinates, as

L ¼ � 1ffiffiffi
3

p ;
1ffiffiffi
3

p ;
1ffiffiffi
3

p
� �

Since, with eye-coordinates, the x-axis points to the right, the y-axis upward and the
z-axis towards the viewer, this means that the light comes more or less from the left,

from above and from the front.

As for the constants Ka, Kd andKs, we will set diffuse illumination (with Ks¼ 0)

by default, while the user can use the View menu to switch to specular illumination

(with Ks¼ 0.2). For this purpose, the class Obj3D also contains the following

method:

void setSpecular(Boolean isSpecular) {

if (isSpecular) {

kAmb = 0.2; kDiff = 0.7; kSpec = 0.2;

}

else {// Diffuse

kAmb = 0.4; kDiff = 0.6; kSpec = 0.0;

}

}

Figure 7.13 shows the default diffuse illumination while the View menu shows

how to switch to specular illumination.

After using this command, Fig. 7.14 appears; although not shown here, in this

state the View menu enables the user to switch to diffuse illumination.

The code that actually computes the colors for all polygons is shown in the

method colorCodePhong below.

248 7 Color, Texture, and Shading

int colorCodePhong(double xN, double yN, double zN) {

// Viewing vector V (from O to E, length 1):

double colorAmbR = 1, colorAmbG = 1, colorAmbB = 0,

colorDifR = 1, colorDifG = 1, colorDifB = 0,

colorSpecR = 1, colorSpecG = 1, colorSpecB = 0;

// Red (R) and green (G) without blue (B) gives yellow.

// Ambient component:

Fig. 7.13 Diffuse illumination

Fig. 7.14 Specular illumination (specular component set non-zero)

7.7 Surface Shading 249

double illumAmbR = kAmb * colorAmbR,

illumAmbG = kAmb * colorAmbG,

illumAmbB = kAmb * colorAmbB;

// Diffuse component:

double

inprodLN = Math.max(0, xL * xN + yL * yN + zL * zN),

illumDiff = inprodLN * kDiff,

illumDiffR = illumDiff * colorDifR,

illumDiffG = illumDiff * colorDifG,

illumDiffB = illumDiff * colorDifB;

// Specular component:

// Reflection vector R = 2(L . N)N - L

// xR and yR would only be used to multiply them by xV

// and yV, and these are zero since V points to the

// viewpoint E and we are using eye coordinates, so

// computing xR and yR would be useless.

double zR = 2 * inprodLN * zN - zL, // // xV = yV = 0:

dotProductVR = Math.max(0, zV * zR),

illumSpec = kSpec * Math.pow(dotProductVR, 16),

illumSpecR = illumSpec * colorSpecR,

illumSpecG = illumSpec * colorSpecG,

illumSpecB = illumSpec * colorSpecB;

// Sum of ambient, diffuse and specular illumination:

double

illumR =

Math.min(1, illumAmbR + illumDiffR + illumSpecR),

illumG =

Math.min(1, illumAmbG + illumDiffG + illumSpecG),

illumB =

Math.min(1, illumAmbB + illumDiffB + illumSpecB);

int red = (int) (255 * illumR),

green = (int) (255 * illumG),

blue = (int) (255 * illumB);

return (red << 16) | (green << 8) | blue;

}

}

Near the top you can see that the red and green color components are set to 1 and

the blue ones to 0, since we want to display the object in shades of yellow. This

color-coding is easy to understand; the program is also easy to modify if any color

other than the current shade of yellow is desired.

250 7 Color, Texture, and Shading

Exercises

7.1. Program ColorCircles.java in Sect. 7.3 is based on the additive color system.

Modify this program so that it produces the diagram for the subtractive color

system as shown in Fig. 7.2b,

7.2. Write a program to fill every face of the hexcone for the HSV model of

Fig. 7.5. For each triangle, use the RGB values of its vertices to find the

RGB value of each pixel in the triangle by interpolation.

7.3. Draw three partially overlapping copies of capital letter A to display various

effects of transparency, gradient, and texture.

7.4. Modify class Obj3D to change the appearance of the images with regard to

colors and the ambient, diffuse and specular illumination components.

Exercises 251

Chapter 8

Fractals

There are many aspects in nature that are repeating and in many cases in patterns

similar at different scales. For example, when observing a pine tree, one may notice

that the shape of a branch is very similar to that of the entire tree, and the shapes of

sub-branches and the main branch are also similar. Such kind of self-similar

structure that occurs at different levels of magnification can be modeled by a branch

of mathematics called Fractal geometry. The term fractal was coined by Benoı̂t

Mandelbrot in 1975, and means fractus or broken in Latin. Fractal geometry studies

the properties and behavior of fractals. It describes many situations which cannot be

explained easily by classical geometry. Fractals can be used to model plants,

weather, fluid flow, geologic activity, planetary orbits, human body rhythms,

socioeconomic patterns, and music, just to name a few. They have been applied

in science, technology, and computer generated art. For example, engineers have

been using fractals to control fluid dynamics in order to reduce process size and

energy use.

A fractal, typically expressed as curves, can be generated by a computer recur-

sively or iteratively with a repeating pattern. Compared with human beings, com-

puters are much better in processing long and repetitive information without

complaint. Fractals are therefore particularly suitable for computer processing.

This chapter introduces the basic concepts and program implementation of fractals.

It starts with a simple type of fractal curves, then focuses on a grammar-based

generic approach for generating different types of fractal images, and finally

discusses the well-known Mandelbrot set.

8.1 Koch Curves

A simple example of self-similar curves is the Koch curve, discovered by the

Swedish mathematician Helge von Koch in 1904. It serves a useful introduction

to the concepts of fractal curves.

© Springer International Publishing AG 2017

L. Ammeraal, K. Zhang, Computer Graphics for Java Programmers,
DOI 10.1007/978-3-319-63357-2_8

253

In Fig. 8.1, K0, K1, and K2 denote successive generations of the Koch curve. A

straight line segment is called the zero-th generation. We can construct Koch curve

as follows:

• Begin with a straight line and call it K0;
• Divide each segment of Kn into three equal parts; and
• Replace the middle part by the two sides of an equilateral triangle of the same

length as the part being removed.

The last step ensures that every straight line segment of Kn becomes the shape of K1

in a smaller scale in Kn+ 1.

Koch curves have the following interesting characteristics:

• Each segment is increased in length by a factor of 4/3. Therefore, Kn + 1 is 4/3 as
long as Kn, and Ki has the total length of (4/3)i.

• When n is getting large, the curve still appears to have the same shape and
roughness.

• When n becomes infinite, the curve has an infinite length, while occupying a
finite region in the plane.

The Koch curve can be easily implemented using the turtle graphics method.

Originated in the Logo programming language, turtle graphics is a means of

computer drawing using the concept of a turtle crawling over the drawing space

with a pen attached to its underside. The drawing is always relative to the current

position and direction of the turtle. Considering each straight line of Kn� 1 to be

drawn as a K1 in the next generation, we can write a recursive program to draw

Koch curves as in the following pseudocode:

To draw Kn we proceed as follows:

If (n == 0) Draw a straight line;

Else

{ Draw Kn�1;

Turn left by 60�;
Draw Kn�1;

Turn right by 120�;

Fig. 8.1 Three generations

of the Koch curve

254 8 Fractals

Draw Kn�1;

Turn left by 60�;
Draw Kn�1;

}

To implement the above pseudocode in a Java program, we need to keep track of

the turtle’s current position and direction. The following program draws the Koch

curve at the zero-th generation K0. With each mouse click, it draws a higher

generation replacing the previous generation. The program defines the origin of

the coordinate system at the center of the screen. The turtle starts pointing to the

right, and locating at the half of the initial length to the left of the origin, that is,

(�200, 0) for the initial length of 400. The turtle moves from the current position at

(x, y) to the next position at (x1, y1) while changing its direction accordingly.

//Koch.java: Koch curves.

import java.awt.*;

import java.awt.event.*;

public class Koch extends Frame {

public static void main(String[] args) {new Koch();}

Koch() {

super("Koch. Click the mouse button to increase the level");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

});

setSize(600, 500);

add("Center", new CvKoch());

setVisible(true);

}

}

class CvKoch extends Canvas {

public float x, y;

double dir;

int midX, midY, level = 1;

int iX(float x) {return Math.round(midX + x);}

int iY(float y) {return Math.round(midY - y);}

CvKoch() {

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent evt) {

8.1 Koch Curves 255

level++; // Each mouse click increases the level by 1.

repaint();

}

});

}

public void paint(Graphics g) {

Dimension d = getSize();

int maxX = d.width - 1, maxY = d.height - 1,

length = 3 * maxX / 4;

midX = maxX / 2; midY = maxY / 2;

x = (float) (-length / 2); // Start point

y = 0;

dir = 0;

drawKoch(g, length, level);

}

public void drawKoch(Graphics g, double len, int n) {

if (n == 0) {

double dirRad, xInc, yInc;

dirRad = dir * Math.PI / 180;

xInc = len * Math.cos(dirRad); // x increment

yInc = len * Math.sin(dirRad); // y increment

float x1 = x + (float) xInc, y1 = y + (float) yInc;

g.drawLine(iX(x), iY(y), iX(x1), iY(y1));

x = x1; y = y1;

} else {

drawKoch(g, len /= 3, --n);

dir += 60;

drawKoch(g, len, n);

dir -= 120;

drawKoch(g, len, n);

dir += 60;

drawKoch(g, len, n);

}

}

}

Joining three Koch curves together, we obtain the interesting Koch snowflake as

shown in Fig. 8.2. The length of a Koch Snowflake is 3� (4/3)i for the ith
generation since the length of Ki is (4/3)i. It increases infinitely as does i. The
area of the Koch snowflake grows slowly and is indeed bounded. In fact, as

i becomes very large, its shape and roughness appear to remain the same. Koch

snowflakes can be easily drawn by connecting three Koch curves using a modified

version of the program above (see Exercise 8.2).

256 8 Fractals

8.2 String Grammars

As discussed above, Koch curves are drawn through a set of commands specifically

defined for Koch curves. There are many interesting curves that could be drawn in a

similar fashion but would require a complete program for each different kind of

curve. The approach in the above section is apparently not general for generating

different kinds of curves.

Consider again the Koch curve. The pattern of the first generation repeats itself

in smaller scales at higher generations.

Such a common pattern distinguishes Koch curves from other curves. Therefore,

an approach that can encode the common pattern in a simple string of characters

would be general enough to specify a variety of curves. Formally, the specification

of a common pattern is called a grammar, and the grammar-based systems for

drawing fractal curves are called L-Systems (invented by the Hungarian biologist

Aristid Lindenmayer in 1968).

The string of characters defining a common pattern instructs the turtle to draw

the pattern. Each character in the string serves as a command to perform an atomic

operation. Given the distance D and turning angle α in which the turtle is supposed

to move, let us now introduce three most common character commands:

• F - move forward the distance D while drawing in the current direction.
• + - turn right through the angle α.
• � - turn left through the angle α.

For example, given a string F�F + +F�F and angle 60�, the turtle would draw

the first generation of Koch curve K1 as shown in Fig. 8.1. It would however be

tedious and error-prone to manually provide long strings for different curves.

Fortunately, computers are best at performing repeated, long and tedious tasks

without making mistakes. Using the same Koch curve example, to draw more

generations, we define a string production rule

F ! F� FþþF� F

Fig. 8.2 Koch snowflakes of generations 2, 3 and 4

8.2 String Grammars 257

The rule means that every occurrence of F (that is, the left hand side of ‘!’) should
be replaced by F�F + +F�F (that is, the right hand side). Starting from an initial

string F which is called the axiom, recursively applying this production rule would

produce strings of increasing lengths. Interpreting any of the strings, the turtle

would draw a corresponding generation of the Koch curve. Let us make the axiom

the zero-th generation K0¼F and the first generation K1¼F�F + +F�F, then K2

can be obtained by substituting every F character in K1 by F�F+ +F�F, so that

K2 ¼ F� FþþF� F� F� FþþF� FþþF� FþþF� F� F� FþþF� F

By interpreting this string, the turtle would draw the curve exactly the same as K2 in

Fig. 8.1. This process can continue to generate the Koch curve at any higher

generations.

In summary, to draw a fractal curve, such as the Koch curve, at any generation,

we need to know at least the following three parameters:

1. The axiom from which the turtle starts.

2. The production rule for producing strings from F character. We will call the right

hand side of this rule the F-string, which is sufficient to represent the rule.

3. The angle at which the turtle should turn.

Denoting these parameters in a template form (axiom, F-string, angle), we call this

the grammar of the curve, and we can specify the Koch curve as (F,F�F +

+F�F, 60).
To define more complex and interesting curves, we introduce three more pro-

duction rules, obtaining grammars of six elements instead of three as above. We

introduce an X-string, to be used to replace every occurrence of X when producing

the next generation string. Similarly, there will be a Y-string, used to replace every

occurrence of Y. Their replacement process is performed in the same fashion as with

the F-string. In other words, all the three string types are treated equally during the

string production process. The X and Y characters are, however, different from the

F character as they are simply ignored by the turtle when drawing the curve. The

third new production rule, named f-string, will be discussed shortly. In the mean-

time, we reserve its position, but substitute nil for it to indicate that we do not use

it. It follows that there are six parameters in the extended grammar template

axiom; F-string; f-string;X-string;Y-string; angleð Þ:

The following grammars produce some more interesting curves:

Dragon curve: (X,F, nil,X+ YF+,�FX� Y, 90).
Hilbert curve: (X,F, nil,�YF +XFX +FY�, +XF� YFY�FX+, 90).
Sierpinski arrowhead: (YF,F, nil,YF +XF + Y,XF� YF�X, 60).

Figures 8.3, 8.4 and 8.5 illustrate some selected generations of the Dragon, Hilbert

and Sierpinski curves that are generated based on their string grammars as defined

above.

258 8 Fractals

It is remarkable that no Dragon curve intersects itself. There seems to be one

such intersection in the 4th generation Dragon curve of Fig. 8.3 and many more in

those of higher generations. However, that is not really the case, as demonstrated by

using rounded instead of sharp corners. Figure 8.4 illustrates this for an 8th

generation Dragon curve.

It is interesting to note that all the curves we have seen so far share one common

characteristic, that is, each curve reflects the exact trace of the turtle’s movement

and is drawn essentially as one long and curved line. This is because the turtle

always moves forward and draws by executing the F character command.

Fig. 8.3 Dragon curves: 1st, 2nd, 3rd, 4th, 5th and 11th generations

Fig. 8.4 Dragon curve of

8th generation, rounded

corners

Fig. 8.5 Hilbert curve (5th generation) and Sierpinski arrowhead (7th generation)

8.2 String Grammars 259

Moving Without Drawing and f-Strings

Sometimes, it is desirable to keep some of the curve components at proper distances

from each other. This implies that such a curve is not connected. We therefore need

to define a forward moving action for the turtle without drawing:

• f - move forward the distance D without drawing a line.

The f-string, for which we already reserved a position (just after the F-string)

indicates how each lower-case f is to be expanded. By using an f-string other than

nil, we are able to generate an image with a combination of islands and lakes as

shown in Fig. 8.6, based on the following grammar:

Fþ Fþ Fþ F;Fþ f � FFþ Fþ FFþ Ff þ FF� f þ FF� F� FF� Ff � FFF,ð
ffffff ; nil; nil; 90Þ

Note that here the parameters X-string and Y-string are unused and therefore

written as nil.
To summarize, we have introduced the following six parameters into our string

grammar:

Fig. 8.6 Second generation Islands

260 8 Fractals

1. The axiom from which the turtle starts;

2. The F-string for producing strings from F that instructs the turtle to move

forward while drawing;

3. The f-string for producing strings from f, that instructs the turtle to move forward

without drawing;

4. The X-string for producing strings from X, that does not affect the turtle;
5. The Y-string for producing strings from Y, that does not affect the turtle; and
6. The angle at which the turtle should turn.

In principle, more parameters may be introduced if the above six parameters cannot

express new types of curves. On the other hand, a grammar does not have to use all

the introduced parameters since, as we have seen, a nil can be used to represent an

unused parameter.

Branching

With all the curves we have seen so far, one may observe the following phenom-

enon. The turtle is always moving forward along a curved line. It sometimes draws

(seeing an F character) and sometimes does not draw (seeing an f character). The
turtle never turns back to where it has visited before, since it cannot remember its

previous positions. This implies that the turtle is unable to branch off from any of

the previous curve positions and draw branching lines.

To make the turtle remember places that it has visited, we need to introduce the

concept of the turtle’s state. Let us call the turtle’s current position together with its
direction the state of the turtle. In other words, a state is defined by the values of a

location in the drawing space and the angle at the location. To enhance the drawing

power of string production rules, we allow the turtle to keep its states and return to

any of them later by introducing two more character commands:

• [- store the current state of the turtle
•] - restore the turtle’s previously stored state

These two characters, however, do not form strings of their own and thus do not

require new production rules. They merely participate in the F-, f-, X-, and

Y-strings to instruct how the turtle should behave.

The most appropriate data structure to implement the store and restore opera-

tions is a stack. Upon meeting a [character, the turtle pushes its current state onto

the stack. When encountering a] character, the turtle pops its previous state from

the stack and starts from the previous position and direction to continues its journey.

Having empowered the turtle with the capability of returning and restarting from its

previous states, we are able to draw curves with branches, such as trees defined in

the following string grammars:

8.2 String Grammars 261

Tree1 : F;F þF½ �F �F½ �F; nil; nil; nil; 25:7ð Þ
Tree2 : X;FF; nil;F þX½ �F �X½ � þ X; nil; 20:0ð Þ
Tree3 : F;FF� �Fþ Fþ F½ � þ þF� F� F½ �; nil; nil; nil; 22:5ð Þ

These grammars were used to obtain the trees shown in Fig. 8.7.

If the line thickness of each branch is set in proportion of its distance to the root,

and also a small fraction of randomness is applied to the turning angle, more

realistic looking trees would be produced.

Most figures of this section were produced by the program below, with input files

to be discussed after this program:

// FractalGrammars.java

import java.awt.*;

import java.awt.event.*;

public class FractalGrammars extends Frame {

public static void main(String[] args) {

if (args.length == 0)

System.out.println("Use filename as program argument.");

else

new FractalGrammars(args[0]);

}

Fig. 8.7 Example of fractal trees: Tree1 (4th generation), Tree2 (5th-generation) and Tree3 (4th

generation)

262 8 Fractals

FractalGrammars(String fileName) {

super("Click left or right mouse button to change the level");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

});

setSize(800, 600);

add("Center", new CvFractalGrammars(fileName));

setVisible(true);

}

}

class CvFractalGrammars extends Canvas {

String fileName, axiom, strF, strf, strX, strY;

int maxX, maxY, level = 1;

double xLast, yLast, dir, rotation, dirStart, fxStart, fyStart,

lengthFract, reductFact;

void error(String str) {

System.out.println(str);

System.exit(1);

}

CvFractalGrammars(String fileName) {

Input inp = new Input(fileName);

if (inp.fails())

error("Cannot open input file.");

axiom = inp.readString(); inp.skipRest();

strF = inp.readString(); inp.skipRest();

strf = inp.readString(); inp.skipRest();

strX = inp.readString(); inp.skipRest();

strY = inp.readString(); inp.skipRest();

rotation = inp.readFloat(); inp.skipRest();

dirStart = inp.readFloat(); inp.skipRest();

fxStart = inp.readFloat(); inp.skipRest();

fyStart = inp.readFloat(); inp.skipRest();

lengthFract = inp.readFloat(); inp.skipRest();

reductFact = inp.readFloat();

if (inp.fails()) error("Input file incorrect.");

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent evt) {

if ((evt.getModifiers() & InputEvent.BUTTON3_MASK) != 0) {

level--; // Right mouse button decreases level

if (level < 1) level = 1;

} else

8.2 String Grammars 263

level++; // Left mouse button increases level

repaint();

}

});

}

Graphics g;

int iX(double x) {return (int) Math.round(x);}

int iY(double y) {return (int) Math.round(maxY - y);}

void drawTo(Graphics g, double x, double y) {

g.drawLine(iX(xLast), iY(yLast), iX(x), iY(y));

xLast = x; yLast = y;

}

void moveTo(Graphics g, double x, double y) {

xLast = x; yLast = y;

}

public void paint(Graphics g) {

Dimension d = getSize();

maxX = d.width - 1; maxY = d.height - 1;

xLast = fxStart * maxX; yLast = fyStart * maxY;

dir = dirStart; // Initial direction in degrees

turtleGraphics(g, axiom, level, lengthFract * maxY);

}

public void turtleGraphics(Graphics g, String instruction,

int depth, double len) {

double xMark = 0, yMark = 0, dirMark = 0;

for (int i = 0; i < instruction.length(); i++) {

char ch = instruction.charAt(i);

switch (ch) {

case ’F’: // Step forward and draw

// Start: (xLast, yLast), direction: dir, steplength: len

if (depth == 0) {

double rad = Math.PI / 180 * dir, // Degrees -> radians

dx = len * Math.cos(rad), dy = len * Math.sin(rad);

drawTo(g, xLast + dx, yLast + dy);

} else

turtleGraphics(g, strF, depth - 1, reductFact * len);

break;

264 8 Fractals

case ’f’: // Step forward without drawing

// Start: (xLast, yLast), direction: dir, steplength: len

if (depth == 0) {

double rad = Math.PI / 180 * dir, // Degrees -> radians

dx = len * Math.cos(rad), dy = len * Math.sin(rad);

moveTo(g, xLast + dx, yLast + dy);

} else

turtleGraphics(g, strf, depth - 1, reductFact * len);

break;

case ’X’:

if (depth > 0)

turtleGraphics(g, strX, depth - 1, reductFact * len);

break;

case ’Y’:

if (depth > 0)

turtleGraphics(g, strY, depth - 1, reductFact * len);

break;

case ’+’: // Turn right

dir -= rotation;

break;

case ’-’: // Turn left

dir += rotation;

break;

case ’[’: // Save position and direction

xMark = xLast; yMark = yLast;

dirMark = dir;

break;

case ’]’: // Back to saved position and direction

xLast = xMark; yLast = yMark;

dir = dirMark;

break;

}

}

}

}

The most essential input data consist of the grammar, for example,

X;F; nil;X þ YFþ;�FX � Y; 90ð Þ

for the Dragon curve. In addition, the following five values would help in obtaining

desirable results:

• The direction in which the turtle starts, specified as the angle, in degrees,
relative to the positive x-axis.

8.2 String Grammars 265

• The distance between the left window boundary and the start point, expressed as
a fraction of the window width.

• The distance between the lower window boundary and the start point, expressed
as a fraction of the window height.

• The length of a single line segment in the first generation, expressed as a fraction
of the window height.

• A factor to reduce the length in each next generation, to prevent the image from
growing outside the window boundaries.

Setting the last two values can be regarded as tuning, so they were found experi-

mentally. We supply all these data, that is, five strings and six real numbers, in a file,

the name of which is supplied as a program argument. For example, to produce the

Dragon curve, we can enter this command to start the program:

java FractalGrammars Dragon.txt

where the file Dragon.txt is listed below, showing the grammar (X,F,X+ YF+,�
FX� Y, 90) followed by the five values just discussed:

"X" // Axiom

"F" // strF

"" // strf

"X+YF+" // strX

"-FX-Y" // strY

90 // Angle of rotation

0 // Initial direction of turtle (east)

0.5 // Start at x = 0.5 * width

0.5 // Start at y = 0.5 * height

0.6 // Initial line length is 0.6 * height

0.6 // Reduction factor for next generation

As you can see, strings are supplied between a pair of quotation marks, and

comment is allowed at the end of each line. Instead of nil, we write the empty

string "". Although the initial direction of the turtle is specified as east, the first line

is drawn in the direction south. This is because of the axiom "X", which causes

initially strX¼ "X+ YF+ " to be used, where X and Y are ignored. So actually " +F +
" is executed by the turtle. As we know, the initial + causes the turtle to turn right

before the first line is drawn due to F, so this line is drawn downward instead of

from left to right.

The other curves were produced in a similar way. Both the grammars and the five

additional parameter values, as discussed above, for these curves are listed in the

following table:

266 8 Fractals

Dragon (X,F, nil,X + YF+,�FX� Y, 90) 0 0.5 0.5 0.6 0.6

Hilbert (X,F, nil,�YF +XFX+FY�, +XF� YFY�FX+, 90) 0 0.25 0.25 0.8 0.47

Sier-

pinski

(YF,F, nil,YF+XF+ Y,XF� YF�X, 60). 0 0.33 0.5 0.38 0.51

Islands (F +F +F+F,F + f�FF+F +FF+Ff +FF� f
+FF�F�FF�Ff�FFF, ffffff, nil, nil, 90)

0 0.25 0.65 0.2 0.2

Tree 1 (F,F[+F]F[�F]F, nil, nil, nil, 25.7) 90 0.5 0.05 0.7 0.34

Tree 2 (X,FF, nil,F[+X]F[�X] +X, nil, 20.0) 90 0.5 0.05 0.45 0.5

Tree 3 (F,FF� [�F +F +F] + [+F�F�F], nil, nil,
nil, 22.5)

90 0.5 0.05 0.25 0.5

When discussing the Tree examples with branches, we suggested that a stack

would be used to push and pop states, while there seem to be no stack structure in

the program. However, there is a local variables xMark in the recursive method

turtleGraphics, and for each recursive call a version of this variable is stored on a

system stack. In other words, the use of a stack is implicit in this program.

Further Extension

The above template and program provide a general framework for drawing

grammar-based fractal images. You could easily extend the above program to

include more strings to draw more complex and interesting curves. One example

is a curve called Penrose tiling, originally proposed by Roger Penrose in 1974

[21]. To draw a Penrose curve, we could simply add two more strings, say U-string

and V-string, introducing and using the variables strU and strV in the program in

exactly the same way as strX and strY. We could then specify the curve in a file

Penrose.txt as the following:

"[Y]++[Y]++[Y]++[Y]++[Y]" // Axiom

"" // strF

"" // strf

"UF++VF----YF[-UF----XF]++" // strX

"+UF--VF[---XF--YF]+" // strY

"-XF++YF[+++UF++VF]-" // strU

"--UF++++XF[+VF++++YF]--YF" // strV

36 // Angle of rotation

18 // Initial direction of turtle

0.5 // Start at x = 0.5 * width

0.5 // Start at y = 0.5 * height

0.5 // Initial factor for length

0.6 // Reduction factor

8.2 String Grammars 267

By inserting string processing codes for both U- and V-strings into the above

turtleGraphics method, re-compile the entire FractalGrammars.java program

and run.

java FractalGrammars Penrose.txt

we would generate the Penrose curves as shown in Fig. 8.8. For other curves, more

angles may be added as additional parameters in the template in a similar fashion.

8.3 Mandelbrot Set

The Mandelbrot set, named after Polish-born French mathematician Benoı̂t Man-

delbrot, is a fractal. Recall that a fractal curve reveals small-scale details similar to

the large-scale characteristics. Although the Mandelbrot set is self-similar at dif-

ferent scales, the small scale details are not identical to the whole. Also, the

Mandelbrot set is infinitely complex. Yet the process of generating it is based on

an extremely simple equation involving complex numbers. Figure 8.9 shows a view

of the Mandelbrot set on the left. The outline is a fractal curve that can be zoomed in

forever on any part for a close-up view, as the right part of Fig. 8.9 illustrates. Even

parts of the image that appear quite smooth show a jagged outline consisting of

many tiny copies of the Mandelbrot set. For example, as displayed in Fig. 8.9, there

is a large and black region like a cardioid near the center with a circle joining its

left-hand side. The region that the cardioid and the circle are joined together

appears smooth. When the region is magnified, however, the detailed structure

becomes apparent and shows many fascinating details that were not visible in the

original picture. In theory, the zooming can be repeated forever, since the border is

“infinitely complex”.

Fig. 8.8 Penrose tiling (left: 1st generation; right: 4th generation)

268 8 Fractals

The Mandelbrot set is a setM of complex numbers defined in the following way:

M ¼ c2Cj lim
n!1 zn 6¼ 1

n o

where C is the set of all complex numbers and, for some constant c, the sequence z0,
z1, . . . is defined as follows:

z0 ¼ 0

znþ1 ¼ zn
2 þ c

That is, the Mandelbrot set is the set of all complex numbers c which fulfill the

condition described above. In other words, if the sequence z0, z1, z2, . . . does not
approach infinity, then c belongs to the set. Given a value c, the system generates a

sequence of values called the orbit of the start value 0:

z0 ¼ 0

z1 ¼ z0
2 þ c ¼ c

z2 ¼ z1
2 þ c ¼ c2 þ c

z3 ¼ z2
2 þ c ¼ c2 þ cð Þ2 þ c

z4 ¼ z3
2 þ c ¼ c2 þ cð Þ2 þ c

� �2

þ c

. . .

As soon as an element of the sequence {zn} is at a distance greater than 2 from the

origin, it is certain that the sequence tends to infinity. A proof of this goes beyond

the scope of this book. If the sequence does not approach infinity and therefore

remains at a distance of at most 2 from the origin forever, then the point c is in the

Mandelbrot set. If any zn is farther than 2 from the origin, then the point c is not in
the set.

Now let us consider how to generate a Mandelbrot image. Since the Mandelbrot

set is a set of complex numbers, first we have to find these numbers that are part of

Fig. 8.9 Mandelbrot set and magnified detail

8.3 Mandelbrot Set 269

the set. To do this we need a test that will determine if a given number is inside the

set or outside. The test is applied to complex numbers zn computed as zn+ 1¼ zn
2 + c.

The constant c does not change during the testing process. As the number being

tested, c is the point on the complex plane that will be plotted when the testing is

complete. This plotting will be done in a color that depends on the test result. For

some value nMax, say 30, we start computing z1, z2, . . . until either we have

computed zn for n¼ nMax, or we have found a point zn(n� nMax) whose distance

from the origin O is greater than 2. In the former case, having computed nMax

elements of the sequence, none of which is farther than a distance 2 away from O,

we give up, consider the point c belonging to the Mandelbrot set, and plot it in

black. In the latter case, the point zn going beyond the distance 2, we plot the point

c in a color that depends on the value of n.
Let us now briefly discuss complex arithmetic, as far as we need it here, for those

who are unfamiliar with this subject. Complex numbers are two-dimensional by

nature. We may regard the complex number

z ¼ xþ yi

as the real number pair (x, y). It is customary to refer to x as the real part and to y as
the imaginary part of z. We display z in the usual way, with x drawn along the

horizontal axis and y along the vertical axis. Addition of two complex numbers is

the same as that for vectors:

x1 þ y1ið Þ þ x2 þ y2ið Þ ¼ x1 þ x2ð Þ þ y1 þ y2ð Þi

By contrast, multiplication of complex numbers is rather complicated:

x1 þ y1ið Þ x2 þ y2ið Þ ¼ x1x2 � y1y2ð Þ þ x1y2 þ x2y1ð Þi

It follows that for

z ¼ xþ yi

we have

z2 ¼ x2 � y2
� �þ 2xyi

Although we do not need this for our purpose, we may as well note that by setting

x¼ 0 and y¼ 1, giving 0 + 1� i¼ i, we find

i2 ¼ 02 � 12
� �þ 2� 0� 1� i ¼ �1

which explains that the symbol i is often referred to as the square root of �1:

i ¼ √� 1

270 8 Fractals

The distance of the complex number z¼ x+ yi from the origin O is called the

absolute value or modulus of z and is denoted as |z|. It follows that

j z j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p

Remember, |z|2¼ x2 + y2, while z2¼ (x2� y2) + 2xyi so, in general, |z|2 is unequal to
z2. This very brief introduction to complex numbers cannot replace a thorough

treatment as found in mathematics textbooks, but it will be sufficient for our

Mandelbrot subject.

In the algorithm for Mandelbrot fractals, when computing each successive value

of z, we want to know if its distance from the origin exceeds 2. To calculate this

distance, usually denoted as |z|, we add the square of its distance from the x-axis (the
horizontal real axis) to the square of its distance from the y-axis (the vertical

imaginary axis) and then take the square root of the result. The computation of

the square root operation can be saved by just checking whether the sum of these

squares is greater than 4. In other words, for

z ¼ xþ yi

we perform the test

zj j2 > 4

which is expressed in terms of real numbers as

x2 þ y2 > 4

Now to compute each new value z using zn+ 1¼ zn
2 + c, let us write Re(c) and Im

(c) for the real and imaginary parts of c. It then follows from

z2 ¼ xþ yið Þ2 ¼ x2 � y2
� �þ 2xyð Þi

that the real and imaginary parts of each element zn+ 1 are found as follows:

real part : xnþ1 ¼ xn
2 � yn

2 þ Re cð Þ
imaginary part : ynþ1 ¼ 2xnyn þ Im cð Þ

As we increment n, the value of |zn|
2 will either stay equal to or below 4 forever, or

eventually surpass 4. Once |zn|
2 surpasses 4, it will increase forever. In the former

case, where the |zn|
2 stays small, the number c being tested is part of the Mandelbrot

set. In the latter case, when |zn|
2 eventually surpasses 4, the number c is not part of

the Mandelbrot set.

8.3 Mandelbrot Set 271

Implementation in Java

To display the whole Mandelbrot set image properly, we need some mapping

xPix ! x
yPix ! y

to convert the device coordinates (xPix, yPix) to the real and imaginary parts x and

y of the complex number c¼ x+ yi. In the program, the variables xPix and yPix are of
type int, while x and y are of type double. We will use the following ranges for the

device coordinates:

0 � xPix < w

0 � yPix < h

where we obtain the width w and height h of the drawing rectangle in the usual way:

w = getSize().width;

h = getSize().height;

For x and y we have

minRe � x � maxRe

minIm � y � maxIm

The user will be able to change these boundary variables minRe, maxRe, minIm and

maxIm by dragging the left mouse button. Their default values are minRe0¼ � 2,

maxRe0¼ + 1, minIm0¼ � 1, maxIm0¼ + 1, which will at any time be restored

when the user presses the right mouse button. Using the variable factor, computed

in Java as

factor = Math.max((maxRe - minRe)/w, (maxIm - minIm)/h);

we can perform the above mapping from (xPix, yPix) to (x, y) by computing

x ¼ minReþ factor � xPix

y ¼ minIm þ factor � yPix

For every device coordinate pair (xPix, yPix) of the window, the associated point

c¼ x+ iy in the complex plane is computed in this way. Then, in up to nMax

iterations, we determine whether this point belongs to the Mandelbrot set. If it

does, we display the original pixel (xPix, yPix) in black; otherwise, we plot this pixel
in a shade of red that depends on n, the number of iterations required to decide that

the point is outside the Mandelbrot set. The expression 100 + 155∗n/nMax ensures

272 8 Fractals

that this color value will not exceed its maximum value 255. If nMax is set larger

than that in the program, program execution will take more time but the quality of

the image would improve. The implementation of this can by found in the paint
method at the bottom of the following program, after which we will discuss the

implementation of cropping and zooming.

// MandelbrotZoom.java: Mandelbrot set, cropping and zooming in.

import java.awt.*;

import java.awt.event.*;

public class MandelbrotZoom extends Frame {

public static void main(String[] args) {new MandelbrotZoom();}

MandelbrotZoom() {

super("Drag left mouse button to crop and zoom. " +

"Click right mouse button to restore.");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {System.exit(0);}

});

setSize(800, 600);

add("Center", new CvMandelbrotZoom());

setVisible(true);

}

}

class CvMandelbrotZoom extends Canvas {

final double minRe0 = -2.0, maxRe0 = 1.0,

minIm0 = -1.0, maxIm0 = 1.0;

double minRe = minRe0, maxRe = maxRe0,

minIm = minIm0, maxIm = maxIm0, factor, r;

int n, xs, ys, xe, ye, w, h;

void drawWhiteRectangle(Graphics g) {

g.drawRect(Math.min(xs, xe), Math.min(ys, ye),

Math.abs(xe - xs), Math.abs(ye - ys));

}

boolean isLeftMouseButton(MouseEvent e) {

return (e.getModifiers() & InputEvent.BUTTON3_MASK) == 0;

}

CvMandelbrotZoom() {

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent e) {

if (isLeftMouseButton(e)) {

xs = xe = e.getX(); // Left button

8.3 Mandelbrot Set 273

ys = ye = e.getY();

} else {

minRe = minRe0; // Right button

maxRe = maxRe0;

minIm = minIm0;

maxIm = maxIm0;

repaint();

}

}

public void mouseReleased(MouseEvent e) {

if (isLeftMouseButton(e)) {

xe = e.getX(); // Left mouse button released

ye = e.getY(); // Test if points are really distinct:

if (xe != xs && ye != ys) {

int xS = Math.min(xs, xe), xE = Math.max(xs, xe),

yS = Math.min(ys, ye), yE = Math.max(ys, ye),

w1 = xE - xS, h1 = yE - yS, a = w1 * h1,

h2 = (int) Math.sqrt(a / r), w2 = (int) (r * h2),

dx = (w2 - w1) / 2, dy = (h2 - h1) / 2;

xS -= dx; xE += dx;

yS -= dy; yE += dy; // aspect ration corrected

maxRe = minRe + factor * xE;

maxIm = minIm + factor * yE;

minRe += factor * xS;

minIm += factor * yS;

repaint();

}

}

}

});

addMouseMotionListener(new MouseMotionAdapter() {

public void mouseDragged(MouseEvent e) {

if (isLeftMouseButton(e)) {

Graphics g = getGraphics();

g.setXORMode(Color.black);

g.setColor(Color.white);

if (xe != xs || ye != ys)

drawWhiteRectangle(g); // Remove old rectangle:

xe = e.getX(); ye = e.getY();

drawWhiteRectangle(g); // Draw new rectangle:

}

}

});

}

274 8 Fractals

public void paint(Graphics g) {

w = getSize().width; h = getSize().height;

r = w / h; // Aspect ratio, used in mouseReleased

factor = Math.max((maxRe - minRe) / w, (maxIm - minIm) / h);

for (int yPix = 0; yPix < h; ++yPix) {

double cIm = minIm + yPix * factor;

for (int xPix = 0; xPix < w; ++xPix) {

double cRe = minRe + xPix * factor, x = cRe, y = cIm;

int nMax = 100, n;

for (n = 0; n < nMax; ++n) {

double x2 = x * x, y2 = y * y;

if (x2 + y2 > 4) break; // Outside

y = 2 * x * y + cIm;

x = x2 - y2 + cRe;

}

g.setColor(n == nMax ? Color.black // Inside

: new Color(100 + 155 * n / nMax, 0, 0)); // Outside

g.drawLine(xPix, yPix, xPix, yPix);

}

}

}

}

As indicated in the title bar (implemented by a call to super at the beginning of the

MandelbrotZoom constructor), the user can zoom in by using the left mouse button.

By dragging the mouse with the left button pressed down, a rectangle appears, as

shown in Fig. 8.10, with one of its corners at the point first clicked and the opposite

one denoting the current mouse position. This process is sometimes referred to as

rubber banding.
When the user releases the mouse button, the picture is cropped so that every-

thing outside the rectangle is removed and the contents inside are enlarged and

displayed in the full window. This cropping is therefore combined with zooming in,

as Fig. 8.11 illustrates. The user can continue zooming in by cropping in the same

way forever. It would be awkward if there were no way of either zooming out or

returning to the original image. In program MandelbrotZoom.java the latter is

possible by clicking the right mouse button.

To implement this cropping rectangle, we use two opposite corner points of

it. The start point (xs, ys) is where the user clicks the mouse to start dragging, while

the opposite corner is the endpoint (xe, ye). There are three Java methods involved:

mousePressed: to define both the start point (xs, ys) and initial position of the

endpoint (xe, ye);
mouseDragged: to update the endpoint (xe, ye), removing the old rectangle and

drawing the new one;

mouseReleased: to compute the logical boundary values minRe, maxRe, minIm
and maxIm on the basis of (xs, ys) and (xe, ye).

8.3 Mandelbrot Set 275

Fig. 8.11 Result of cropping and zooming in

Fig. 8.10 Cropping and zooming in

276 8 Fractals

In mouseDragged, drawing and removing the cropping rectangle is done using the

XOR mode which was briefly discussed at the end of Sect. 4.3. Here we use two

calls

g.setXORMode(Color.black);

g.setColor(Color.white);

after which we draw both the old and the new rectangles. In mouseReleased, some

actions applied to the cropping rectangle require explanation. As we want the

zooming to be isotropic, we have to pay attention to the cropping rectangle having

an aspect ratio

r1 ¼ w1 : h1

different from the aspect ratio

r ¼ w : h

of the (large) drawing rectangle. For example, the cropping rectangle may be in

‘portrait’ format (with w1< h1), while the drawing rectangle has the ‘landscape’
characteristic (with w> h). The simplest way to deal with this case would be to cut

off a portion of the cropping rectangle at the top or the bottom. However, that would

lead to a result that may be unexpected and undesirable for the user. We will

therefore replace the cropping rectangle with one that has the same center and the

same area a¼w1h1, but an aspect ratio of r (mentioned above) instead of r1. The
dimensions of this new rectangle will be w2� h2 instead of w1� h1. To find w2 and

h2 we solve

w2h2 ¼ a ¼ area of cropping rectangle defined by the userð Þ
w2 : h2 ¼ r ¼ aspect ratiow=hof drawing rectangleð Þ

giving

h2 ¼
ffiffiffi
a

r

r

w2 ¼ rh2

Then we add the correction term Δx¼½(w2�w1) to the x-coordinate xE of the

right cropping-rectangle edge and subtract it from the x-coordinate xS of the

corresponding left edge. After performing similar operations on yS and yE, the
resulting new rectangle with top-left corner point (xS, yS) and bottom-right corner

point (xE, yE) is about as large as user-defined rectangle but in shape similar to the

large drawing rectangle. We then have to compute the corresponding coordinates in

the complex plane, using the mapping discussed a short while ago. Since the new

logical right boundary values maxRe and maxIm should correspond to xE and yE,
we compute

8.3 Mandelbrot Set 277

maxRe = minRe + factor * xE;

maxIm = minIm + factor * yE;

Similarly, to obtain the new left boundary values, we have to add factor � xS and

factor � yS to the old values minRe and minIm, respectively, giving the slightly

more cryptic statements

minRe += factor * xS;

minIm += factor * yS;

8.4 Julia Set

Associated with every point in the complex plane is a set somewhat similar to the

Mandelbrot set called a Julia set, named after the French mathematician Gaston

Julia. To produce an image of a Julia set, we use the same iteration zn+ 1¼ zn
2 + c,

this time with a constant value of c but with a starting value z0 derived from the

coordinates (xPix, yPix) of the pixel displayed on the screen. We obtain interesting

Julia sets if we choose points near the boundaries of the Mandelbrot set as starting

values z0. For example, we obtained Fig. 8.12 by taking c¼ � 0.76 + 0.084i, which
in the Mandelbrot set (Fig. 8.9) is the point near the top of the circle on the left.

Since the Mandelbrot set can be used to select c for the Julia set, it is said to form
an index into the Julia set. Such an interesting relationship is also evidenced by the

following fact. A Julia set is either connected or disconnected. For values of z0
chosen from within the Mandelbrot set, we obtain connected Julia sets. That is, all

Fig. 8.12 Julia set, obtained by using c¼ � 0.76� 0.084i

278 8 Fractals

the black regions are connected. Conversely, those values of z0 outside the Man-

delbrot set give disconnected Julia sets. The disconnected sets are often called dust,
consisting of individual points no matter what resolution they are viewed at. If, in

the program MandelbrotZoom.java, we replace the paint method with the one

below (preferably also replacing the name Mandelbrot with Julia throughout the

program), and specify the dimensions w¼ 900 and h¼ 500 in the call to setSize, we
obtain a program which initially produces Fig. 8.12. Again, we can display all kinds

of fascinating details by cropping and zooming. Note, in this program, c is a

constant and the starting value z of the sequence is derived from the device

coordinates (xPix, yPix).

public void paint(Graphics g) {

Dimension d = getSize();

w = getSize().width;

h = getSize().height;

r = w/h;

double cRe = -0.76, cIm = 0.084;

factor = Math.max((maxRe - minRe)/w, (maxIm - minIm)/h);

for(int yPix=0; yPix<h; ++yPix) {

for(int xPix=0; xPix<w; ++xPix) {

double x = minRe + xPix * factor,

y = minIm + yPix * factor;

int nMax = 100, n;

for (n=0; n<nMax; ++n) {

double x2 = x * x, y2 = y * y;

if (x2 + y2 > 4)

break; // Outside

y = 2 * x * y + cIm;

x = x2 - y2 + cRe;

}

g.setColor(n == nMax ? Color.black // Inside

: new Color(100 + 155 * n / nMax, 0, 0)); // Outside

g.drawLine(xPix, yPix, xPix, yPix);

}

}

}

}

Exercises

8.1. Write a program to produce Dragon curves with rounded corners, as shown in

Fig. 8.4.

8.2. Write a program to connect Koch curves, as shown in Fig. 8.2.

Exercises 279

8.3. To make bush curves (trees) appear more natural and pleasing, add random-

ness to the angles and lengths of the lines, and also draw lines with thickness.

For example, the lower part of a tree is thicker than its upper part, as shown

in Fig. 8.13.

8.4. Further to Exercise 8.3, add green leaves to the branches and make the leaves

oriented toward the same directions as the branches.

8.5. Apply the method of cropping and zooming used in MandelbrotZoom.java to

some other (non-trivial) graphics program of your own choice.

8.6. Write a program to draw the Mandelbrot set, and when clicked on the

Mandelbrot image, a Julia set corresponding to the clicked point is drawn on

a window aside of the Mandelbrot window. The clicked point in the form of

z¼ x+ yi should also be displayed on the side window.

Fig. 8.13 A fractal tree

with different branch

thicknesses

280 8 Fractals

Appendix A: Interpolation of 1/z

In 3D computer graphics, given an object in 3D space (the real world), the usual

task is to compute its image in 2D space (the screen). If a line segment PQ in 3D is

given, we compute the images P0 and Q0 of its endpoints, and draw the line segment

P0Q0. However, the reverse task, that is, computing the original point P in 3D space

of a given image point P0 on the screen, is sometimes also required, as discussed

both in Sect. 6.1 and Appendix C for the hidden-line algorithm and Sect. 6.4 for the

Z-buffer algorithm.

In Fig. A.1 the viewer’s eye is located in E, the origin of the xz-coordinate
system, and the screen is at z ¼ �20. For simplicity, we ignore the y-axis. The
viewer sees four points with z-coordinates �40, �60, �80 and �100 on the left.

Their image points on the screen have x-coordinates �25, �16.7, �12.5 and �10,

respectively. Although the original points are equidistant (with distances 20), the

images of far-away points are closer together than those of nearby points. The right

half of this figure shows a different situation, which is about the main subject we

want to discuss here. With a given line segment PQ, the images of the endpoints are

computed from their positions z ¼ �100 and z ¼ �40, giving x ¼ 10 and x ¼ 25,

respectively, for the image points P0 and Q0. Then P0Q0 is divided into three equal

parts, so we have four equidistant image points. From the x-coordinates 15 and

20 of the two intermediate points, the z-coordinates �66.7 and �50 of the original

points are then computed. The two intermediate image points are similar to (a great

many and equidistant) pixels on an image line segment P0Q0 on a computer screen.

In this example, the relation between the z-coordinates of the original points and
the x-coordinates of their images is very simple. This is because, on both the left and

the right parts of Fig. A.1, the four original points lie on a line parallel to the z-axis,
that is, perpendicular to the screen. For example, the two right triangles EFQ and

EF0Q0 have the same angles so they are similar, and

QF

EF
¼ Q0F0

EF0

© Springer International Publishing AG 2017

L. Ammeraal, K. Zhang, Computer Graphics for Java Programmers,
DOI 10.1007/978-3-319-63357-2

281

so

x0 � �zð Þ ¼ EF0 � QF ¼ EF� Q0F0 ¼ 50� 20 ¼ 1000

This also applies to the other pairs of similar triangles, so, if we know either x0 of an
image or z of an original point we can simply divide �1000 by it to find the other.

Unfortunately, things are less straightforward if the original lines are not parallel

to the z-axis. In Fig. A.2 we have such a line l, with equation

Fig. A.1 Points equidistant in 3D space on the left and equidistant in 2D space on the right

Fig. A.2 Central projection

of point P on screen

282 Appendix A: Interpolation of 1/z

axþ bz ¼ 1 ðA:1Þ

The screen is represented by the line z ¼ �d.
For a given projection P0 with x-coordinate x0, our task is now to compute the

z-coordinate of the original point P on line l. Geometrically, P is found as

the intersection of l and an extension of EP0. Since the line through E and P0 has
slope � d/x0 and passes through the origin E, we can easily write its equation

z ¼ �d

x0
x

where the minus sign is required because the positive z-axis points downward.

We write this as

x ¼ �z

d
x
0

and use this to substitute x in Eq. (A.1) of line l, obtaining

�a
z

d
x0 þ bz ¼ 1

Exchanging both sides and dividing them by z gives

1

z
¼ �a

d
x0 þ b ðA:2Þ

which shows that 1/z is a linear function of x0. This is important because it enables

us to perform linear interpolation. This term is used to indicate that, with a linear

function

f xð Þ ¼ mxþ c

and three values xA, xB and xI satisfying

xI ¼ xA þ λ xB � xAð Þ

for any value λ between 0 and 1, we can express f(xI) in f(xA) and f(xB) in the same

way as xI is expressed in xA and xB, that is,

f xIð Þ ¼ f xAð Þ þ λ f xBð Þ � f xAð Þf g

For example, if xI lies halfway between xA and xB, then f(xI) lies halfway between

f(xA) and f(xB).
As we have seen in Eq. (A.2), 1/z is a linear function of x0. It then follows that we

can find the z-coordinate of a point I on a line AB in 3D-space by using

1

zI
¼ 1

zA
þ λ

1

zB
� 1

zA

� �
ðA:3Þ

Appendix A: Interpolation of 1/z 283

where λ indicates the position of the projection I0 relative to A0 and B0:

x0I ¼ x0A þ λ x0B � x0A
� �

Note that Eq. (A.3) does not contain any details of the line l. We have used this

equation in Sect. 6.4 for the Z-buffer algorithm; it is also relevant to hidden-line

removal, as discussed in Sect. 6.1 and Appendix C.

Let us now return to Fig. A.1 to apply linear interpolation to the second point

from below on the right, with z¼�50. We will denote this point as I and use A and

B instead of P and Q to comply with Eq. (A.3). We will use no information other

than zA ¼ �100, zB ¼ �40, xA
0 ¼ 10, xB

0 ¼ 25, and xI
0 ¼ 20. This implies that we

will use

λ ¼ x0I � x0A
x0B � x0A

¼ 20� 10

25� 10
¼ 2

3

Then we apply Eq. (A.3), obtaining

1

zI
¼ 1

�100
þ 2

3

1

�40
� 1

�100

� �
¼ � 1

50

so that zI ¼ �50. Unlike our earlier discussion, we have now obtained this value

without having used the equation of the line under discussion. Since in Fig. A.1, this

line is parallel to the z-axis, the value of b in Eq. (A.1) is 0, so it has the equation

ax¼ 1, where a¼ 0.02; in other words, x¼ 50. The situation of Fig. A.1 is a special

case, with constant value x0z (¼ �1000 for all four points on the right), enabling us

to compute the z-values from x’ in a trivial way. In the more general case, with

nonzero values of b, we cannot use this, but, fortunately, linear interpolation is then
available to compute these values efficiently.

A.1 A Different Notation

In the preceding discussion, we have written interpolation equations of the form

x0I ¼ x0A þ λ x0B � x0A
� �

in which the variable xA
0 occurs twice. We can instead use a different equation, in

which each of the variables xA
0 and xB

0 occurs only once, at the price of using two

occurrences of the parameter λ:

x0I ¼ 1� λð Þx0A þ λx0B

284 Appendix A: Interpolation of 1/z

Appendix B: Class Obj3D

The following is not a complete program. It is the code for a single class, Obj3D,
which is discussed in Sect. 5.6 and used in the programs Wireframe.java of

Sect. 5.7, HLines.java of Sect. 6.1, Painter.java of Sect. 6.3, and ZBuf.java
of Sect. 6.4.

// Obj3D.java: A 3D object and its 2D representation.

// Uses: Point2D (Section 1.4), Point3D (Section 3.9),

// Polygon3D, Input (Section 5.6).

import java.awt.*;

import java.util.*;

class Obj3D {

Obj3D() {

setSpecular(false);

}

private float rho, d, theta = 0.30F, phi = 1.3F, rhoMin, rhoMax,

xMin, xMax, yMin, yMax, zMin, zMax, v11, v12, v13, v21, v22,

v23, v32, v33, v43; // , xe, ye, ze, objSize;

private Point2D imgCenter;

private Vector<Point3D> w = new Vector<Point3D>();

// World coordinates

private Point3D[] e; // Eye coordinates

private Point2D[] vScr; // Screen coordinates

private Vector<Polygon3D> polyList = new Vector<Polygon3D>();

private String fName = ""; // File name

// Light vector, normalized, pointing to light source,

// expressed in eye coordinates:

private final double coordValue = 1 / Math.sqrt(3);

© Springer International Publishing AG 2017

L. Ammeraal, K. Zhang, Computer Graphics for Java Programmers,
DOI 10.1007/978-3-319-63357-2

285

private double xL = -coordValue, yL = coordValue, zL = coordValue,

zV = 1; // Vector V, eye coordinates

boolean read(String fName) {

Input inp = new Input(fName);

if (inp.fails())

return failing();

this.fName = fName;

xMin = yMin = zMin = +1e30F;

xMax = yMax = zMax = -1e30F;

return readObject(inp); // Read from inp into obj

}

Vector<Polygon3D> getPolyList() {return polyList;}

String getFName() {return fName;}

Point3D[] getE() {return e;}

Point2D[] getVScr() {return vScr; }

Point2D getImgCenter() {return imgCenter;}

float getRho() {return rho;}

float getD() {return d;}

private boolean failing() {

Toolkit.getDefaultToolkit().beep();

return false;

}

private boolean readObject(Input inp) {

for (;;) {

int i = inp.readInt();

if (inp.fails()) {

inp.clear();

break;

}

if (i < 0) {

System.out.println(

"Negative vertex number in first part of input file");

return failing();

}

w.ensureCapacity(i + 1);

float x = inp.readFloat(), y = inp.readFloat(),

z = inp.readFloat();

addVertex(i, x, y, z);

}

shiftToOrigin(); // Origin in center of object.

char ch;

286 Appendix B: Class Obj3D

int count = 0;

do // Skip the line "Faces:"

{

ch = inp.readChar();

count++;

} while (!inp.eof() && ch != ’\n’);

if (count < 6 || count > 8) {

System.out.println("Invalid input file");

return failing();

}

// Build polygon list:

for (;;) {

Vector<Integer> vnrs = new Vector<Integer>();

for (;;) {

int i = inp.readInt();

if (inp.fails()) {

inp.clear();

break;

}

int absi = Math.abs(i);

if (i == 0 || absi >= w.size() || w

.elementAt(absi) == null) {

System.out.println(

"Invalid vertex number: " + absi +

"mustbedefined,nonzeroandlessthan"+w.size());

return failing();

}

vnrs.addElement(new Integer(i));

}

ch = inp.readChar();

if (ch != ’.’ && ch != ’#’)

break;

// Ignore input lines with only one vertex number:

if (vnrs.size() >= 2)

polyList.addElement(new Polygon3D(vnrs));

}

inp.close();

return true;

}

private void addVertex(int i, float x, float y, float z) {

if (x < xMin) xMin = x;

if (x > xMax) xMax = x;

if (y < yMin) yMin = y;

Appendix B: Class Obj3D 287

if (y > yMax) yMax = y;

if (z < zMin) zMin = z;

if (z > zMax) zMax = z;

if (i >= w.size()) w.setSize(i + 1);

w.setElementAt(new Point3D(x, y, z), i);

}

private void shiftToOrigin() {

float xwC = 0.5F * (xMin + xMax), ywC = 0.5F * (yMin + yMax),

zwC = 0.5F * (zMin + zMax);

int n = w.size();

for (int i = 1; i < n; i++)

if (w.elementAt(i) != null) {

w.elementAt(i).x -= xwC;

w.elementAt(i).y -= ywC;

w.elementAt(i).z -= zwC;

}

float dx = xMax - xMin, dy = yMax - yMin, dz = zMax - zMin;

rhoMin = 0.6F * (float) Math.sqrt(dx * dx + dy * dy + dz * dz);

rhoMax = 1000 * rhoMin;

rho = 3 * rhoMin;

}

private void initPersp() {

float costh = (float) Math.cos(theta),

sinth = (float) Math.sin(theta),

cosph = (float) Math.cos(phi),

sinph = (float) Math.sin(phi);

v11 = -sinth; v12 = -cosph * costh; v13 = sinph * costh;

v21 = costh; v22 = -cosph * sinth; v23 = sinph * sinth;

v32 = sinph; v33 = cosph;

v43 = -rho;

}

float eyeAndScreen(Dimension dim) { // Called in Canvas class

initPersp();

int n = w.size();

e = new Point3D[n];

vScr = new Point2D[n];

float xScrMin = 1e30F, xScrMax = -1e30F, yScrMin = 1e30F,

yScrMax = -1e30F;

for (int i = 1; i < n; i++) {

Point3D P = w.elementAt(i);

288 Appendix B: Class Obj3D

if (P == null) {

e[i] = null;

vScr[i] = null;

} else {

float x = v11 * P.x + v21 * P.y;

float y = v12 * P.x + v22 * P.y + v32 * P.z;

float z = v13 * P.x + v23 * P.y + v33 * P.z + v43;

Point3D Pe = e[i] = new Point3D(x, y, z);

float xScr = -Pe.x / Pe.z, yScr = -Pe.y / Pe.z;

vScr[i] = new Point2D(xScr, yScr);

if (xScr < xScrMin) xScrMin = xScr;

if (xScr > xScrMax) xScrMax = xScr;

if (yScr < yScrMin) yScrMin = yScr;

if (yScr > yScrMax) yScrMax = yScr;

}

}

float rangeX = xScrMax - xScrMin, rangeY = yScrMax - yScrMin;

d = 0.95F * Math.min(dim.width / rangeX, dim.height / rangeY);

imgCenter = new Point2D(d * (xScrMin + xScrMax) / 2,

d * (yScrMin + yScrMax) / 2);

for (int i = 1; i < n; i++) {

if (vScr[i] != null) {

vScr[i].x *= d;

vScr[i].y *= d;

}

}

return d * Math.max(rangeX, rangeY);

// Maximum screen-coordinate range used in CvHLines for HP-GL

}

void planeCoeff() {

int nFaces = polyList.size();

for (int j = 0; j < nFaces; j++) {

Polygon3D pol = polyList.elementAt(j);

int[] nrs = pol.getNrs();

if (nrs.length < 3) continue;

int iA = Math.abs(nrs[0]), // Possibly negative

iB = Math.abs(nrs[1]), // for HLines.

iC = Math.abs(nrs[2]);

Point3D A = e[iA], B = e[iB], C = e[iC];

double u1 = B.x - A.x, u2 = B.y - A.y, u3 = B.z - A.z,

v1 = C.x - A.x, v2 = C.y - A.y, v3 = C.z - A.z,

a = u2 * v3 - u3 * v2, b = u3 * v1 - u1 * v3,

c = u1 * v2 - u2 * v1,

len = Math.sqrt(a * a + b * b + c * c), h;

Appendix B: Class Obj3D 289

a /= len; b /= len; c /= len;

h = a * A.x + b * A.y + c * A.z;

pol.setAbch(a, b, c, h);

if (u1 * v2 - u2 * v1 <= 0)

continue; // backface

}

}

boolean vp(Canvas cv, float dTheta, float dPhi, float fRho) {

theta += dTheta;

phi += dPhi;

float rhoNew = fRho * rho;

if (rhoNew >= rhoMin && rhoNew <= rhoMax)

rho = rhoNew;

else

return false;

cv.repaint();

return true;

}

double kAmb, kDiff, kSpec;

void setSpecular(Boolean isSpecular) {

if (isSpecular) {

kAmb = 0.2; kDiff = 0.7; kSpec = 0.2;

}

else {// Diffuse

kAmb = 0.4; kDiff = 0.6; kSpec = 0.0;

}

}

int colorCodePhong(double xN, double yN, double zN) {

// Viewing vector V (from O to E, length 1):

double colorAmbR = 1, colorAmbG = 1, colorAmbB = 0,

colorDifR = 1, colorDifG = 1, colorDifB = 0,

colorSpecR = 1, colorSpecG = 1, colorSpecB = 0;

// Red (R) and green (G) without blue (B) gives yellow.

// Ambient component:

double illumAmbR = kAmb * colorAmbR,

illumAmbG = kAmb * colorAmbG,

illumAmbB = kAmb * colorAmbB;

290 Appendix B: Class Obj3D

// Diffuse component:

double inprodLN = Math.max(0, xL * xN + yL * yN + zL * zN),

illumDiff = inprodLN * kDiff,

illumDiffR = illumDiff * colorDifR,

illumDiffG = illumDiff * colorDifG,

illumDiffB = illumDiff * colorDifB;

// Specular component:

// Reflection vector R = 2(L . N)N - L

// xR and yR would only be used to multiply them by xV and yV,

// and these are zero since V points to the viewpoint E and we are

// using eye coordinates, so computing xR and yR would be useless.

double zR = 2 * inprodLN * zN - zL,

dotProductVR = Math.max(0, zV * zR), // xV = yV = 0

illumSpec = kSpec * Math.pow(dotProductVR, 16),

illumSpecR = illumSpec * colorSpecR,

illumSpecG = illumSpec * colorSpecG,

illumSpecB = illumSpec * colorSpecB;

// Sum of ambient, diffuse and specular illumination:

double illumR = Math.min(1, illumAmbR + illumDiffR + illumSpecR),

illumG = Math.min(1, illumAmbG + illumDiffG + illumSpecG),

illumB = Math.min(1, illumAmbB + illumDiffB + illumSpecB);

int red = (int) (255 * illumR),

green = (int) (255 * illumG),

blue = (int) (255 * illumB);

return (red << 16) | (green << 8) | blue;

}

}

Appendix B: Class Obj3D 291

Appendix C: Hidden-Line Tests
and Implementation

This appendix presents the details of all nine tests for visibility used in the hidden-

line removal algorithm in Sect. 6.1. It also introduces the output of the hidden-line

removal algorithm in the HP-GL format and how this can be implemented in Java.

The appendix finally lists Java source code CvHLines.java that implements the

hidden-line removal algorithm.

C.1. Tests for Line Visibility

Test 1 (2D; Fig. C.1)

If neither P nor Q lies to the right of the leftmost one of the three vertices A, B and C

(of triangle t) the triangle does not obscure PQ. This type of test is known as a

minimax test: we compare the maximum of all x-coordinates of PQ with the

minimum of all those of triangle t. Loosely speaking, we have now covered the

case that PQ lies completely to the left of triangle t. In the same way, we deal with

PQ lying completely to the right of t. Similar tests are performed for the minimum

and maximum y-coordinates.

Test 2 (3D; Fig. C.2)

If PQ (in 3D-space) is identical with one of the edges of triangle t, this triangle does
not obscure PQ. This test is done very efficiently by using the vertex numbers of P,

Q, A, B and C. As we will see in a moment, in recursive calls, P or Q may be a

computed point, which has no vertex number. It is therefore not always possible to

perform this test.

© Springer International Publishing AG 2017

L. Ammeraal, K. Zhang, Computer Graphics for Java Programmers,
DOI 10.1007/978-3-319-63357-2

293

Test 3 (3D; Fig. C.3)

If neither P nor Q is farther away than the nearest of the three vertices A, B and C of

triangle t, this triangle does not obscure PQ. This is a minimax test, like Test 1, but

this time applied to the z-coordinates. Since the positive z-axis points to the left in

Fig. C.3, the greater the z-coordinate of a point, the nearer this point is. Therefore,
triangle ABC does not obscure PQ if the minimum of zP and zQ is greater than or

equal to the maximum of zA, zB and zC.

Fig. C.1 Test 1: both P and Q on the left of A, B and C

Fig. C.2 Test 2: PQ

identical with AB

Fig. C.3 Test 3: z-coordinates of P and Q less than those of A, B and C

294 Appendix C: Hidden-Line Tests and Implementation

Test 4 (2D; Fig. C.4)

If, on the screen, the points P and Q lie on one side of the line AB while the third

triangle vertex C lies on the other, triangle ABC does not obscure PQ. The lines BC

and CA are dealt with similarly. This test is likely to succeed, but we perform it only

after the previous three tests because it is rather expensive. Since the vertices A, B

and C are counter-clockwise, the points P and C are on different sides of AB if and

only if the point sequence ABP is clockwise. As we have seen in Sect. 2.3, this

implies that we can use the static method area2 of class Tools2D. With Point2D
objects AScr, BScr, CScr for the points A, B and C, the left-hand side in the

comparison

Tools2D.area2(AScr, BScr, PScr) <= 0

is equal to twice the area of triangle ABP, preceded by a minus sign if (and only if)

the sequence ABP is clockwise. This value is negative if P and C lie on different

sides of AB, and it is zero if A, B and P lie on a straight line. If this comparison

succeeds and the same applies to

Tools2D.area2(AScr, BScr, QScr) <= 0

then the whole line PQ and point C lie on different sides of the line AB, so that

triangle ABC does not obscure line segment PQ. After this test for the triangle edge

AB, we use similar tests for edges BC and CA.

Note that P and Q can both lie outside triangle ABC, while PQ intersects this

triangle. This explains the above test, which at first may look quite complicated.

Unfortunately, the current test does not cover all cases in which PQ lies outside

triangle ABC, as you can see in Fig. C.5.

Fig. C.4 Test 4: P and Q on a side of AB different from that of C

Appendix C: Hidden-Line Tests and Implementation 295

Test 5 (2D; Fig. C.5)

Triangle ABC does not obscure PQ if the points A, B and C lie on the same side of

the infinite line through P and Q. We determine if this is the case using a test that is

similar to the previous one:

PQA � 0 and PQB � 0 and PQC � 0ð Þ or
PQA � 0 and PQB � 0 and PQC � 0ð Þ

where PQA, obtained as

double PQA = Tools2D.area2(PScr, QScr, AScr);

denotes twice the area of triangle PQA, preceded by a minus sign if the point

sequence P, Q, A is clockwise. The variables PQB and PQC have similar meanings.

Test 6 (3D; Fig. C.6)

If neither P nor Q lies behind the plane through A, B and C, triangle ABC does not

obscure PQ. This test deals with those line segments PQ for which Test 3 failed

because the farther one of the points P and Q does not lie nearer than the nearest

of A, B, C, while P and Q nevertheless lie on the same side of the (infinite) plane

ABC as the viewpoint E. Figure C.6 illustrates this situation.

We now benefit from the fact that we have stored the normal vector n ¼ (a, b, c)
of plane ABC and the distance h between E and this plane. The equation of this

plane is

axþ byþ cz ¼ h

Fig. C.5 Test 5: triangle ABC on one side of PQ

296 Appendix C: Hidden-Line Tests and Implementation

We compute

hP ¼ n� EP

hQ ¼ n� EQ

to perform the following test, illustrated by Fig. C.6:

hPj j � hj j and hQj j � hj j
Since n, when starting at E, points away from the plane, the values of hP, hQ, like
that of h, are negative, so that this test is equivalent to the following:

hP � h and hQ � h

Test 7 (2D; Fig. C.7)

If (on the screen) neither P nor Q lies outside the triangle ABC, and the previous

tests were indecisive, PQ lies behind this triangle and is therefore completely

invisible. The Tools2D method insideTriangle, discussed in Sect. 2.3, makes this

test easy to program:

boolean pInside = Tools2D.insideTriangle(aScr, bScr, cScr, pScr);

boolean qInside = Tools2D.insideTriangle(aScr, bScr, cScr, qScr);

if (pInside && qInside) return;

The partial results of this test, stored in the boolean variables pInside and

qInside, will be useful in Tests 8 and 9 in the case that this test fails.

Test 8 (3D; Fig. C.8)

If P is nearer than the plane of triangle ABC and, on the screen, P lies inside triangle

ABC, this triangle does not obscure PQ. The same for Q.

Fig. C.6 Test 6: neither P nor Q behind plane ABC

Appendix C: Hidden-Line Tests and Implementation 297

This test relies on the fact that no line segment PQ intersects any triangle. This

test is easy to perform now that the variables hP and hQ, computed in Test 6, and

pInside and qInside, computed in Test 7, are available. Using also the abbreviations

pNear for hP > h and qNear for hQ > h, we conclude that triangle ABC does not

obscure PQ if the following is true:

pNear && pInside || qNear && qInside

Test 9 (3D; Fig. C.9)

Although it might seem that, after Test 8, all cases with PQ not being obscured have

been dealt with, this is not the case, as Fig. C.9 illustrates. In this example, Q lies

behind the plane ABC, and, on the screen, PQ intersects ABC in the points I and J,

but PQ is nevertheless completely visible (as far as triangle ABC is concerned).

This is because both points of intersection, I and J, lie in front of (that is, nearer

than) triangle ABC. We take three steps to deal with this situation:

1. We compute (the 2D projections of) I and J on the screen.

2. We compute the z-values of I and J by linear interpolation of 1/z (see Sect. 6.4
and Appendix A).

Viewing direction

Triangle ABC

P

Q

Ez

Fig. C.8 Test 8: P nearer than plane ABC

Fig. C.7 Test 7: PQ behind triangle ABC

298 Appendix C: Hidden-Line Tests and Implementation

3. To determine if I and J lie in front of the plane ABC, we compute how far I and J

lie away in the direction towards this plane.

We will now discuss these three steps in more detail, starting with step 1, which we

deal with as a 2D problem, writing, for example, P for what is actually the

projection P0 of P on the screen.

Since we do not know in advance which of the three triangle edges AB, BC and

CA may intersect PQ, we try all three by rotating the points A, B and C. Here we

deal only with AB. Suppose that, on the screen, the infinite line PQ intersects the

infinite line AB in point I, where

PI ¼ λPQ ðC:1Þ
AI ¼ μAB ðC:2Þ

Then point I belongs to the line segments PQ and AB if and only if

0 � λ � 1 and 0 � μ � 1

While rotating A, B and C, we may find two points of intersection, with λ and μ
satisfying these restrictions. We then denote the values λ of these points by λmin and

λmax, and the corresponding points with I and J, so that we have

0 � λmin < λmax � 1

PI ¼ λminPQ

PJ ¼ λmaxPQ

As for the actual computation of λ and μ, let us use the vectors u¼ PQ and v¼ AB.

It then follows from Eqs. (C.1 and C.2) that we can express point I as the left- and

right-hand sides of the following equation:

Pþ λu ¼ Aþ μv

Writing w ¼ PA (¼ A – P), we can replace this with

λu� μv ¼ w

Fig. C.9 Test 9: I and J in

front of plane ABC

Appendix C: Hidden-Line Tests and Implementation 299

As usual, we write u¼ (u1, u2) and so on, which expands this vector equation to the
following set of simultaneous linear equations:

u1λ� v1μ ¼ w1

u2λ� v2μ ¼ w2

Solving this system of equations, we obtain

λ ¼ v1w2 � v2w1

u2v1 � u1v2

μ ¼ u1w2 � u2w1

u2v1 � u1v2

It goes without saying that this applies only if the denominator in these expressions

is nonzero; otherwise PQ and AB are parallel, so that there are no points of

intersection.

Having found the points I and J on the screen, we turn to step 2, to compute their

z-coordinates. We do this by linear interpolation of 1/z on the segment PQ. Using

the values λmin and λmax, which we have just found, and referring to Eq. (C.1), we

can write

1

zI
¼ 1

zP
þ λmin

1

zQ
� 1

zP

� �
¼ λmin

zQ
þ 1� λmin

zP

1

zJ
¼ 1

zP
þ λmax

1

zQ
� 1

zP

� �
¼ λmax

zQ
þ 1� λmax

zP

Refer to the discussion in Sect. 6.4 and Appendix A about the reason why we should

use 1/z instead of simply z in this type of linear interpolation.

Finally, we proceed to step 3, to determine whether the points I and J lie in front

of the plane through the points A, B and C. Recall that the equation of this plane is

axþ byþ cz ¼ h

where h is negative, and that its normal vector (with length 1) is

n ¼ a; b; cð Þ

We compute the value hI, which is similar to hP, discussed in Test 6 and illustrated

by Fig. C.6, as

hI ¼ EI� n ¼ axI þ byI þ czI

After computing hJ similarly, we can now test if I and J lie in front of the plane ABC

(so that triangle ABC does not obscure PQ) in the following way:

hI > h and hJ > h

300 Appendix C: Hidden-Line Tests and Implementation

In the above discussion, we considered two distinct points I and J in which, on the

screen, PQ intersects edges of triangle ABC. As we have seen, PI and JQ were

visible, as far as triangle ABC is concerned, but IJ may be obscured by triangle

ABC. Actually, there may be only one point, I or J, to deal with. If, again on the

screen, P lies outside triangle ABC and Q inside it, there is only point I to consider.

In this case triangle ABC may obscure part IQ of line segment PQ. If it does, the

remaining triangles are only to be applied to PI. Similarly, if, on the screen, P lies

inside and Q outside triangle ABC, this triangle may obscure part PJ of PQ, and, if

so, the remaining triangles are only to be applied to JQ.

Recursive Calls

If all the above tests fail, the most interesting (and time consuming) case applies:

PQ is neither completely visible nor completely hidden. Fortunately, we have just

computed the points of intersection I and J, and we know that triangle ABC

obscures the segment IJ, while the other two segments, PI and QJ are visible, as

far as triangle ABC is concerned. We therefore apply the method lineSegment
recursively to the latter two segments. Actually, the recursive call for PI applies

only to the case that, on the screen, P lies outside triangle ABC and λmin (see Test 9)

is greater than zero. Analogously, the recursive call for QJ applies only if Q lies

outside that triangle and λmax is less than 1.

The Arguments of the lineSegment Method

In the paint method of the class CvHLines, we may be inclined to write the call to

the method lineSegment in a very simple form, such as

lineSegment(g, iP, iQ);

where g is the graphics context and iP and iQ are the vertex numbers of the vertices

P and Q. However, in the recursive calls just discussed, we have two new points I

and J, for which there are no vertex numbers, so that this does not work. On the

other hand, omitting the vertex numbers altogether would deprive us of Test 2 in its

current efficient form, in which we determine if PQ is one of the edges of triangle

ABC. We therefore decide to supply P and Q both as Point3D objects (containing

the eye-coordinates of P and Q) and as vertex numbers if this is possible; if it is not,

we use �1 instead of a vertex number. When we recursively call lineSegment, the
screen coordinates of P and Q are available. If we did not supply these as argu-

ments, it would be necessary to compute them inside lineSegment once again. To

avoid such superfluous actions, we also supply the screen coordinates of P and Q as

arguments as Point2D objects. Finally, it would be a waste of time if the recursive

calls would again be applied to all triangles. After all, we know that PI and PJ are

Appendix C: Hidden-Line Tests and Implementation 301

not obscured by the triangles that we have already dealt with. We therefore also use

the parameter iStart, indicating the start position in the array of triangles that is to be
used. This explains that the method lineSegment has as many as eight parameters, as

its heading shows:

void lineSegment(Graphics g, Point3D p, Point3D q,

Point2D PScr, Point2D QScr, int iP, int iQ, int iStart)

The complete method lineSegment can be found in class CvHLines, listed in

Sect. C.3.

C.2. HP-GL Output and Class HLines

Besides graphics output on the screen, it is sometimes desired to produce output

files containing the same results. An easy way to realize this for line drawings is by

using the file format known as HP-GL, which stands for Hewlett-Packard Graphics
Language. We will use only a very limited number of HP-GL commands:

IN: Initialize

SP: Set pen

PU: Pen up

PD: Pen down

PA: Plot absolute

We think of drawing by moving a pen, which can be either on or above a sheet of

paper. These two cases are distinguished by the commands PD and PU. The PA
command is followed by a coordinate pair x, y, each as a four-digit integer in the

range 0000–9999. This coordinate pair indicates a point that the pen will move

to. The origin (0000, 0000) lies in the bottom-left corner. For example, the

following HP-GL file draws a capital letter X in italic, shown in Fig. C.10:

IN;SP1;

PU;PA5000,2000;PD;PA5000,8000;

PU;PA3000,2000;PD;PA7000,8000;

Fig. C.10 Letter X in italic

302 Appendix C: Hidden-Line Tests and Implementation

Originally designed for pen plotters, this file format is easy to understand, and it

is accepted by several well-known packages, such as CorelDraw. It can also be

converted to other file formats, such as Scalable Vector Graphics (xxx.svg) and
Windows Meta File (xxx.wmf) by using a conversion utility, such as UniConvertor
orHP2XX. Then we can use a vector-oriented drawing package, such as Inkscape or
CorelDraw to edit and enhance the drawing. This was done to add text to the current

example, resulting in Fig. C.10.

Many illustrations showing (black/white) line drawings of 3D objects in this

book were made in this way. This is possible because our program HLines.java,
listed in the next subsection, can generate HP-GL files, as Fig. C.11 shows by

highlighting the menu item Export HP-GL.
This example also shows the use of individual line segments, as discussed in

Sect. 5.5. The solid object inside the wire-frame cube is a dodecahedron, which is

discussed in greater detail in Sect. D.1 of Appendix D.

Figure C.12 shows that our hidden-line algorithm can correctly render the three

beams used in Sect. 6.5 to demonstrate the Z-buffer algorithm. As we have seen in

Sect. 6.4, the painter’s algorithm fails in such cases.

Fig. C.11 The export HP-GL menu item

Appendix C: Hidden-Line Tests and Implementation 303

Implementation

Our hidden-line program’s mainmethod generates an object of class Fr3D and also

of class CvHLines, as the class HLines shows:

// HLines.java: Perspective drawing with hidden-line elimination.

// Uses: HPGL (Section C.2), CvHLines (Section C.3),

// Fr3D, Polygon3D, Obj3D, Input, Canvas3D,

// Tria (Section 5.6), Point2D (Section 1.4),

// Point3D (Section 3.9), Tools2D (Section 2.3).

import java.awt.*;

public class HLines extends Frame {

public static void main(String[] args) {

new Fr3D(args.length > 0 ? args[0] : null, new CvHLines(),

"Hidden-lines algorithm");

}

}

Class Fr3D, introduced in Sect. 5.6, contains the following fragment to produce

the command Export HP-GL if an object of this class is generated by the HLines
program:

if (hiddenLines){

exportHPGL = new MenuItem("Export HP-GL");

mF.add(exportHPGL); // mF defined in Fr3D

exportHPGL.addActionListener(this);

}

Fig. C.12 Three beams

304 Appendix C: Hidden-Line Tests and Implementation

The if-clause checks that this command is only available for the hidden-line

algorithm, not for the Painter and ZBuf algorithms. Notice the title Hidden-lines
algorithm, used as the third argument of the Fr3D constructor, so this text appears

in the title bar of the window shown in Fig. C.11. The implementation of the

hidden-line algorithm discussed in the previous section can be found in the class

CvHLines. In view of the extent of this class, it is not listed here but rather as the file

CvHLines.java in the next section.

The class Fr3D, listed in Sect. 5.6, shows that the use of the Eport HPGL menu

command leads to the generation of an object of class HPGL. This class is listed
below:

// HPGL.java: Class for export of HP-GL files.

import java.io.*;

class HPGL {

FileWriter fw;

HPGL(Obj3D obj) {

String plotFileName = "", fName = obj.getFName();

for (int i = 0; i < fName.length(); i++) {

char ch = fName.charAt(i);

if (ch == ’.’) break;

plotFileName += ch;

}

plotFileName += ".plt";

try {

fw = new FileWriter(plotFileName);

fw.write("IN;SP1;\n");

}

catch (IOException ioe) {

}

}

void write(String s) {

try {fw.write(s); fw.flush();} catch (IOException ioe) {}

}

}

This shows that a generated HP-GL file has the file extension .plt. For example,

with an input file cube.dat, the HP-GL file is cube.plt, and it is written in the same

directory as the input file. The above method write is called in the method drawLine
of class CvHLines, listed in the next section.

Appendix C: Hidden-Line Tests and Implementation 305

C.3. Class CvHLines

As we have seen a moment ago, the following class is used in programHLines.java:

// CvHLines.java: Used in the file HLines.java.

import java.awt.*;

import java.util.*;

class CvHLines extends Canvas3D {

private int maxX, maxY, centerX, centerY, nTria, nVertices;

private Obj3D obj;

private Point2D imgCenter;

private Tria[] tr;

private HPGL hpgl;

private int[] refPol;

private Vector<Integer> connect[];

private double hLimit;

private Vector<Polygon3D> polyList;

private float maxScreenRange;

Obj3D getObj() {return obj;}

void setObj(Obj3D obj) {this.obj = obj;}

void setHPGL(HPGL hpgl) {this.hpgl = hpgl;}

public void paint(Graphics g) {

if (obj == null)

return;

Vector<Polygon3D> polyList = obj.getPolyList();

if (polyList == null) return;

int nFaces = polyList.size();

if (nFaces == 0) return;

Dimension dim = getSize();

maxX = dim.width - 1; maxY = dim.height - 1;

centerX = maxX / 2; centerY = maxY / 2;

// ze-axis towards eye, so ze-coordinates of

// object points are all negative. Since screen

// coordinates x and y are used to interpolate for

// the z-direction, we have to deal with 1/z instead

// of z. With negative z, a small value of 1/z means

// a small value of |z| for a nearby point.

// obj is a java object that contains all data,

// with w, e and vScr parallel (with vertex numbers

// as index values):

306 Appendix C: Hidden-Line Tests and Implementation

// - Vector w (with Point3D elements)

// - Array e (with Point3D elements)

// - Array vScr (with Point2D elements)

// - Vector polyList (with Polygon3D elements)

// Every Polygon3D value contains:

// - Array ’nrs’ for vertex numbers (n elements)

// - Values a, b, c, h for the plane ax+by+cz=h.

// - Array t (with n-2 elements of type Tria)

// Every Tria value consists of the three vertex

// numbers A, B and C.

maxScreenRange = obj.eyeAndScreen(dim);

imgCenter = obj.getImgCenter();

obj.planeCoeff(); // Compute a, b, c and h.

hLimit = -1e-6 * obj.getRho();

buildLineSet();

// Construct an array of triangles in each polygon and count

// the total number of triangles.

nTria = 0;

for (int j = 0; j < nFaces; j++) {

Polygon3D pol = polyList.elementAt(j);

if (pol.getNrs().length > 2 && pol.getH() <= hLimit) {

pol.triangulate(obj);

nTria += pol.getT().length;

}

}

tr = new Tria[nTria]; // Triangles of all polygons

refPol = new int[nTria]; // tr[i] belongs to refPol[i]

int iTria = 0;

for (int j = 0; j < nFaces; j++) {

Polygon3D pol = polyList.elementAt(j);

Tria[] t = pol.getT(); // Triangles of one polygon

if (pol.getNrs().length > 2 && pol.getH() <= hLimit) {

for (int i = 0; i < t.length; i++) {

Tria tri = t[i];

tr[iTria] = tri;

refPol[iTria++] = j;

}

}

}

Appendix C: Hidden-Line Tests and Implementation 307

Point3D[] e = obj.getE();

Point2D[] vScr = obj.getVScr();

for (int i = 0; i < nVertices; i++) {

for (int j = 0; j < connect[i].size(); j++) {

int jj = connect[i].elementAt(j).intValue();

lineSegment(g,e[i],e[jj],vScr[i],vScr[jj],i,jj,0);

}

}

hpgl = null;

}

private void buildLineSet() {

// Build the array ’connect’, where connect[i] is a

// Vector<Integer> containing all vertex numbers j,

// such that (i, connect[i].elementAt(j).intValue())

// is an edge of the 3D object.

polyList = obj.getPolyList();

nVertices = obj.getVScr().length;

connect = new Vector[nVertices];

for (int i=0; i<nVertices; i++)

connect[i] = new Vector<Integer>();

int nFaces = polyList.size();

for (int j = 0; j < nFaces; j++) {

Polygon3D pol = polyList.elementAt(j);

int[] nrs = pol.getNrs();

int n = nrs.length;

if (n > 2 && pol.getH() > 0) continue;

int ii = Math.abs(nrs[n - 1]);

for (int k = 0; k < n; k++) {

int jj = nrs[k];

if (jj < 0) jj = -jj; // abs

else {

int i1 = Math.min(ii, jj),

j1 = Math.max(ii, jj);

Integer j1Int = new Integer(j1);

if (connect[i1].indexOf(j1Int) == -1)

connect[i1].addElement(j1Int);

}

ii = jj;

}

}

}

308 Appendix C: Hidden-Line Tests and Implementation

int iX(float x) {return Math.round(centerX + x - imgCenter.x);}

int iY(float y) {return Math.round(centerY - y + imgCenter.y);}

private String toString(float t) {

// From screen device units (pixels) to HP-GL units (0-10000):

int i = Math.round(5000 + t * 9000 / maxScreenRange);

String s = "";

int n = 1000;

for (int j = 3; j >= 0; j--) {

s += i / n;

i %= n;

n /= 10;

}

return s;

}

private String hpx(float x) {return toString(x - imgCenter.x);}

private String hpy(float y) {return toString(y - imgCenter.y);}

private void drawLine(Graphics g, float x1, float y1,

float x2, float y2) {

if (x1 != x2 || y1 != y2) {

g.drawLine(iX(x1), iY(y1), iX(x2), iY(y2));

if (hpgl != null) {

hpgl.write("PU;PA" + hpx(x1) + "," + hpy(y1) + ";");

hpgl.write("PD;PA" + hpx(x2) + "," + hpy(y2) + ";\n");

}

}

}

private void lineSegment(Graphics g, Point3D p, Point3D q,

Point2D pScr, Point2D qScr, int iP, int iQ, int iStart) {

double u1 = qScr.x - pScr.x, u2 = qScr.y - pScr.y;

double minPQx = Math.min(pScr.x, qScr.x);

double maxPQx = Math.max(pScr.x, qScr.x);

double minPQy = Math.min(pScr.y, qScr.y);

double maxPQy = Math.max(pScr.y, qScr.y);

double zP = p.z, zQ = q.z; // p and q give eye-coordinates

double minPQz = Math.min(zP, zQ);

Point3D[] e = obj.getE();

Point2D[] vScr = obj.getVScr();

for (int i = iStart; i < nTria; i++) {

Tria t = tr[i];

int iA = Math.abs(t.iA), iB = Math.abs(t.iB),

iC = Math.abs(t.iC);

Point2D aScr = vScr[iA], bScr = vScr[iB], cScr = vScr[iC];

Appendix C: Hidden-Line Tests and Implementation 309

// 1. Minimax test for x and y screen coordinates:

if (maxPQx <= aScr.x && maxPQx <= bScr.x && maxPQx <= cScr.x ||

minPQx >= aScr.x && minPQx >= bScr.x && minPQx >= cScr.x ||

maxPQy <= aScr.y && maxPQy <= bScr.y && maxPQy <= cScr.y ||

minPQy >= aScr.y && minPQy >= bScr.y && minPQy >= cScr.y)

continue; // This triangle does not obscure PQ.

// 2. Test if PQ is an edge of ABC:

if ((iP == iA || iP == iB || iP == iC) &&

(iQ == iA || iQ == iB || iQ == iC))

continue; // This triangle does not obscure PQ.

// 3. Test if PQ is clearly nearer than ABC:

double zA = e[iA].z, zB = e[iB].z, zC = e[iC].z;

if (minPQz >= zA && minPQz >= zB && minPQz >= zC)

continue; // This triangle does not obscure PQ.

// 4. Do P and Q (in 2D) lie in a half plane defined

// by line AB, on the side other than that of C?

// Similar for the edges BC and CA.

double eps = 0.1; // Relative to numbers of pixels

if (Tools2D.area2(aScr, bScr, pScr) < eps &&

Tools2D.area2(aScr, bScr, qScr) < eps ||

Tools2D.area2(bScr, cScr, pScr) < eps &&

Tools2D.area2(bScr, cScr, qScr) < eps ||

Tools2D.area2(cScr, aScr, pScr) < eps &&

Tools2D.area2(cScr, aScr, qScr) < eps)

continue; // This triangle does not obscure PQ.

// 5. Test (2D) if A, B and C lie on the same side

// of the infinite line through P and Q:

double pqa = Tools2D.area2(pScr, qScr, aScr);

double pqb = Tools2D.area2(pScr, qScr, bScr);

double pqc = Tools2D.area2(pScr, qScr, cScr);

if (pqa < +eps && pqb < +eps && pqc < +eps ||

pqa > -eps && pqb > -eps && pqc > -eps)

continue; // This triangle does not obscure PQ.

// 6. Test if neither P nor Q lies behind the

// infinite plane through A, B and C:

int iPol = refPol[i];

Polygon3D pol = polyList.elementAt(iPol);

310 Appendix C: Hidden-Line Tests and Implementation

double a = pol.getA(), b = pol.getB(), c = pol.getC(),

h = pol.getH(), eps1 = 1e-5 * Math.abs(h),

hP = a * p.x + b * p.y + c * p.z,

hQ = a * q.x + b * q.y + c * q.z;

if (hP > h - eps1 && hQ > h - eps1)

continue; // This triangle does not obscure PQ.

// 7. Test if both P and Q behind triangle ABC:

boolean pInside =

Tools2D.insideTriangle(aScr, bScr, cScr, pScr);

boolean qInside =

Tools2D.insideTriangle(aScr, bScr, cScr, qScr);

if (pInside && qInside)

return; // This triangle obscures PQ.

// 8. If P nearer than ABC and inside, PQ visible;

// the same for Q:

double h1 = h + eps1;

if (hP > h1 && pInside || hQ > h1 && qInside)

continue; // This triangle does not obscure PQ.

// 9. Compute the intersections I and J of PQ

// with ABC in 2D.

// If, in 3D, such an intersection lies in front of

// ABC, this triangle does not obscure PQ.

// Otherwise, the intersections lie behind ABC and

// this triangle obscures part of PQ:

double lambdaMin = 1.0, lambdaMax = 0.0;

for (int ii = 0; ii < 3; ii++) {

double v1 = bScr.x - aScr.x, v2 = bScr.y - aScr.y,

w1 = aScr.x - pScr.x, w2 = aScr.y - pScr.y,

denom = u2 * v1 - u1 * v2;

if (denom != 0) {

double mu = (u1 * w2 - u2 * w1) / denom;

// mu = 0 gives A and mu = 1 gives B.

if (mu > -0.0001 && mu < 1.0001) {

double lambda = (v1 * w2 - v2 * w1) / denom;

// lambda = PI/PQ

// (I is point of intersection)

if (lambda > -0.0001 && lambda < 1.0001) {

if (pInside != qInside &&

lambda > 0.0001 && lambda < 0.9999) {

lambdaMin = lambdaMax = lambda;

break; // Only one point of intersection

}

Appendix C: Hidden-Line Tests and Implementation 311

if (lambda < lambdaMin) lambdaMin = lambda;

if (lambda > lambdaMax) lambdaMax = lambda;

}

}

}

Point2D temp = aScr; aScr = bScr; bScr = cScr; cScr = temp;

}

float d = obj.getD();

if (!pInside && lambdaMin > 0.001) {

double iScrx = pScr.x + lambdaMin * u1,

iScry = pScr.y + lambdaMin * u2;

// Back from screen to eye coordinates:

double zI = 1 / (lambdaMin / zQ + (1 - lambdaMin) / zP),

xI = -zI * iScrx / d, yI = -zI * iScry / d;

if (a * xI + b * yI + c * zI > h1)

continue; // This triangle does not obscure PQ.

Point2D iScr = new Point2D((float) iScrx, (float) iScry);

if (Tools2D.distance2(iScr, pScr) >= 1.0)

lineSegment(g, p, new Point3D(xI, yI, zI), pScr, iScr,

iP, -1, i + 1);

}

if (!qInside && lambdaMax < 0.999) {

double jScrx = pScr.x + lambdaMax * u1,

jScry = pScr.y + lambdaMax * u2;

double zJ = 1 / (lambdaMax / zQ + (1 - lambdaMax) / zP),

xJ = -zJ * jScrx / d, yJ = -zJ * jScry / d;

if (a * xJ + b * yJ + c * zJ > h1)

continue; // This triangle does not obscure PQ.

Point2D jScr = new Point2D((float) jScrx, (float) jScry);

if (Tools2D.distance2(jScr, qScr) >= 1.0)

lineSegment(g, q, new Point3D(xJ, yJ, zJ),

qScr, jScr, iQ, -1, i + 1);

}

return;

// if no continue-statement has been executed

}

drawLine(g, pScr.x, pScr.y, qScr.x, qScr.y);

// No triangle obscures PQ.

}

}

312 Appendix C: Hidden-Line Tests and Implementation

Appendix D: Several 3D Objects

This appendix demonstrates how to generate data files for other interesting

3D objects by special programs, in a similar fashion as the cylinder example in

Sect. 5.8. The generated files are accepted by the programs HLines.java, Painter.
java and ZBuf.java (see Chap. 6).

D.1. Platonic Solids

We will first discuss the generation of 3D files for five well-known objects. Let us

begin with two definitions.

If all edges of a polygon have the same length and any two edges meeting at a

vertex include the same angle, the polygon is said to be regular. If all bounding
faces of a polyhedron are regular polygons, which are congruent (that is, which

have exactly the same shape), that polyhedron is referred to as a regular polyhedron
or platonic solid. There are only five essentially different platonic solids; their

names and their numbers of faces, edges and vertices are listed below:

Platonic solid Faces Edges Vertices

Tetrahedon 4 6 4

Cube (¼ hexahedron) 6 12 8

Octahedron 8 12 6

Dodecahedron 12 30 20

Icosahedron 20 30 12

Note that what we call a tetrahedron, a hexahedron, and so on, should actually

be referred to as regular tetrahedron, regular hexahedron, etc., but since in this

section we are only dealing with regular polyhedra, we omit the word regular here.

© Springer International Publishing AG 2017

L. Ammeraal, K. Zhang, Computer Graphics for Java Programmers,
DOI 10.1007/978-3-319-63357-2

313

The above numbers of faces, edges and vertices satisfy Euler’s theorem, which

also applies to non-regular polyhedra:

Facesþ Vertices ¼ Edgesþ 2 ðD:1Þ

Tetrahedron

An elegant way of constructing a tetrahedron is by using the diagonals of the six

faces of a cube as the edges of the tetrahedron, as Fig. D.1a shows.

Using a cube with edges of length 2 and with its center as the origin of the

coordinate system, we can easily write down the contents of the data file, say, tetra.
dat, for the tetrahedron proper (without the surrounding cube):

1 1 -1 -1

2 -1 1 -1

3 1 1 1

4 -1 -1 1

Faces:

1 2 3.

2 4 3.

1 4 2.

1 3 4.

Supplying this file to program HLines.java results in a poor representation of a

tetrahedron, identical to what we obtain if we omit the dashed line (and the vertex

numbers) in Fig. D.1b. Most people would fail to recognize that result as a 3D

object, unless Fig. D.1a is also given. The surrounding cube in the latter figure can

be obtained by adding the vertices 5, 6, 7 and 8 to the first part of the above input file

and 12 lines of vertex-pair numbers, for the cube edges, to the second.

A much better representation is Fig. D.1c, in which the tetrahedron has been

rotated about the edge 1-2, in such a way that the face 1-2-3 becomes horizontal.

The angle of this rotation is equal to

Fig. D.1 A tetrahedron: (a) inside a cube; (b) cube omitted; (c) after rotation

314 Appendix D: Several 3D Objects

α ¼ arctan
ffiffiffi
2

p

As Fig. D.1a shows, α is the angle included by the edges P-5 and P-3 in the right-

angled triangle P-5-3, where P is the point of intersection of the lines 1-2 and 5-6.

Since the cube edge 3-5 has length 2 and the line segment P-5, being half the

diagonal 6–5 of the bottom plane, has the length √2, we have tan α ¼ 2/√2 ¼ √2,
which explains the above value of α.

Fortunately, we have already developed a general and useful class, Rota3D, for
3D rotations. We used it in Sect. 3.9 in the program Rota3DTest.java to rotate a

cube about a given axis AB through an angle of 180�. This time, the vertices

1 and 2 will act as points A and B, while rotation will take place through the

angle α we have just been discussing. We will use the file tetra.dat, listed above, as
input, to derive the file tetra1.dat, describing the rotated tetrahedron, from it. Note

that the classes Point3D and Rota3D, both defined in Sect. 3.9, and the class Input
of Sect. 5.6 must be available (in the form of .class files) in the current directory.

// Rota3DTetra.java: Rotating a tetrahedron that

// has horizontal top and bottom edges, in such

// a way that it obtains a horizontal bottom face.

// Uses: Point3D, Rota3D (Section 3.9), Input (Section 5.6).

import java.io.*;

public class Rota3DTetra {

public static void main(String[] args) throws IOException {

// Specify AB as directed axis of rotation and alpha as the

// rotation angle:

Point3D A = new Point3D(1, -1, -1), B = new Point3D(-1, 1, -1);

double alpha = Math.atan(Math.sqrt(2));

Rota3D.initRotate(A, B, alpha);

Point3D P = new Point3D(0, 0, 0);

Input inp = new Input("tetra.dat");

if (inp.fails()) {

System.out.println("Supply file tetra.dat, see Section D.1");

System.exit(0);

}

FileWriter fw = new FileWriter("tetra1.dat");

for (;;) {

int i = inp.readInt();

if (inp.fails())

break;

P.x = inp.readFloat();

P.y = inp.readFloat();

P.z = inp.readFloat();

Appendix D: Several 3D Objects 315

Point3D P1 = Rota3D.rotate(P);

fw.write(i + " " + P1.x + " " + P1.y + " " + P1.z + "\r\n");

}

inp.clear();

// Copy the rest of file tetra.dat to tetra1.dat:

for (;;) {

char ch = inp.readChar();

if (inp.fails()) break;

fw.write(ch);

}

fw.close();

}

}

This program changes only the coordinates of the four vertices. With the above

input file, tetra.dat, the resulting output file, tetra1.dat, is listed below:

1 1.0 -1.0 -1.0

2 -1.0 1.0 -1.0

3 1.7320508 1.7320508 -1.0

4 0.57735026 0.57735026 1.309401

Faces:

1 2 3.

2 4 3.

1 4 2.

1 3 4.

Since we now have z¼�1.0 for the vertices 1, 2 and 3, we see that triangle 1-2-3

is now horizontal. This is illustrated by Fig. D.1c, which, except for the text and the

dashed edge, is the result of applying the program HLines.java to the above file

tetra1.dat.

Cube or Hexahedron

The well-known cube, also known as a hexahedron, is perhaps the most popular 3D

object because of its simplicity. With the rather unusual vertex numbering of

Fig. D.1a, this cube (with edges of length 2 and with the origin as its center) is

described by the following file:

1 1 -1 -1

2 -1 1 -1

3 1 1 1

4 -1 -1 1

5 1 1 -1

316 Appendix D: Several 3D Objects

6 -1 -1 -1

7 1 -1 1

8 -1 1 1

Faces:

1 5 3 7.

5 2 8 3.

2 6 4 8.

6 1 7 4.

7 3 8 4.

1 6 2 5.

Octahedron

An octahedron has eight faces, which are equilateral triangles. One way of

constructing this platonic solid is by starting with a cube and using the principle

of duality or reciprocity. The numbers of faces and vertices shown in the table

Platonic solid Faces Edges Vertices

Cube (¼ hexahedron) 6 12 8

Octahedron 8 12 6

suggest that each face of a cube might be related to a vertex of an octahedron and

vice versa. This is indeed the case: a cube and an octahedron are said to be dual or
reciprocal, which implies that the centers of the faces of one can be used as the

vertices of the other. Starting with a cube, we can simply use the centers of its six

faces as the vertices of a octahedron. The following data file for an octahedron is

based on such a cube with edges of length 2 and with O as its center:

1 1 0 0

2 0 1 0

3 -1 0 0

4 0 -1 0

5 0 0 -1

6 0 0 1

Faces:

1 2 6.

2 3 6.

3 4 6.

4 1 6.

2 1 5.

3 2 5.

4 3 5.

1 4 5.

Appendix D: Several 3D Objects 317

If we use this file as input for program HLines.java, we obtain the hexahedron as
shown in Fig. D.2 on the right. On the left we see the way the vertices are numbered

and the surrounding cube.

Icosahedron and Dodecahedron

Let us again consider the following numbers of faces and vertices:

Platonic solid Faces Edges Vertices

Dodecahedron 12 30 20

Icosahedron 20 30 12

Since the number of faces of one of the two polyhedra is equal to the number of

vertices of the other, a dodecahedron and an icosahedron are reciprocal polyhedra.

Figure D.3 illustrates this. For example, vertex 1 of the dodecahedron has been

constructed as the center of the face 1-2-3 of the icosahedron, vertex 2 of the

dodecahedron as that of face 1-3-4 of the icosahedron, and so on. Since showing

this dodecahedron in Fig. D.3 in its original position would have been confusing,

the dodecahedron has been shifted to the right after its construction.

It follows that constructing an icosahedron is the only remaining problem: once

the coordinates of its vertices are known, we can derive the dodecahedron from it.

Both polyhedra are based on regular pentagons, as you can see in Fig. D.3. In the

icosahedron shown here, there are two horizontal pentagons: 2-3-4-5-6 and 7-8-9-

10-11. They have both been constructed with their vertices on (horizontal) circles

with radius 1. Curiously enough, these two horizontal pentagons lie a distance

1 apart, while the ‘north pole’ 1 and the ‘south pole’ 12 lie a distance √5 apart.

A proof of these facts is omitted here, because it would be rather lengthy and only

very loosely related to computer graphics. Interested readers are referred to books

about geometry, such as that by Coxeter, listed in the Bibliography.

Fig. D.2 Octahedron

318 Appendix D: Several 3D Objects

With O as the center of the icosahedron, we can now define the coordinates of all

12 vertices of an icosahedron as follows:

i xi yi zi

1 0 0 ½√5
2, 3, 4, 5, 6 cos {(i – 2) � 72�} sin{(i – 2) � 72�} 0.5

7, 8, 9, 10 11 cos {36� + (i – 7) � 72�} sin{36� + (i – 7) � 72�} �0.5

12 0 0 –½√5

We can easily program the above formulas to obtain the numerical values of the

vertex coordinate in question, as we will see shortly. These values are listed in the

following 3D data file, in which the faces of the icosahedron are displayed on five

text lines, instead of on 20 lines as generated by the program. Besides, the layout of

the first part of the file has been improved for the sake of readability:

1 0.0 0.0 1.118034

2 1.0 0.0 0.5

3 0.309017 0.95105654 0.5

4 -0.809017 0.58778524 0.5

5 -0.809017 -0.58778524 0.5

6 0.309017 -0.95105654 0.5

7 0.809017 0.58778524 -0.5

8 -0.309017 0.95105654 -0.5

9 -1.0 0.0 -0.5

10 -0.309017 -0.95105654 -0.5

Fig. D.3 Icosahedron and dodecahedron as reciprocal polyhedra

Appendix D: Several 3D Objects 319

11 0.809017 -0.58778524 -0.5

12 0.0 0.0 -1.118034

Faces:

1 2 3. 1 3 4. 1 4 5. 1 5 6.

1 6 2. 2 7 3. 3 7 8. 3 8 4.

4 8 9. 4 9 5. 5 9 10. 5 10 6.

6 10 11. 6 11 2. 2 11 7. 12 8 7.

12 9 8. 12 10 9. 12 11 10. 12 7 11.

Dodecahedron

As mentioned before, we use the center of the first face, 1-2-3, of the icosahedron as

vertex 1 of the dodecahedron. For example, we have

x1 of the dodecahedronð Þ ¼ x1 þ x2 þ x3 all three of the icosahedronð Þ
3

The faces in the above icosahedron file are to be read line by line, so that the center

of face 1-3-4 provides vertex 2 of the dodecahedron, that of face 1-4-5 vertex 3, and

so on. The second part of the dodecahedron file is more difficult. You can check it

by comparing both polyhedra of Fig. D.3. For example, the vertices of the dodeca-

hedron’s face 1-6-7-8-2, in that order, are the centers of face 1 (1-2-3), face 6 (2-7-

3), face 7 (3-8-7), face 8 (3-8-4) and face 2 (1-3-4) of the icosahedron. In the data

file for the dodecahedron below, you can find this face 1-6-7-8-2 as the second one

after the word Faces:

1 0.436339 0.31701884 0.7060113

2 -0.16666667 0.51294726 0.7060113

3 -0.53934467 0.0 0.7060113

4 -0.16666667 -0.51294726 0.7060113

5 0.436339 -0.31701884 0.7060113

6 0.7060113 0.51294726 0.16666667

7 0.26967233 0.82996607 -0.16666667

8 -0.26967233 0.82996607 0.16666667

9 -0.7060113 0.51294726 -0.16666667

10 -0.872678 0.0 0.16666667

11 -0.7060113 -0.51294726 -0.16666667

12 -0.26967233 -0.82996607 0.16666667

13 0.26967233 -0.82996607 -0.16666667

14 0.7060113 -0.51294726 0.16666667

15 0.872678 0.0 -0.16666667

16 0.16666667 0.51294726 -0.7060113

17 -0.436339 0.31701884 -0.7060113

320 Appendix D: Several 3D Objects

18 -0.436339 -0.31701884 -0.7060113

19 0.16666667 -0.51294726 -0.7060113

20 0.53934467 0.0 -0.7060113

Faces:

1 2 3 4 5. 1 6 7 8 2. 2 8 9 10 3.

3 10 11 12 4. 4 12 13 14 5. 5 14 15 6 1.

20 19 18 17 16. 20 15 14 13 19. 19 13 12 11 18.

18 11 10 9 17. 17 9 8 7 16. 16 7 6 15 20.

Since this book is about programming aspects of graphics, a Java program to

generate both above files (in a slightly different format) is listed below:

// IcoDode.java: Generating input files for

// both an icosahedron and a dodecahedron.

// Uses: Point3D (Section 3.9), Tria (Section 5.6).

import java.io.*;

public class IcoDode {

public static void main(String[] args) throws IOException {

new Both();

}

}

class Both {

Point3D[] icoV; Tria[] icoF;

Both() throws IOException {

outIcosahedron(); outDodecahedron();

}

void outIcosahedron() throws IOException {

double zTop = 0.5 * Math.sqrt(5);

icoV = new Point3D[13]; // icoV[1], ..., icoV[12]:

icoV[1] = new Point3D(0, 0, zTop); // North pole

double angle36 = Math.PI / 5, angle72 = 2 * angle36;

for (int i = 2; i <= 6; i++) {

double alpha = (i - 2) * angle72;

icoV[i] = new Point3D(Math.cos(alpha),

Math.sin(alpha), 0.5);

}

for (int i = 7; i <= 11; i++) {

double alpha = angle36 + (i - 7) * angle72;

icoV[i] = new Point3D(Math.cos(alpha),

Math.sin(alpha), -0.5);

}

Appendix D: Several 3D Objects 321

icoV[12] = new Point3D(0, 0, -zTop);

icoF = new Tria[21]; // icoF[1], ..., icoF[20]

icoF[1] = new Tria(1, 2, 3);

icoF[2] = new Tria(1, 3, 4);

icoF[3] = new Tria(1, 4, 5);

icoF[4] = new Tria(1, 5, 6);

icoF[5] = new Tria(1, 6, 2);

icoF[6] = new Tria(2, 7, 3);

icoF[7] = new Tria(3, 7, 8);

icoF[8] = new Tria(3, 8, 4);

icoF[9] = new Tria(4, 8, 9);

icoF[10] = new Tria(4, 9, 5);

icoF[11] = new Tria(5, 9, 10);

icoF[12] = new Tria(5, 10, 6);

icoF[13] = new Tria(6, 10, 11);

icoF[14] = new Tria(6, 11, 2);

icoF[15] = new Tria(2, 11, 7);

icoF[16] = new Tria(12, 8, 7);

icoF[17] = new Tria(12, 9, 8);

icoF[18] = new Tria(12, 10, 9);

icoF[19] = new Tria(12, 11, 10);

icoF[20] = new Tria(12, 7, 11);

FileWriter fwI = new FileWriter("icosa.dat");

for (int i = 1; i <= 12; i++) {

Point3D P = icoV[i];

fwI.write(i + " " + P.x + " " + P.y + " " +

P.z + "\r\n");

}

fwI.write("Faces:\r\n");

for (int j = 1; j <= 20; j++) {

Tria t = icoF[j];

fwI.write(t.iA + " " + t.iB + " " + t.iC + ".\r\n");

}

fwI.close();

}

void outDodecahedron() throws IOException {

FileWriter fwD = new FileWriter("dodeca.dat");

for (int j = 1; j <= 20; j++)

writeVertexInCenter(fwD, j);

fwD.write("Faces:\r\n");

// Horizontal, at the top:

writeFace(fwD, 1, 2, 3, 4, 5);

// Slightly facing upward:

writeFace(fwD, 1, 6, 7, 8, 2);

322 Appendix D: Several 3D Objects

writeFace(fwD, 2, 8, 9, 10, 3);

writeFace(fwD, 3, 10, 11, 12, 4);

writeFace(fwD, 4, 12, 13, 14, 5);

writeFace(fwD, 5, 14, 15, 6, 1);

// Horizontal, at the bottom:

writeFace(fwD, 20, 19, 18, 17, 16);

// Slightly facing downward:

writeFace(fwD, 20, 15, 14, 13, 19);

writeFace(fwD, 19, 13, 12, 11, 18);

writeFace(fwD, 18, 11, 10, 9, 17);

writeFace(fwD, 17, 9, 8, 7, 16);

writeFace(fwD, 16, 7, 6, 15, 20);

fwD.close();

}

void writeVertexInCenter(FileWriter fwD, int j)

throws IOException {

Tria t = icoF[j];

Point3D A = icoV[t.iA], B = icoV[t.iB], C = icoV[t.iC];

float x = (float) ((A.x + B.x + C.x) / 3),

y = (float) ((A.y + B.y + C.y) / 3),

z = (float) ((A.z + B.z + C.z) / 3);

fwD.write(j + " " + x + " " + y + " " + z + "\r\n");

}

void writeFace(FileWriter fwD, int a, int b, int c,

int d, int e)

throws IOException {

fwD.write(a + " " + b + " " + c + " " + d + " "

+ e + ".\r\n");

}

}

An icosahedron, as generated by this program, will be useful to generate (better)

approximations of spheres, as we will see in the next section.

D.2. Sphere Representations

There are several ways of approximating a sphere by a polyhedron. A very popular

one is the globe model with north and south poles at the top and the bottom,

horizontal circles called lines of latitude, and circles called lines of longitude in

vertical planes through the poles, as shown in Fig. D.4. A program to generate such

a globe should preferably be based on a single integer n, indicating both the number

Appendix D: Several 3D Objects 323

of horizontal slices and half the number of lines of longitude. In other words,

angles of 180�/n play an essential role, both in horizontal and vertical planes.

In Fig. D.4a, b, we have n ¼ 6 and n ¼ 30, respectively. Programming this is left

as an exercise (see Exercise 5.7).

The above way of approximating a sphere has two drawbacks:

1. The faces are unequal in size and have different shapes: except for the triangles

at the poles, each face is a trapezium, whose size depends on its distance from its

nearest pole.

2. These spheres have an ‘anisotropic’ appearance: which may be undesirable. For

example, a view from above looks much different from a view from the front.

We may prefer all faces to look alike, so that the image should not significantly

change if we turn the sphere a little.

We will therefore discuss different models of a sphere, in such a way that we cannot

easily tell the poles and the other vertices apart.

Spheres Based on an Icosahedron

As Fig. D.3 illustrates, an icosahedron and a dodecahedron are very poor approx-

imations of a sphere. However, we can use the former as a basis to generate a much

better one. The idea is to divide each triangular face of an icosahedron into four

triangles, as shown in Fig. D.5, and to construct points on the sphere to which all

vertices of the icosahedron belong. For the icosahedron we have constructed, the

center of this sphere is O and its radius is ½√5.
With O as the center of the icosahedron and D, E and F as the midpoints of three

triangle edges BC, CA and AB, we have to extend the lines OD, OE and OF, such

that the new vertices D, E and F (like A, B and C) lie on the sphere just mentioned.

Fig. D.4 Approximations of a sphere; (a) n ¼ 6; (b) n ¼ 30

324 Appendix D: Several 3D Objects

Actually, we may as well change the lengths of all six lines OA, OB, . . ., OF, such
that the new points A, B, . . ., F lie on a sphere with center O and radius 1. Doing this

for all 20 faces of an icosahedron, we obtain a polyhedron that has 20 � 4 ¼ 80

triangles. Since each of the 30 original edges gives a new vertex (its midpoint), and

there were already 12 vertices, this new polyhedron has 12 + 30 ¼ 42 vertices. It

follows from Eq. (D.1) that it has 80 + 42–2 ¼ 120 edges. Note that the four

triangles of Fig. D.5 are equilateral (that is, they have three edges of the same

length), but that this is the case only as long as the six points A, B, . . ., F lie in the

same plane. Consequently, the 80 faces of our new polyhedron are not equilateral
triangles.

Instead of writing a program just to generate this polyhedron, we will make the

program much more general. It will accept the names of an input and an output file.

The input file can be any file (in our 3D format) for a convex polyhedron that has

only triangular faces and whose center is the origin O of the coordinate system

(provided the vertex numbers 1, 2, 3, . . . are used and appear in that order in the first
part of the file). In the output file we obtain a polyhedron that has four times as

many (triangular) faces as the given one, and whose vertices lie on a sphere with

center O and radius 1. This will enable us to use the program several times, starting

with the file icosa.dat, generated by program IcoDode.java, and each next time

using the previous output file as input. Using names of the form sphx.dat, where x is
the number of faces, we can proceed as follows:

icosa:dat) sph80:dat) sph320:dat) sph1280:dat) . . .

Figure D.6 shows the results of applying program HLines.java to these four files, of
which the last three have been generated by the program we are discussing.

Program SphTria.java takes the names of its input and output files as program

arguments. After having generated the file icosa.dat by using program IcoDode.
java of Sect. D.1, we obtain the files for the other three above sphere approxima-

tions as follows:

java SphTria icosa.dat sph80.dat

java SphTria sph80.dat sph320.dat

java SphTria sph320.dat sph1280.dat

Fig. D.5 Dividing a

triangle into four

smaller ones

Appendix D: Several 3D Objects 325

Like some other programs in this book, SphTria.java, listed below, uses the

classes Point3D, Tria and Input, discussed in Sects. 3.9 and 5.6:

// SphTria.java: Generating a 3D object file for a sphere

// approximation consisting of triangles. In the output file there

// are four times as many triangles as in the input file. Suitable

// input files are icosa.dat, produced by program IcoDode.java, and

// the output files produced by this program (SphTria.java) itself!

// To run this program, enter, for example,

// java SphTria icosa.dat sph80.dat.

// Uses: Tria, Input (Section 5.6), Point3D (Section 3.9).

import java.io.*;

import java.util.*;

public class SphTria {

public static void main(String[] args) throws IOException {

if (args.length < 2) {

System.out.println(

"Command:\n" + "java SphTria InputFile OutputFile");

} else

new SphTriaObj(args[0], args[1]);

}

}

class SphTriaObj {

Vector v = new Vector(); // Vertices

Vector<Tria> t = new Vector<Tria>(); // Triangular faces

int nV, codeRadix;

Hashtable<Integer, Integer> ht = new Hashtable<Integer, Integer>();

String inputFile, outputFile;

SphTriaObj(StringinputFile,StringoutputFile)throwsIOException{

this.inputFile = inputFile;

this.outputFile = outputFile;

Fig. D.6 Icosahedron and three other polyhedra derived from it by program SphTria.java: (a)
20 faces (see Sect. D.1); (b) 80 faces; (c) 320 faces; (d) 1280 faces

326 Appendix D: Several 3D Objects

readFile();

computeMidpoints();

toUnitCircle();

writeFile();

}

void readFile()/* throws IOException*/ {

Input inp = new Input(inputFile);

if (inp.fails()) error();

v.addElement(new Integer(0)); // Start at position 1

for (;;) {

int nr = inp.readInt();

if (inp.fails()) break;

nV = nr;

float x = inp.readFloat(), y = inp.readFloat(),

z = inp.readFloat();

v.addElement(new Point3D(x, y, z));

}

inp.clear();

codeRadix = nV + 1;

inp.clear();

while (inp.readChar() != ’\n’ && !inp.fails())

;

// Rest of line ’Faces:’ has now been skipped.

for (;;) {

int a = inp.readInt(), b = inp.readInt(), c = inp.readInt();

if (inp.fails()) break;

t.addElement(new Tria(a, b, c));

inp.readChar(); // Skip ’.’

}

inp.clear();

}

void error() {

System.out.println("Problem with file input file " + inputFile);

System.exit(1);

}

void computeMidpoints() {

for (int j = 0; j < t.size(); j++) {

Tria tr = (Tria) t.elementAt(j);

int a = tr.iA, b = tr.iB, c = tr.iC;

addMidpoint(a, b); addMidpoint(b, c); addMidpoint(c, a);

}

}

Appendix D: Several 3D Objects 327

void addMidpoint(int p, int q) {

if (p < q) {

ht.put(new Integer(codeRadix * p + q), new Integer(++nV));

Point3D P = (Point3D) v.elementAt(p), Q = (Point3D) v

.elementAt(q);

v.addElement(new Point3D(// at position nV

(P.x + Q.x) / 2, (P.y + Q.y) / 2, (P.z + Q.z) / 2));

}

}

int getMidpoint(int p, int q) {

int key = p < q ? (codeRadix * p + q) : (codeRadix * q + p);

Integer iObj = (Integer) ht.get(new Integer(key));

return iObj.intValue();

}

void toUnitCircle() {

for (int i = 1; i <= nV; i++) // nV = v.size() - 1

{

Point3D P = (Point3D) v.elementAt(i);

float r = (float) Math.sqrt(P.x * P.x + P.y * P.y + P.z * P.z);

P.x /= r; P.y /= r; P.z /= r;

}

}

void writeFile() throws IOException {

FileWriter fw = new FileWriter(outputFile);

for (int i = 1; i < v.size(); i++) {

Point3D P = (Point3D) v.elementAt(i);

fw.write(i + " " + P.x + " " + P.y + " " + P.z + "\r\n");

}

fw.write("Faces\r\n");

for (int j = 0; j < t.size(); j++) {

Tria tr = (Tria) t.elementAt(j);

int a = tr.iA, b = tr.iB, c = tr.iC;

int mab = getMidpoint(a, b), mbc = getMidpoint(b, c),

mca = getMidpoint(

c, a);

fw.write(a + " " + mab + " " + mca + ".\r\n");

fw.write(b + " " + mbc + " " + mab + ".\r\n");

fw.write(c + " " + mca + " " + mbc + ".\r\n");

fw.write(mab + " " + mbc + " " + mca + ".\r\n");

}

fw.close();

}

}

328 Appendix D: Several 3D Objects

Each edge of a triangle of the given polyhedron is also an edge of a neighboring

triangle. Since for each triangle its vertices are specified in counter-clockwise order,

the ordered vertex number pair p, q representing an edge of one of these two

triangles will appear as q, p for the other triangle. To avoid adding the midpoint

of this edge twice, we accept the pair p, q only if p is less than q, as the test at the
beginning of the method addMidpoint shows. Note that we process all given

triangles twice, first, in computeMidpoints, to add the midpoint of every edge

(exactly once) to the list of vertices v, and later, in writeFaces, to construct the

new, smaller triangles. In the first of these two actions, we associate a new

midpoint, say, vertex number m, with a certain edge p, q. This must be stored in

such a way, that later, in writeFaces, when we encounter this edge p, q again, we

can use this pair to find this same vertex number m. We can do this efficiently and

conveniently by using a hash table, writing.

Hashtable ht = new Hashtable();

The pair p, q, or rather, a large integer codeRadix * p + q, where codeRadix is a
large constant and p < q, is used as a key. By storing the pair (key, m) in the hash

table ht., we can later retrieve the midpoint vertex number m using the same key.

This explains both the statement

ht.put(new Integer(codeRadix * p + q), new Integer(++nV));

in addMidpoint (called in computeMidpoints) and

Integer iObj = (Integer)ht.get(new Integer(key));

in getMidpoint (called in writeFile).
The sphere that program SphTria.java produces obviously depends upon its

input file. The file tetra.dat of Sect. D.1, like iscosa.dat, describes a polyhedron

consisting of equilateral triangles and has O as its center. Note that the latter is not

the case with the file tetra1.dat, obtained by the program Rota3DTetra.java because
this program rotates the tetrahedron about the edge 1-2. Another polyhedron

satisfying the conditions just mentioned is the octahedron, also discussed in

Sect. D.1. This gives a better, though rather peculiar, result. If we start with the

file octa.dat, describing the octahedron shown in Fig. D.7a, we obtain

Fig. D.7 Octahedron and three other polyhedra derived from it by program SphTria.java: (a)
8 faces (see Sect. D.1); (b) 32 faces; (c) 128 faces; (d) 512 faces

Appendix D: Several 3D Objects 329

octa:dat) sph32:dat) sph128:dat) sph512:dat

Note that Fig. D.7b–d show squares or square-like patterns around the original

vertices of the octahedron. We can see this effect here only for the nearest vertex of

Fig. D.7a, but it applies to all six vertices of the octahedron.

D.3. A Torus

We will now discuss a program to construct a torus, as shown in Fig. D.8. The input
data of this program will consist of three program arguments:

• n, the number of small vertical circles; on each of these, n points are used as

vertices to approximate the torus;

• R, the radius of a large horizontal circle containing the centers of the n smaller

circles;

• The name of the output file.

All small circles will have the same radius, r ¼ 1. You can see the large horizontal

circle (with radius R) and one of the small vertical ones in Fig. D.9. Since the

smaller circles must not intersect each other, we require that

R � r ¼ 1ð Þ

A parametric representation of the large circle is

x ¼ R cos α
y ¼ R sin α
z ¼ 0

If we take α¼ 0 in these equations, we obtain the center of the small vertical circle,

shown in Fig. D.9, which has the following parametric representation (where

r ¼ 1):

Fig. D.8 Torus (n¼ 30 and

R ¼ 2.5)

330 Appendix D: Several 3D Objects

x ¼ Rþ r cos β
y ¼ 0

z ¼ r sin β

This small circle belongs to i ¼ 0. By rotating it about the z-axis through angles

α ¼ iδ, where i ¼ 1, . . ., n � 1 and δ ¼ 2π/n, we obtain the remaining n � 1 small

circles. As for the vertex numbers of the torus, we select n points on the first small

circle (corresponding to i ¼ 0) and assign the integers 1, 2, ..., n to them: the point

obtained by using parameter β ¼ jδ is assigned vertex number j + 1 (j ¼ 0, 1, ...,

n � 1). The next n vertices, numbered n + 1, n + 2, ..., 2n, lie on the neighboring

circle, corresponding to i¼ 1, and so on. In general, we use the n2 vertex numbers i �
n + j + 1 (i ¼ 0, 1, ..., n � 1; j ¼ 0, 1, ..., n � 1).

We will now rotate the small vertical circle drawn in Fig. D.7 about the z-axis
through the angle α ¼ iδ. As follows from Sect. 3.2, this rotation can be written

x0 y0½ � ¼ x y½ � cos α sin α
� sin α cos α

� �

In our case the basic small circle lies in the xz-plane, so that y ¼ 0, which reduces

this matrix product to

x0 ¼ x cos α
y0 ¼ x sin α

(which we could also have derived directly from Fig. D.9, without using the above

matrix multiplication).

Fig. D.9 Basic circles of a torus

Appendix D: Several 3D Objects 331

As you can see in the following program, we use most of the above formulas in

the inner loop, in which the variable x denotes the x-coordinate of a point of the

small circle in the xz-plane (see Fig. D.9), while x1 denotes the x-coordinate of that
point after rotation through α about the z-axis:

// Torus.java: Generating a data file for a torus. R is the radius of

// a large horizontal circle, on which n equidistant points will be

// the centers of small vertical circles with radius 1. The values

// of n and R as well as the output file name are to be supplied as

// program arguments.

import java.io.*;

public class Torus {

public static void main(String[] args) throws IOException {

if (args.length != 3) {

System.out.println(

"Supply n (> 2), R (>= 1) " + "and a filename as program arguments.\n");

System.exit(1);

}

int n = 0;

double R = 0;

try {

n = Integer.valueOf(args[0]).intValue();

R = Double.valueOf(args[1]).doubleValue();

if (n <= 2 || R < 1)

throw new NumberFormatException();

} catch (NumberFormatException e) {

System.out.println("n must be an integer > 2");

System.out.println("R must be a real number >= 1");

System.exit(1);

}

new TorusObj(n, R, args[2]);

}

}

class TorusObj {

TorusObj(int n, double R, String fileName) throws IOException {

FileWriter fw = new FileWriter(fileName);

double delta = 2 * Math.PI / n;

for (int i = 0; i < n; i++) {

double alpha = i * delta,

cosa = Math.cos(alpha), sina = Math.sin(alpha);

for (int j = 0; j < n; j++) {

double beta = j * delta, x = R + Math.cos(beta);

332 Appendix D: Several 3D Objects

float x1 = (float) (cosa * x),

y1 = (float) (sina * x),

z1 = (float) Math.sin(beta);

fw.write(

(i * n + j + 1) + " " + x1 + " " + y1 + " " + z1 + "\r\n");

}

}

fw.write("Faces:\r\n");

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

int i1 = (i + 1) % n, j1 = (j + 1) % n,

a = i * n + j + 1, b = i1 * n + j + 1,

c = i1 * n + j1 + 1, d = i * n + j1 + 1;

fw.write(a + " " + b + " " + c + " " + d + ".\r\n");

}

}

fw.close();

}

}

D.4. Beams in a Spiral

Our next example is a spiral as shown in Fig. D.11a–c. It is built from horizontal

beams with length 2a (a � 0.5), width 1 and height 1. The bottom of the lowest

beam lies in the xy-plane; this beam is parallel to the y-axis and its maximum x-
coordinate is equal to a (see Fig. D.10). Each next beam can be obtained by lifting

the previous one a distance 1, and by rotating it about the z-axis though a given

Fig. D.10 Vertex numbers of first beam

Appendix D: Several 3D Objects 333

angle α. There are n beams. The integer n, the two real numbers a and α (the latter in

degrees) and the output file name, in that order, are supplied as program arguments.

The beams in Fig. D.11a–c have lengths (2a ¼) 2, 8 and 1, respectively, which

implies that the beams are actually cubes in Fig. D.11c.

The data files for program HLines.java to produce the three spiral images of

Fig. D.11 were generated by running program Beams.java three times as follows:

java Beams 4 1 90 FigD_11a.dat

java Beams 18 4 20 FigD_11b.dat

java Beams 18 0.5 10 FigD_11c.dat

Although we could have used the class Rota3D, discussed in Sect. 3.9, the

rotation about the z-axis is as simple as a 2D rotation about O (see Sect. 3.2), so

that we may as well program it directly, as is done in the nested for-loop in program

Beams.java, listed below:

// Beams.java: Generating input files for a spiral of beams. The

// values of n, a and alpha (in degrees) as well as the output

// file name are to be supplied as program arguments.

// Uses: Point3D (Section 3.9).

import java.io.*;

public class Beams {

public static void main(String[] args) throws IOException {

if (args.length != 4) {

Fig. D.11 Spirals of beams

334 Appendix D: Several 3D Objects

System.out.println(

"Supply n (> 0), a (>= 0.5), alpha (in degrees)\n" +

"and a filename as program arguments.\n");

System.exit(1);

}

int n = 0;

double a = 0, alphaDeg = 0;

try {

n = Integer.valueOf(args[0]).intValue();

a = Double.valueOf(args[1]).doubleValue();

alphaDeg = Double.valueOf(args[2]).doubleValue();

if (n <= 0 || a < 0.5)

throw new NumberFormatException();

} catch (NumberFormatException e) {

System.out.println("n must be an integer > 0");

System.out.println("a must be a real number >= 0.5");

System.out.println("alpha must be a real number");

System.exit(1);

}

new BeamsObj(n, a, alphaDeg * Math.PI / 180, args[3]);

}

}

class BeamsObj {

FileWriter fw;

BeamsObj(int n, double a, double alpha, String fileName)

throws IOException {

fw = new FileWriter(fileName);

Point3D[] P = new Point3D[9];

double b = a - 1;

P[1] = new Point3D(a, -a, 0);

P[2] = new Point3D(a, a, 0);

P[3] = new Point3D(b, a, 0);

P[4] = new Point3D(b, -a, 0);

P[5] = new Point3D(a, -a, 1);

P[6] = new Point3D(a, a, 1);

P[7] = new Point3D(b, a, 1);

P[8] = new Point3D(b, -a, 1);

for (int k = 0; k < n; k++) { // Beam k:

double phi = k * alpha,

cosPhi = Math.cos(phi), sinPhi = Math.sin(phi);

int m = 8 * k;

Appendix D: Several 3D Objects 335

for (int i = 1; i <= 8; i++) {

double x = P[i].x, y = P[i].y;

float x1 = (float) (x * cosPhi - y * sinPhi),

y1 = (float) (x * sinPhi + y * cosPhi),

z1 = (float) (P[i].z + k);

fw.write((m + i) + " " + x1 + " " + y1 + " " + z1 + "\r\n");

}

}

fw.write("Faces:\r\n");

for (int k = 0; k < n; k++) { // Beam k again:

int m = 8 * k;

face(m, 1, 2, 6, 5);

face(m, 4, 8, 7, 3);

face(m, 5, 6, 7, 8);

face(m, 1, 4, 3, 2);

face(m, 2, 3, 7, 6);

face(m, 1, 5, 8, 4);

}

fw.close();

}

void face(int m, int a, int b, int c, int d) throws IOException {

a += m;

b += m;

c += m;

d += m;

fw.write(a + " " + b + " " + c + " " + d + ".\r\n");

}

}

D.5. Functions of Two Variables

Although the programs Painter.java, ZBuf.java and HLines.java were primarily

intended to represent solid objects, they can also be used for other purposes, such as

displaying surfaces that correspond to functions of the form

z ¼ f x; yð Þ

For example, Fig. D.12 shows such a surface for the function

z ¼ f x; yð Þ ¼ 10 cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ðD:2Þ

336 Appendix D: Several 3D Objects

This line drawing was made by exporting an HP-GL file, as discussed in Appendix C.

As usual, the x-axis points towards us, the y-axis points to the right and the z-axis
points upwards. Note that each of the three coordinate axes is partly visible and partly

hidden. The lines on the surface connect points (x, y, z), where

�6 � x � 6 and� 6 � y � 6, with step sizes Δx ¼ Δy ¼ 0:25 ðD:3Þ

Instead of dealing only with this particular function, we will discuss a very general

program, based on an expression evaluator. Using a graphical user interface, we

will enable the user to enter both an expression for the function in question and the

intervals and step sizes for x and y. Such expressions are similar to what we write in

our programs, although the set of available operators and standard functions is very

limited:

1. An expression consists of one or more terms, separated by + and –.

2. A term consists of one or more factors, separated by * and /.

3. A factor can be

(a) a real number (such as 12.3, 4 or �25; number representations such as 1e7
are not allowed),

(b) a variable x or a variable y (and no other variables),

(c) an expression, as defined in point 1, written between parentheses, such as the

one occurring in 3 * (x + y),
(d) a function call of one of the following three forms (and no others):

sin(expression)
cos(expression)
pow(expression, expression).

Fig. D.12 Surface of a function z ¼ f(x, y) as specified by (D.2 and D.3)

Appendix D: Several 3D Objects 337

The last three standard functions are the same as those in theMath class of Java. For
example, we write pow(x, 0.5) for x0.5. There is no special sqrt function. As usual,
blank spaces are allowed in expressions.

For example, the function given by Eq. (D.2) can be written as the following

expression:

10 * cos(pow(x*x + y*y, 0.5))/(2 + pow(x*x + y*y, 0.5))

As for the intervals and step sizes for x and y, we write, for example,

-6 (0.25) 6

indicating that the variable in question ranges from�6 to 6, with step size 0.25. The

dialog box to be used to enter expressions, intervals and step sizes is shown in

Fig. D.13.

There is also a text field in which the user has to enter the name of the output file.

After filling in all text fields, the user can click the button Write file to generate the

desired file. Since this does not terminate the program, there is also an Exit button.
Although the program Func.java produces only a file, such as cospow.dat in this

example, we can quickly see the 3D surface in question by executing the two

programs Func.java and HLines.java at the same time. After pressing the button

Write file, in the former program, we use File j Open in the latter to see the result. If
we want to change any data, such as shown in Fig. D.13, we go back to Func.java,
which is still running; after doing this, we click the Write file button and switch to

HLines.java again, and so on.

If the expression entered for z ¼ f(x, y) cannot be interpreted because it is

syntactically incorrect, the computer gives an audible signal. Such a beep also

occurs if an interval or a step size is incorrect; this happens, for example, if xMin is
greater than xMax – deltaX. It follows from this that error handling is not the

strongest point of the program we will discuss, and neither is its speed. However,

although the given expression is not converted into more efficient intermediate code

(such as postfix), it is much faster than the hidden-line program that follows;

Fig. D.13 Dialog box for program Func.java

338 Appendix D: Several 3D Objects

improvements with regard to error handling and efficiency were deliberately

omitted because many readers will find the program already complex enough in

its current form. After having a look at the program listed below, we will discuss

some of its internal aspects.

// Func.java: A function of two variables x and y.

import java.awt.*;

import java.awt.event.*;

import java.io.*;

public class Func extends Frame {

public static void main(String[] args) {new Func();}

Func() {new FuncDialog(this);}

}

class FuncDialog extends Dialog {

TextField tfFun = new TextField(50),

tfX = new TextField(10), tfY = new TextField(10),

tfFileName = new TextField(15);

Button buttonWriteFile = new Button("Write file"),

buttonExit = new Button(" Exit ");

FuncDialog(Frame fr) {

super(fr, "Function of two variables", true);

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {

dispose(); System.exit(0);

}

});

Panel p1 = new Panel(), p2 = new Panel(),

p3 = new Panel();

p1.add(new Label("z = f(x, y) = ")); p1.add(tfFun);

p2.add(new Label("xMin (deltaX) xMax")); p2.add(tfX);

p2.add(new Label(" yMin (deltaY) yMax"));

p2.add(tfY);

p3.add(new Label("Output file name: "));

p3.add(tfFileName);

p3.add(buttonWriteFile); p3.add(buttonExit);

setLayout(new BorderLayout());

add("North", p1); add("Center", p2); add("South", p3);

buttonWriteFile.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent ae) {

Appendix D: Several 3D Objects 339

float xa = 0, dx = 0, xb = 0,

ya = 0, dy = 0, yb = 0;

String sX = tfX.getText();

xa = (new xyExpression(sX)).factor();

sX = sX.substring(sX.indexOf(’(’) + 1);

dx = (new xyExpression(sX)).factor();

sX = sX.substring(sX.indexOf(’)’) + 1);

xb = (new xyExpression(sX)).factor();

String sY = tfY.getText();

ya = (new xyExpression(sY)).factor();

sY = sY.substring(sY.indexOf(’(’) + 1);

dy = (new xyExpression(sY)).factor();

sY = sY.substring(sY.indexOf(’)’) + 1);

yb = (new xyExpression(sY)).factor();

if (xa + dx > xb || dx <= 0 ||

ya + dy > yb || dy <= 0) {

Toolkit.getDefaultToolkit().beep();

return;

}

String s = tfFun.getText(),

fileName = tfFileName.getText();

xyExpression xyE = new xyExpression(s);

try {

xyE.generate(xa, dx, xb, ya, dy, yb,

fileName);

} catch (IOException ioe) {

}

}

});

buttonExit.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent ae) {

dispose(); System.exit(0);

}

});

Dimension dim = getToolkit().getScreenSize();

setSize(6 * dim.width / 10, dim.height / 4);

setLocation(dim.width / 5, dim.height / 2);

setVisible(true);

}

}

340 Appendix D: Several 3D Objects

class xyExpression {

String buf;

float x, y, lastNum;

char lastChar;

int pos;

boolean OK;

xyExpression(String s) {buf = s; OK = true;}

void generate(float xa, float dx, float xb,

float ya, float dy, float yb,

String fileName) throws IOException {

FileWriter fw = new FileWriter(fileName);

int nx = Math.round((xb - xa) / dx),

ny = Math.round((yb - ya) / dy), nr = 0;

float za = 1e30F, zb = -1e30F;

outer:

for (int j = 0; j <= ny; j++) {

float y = ya + j * dy;

for (int i = 0; i <= nx; i++) {

float x = xa + i * dx;

nr = j * (nx + 1) + i + 1;

float z = eval(x, y);

if (!OK) {

Toolkit.getDefaultToolkit().beep();

break outer;

}

if (z < za) za = z;

if (z > zb) zb = z;

fw.write(nr + " " + x + " " + y + " "

+ z + "\r\n");

}

}

// x, y and z axes:

float dz = (zb - za) / 10,

xa1 = Math.min(xa - 2 * dx, 0),

xb1 = Math.max(xb + 2 * dx, 0),

ya1 = Math.min(ya - 2 * dy, 0),

yb1 = Math.max(yb + 2 * dy, 0),

za1 = Math.min(za - 2 * dz, 0),

zb1 = Math.max(zb + 2 * dz, 0);

fw.write(++nr + " " + xa1 + " 0 0\r\n");

fw.write(++nr + " " + xb1 + " 0 0\r\n");

fw.write(++nr + " 0 " + ya1 + " 0\r\n");

fw.write(++nr + " 0 " + yb1 + " 0\r\n");

fw.write(++nr + " 0 0 " + za1 + "\r\n");

Appendix D: Several 3D Objects 341

fw.write(++nr + " 0 0 " + zb1 + "\r\n");

fw.write("Faces:\r\n");

for (int i = 0; i < nx; i++) {

for (int j = 0; j < ny; j++) {

int k = j * (nx + 1) + i + 1,

m = k + nx + 1, k1 = k + 1, m1 = m + 1;

fw.write(k + " " + -m1 + " " + k1 + ".\r\n");

fw.write(k1 + " " + m1 + " " + -k + ".\r\n");

fw.write(k + " " + -m1 + " " + m + ".\r\n");

fw.write(m + " " + m1 + " " + -k + ".\r\n");

}

}

int k = (nx + 1) * (ny + 1);

fw.write(++k + " " + ++k + ".\r\n"); // x-axis

fw.write(++k + " " + ++k + ".\r\n"); // y-axis

fw.write(++k + " " + ++k + ".\r\n"); // z-axis

fw.close();

System.out.println("Ready!");

}

boolean readChar() {

char ch;

do {

if (pos == buf.length()) return false;

ch = buf.charAt(pos++);

} while (ch == ’ ’);

lastChar = ch; return true;

}

boolean nextIs(char ch) {

char ch0 = lastChar;

if (readChar()) {

if (ch == lastChar) return true;

pos--;

}

lastChar = ch0; return false;

}

float eval(float x, float y) {

this.x = x; this.y = y; pos = 0; OK = true;

return expression();

}

342 Appendix D: Several 3D Objects

float expression() {

float x = term();

for (;;) {

if (nextIs(’+’)) x += term(); else

if (nextIs(’-’)) x -= term(); else break;

}

return x;

}

float term() {

float x = factor();

for (;;) {

if (nextIs(’*’)) x *= factor(); else

if (nextIs(’/’)) x /= factor(); else break;

}

return x;

}

float factor() {

float v = 0;

if (!readChar()) return 0;

if (lastChar == ’x’) return x;

if (lastChar == ’y’) return y;

if (lastChar == ’(’) {

v = expression();

if (!nextIs(’)’)) {OK = false; return 0;}

return v;

}

char ch = lastChar;

if (ch == ’c’ // cos(expression)

|| ch == ’s’ // sin(expression)

|| ch == ’p’) { // pow(expression, expression)

while ((OK = readChar()) && lastChar != ’(’)

;

if (!OK) return 0;

float arg = expression();

if (ch == ’p’) {

if (!nextIs(’,’)) {OK = false; return 0;}

double exponent = expression();

v = (float) Math.pow(arg, exponent);

} else

v = (float)

(ch == ’c’ ? Math.cos(arg) : Math.sin(arg));

if (!nextIs(’)’)) {OK = false; return 0;}

return v;

}

Appendix D: Several 3D Objects 343

pos--;

if (number()) return lastNum;

OK = false; return 0;

}

boolean number() {

float x = 0;

int nDec = -1;

boolean neg = false;

do {

if (!readChar()) return false;

if (lastChar == ’-’) {

neg = true;

if (!readChar()) return false;

break;

}

} while (Character.isWhitespace(lastChar));

if (lastChar == ’.’) {

if (!readChar()) return false;

nDec = 0;

}

if (!Character.isDigit(lastChar)) {

OK = false; return false;

}

for (;;) {

if (lastChar == ’.’ && nDec < 0) nDec = 0; else

if (Character.isDigit(lastChar)) {

x = 10 * x + (lastChar - ’0’);

if (nDec >= 0) nDec++;

}

else {

pos--; break;

}

if (!readChar()) break;

}

while (nDec > 0) {x *= 0.1; nDec--;}

lastNum = (neg ? -x : x);

return true;

}

}

344 Appendix D: Several 3D Objects

The given expression is evaluated when the first part of the output file is

generated. In the class xyExpression we find the method generate, in which, five

lines after the label outer, the following call to eval occurs:

float z = eval(x, y);

This method eval calls the method expression, whose task is to scan an expres-

sion, stored in the array buf, and to return its value. According to our above

definition of expression, defining an expression as a sequence of terms separated

by + and – operators, the method expression calls the method term, which scans a

term and returns its value, and so on. This way of parsing, that is, analyzing
expressions that satisfy a given grammar, is referred to as recursive descent. This
adjective recursive will be clear if we note that our above syntactic definition of

expression and the corresponding method are recursive. An expression can contain

a factor that again contains an expression. Accordingly, in the program, expression
calls term, which calls factor, which may again call expression. We immediately

evaluate the syntactic entities we are dealing with, or, as we normally say, we

interpret the source code. Instead, we might have generated intermediate code.

More information about recursive descent parsing can be found in Algorithms and
Data Structures in C++ (see Bibliography).

In the program, parsing is done by using two simple methods, readChar and

nextIs, as well as the variable lastChar, all belonging to the class xyExpression:

boolean readChar()

This method scans the next character, if possible, places this in the variable

lastChar and returns true. If this is not possible because the end of the

expression is encountered, it returns false. This methods skips any blank

spaces.

boolean nextIs(char ch)

This method tests if the next character to be scanned is equal to the argument

ch. If so, it scans this character and returns true; if not, it leaves the scan

position unaltered and returns false.

After this discussion of parsing (which is unusual in a book on computer

graphics) let us now turn to the graphics aspects of this program. It goes without

saying that the vertices of a polygon, as specified in our 3D data files after the word

Faces, should lie in the same plane. This is obviously the case for rectangles

(or squares) such as 7-8-12-11 in Fig. D.14a if we regard these as lying in the

plane z ¼ 0.

However, the corresponding four points on the surface may or may not lie in the

same plane. We therefore prefer triangles to rectangles in this case. Remember,

the three points of a triangle always lie in the same plane. Instead of the rectangle

Appendix D: Several 3D Objects 345

7-8-12-11, we can specify the two triangles 7-8-12 and 7-12-11. However, we must

pay attention to these two aspects:

1. Diagonals, such as 7-12, must not be drawn; we solve this problem by using

minus signs, as discussed in Sect. 5.5.

2. Each triangle has two sides; since we do not know in advance which will be

visible, we have to specify both. Recall that we have discussed this subject of

‘individual faces’ in Sect. 5.5.

According to this second point, the vertices of each triangle in Fig. D.14b will occur

twice in the data file: clockwise and counter-clockwise. Using minus signs, as

discussed in the first point, we use four lines in the data file for the ‘rectangle’ k,
k + 1, m + 1, m of Fig. D.14b, as shown below:

k –(m + 1) k + 1. (Lower-right, clockwise)

k + 1 m + 1 –k. (Lower-right, counter-clockwise)

k –(m + 1) m. (Upper-left, counter-clockwise)

m m + 1 –k. (Upper-left, clockwise)

You can find the code that writes these four triangles to a file in the method

generate.

Painting Faces Instead of Drawing Lines

So far, in this Appendix, we used line drawings to display the 3D objects for which

we generated .dat files. This enabled us (a) to export and use HP-GL output files,

and (b) to display not only solid objects but also individual lines, such as the

Fig. D.14 Two triangles with an invisible common edge forming a rectangle

346 Appendix D: Several 3D Objects

coordinate axes in Fig. D.12. Recall that we can also use the generated data files as

input for our programs ZBuf.java or Painter.java, to display the faces of these

objects. Individual line segments are then simply omitted. Rather than doing this for

all 3D objects in this appendix, we do this only for our last example, as Fig. D.15

shows.

Fig. D.15 The object of Fig. D.12, showing faces instead of lines

Appendix D: Several 3D Objects 347

Appendix E: Hints and Solutions to Exercises

1.1 Numbers of pixels:

g.drawLine(10, 20, 100, 50); // 100 - 10 + 1 = 91 pixels

g.drawRect(10, 10, 8, 5); // 2 * 8 + 2 * 5 = 26 pixels

g.fillRect(10, 10, 8, 5); // 8 * 5 = 40 pixels

1.2 Program to draw many squares:

//ManySq.java: This program draws n x n sets, each

//consisting of k squares, arranged as on a chessboard.

//Each edge is divided into two parts with ratio

//(1 - q) : q. The values of n, k and q are program arguments.

import java.awt.*;

import java.awt.event.*;

public class ManySq extends Frame {

public static void main(String[] args) {

if (args.length != 3) {

System.out.println("Supply n, k and q as arguments");

System.exit(1);

}

int n = Integer.valueOf(args[0]).intValue(),

k = Integer.valueOf(args[1]).intValue();

float q = Float.valueOf(args[2]).floatValue();

new ManySq(n, k, q);

}

© Springer International Publishing AG 2017

L. Ammeraal, K. Zhang, Computer Graphics for Java Programmers,
DOI 10.1007/978-3-319-63357-2

349

ManySq(int n, int k, float q) {

super("ManySq: Many squares");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e)

{System.exit(0);}

});

add("Center", new CvManySq(n, k, q));

setSize(600, 400);

setVisible(true);

}

}

class CvManySq extends Canvas {

int centerX, centerY, n, k;

float p0, q0;

CvManySq(int nn, int kk, float qq) {

n = nn; k = kk; q0 = qq; p0 = 1 - q0;

}

int iX(float x) {return Math.round(centerX + x);}

int iY(float y) {return Math.round(centerY - y);}

public void paint(Graphics g) {

Dimension d = getSize();

int maxX = d.width - 1, maxY = d.height - 1,

minMaxXY = Math.min(maxX, maxY);

centerX = maxX / 2; centerY = maxY / 2;

float r = 0.45F * minMaxXY / n;

for (int x = 0; x < n; x++) {

for (int y = 0; y < n; y++) {

float xCnew = (2 * x - n + 1) * r,

yCnew = (2 * y - n + 1) * r,

xA, yA, xB, yB, xC, yC, xD, yD,

xA1, yA1, xB1, yB1, xC1, yC1, xD1, yD1,

p = p0, q = q0;

if (x % 2 + y % 2 == 1) {p = q0; q = p0;}

xA = xD = xCnew - r; xB = xC = xCnew + r;

yA = yB = yCnew - r; yC = yD = yCnew + r;

for (int i = 0; i < k; i++) {

g.drawLine(iX(xA), iY(yA), iX(xB), iY(yB));

g.drawLine(iX(xB), iY(yB), iX(xC), iY(yC));

g.drawLine(iX(xC), iY(yC), iX(xD), iY(yD));

g.drawLine(iX(xD), iY(yD), iX(xA), iY(yA));

xA1 = p * xA + q * xB; yA1 = p * yA + q * yB;

xB1 = p * xB + q * xC; yB1 = p * yB + q * yC;

350 Appendix E: Hints and Solutions to Exercises

xC1 = p * xC + q * xD; yC1 = p * yC + q * yD;

xD1 = p * xD + q * xA; yD1 = p * yD + q * yA;

xA = xA1; xB = xB1; xC = xC1; xD = xD1;

yA = yA1; yB = yB1; yC = yC1; yD = yD1;

}

}

}

}

}

1.3 To draw all edges as exactly straight lines and to make the vertices of inner

squares lie exactly on the edges of their surrounding squares, use device

coordinates, starting with a pair of very small squares (◊ and O), and making

the squares of each next pair exactly twice as large as those of the

preceding pair.

1.4 The radius r of the circumscribed circles for the hexagons is supplied by the

user. Based on this radius r, the following fragment (in which the variable

names are self-explanatory) may be helpful:

int iX(float x){return Math.round(centerX + x/pixelSize);}

int iY(float y){return Math.round(centerY - y/pixelSize);}

void drawLine(Graphics g, float xA, float yA, float xB, float yB) {

g.drawLine(iX(xA), iY(yA), iX(xB), iY(yB));

}

...

float halfr = r/2, horpitch = 1.5F * r,

w = r * (float)Math.sqrt(3), h = w/2, marginleft, marginbottom;

int nhor = (int)Math.floor((rWidth - 2 * r) / horpitch) + 1,

nvert = (int)Math.floor(rHeight/w);

marginleft = -rWidth/2 + 0.5F * (rWidth - halfr - nhor * horpitch);

marginbottom = -rHeight/2 + 0.5F * (rHeight - nvert * w);

for (int i=0; i<nhor; i++) {

float x = marginleft + r + i * horpitch,

y0 = marginbottom + (1 + i % 2) * h; // center of lowest hexagon

int m = nvert - i % 2;

// There will be nvert hexagons in each column for i = 0, 2, 4, ...

// while there will be nvert - 1 in each column for i = 1, 3, 5, ...

// Special case: if nvert = 1 and nhor > 1, then x is increased by

// horpitch/2 because otherwise there will be an emptycolumn on the

// right.

if (nvert == 1 && nhor > 1)

x += horpitch/2;

Appendix E: Hints and Solutions to Exercises 351

for (int j=0; j<m; j++) {

float y = y0 + j * w;

drawLine(g, x + halfr, y + h, x - halfr, y + h);

drawLine(g, x - halfr, y + h, x - r, y);

drawLine(g, x - r, y, x - halfr, y - h);

...

1.5 We begin by computing the length

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u12 þ u22

p

where

u1 ¼ xB � xA
u2 ¼ yB � yA

Since there should be a dash, not a gap, at each endpoint, and we use gap

widths that are about equal to dashLength, we use the equality

L ¼ 2n� 1ð Þ � dashLength

to compute n, the number of dashes. Writing h1 ¼ u1/(2n � 1) and h2 ¼ u2/
(2n � 1), and denoting the dashes by i ¼ 0, 1, . . ., n � 1, we draw dash i as a
straight line with endpoints (xA + 2ih1, yA + 2ih2) and ((xA + (2i + 1)h1,
yA + (2i + 1)h2).

1.6 Design the data structure in such a way that it is possible to be extended to

3-dimensional for Exercise 6.10. Draw the interface of the Tetris game and

every component, using the Java drawLine, drawString and fillShape
methods. Divide the canvas into 10 � 20 grids, each representing one square.

Moving a shape on the canvas is then equivalent to moving the colored

squares representing the shape by one grid downward at a time.

2.1 After rotating the vector v ¼ (v1, v2) through 90� counter-clockwise, we

obtain the vector (�v2, v1). Setting v ¼ (v1, v2) ¼ (xB � xA, yB � yA), we
can therefore find the points D and C by adding (�v2, v1) to the coordinates of
A and B, respectively.

2.2 To determine the position of P relative to the triangle ABC, we first test

whether P lies on one of the three sides of the triangle, using the method

onSegment, discussed in Sect. 2.7. If this is not the case, we test whether P lies

inside ABC, using the method insideTriangle of Sect. 2.5. To do this properly,
we need to know the orientation of A, B and C, for which we can use the

method ccw of Sect. 2.4. If this orientation is clockwise, we use C, B, and A,

in that order, as the first three arguments of insideTriangle, so that the

orientation of these arguments is counter-clockwise, as required. If P lies

neither on a triangle side nor inside the triangle, it lies outside it.

352 Appendix E: Hints and Solutions to Exercises

2.3 Section 2.9 shows how to compute the distance between a point and a line. We

perform this computation three times to determine which of the three triangle

sides AB, BC and CA (or rather the infinite lines through these sides) lies

closest to point P. We then use the method projection of Sect. 2.8 to compute

the projection P0 of P on the triangle side in question (or on an extension of it).

We draw both the triangle and the line segment PP0. If the projection point P0

lies on an extension of a side, we also connect this point to the side (AB, BC or

CA), to indicate clearly which of the three lines has been used. For example, if

P0 lies on an extension of BC (not between B and C), we can draw P0B.
2.4 Using the vector AB¼ u¼ (u1, u2)¼ (xB � xA, yB � yA) and the parameter λ,

we can represent the line through A and B by the following vector form:

Aþ λu

Similarly, with CD ¼ v ¼ (v1, v2) ¼ (xD � xC, yD � yC) and parameter μ,
the line through C and D is represented by

Cþ λv

We find the intersection point S by solving

Aþ λu ¼ Cþ λv

for λ (rewriting this vector equation as a system of two linear equations, using

the x- and y-coordinates of A and C as well as u1, u2, v1 and v2). We then use

the value of λ computed in this way to find

S ¼ Aþ λu

When deriving the desired value of λ, we will have to perform a division by

the expression u2v1 � u1v2 (which is a determinant). If this determinant is

zero, the lines AB and CD do not have a unique intersection point because

these lines are parallel or coinciding. Since the points A, B, C and D are

obtained by clicking and there are (very small) rounding-off errors, we had

better replace the condition

determinant ¼ 0

with this one:

j determinant j� epsilon

where epsilon is some very small positive value. To make independent of the

units of length that are used and in view of the way the determinant is

computed, a reasonable value is

epsilon ¼ 10�3 u1
2 þ u2

2 þ v1
2 þ v2

2
� �

Appendix E: Hints and Solutions to Exercises 353

2.5 To construct the bisector of angle B, we can compute the two vectors

u ¼ BA/jBAj and v ¼ BC/jBCj. We can view these vectors as arrows starting

at B and pointing to A and C, respectively. Since both u and v have length

1, the sum vector

w ¼ uþ v

can then be regarded as another arrow starting at B but lying on the desired

bisector, so that, with parameter α, the vector form

Bþ αw

denotes the bisector of angle B. The intersection point D of this bisector and

triangle side AC can then be found in the same way as in Exercise 2.4.

2.6 UsingAB¼ u¼ (u1, u2)¼ (xB� xA, yB� yA) and v¼ (v1, v2)¼ (�u2, u1), we
can write the following vector form for the perpendicular bisector of AB:

Aþ 0:5uþ λv ðF:1Þ

To find the circumcenter D of triangle ABC, write a similar vector form,

say,

Bþ 0:5wþ μt ðF:2Þ

for the perpendicular bisector of BC. You can then find the intersection of

these two lines by solving the vector equation

Aþ 0:5uþ λv ¼ Bþ 0:5wþ μt

for λ (or μ). Then the circumcenter D is found as the point of intersection by

using this value λ in Eq. (F.1). After computing the radius r¼ jADj, and using
the methods iX and iY to convert real logical coordinates into integer device

coordinates, you can draw the circle through A, B and C by writing

int xLeft = iX(xD - r), xRight = iX(xD + r),

yTop = iY(yD + r), yBottom = iY(yD - r);

g.drawOval(xLeft, yTop, xRight - xLeft, yBottom - yTop);

2.7 Compute the center C and the radius r of the circle through P, Q and R (see

Exercise 2.1). Although there is a method drawArc in Java, this is not suitable
for our present purpose because it requires angles to be specified (in degrees)

as integers; especially if r is large, this may cause too large rounding-off

errors with regard to both endpoints of the arc. We therefore simply use a

great many straight line segments. We can do this by using Point2D objects

for C, P, Q and R (see Sect. 1.4). Taking the orientation of P, Q and R into

354 Appendix E: Hints and Solutions to Exercises

account by means of the method area2 of class Tools2D (see Sect. 2.3), we

can write:

double alpha = Math.atan2(P.y - C.y, P.x - C.x),

beta = Math.atan2(R.y - C.y, R.x - C.x);

if (Tools2D.area2(P, Q, R) > 0)

arcCcw(g, C, r, alpha, beta);

else

arcCcw(g, C, r, beta, alpha);

The method arcCcw, used here, is listed below. Working counter-

clockwise, it draws the arc with start and end angles alpha and beta and

belonging to the circle with center C and radius r:

void arcCcw(Graphics g, Point2D C, double r,

double alpha, double beta) {

double pi2 = 2 * Math.PI, delta = beta - alpha;

// Reduce delta to the interval [0, 2pi):

delta = (delta + pi2) % pi2;

int X0=0, Y0=0, // Arc length = r * delta

n = (int)Math.ceil(r * delta / 0.02); // 0.02 = rWidth/500

double theta = delta / n;

for (int i=0; i<=n; i++) {

double phi = alpha + i * theta,

x = C.x + r * Math.cos(phi),

y = C.y + r * Math.sin(phi);

int X = iX((float)x), Y = iY((float)y);

if (i > 0) g.drawLine(X0, Y0, X, Y);

X0 = X; Y0 = Y;

}

}

2.8 We can use the first of the two methods projection of Sect. 2.8 to find the

projection D0 of D on AB. Since the center M of the circular arc lies on the

bisector of the angle ABC, we compute the unit vectors u ¼ BA/jBAj and
v ¼ BC/jBCj and w ¼ (u + v)/ju + vj, which start at B and point to A, C

and M, respectively. We now have to find a scale factor λ, so that

BM ¼ λw. Since the cosine of the angle D0BM is equal to w � v and using

μ ¼ jBD0j, we can compute λ ¼ μ/ (w � v). We then find the endpoint E of the

arc on BC and the center M as follows: E ¼ B + μv,M ¼ B + λw. Obviously,
the radius of the arc is r ¼ jMD0j. We can now compute the start and end

angles α and β and draw the arc by choosing between two calls to the

method arcCcw, depending on the orientation of the points A, B and C (see

Exercise 2.2).

Appendix E: Hints and Solutions to Exercises 355

2.9 Refer to Exercise 2.3 for bisectors of angles and to Exercise 2.1 for the

intersection of two lines. This will provide you with the centers of the four

circles. You can use the radius of each circle as the distance of its center to one

of its tangents. Recall that we have discussed the distance of points to lines in

Sect. 2.9.

2.10 Use vectorAB¼ (u1, u2) to find the points D¼A + (�u2, u1), C¼D + (u1, u2)
and E ¼ D + 0.5{(u1, u2) + (�u2, u1)}.

3.1 M ¼
sx 0 0

0 sy 0

xC 1� sxð Þ yC 1� sy
� �

1

2
64

3
75

3.2 Similar to Exercise 3.1.

3.3 For shearing a set of points with reference to point C, we replace the shearing

equations at the end of Sect. 3.2 with the similar ones

x0 � xC ¼ x� xCð Þ þ a y� yCð Þ
y0 � yC ¼ y� yCð Þ

which reduces to x0 ¼ x + a(y � yC), y
0 ¼ y.

The shearing operation will transform the circle into an ellipse with a

non-horizontal axis, so that we cannot use the Java method drawOval. There-
fore, for some large value of n, we approximate a circle with center C(xC, yC)
and radius r by computing the following n points (xi, yi) of this circle:

xi ¼ xC þ r cos iθ

yi ¼ yC þ r sin iθ

where θ ¼ 2π/n and i ¼ 0, 1, ..., n � 1. Instead of immediately connecting

these points by straight lines, which would produce the circle, we first subject

each xi to the above shearing formula.

3.4 Just compute the product AA�1 to obtain the identity matrix I. For example,

the upper-left element of this product is equal to the inner product of the first

row of A and the first column of A�1, which is a11(a22/D) + a12(�a21/D) ¼ D/
D ¼ 1.

3.5 If there are many points for which we have to check whether they lie within a

single triangle (or on an edge of it), the method insideTriangle of the follow-
ing class is more efficient than the one discussed in Sect. 2.5, since most of the

work is done here by the constructor, which need to be called only once for

that triangle:

class TriaTest {

private Point2D C;

private double a1, a2, b1, b2, c1, c2, d1, d2, det;

TriaTest(Point2D A, Point2D B, Point2D C) {

this.C = C;

356 Appendix E: Hints and Solutions to Exercises

a1 = A.x - C.x; a2 = A.y - C.y;

b1 = B.x - C.x; b2 = B.y - C.y;

det = a1 * b2 - b1 * a2;

if (det != 0) {

c1 = b2/det; c2 = -a2/det;

d1 = -b1/det; d2 = a1/det;

}

}

double area2(){return det;}

boolean insideTriangle(Point2D P) {

double p1 = P.x - C.x, p2 = P.y - C.y,

lambda, mu;

return (lambda = p1 * c1 + p2 * d1) >= 0 &&

(mu = p1 * c2 + p2 * d2) >= 0 &&

lambda + mu <= 1;

}

}

4.1 Adapt the Java program for Bresenham’s algorithm by drawing pixels from

both of the endpoints towards the middle of the line. Either calculate where

the middle point is beforehand or check on-the-fly (that is, within the loop)

when the two pixels merge in the middle. There may be one or two middle

points depending on whether the line consists of odd or even number of pixels.

If there is only one, it is a good idea to draw this pixel after exiting the loop.

Check if your solution also works correctly for very short lines, consisting of

one or two pixels. You solution should be very general in that it works for any

two endpoints P and Q.

4.2 You should add a second for-loop in which the roles of x and y are

interchanged. For example, the calls to putPixel should have ++y as their

third argument instead of ++x as their second. If jyQ � yPj � jxQ � xPj, the
first loop should be executed; otherwise the second.

4.4 The following program produces only Fig. 4.19. You should extend it,

enabling the user to specify the two endpoints of a line segment and both

the center and the radius of a circle.

// Bresenham.java: Bresenham algorithms for lines and circles

// demonstrated by using superpixels.

import java.awt.*;

import java.awt.event.*;

public class Bresenham extends Frame {

public static void main(String[] args) {new Bresenham();}

Appendix E: Hints and Solutions to Exercises 357

Bresenham() {

super("Bresenham");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e)

{System.exit(0);}

});

setSize(340, 230);

add("Center", new CvBresenham());

setVisible(true);

}

}

class CvBresenham extends Canvas {

float rWidth = 10.0F, rHeight = 7.5F, pixelSize;

int centerX, centerY, dGrid = 10, maxX, maxY;

void initgr() {

Dimension d = getSize();

maxX = d.width - 1; maxY = d.height - 1;

pixelSize = Math.max(rWidth / maxX, rHeight / maxY);

centerX = maxX / 2; centerY = maxY / 2;

}

int iX(float x) {return Math.round(centerX + x / pixelSize);}

int iY(float y) {return Math.round(centerY - y / pixelSize);}

void putPixel(Graphics g, int x, int y) {

int x1 = x * dGrid, y1 = y * dGrid, h = dGrid / 2;

g.drawOval(x1 - h, y1 - h, dGrid, dGrid);

}

void drawLine(Graphics g, int xP, int yP, int xQ, int yQ) {

int x = xP, y = yP, D = 0, HX = xQ - xP, HY = yQ - yP,

c, M, xInc = 1, yInc = 1;

if (HX < 0) {xInc = -1; HX = -HX;}

if (HY < 0) {yInc = -1; HY = -HY;}

if (HY <= HX) {

c = 2 * HX; M = 2 * HY;

for (;;) {

putPixel(g, x, y);

if (x == xQ) break;

x += xInc;

D += M;

if (D > HX) {y += yInc; D -= c;}

}

358 Appendix E: Hints and Solutions to Exercises

} else {

c = 2 * HY; M = 2 * HX;

for (;;) {

putPixel(g, x, y);

if (y == yQ) break;

y += yInc; D += M;

if (D > HY) {x += xInc; D -= c;}

}

}

}

void drawCircle(Graphics g, int xC, int yC, int r) {

int x = 0, y = r, u = 1, v = 2 * r - 1, E = 0;

while (x < y) {

putPixel(g, xC + x, yC + y); // NNE

putPixel(g, xC + y, yC - x); // ESE

putPixel(g, xC - x, yC - y); // SSW

putPixel(g, xC - y, yC + x); // WNW

x++; E += u; u += 2;

if (v < 2 * E) {y--; E -= v; v -= 2;}

if (x > y) break;

putPixel(g, xC + y, yC + x); // ENE

putPixel(g, xC + x, yC - y); // SSE

putPixel(g, xC - y, yC - x); // WSW

putPixel(g, xC - x, yC + y); // NNW

}

}

void showGrid(Graphics g) {

for (int x = dGrid; x <= maxX; x += dGrid)

for (int y = dGrid; y <= maxY; y += dGrid)

g.drawLine(x, y, x, y);

}

public void paint(Graphics g) {

initgr();

showGrid(g);

drawLine(g, 1, 1, 12, 5);

drawCircle(g, 23, 10, 8);

}

}

4.5 Since an unknown number of curve segments are to be dealt with, we can use

the Java concept of Vector, as we have also done in Sect. 1.4 and elsewhere to
store Point2D objects representing the vertices of a polygon. In this case it

Appendix E: Hints and Solutions to Exercises 359

makes sense to define a class CurveSegment and to use a Vector of

CurveSegment objects, as this fragment shows:

class CurveSegment {

Point2D[] P;

CurveSegment(Point2D[] P){this.P = P;}

...

}

Writing

Vector curves = new Vector();

and using the array P, declared as

Point2D[] P = new Point2D[4];

containing the most recent four points, as we did in program Bezier.java in

Sect. 4.6, we can add a new curve segment to curves by writing

curves.addElement(new CurveSegment(P));

The object curves can store several curves, each consisting of some

consecutive elements.

4.6 In program Bspline.java of Sect. 4.7, pressing a key is interpreted as a signal

to terminate the process of extending the curve. Insert the line

char ch = evt.getKeyChar();

in the method keyTyped so that you can use the character ch to differentiate

between different characters entered by the user and to use them as

commands.

Use a Vector element for each array representing a curve. Recall that we

have used the statement

V.copyInto(P);

in the paint method of program Bspline.java, to copy the Vector object V into

the array P. Using a different Vector object, say, curves, we can now add the

array P to curves. The deletion of the last curve, as required by the

d command, is then implemented as

curves.setSize(curves.size()-1);

4.7 Represent the grid on the screen by drawing ten equidistant horizontal lines

that intersect ten equidistant vertical lines. If the user clicks on (or near) a

point of intersection of these lines, transform the device coordinates to

360 Appendix E: Hints and Solutions to Exercises

gridpoint coordinates, ranging from 0 through 9, and use these gridpoint

coordinates as to select P and Q. Draw the line PQ after Q has been defined.

On the right of all these horizontal and vertical lines, display the strings

algorithm[0], algorithm[1], ..., algorithm[7]

below each other, where the array algorithm is defined and initialized as

follows:

String[] algorithm = {

"int x=xP,y=yP,d=0,dx=xQ-xP,c=2*dx,", // 0

" m=2*(yQ-yP);", // 1

"for (;;) {", // 2

" putPixel(g, x, y);", // 3

" if (x == xQ) break;", // 4

" x++; d += m;", // 5

" if (d > dx){y++; d -= c;}", // 6

"}"}; // 7

As soon as the user has defined point Q, the line stored as algorithm[3]
should be highlighted, indicating that the call to putPixel is about to be

executed. You can realize this by using a variable, say i, indicating which of

the above eight program lines (if any) should be displayed in red (or equal to,

say,�1 if all program lines are to appear in black). All lines algorithm[j] with
j 6¼ i are displayed in black. You can use a switch statement to test the value of

i in a method stepPressed. For example, you can write a fragment of the

following form in the constructor of your canvas class:

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent evt) {

// When the mouse is clicked, determine where

// it is on the screen and do the appropriate

// action, if any.

int xClick = 0, yClick = 0;

// Get the coordinates

xClick = evt.getX();

yClick = evt.getY();

// Check to see if STEP button was pressed

if (point (xClick, yClick) lies within the

rectangle representing the Step button)

stepPressed();

else

if (point (xClick, yClick) lies within grid area {

...

}

repaint();

}

});

Appendix E: Hints and Solutions to Exercises 361

In the switch statement justmentioned, you should execute actions defined in

the program line (stored in the algorithm array) that was previously highlighted

and update the variable i mentioned above. Your method paint will use this

variable i to display the correct program line in red and the others in black.

5.1 As Fig. 5.11 shows, nine cube edges are visible and three are invisible. In the

paint method of program CubePers.java, replace the calls to the method line
with this fragment:

// Visible edges:

line(g, 0, 1); line(g, 1, 5); line(g, 5, 4); line(g, 4, 0);

line(g, 1, 2); line(g, 2, 6); line(g, 6, 7); line(g, 7, 4);

line(g, 5, 6);

// Invisible edges:

g.setColor(Color.blue);

line(g, 0, 3); line(g, 3, 2); line(g, 3, 7);

If you did Exercise 1.5 and have a class Lines, containing the method

dashedLine, available, you may be able to replace the last two of the above

lines with

dash(g, 0, 3); dash(g, 3, 2); dash(g, 3, 7);

while adding the following method to the class CvCubePers:

void dash(Graphics g, int i, int j) {

Point2D P = obj.vScr[i], Q = obj.vScr[j];

Lines.dashedLine(g, iX(P.x), iY(P.y), iX(Q.x), iY(Q.y), 8);

}

Figure E.1 shows the result of this solution with dashed lines.

Fig. E.1 Dashed lines representing invisible edges

362 Appendix E: Hints and Solutions to Exercises

5.2 There are two fillPolygonmethods: one taking aPolygon object as an argument

and the other taking two arrays x and y instead. In either case, do not forget to
convert logical to device coordinates, using the methods iX and iY. Use
setColor, with different colors before each of the three calls to fillPolygon.

5.3 To replace Fig. 5.11, begin by sketching two cubes, say, one on either side of

the xOz-plane, and by assigning the numbers 0–7 to the vertices of the first and

8–15 to those of second cube. With this sketch, and using arrays w and vScr
with length 16 instead of 8, you can easily update the program as requested.

Remember to increase the value of objSize, which is used to compute both the

object distance ρ and the screen distance d.
5.4 The following program demonstrates the principle of animation (with double

buffering) for a simple case: a line segment is rotated about one of its

endpoints, which is the center of the canvas. Every 20 ms, the angle α is

increased by 0.01 radians and the line from the origin O (in the center of the

canvas) to point (r cos α, r sin α) is drawn. The effect is that of a running clock
with only one hand:

// Anim.java: Animation with double buffering.

import java.awt.*;

import java.awt.event.*;

public class Anim extends Frame {

public static void main(String[] args) {new Anim();}

Anim() {

super("Animation (double buffering)");

addWindowListener(new WindowAdapter() {

publicvoidwindowClosing(WindowEvente){System.exit(0);}

});

add("Center", new CvAnim());

Dimension dim = getToolkit().getScreenSize();

setSize(dim.width / 2, dim.height / 2);

setLocation(dim.width / 4, dim.height / 4);

setVisible(true);

}

}

class CvAnim extends Canvas implements Runnable {

float rWidth = 10.0F, rHeight = 10.0F, xC, yC, pixelSize;

int centerX, centerY, w, h;

Dimension d;

Image image;

Graphics gImage;

float alpha = 0;

Thread thr = new Thread(this);

Appendix E: Hints and Solutions to Exercises 363

public void run() {

try {

for (;;) {

alpha += 0.01;

repaint();

Thread.sleep(20);

}

} catch (InterruptedException e) {

}

}

CvAnim() {

thr.start();

}

void initgr() {

d = getSize();

int maxX = d.width - 1, maxY = d.height - 1;

pixelSize = Math.max(rWidth / maxX, rHeight / maxY);

centerX = maxX / 2; centerY = maxY / 2;

xC = rWidth / 2; yC = rHeight / 2;

}

int iX(float x) {return Math.round(centerX + x / pixelSize);}

int iY(float y) {return Math.round(centerY - y / pixelSize);}

public void update(Graphics g) {paint(g);}

public void paint(Graphics g) {

initgr();

if (w != d.width || h != d.height) {

w = d.width; h = d.height;

image = createImage(w, h);

gImage = image.getGraphics();

}

float r = 0.8F * Math.min(xC, yC),

x = r * (float) Math.cos(alpha),

y = r * (float) Math.sin(alpha);

gImage.clearRect(0, 0, w, h);

// Every 20 ms, the following line is drawn.

// Each time, its endpoint (x, y) is a

// different point on a circle:

gImage.drawLine(iX(0), iY(0), iX(x), iY(y));

g.drawImage(image, 0, 0, null);

}

}

364 Appendix E: Hints and Solutions to Exercises

5.5 The following program produces two rotating cubes, illustrated by 5.15.

Remember, this program works only if the class file Rota3D.class (see

Sect. 3.9) is available in the current directory:

// CubRot2.java: Two rotating cubes with double buffering.

// Uses: Point2D (Section 1.4),

// Point3D, Rota3D (Section 3.9)

import java.awt.*;

import java.awt.event.*;

public class CubRot2 extends Frame {

public static void main(String[] args) {new CubRot2();}

CubRot2() {

super("Rotating cubes (double buffering)");

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

});

add("Center", new CvCubRot2());

Dimension dim = getToolkit().getScreenSize();

setSize(3 * dim.width / 4, dim.height / 2);

setLocation(dim.width / 8, dim.height / 4);

setVisible(true);

}

}

class CvCubRot2 extends Canvas implements Runnable {

int centerX, centerY, w, h;

Obj2 obj = new Obj2();

Image image;

Graphics gImage;

double alpha = 0;

Thread thr = new Thread(this);

public void run() {

try {

for (;;) {

alpha += 0.01;

repaint();

Thread.sleep(20);

}

} catch (InterruptedException e) {

}

}

Appendix E: Hints and Solutions to Exercises 365

CvCubRot2() {thr.start();}

public void update(Graphics g) {paint(g);}

int iX(float x) {return Math.round(centerX + x);}

int iY(float y) {return Math.round(centerY - y);}

void line(int i, int j) {

Point2D P = obj.vScr[i], Q = obj.vScr[j];

gImage.drawLine(iX(P.x), iY(P.y), iX(Q.x), iY(Q.y));

}

public void paint(Graphics g) {

Dimension dim = getSize();

int maxX = dim.width - 1, maxY = dim.height - 1;

centerX = maxX / 2; centerY = maxY / 2;

int minMaxXY = Math.min(maxX, maxY);

obj.d = obj.rho * minMaxXY / obj.objSize;

obj.rotateCube(alpha);

obj.eyeAndScreen();

if (w != dim.width || h != dim.height) {

w = dim.width; h = dim.height;

image = createImage(w, h);

gImage = image.getGraphics();

}

gImage.clearRect(0, 0, w, h);

// Horizontal edges at the bottom:

line(0, 1); line(1, 2); line(2, 3); line(3, 0);

// Horizontal edges at the top:

line(4, 5); line(5, 6); line(6, 7); line(7, 4);

// Vertical edges:

line(0, 4); line(1, 5); line(2, 6); line(3, 7);

// Same for second cube:

line(8, 9); line(9, 10); line(10, 11); line(11, 8);

// Horizontal edges at the top:

line(12, 13); line(13, 14); line(14, 15);

line(15, 12);

// Vertical edges:

line(8, 12); line(9, 13); line(10, 14); line(11, 15);

g.drawImage(image, 0, 0, null);

}

}

366 Appendix E: Hints and Solutions to Exercises

class Obj2 { // Contains 3D object data for two cubes

float rho, theta = 0F, phi = 1.3F, d;

Point3D[] s, w; // World coordinates

Point2D[] vScr; // Screen coordinates

float v11, v12, v13, v21, v22, v23,

v32, v33, v43, // Elements of viewing matrix V.

xe, ye, ze, objSize = 8;

Obj2() {

s = new Point3D[16]; // Start situation

w = new Point3D[16]; // After rotation

vScr = new Point2D[16];

// Bottom surface:

s[0] = new Point3D(1, -3, -1);

s[1] = new Point3D(1, -1, -1);

s[2] = new Point3D(-1, -1, -1);

s[3] = new Point3D(-1, -3, -1);

// Top surface:

s[4] = new Point3D(1, -3, 1);

s[5] = new Point3D(1, -1, 1);

s[6] = new Point3D(-1, -1, 1);

s[7] = new Point3D(-1, -3, 1);

// Bottom surface:

s[8] = new Point3D(1, 1, -1);

s[9] = new Point3D(1, 3, -1);

s[10] = new Point3D(-1, 3, -1);

s[11] = new Point3D(-1, 1, -1);

// Top surface:

s[12] = new Point3D(1, 1, 1);

s[13] = new Point3D(1, 3, 1);

s[14] = new Point3D(-1, 3, 1);

s[15] = new Point3D(-1, 1, 1);

rho = 15; // For reasonable perspective effect

}

void rotateCube(double alpha) {

Rota3D.initRotate(s[0], s[4], alpha);

for (int i = 0; i < 8; i++)

w[i] = Rota3D.rotate(s[i]);

Rota3D.initRotate(s[13], s[9], 2 * alpha);

for (int i = 8; i < 16; i++)

w[i] = Rota3D.rotate(s[i]);

}

Appendix E: Hints and Solutions to Exercises 367

void initPersp() {

float costh = (float) Math.cos(theta),

sinth = (float) Math.sin(theta),

cosph = (float) Math.cos(phi),

sinph = (float) Math.sin(phi);

v11 = -sinth; v12 = -cosph * costh; v13 = sinph * costh;

v21 = costh; v22 = -cosph * sinth; v23 = sinph * sinth;

v32 = sinph; v33 = cosph;

v43 = -rho;

}

void eyeAndScreen() {

initPersp();

for (int i = 0; i < 16; i++) {

Point3D P = w[i];

float x = v11 * P.x + v21 * P.y;

float y = v12 * P.x + v22 * P.y + v32 * P.z;

float z = v13 * P.x + v23 * P.y + v33 * P.z + v43;

Point3D Pe = new Point3D(x, y, z);

vScr[i] =

new Point2D(-d * Pe.x / Pe.z,

-d * Pe.y / Pe.z);

}

}

}

5.6 A program to generate an open book is shown below. It was executed twice

(with n¼ 4 and n¼ 150) to produce the two open books of Fig. 5.26. Refer to

the analysis of Exercise 5.7 below for the way we design this type of

programs.

// BookView.java: Generating a data file for an open book.

import java.io.*;

public class BookView

{ public static void main(String[] args)

throws IOException {

if (args.length != 4) {

System.out.println(

"Supply nr of sheets, width, height and file name\n"+

"as program arguments.");

System.exit(1);

}

int n;

float w, h;

368 Appendix E: Hints and Solutions to Exercises

FileWriter fw;

n = Integer.valueOf(args[0]).intValue();

w = Float.valueOf(args[1]).floatValue();

h = Float.valueOf(args[2]).floatValue();

fw = new FileWriter(args[3]);

int spineTop = 1, spineBottom = 2, outerTop, outerBottom;

float theta = (float)Math.PI/(n - 1);

float xTop = 0, xBottom = h;

fw.write(spineTop + " " + xTop + " 0 0\r\n");

fw.write(spineBottom + " " + xBottom + " 0 0\r\n");

for (int i=0; i<n; i++) {

float phi = i * theta,

y = w * (float)Math.cos(phi),

z = w * (float)Math.sin(phi);

outerTop = 2 * i + 3; outerBottom = outerTop + 1;

fw.write(outerTop + " " + xTop + " " +

y + " " + z + "\r\n");

fw.write(outerBottom + " " + xBottom + " " +

y + " " + z + "\r\n");

}

fw.write("Faces:\r\n");

for (int i=0; i<n; i++) {

outerTop = 2 * i + 3; outerBottom = outerTop + 1;

fw.write(spineTop + " " + spineBottom + " "

+ outerBottom + " " + outerTop + ".\r\n");

fw.write(spineTop + " " + outerTop + " "

+ outerBottom + " " + spineBottom + ".\r\n");

}

fw.close();

}

}

5.7 Before writing the program code we have to assign numbers to vertices and

find mathematical expression for the x-, y- and z-coordinates of these vertices.
We will now discuss how this can be done for a sphere, but the same approach

applies to any program that generates 3D data files.

The model of a sphere in question has two poles; let us assign vertex

number 1 to the north pole. Since it is given that there are n horizontal slices,

there will be n� 1 horizontal planes between them, each corresponding with a

horizontal circle, or line of latitude, on the sphere. There will also be 2n
vertical circles, or lines of longitude. Every vertex (other than the two poles)

of our sphere model is a point of intersection of such a horizontal and a

vertical circle. As for the faces, 2 � 2n of them are triangles at the two poles.

There are n � 2 remaining horizontal slices, so that the number of remaining

faces is equal to (n � 2) � (2n) ¼ 2n(n � 2). Each of these is a parallelogram

Appendix E: Hints and Solutions to Exercises 369

with two horizontal edges. Altogether, there are 4n + 2n(n � 2) ¼ 2n2 faces,
and, as we will see below, 2(n2 � n + 1) vertices.

We will use two angles, θ and φ, as shown in Fig. 5.3. Using a sphere

radius 1, we can express the level of the n � 1 horizontal circles by their z-
coordinate

z ¼ cos φ

Writing δ ¼ π/n, we will only use horizontal circles corresponding to the

following angles:

φ ¼ i� δ i ¼ 1; 2; . . . ; n� 1ð Þ

On each of these circles we have to use 2n vertices, which correspond to

the angles

θ ¼ j� δ j ¼ 0; 1; . . . ; 2n� 1ð Þ

Thus, each pair (i, j) is associated with a vertex, so that we can devise a

means of associating a vertex number with it. Since 1 has been used for the

north pole, we start with vertex number 2 on circle i ¼ 1. With 2n vertices on
each horizontal circle, the first vertex number available for circle i¼ 2 will be

2n + 2, and for circle i ¼ 3 it will be 4n + 2, and so on. In general, on circle i,
we begin with number (i � 1) � 2n + 2. Since on each circle there are 2n
vertices, identified as j ¼ 0, . . ., 2n � 1, we have

number for vertex i; jð Þ ¼ i� 1ð Þ � 2nþ 2þ j

As we have seen in Sect. 5.2, the x-, y- and z-coordinates for this vertex
(i, j) is computed as x¼ sin φ cos θ, y¼ sin φ sin θ and z¼ cos φ, where θ and
φ depend upon i and j as shown above.

Finally, we have to assign a vertex number to the south pole. As we already

have used 1 + (n � 1) � 2n vertex numbers, the one for the south pole will be

1þ n� 1ð Þ � 2nþ 1 ¼ 2 n2 � nþ 1
� �

which is at the same time the total number of vertices.

5.8 Analyze this problem in the same way as was done for Exercise 5.7. Here each

triangle (at the south pole) and each parallelogram is to be specified both

counter-clockwise and clockwise, since either side of the curved surface can

in principle be visible. Unlike Exercise 5.7, we had better use the variable

n for the number of slices of half the sphere in this problem, so that there are

4n instead of 2n vertices on every horizontal circle that we use, giving

altogether n � 4n + 1 ¼ 4n2 + 1 vertices.

5.9 Use program arguments for the numbers of squares in each of the three

directions x, y and z. Remember, the word Faces can occur only once in the

370 Appendix E: Hints and Solutions to Exercises

file, so we have to specify the vertices of all cubes before we start specifying
the faces.

5.10 Let us start with a torus such as the one in Sect. D.3, that is, a horizontal one

with O as its center, and let the second torus be a vertical one, with its center

on the positive x-axis. We will make the sizes of the tori and their numbers of

vertices identical; only their positions are different. As in Sect. D.3, the size of

a torus (and its shape) is completely determined by the radii R and r, where
r ¼ 1. Since the hole in each torus must be wide enough for the other to pass

through, it is required that R � 2r, that is, R � 2.

For each vertex of the first torus, there is a corresponding one on the

second. As we have seen in Sect. D.3 there are n2 vertices for each torus, so

that we can use the numbers i and i + n2 for each pair of corresponding

vertices. To obtain the second torus, we have to shift the first one a distance

R towards the positive x-axis, after which we turn it through the x-axis though
90�. (Because of this special angle, no complicated computations are required

for this rotation, so it is not worthwhile to use the class Rota3D of Sect. 3.9 in

this case.) Writing (x, y, z) for vertex i and (x0, y0, z0) for the corresponding

vertex i + n2, we now have x0 ¼ x + R, y0 ¼ �z, z0 ¼ y.
Although, in the first part of 3D data files, we usually supply the vertices in

ascending order of the vertex numbers, this is not required. It is therefore

possible to write pairs of lines of the following form in the first part of the data

file:

i x y z

iþ n2 x0 y0 z0

Similarly, in the second part of the file, we can write faces in pairs, with

vertex numbers in the second face of each pair n2 higher than those of the first
of that pair. In this way, the desired program for two tori can be obtained from

Torus.java by adding only a few statements.

5.11 If necessary, you might refer to the method genCylinder in program Cylinder.
java of Sect. 5.8 for the cylindrical pole in the middle of the staircase. If you

do, bear in mind that the situation here is simpler because this cylinder is solid

(as is the case in program Cylinder.java with rInner ¼ 0). You can use

program Beams.java of Sect. D.4 to see how the steps can be constructed, or

you can use the class Rota3D (see also Exercise 5.5), provided that you also

perform a translation, adding a constant to the z-coordinates of each new step.

As for the railing, recall that the data file, after the word Faces, can contain

line segments specified as two vertex numbers followed by a period, as we

have discussed in Sect. 5.5.

5.12 This part of the game needs to be runnable by generating shapes randomly and

moving the current shape automatically in a constant speed. Rather than using

a button, we could draw a rectangle and detect the position (i.e. the x and

y coordinates) of each click to determine if the user has clicked the button. All

the coordinates in the game should be relative to every component (rather than

absolute).

Appendix E: Hints and Solutions to Exercises 371

Suppose the main class is TetrisMoving and we use the canvas class

CvTetrisMoving. Then the following fragments show how to react to mouse

wheel events in addition to left and right mouse clicks:

import java.awt.event.*;

...

class CvTetrisMoving extends Canvas

implements Runnable, MouseListener, MouseWheelListener {

...

CvTetrisMoving() { // Constructor

addMouseListener(this);

addMouseWheelListener(this);

...

}

public void mousePressed(MouseEvent e) {

int x = e.getX(), y = e.getY();

...

boolean

leftButton =

(e.getModifiers() & InputEvent.BUTTON1_MASK) != 0,

rightButton =

(e.getModifiers() & InputEvent.BUTTON3_MASK) != 0;

...

}

}

public void mouseReleased(MouseEvent e) {}

public void mouseEntered(MouseEvent e) {}

public void mouseClicked(MouseEvent e) {}

public void mouseExited(MouseEvent e) {}

public void mouseWheelMoved(MouseWheelEvent e) {

int rot = e.getWheelRotation();

// scroll downward: rot = +1

// scroll upward: rot = -1

...

}

...

}

As for animation, refer to the hint given for Exercise 5.4.

6.1 The desired input file is listed below:

1 1 -1 0

2 1 1 0

3 -1 1 0

372 Appendix E: Hints and Solutions to Exercises

4 -1 -1 0

5 0 0 -2

6 0 0 2

Faces:

1 2 3 4.

4 3 2 1.

5 6.

6.2 Use the vertices 1, 2 and 3 as triangle vertices in the plane z ¼ 0, such that the

origin O lies inside the triangle. Let vertex 4 be the origin and vertices 5 and

6 the same line endpoints as in the above solution to Exercise 6.1. Then, when

specifying the triangle, use the invisible lines 1-4, 2-4 and 3-4 in the same way

as the line 7-10 in Fig. 5.13. In other words, define each of the two sides of the

triangle as a rather complex polygon, specified as a sequence of ten numbers

by visiting, for example, the vertices 1, 2, 4, 2, 3, 4, and so on, in that order,

using some minus signs in the same way as was done for Fig. 5.13.

6.3 See Sect. 5.5 for holes in polygons. Fig. 6.17 was obtained by using a data file

of the same structure as the above one (see Exercise 6.1), but with 16 vertices

and four faces. Based on Fig. E.2, the first of these faces was specified as

follows:

1 2 3 -7 6 5 8 7 -3 4.

6.4 A simple solution to this problem is obtained by adding some code to draw all
polygon edges (visible as well as invisible) as dashed lines. In addition to this,

the visible edges are drawn as solid lines without any modification to the

hidden-line algorithm. In other words, every visible edge is drawn as coin-

ciding solid and dashed lines, which gives the effect of a solid line. Although

HP-GL provides the command LT (Line Type) to draw dashed lines, we

obtain better results if we draw our own, computed dashes, which are required

for screen output anyway. Note that every dashed line in Fig. 6.18 begins and

ends with a dash of the same length as the other ones. To implement all this,

use the following file HLinesDashed.java instead of HLines.java:

Fig. E.2 One of the four

faces for the square rings

of Fig. 6.17

Appendix E: Hints and Solutions to Exercises 373

// HLinesDashed.java: Perspective drawing with

// hidden-line elimination.

// Hidden lines are drawn as dashed lines.

import java.awt.*;

public class HLinesDashed extends Frame {

public static void main(String[] args) {

new Fr3DHDashed(args.length > 0 ? args[0] : null,

new CvHLinesDashed(), "Hidden-lines dashed");

}

}

Class Fr3DHDashed is defined in the following file:

// Fr3DHDashed.java: Frame class for HLinesDashed.java.

// This class extends Fr3D to enable writing HP-GL output files.

import java.awt.*;

import java.awt.event.*;

class Fr3DHDashed extends Fr3D {

private MenuItem exportHPGL;

CvHLinesDashed cv;

Fr3DHDashed(String argFileName, CvHLinesDashed cv,

String textTitle) {

super(argFileName, cv, textTitle);

exportHPGL = new MenuItem("Export HP-GL");

mF.add(exportHPGL);

exportHPGL.addActionListener(this);

this.cv = cv;

}

public void actionPerformed(ActionEvent ae) {

if (ae.getSource() instanceof MenuItem) {

MenuItem mi = (MenuItem)ae.getSource();

if (mi == exportHPGL) {

Obj3D obj = cv.getObj();

if (obj != null) {

cv.setHPGL(new HPGL(obj));

cv.repaint();

}

else

Toolkit.getDefaultToolkit().beep();

}

else

374 Appendix E: Hints and Solutions to Exercises

super.actionPerformed(ae);

}

}

}

Use a copy of the file CvHLines.java, change the class name into

CvHLinesDashed and apply further modifications as follows.

(a) Disable back-face culling by deleting the following program line in the

method buildLineSet.

if (n > 2 && pol.getH() > 0) continue;

(b) Add the following method to the class:

void dashedLine(Graphics g, float xA, float yA,

float xB, float yB, float dashLength) {

float u1 = xB - xA, u2 = yB - yA,

len = (float)Math.sqrt(u1 * u1 + u2 * u2);

int n = Math.round((len/dashLength + 1)/2);

float h1 = u1/(2 * n - 1), h2 = u2/(2 * n - 1);

for (int i=0; i<n; i++) {

float x1 = xA + 2 * i * h1, y1 = yA + 2 * i * h2,

x2 = x1 + h1, y2 = y1 + h2;

drawLine(g, x1, y1, x2, y2);

if (hpgl != null) {

hpgl.write("PU;PA" + hpx(x1) + "," + hpy(y1) + ";");

hpgl.write("PD;PA" + hpx(x2) + "," + hpy(y2) + ";\n");

}

}

}

(c) At the beginning of method lineSegment, insert the following

if-statement:

if (iStart == 0)

dashedLine(g, pScr.x, pScr.y, qScr.x, qScr.y, 5);

6.5 In Fig. E.3, the two outer faces on the left and right are parallel, but the

corresponding inner faces are not, as the distances 18 and 19 indicate.

The latter faces, which are visible here, become invisible if we view the

object from very far away, as Fig. E.4 shows.

Recall that, with eye-coordinates, the x-axis points to the right, the y-axis
upwards and the z-axis towards us. Let us focus on the inner face that is visible

Appendix E: Hints and Solutions to Exercises 375

in Fig. E.3 on the right but invisible in Fig. E.4. Estimating the normal vector

n¼ (a, b, c) and the value h, as specified in the Exercise, for this face, we find:

a is almost equal to �1, because n almost points toward the negative x-axis;
b is almost zero, but positive because we view the object slightly from above;

c is almost zero, but negative because n points a little to the back.

These values, and in particular c, are independent of the viewing distance.

By contrast, the inner product h¼ n � x, where x is a vector from the viewpoint

E to any point of the face in question, depends on the viewing distance. You

should verify this by drawing a sketch similar to Fig. 6.19 but applied to this

example. As a result, you will find that h is negative in Fig. E.3 but positive in
Fig. E.4. This example demonstrates that, to determine if a face is a backface,

we should use the sign of h, not that of c. The correct practice of using h for

this purpose is equivalent to back-face culling based on the orientation of

three points: if this orientation on the screen is the same as when the object

is viewed from outside, the face is visible. Using c instead of h would be

Fig. E.3 Object nearby: two inner faces visible

Fig. E.4 The same object far away: two inner faces invisible

376 Appendix E: Hints and Solutions to Exercises

equivalent to using the eye-coordinates x and y instead of the screen coordinates
in determining the orientation of image points. This would work correctly for

most situations, but it may result in wrongly deciding that faces are invisible,

especially if the object is viewed from nearby, as Fig. E.3 illustrates.

6.6 We can use back-face culling to decide which faces of the cube are visible.

Refer to the solutions to Exercises 5.4 and 5.5 for the implementation of

animation and rotation, respectively.

6.7 In the previous exercise we could have realized the effect of a rotation about a

vertical axis by changing the angle θ and leaving the cube unchanged. This is
no longer the case here because we now want to use two rotations. Fig. 6.20

was obtained by rotating each cube about one of its vertical edges, with

different rotation speeds, the latter simply meaning that we use different

angles in each step. As in the solution to Exercise 5.5, you need to supply

only one method run, in which only one infinite loop occurs.

6.8 Change the class CvPaint (in the program file Painter.java) as follows:

(a) At the beginning of the class CvPaint, before {, add the line

implements Runnable

(b) After {, add the following lines:

Image image;

Graphics gImage;

double sunTheta = 0;

Thread thr = new Thread(this);

(c) Insert the method run, similar to the one given above for Exercise 5.4, but

containing statements to update the spherical coordinate sunTheta and the
variables obj.sunX and obj.sunY; you can use a constant value for sunPhi,
which makes obj.sunZ also a constant. By using spherical coordinates,

with radius ρ ¼ 1, the light vector will have length 1.

(d) Insert the program lines

int w, h;

CvPainter(){thr.start();}

public void update(Graphics g){paint(g);}

(e) Modify the paintmethod, using the variables image and gImage besides g,
in about the same way as was done in program Anim.java, listed above as
help for Exercise 5.4.

6.9 For the format of the desired file see the file for Exercise 6.1. As for the

program to generate 3D data files, refer to Sect. 5.8 and Appendix D, if

necessary.

Appendix E: Hints and Solutions to Exercises 377

7.1 After defining

final int WHITE = 0xFFFFFF, MAGENTA = 0xFF00FF,

YELLOW = 0xFFFF00, CYAN = 0x00FFFF;

it will be clear that the color of the upper part of the upper circle can be set by

g2.setColor(new Color(MAGENTA));

For the red intersection (see Fig. 7.2b), we can demonstrate the subtractive

nature of the color system by obtaining the color red as the difference of

WHITE and MAGENTA ^ YELLOW. Here ^ is the bitwise exclusive-OR

operator: 0 ^ 0 ¼ 0, 0 ^ 1 ¼ 1, 1 ^ 0 ¼ 1, 1 ^ 1 ¼ 0.

Using this, we can write

int red = WHITE - (MAGENTA ^ YELLOW);

g2.setColor(new Color(red));

g2.fill(intersectTopLeft);

The colors green and blue for the other two intersections can be computed

from WHITE, MAGENTA, YELLOW, and CYAN in a similar way.

7.2 With screen coordinates of a triangle ABC stored in the arrays x and y, and for
some not too small int value n, you may generate a great many points P inside

the triangle by interpolation among A, B and C as follows:

for (int ia=0; ia<=n; ia++)

for (int ib = 0; ib<=n-ia; ib++){

int ic = n - ia - ib;

double a = ia/(double)n, b = ib/(double)n, c = ic/(double)n;

// a + b + c = 1, a, b, and c non-negative

int xP = (int) (a * x[0] + b * x[1] + c * x[2] + 0.5),

yP = (int) (a * y[0] + b * y[1] + c * y[2] + 0.5);

...

}

Since the colors of the vertices A, B and C are given (see Fig. 7.5), you can

compute the R, G, and B values of point P by interpolating in a similar way.

Then fill a tiny rectangle at P with this computed color. You may do this in a

modified version of class CvPainter, see Sect. 6.3.
7.3 You may adapt and combine the programs Transparency.java and Texture.

java in Sects. 7.5 and 7.6, while properly position the three letters A so that

they overlap to show the transparency effects.

7.4 Try several values for the constants used in the method setSpecular, to obtain
pleasing results.

378 Appendix E: Hints and Solutions to Exercises

8.1 In the program FractalGrammars.java, there is the following fragment, which

draws a line from the current point (xLast, yLast) to the new point (xLast + dx,
yLast + dy), which, after the call to drawTo, will automatically be the current

point (xLast, yLast).

case ’F’: // Step forward and draw

// Start: (xLast, yLast), direction: dir, steplength: len

if (depth == 0) {

double rad = Math.PI/180 * dir, // Degrees -> radians

dx = len * Math.cos(rad), dy = len * Math.sin(rad);

drawTo(g, xLast + dx, yLast + dy);

}

Besides xLast and yLast, introduce the variables xCorner and yCorner,
indicating the cornerpoints that we will not really visit because of the rounded

corners. Each time, instead of drawing a line as discussed above, draw two

lines. The first is one from the current point (xLast, yLast) to (xCorner + dx/4,
yCorner + dy/4) to approximate the rounded corner. After this, the point just

mentioned is now automatically stored as the new point (xLast, yLast) to

enable you to used drawTo again. Then update the variables xCorner and

yCorner by increasing them by dx and dy, respectively, so they indicate the

next cornerpoint. Then you draw the second line, from the current point

(xLast, yLast) to (xCorner � dx/4, yCorner � dy/4). Note that this last line

is half as long as the full line drawn in the above fragment, since a quarter of it

at the beginning and a quarter of it at the end are now replaced with the

approximated rounded corners.

8.2 In the paint method of the program Koch.java in Sect. 8.2, there is only one

call to drawKoch preceded by setting dir¼ 0. All you have to do is adding two

other such calls, each preceded by assigning an appropriate value to dir so that
the turtle starts in the right direction.

8.3 This hint is based on the program FractalGrammars.java and the string

grammar Tree2 of Sect. 8.3. In this example, we have

strX ¼ }F þX½ �F �X½ � þ X}

Each branch was drawn as a filled polygon instead of as a simple line

segment by the following modified drawTo method:

void drawTo(Graphics g, double x, double y) {

double r = rLast * 0.9;

double dx = x - xLast, dy = y - yLast;

double h = rLast * dy, v = rLast * dx, h1 = r * dy, v1 = r * dx;

double [] xPol = {xLast + h, x + h1, x - h1, xLast - h},

yPol = {yLast - v, y - v1, y + v1, yLast + v};

int xDev[] = new int[4], yDev[] = new int[4];

Appendix E: Hints and Solutions to Exercises 379

for (int i=0; i<4; ++i) {

xDev[i] = iX(xPol[i]);

yDev[i] = iY(yPol[i]);

}

g.fillPolygon(xDev, yDev, 4);

xLast = x;

yLast = y;

rLast = r;

}

8.4 Using the same string strX as in Exercise 8.3, each time the second F in this

string is encountered a branch is drawn that should have a leaf at its end. So in

the switch statement you should add a fragment to draw a leaf in the case F
part after the call to drawTo, provided that the position counter i for strX is

equal to 5. One way of drawing a closed figure that approximates the shape of

a leaf is by drawing a sequence of filled circles (by means of drawOval) whose
centers lie on a line that has the same direction (dx, dy) as the branch in

question.

8.5 Use methods iX and iY to convert logical to device coordinates and methods fx
and fy for the inverse conversions. Restricting this discussion to x-coordinates,
we can use

int iX(float x) {

return (int)(xDevCenter + (x - xLogCenter)/pixelSize);

}

float fx(int x) {

return xLogCenter + (x - xDevCenter) * pixelSize;

}

As usual, we use d defined as

Dimension d = getSize();

Let us denote the current boundaries of the logical x-coordinates by xLeft
and xRight.

For example, we can initially set these boundaries equal to those of the

device coordinates, that is, to 0 and d.width(), respectively. In the method

mouseReleased, we obtain the device coordinates xs and xe for the left and

right boundaries of the cropping rectangle. We then apply the method fx to

these to obtain the corresponding logical coordinates, writing, for example,

xLeftNew = fx(xs);

xRightNew = fx(xe);

380 Appendix E: Hints and Solutions to Exercises

Then these new values are assigned to xLeft and xRight, and then used to

compute

pixelSize = Math.max((xRight - xLeft)/d.width,

(yTop - yBottom)/d.height);

xLogCenter = (xLeft + xRight)/2;

Let us now discuss the plausibility of these statements (rather than proving

them rigorously). Normally, mouseRelease provides us with a range (xs, xe)
that is smaller than the width of the drawing rectangle. Then after applying fx
and fy, the new logical x-range (xLeft, xRight) will also decrease, and the same

applies to pixelSize. As a result of the latter, the value added to xDevCenter in
the above method iX will be larger than it was before, so that the figure will

appear on a larger scale. As for panning, let us assume that the new x-range

selected by the user is on the left half of the screen. Then the new center

xLogCenter of the logical x-range will be smaller than it was before, which

will increase the value computed by the method iX. This should indeed be the
case, since the part of the image displayed in the selected x-range on the left

half of the screen should be displayed in the center of the drawing rectangle,

or, in other words, it should shift to the right.

8.6 Modify the MandelbrotZoom.java program and the paint method for Julia

sets. Combine the two programs so that the latter will draw Julia sets in a side

window.

Appendix E: Hints and Solutions to Exercises 381

Bibliography

1. Ammeraal, L.: Algorithms and Data Structures in C++. Wiley, Chichester (1996)

2. Ammeraal, L.: Computer Graphics for Java Programmers. Wiley, Chichester (1998)

3. Ammeraal, L., Zhang, K.: Computer Graphics for Java Programmers, 2nd edn. Wiley, Chich-

ester (2007)

4. Arnold, K., Gosling, J.: The Java Programming Language. Addison-Wesley, Reading (1996)

5. Burger, P., Gillies, D.: Interactive Computer Graphics. Addison-Wesley, Wokingham (1989)

6. Coxeter, H.S.M.: Introduction to Geometry. Wiley, New York (1961)

7. Flanagan, D.: Java in a Nutshell, 2nd edn. O’Reilly, Cambridge, MA (1997)

8. Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F., Phillips, R.L.: Computer Graphics –

Principles and Practice, 2nd edn. Addison-Wesley, Reading (1990)

9. Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Introduction to Computer Graphics.

Addison-Wesley, Reading (1994)

10. Glassner, A.S.: Graphics Gems. Academic Press, Boston (1990)

11. Gosling, J., Yellin, F.: The Java Application Programming Interface. Addison-Wesley, Read-

ing (1996)

12. Gossett, N., Chen, B.: Paint Inspired Color Mixing and Compositing for Visualization. Pro-

ceedings of IEEE Symposium on Information Visualization (InfoVis-2004), pp. 113–117.

IEEE CS Press (2004)

13. Hearn, D., Baker, M.P.: Computer Graphics. Prentice-Hall, Englewood Cliffs (1986)

14. Hill Jr., F.S.: Computer Graphics Using Open GL, 2nd edn. Prentice-Hall, Upper Saddle River

(2001)

15. Horstmann, C.S., Cornell, G.: Core Java. Sun Microsystems, Inc., Mountain View (1997)

16. Kreyszig, E.: Advanced Engineering Mathematics. Wiley, New York (1962)

17. Munsell, A.H.: A Color Notation. Munsell Color Company, Boston (1905)

18. Munsell, A.H.: A Grammar of Color: A Basic Treatise on the Color System of Albert

H. Munsell. Van Nostrand Reinhold, New York (1969)

19. Newman, M.N., Sproull, R.F.: Principles of Interactive Computer Graphics. McGraw-Hill,

New York (1979)

20. O’Rourke, J.: Computational Geometry in C. Cambridge University Press, Cambridge (1993)

21. Penrose, R.: The role of aesthetics in pure and applied research. Bull. Inst. Maths. Appl. 10,
266 (1974)

22. Rokne, J.G., Wyvill, B., Wu, X.: Fast line scan-conversion. ACM Trans. Graph. 9(4), 376–388
(1990)

23. Salmon, R., Slater, M.: Computer Graphics – Systems & Concepts. Addison-Wesley,

Wokingham (1987)

© Springer International Publishing AG 2017

L. Ammeraal, K. Zhang, Computer Graphics for Java Programmers,
DOI 10.1007/978-3-319-63357-2

383

24. Watt, A.: Fundamentals of Three-Dimensional Computer Graphics. Addison-Wesley,

Wokingham (1989)

25. Wu, X., Rokne, J.G.: Double-step incremental generation of lines and circles. Comput. Vis.

Graph. Image. Process. 37, 331–344 (1987)

26. Zhang, K.: From abstract painting to information visualization. IEEE. Comput. Graph. Appl.

May/June, 12–16 (2007)

384 Bibliography

Index

A
AbstractWindows Toolkit (AWT), 1

Additive color, 227

Alpha channel, 232

Ambient light, 245

Animation, 185

Anisotropic mapping mode, 13–16

Area2 (for polygon), 39

Area2 (for triangle), 36

B
Back-face culling, 195–200

Background color, 5

Bézier curve, 118

BorderLayout, 180

Bresenham’s algorithm for circles, 103

B-spline curve fitting, 128

Bump mapping, 240

C
Camera, 137

Canvas, 3

ccw (for polygon), 38

Chroma, 234

Circle, 102

Circumscribed circle, 59

Cohen-Sutherland line clipping, 106–112

Color coding scheme, 230

Color look up table (CLUT), 230

Complex numbers, 269

Concave polygon, 38

Contains (Java method), 43
Continuous interval, 12–13

Coordinate system, 31

Coordinate system (changing), 78

Counter-clockwise, 35, 75

Cropping, 275

Cross product, 32

Cube, 145

Curve fitting, 118

Curved surface, 206

CvDefPoly class, 22
Cyan, magenta and yellow (CMY), 228

Cylinder, 177

D
Dashed line, 27

Delaunay, 45

Device coordinates, 4, 7

Diffuse reflection, 245

Distance between point and line, 57–58

Dot product, 31

Double buffering, 185

Dragon curve, 258

drawLine, 1, 96
drawOval, 102

E
Eye coordinates, 143

Eye position, 137

F
Faces (in 3D data files), 206

File menu, 206

Fillet, 59

© Springer International Publishing AG 2017

L. Ammeraal, K. Zhang, Computer Graphics for Java Programmers,
DOI 10.1007/978-3-319-63357-2

385

fillPolygon, 196
fillRect, 6
Flat shading, 244

Foreground color, 5

Fractal, 253

Frame, 4

Frame buffer, 230

Function of two variables, 217

G
getSize, 4
Globe model, 186

Grammar, 262

Graphics2D, 237

H
Hilbert curve, 258

Holes in faces, 151

Hollow cylinder, 177

Hollow prism, 177

Horizon, 137

Horner’s rule, 128
HSV, 234

Hue, 234

Hue, Saturation, Luminance (HSL), 234

I
Image size, 145

Inner product, 31

inscribed circle, 60
insidePolygon, 42
insideTriangle, 41
Interpolation for z, 208
Inverse matrix, 73

Isotropic mapping mode, 16–19

J
Java Development Kit (JDK), 2

Julia, 278

K
Kandinsky, 229

Koch, 253

L
Lambertian reflection, 245

Lindenmayer, 257

Line clipping, 106–112

Line drawing, 91–96

Linear combination of vectors, 31

Linear transformation, 65

Logical coordinates, 7–11

Logo, 254

L-systems, 257

Luminosity, 234

M
Mandelbrot, 253, 268

Matrix, 63

Matrix product, 63

Menu, 206

Mouse, 19–24

Mouse button, 75

Multi-texturing, 240

N
Nonconvex solid, 200

Normal vector, 196

O
Obj3D class, 163

Orientation, 34

Orthographic projection, 143, 196

P
Painter’s algorithm, 200–207

Panel, 180

Perspective transformation, 138,

143–145

Phong lighting model, 246

Pixel, 4

Point in triangle, 40–43

Point on line, 53–55

Point2D, 23

Point3D, 83

Polygon, 19, 37

Polygon clipping, 112

Polygon2D, 50

Polygon3D class, 166

Primary colors, 225

Prism, 177

Projection of point on line, 55–57

Q
Quicksort, 204

386 Index

R
Rectangle, 2

Red, green and blue (RGB), 228

Reflection, 69, 243

Reflex vertex, 38

Refraction, 243

RGB system, 225

RGBA model, 237

Right-handed coordinate system, 31

Rotate3D, 84

Rotation, 66, 74

Rotation (3D), 79

Rotation about arbitrary axis, 80

Rotation matrix, 66

Rotation matrix (3D), 81

Rounding-off errors, 11

Rubber banding, 275

S
Saturation, 234

Scaling, 69

Screen coordinates, 143, 196

Semi-sphere, 186

setColor, 196
setXORMode, 106
Shading models, 243

Shearing, 69

Shift vector, 71

Sierpinski, 258

Silhouette, 217

Smooth curve, 126

Snowflake, 256

Sorting triangles, 200, 204

Spherical coordinates, 139

Staircase, 186

String grammar, 257–268

Subtractive color, 227

Superpixel, 134

Sutherland-Hodgman polygon clipping,

112–118

T
Textural mapping, 240

Texture, 239

Thickness of line, 5

Torus, 186

Transformation matrix, 65

Translation, 70

Transparency, 232, 237

Tree (fractal), 261

Tree of Pythagoras, 60

Triangulation, 43

Trichromatic, 225

Turtle graphics, 254

U
Unit vector, 31

V
Vector, 29

Vector (in Java), 29, 31

Vector product, 32

Viewing matrix, 140

Viewing transformation, 138

Viewpoint, 140

Viewpoint menu commands, 206

Visible lines, 191

W
Wire-frame model, 145

World coordinates, 138

X
XOR paint mode, 106

Y
Y-axis, direction, 7

Z
Z-buffer algorithm, 207–219

Zooming, 275

Index 387

	Preface
	Contents
	1: Elementary Concepts
	1.1 Pixels and Device Coordinates
	1.2 Logical Coordinates
	The Direction of the y-axis
	Continuous Versus Discrete Coordinates

	1.3 Anisotropic and Isotropic Mapping Modes
	Mapping a Continuous Interval to a Sequence of Integers
	Anisotropic Mapping Mode
	Isotropic Mapping Mode

	1.4 Defining a Polygon Through Mouse Interaction
	Exercises

	2: Applied Geometry
	2.1 Vectors
	2.2 Inner Product and Vector Product
	Inner Product
	Vector Product

	2.3 The Orientation of Three Points
	An Alternative, Two-Dimensional Solution
	A Useful Java Method

	2.4 Polygons and Their Areas
	The Area of a Polygon
	Java Code

	2.5 Point-in-Polygon Test
	A Point Inside A Triangle
	A Point Inside A Polygon
	The Contains Method of Polygon Class

	2.6 Triangulation of Polygons
	2.7 Point-on-Line Test
	A Point on a Line Segment

	2.8 Projection of a Point on a Line
	2.9 Distance Between a Point and a Line
	Exercises

	3: Geometrical Transformations
	3.1 Matrix Multiplication
	3.2 Linear Transformations
	Rotation
	A Programming Example
	Scaling
	Shearing

	3.3 Translations
	3.4 Homogeneous Coordinates
	3.5 Inverse Transformations and Matrix Inversion
	3.6 Rotation About an Arbitrary Point
	An Application

	3.7 Changing the Coordinate System
	3.8 Rotations About 3D Coordinate Axes
	3.9 Rotation About an Arbitrary Axis
	Implementation

	Exercises

	4: Classic 2D Algorithms
	4.1 Bresenham Line Drawing
	4.2 Doubling the Line-Drawing Speed
	4.3 Circle Drawing
	4.4 Cohen-Sutherland Line Clipping
	4.5 Sutherland-Hodgman Polygon Clipping
	4.6 Bézier Curves
	Building Smooth Curves from Curve Segments
	Matrix Notation
	3D Curves

	4.7 B-Spline Curve Fitting
	Exercises

	5: Perspective and 3D Data Structure
	5.1 Introduction
	5.2 Viewing Transformation
	5.3 Perspective Transformation
	5.4 A Cube in Perspective
	5.5 Specification and Representation of 3D Objects
	Holes and Invisible Line Segments
	Individual Faces and Line Segments

	5.6 Some Useful Classes
	Input: A Class for File Input Operations
	Obj3D: A Class to Store 3D Objects
	Tria: A Class to Store Triangles by Their Vertex Numbers
	Polygon3D: A Class to Store 3D Polygons
	Canvas3D: An Abstract Class to Adapt the Java Class Canvas
	Fr3D: A Frame Class for 3D Programs

	5.7 A Program for Wireframe Models
	A Demonstration

	5.8 Automatic Generation of Object Specification
	Exercises

	6: Hidden-Line and Hidden-Face Removal
	6.1 Hidden-Line Algorithm
	6.2 Backface Culling
	6.3 Painter´s Algorithm
	6.4 Z-Buffer Algorithm
	Exercises

	7: Color, Texture, and Shading
	7.1 Color Theories
	7.2 Additive and Subtractive Colors
	Additive Color
	Subtractive Color
	Application of Color Systems

	7.3 RGB Representation
	7.4 HSV and HSL Color Models
	7.5 Transparency
	7.6 Texture
	7.7 Surface Shading
	Flat Shading
	Ambient Light
	Diffuse Shading and Lambertian Model
	Phong Lighting Model
	Java Example

	Exercises

	8: Fractals
	8.1 Koch Curves
	8.2 String Grammars
	Moving Without Drawing and f-Strings
	Branching
	Further Extension

	8.3 Mandelbrot Set
	Implementation in Java

	8.4 Julia Set
	Exercises

	Appendix A: Interpolation of 1/z
	A.1 A Different Notation

	Appendix B: Class Obj3D
	Appendix C: Hidden-Line Tests and Implementation
	C.1. Tests for Line Visibility
	Test 1 (2D; Fig. C.1)
	Test 2 (3D; Fig. C.2)
	Test 3 (3D; Fig. C.3)
	Test 4 (2D; Fig. C.4)
	Test 5 (2D; Fig. C.5)
	Test 6 (3D; Fig. C.6)
	Test 7 (2D; Fig. C.7)
	Test 8 (3D; Fig. C.8)
	Test 9 (3D; Fig. C.9)
	Recursive Calls
	The Arguments of the lineSegment Method

	C.2. HP-GL Output and Class HLines
	Implementation

	C.3. Class CvHLines

	Appendix D: Several 3D Objects
	D.1. Platonic Solids
	Tetrahedron
	Cube or Hexahedron
	Octahedron
	Icosahedron and Dodecahedron
	Dodecahedron

	D.2. Sphere Representations
	Spheres Based on an Icosahedron

	D.3. A Torus
	D.4. Beams in a Spiral
	D.5. Functions of Two Variables
	Painting Faces Instead of Drawing Lines

	Appendix E: Hints and Solutions to Exercises
	Bibliography
	Index

