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Outline of Solutions Manual Objectives

Literature is strewn with the wreckage of men who have minded beyond reason the opinions of others.
V. Woolf

The structure of problem statements and problem solutions, the major instructional objectives for each chapter,
and a typical syllabus for a 15-week term, are given here. The syllabus can change to emphasize and de-emphasize
topics, per instructors discretion.

1 Problem Statement

The format used in the problem statement is as follows.

1.1 Problem Label
The problem label follows the format: Chapter Number.Problem Number.Purpose.Software. The purpose is cate-
gorized as follows.
(i) Familiarity (FAM) introduces the use of available relations.
(ii) Fundamental (FUN) gives further insights into the principles and requires combining some concepts and
relations.
(iii) Design (DES) uses the available relations and searches for an optimum engineering solution.
(iv) Solver option (S) indicates if the problem is intended for use with a solver.

For example, PROBLEM 3.5.DES.S indicates an end of chapter problem (as compared to EXAMPLE which
is a solved example problem). The problem is in Chapter 3; the problem number is 5; it is in the Design category;
and it is intended to be solved using a solver.

1.2 Problem Statement
The problem statement gives the following.
(i) The thermal problem considered and the knowns.
(ii) The questions and the unknowns.
(iii) Any hints on needed simplifications and assumptions for the analysis.

1.3 Sketch
The sketch provides the following.
(i) The heat transfer media.
(ii) The significant variables properly labeled.

2 Problem Solution

The format used for the problem solution is as follows.

2.1 Re-State Problem Statement (GIVEN)
Re-word and re-state the problem knowns, assumptions, and simplifications.

2.2 Re-Draw the Physical Problem (SKETCH)
Draw the sketch of the thermal problem considered. Show the direction of the heat (and when appropriate the
fluid) flow. Identify the mechanisms of heat transfer and mechanisms of energy conversion. Make any other
needed additions to the sketch.
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2.3 Re-State Questions (OBJECTIVE)

Write the objectives of the problem and state the questions asked and the unknowns.

2.4 Solve the Problem (SOLUTION)

The solution of the problem includes some or all of the following steps.
(i) Control Volume and Control Surface: Mark the appropriate bounding surfaces and define the control vol-
umes and control surfaces.
(ii) Thermal Circuit Diagram: Draw the thermal circuit diagram for the problem, when appropriate.
(iii) Energy Equation: Write the appropriate form of the energy equation.
(iv) Energy Conversion: Write the appropriate relations for each of the energy conversion mechanisms.
(v) Heat Transfer Rates and Thermal Resistances: Write the appropriate relations for the heat transfer rates
and the thermal resistances.
(vi) Numerical Values: Determine the thermophysical and thermochemical properties from the tables, graphs,
and relations. When using tables, make the needed, appropriate interpolations. Always check the units of each
parameter and variable.
(vii) Solver: When needed, solve algebraic or differental equations using a solver such as SOPHT.
(viii) Final Numerical Solutions: Determine the magnitude of the unknowns.

2.5 Make Additional Comments (COMMENT)

Examine the numerical values and compare them to what is avaliable or what is initially expected. State what
insights have been gained from the exercise.

3 Major Instructional Objectives

3.1 Chapter 1: Introduction and Preliminaries

(i) Mechanisms of Heat Transfer
(ii) Qualitative Heat Flux Vector Tracking
(iii) Qualitative Analysis of Energy Conservation Equation
(iv) Quantitative Analysis of Energy Conservation Equation

3.2 Chapter 2: Energy Equation

(i) Finite- and Differential-Length Energy Equation
(ii) Divergence of Heat Flux Vector
(iii) Energy Conversion Mechanisms (to and from Thermal Energy)
(iv) Chemical and Physical Bonds Energy Conversion
(v) Electromagnetic Energy Conversion
(vi) Mechanical Energy Conversion
(vii) Bounding-Surface Thermal Conditions

3.3 Chapter 3: Conduction

(i) Physics of Specific Heat Capacity
(ii) Physics of Thermal Conductivity
(iii) Thermal Conduction Resistance and Thermal Circuit Analysis
(iv) Conduction and Energy Conversion
(v) Thermoelectric Cooling
(vi) Multidimensional Conduction
(vii) Distributed Transient Conduction and Penetration Depth
(viii) Lumped-Capacitance Transient Conduction
(ix) Multinodal Systems and Finite-Small Volume Analysis
(x) Conduction and Solid-Liquid Phase Change
(xi) Thermal Expansion and Thermal Stress
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3.4 Chapter 4: Radiation
(i) Surface Emission
(ii) View Factor for Diffuse Gray Enclosures
(iii) Enclosure Radiation for Diffuse Gray Surfaces
(iv) Two-Surface Enclosures
(v) Three-Surface Enclosures with One Surface Re-Radiating
(vi) Enclosures with Large Number of Surfaces
(vii) Prescribed Irradiation and Nongray Surfaces
(viii) Inclusion of Substrate

3.5 Chapter 5: Convection: Unbounded Fluid Streams
(i) Conduction-Convection Resistance and Péclet Number
(ii) Evaporation Cooling of Gaseous Streams
(iii) Combustion Heating of Gaseous Streams
(iv) Joule Heating of Gaseous Streams
(v) Gas-Stream Radiation Losses

3.6 Chapter 6: Convection: Semi-Bounded Fluid Streams
(i) Laminar Parallel Flow and Heat Transfer: Nusselt, Péclet, Reynolds, and Prandtl Numbers
(ii) Average Surface-Convection Resistance
(iii) Turbulent, Parallel Flow and Heat Transfer
(iv) Impinging Jets
(v) Thermobuoyant Flows
(vi) Liquid-Gas Phase Change
(vii) Nusselt Number and Heat Transfer for Other Geometries
(viii) Inclusion of Substrate
(ix) Surface-Convection Evaporation Cooling

3.7 Chapter 7: Convection: Bounded Fluid Streams
(i) Average Convection Resistance, NTU , and Effectiveness
(ii) Nusselt Number and Heat Transfer for Tubes
(iii) Nusselt Number and Heat Transfer for Other Geometries
(iv) Inclusion of Bounding Surface
(v) Heat Exchanger Analysis
(vi) Overall Thermal Resistance

3.8 Chapter 8: Heat Transfer and Thermal Systems
(i) Combined Mechanisms of Heat Transfer
(ii) Various Energy Conversion Mechanisms
(iii) Innovation Applications
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4 Typical Syllabus

WEEK SUBJECT READING PROBLEMS

1 Introduction: Control Volume and Surface, Heat Flux Vector and
Mechanisms of Heat Transfer, Conservation Equations

1.1 - 1.9 1.1, 1.4, 1.6, 1.15, 1.18

2 Energy Equation for Differential Volume, Integral Volume, and
Combined Integral- and Differential-Length Volume

2.1 - 2.2 2.1, 2.5, 2.7, 2.9, 2.11

3 Work and Energy Conversion: Mechanisms of Energy Conver-
sion, Bounding-Surface Thermal Conditions, Methodology for Heat
Transfer Analysis

2.3 - 2.6 2.14, 2.17, 2.18, 2.32,
2.35

4 Conduction: Specific Heat and Thermal Conductivity of Matter;
Steady-State Conduction: Conduction Thermal Resistance

3.1 - 3.3 3.1, 3.3, 3.9, 3.12, 3.13

5 Steady-State Conduction: Composites, Thermal Circuit Analysis,
Contact Resistance, Energy Conversion, Thermoelectric Cooling

3.3 3.15, 3.26, 3.27, 3.30,
3.32

6 Transient Conduction: Distributed Capacitance, Lumped Capaci-
tance, Discretization of Medium into Small-Finite Volumes

3.4 - 3.7,
3.10

3.53, 3.55, 3.63, 3.67,
3.70

7 Radiation: Surface Emission, Interaction of Irradiation and Sur-
face, Thermal Radiometry, Review

4.1 - 4.3 4.1, 4.4, 4.8, 4.9

EXAM I (Covering Energy Equation and Conduction)

8 Radiation: Gray-Diffuse-Opaque Surface Enclosures, View-Factor
and Grayness Radiation Resistances, Thermal Circuit Analysis,
Prescribed Irradiation and Nongray Surfaces, Inclusion of Sub-
strate

4.4 - 4.7 4.10, 4.19, 4.24, 4.43,
4.49

9 Convection (Unbounded Fluid Streams): Conduction-Convection
Resistance, Péclet Number, Combustion Heating of Gaseous
Streams

5.1 - 5.2,
5.4, 5.7

5.1, 5.3, 5.5, 5.19, 5.20

10 Surface Convection (Semi-Bounded Fluid Streams): Flow and
Surface Characteristics, Laminar Parallel Flow over Semi-Infinite
Plate, Péclet, Prandtl, Reynolds, and Nusselt Numbers, Surface-
Convection Resistance

6.1 - 6.2 6.1, 6.2, 6.3, 6.4

11 Convection (Semi-Bounded Fluid Streams): Turbulent Parallel
Flow, Perpendicular Flow, Thermobuoyant Flows

6.3 - 6.5 6.7, 6.9, 6.10, 6.14, 6.18

12 Convection (Semi-Bounded Fluid Streams): Liquid-Vapor Phase-
Change, Nusselt Number Correlations for Other Geometries, In-
clusion of Substrate

6.6 - 6.8,
6.10

6.19, 6.21, 6.25, 6.40,
6.45

13 Convection (Bounded Fluid Streams): Flow and Surface Charac-
teristics, Tube Flow and Heat Transfer, Average Convection Resis-
tance, Review

7.1 - 7.2 7.1, 7.3, 7.4

EXAM II (Covering Surface Radiation and Convection: Semi-
Bounded Fluid Streams)

14 Convection (Bounded Fluid Streams): Tube and Ducts, High Spe-
cific Surface Areas, Nusselt Number Correlations, Inclusion of
Bounding Surface, Heat Exchangers

7.3 - 7.7 7.7, 7.12, 7.20, 7.25, 7.33

15 Heat Transfer in Thermal Systems: Thermal Functions, Analysis,
and Examples

8.1 - 8.3 8.1

FINAL EXAM (Comprehensive)
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Answers to Problems

1.13 (b) t = 247 s
1.14 (b) dT/dt = 1.889 × 10−3 ◦C/s
1.15 (b) Tg(tf ) = 5,200◦C, (c) η = 2.5%
1.16 Qku + Qr = 12 kW
1.17 (c) uF = 0.5904 mm/hr

1.18 (b) 〈T 〉A = 13.55◦C
1.19 τ = 744 s = 0.207 hr
1.20 (b) dTr/dt = 8.696◦C/s

2.1 (a) lim∆V →0

∫
A

q · sndA/∆V ≡ ∇ · q = 8a

2.3 (a) 2
R2

o − R2
i

(qku,oRo + qku,iRi) +
dqk,z

dz
= 0

2.4 (b) L = 7.362 m
2.5 brake pad region: T (t = 4 s) = 93.50◦C; entire rotor: T (t = 4 s) = 66.94◦C
2.6 (a) ṁph = 5.353 × 1035 photon/m2-s, (b)

∫∞
−∞ Ṡe,σdt = 0.1296 J

(c) Ṡe,σ/V = 2.972 × 1012 J/m3

2.7 (a) ṡe,J = 2.576 × 108 W/m3, (b) ρe(T ) = 1.610 × 10−5 ohm-m

2.8 (a) ∂T
∂t

= 0.5580◦C/s, (b) ∂T
∂t

= 0.7259◦C/s

2.10 (a) ∇ · q = 103 W/m3

2.11 (a) qk = −[1.883 × 103(◦C/m) × k(W/m-◦C)]sx

(c) qku
2(Ly + Lz)

LyLz
− k

d2T

dx2 = 0

2.12 ṡm,µ = 1.66 × 1013 W/m3

2.13 (a) ρCH4 = 8.427 × 10−5 g/cm3, ρO2 = 3.362 × 10−4 g/cm3

(b) ṁr,CH4(without Pt) = 1.598 × 10−7 g/cm2-s,
ṁr,CH4(with Pt) = 1.754 × 10−3 g/cm2-s

2.14 Ts = 1,454 K
2.15 (a) αe(Ta) = 1.035 × 10−3 1/K, αe(W) = 1.349 × 10−3 1/K

(b) ρe(Ta) = 1.178 × 10−6 ohm-m, ρe(W) = 7.582 × 10−7 ohm-m
(c) Re(Ta) = 7.500 ohm, Re(W) = 4.827 ohm
(d) Je(Ta) = 3.651 A, Je(W) = 4.551 A
(e) ∆ϕ(Ta) = 27.38 V, ∆ϕ(W) = 21.97 V

2.16 (a) Je = 3.520 A, (b) Pe = 0.2478 W
2.17 (c) T2 = 2,195 K
2.18 (a) ∆t1 = 0.4577 hr, (b) ∆t2 = 9.928 hr
2.19 (a) ṡm,p = −2 × 108 W/m3, (c) To − Ti = −42.27◦C
2.20 (a) 〈ṡm,µ〉A = 3.660 × 107 W/m3

v



2.21 (a) Ṡm,F |peak = 0.65Mu2
o

τ (1 − t
τ ) (each of the front brakes)

Ṡm,F |peak = 0.35Mu2
o

τ (1 − t
τ ) (each of the rear brakes)

(b) Ṡm,F |peak = 120.3 kW
2.22 (d) Ts = 40.49◦C
2.23 (a) ṅr,CH4 = −0.9004 kg/m3-s,

(b) ṅr,CH4 = −0.1280 kg/m3-s,
(c) ṅr,CH4 = −0.3150 kg/m3-s

2.24 (a) Ṁlg = 0.8593 g/s, (b) Ṁr,CH4 = 0.2683 g/s, (c) Ṡe,J = 1.811 × 105 W
2.25 (a) ṡe,J = 5.62 × 108 W/m3, (b) ∆ϕ = 2.18 V, (c) Je = 1.8 A

(d) ṡe,J = 2.81 × 108 W/m3, ∆ϕ = 3.08 V, Je = 1.3 A
2.26 (a) qc = 49,808 W/m2, (b) qh = 56,848 W/m2

2.27 (c) Tmax = 45.03◦C at t = 594 s
2.30 (a) wet alumina: ṡe,m = 3.338 W/m3, (b) dry alumina: ṡe,m = 16.69 W/m3

(c) dry sandy soil: ṡe,m = 1,446 W/m3

2.33 (b) qx(x = x2) = 1.378 × 106 W/m2

2.36 (b) Ṡe,α/A = 637.0 W/m2, Ṡe,ε/A = −157.8 W/m2, (c) Ṡ/A = 479.2 W/m2

2.37 (b) ṁlg = 5.074 × 10−2 kg/m2-s, (c) D(t) = D(t = 0) − 2ṁlg
ρl

t, (d) t = 36.57 s

2.38 (b) qk,e = −8 × 104 W/m2

2.39 (b) qk,t = −140 W/m2

2.40 (b) qk,s = 8.989 × 109 W/m2

3.1 (a) for T = 300 K, kpr = 424.7 W/m-K, (b) for T = 300 K, ∆k(%) = 6%
3.2 (a) k = 0.02392 W/m-K, (b) ∆k(%) = 18.20 %

3.3 (c) (ρcpk)1/2 (argon) = 4.210, (air) = 5.620, (helium) = 11.22,

(hydrogen) = 15.42 W-s1/2/m2-K
3.9 L = 0.6 nm: k = 0.5914 W/m-K, L = 6 nm: k = 1.218 W/m-K
3.12 (a) Qk,2-1 = −100 W, (b) Qk,2-1 = −83.3 W, (c) Qk,2-1 = −82.3 W
3.13 (a) AkRk,1-2 = 2.5 × 10−5◦C/(W/m2), (b) AkRk,1-2 = 7.4 × 10−1◦C/(W/m2),

(c) T1 = 60.02◦C, (d) Rk-value (copper) = 1.4 × 10−4◦F/(Btu/hr),
Rk-value(silica aerogel) = 4.2◦F/(Btu/hr)

3.14 ∆Q% = 63.3 %
3.15 (b) parallel: 〈k〉 = 14.4 W/m-K, series: 〈k〉 = 0.044 W/m-K,

random: 〈k〉 = 0.19 W/m-K
3.16 (b) (i) Q1-2 = 4.703 W, (ii) Q1-2 = 4.492 W

3.17 (b) Qk,2−1 = 8.408 × 102 W, (c) Ṁlg = 3.960 g/s, (d) T2′ = −10.45◦C
3.18 (b) (i) Ts = 43.35◦C, (ii) Ts = 76.92◦C
3.19 (b) 〈k〉 = 0.373 W/m-K, (c) Tg = 1,643 K, (d) Qg,1/Ṡr,c = 0.854, Qg,2/Ṡr,c = 0.146

3.20 (b) Ṁlg = 0.051 kg/s, (c) ∆t = 0.01 s
3.23 (c) Qk,1-2 = −7.423 × 10−2 W, (d) Qk,1-2 = −7.635 × 10−2 W
3.24 for p = 105 Pa, ∆Tc = 4.9◦C, for p = 106 Pa, ∆Tc = 2.7◦C
3.25 (b) for AkRk,c = 10−4 K/(W/m2), Th = 105◦C,

for AkRk,c = 4 × 10−2 K/(W/m2), Th = 1,469◦C
3.26 (i) Qk,2−1(no blanket) = 1.006 × 103 W, (ii) Qk,2−1(with blanket) = 6.662 × 102 W
3.27 (b) L = 5.984 mm
3.29 (b) Ap = 2.59 × 10−5 m2, (c) Tmax = 41.8◦C, (d) qc = −5,009 W/m2,

qh = 17,069 W/m2

3.30 (a) Qc(2.11 A) = −0.079 W, (b) Qc(1.06 A) = −0.047 W,
(c) Qc(4.22 A) = 0.048 W

3.31 (a) Tc = 231 K, (b) Je = 2.245 A, (c) Tc = 250.2 K
3.33 (c) T (t → ∞) = −18.40◦C
3.34 (c) T1 = 71.36◦C
3.35 (b) Rk,1-2 = 106.1◦C/W, (c) T1 = 60.34◦C
3.36 (b) ee,o = 160 V/m

3.40 (b) T1 = (Th + Tc
Rk

+ ReJ
2
e )/(2/Rk + αSJe), (c) Tc(Qc = 0) = 205.4 K
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3.41 (b) Je = 1.210 × 10−2 A, (c) Tc,min = 223.8 K, (d) Qc,max = −5.731 × 10−4 W
3.42 (c) Qk,1-2 = 21.81 W

3.44 (b) T1 = −19.63◦C, Qk,1-2 = 61.69 W, (c) Ṁls = 665.7 g/hr
3.45 (b) L(t = ∆t) = 6.127 µm, Rk,1-2 = 145.6 kW
3.46 (a) t = 0.8378 s

3.47 δα/[2(ατ)1/2] = 0.4310
3.48 (a) (i) T (x = 0, t = 10−6 s) = 1.594 × 105 ◦C, (ii) T (x = 0, t = 10−6 s) = 1.594 × 104 ◦C

(b) (i) δα(t = 10−6 s) = 6.609 µm, (ii) δα(t = 10−4 s) = 66.09 µm
3.49 (a) t = 3.872 s, (b) t = 31.53 s
3.50 (i) t = 2,970 s, (ii) t = 1,458 s, (iii) t = 972.1 s
3.51 (a) t = 5.6 min, (b) t = 35 min
3.52 t = 7.7 min
3.53 t = 24 s
3.54 (b) first-degree burn: x = 8.6 ± 0.4 mm; second-degree burn: x = 5.8 ± 0.4 mm;

third-degree burn: x = 4.75 ± 0.4 mm
3.55 (a) T (x = 1 mm) = 215.8 K, (b) T (x = 3 mm) = 291.9 K, (c) qρck = 20, 627 W
3.56 (b) Ts(x = L, t = 1.5 s) = 71◦C
3.57 T12 � T1(t = 0)
3.58 t = 7.8 µs
3.59 (a) T (x = 4 mm, t = 600 s) = 42.15◦C

(b) T (x = 4 mm, t = 600 s) = 64.30◦C
3.60 t = 7.87 min
3.61 (b) t = 5.1 ms
3.62 ub = 51.5 cm/min
3.63 (b) t = 177.8 s, (c) t = 675.7 s, (d) T1(t → ∞) = 230.2◦C
3.64 (b) t = 1.402 µs
3.65 (b) T (x = 0, t = 2 s) = 91.41◦C
3.66 T1(t) − T2 = [T1(t = 0) − T2]e

−t/τ1 + a1τ1(1 − e−t/τ1)
3.67 (b) (i) T1(t) = 2.6◦C, (ii) T1(t) = 66.9◦C
3.68 (b) t = 6.236 s, (c) FoR = 150.3, (d) Nk,1 = 1.803 × 10−3

3.70 (c) L = 8.427 m
3.71 Te(t → ∞) = 1,672 K
3.72 (b) (i) T1(t = 4 s) = 66.97◦C, (ii) T1(t = 4 s) = 254.8◦C
3.73 (a) 〈k〉yy = 0.413 W/m-K, (b) 〈k〉yy = 0.8375 W/m-K
3.74 T ∗(x∗ = 0.125, y∗ = 0.125) = 0.03044 for N = 21
3.75 (b) T1 = 4,804◦C, T2 = 409.8◦C, T3 = 142.9◦C, T4 = 121.3◦C, T5 = 114.4◦C
3.76 (b) Qk,h-c = 4.283 W, (c) 〈k〉 = 42.83 W/m-K
3.77 δα = 47 µm
3.79 (a) t = 74 s,

∫
qkdt = 3.341 × 105 J/m2, (b) t = 21 s,

∫
qkdt = 3.341 × 105 J/m2

3.80 t1 = 286.6 s, t2 = 40.31 s
3.81 (b) t = 31.8 s
3.82 (b) τrr(r = 0) = τθθ(r = 0) = 1.725 × 108 Pa
3.83 (b) TR = 550.6◦C

4.1 (a) Eb = 201,584 W/m2, (b) Qr,ε = 82,649 W
(c) F0.39T−0.77T = 0.13%, F0.77T−25T = 99.55%, F25T−1000T = 0.32%

4.2 (b) aluminum: (Qr,ρ)1 = 18,437 W, (Qr,α)1 = 1,823 W, nickel: (Qr,ρ)2 = 13,270 W,
(Qr,α)2 = 6,990 W, paper: (Qr,ρ)3 = 1,103 W, (Qr,α)3 = 19,247 W

(c) aluminum: (Qr,ε)1 = 98.94 W, (Qr,o)1 = 18,536 W, nickel: (Qr,ε)2 = 379.3 W,
(Qr,o)2 = 13,649 W, paper: (Qr,ε)3 = 1,044 W, (Qr,o)3 = 2,057 W

(d) aluminum: Qr,1 = −1,724 W, nickel: Qr,2 = −6,611 W,
paper: Qr,3 = −18,203 W

4.3 (a) (εr)1 = 0.09, (εr)2 = 0.29, (εr)3 = 0.65
4.4 (a) qr,ε(visible) = 3.350 × 105 W/m2, (b) qr,ε(near infrared) = 2.864 × 106 W/m2,

(c) qr,ε(remaining) = 8,874 W/m2

4.7 (a) T = 477.7 K, (b) λmax = 6.067 µm, (c) Tlg = 373.2 K
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4.8 (a) εr(SiC) = 0.8301, εr(Al) = 0.008324
4.9 (i) white potassium zirconium silicate, (ii) black-oxidized copper,

(iii) aluminum foil
4.10 (a) F1-2 = 1/9 (b) F1-1 = 0.7067, F2-3 = 0.12

(c) F1-2 = 0.08, F2-1 = 0.32, (d) F1-3 = 0.085, F2-1 = 0.415
(e) F1-2 = 0.003861, F2-3 = 0.7529

4.11 (a) F1-2 = 0.2, x∗ = w∗ = 1, w∗ = a∗ = 1, 1/R1 = 1/R∗
2 = 1.70,

(b) l = 0.9591a for the discs, l = a for the plates
4.12 (a) εr,1

′ = 1/ {[D/(4L + D) × (1 − εr,1)/εr,1] + 1}
4.13 (b) (i) oxygen: qr,1-2 = 1.17 W/m2, (i) hydrogen: qr,1-2 = 0.14 W/m2

(ii) oxygen: qr,1-2 = 0.596 W/m2, (ii) hydrogen: qr,1-2 = 0.0730 W/m2

4.14 (a) Qr,1/Ṡlg = 4.7%, (b) ∆Qr,1 = 4.5%
4.15 (b) Qr,1 = 82 W
4.16 Rr,Sigma = 2/(Arεr) − 1/Ar

4.17 (b) Ṡe,J = 1,041 W
4.18 (b) T1 = 808.6◦C, (c) T1 = 806.6◦C
4.20 (b) qr,1−2 = (Eb,1 − Eb,2)/(2[ 1 − εr

εr
+ 1

2ε + εr(1 − ε)
]).

4.21 (b) (i) qr,2-1 = −245.7 W/m2, (ii) qr,2-1 = −210.6 W/m2,
(iii) qr,2-1 = −179.8 W/m2, (iv) qr,2-1 = −134.0 W/m2

4.22 (b) Qr,1-2 = 1180 W, (c) Qr,1-2 = 182.8 W
4.23 (b) Qr,1−2 = 10,765 W, (c) Qr,2 = 19,300 W
4.24 (b) F1-2 = 0.125, F1-3 = 0.875, F2-3 = 0.8958; (c) T1 = 1,200 K
4.25 (a) Qr,1-2 = −54.13 W, (c) Qr,1-2 = 114.1 W, (d) T3 = 400 K
4.26 Qr,2 = −201,322 W
4.27 (b) Qr,1−2 = 3.860 kW, (c) Qr,1−2 = 0.7018 kW,

(d) Qr,1−2 = (Ar,1/2)(Eb,1 − Eb,2) for F1−2 → 0
4.28 (a) t = 208.3 s, (b) T (x = 0, t) = 4,741◦C
4.29 (b) Ṁl = 0.5992 g/s
4.30 (b) ∆t = 15.36 ns

4.31 (c) T2 = 1
σSB

{ αr,2

2εr,2
[(qr,o)a + (qr,o)b]}1/4

4.32 (b) (qr,i)f = 9.52 × 104 W/m2, (c) Ṡe,σ = 2.989 × 105 W, (d) ∆t = 71.14 s
4.33 (a) (qr,i)f = 1.826 × 104 W/m2, (b) qr,i = 319.6 W/m2

4.34 (a) qku,3 = 6,576 W/m2, (b) Qr,1(IR + visible) = 2,835 W,
Qr,1(UV) = 148,960 W, (c) T3,max = 529.9 K

4.35 (a) (i) 〈Qu〉L-0 = 500 W, (ii) 〈Qu〉L-0 = 362 W, (b) (i) η = 31.22%, (ii) η = 22.60%

4.36 (a) Ṡe,σ/A = 738 W/m2, (b) d〈T 〉L/dt = 40 K/day
4.37 (c) (i) Qr,1,t/A1 = −1,242 W/m2, (ii) Qr,1,b/A = −209 W/m2

(d) (i) (dV1/dt)/A1 = −0.478 µm/s, (ii) (dV1/dt)/A1 = −0.0805 µm/s
4.38 (a) 〈Qu〉L-0 = 466.4 W, (b) η = 19.42%
4.39 (a) 〈Qu〉L-0 = 1,376 W, (b) Q1 = −34.15 W
4.40 (a) Q1 = 827.7 W
4.41 (a) Qr,1-2 = −3.008 W
4.42 (b) T1 = 860.5 K
4.43 (b) Q2-1 = 3,235 W, (c) Q2-1 = 25.65 W

4.44 (b) Rk + Rr,Σ =
(1 − ε)(l1 + l2)

Arks
+

(2 − εr)ε(l1 + l2)

4ArεrσSBT 3l2
4.45 ε = 0.8028, 〈kr〉 = 0.0004399 W/m-K at T = 1,000 K
4.46 (b) t(T1 = 600 K) = 162 s

4.47 (a) Rr,Σ = l1
Ar(1 − ε)2/3ks

+ 1
4Ar(1 − ε)2/3σSBT 3

2 − εr
εr

4.48 (a) (i) σex = 86.75 1/m, (ii) σex = 8.551 × 105 1/m
(b) (i) σex = 191.0 1/m, (ii) σex = 1.586 × 105 1/m

4.49 (a) up = 0.48 m/s, (b) Nr = 1.2 × 10−6 < 0.1
4.50 (i) q1 = 2.305 W/m2, (ii) q1 = 2.305 W/m2

4.51 (i) Q1−2 = 127.8 W, (ii) Q1−2 = 71.93 W

viii



4.52 (b) t(T1 = 500◦C) = 5 ms
4.53 (a) (i) Qk,1−2/L = −25.7 W/m, (ii) Qr,1−2/L = −1.743 W, (b) R2 = 2.042 × 108 m
4.54 (b) t = 181.1 s
4.57 (b) ṁls = 8.293 g/m2-s

5.1 (b) Q(x = 0) = 767.3 W
5.2 (a) Rk,u/RuL = 0.2586, (b) Rk,u/RuL = 6.535 ×10−3

5.3 (b) Tf,2 = 367.9◦C, (c) Tf,2 = 2520◦C
5.5 (Qk,u)1−2 = 140.3 W

5.7 (b) (i) (Qk,u)1-2 = −3.214 W, (qk,u)1-2 = −4.092 × 106 W/m2

(ii) (Qk,u)1-2 = −7.855 × 10−2 W, (qk,u)1-2 = −1.000 × 105 W/m2

5.8 (b) Ṁl = 1.160 × 10−7 kg/s, ṁl = 0.1477 kg/s-m2

5.9 (b) Ṁlg = 2.220 g/s, Tf,2 = 186.7◦C
5.10 (b) Tf,2 = 23.18◦C
5.11 Ṁl = 0.5476 kg/s
5.12 (a) 〈k〉 = 0.63 W/m-K, (b) 〈kr〉 = 0.19 W/m-K, (c) uf,1 = 1.30 m/s
5.13 Tu = 0.2162
5.15 (a) Ze = 8.684, (b) uf = 1.037 m/s
5.16 (a) Tf,2 = 2,944◦C, (b) uf,1 = 3.744 m/s
5.17 (b) Ts = Tf,2 = 1,476 K, Qr,2−p = 40, 259 W, (c) η = 37.62%
5.18 (b) Tf,2 = 197.0◦C, (c) Tf,3 = 2,747◦C, (d) Tf,4 = 2,564◦C, (e) ∆Texcess = 177◦C
5.19 Tf,2 = 2,039 K (for qloss = 105 W/m2)
5.21 (b) Ts = 1,040 K, (c) η = 60.90%

5.22 (b) Ṁf = 1.800 g/s
5.23 (b) Tf,2 = 2,472◦C
5.24 (b) Tf,2 = 3,134◦C
5.25 (b) Tf,2 = 203.7◦C

6.2 (a) (i) qku,L = −50,703 W/m2, (ii) qku,L = −2,269 W/m2, (iii) qku,L = −39.59 W/m2

(b) (i) δα,L = 5.801 mm, (ii) δα,L = 3.680 mm, (iii) δα,L = 22.39 mm
(c) (qku)

(i),Pr→0
= −46,115 W/m2, δα,L,Pr→0 = 7.805 mm.

6.3 (a) (i) 〈Qku〉L = 1.502 W, (ii) 〈Qku〉L = 65.23 W, (b) (i) δα = 14.16 mm, (ii) δα = 3.515 mm
6.7 (a) (i) 〈Nu〉L = 119.8, (ii) 〈Nu〉L = 378.8, (iii) 〈Nu〉L = 2,335

(b) (i) Aku〈Rku〉L = 3.326 × 10−1 ◦C/(W/m2),
(ii) Aku〈Rku〉L = 1.052 × 10−1 ◦C/(W/m2),
(iii) Aku〈Rku〉L = 1.711 × 10−2 ◦C/(W/m2)

(c) (i) 〈Qku〉L = 150.3 W, (ii) 〈Qku〉L = 475.4 W, (iii) 〈Qku〉L = 2,930 W
6.8 (b) uf,∞ = 3.78 m/s
6.9 (b) Tf,∞ = 277.20 K, (c) 〈Qku〉L = −598.4 W, Qr,1 = 99.57 W, ice would melt.
6.10 (a) single nozzle: 〈Nu〉L = 46.43, Aku〈Rku〉L = 8.413 × 10−2 ◦C/(W/m2),

〈Qku〉L = 406.5 W
(b) multiple nozzles: 〈Nu〉L = 28.35, Aku〈Rku〉L = 4.593 × 10−2 ◦C/(W/m2),

〈Qku〉L = 744.6 W

6.11 (c) Ṡm,F = 0.01131 W, Ln = 0.5425 cm
6.12 (b) t = 21.27 s
6.13 (b) (i) parallel flow: t = 2.465 s (ii) perpendicular flow: t = 1.123 s
6.14 (a) vertical: 〈Nu〉L = 43.08, Aku〈Rku〉L = 2.232 × 10−1 ◦C/(W/m2), 〈Qku〉L = −7.390 W

(b) horizontal: 〈Nu〉D = 18.55, Aku〈Rku〉D = 2.073 × 10−1 ◦C/(W/m2),
〈Qku〉D = −7.956 W

6.15 (b) 〈Qku〉L = 411.9 W, (c) Qr,s-w = 691.0 W, (d) η = 5.656%
6.18 (b) (i) 〈Qku〉L = 938.5 W, (ii) 〈Qku〉L = 1,163 W

6.19 (a) Ṡe,J = 2,045 W, (b) Qku,CHF = 2,160 W, (c) Ts = 108.9◦C
(d) Aku〈Rku〉D = 8.575 × 10−6 ◦C/(W/m2), 〈Nu〉D = 8,587

6.20 Ts,1 = 103.5◦C
6.21 (b) 〈Qku〉L = −9,058 × 103 W, (c) Ṁlg = 4.013 g/s

ix



6.22 (b) 〈Qku〉L = 595.2 W, (c) ∆ϕ = 109.1 V, Je = 5.455 A
6.23 (b) 〈Qku〉L = 8.718 × 106 W
6.24 (a) (i) 〈qku〉L = 1.099 × 106 W/m2, (ii) 〈qku〉L = 2 × 106 W/m2

(b) (i) 〈qku〉L = 1.896 × 104 W/m2, (ii) 〈qku〉L = 9.407 × 105 W/m2

6.25 (a) 〈Qku〉D,s = 195.9 W, (b) 〈Qku〉D,c = 630.5 W, (c) L = 1.08 cm, (d) T2 = 0.97◦C
6.26 (b) T2 = 817.3 K.
6.27 (b) Ts = 1,094 K
6.28 Tf,∞ − Ts,L = 8.71◦C
6.29 (b) t = 17.77 s < 20 s
6.30 (b) (i) 〈Qku〉D = 378.6 W, (ii) 〈Qku〉L = 91.61 W, (c) δν/D = 0.6438 < 1.0
6.31 (b) rtr = 21.70 cm, (c) 〈Qku〉L/(Ts − Tf,∞) = 19.33 W/◦C, (d) Ts = 1,055◦C
6.32 (a) t = 71.4 min, (b) t = 6.7 min
6.33 (a) Ts = 1,146 K, (b) Ts = 722.6 K
6.34 (d) T ∗

s (r = 0, t) = 0.2779
6.35 (b) BiD = 4.121 × 10−4 < 0.1, (c) t = 2.602 ms
6.36 (a) 〈Qku〉w = 47.62 W, (b) 〈Qku〉w = 357.1 W
6.37 (a) T1(t = 4 s) = 346.2 K, (b) t = 17.0 min, (c) Bil = 3.89 × 10−3

6.38 (b) Rk,sl−b = 1.25◦C/W, Rk,sl−s = 6.25◦C/W, 〈Rku〉D = 2.54◦C/W

(c) Qk,sl-b = 5.76 W, (d) Qk,sl-∞ = 4.23 W, (e) Ṡsl = 9.99 W
6.39 (b) 〈Nu〉D = 413.5, Tr,max = 318 K
6.40 (b) Tp = 511◦C, (c) Tp = 64.5◦C
6.41 (b) Bil = 0.0658, (c) T1 = 288.15 K, (d) T1 = 273.76 K
6.42 (b) BiD = 3.042 × 10−3, (c) t = 6.685 × 10−3 s
6.43 (b) Ts = 352.9◦C, l/ks < 1.36 × 10−3 ◦C/(W/m2)
6.44 (b) ηf = 0.9426, (c) Ts = 82.57◦C, (d) Γf = 8.287
6.45 (b) T1(t = t0 = 1 hr) = 18.41◦C
6.46 (b) Rc = 5.2 mm, (c) Rk,1-2 = 0.3369◦C/W, (Rku)D,2 = 1.319◦C/W,

(d) Rc = 5.241 mm
6.48 (b) T1 = 54.45◦C, (c) T1 = 50.24◦C
6.49 (b) Ṡr,c = 9,082 W, (c) ṀO2 = 0.5327 g/s, (d) ṀO2 = 0.002639 g/s
6.50 (d) Ts = 282.9 K, (e) 〈Qku〉L = −1,369.30 W, Qk,u = −67.39 W
6.51 (b) t(droplet vanishes) = 382 s, (c) L = 38.2 m

6.52 (b) Ṁlg = 3.120 × 10−3 g/s, Ts = 285.6 K, (c) ∆t = 578.2 s

6.53 (b) 〈Qku〉L = 2.186 W, (c) Ṁlg = 8.808 × 10−7 kg/s, Ṡlg = −2.034 W
(d) dTc/dt = −6.029 × 10−3 ◦C/s

6.54 (a) 〈NuL〉 = [0.664Re
1/2
L,t + 0.037(Re

4/5
L − Re

4/5
L,t )]Pr1/3

7.1 (b) 〈Nu〉D,H = 38.22, (c) NTU = 0.6901, (d) εhe = 0.4985
(e) 〈Ru〉L = 0.1080◦C/W, (f) 〈Qku〉L−0 = 1,019 W, (g) 〈Tf 〉L = 74.84◦C

7.2 (b) laminar flow: 〈uf 〉 = 0.061 m/s, turbulent flow: 〈uf 〉 = 1.42 m/s
7.4 (a) (i) NTU = 115.5, (ii) NTU = 2.957 × 104

7.6 (b) 〈Tf 〉L = −43.73◦C, (c) 〈Qu〉L-0 = 224.4 W
7.7 (b) 〈Qu〉L-0 = 1.276 W, (c) 〈Qu〉L-0 = 1.276 W
7.8 (b) Ts = 92.74◦C < Tlg, (c) Ts = 399.0◦C > Tlg

7.9 (b) 〈Qu〉L-0 = 926.5 W, (c) 〈Tf 〉L = 129.5◦C
7.10 (b) 〈Qku〉D,h = −61.80 W, (c) Ṁlg = 4.459 × 10−4 kg/s, xL = 0.05410

7.11 (b) 〈Qku〉D = 28.93 W, (c) Ṁlg = 2.298 × 10−4 kg/s, xL = 0.6298
7.12 (b) Ts = 560.8◦C
7.13 (b) NTU = 21.57, 〈Tf 〉L = 30◦C for N = 400

NTU = 32.36, 〈Tf 〉L = 30◦C for N = 600
7.14 (b) 〈Qku〉L = 3,022 W, 〈Qu〉L−0 = 3,158 W

7.15 (b) 〈Nu〉D,p = 53.10, (c) NTU = 2.770, (d) Ts = 20(◦C) + 1.049Ṡe,J

(e) 〈Tf 〉L = 20(◦C) + 0.9832Ṡe,J, (f) 〈Tf 〉L = 870.3◦C
7.16 (b) 〈k〉 = 0.6521 W/m-K, (c) NTU = 3.471, (d) BiL = 1.025 × 104, (e) τs = 1.159 hr,

(f)
∫ 4τs

0
Qkudt = 2.562 × 109 J

x



7.17 (b) Ts = 484.6◦C, (c) Qr,s-∞ = 822.0 W

7.18 (b) Ṡe,J = 10.80 W
7.19 (b) Qc/Ac = 310.2 W/m2

7.20 (b) 〈Nu〉D = 85.39, (c) 〈Rku〉D = 2.527 × 10−5 K/W, (d) Rk,s-c = 2.036 × 10−3 K/W

(e) 〈Qu〉L-0 = −1.209 × 104 W, Ṁsl = 36.24 g/s
7.21 (a) (i) 〈Nu〉D = 14,778 and 〈qku〉D = 9,946 kW/m2

(ii) 〈Nu〉D = 2,246 and 〈qku〉D = −237.9 kW/m2

7.22 (b) (i) Q1−2 = 681.7 W, (ii) Q1−2 = 545.2 W, (iii) Q1−2 = 567.1 W, (c) la = 2 cm
7.24 (b) 〈Tf,c〉0 = 623.6◦C, (c) N = 5.81 � 6
7.25 (b) 〈Tf,h〉L = 1,767 K, (c) 〈Tf,h〉0 = 450.0 K and 〈Tf,c〉L = 343.6 K

(d) 〈Qu〉L-0 = 1,161 W and η = 89.36%
7.26 (b) 〈Tf,c〉L = 27.35◦C, 〈Tf,h〉L = 27.12◦C, (c) 〈Qu〉L-0 = 171.7 W
7.27 (b) Rku,c = 0.0250 K/W, Rku,h = 0.2250 K/W, (c) 〈Tf,c〉L = 31.43◦C
7.28 (b) 〈Qu〉L-0 = 6,623 W, (c) η = 90.73%
7.29 (b) NTU = 1.106, (c) Cr = 0.07212, (d) εhe = 0.655, (e) 〈Tf,c〉L = 34.13◦C,

(f) 〈Tf,h〉L = 47.8◦C, (g) 〈Qu〉L-0 = 908.4 W
7.30 (b) NTU = 0.07679, (c) εeh = 0.07391, (d) 〈Tf,c〉L = 307.4 K, (e) 〈Qu〉L-0 = 32.09 kW
7.31 (b) η = 95.0%

7.32 (i) (b) NTU = 0.8501, (c) 〈Qu〉L-0 = 23,970 W, (d) Ṁlg = 0.01090 kg/s

(ii) (b) NTU = 1.422, (c) 〈Qu〉L-0 = 31,823 W, (d) Ṁlg = 0.01446 kg/s
7.33 (b) L = 12.45 m
7.34 (a) 〈Qu,c〉L-0 = 33.01 W, (b)L = 2.410 m, (c) [∆〈Tf,c〉]max = 66.10◦C

8.1 (b) J2
e Re,o = 22.18 W

8.2 (b) 〈Tf 〉0 = 3.559◦C, (c) Ṡe,J = 5.683 W, (d) Ts = 69.75◦C
8.3 (c) 〈Qu〉L-0 = −6.47 W, Je = 0.8 A, Tc = 290.5 K, Th = 333.3 K, 〈Tf 〉L = 293.0 K,

〈Rku〉w = 1.515 K/W, Rk,h-c = 1.235 K/W, 〈Ru〉L = 0.4183 K/W,

Qk,h-c = 36.65 W, Ṡe,P = −46.02 W, (Ṡe,J)c = 5.04 W
8.4 (b) Ts,1(t) = Tf,1(t) = 400◦C for t > 10 s

xi





Chapter 1

Introduction and Preliminaries



PROBLEM 1.1.FAM

GIVEN:
Introductory materials, definitions for various quantities, and the concepts related to heat transfer are given

in Chapter 1.

OBJECTIVE:
Define the following terms (use words, schematics, and mathematical relations as needed).

(a) Control Volume V .
(b) Control Surface A.
(c) Heat Flux Vector q(W/m2).
(d) Conduction Heat Flux Vector qk(W/m2).
(e) Convection Heat Flux Vector qu(W/m2).
(f) Surface-Convection Heat Flux Vector qku(W/m2).
(g) Radiation Heat Flux Vector qr(W/m2).
(h) Net Rate of Surface Heat Transfer Q|A(W).
(i) Conservation of Energy.

SOLUTION:
Define the following terms (use words as well as schematics and mathematical relations when needed).

(a) Control Volume V : A control volume is a specified enclosed region of space, selected based on the information
sought, on which the heat transfer analysis is applied. See Figure Ex.1.5 for examples of control volumes.

(b) Control Surface A: There are two types of control surfaces. One type of control surface is the closed sur-
face which forms the boundary of the control volume, i.e., separates the interior of the control volume from its
surroundings. These are used in volumetric energy conservation analysis. The other type of control surface is
the surface containing only the bounding surface of a heat transfer medium (or interface between two media).
These control surfaces enclose no mass and are used in surface energy conservation analysis. See Figure 1.2 for
an example of a control surface.

(c) Heat Flux Vector q(W/m2): The heat flux vector is a vector whose magnitude gives the heat flow per unit
time and per unit area and whose direction indicates the direction of the heat flow at a given point in space x
and instant of time t. The mechanisms contributing to the heat flux vector are the conduction heat flux vector
qk(W/m2), the convection heat flux vector qu(W/m2), and the radiation heat flux vector qr(W/m2), i.e.,

q = qk + qu + qr .

(d) Conduction Heat Flux Vector qk(W/m2): The conduction heat flux vector is a vector whose magnitude gives
the heat flow rate per unit area due to the presence of temperature nonuniformity inside the heat transfer medium
and molecular conduction (molecular interaction, electron motion, or phonon motion).

(e) Convection Heat Flux Vector qu(W/m2): The convection heat flux vector is a vector whose magnitude gives
the heat flow rate per unit area due to bulk motion of the heat transfer medium.

(f) Surface-Convection Heat Flux vector qku(W/m2): This is a special case of conduction heat transfer from the
surface of a stationary solid in contact with a moving fluid. The solid and fluid have different temperatures (i.e.,
are in local thermal nonequilibrium). Since the fluid is stationary at the solid surface (i.e., fluid does not slip on
the surface), the heat transfer between the solid and the fluid is by convection, but this heat transfer depends
on the fluid velocity (and other fluid properties). Therefore the subscripts k and u are used to emphasize fluid
conduction and convection respectively.

(g) Radiation Heat Flux Vector qr(W/m2): The radiation heat flux vector is a vector whose magnitude gives
the heat flow rate per unit area in the form of thermal radiation (a part of the electromagnetic radiation spectrum).
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(h) Net Rate Of Surface Heat Transfer Q|A(W): The net rate of surface heat transfer is the net heat transfer rate
entering or leaving a control volume. The relation to the heat flux vector is

Q|A =
∫

A

(q · sn)dA,

where sn is the control surface normal vector (pointing outward) and the integration is done over the entire
control surface A. See (1.9) for the sign convention for the net rate of surface heat transfer.

(i) Conservation Of Energy: The conservation of energy equation is the first law of thermodynamics and states
that the variation of the total energy of a system (which includes kinetic, potential, and internal energy) is equal
to the sum of the net heat flow crossing the boundaries of the system and the net work performed inside the
system or at its boundaries. The integral-volume energy equation can be written as

Q|A = − ∂E

∂t

∣∣∣∣
V

− Ėu|A + Ẇp|A + Ẇµ|A + Ẇg,e|V + Ṡe|V .

See (1.22) for the description of the various terms.

COMMENT:
The mechanisms of heat transfer (conduction, convection, and radiation), and the energy equation (including

various energy conversion mechanisms) are the central theme of heat transfer analysis. In Chapter 2, a simplified
form of the energy equation will be introduced.
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PROBLEM 1.2.FUN

GIVEN:
An automobile radiator is a cross-flow heat exchanger (which will be discussed in Chapter 7) used to cool

the hot water leaving the engine block. In the radiator, the hot water flows through a series of interconnected
tubes and loses heat to an air stream flowing over the tubes (i.e., air is in cross flow over the tubes), as shown
in Figure Pr.1.2(a). The air-side heat transfer is augmented using extended surfaces (i.e., fins) attached to the
outside surface of the tubes. Figure Pr.1.2(b) shows a two-dimensional close up of the tube wall and the fins.
The hot water convects heat qu(W/m2) as it flows through the tube. A portion of this heat is transferred to the
internal surface of the tube wall by surface convection qku(W/m2). This heat flows by conduction qk(W/m2)
through the tube wall, reaching the external tube surface, and through the fins, reaching the external surface
of the fins. At this surface, heat is transferred to the air stream by surface convection qku(W/m2) and to the
surroundings (which include all the surfaces that surround the external surface) by surface radiation qr(W/m2).
The heat transferred to the air stream by surface convection is carried away by convection qu(W/m2).

SKETCH:
Figures Pr.1.2(a) to (c) shows an automobile radiator and its various parts.

OBJECTIVE:
On Figure Pr.1.2(c), track the heat flux vector, identifying various mechanisms, as heat flows from the hot

water to the air. Assume that the radiator is operating in steady state.

SOLUTION:
Figure Pr.1.2(d) presents the heat flux vector tracking for the control volume shown in Figure Pr.1.2(c). The

mechanisms of heat transfer are identified and the thickness of the heat flux vector is proportional to the magni-
tude of the heat transfer rate.

COMMENT:
(i) Note that at each interface the heat flux vectors entering and leaving are represented. This facilitates the
application of the energy equation for control surfaces and control volumes enclosing interfaces or parts of the
system.
(ii) The temperature along the fin is not axially uniform; in general, it is also not laterally uniform. The
temperature at the base is higher than that at the tip. Thus, the conduction heat transfer rate is larger near the
base and decreases toward the tip. As the temperature field is two-dimensional, the conduction heat flux vector
is not normal to the surface. For fins of highly conducting materials or small aspect ratios (small thickness to
length ratio), the lateral variation in temperature is generally neglected. Finally, for sufficiently long fins, the
temperature at the tip approaches that of the air flow and under this condition there is no heat transfer through
the fin tip. However, for weight and cost reductions, fin lengths are generally chosen shorter than this limit.
(iii) The direction of the convection heat flux vector depends on the direction of the complicated flow field around
the fin and tube. The flow field is usually three-dimensional and the convection heat flux vector is usually not
normal to the surface.
(iv) The direction of the radiation heat flux vector depends on the position and temperature of the surfaces
surrounding the fin and tube surfaces. These include the other surfaces in the radiator, external surfaces, etc. In
this problem such surfaces have not been directly identified.
(v) The conduction heat flux along the tube wall can be neglected for sufficiently thin tube walls.
(vi) The use of fins is justifiable when the heat flux through the fins is larger than the heat flux through the bare
surface.
(vii) Heat transfer with extended surfaces (i.e., fins) is studied in Chapter 6. In that chapter, the surface
convection for semi-bounded flows (i.e., flows over the exterior of solid bodies) is presented. In Chapter 7, the
surface convection for bounded flows (i.e., tube flow) is studied. Surface radiation is studied in Chapter 4.
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(d) Heat Flux Vector Tracking 
      around a Tube-Fin Region

Figure Pr.1.2(a), (b), and (c) An automobile radiator shown at various length scales. (d) Heat flux vector tracking
around a tube-fin region.

5



PROBLEM 1.3.FUN

GIVEN:
A flat-plate solar collector [Figure Pr.1.3(a)] is used to convert thermal radiation (solar energy) into sensible

heat. It uses the sun as the radiation source and water for storage of energy as sensible heat. Figure Pr.1.3(b)
shows a cross section of a flat-plate solar collector. The space between the tubes and the glass plate is occupied
by air. Underneath the tubes, a thermal insulation layer is placed. Assume that the glass absorbs a fraction of
the irradiation and designate this heat absorbed per unit volume as ṡe,σ(W/m3). Although this fraction is small
when compared to the fraction transmitted, the glass temperature is raised relative to the temperature of the air
outside the solar collector. The remaining irradiation reaches the tube and fin surfaces, raising their tempera-
tures. The temperature of the air inside the solar collector is higher than the glass temperature and lower than
the tube and fin surface temperatures. Then the thermobuoyant flow (i.e., movement of the air due to density
differences caused by temperature differences) causes a heat transfer by surface-convection at the glass and tube
surfaces. The net heat transfer at the tube surface is then conducted through the tube wall and transferred to
the flowing water by surface convection. Finally, the water flow carries this heat away by convection. Assume
that the ambient air can flow underneath the solar collector.

SKETCH:
Figures Pr.1.3(a) to (c) show a flat-plate solar collector and its various components.

Water
OutletWater Inlet

(a) Flat-Plate Solar Collector (b) Section A-A

(c) Control Surface for the Heat Flux Vector Tracking

Solar
Irradiation

Wind

Glass Plate Tube Fin

Ambient Air

AirA

A
Water

Glass Plate

Air

Tube

Water

Thermal Insulation

Container

Fin

Thermal
Insulation

Control Volume for the
Heat Flux Vector Tracking

Plastic or
Metallic Container

Glass Plate

se,�
.

Figure Pr.1.3(a), (b), and (c) A flat-plate solar collector shown at various length scales.

OBJECTIVE:
Track the heat flux vector for this thermal system. Note that the tubes are arranged in a periodic structure

and assume a two-dimensional heat transfer. Then, it is sufficient to track the heat flux vector for a control
volume that includes half of a tube and half of a connecting fin, as shown on Figure Pr.1.3(c).

SOLUTION:
Figure Pr.1.3(d) shows the heat flux vector path for the cross section of the flat-plate collector.

COMMENT:
The radiation absorption in the glass plate depends on the radiation properties of the glass and on the

wavelength of the thermal radiation. The tube and fin surfaces also reflect part of the incident radiation. The
diagram in Figure Pr.1.3(d) represents the net radiation heat transfer between the tube and fin surfaces and the
surroundings. Radiation heat transfer will be studied in detail in Chapter 4.
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Figure Pr.1.3(d) Heat flux vector tracking around glass, tube, and insulator.

The objective in the flat-plate solar collector is to convert all the available thermal irradiation to sensible heat
in the water flow. The heat flux vector tracking allows the identification of the heat losses, the heat transfer
mechanisms associated with the heat losses, and the heat transfer media in which heat loss occurs. Minimizing
heat loss is usually done through the suppression or minimization of the dominant undesirable heat transfer
mechanisms. This can be achieved by a proper selection of heat transfer media, an active control of the heat flux
vectors, or a redesign of the system. Economic factors will finally dictate the actions to be taken.
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PROBLEM 1.4.FAM

GIVEN:
In printed-circuit field-effect transistors, conversion of electromagnetic energy to thermal energy occurs in the

form of Joule heating. The applied electric field is time periodic and the heat generated is stored and transferred
within the composite layers. This is shown in Figure Pr.1.4(a). The dimensions of the various layers are rather
small (measured in submicrons). Therefore, large electrical fields and the corresponding large heat generation
can elevate the local temperature beyond the threshold for damage.

SKETCH:
Figures Pr.1.4(a) and (b) show the field-effect transistor.

Source Gate Drain

Active Layer

(a) Physical Description of Field-Effect Transistor (b) Dimensions

Semi-Insulating
Substrate

Silicon Substrate Electron
Transfer

Depletion
Region

Joule
Heating Se,J

�ϕds , Applied Voltage

�ϕg Jd

.

Source

Gate Drain
0.2 µm0.1 µm

0.1 µm

Se,J
.

Figures Pr.1.4(a) and (b) Field-effect transistor.

OBJECTIVE:
On Figure Pr.1.4(b), track the heat flux vector. Note that the electric field is transient.

SOLUTION:
The electromagnetic energy converted to thermal energy by Joule heating is stored in the device, thus raising

its temperature, and is transferred by conduction toward the surface. At the surface the heat is removed by
surface convection and radiation. These are shown in Figure Pr.1.4(c).

Source

Gate

Surface
Convection

qku Surface Radiation

Storage

qr

Symmetry Line

Drain0.2 µm0.1 µm

0.1 µm

qk

(c) Heat Flow
qk

Se,J

Conduction

Convection
qu

qk

Figure Pr.1.4(c) Heat flux vector tracking in a field-effect transistor.
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COMMENT:
For a time periodic electric field with very high frequency the heat is mostly stored, resulting in large local

temperatures. This limits the frequency range for the operation of transistors (because at higher temperature the
dopants migrate and the transistor fails).

The search for semi-conductors that can safely operate at higher temperatures aims at overcoming this limi-
tation.

The Joule heating is caused as an electric field is applied and the electrons are accelerated and collide with the
lattice atoms and other electrons. Since the electrons are at a much higher temperature than the lattice, these
collisions result in a loss of momentum and this is the Joule heating.
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PROBLEM 1.5.FAM

GIVEN:
The attachment of a microprocessor to a printed circuit board uses many designs. In one, solder balls are

used for better heat transfer from the heat generating (Joule heating) microprocessor to the printed circuit board.
This is shown in Figure Pr.1.5(a).

SKETCH:
Figure 1.5(a) shows a solder-ball attachment of a microprocessor to a printed circuit board.

Heat Sink or
Coverplate

Solder Balls

Microprocessor

Physical Model of Microprocessor and
Circuit Board with Solder Balls

Adhesive

Thermal Adhesive

Printed Circuit Board

Se,J

Figure Pr.1.5(a) Solder-ball connection of microprocessor to the printed circuit board.

OBJECTIVE:
Track the heat flux vector from the microprocessor to the heat sink (i.e., bare or finned surface exposed to

moving, cold fluid) and the printed circuit board.

SOLUTION:
Figure Pr.1.5(b) shows the heat flux vector starting from the microprocessor. Within the solid phase, the

heat transfer is by conduction. From the solid surface to the gas (i.e., air), the heat transfer mechanism is surface
radiation. If the gas is in motion, heat is also transferred by surface convection.
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qu qrqku qk
qk

Se,J

qu
qr
qu

qr

qku

qu

qr

qku

qk
qu

qu

qr
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qku

qk
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qrqr
ququ ququ qku

qku
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Figure Pr.1.5(b) Heat flux vector tracking in microprocessor and its substrate.

COMMENT:
If the heat generation Ṡe,J is large, which is the case for high performance microprocessors, then a heat sink

(e.g., a finned surface) is needed. We will address this in Section 6.8.
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PROBLEM 1.6.FAM

GIVEN:
As part of stem-cell transplantation (in cancer treatment), the donor stem cells (bone marrow, peripheral

blood, and umbilical cord blood stem cells) are stored for later transplants. Cryopreservation is the rapid direc-
tional freezing of these cells to temperatures below −130◦C. Cryopreservative agents are added to lower freezing
point and enhance dehydration. Cooling rates as high as −dT/dt = 500◦C/s are used (called rapid vitrification).
The cells are frozen and kept in special leak-proof vials inside a liquid nitrogen storage system, shown in Figure
Pr.1.6(a). At one atmosphere pressure, from Table C.4, Tlg(p = 1 atm) = 77.3 K = −195.9◦C. The storage
temperature affects the length of time after which a cell can be removed (thawed and able to establish a cell
population). The lower the storage temperature, the longer the viable storage period. In one protocol, the liquid
nitrogen level in the storage unit is adjusted such that T = −150◦C just above the stored material. Then there is
a temperature stratification (i.e., fluid layer formation with heavier fluid at the bottom and lighter fluid on top)
with the temperature varying from T = −196◦C at the bottom to T = −150◦C at the top of the unit, as shown
in Figure Pr.1.6(a).

SKETCH:
Figure Pr.1.6(a) shows the storage container and the temperature stratification within the container.

Liquid Nitrogen
Tf = Tlg = �196 C

g

slg < 0

Make-up Liquid
Nitrogen

Nitrogen Vapor
Tf = �178 C

Nitrogen Vapor
Tf = �150 C

Ambient Air
Tf,� >> Tlg

Vent Insulation

Vials

Container Wall

Figure Pr.1.6(a) An insulated container used for storage of cryopreserved stem cells.

OBJECTIVE:
Draw the steady-state heat flux vector tracking for the storage container showing how heat transfer by surface

convection and then conduction flows through the container wall toward the liquid nitrogen surface. Also show
how heat is conducted along the container wall to the liquid nitrogen surface. Note that Ṡlg < 0 since heat is
absorbed during evaporation. In order to maintain a constant pressure the vapor is vented and make-up liquid
nitrogen is added.

SOLUTION:
Figure Pr.1.6(b) shows the heat flux vector tracking, starting from the ambient air convection qu, surface

radiation qr, and surface convection qku, and then leading to conduction qk through the insulation. Heat is

qr

qu

qku

qk

qr

qku

qu

qk

slg

qk

Figure Pr.1.6(b) Tracking of the heat flux vector.
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conducted through the container wall and, due to the higher temperature at the top of the container, heat is also
conducted along the wall and toward the liquid nitrogen surface. All the conducted heat is converted into the
liquid-vapor phase change Ṡlg (which is negative). The upper portion of the container also transfers heat to the
liquid surface by surface radiation qr.

COMMENT:
Note that between the top and bottom portions of the container there is a difference in temperature ∆T = 46◦C.

Since the heavier gas is at the bottom, no thermobuoyant motion will occur. A special insulation is needed to
minimize the heat leakage into the container (and thus reduce the needed liquid nitrogen make-up flow rate).
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PROBLEM 1.7.FAM

GIVEN:
Induction-coupling (i.e., electrodeless) Joule heating Ṡe,J of thermal plasmas, which are high temperature

(greater than 10,000 K) ionized-gas streams, is used for particle melting and deposition into substrates. Figure
Pr.1.7(a) shows a plasma spray-coating system. The powder flow rate strongly influences particle temperature
history Tp(t), i.e., the speed in reaching the melting temperature (note that some evaporation of the particles
also occurs). This is called in-flight plasma heating of particles. To protect the plasma torch wall, a high-velocity
sheath-gas stream is used, along with liquid-coolant carrying tubes embedded in the wall. These are also shown
in Figure Pr.1.7(a).

SKETCH:
Figure Pr.1.7(a) shows the torch and the (i) plasma-gas-particle stream, and (ii) the sheath-gas stream. Also

shown is (iii) a single particle.

qku + qr

Substrate

High Temperature
Plasma Envelope

Cold Gas Stream

Particles (Powder) and Carrier
Gas (e.g., Ar, N2, H2, Air)

Plasma Gas (e.g., Ar, N2, H2, Air)

Sheath (or Coolant) Gas
(e.g., Ar, N2, H2, Air)

Powder Deposit

us , Substrate Motion

(ii) Sheath-Gas StreamPlasma Torch Wall

Induction Coil

(i) Plasma-Gas-Particles Stream

(iii) Particle, Tp(t)

Liquid Coolant Coil

se,J

Powder

qk

Figure Pr.1.7(a) A plasma spray-coating torch showing various streams, Joule heating, and wall cooling.

OBJECTIVE:
(a) Draw the heat flux vector tracking for the (i) plasma-gases-particles, and (ii) sheath-gas streams. Allow for
conduction-convection-radiation heat transfer between these two streams. Follow the plasma gas stream to the
substrate.
(b) Draw the heat flux vector tracking for (iii) a single particle, as shown in Figure Pr.1.7(a). Allow for surface
convection and radiation and heat storage as −∂E/∂t (this is sensible and phase-change heat storage).

SOLUTION:
(a) Figure Pr.1.7(b) shows the heat flux vector tracking. We start with the plasma gas-particle stream and,
since it is cold at the torch entrance, its convection heat flux qu is shown. Upon Joule heating, its temperature
increases and radiation heat transfer also becomes significant. As the stream proceeds, it transfers heat (by
conduction, convection, and radiation) to the sheath-gas stream. The sheath-gas stream in turn transfers heat
by surface convection to the cold wall. The plasma-gas-particle stream reaches the substrate and transfers heat
to the substrate by surface convection (this is similar to an impinging jet).

(b) Figure Pr.1.7(b) shows the heat flux vector tracking for the particles. Heat is transferred to the particles by
surface radiation and surface convection. This heat is stored in the particles as sensible heat (resulting in a rise
in its temperature), and as heat of phase change (melting and evaporation). Using (1.22), this is shown as −∂E/∂t.
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Figure Pr.1.7(b) Tracking of the heat flux vector.

COMMENT:
In Chapter 5, we will discuss Joule heating of gas streams and plasma generators. In Chapters 4 and 7, we

will discuss surface-radiation and surface-convection heating of objects.
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PROBLEM 1.8.FAM

GIVEN:
A bounded cold air stream is heated, while flowing in a tube, by electric resistance (i.e., Joule heating). This is

shown in Figure Pr.1.8(a). The heater is a solid cylinder (ceramics with the thin, resistive wire encapsulated in it)
placed centrally in the tube. The heat transfer from the heater is by surface convection and by surface-radiation
emission (shown as Ṡe,ε). This emitted radiation is absorbed on the inside surface of the tube (shown as Ṡe,α)
and then leaves this surface by surface convection. The outside of the tube is ideally insulated. Assume that no
heat flows through the tube wall.

SKETCH:
Figure Pr.1.8(a) shows the tube, the air stream, and the Joule heater. The surface radiation emission and

absorption are shown as Ṡe,ε and Ṡe,α, respectively.

Tube Wall

Bounded Cold
Air Stream In

Bounded Hot
Air Stream Out

Ideal Insulation (No Heat
Flows in Tube Wall)

Electric Resistance Heating (Thin Wires
Encapsulated in Ceramic Cover)

Se,� Se,JSe, �

Figure Pr.1.8(a) A bounded air stream flowing through a tube
is heated by a Joule heater placed at the center of the tube.

OBJECTIVE:
Draw the steady-state heat flux tracking showing the change in fluid convection heat flux vector qu, as it flows

through the tube.

SOLUTION:
Figure Pr.1.8(b) shows the inlet fluid convection heat flux vector qu entering the tube. The heat transfer

by surface convection qku from the heater contributes to this convection heat flux vector. The surface radiation
emission from the heater is absorbed by the inner surface of the tube. Since no heat flows in the tube wall, this
heat leaves by surface convection and further contributes to the air stream convection heat flux vector. These are
shown in Figure Pr.1.8(b).

No Heat Flow
(Ideal Insulation)

Se,� (Surface Radiation Absorption)

Se,J

qu

qku

Se,  (Surface
Radiation Emission)

qkqku

qu
qr

�

Figure Pr.1.8(b) Tracking of heat flux vector.

COMMENT:
In practice, the heater may not be at a uniform surface temperature and therefore, heat flows along the heater.

The same may be true about the tube wall. Although the outer surface is assumed to be ideally insulated, resulting
in no radial heat flow at this surface, heat may still flow (by conduction) along the tube wall.
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PROBLEM 1.9.FAM

GIVEN:
Water is bounded over surfaces by raising the substrate surface temperature Ts above the saturation temper-

ature Tlg(p). Consider heat supplied for boiling by electrical resistance heating (called Joule heating) Ṡe,J in the
substrate. This is shown in Figure Pr.1.9(a). This heat will result in evaporation in the form of bubble nucleation,
growth, and departure. The evaporation site begins as a bubble nucleation site. Then surface-convection heat
transfer qku is supplied to this growing bubble (i) directly through the vapor (called vapor heating), (ii) through
a thin liquid film under the bubble (called micro layer evaporation), and (iii) through the rest of the liquid
surrounding the vapor. Surface-convection heat transfer is also supplied (iv) to the liquid (resulting in slightly
superheated liquid) and is moved away by liquid motion induced by bubble motion and by thermobuoyancy.

SKETCH:
Figure Pr.1.9(a) shows the heat supplied by Joule heating within the substrate and a site for bubble nucleation,

growth, and departure.

Departure

Nucleation and Growth
of Bubble (Vapor)

Liquid Microlayer
Heat Substrate

Circulating (Cellular) 
Liquid Motion Induced by

Bubbles and by
Thermobuoyancy

Pool of Liquid, Tlg (p)

Vapor Escape

Slg , EvaporationLiquid Supply

Se,J , Joule Heating

g

Ts > Tlg (p)

Liquid Surface

Figure Pr.1.9(a) The nucleate pool boiling on a horizontal surface. The Joule heating results in raising the surface
temperature above the saturation temperature Tlg, and bubble nucleation, growth, and departure.

OBJECTIVE:
Track the heat flux vector starting from the Joule heating site Ṡe,J within the substrate and show the surface-

convection heat transfer, (i) to qku (iv). Also follow the heat-flux vector to the liquid surface. Assume a time-
averaged heat transfer in which the bubbles are formed and depart continuously.

SOLUTION:
In Figure Pr.1.9(b), starting from Ṡe,J, the heat flows by conduction to the substrate surface. There is also

conduction away from the nucleate pool boiling surface and this is labeled as the heat loss. Heat is transferred
from the solid by surface convection qku to the vapor, to the thin liquid microlayer, to the liquid surrounding
the bubble, and to the bulk liquid phase. These are shown in Figure Pr.1.9(b). The heat is in turn removed by
the departing bubbles and by liquid convection qu to the surface resulting in vapor escape and further evaporation.

COMMENT:
The relative magnitudes of qku(i) to qku(iv) are discussed in Section 6.6.1 and Figure 6.17 gives additional

descriptions of the nucleate pool boiling.
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Figure Pr.1.9(b) Tracking of the heat flux vector, starting from the Joule heating location.
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PROBLEM 1.10.FAM

GIVEN:
Deep heat mining refers to harvesting of the geothermal energy generated locally by radioactive decay Ṡr,τ

and transferred by conduction Qk from the earth mantle [shown in Figure Ex.1.2(a)]. Mining is done by the
injection of cold water into fractured rocks (geothermal reservoir) followed by the recovery of this water, after
it has been heated (and pressurized) by surface-convection qku in the fractures, through the production wells.
These are shown in Figure Pr.1.10(a). The heated water passes through a heat exchanger and the heat is used
for energy conversion or for process heat transfer.

SKETCH:
Figure Pr.1.10(a) shows a schematic of deep heat mining including cold water injection into hot, fractured

rocks and the recovery of heated (and pressurized) water. The heat generation by local radioactive decay Ṡr,τ

and by conduction from the earth mantle are also shown.
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Figure Pr.1.10(a) Deep heat mining by injection of cold water into hot rocks and recovery of heated water.

OBJECTIVE:
Starting from the energy conversion sources Ṡr,τ and the heat conduction from lower section Q = Qk, draw

the steady-state heat flux vector tracking and show the heat transfer to the cold stream by surface convection
qku. Note that heat is first conducted through the rock before it reaches the water stream. Follow the returning
warm water stream to the surface heat exchanger.
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SOLUTION:
Figure Pr.1.10(b) shows the heat flux vector tracking. The heat flux emanating from Ṡr,τ and boundary Qk

flows into the rock by conduction qk. This heat is then transferred to the water stream by surface convection
qku. The heated stream convects heat qu to the surface heat exchanger. The direction of qu is the same as u
(fluid velocity).

qku

qk

qk

qku

qu

qu

qu

qu
qu

qu

qu

qu

qu

qu

sr,�

qu

sr,�

Figure Pr.1.10(b) Tracking of the heat flux vector.

COMMENT:
The surface-convection heat transfer of bounded fluid streams (such as the water stream in fractured rocks)

will be discussed in Chapter 7. There we will show that when a large surface area (per unit volume) exists for
surface-convection heat transfer, the stream reaches the local bounding solid temperature. Here this temperature
can be high, which can cause volumetric expansion (and pressurization) of water.
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PROBLEM 1.11.FAM

GIVEN:
In a seabed hydrothermal vent system, shown in Figure Pr.1.11(a), cold seawater flows into the seabed through

permeable tissues (fractures) and is heated by the body of magma. The motion is caused by a density difference,
which is due to the temperature variations, and is called a thermobuoyant motion (it will be described in Chapter
6). Minerals in the surrounding rock dissolve in the hot water, and the temperature-tolerant bacteria release
additional metals and minerals. These chemical reactions are represented by Ṡr,c (which can be both endo- and
exothermic). Eventually, the superheated water rises through the vent, its plume forming a “black smoker.” As
the hot water cools, its metal content precipitate, forming concentrated bodies of ore on the seabed.

SKETCH:
Figure Pr.1.11(a) shows the temperature at several locations around the vent and thermobuoyant water flow.
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Figure Pr.1.11(a) A hydrothermal vent system showing the temperature
at several locations and the thermobuoyant flow.

OBJECTIVE:
Draw the heat flux vector tracking for the volume marked as V . Note that water flows in the permeable

seabed, and therefore, convection should be included (in addition to conduction). This is called the intramedium
convection (as compared to surface convection) and will be discussed in Chapter 5.

SOLUTION:
Figure Pr.1.11(b) shows the heat flux vector tracking for the hydrothermal vent.

This tracking starts at the location with the highest temperature, which is the magma. The liquid flows toward
the high temperature location to be heated and then it rises. Therefore, there is convection toward the magma
from the periphery and convection away from the magma toward the vent. The conduction heat transfer is from
the magma toward the periphery and the vent. Therefore, the conduction heat flow opposes the convection for
the heat flow toward the periphery, but assists it toward the vent. These will be discussed in Chapter 5, where
we consider the intramedium conduction-convection.

COMMENT:

The radiation heat transfer is negligible. Although the visible portion of the thermal radiation will penetrate
through the water, the infrared portion will be absorbed over a short distance. Therefore, the mean-free path of
photon λph is very short in water.
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Figure Pr.1.11(b) Tracking of the heat flux vector.
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PROBLEM 1.12.FAM

GIVEN:
Electric current-carrying wires are electrically insulated using dielectric material. For low temperature, a

polymeric solid (such as Teflon) is used, and for high temperature application (such as in top range electrical
oven), an oxide ceramic is used. Figure Pr.1.12(a) shows such a wire covered by a layer of Teflon. The Joule
heating Ṡe,J produced in the wire is removed by a cross flow of air, with air far-field temperature Tf,∞ being
lower than the wire temperature Tw.

SKETCH:
Figure Pr.1.12(a) shows the wire and the cross flow of air.

Joule Heating, Se,J

(a) Air Flow Over Cylinder (b) Cross-Sectional View

Electrical Insulation
Coating (Teflon)

Electrical Current-
Conducting Wire

Cross Flow of Air

Se,J
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Tf,� , uf,�

Tf,�
uf,�

Insulation (Teflon)

Wire

Figure Pr.1.12(a) and (b) An electrical current-carrying wire is covered
with a layer of electrical insulation, and Joule heating is removed

by surface convection and surface-radiation heat transfer.

OBJECTIVE:
Draw the steady-state heat flux vector tracking, starting from the heating source, for this heat transfer prob-

lem. Allow for surface radiation (in addition to surface convection).

SOLUTION:
Figure Pr.1.12(c) shows the heat flux vector tracking, starting from the heat source Ṡe,J. Heat is conducted

through the wire and electrical insulation (since both media attenuate radiation significantly and therefore, ra-
diation heat transfer is neglected). This heat is removed by surface convection and surface radiation. The
surface-radiation heat transfer is to the surroundings (air can be treated as not attenuating the radiation).
The surface convection (on the surface, which is by fluid convection but is influenced by fluid motion) leads to
convection-conduction adjacent to the surface and then to convection away from the surface. As the hot air flows
downstream from the wire, it loses heat by conduction and eventually returns to its upstream temperature.
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Figure Pr.1.12(c) Tracking of heat flux vector.
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COMMENT:
Note that surface convection that occurs on the solid surface is conduction through the contact of the surface

with the fluid molecules, which are nonmoving (from a statistical average view point). But this conduction heat
transfer rate is influenced by the fluid motion (near and far from the surface).
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PROBLEM 1.13.FAM.S

GIVEN:
Popcorn can be prepared in a microwave oven. The corn kernels are heated to make the popcorn by an

energy conversion from oscillating electromagnetic waves (in the microwave frequency range) to thermal energy
designated as ṡe,m(W/m3). With justifiable assumptions for this problem, (1.23) can be simplified to

Q |A = −ρcvV
dT

dt
+ ṡe,mV, integral-volume energy equation,

where the corn kernel temperature T is assumed to be uniform, but time dependent. The control volume for a
corn kernel and the associated energy equation terms are shown in Figure Pr.1.13(a).

The surface heat transfer rate is represented by

Q |A =
T (t) − T∞

Rt
,

where T∞ is the far-field ambient temperature and Rt(K/W) is the constant heat transfer resistance between the
surface of the corn kernel and the far-field ambient temperature.

ρ = 1,000 kg/m3, cv = 1,000 J/kg-K, V = 1.13×10−7 m3, ṡe,m = 4×105 W/m3, T (t = 0) = 20◦C, T∞ = 20◦C,
Rt = 5 × 103 K/W.

SKETCH:
Figure Pr.1.13(a) shows the corn kernel and the thermal circuit diagram.

Rt (K/W)
� ρcvV se,mV

dT
dt

T
�

Q A

V

Corn Kernel, T(t)

ee

Oscillating Electric Field Intensity

Figure Pr.1.13(a) Thermal circuit model for a corn kernel heated by microwave energy conversion.

OBJECTIVE:
(a) For the conditions given below, determine the rise in the temperature of the corn kernel for elapsed time t up
to 5 min. Use a software for the time integration.
(b) At what elapsed time does the temperature reach 100◦C?

SOLUTION:
The energy equation

Q|A =
T − T∞

Rt
= −ρcvV

dT

dt
+ ṡe,mV

is an ordinary differential equation with T as the dependent variable and t as the dependent variable. The solution
requires the specification of the initial condition. This initial condition is T (t = 0). This energy equation has a
steady-state solution (i.e., when the temperature no longer changes). The solution for the steady temperature is
found by setting dT/dt = 0 in the above energy equation. Then, we have

T − T∞
Rt

= ṡe,mV or T = T∞ + ṡe,mV Rt.

Here we are interested in the transient temperature distribution up to t = 5 min.
The solver (such as SOPHT) requires specification of the initial condition and the constants (i.e., ρ, cv, V , ṡe,m

and Rt) and a numerical integration of the transient energy equation.

(a) The solution for T = T (t), up to t = 1,000 s, is plotted in Figure Pr.1.13(b). Examination shows that initially
(T − T∞)/Rt is small (it is zero at t = 0) and the increase in T is nearly linear. Later the time rate of increase
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in T begins to decrease. At steady-state (not shown), the time rate of increase is zero.

(b) The time at which T = 100◦C is t = 247 s and is marked in Figure Pr.1.13(b).

0 200 400 600 800 1,000

t , s
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60

100

140

180

220

T 
, o

C

Figure Pr.1.13(b) Variation of corn kernel temperature with respect to time.

COMMENT:
The pressure rise inside the sealed corn kernel is due to the evaporation of the trapped water. This water

absorbs most of the electromagnetic energy. Once a threshold pressure is reached inside the corn kernel, the
sealing membrane bursts.
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PROBLEM 1.14.FAM

GIVEN:
In severely cold weathers, an automobile engine block is kept warm heated prior to startup, using a block

Joule heater at a rate Ṡe,J with the electrical power provided through the household electrical circuit. This is
shown in Figure Pr.1.14(a). The heat generated conducts through the block of mass M and then is either stored
within the volume V or lost through the surface A. The energy equation (1.22) applies to the control surface A.

Consider that there is no heat transfer by convection across the surface A1, i.e., Qu = 0. The conduction heat
transfer rate (through the fasteners and to the chassis) is Qk, the surface-convection heat transfer rate (to the
ambient air) is Qku, and the surface-radiation heat transfer rate (to the surrounding surface) is Qr. In addition,
there is a prescribed heat transfer rate Q (not related to any heat transfer mechanism)

Q = 20 W, Qku = 80 W, Qk = 30 W, Qr = 15 W, Ṡe,J = 400 W, cv = 900 J/kg-K, M = 150 kg.

SKETCH:
Figure Pr.1.14(a) shows the heated engine block with the Joule heater shown separately.

Surface Convection
to Ambient Air

Surface A

Engine Block,
Initially at

T(t = 0)

Assume a
Uniform
Property

Prescribed Heat
Transfer Rate

Heat Transfer
from Fasterners

to Chassis

Volume V

Engine Block Heater

Surface Radiation
to Ambient Air

Qku

Qr

Qk
Q

Se,J

�� = 115 V

Figure Pr.1.14(a) A block Joule heater inserted in an automobile engine block.

OBJECTIVE:
(a) Draw the heat flux vector tracking starting from the Joule heating site.
(b) By applying the energy conservation equation to the control volume surface, determine the rate of change
of the block temperature dT/dt, for the following condition. Use (1.22) and set all terms on the right-hand side
except the first and last terms equal to zero. Use ∂E/∂t = McvdT/dt and the conditions given below. The last
term is equal to Ṡe,J.

SOLUTION:
(a) Figure Pr.1.14(b) shows the heat flux vector tracking starting from the Joule heater. The heat is conducted
qk through the block and is either started, −∂E/∂t or conducted qk to the surface. Then it is transferred through
surface-convection qku, surface radiation qr, conduction qk, or through a prescribed (but not explicitly associated
with any heat transfer mechanism) rate q to the surroundings.

(b) The energy equation (1.22), applied to the control volume shown in Figure Pr.1.14(b) becomes

Q|A = Q + Qk + Qu + Qku + Qr

= −∂E

∂t
+ Ṡe,J

= −Mcv
dT

dt
+ Ṡe,J.

Noting that Qu = 0, and solving for dT/dt, we have

dT

dt
=

Ṡe,J − Q − Qk − Qku − Qr

Mcv
.
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Figure Pr.1.14(b) Tracking of heat flux vector.

Now using the numerical values, we have

dT

dt
=

(400 − 20 − 30 − 80 − 15)(W)
150(kg) × 900(J/kg-K)

= 1.889 × 10−3 ◦C/s.

COMMENT:
At this rate, to increase the engine block temperature by 10◦C, an elapsed time of

∆T

∆t
= 1.889 × 10−3 ◦C/s

∆t =
∆T (◦C)

1.889 × 10−3(◦C/s)
= 5,294 s = 1.471 hr,

is needed.
In general, Q, Qk, Qku and Qr all change with the engine block temperature T . In Chapters 3 to 7 these

surface heat transfer rates are related to heat transfer resistances Rt, which in turn depend on the various heat
transfer parameters.
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PROBLEM 1.15.FAM

GIVEN:
In spark-ignition engines, the electrical discharge produced between the spark plug electrodes by the ignition

system produces thermal energy at a rate Ṡe,J(W). This is called the Joule heating and will be discussed in Section
2.3. This energy conversion results in a rise in the temperature of the electrodes and the gas surrounding the
electrodes. This high-temperature gas volume V , which is called the plasma kernel, is a mixture of air and fuel
vapor. This plasma kernel develops into a self-sustaining and propagating flame front.

About
∫

A
Q |A dt = −1 mJ is needed to ignite a stagnant, stoichiometric fuel-air mixture of a small surface

area A and small volume V , at normal engine conditions. The conventional ignition system delivers 40 mJ to the
spark.

(ρcvV )g = 2 × 10−7 J/◦C, Tg(t = 0) = 200◦C.

SKETCH:
Figure 1.15(a) shows the spark plug and the small gas volume V being heated.

Electrical
Insulator

Igniting Gas Kernel by Spark Plug

Center
Electrode

Ground
Electrode

Insulator Nose

Plasma Kernel, Se,J
.

Figure Pr.1.15(a) Ignition of a fuel-air mixture by a spark plug in
a spark-ignition engine. The plasma kernel is also shown.

OBJECTIVE:
(a) Draw the heat flux vector tracking for the region around the electrodes marked in Figure Pr.1.15(a). Start
from the energy conversion source Ṡe,J.
(b) Assume a uniform temperature within the gas volume V . Assume that all terms on the right-hand side of
(1.22) are negligible, except for the first term. Represent this term with

∂E

∂t

∣∣∣∣
V

= (ρcvV )g
dTg

dt
.

Then for the conditions given below, determine the final gas temperature Tg(tf ), where the initial gas temperature
is Tg(t = 0).
(c) What is the efficiency of this transient heating process?

SOLUTION:
(a) Figure Pr.1.15(b) shows the heat flux vector tracking for conduction and heat storage in the electrodes. The
gas kernel, where the energy conversion occurs, also stores and conducts heat.

(b) Using (1.22), with all the right-hand side terms set to zero except for energy storage, we have

Q|A = −∂E

∂t

∣∣∣∣
V

= −(ρcvV )g
dTg

dt
.

Integrating this with respect to time, from t = 0 to a final time where t = tf , we have∫ tf

0

Q|Adt = −(ρcvV )g[Tg(tf ) − Tg(t = 0)].
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Figure Pr.1.15(b) Thermal circuit diagram.

Solving for Tg(tf ), we have

Tg(tf ) = Tg(t = 0) −

∫ tf

0

Q|Adt

(ρcvV )g
.

Using the numerical values, we have

Tg(tf ) = 200(◦C) − −10−3(J)
2 × 10−7(J/◦C)

= 200(◦C) + 5,000(◦C) = 5,200◦C.

(c) The efficiency is

η =

∫ tf

0

Q|Adt∫ tf

0

Ṡe,Jdt

=
10−3(J)

40 × 10−3(J)
= 2.5%.

COMMENT:
Very high temperatures are reached for the plasma kernel for a short time. The efficiency may even be smaller

than 2.5%. There are several regimes in the short sparking period (order of milliseconds). These are breakdown,
arc, and glow-discharge regimes. The gas heat up occurs during the glow-discharge regime. Most of the energy is
dissipated during the first two regimes and does not lead to the gas heat up.
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PROBLEM 1.16.FAM

GIVEN:
The temperature distributions for the exhaust gas and the exhaust pipe wall of an automotive exhaust system

are shown in Figures Pr.1.16(a) and (b). The exhaust gas undergoes a temperature difference 〈Tf 〉0 − 〈Tf 〉L over
the upper-pipe region (between the exhaust manifold and the catalytic converter). It can be shown that when
the energy equation (1.23) is written for this upper-pipe region, as shown in the figure, and under steady-state
conditions, the right-hand side of this equation is zero. Then the energy equation becomes

Q |A = 0 integral-volume energy equation.

The surface heat flows are convection on the left and right surfaces and surface convection and radiation from
the other sides, i.e.,

Q |A = Qu,L − Qu,0 + Qku + Qr = 0.

The convection heat flow rates are written (as will be shown in Chapter 2 and Appendix B) as

Qu,L − Qu,0 = Ṁfcp,f (〈Tf 〉L − 〈Tf 〉0),

where Ṁf (kg/s) is the gas flow rate and cp,f (J/kg-K) is the specific heat capacity at constant pressure.

SKETCH:
Figures Pr.1.16(a) and (b) show the exhaust pipe and its upper portion and temperature distribution along

the pipe.
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Figure Pr.1.16(a) and (b) Temperature distribution along a exhaust pipe.
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OBJECTIVE:
For Ṁf = 0.10 kg/s and cp,f = 1,000 J/kg-K, and using the temperatures given in Figure Pr.1.16(a), deter-

mine the sum of the surface convection and radiation heat transfer rates.

SOLUTION:
The energy equation is

Qku + Qr = −Qu,L − Qu,0 = (Ṁcp)f (〈Tf 〉0 − 〈Tf 〉L).

From Figure Pr.1.16(a), we have

〈Tf 〉0 = 800◦C and 〈Tf 〉L = 680◦C.

Then
Qku + Qr = 0.10(kg/s) × 1,000(J/kg-K) × (800 − 680)(◦C) = 1.2 × 104 W = 12 kW.

This heat flows out of the control volume (positive).

COMMENT:
The exhaust-gas temperature is most severe in the manifold and upper-pipe region of the exhaust line. Most

catalytic converters require this temperature drop for safe and effective operation.
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PROBLEM 1.17.FUN

GIVEN:
On a clear night with a calm wind, the surface of a pond can freeze even when the ambient air temperature

is above the water freezing point (Tsl = 0◦C). This occurs due to heat transfer by surface radiation qr(W/m2)
between the water surface and the deep night sky. These are shown in Figure Pr.1.17(a).

In order for freezing to occur and continue, the net heat flow rate from the ice surface must be enough to cool
both the liquid water and the ice layer and also allow for the phase change of the water from liquid to solid. Assume
that the ambient temperature is T∞ = 3◦C, the temperature of the deep sky is Tsky = 0 K, the earth atmosphere
has an average temperature around Tatm = 230 K, and the temperature of the water at the bottom of the pool is
Tl = 4◦C. Then for this transient heat transfer problem between the deep sky, the ambient air, and the water pool:

SKETCH:
Figure Pr.1.17(a) to (c) show a pond and ice-layer growth resulting from the heat losses.

Liquid Water

Ice

Air

(a) Ice Layer Forming on Surface of a Pond

(b) Control Volume for the
Heat Flux Vector Tracking

Liquid Water
Freezing Front Speed

Radiation
Heat Loss

Wind

Ice Layer
uF

uF

x

Ice

AirControl Surface 1

Control Surface 2

(c) Control Volume and Control Surface used for
Conservation of Energy Analysis

Liquid WateruF

x

Asg

Als = 1 m2

Sls

.

Control Volume

Figure Pr.1.17(a), (b), and (c) Ice formation at the surface of a pond and
the control volume and control surfaces selected for heat transfer analysis.

OBJECTIVE:
(a) Track the heat flux vector for the section shown on Figure Pr.1.17(b),
(b) For the control volume and control surfaces shown in Figures Pr.1.17(b) and (c) apply the energy conservation
equation (1.22). Note that the control volume and surfaces are for only the ice layer, i.e., the control surface 1
includes only the interface between the ice and the ambient air, and control surface 2 includes only the interface
between the ice and the liquid water. For this problem the kinetic energy flux and all the work terms in (1.22)
are negligible. For control surface 2 (water/ice interface), due to its zero mass (the control surface is wrapped
around the interface), the sensible energy storage is zero but there is a latent heat generated due to the phase
change from liquid to solid. (Later in Chapter 2, the latent heat will be separated from the sensible heat and
treated as an energy conversion mechanism.) Therefore, for control surface 2, (1.22) becomes

Q|A = Ṡls = −Alsṁls∆hls.
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To evaluate Q|A, use (1.8).
(c) For control surface 2 (water/ice interface), at some elapsed time, the following data applies. The conduction
heat flux in the ice is qk,x = +250 W/m2, the surface convection heat flux on the water side is qku,x = −200
W/m2, the heat absorbed by the interface solidifying is Ṡls/Als = −ṁls∆hls where the heat of solidification
∆hls = −3.34 × 105 J/kg and ṁls(kg/s-m2) is the rate of solidification. For the density of ice use ρs = 913
kg/m3. Then determine the speed of the ice/water interface movements uF (m/s). Assume that the heat flux is
one dimensional and Als = 1 m2.

SOLUTION:
(a) The heat flux vector tracking is shown in Figure Pr.1.17(d).
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qr
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Figure Pr.1.17(d) Heat flux vector in the ice layer.

x

qku

qksn

sn
qr Air

Ice

Figure Pr.1.17(e) Air-ice control surface.

(b) Application of the integral-volume energy conservation equation (1.22) to control surface 1, the control surface
wrapped around the ice/air interface [Figure Pr.1.17(e)], and application of (1.8) gives

Q|A =
∫

A

q · sndA = qr,x=0Asg − qku,x=0Asg − qk,x=0Asg.

Other terms in (1.22) are

− dE

dt

∣∣∣∣
V

= −Ėu|A = Ẇp|A = Ẇµ|A = Ẇg,e|V = Ṡe|V = 0.

Note that the energy storage term is zero because the control surface does not have any mass and no phase change
occurs. Therefore, (1.22) becomes

Asg(qr,x=0 − qku,x=0 − qk,x=0) = 0.

(c) For the control volume enclosing the ice layer [Figure Pr.1.17(f)], application of (1.8) gives

Q|A =
∫

A

q · sndA = qk,x=0Asg − qk,x=δα
Als.

Other terms in (1.22) are

−Ėu|A = Ẇp|A = Ẇµ|A = Ẇg,e|V = Ṡe|V = 0.
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Figure Pr.1.17(f) Control volume for the ice layer.

The energy storage term is not zero because there is some mass inside the control volume (ice) and the temperature
within the control volume changes with respect to time as the ice layer thickens. Therefore, (1.22) becomes

qk,x=0Asg − qk,x=δα
Als = − ∂E

∂t

∣∣∣∣
V

.

Note that for this control volume, Asg = Als.
For the control surface wrapped around the ice/water interface [Figure Pr.1.17(g)], application of (1.8) gives

uF

Ice

Liquid qku

qk

Sls Als

sn

sn

Figure Pr.1.17(g) Ice water control surface.

Q|A =
∫

A

q · sndA = qk,x=δα
Als − qku,x=δα

Als.

Other terms in (1.22) are

−Ėu|A = Ẇp|A = Ẇµ|A = Ẇg,e|V = Ṡe|V = 0

− dE

dt

∣∣∣∣
V

= Ṡls.

The energy required for phase change at the interface is given by the variation of the internal energy of the water
as it is transformed from liquid to solid. This is shown in Appendix B. Then, (1.22) becomes

qk,x=δα
− qku,x=δα

= Ṡls/Als.

Noting that Ṡls/Als = −ṁls∆hls, the solidification mass flux ṁls is determined from

qk,x=δα
− qku,x=δα

= −ṁls∆hls.

Solving for ṁls using the values given

−ṁls =
−250(W/m2) − (−200)(W/m2)

−3.34 × 105(J/kg)
= 1.497 × 10−4 kg/m2-s.

The solidification mass flux is related to the velocity of the solidification front through

ṁls = ρsuF .
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Solving for uF and using the numerical values

uF =
1.497 × 10−4(kg/m2-s)

913(kg/m3)
= 1.640 × 10−7m/s = 0.5904 mm/hr.

COMMENT:
(i) Phase change can be viewed as a form of energy conversion associated with the breaking or formation of
physical bonds. Solidification involves formation of physical bonds and therefore is associated with a generation
of thermal energy. Phase change will be explored in Chapters 2, 3, 6, and 7.
(ii) This transient problem also illustrates the role of the sensible heat as an energy storage mechanism. The
energy equation for the control volume around the ice layer shows that the conduction heat flow vector at the ice
surface includes contributions from the conduction heat flux vector at the bottom of the ice layer and from the
sensible heat of the ice layer. Since the temperature of the ice layer decreases with time (i.e., cooling occurs), the
energy storage term is positive.
(iii) Note that we have assumed that the ice layer is opaque to the thermal radiation. In general, this assumption
holds for many solids. Further explanations are given in Chapters 2 and 4.
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PROBLEM 1.18.FAM

GIVEN:
The temperature of the earth’s surface and its atmosphere are determined by various electromagnetic energy

conversions and, to a smaller extent, by the radioactive decay (within the earth) Ṡr,τ . These are shown in Figure
Pr.1.18(a) [which is based on the materials presented in Figures Ex.1.2(a) and (b)]. Starting with solar irradia-
tion (qr,i)s, this irradiation is partly absorbed by the atmospheric gases (Ṡe,τ )s, partly reflected (qr,i)ρ, and the
remainder is absorbed by the earth’s surface (Ṡe,α)s. The earth’s surface also emits radiation Ṡe,ε and this mostly
infrared radiation is partly absorbed (mostly by the greenhouse gases, such as CO2) in the atmosphere (ṠPe,τ )i

and this is in turn re-emitted (Ṡe,τ )i = (Ṡe,ε)i.

SKETCH:
Figure Pr.1.18(a) shows the various energy conversions.
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Figure Pr.1.18(a) Solar irradiation and internal radiation heating
of the earth and its surface and infrared, radiation emission

(part of this is absorbed and emitted by the earth atmosphere).

OBJECTIVE:
(a) Compute the heat flux vector tracking by drawing the radiation qr and conduction qk heat flux vectors arriving
and leaving the earth control surface A, also shown in Figure Pr.1.18(a). Assume a steady-state heat transfer.
(b) Starting from (1.22) and assuming a steady state with the left-hand side approximated as Qk = −Aqk, A =
4πR2, qk = 0.078 W/m2, and the right-hand side approximated by

(Ṡe,α)s + Ṡe,ε + (Ṡe,α)i,

where

(Ṡe,α)s = A × 172.4(W/m2) time and space average solar irradiation

Ṡe,ε + (Ṡe,α)i = −A(1 − αr,i)σSB〈T 〉4A, σSB = 5.67 × 10−8 W/m2-K4,

determine the time-space averaged earth surface temperature 〈T 〉A for αr,i = 0.55.

SOLUTION:
(a) The heat flux vector tracking is shown in Figure Pr.1.18(b). Starting from the solar irradiation, this is partly
absorbed by the earth’s atmosphere, partly reflected, and the remainder is absorbed by the earth’s surface.
The earth’s surface emits radiation (in the infrared wavelength range, which will be discussed in Chapter 4),

36



which is partly absorbed in the earth’s atmosphere and then re-emitted and part of this is absorbed by the
earth’s surface.
The radioactive decay releases heat and this will make it turn into the earth’s surface by conduction.
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Figure Pr.1.18(b) Tracking of heat flux vector.

(b) The energy equation (1.22) becomes

Q|A = −Aqk = −A × (0.078)(W/m2)
= (Ṡe,α)s + Ṡe,ε + (Ṡe,α)i

= A × (172.4)(W/m2) − A × (1 − αr,i)σSB〈T 〉4A.

Solving for 〈T 〉A, we have

〈T 〉A =
[
A × (172.4)(W/m2) + A × (0.078)(W/m2)

A(1 − αr,i)σSB

]1/4

=
[

(172.4 + 0.078)(W/m2)
(1 − 0.55) × 5.67 × 10−8(W/m2-K4)

]1/4

= 286.7 K = 13.55◦C.

COMMENT:
The numerical value αr,i = 0.55 is used here as an approximate representation of the greenhouse effect. As

αr,i increases, due to an increase in the concentration of CO2 and other greenhouse gases, 〈T 〉A increases, leading
to global warming.

37



PROBLEM 1.19.FAM

GIVEN:
Sodium acetate (trihydrate) is used as a liquid-solid phase-change heater. It has a heat of melting of ∆hsl =

1.86 × 105 J/kg and melts/freezes at Tls = 58◦C [Table C.5(a)]. It can be kept in a sealed container (generally a
plastic bag) as liquid in a metastable state down to temperatures as low as −5◦C. Upon flexing a metallic disk
within the liquid, nucleation sites are created at the disk surface, crystallization begins, heat is released, and the
temperature rises. Consider a bag containing a mass M = 100 g of sodium acetate. Assume that the liquid is
initially at T = 58◦C and that during the phase change the transient surface heat transfer rate (i.e., heat loss) is
given by

Q|A = Qo(1 − t/τ),

where Qo = 50 W. This is shown in Figure Pr.1.19.

SKETCH:
Figure Pr.1.19 shows the liquid-solid phase-change hand warmer.

Plastic Bag Containing Phase-Change (Liquid-Solid) Material

M = 100 g

Sodium Acetate (Trihydrate)
∆hsl = 1.86 x 105 J/kg

Transient Heat Loss

Q 
A
= Qo (1− t / τ)

Metal Disk

Sls

Figure Pr.1.19 Surface heat transfer from a plastic bag containing phase-change material.

OBJECTIVE:
Determine τ , the elapsed time during which all the heat released by phase change will be removed by

this surface heat transfer.Start from (1.22) and replace the time rate of change of the internal energy with
−Ṡls = −Ṁls∆hls = Ṁls∆hsl. This represents isothermal phase change. Then in the absence of any other work
and energy conversion, this change in internal energy balances with surface heat losses.

SOLUTION:
The variation of the total internal energy of the bag is due to phase change only. Then,

∂E

∂t

∣∣∣∣
V

≡ −Ṡls

from (1.22) and neglecting all other energy and work form, we have

Q|A = Ṡls.

Now, substituting for Q|A, we have

Qo

(
1 − t

τ

)
= Ṡls.

Next, substituting for

Ṡls = −Ṁls∆hls = Ṁls∆hsl
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and integrating over the time interval of interest, we have∫ τ

0

Qo

(
1 − t

τ

)
dt =

∫ τ

0

Ṁls∆hsldt

Qo

(
t − t2

2τ

) ∣∣∣∣
τ

0

= Ṁls∆hslt

∣∣∣∣
τ

0

.

Noting that Ṁlsτ = Mls,

Qo
τ

2
= Mls∆hsl.

Solving for τ ,

τ =
2Mls∆hsl

Qo
.

Using the numerical values given,

τ =
2 × 0.1(kg) × 1.86 × 105(J/kg)

50(W)
= 744 s = 0.207 hr.

COMMENT:
In general, since the liquid is critically in a subcooled state, part of the heat released will be used to raise the

temperature of the solid formed at the freezing temperature.
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PROBLEM 1.20.FAM

GIVEN:
Nearly all of the kinetic energy of the automobile is converted into friction heating Ṡm,F during braking. The

front wheels absorb the majority of this energy. Figure Pr.1.20(a) shows a disc brake. This energy conversion
raises the rotor temperature Tr and then heat flows from the rotor by conduction (to axle and wheel), by surface
radiation to the surroundings and by surface convection to the air. The air flows over the rotor in two parts; one
is over the inboard and outboard surfaces, and the other is through the vanes (passages). The air flow is due
mostly to rotation of the rotor (similar to a turbomachinary flow).

Assume that the rotor is at a uniform temperature (this may not be justifiable during rapid braking).
Mr = 15 kg, and cv = 460 J/kg-K.

SKETCH:
Figure Pr.1.20(a) shows the disc brake and the air streams. An automobile disc brake is heated by friction

heating Ṡm,F , and cooled by various heat transfer mechanisms, and is able to store/release heat.

Rotor (Disc), 
at Uniform Temperature Tr

Air Flow
Over Disc

Rotor Angular
Velocity, ω

Caliper

Surface Friction
Energy Conversion
at Brake Pad-Rotor

Interface

Opposite Side of Rotor

Outboard Surface

Brake Fluid

Axle

r

Sm,F

Brake Pad

ufVane Air Flow

Vane Air Flow

Rotation-
Induced
Air Flow

Rotation-
Induced
Air Flow

Figure Pr.1.20(a) An automobile disc brake showing the air flow
over the disc and through the rotor vanes.

OBJECTIVE:
(a) Draw the heat flux vector tracking for the rotor, by allowing for the heat transfer mechanisms mentioned
above.
(b) Now consider the heat storage/release mechanism represented by −∂E/∂t, in (1.22). During quick brakes,
the rate of heat transfer QA,r is much smaller than ∂E/∂t and Ṡm,F . Assume all other terms on the right-hand
side of (1.22) are negligible. With no heat transfer, determine the rate of rise in the rotor temperature dT/dt,
using

∂E

∂t
= Mrcv

dTr

dt
,

Mr = 15 kg, and cv = 460 J/kg-K.

SOLUTION:
(a) Figure Pr.1.20(b) shows the various heat transfer from the rotor and the tracking of the heat flux vector.
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The conduction qk is to the lower temperature axle and wheel (there are various materials, areas, and contacts
through which the heat flows). The surface radiation heat transfer qr is to various close and distant surfaces. The
surface convection qku is to the air flowing over the rotor (semi-bounded air streams) and to air flowing through
the vanes (bounded fluid stream). The heat is added to these convection streams qu by surface convection qku.

qu (Semi-Bounded
Fluid Stream)

qu

qu

(Bounded Fluid Stream)

Assumed Uniform
Rotor Temperature, Tr

(Axle Conduction)

qr (Surface Radiation)

qku

qu

qr

qk (Wheel Conduction)
qu

qu

qu

qk

qu

Sm,F

− ∂Er

∂t

Figure Pr.1.20(b) Tracking of the heat flux vector.

(b) From (1.22), we have

Q|A,r = 0 = −∂E

∂t
+ Ṡm,F

∂E

∂t
= Ṁrcv,r

dTr

dt
= Ṡm,F

dTr

dt
=

Ṡm,F

Ṁrcv,r

=
6 × 104(W)

15(kg) × 460(J/kg-K)
= 8.696◦C/s.

COMMENT:
The heat transfer through the vanes is the most effective during the cooling period. Note that when multiple

brakes are applied (as in the down-hill driving) the temperature of the rotor can become very large (and damaging
to the brake pad). In Chapters 3, 4, 6, and 7, we will address conduction, radiation, and semi-bounded and
bounded fluid stream surface convection.
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Chapter 2

Energy Equation



PROBLEM 2.1.FAM

GIVEN:
Consider a steady-state, two-dimensional heat flux vector field given by

q = 3x2 sx + 2xy sy.

The control volume is centered at x = a and y = b, with sides 2∆x and 2∆y (Figure Pr.2.1).

SKETCH:
Figure Pr.2.1 shows a control volume centered at x = a and y = b with side widths of 2∆x and 2∆y.

x
a

b

2�x

2�y

sn

sn

sn

sn

y

Figure Pr.2.1 A finite control volume in a two-dimensional heat transfer medium.

The depth (along z direction) is w.

OBJECTIVE:
(a) Using the above expression for q show that

lim
∆V →0

∫
A

q · sn dA

∆V
= ∇ · q ,

where the divergence of the heat flux vector is to be evaluated at x = a and y = b.
Use a length along z of w (this will not appear in the final answers). (Hint: Show that you can obtain the same
final answer starting from both sides.)
(b) If the divergence of the heat flux vector is nonzero, what is the physical cause?
(c) In the energy equation (2.1), for this net heat flow (described by this heat flux vector field), is the sum of the
volumetric terms on the right, causing the nonzero divergence of q, a heat source or a heat sink? Also is this a
uniform or nonuniform volumetric source or sink? Discuss the behavior of the heat flux field for both positive
and negative values of x and y.

SOLUTION:
(a) To prove the validity of q above for the region shown in Figure Pr.2.1, we calculate separately the left-hand
side and the right-hand side. For the right-hand side we have

∇ · q =
(
sx

∂

∂x
+ sy

∂

∂y

)
· (3x2 sx + 2xy sy

)
.

Performing the dot product we have

∇ · q =
∂
(
3x2

)
∂x

+
∂ (2xy)

∂y
,

which results in

∇ · q = 6x + 2x = 8x.
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Applying the coordinates of the center of the control volume, we have finally

∇ · q|(x=a, y=b) = 8a.

The left-hand side can be divided into four integrals, one for each of the control surfaces:
(i) Control Surface at x = a − ∆x :
The heat flux vector across this control surface and the normal vector are

q1 = 3(a − ∆x)2 sx + 2(a − ∆x)y sy

sn1 = −sx.

The dot product between q and sn is

q1 · sn1 = 3(a − ∆x)2(sx · −sx) + 2(a − ∆x)y(sy · 0) = −3(a − ∆x)2.

The net heat flow over this control surface is

Q|A1 =
∫

A1

(q1 · sn1) dA =
∫ b+∆y

b−∆y

−3(a − ∆x)2dyw = −6(a − ∆x)2∆yw.

(ii) Control Surface at x = a + ∆x:
The heat flux vector across this control surface and the normal vector are

q2 = 3(a + ∆x)2 sx + 2(a + ∆x)y sy

sn2 = sx.

The net heat flow over this control surface is

Q|A2 =
∫

A2

(q2 · sn2) dA =
∫ b+∆y

b−∆y

3(a + ∆x)2dyw = 6(a + ∆x)2∆yw.

(iii) Control Surface at y = b − ∆y:
The heat flux vector across this control surface and the normal vector are

q3 = 3x2 sx + 2x(b − ∆y) sy

sn3 = −sy.

The net heat flow over this control surface is

Q|A3 =
∫

A3

(q3 · sn3) dA =
∫ a+∆x

a−∆x

−2x(b − ∆y)dxw

= −2(b − ∆y)
(a + ∆x)2 − (a − ∆x)2

2
w = −4a∆x (b − ∆y) w.

(iv) Control Surface at y = b + ∆y:
The heat flux vector across this control surface and the normal vector are

q4 = 3x2 sx + 2x(b + ∆y) sy

sn4 = sy.

The net heat flow over this control surface is

Q|A4 =
∫

A4

(q4 · sn4) dA =
∫ a+∆x

a−∆x

2x(b + ∆y)dxw

= 2(b + ∆y)
(a + ∆x)2 − (a − ∆x)2

2
w = 4a∆x (b + ∆y) w.

Adding up the heat flow across all the surfaces, we have

Q|A = Q|A1 + Q|A2 + Q|A3 + Q|A4

=
∫

A1

q1 · sn1 dA +
∫

A2

q2 · sn2 dA +
∫

A3

q3 · sn3 dA +
∫

A4

q4 · sn4 dA

= [−6(a − ∆x)2∆y + 6(a + ∆x)2∆y − 4a∆x (b − ∆y) + 4a∆x (b + ∆y)]w
= (24a∆x∆y + 8a∆x∆y)w = 32a∆x∆yw.
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Now, applying the limit

lim
∆V →0

∫
A

q · sn dA

∆V
= lim

∆x,∆y→0

32a∆x∆yw

(2∆x)(2∆y)w
= lim

∆x,∆y→0
8a = 8a,

which is identical to the result found before. These are the two methods of determining the divergence of the
heat flux vector for a given location in the heat transfer medium.

(b) Since this is a steady-state heat flux vector field (i.e., q is not a function of time t), the only reason not to have
a divergence-free field would be the presence of a heat generation or sink. In this case, the differential-volume
energy equation is

∇ · q =
∑

i

ṡi.

The heat generation or sink is caused by the conversion of work or other forms of energy to thermal energy. In
the energy equation, these energy conversions are called source terms. The source terms ṡi could be due to
(i) conversion from physical or chemical bond to thermal energy
(ii) conversion from electromagnetic to thermal energy
(iii) conversion from mechanical to thermal energy

(c) The divergence of the heat flux vector q given above is 8x. For x > 0, this is a positive source term indicating
a heat generation. For x < 0, the source term becomes negative indicating a heat sink. Also, since the source
term is a function of x, it is a nonuniform source term in the x direction and a uniform source term in the y
direction.

COMMENT:
The application of the divergence operator on the heat flux vector (as in the differential-volume energy equa-

tion) results in an expression valid for any position x and y while the application of the area-integral (as in the
integral-volume energy equation) results on a number which is valid only for that specific point in space x = a and
y = b. The integral form of the energy equation gives an integral or overall energy balance over a specified closed
region within the medium, while the differential form is pointwise valid, i.e., is satisfied for any point within the
medium.

For the control surfaces parallel to the x axis, the dot product between the heat flux vector and the surface
normal was a function of x (variable). That required the integration along x. The integration is simplified in the
case of a constant heat flux vector normal to the control surface, as obtained for the control surfaces parallel to
the y axis. Although the first case is more general, here we will mainly deal with situations in which the heat
flux normal to the control surface is constant along the control surface. This will allow the use of the thermal
resistance concept and the construction of thermal resistance network models, as it will be discussed starting in
Chapter 3.
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PROBLEM 2.2.FUN

GIVEN:
Figure Pr.2.2(a) shows a flame at the mouth of a cylinder containing a liquid fuel. The heat released within

the flame (through chemical reaction) is transferred to the liquid surface by conduction and radiation and used
to evaporate the fuel (note that a flame also radiates heat). The flame stabilizes in the gas phase at a location
determined by the local temperature and the fuel and oxygen concentrations. The remaining heat at the flame
is transferred to the surroundings by convection and by radiation and is transferred to the container wall by
conduction and radiation. This heat then conducts through the container wall and is transferred to the ambient,
by surface convection and radiation, and to the liquid fuel, by surface convection. The container wall and the
liquid fuel also lose some heat through the lower surface by conduction. Figure Pr.2.2(b) shows a cross section of
the container and the temperature profiles within the gas and liquid and within the container wall. In small- and
medium-scale pool fires, the heat recirculated through the container wall accounts for most of the heating of the
liquid pool. Assume that the liquid pool has a make-up fuel line that keeps the fuel level constant and assume
that the system has been operating under steady state (long enough time has elapsed).

SKETCH:
Figures Pr.2.2(b) and (c) show a cross-sectional view of the container and the temperature distribution along

the gas and liquid and along the container wall.

Hot Air

(a) Small-Scale Pool Fire

(b) Cutout of Container and Temperature Distributions (c) Regions of Heat Flow

Flame

Fuel Container

Region 2: Liquid-Gas
                 Interface

Region 3: Liquid

Region 4: Container

Region 1: Flame Zone

Gas
Gas and Liquid
Fuel Temperature

Liquid

Container
Wall

Flame
T, oC

z

500 1,500

Container Wall
Temperature

Sr,c /V
.

Sr,c /V
.

Slg /Alg

.

Figure Pr.2.2(a), (b), and (c) A small-scale pool fire showing the various regions.

OBJECTIVE:
(a) On Figure Pr.2.2(b) track the heat flux vector, identifying the various mechanisms.
(b) For the regions shown in Figure Pr.2.2(c), apply the integral-volume energy equation. Note that region 1
encloses the flame and it is assumed that the fuel vapor burns completely. Region 2 surrounds the liquid/gas
interface, region 3 encloses the liquid, and region 4 is the container wall.
(c)For each of the regions state whether the area-integral of the heat flux vector Q|A is equal to zero or not.
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SOLUTION:
(a) The heat flux vector tracking is shown in Figure Pr.2.2(d).

z

Gas and Liquid Fuel
Temperature

Container Wall
Temperature 

Flame

Gas

Liquid

500 1,000 1,500
T ,OC

Container

qu

qu

qu

qu

qu

qr

qr
qr

qk

qk

qk

qk

qk

qu

qku

qku

qku

qku

qku

qku

qu

qk
qk

Sr,c / V
qu

qku

qr

qr

qr

qr

qu

qk

qk qr

.

Slg / Alg

.

Figure Pr.2.2(d) Heat flux vector tracking around the container wall.

(b) For each of the regions shown on Figure Pr.2.2(c), the integral energy balances are given below.
(i) Region 1: Flame region [Figure Pr.2.2(e)]
We assume that the heat flux vectors normal to surfaces 1 and 2 are uniform along those surfaces and then using
the notations in Figures Pr.2.2(b) and (c), referencing the products of combustion as (p), and noting that q is
positive when pointing away from the surface, we have,

(qr,F-a + qu,p − qu,a)A1 + (qk,F-c + qr,F-c + qk,F-l + qr,F-l + qk,F-t + qr,F-t − qu,fg)A2 = Ṡr,c.

Flame

qu,p

qu,Fg

qr,F-t

qr,F-lqr,F-c qk,F-l

qk,F-c

qu,a

Region 1: Flame region

A1

A2

qk,F-t

qr,F-t

Sr,c / V

Figure Pr.2.2(e) Heat flux vector tracking in the flame region.

(ii) Region 2: Liquid/gas interface [Figure Pr.2.2(f)]
Assuming that the heat flux vectors normal to surfaces 1 and 2 are uniform along those surfaces,

(−qr,c-l − qk,F-l − qr,F-l + qu,fg)A1 + (−qku,l-i − qu,Fl)A2 = Ṡlg.
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Gas

Liquid

qu,Fg

qr,F-l

qr,c-l

qk,F-l

qku,l-i

A 1

A 2

Region 2: Liquid/Gas Interface

qu,Fl

Slg / V

Interface (i)

Figure Pr.2.2(f) Heat flux vector tracking at liquid-gas interface.

(iii) Region 3: Liquid [Figure Pr.2.2(g)]
The heat flux vector normal to surfaces 1 and 2 will be assumed uniform, while for surface 3 it will be assumed

Liquid

qu,fl

qku,l-c

qku,l-i

qku,l-b

A1

A2

A3

Region 3: Liquid

qku,l-c

qku,l-c

qku,l-c
Interface (i)

Figure Pr.2.2(g) Heat flowing in and out of the liquid.

nonuniform (i.e., distributed along the height), i.e.,

(qku,l-i + qu,Fl)A1 + (qku,l-b)A2 +
∫

A3

(qku,l-c · sn,3)dA = 0.

(iv) Region 4: Container wall [Figure Pr.2.2(h)]
The heat flux vector leaving surfaces 1 and 2 will be assumed uniform while the heat flux vectors at surfaces 3,4,
and 5 will be assumed nonuniform (i.e., distributed along the wall height), i.e.,

(−qk,c-t)A1 + (qk,c-b)A2 +
∫

A3

(qk,F-c · sn,3)dA +∫
A4

(qk,l-c · sn,4)dA +
∫

A5

(qk,c-a · sn,5)dA = 0.

(c) The divergence of the heat flux vector is zero everywhere inside regions 3 and 4 because no heat sources or
sinks are present within these regions. It is greater than zero in region 1, due to the volumetric chemical reaction.
At the liquid-gas interface (region 2) the integral of the surface heat flow is less than zero, due to surface phase
change from liquid to gas.

COMMENT:
(i) In small-scale pool fires, the heat recirculation from the container wall to the liquid pool accounts for most of
the heating and evaporation of the liquid. In large-scale pool fires (large diameter containers), the effect of this
heat recirculation is small.
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Container 

Region 4: Container Wall

A5

qk,c-a

qk,c-a

qk,c-a

qk,c-a

qk,t-c A1

qk,l-c

qk,F-c

qk,l-c

qk,l-c

qk,l-c

A3

A4

A2

qk,c-b

Figure Pr.2.2(h) Heat flowing in and out of the container wall.

(ii) The chemical reaction inside the flame generates heat and it is a positive source term in the energy equation.
The liquid to gas phase change at the liquid surface absorbs heat and is a negative source term for the interfacial,
integral energy conservation equation.
(iii) For no heat loss from the flame to the ambient or to the liquid surface, there would be a balance between
the energy entering the flame by convection carried by the air and the vapor fuel (reactants), the energy leaving
the flame by convection carried away by the hot combustion gases (products), and the energy generated inside
the flame by the exothermic chemical reaction (combustion). This energy balance determines the adiabatic flame
temperature (maximum temperature the combustion gases can reach). This will be discussed in Chapter 5.
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PROBLEM 2.3.FUN

GIVEN:
The wall of the burning fuel container is made of a metal, its thickness is small compared to its length, and

the surface-convection heat fluxes at the inner and outer surfaces of the container wall are designated by qku,o

and qku,i. Under these conditions, the temperature variation across the wall thickness is negligibly small, when
compared to the axial temperature variation. Also, assume that the heat transfer from within the container is
axisymmetric (no angular variation of temperature). Figure Pr.2.3(a) shows the differential control volume (with
thickness ∆z), the inner radius Ri, and outer radius Ro of the container.

SKETCH:
Figures Pr.2.3(a) shows a control volume with a differential length along the z direction.

z

Ro

Ri

qku,i
qku,o

Symmetry
Axis

Conduction within
Container WallFluid

Surface Con-
vection �z

Aku,i

Aku,o

Figure Pr.2.3(a) A cylindrical container with a control volume having a differential length along the z direction.

OBJECTIVE:
(a) Apply a combined integral- and differential-length analysis for the container wall (integral along the radius
and polar angle and differential along the z axis) and derive the corresponding combined integral- and differential-
length energy conservation equation.
(b) Sketch the anticipated variations of the conduction heat flux qk,z and the wall temperature T , along the
container wall (as a function of z).

SOLUTION:
(a) The integral- and differential-length analysis starts with the differential form of the energy conservation
equation (2.9) written as

lim
∆V →0

∫
A

q · sndA

∆V
= − ∂

∂t
ρcpT +

∑
i

ṡi.

For the container walls there is no energy conversion and, as this is a steady-state process, the differential-
volume energy conservation equation becomes

lim
∆V →0

∫
A

q · sndA

∆V
= 0.

Figure Pr.2.3(b) shows a cross section of the control volume shown in Figure Pr.2.3(a) with the heat flux vectors
crossing the control surfaces. For the four control surfaces labeled, the area integral above becomes

∫
A

q · sndA

∆V
=

∫
Ao

qku·sndA

∆V
+

∫
Ai

qku·sndA

∆V
+

∫
Az

qk,z·sndA

∆V
+

∫
Az+∆z

qk,z+∆z·sndA

∆V

For this infinitesimal control volume, the heat flux vectors normal to the control surfaces are uniform over
each control surface and we have
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∆z

z

Ri
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Ai

Az

sn

qk,z

qku,o qku,i

qk,z+∆z

sn

sn

sn

Az+∆z

Ao

Figure Pr.2.3(b) Cross section of the control volume.

∫
A

q · sndA

∆V
=

qku,oAo

∆V
+

qku,iAi

∆V
+

−qk,zAz

∆V
+

qk,z+∆zAz+∆z

∆V

=
qku,o(2πRo∆z)
π(R2

o − R2
i )∆z

+
qku,i(2πRi∆z)
π(R2

o − R2
i )∆z

+

−qk,zπ(R2
o − R2

i )
π(R2

o − R2
i )∆z

+
qk,z+∆zπ(R2

o − R2
i )

π(R2
o − R2

i )∆z

=
qku,o2Ro

R2
o − R2

i

+
qku,i2Ri

R2
o − R2

i

+
qk,z+∆z − qk,z

∆z
.

Taking the limit as ∆V → 0, this becomes

lim
∆V →0

∫
A

q · sndA

∆V
= lim

∆z→0

(
qku,o2Ro

R2
o − R2

i

+
qku,i2Ri

R2
o − R2

i

+
qk,z+∆z − qk,z

∆z

)

=
qku,o2Ro

R2
o − R2

i

+
qku,i2Ri

R2
o − R2

i

+
dqk,z

dz

Finally, rearranging the right-hand side, the combined integral- and differential-length energy equation be-
comes

dqk,z

dz
= − 2

R2
o − R2

i

(qku,oRo + qku,iRi).

(b) The anticipated variation of the axial conduction heat flux vector along the container wall qk,z as a function
of z is given in Figure Pr.2.3(c).

z

Container Wall 
Temperature 

Gas

Liquid

500 1,000
T , C

Container

qk,z ,W/m2

Axial Conduction Heat Flux
through the Container Wall

z

0 0

Figure Pr.2.3(c) Distribution of temperature and heat flux along the container wall.
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COMMENT:
The direction of the axial conduction heat flux vectors qk,z and qk,z+∆z are taken along the direction of the

z axis. The direction for the heat flux vectors along the integral length qku,o and qku,i are arbitrary and are
conventionally taken as pointing outward from the control surface.

The axial conduction heat flux vector along the container wall may be obtained from the solution to the above
energy equation, once qku,o(z) and qku,i(z) are known.

The axial conduction heat flux vector along the container wall is maximum at some point near the interface
level. Above the interface, the wall receives heat from the flame. Below the interface, the wall loses heat to the
liquid and the maximum heat loss occurs at the interface location.

In Figure Pr.2.3(c), a positive value for qk,z indicates that heat is flowing in the direction of the z-axis. This
is in accordance with the reference directions assumed in Figure Pr.2.3(b). Note that the conduction heat flux
vector is related to temperature variation through qk = −k∇T . From the temperature distribution shown in
Figure Pr.2.3(c), ∇T is negative (T decreases as z increases). Therefore, qk,z is positive everywhere for this
temperature distribution, as shown in Figure Pr.2.3(c).
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PROBLEM 2.4.FUN

GIVEN:
A nitrogen meat freezer uses nitrogen gas from a pressurized liquid nitrogen tank to freeze meat patties as

they move carried by a conveyor belt. The nitrogen flows inside a chamber in direct contact with the meat patties,
which move in the opposite direction. The heat transfer mechanism between the nitrogen gas and the meat patties
is surface convection. Meat patties are to be cooled down from their processing (initial) temperature of Ti = 10◦C
to the storage (final) temperature of To = −15◦C. Each meat patty has a mass M = 80 g, diameter D = 10
cm, and thickness l = 1 cm. Assume for the meat the thermophysical properties of water, i.e., specific heat in
the solid state cp,s = 1,930 J/kg-K , specific heat in the liquid state cp,l = 4,200 J/kg-K, heat of solidification
∆hls = −3.34 × 105 J/kg, and freezing temperature Tls = 0◦C. The average surface-convection heat transfer
between the nitrogen and the meat patties is estimated as qku = 4,000 W/m2 and the conveyor belt moves with
a speed of uc = 0.01 m/s.

OBJECTIVE:
(a) Sketch the temperature variation of a meat patty as it move along the freezing chamber.
(b) Neglecting the heat transfer between the conveyor belt and the meat patties, find the length of the freezing
chamber. Use the simplifying assumption that the temperature is uniform within the meat patties. This allows
the use of a zeroth-order analysis (lumped-capacitance analysis).

SOLUTION:
(a) The temperature variation of the meat patties as they move along the freezing chamber is given in Figure
Pr.2.4.

T  , o C

Ti  = 10 oC

t0t2ti = 0 t , s 

Cooling Liquid
Regime

Phase-Change
Regime

Cooling Solid
Regime

Tls = 0 oC

T0 = �15 oC

t1

Figure Pr.2.4 Variation of meat patty temperature with respect to time.

(b) To calculate the necessary length for the freezing chamber, the cooling process is divided into three regimes
(shown in Figure Pr.2.4).
(i) Regime 1: Cooling of Liquid
During this period of time, the meat patties are cooled from their initial temperature down to the solidification
temperature. Application of the integral-volume energy equation for a control volume enclosing the meat gives

∫
Aku

qku · sndA =
∫

V

(
− d

dt
ρcpT

)
dV.

Assuming that qku is constant and normal to the surface and that the meat temperature and properties are
constant throughout the meat patty (lumped-capacitance analysis), the energy equation becomes

qkuAku = −ρcpV
dT

dt
.
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Integrating the equation above from t = ti = 0 to t = t1, for a constant qku, gives

∫ t1

ti=0

qkuAkudt = −
∫ Tls

Ti

ρcpV dT

t1 =
ρcpV (Ti − Tls)

qkuAku
=

Mcp(Ti − Tls)
qkuAku

From the data given Aku = πD2

4 + πDl = 0.011 m2 and

t1 =
0.08(kg) 4,200(J/kg-K) × [10(◦C) − 0(◦C)]

4,000(W/m2) 0.011(m2)
= 76.36 s = 1.273 min.

(ii) Regime 2: Solidification
During this regime the meat patties change phase from liquid to solid. Application of the integral-volume energy
equation gives ∫

As

qku · sndA =
∫

V

ṡlsdV.

Again, assuming that qku is uniform and normal to the surface and that the meat properties are constant
throughout the meat patty (lumped-capacitance analysis), the energy equation becomes

qkuAku = ṡlsV,

where the volumetric heat consumption due to phase change ṡls is obtained from Table 2.1,

ṡls = −ṅls∆h�s.

The volumetric solidification rate ṅls(kg/m3-s) is given by

ṅls =
m

V (t2 − t1)
.

Using the relations above, the energy equation becomes

qkuAku = − m∆hls

(t2 − t1)
,

and solving for t2 − t1,

t2 − t1 = −m∆hls

qkuAku
.

From the values given,

t2 − t1 = −0.08(kg) (−3.34 × 105)(J/kg)
4,000(W/m2) 0.011(m2)

= 607.3 s = 10.12 min.

(iii) Regime 3: Cooling of Solid
During this period of time, the meat patties are cooled from the melting temperature down to the final tem-
perature. Application of the lumped-capacitance analysis for a control volume enclosing the meat results in an
equation similar to t1 = ρcpV (Ti − Tls)/qkuAku = Mcp(Ti − Tls)/qkuAku, i.e.,

to − t2 =
ρcpV (Tls − To)

qkuAku
=

mcp(Tls − To)
qkuAku

.
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From the data given,

to − t2 =
0.08(kg) × 1,930(J/kg-K) × [0(◦C) − (−15)(◦C)]

4,000(W/m2) 0.011(m2)
= 52.64 s = 0.8773 min.

The total time for cooling of the meat patties is therefore

to = t1 + (t2 − t1) + (to − t2) = 1.273 + 10.12 + 0.8773 = 12.27 min.

For the velocity of the conveyor belt uc = 0.01 m/s, the total length necessary is

L = ucto = 0.01(m/s) × 12.27(min) × 60(s/min) = 7.362 m.

COMMENT:
Phase change at constant pressure for a pure substance occurs at constant temperature.
The temperature evolution for regimes 1 and 3 are linear because qku has been assumed constant (note that all

the properties are treated as constants). In practice, the heat loss by surface convection depends on the surface
temperature and therefore is not constant with time when this surface temperature is changing. This will be
discussed in Chapter 6.

The freezing regime accounts for more than 80 s of the total time, while the cooling of solid accounts for only
7 s of the total time. This is a result of the high heat of solidification exhibited by water and the relatively smaller
specific heat capacity of ice compared to liquid water. Liquid water has one of the largest specific heat capacities
among the pure substances. The specific heat capacity of substances will be discussed in Chapter 3.

56



PROBLEM 2.5.FUN

GIVEN:
While the integral-volume energy equation (2.9) assumes a uniform temperature and is applicable to many

heat transfer media in which the assumption of negligible internal resistance to heat flow is reasonably justifiable,
the differential-volume energy equation (2.1) requires no such assumption and justification. However, (2.1) is
a differential equation in space and time and requires an analytical solution. The finite-small volume energy
equation (2.13) allows for a middle ground between these two limits and divides the medium into small volumes
within each of which a uniform temperature is assumed. For a single such volume (2.9) is recovered and for a
very large number of such volumes the results of (2.1) are recovered.

Consider friction heating of a disk-brake rotor, as shown in Figure Pr.2.5. The energy conversion rate is Ṡm,F .
The brake friction pad is in contact, while braking, with only a fraction of the rotor surface (marked by R).
During quick brakes (i.e., over less than t = 5 s), the heat losses from the rotor can be neglected.

Note that Ṡm,F remains constant, while ∆V changes.

SKETCH:
Figure Pr.2.5 shows the rotor and the area under the pad undergoing friction heating.

T(t = 0)
Initial Temperature

Pad Contact Area

Ro

l
Sm,F

R
Ri

��cp�V

Q A = 0

dT
dt

Figure Pr.2.5 A disc-brake rotor heated by friction heating. The region under the brake pad contact is also shown.

OBJECTIVE:
Apply (2.13), with (i) the volume marked as the pad contact region, and (ii) the entire volume in Figure

Pr.2.5, and determine the temperature T after t = 4 s for cases (i) and (ii) and the conditions given above.
Note that the resulting energy equation, which is an ordinary differential equation, can be readily integrated.

SOLUTION:
Starting from (2.13), we have

Q|A = − d

dt
(ρcpT )∆V ∆V + Ṡm,F

0 = −ρcp∆V
dT

dt
+ Ṡm,F

or by separating the variables, we have

dT =
Ṡm,F

ρcp∆V
dt.

Using T |t=0 = T (t = 0) and integrating from 0 to t, we have

T (t) − T (t = 0) =
Ṡm,F

ρcp∆V
(t − 0)

or

T (t) = T (t = 0) +
Ṡm,F

ρcp∆V
t.
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Then using the numerical values we have

T (t = 4 s) = 20(◦C) +
3 × 104(W)

3.5 × 106(J/m3-K) × ∆V (m3)
× 4(s)

= 20(◦C) +
3.429 × 10−2

∆V
(◦C).

(i) The smaller volume gives

∆V = π(R2
o − R2)l

= π(0.182 − 0.152)(m2) × 0.015(m) = 4.665 × 10−4 m3

T (t = 4 s) = 20(◦C) + 73.50(◦C) = 93.50◦C.

(ii) The larger volume gives

∆V = π(R2
o − R2

i )l
= π(0.182 − 0.132)(m2) × 0.015(m) = 7.305 × 10−4 m3

T (t = 4 s) = 20(◦C) + 46.94(◦C) = 66.94◦C.

COMMENT:
For more accurate results, the radial length as well as the length along l are divided into small-finite volumes

and then heat transfer is allowed between them. This is discussed in Section 3.7.
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PROBLEM 2.6.FUN

GIVEN:
In laser-induced spark ignition, laser irradiation qr,i is used to cause ionization of the fuel-oxidant mixture at

the end of the laser pulse. The ionization is caused by multiphoton ionization. In multiphoton ionization, the
ionizing gas molecules absorb a large number of photons.

Consider a pulsed laser, emitting a near-infrared radiation, λ = 1.064 µm, with a time-dependent, focused
irradiation flux given by

qr,i(t) = (qr,i)oe
−t2/τ2

,

where −∞ < t < ∞, (qr,i)o is the peak irradiation, and τ(s) is time constant. Assume that this irradiation flux
is uniform over the focal surface.
Note that ∫ ∞

−∞
et2/τ2

dt = π1/2τ.

(qr,i)o = 1017 W/m2, T = 106 K, a1 = 0.1645 × 10−42 K1/2m5, ne = 1026(1/m3), a2 = 1.35 × 104 K,
D = 16.92 µm, L = 194 µm, τ = 3.3 ns, ρr = 0.

SKETCH:
Figure Pr.2.6 shows the laser irradiation focused on the kernel volume V , where it is partly absorbed.

Ar

L
x

D

Focal Volume, V
(Ignition Kernel)

Focused Beam, qr,i (t)
�r qr,i (t)

Lens

Switched Pulse Laser,
� = 1.064 �m

Pulse Laser Irradiation
Hydrocarbon and
Oxygen (e.g., Air)

Extinction Coefficient
�ex = �ex(T)

Se,�

Figure Pr.2.6 Laser-induced spark ignition of a hydrocarbon-oxidizer gaseous mixture.

OBJECTIVE:
(a) Using the maximum photon energy given by

hPf = hP
λ

c
,

where hP is the Planck constant, and f is the frequency, λ is the wavelength, and c is the speed of light, determine
the photon flux ṁph(photon/m2-s). Use the speed of light in vacuum c = co.
(b) Using a temperature-dependent extinction coefficient

σex(1/m) =
a1n

2
e

T 1/2

(
1 − e−a2/T

)
,

where a1 and a2 are constants and T (K) is the kernel temperature, determine the energy absorbed in the focal
volume, shown in Figure Pr.2.6, over the time span, −∞ < t < ∞, i.e.,∫ ∞

−∞
Ṡe,σdt.

(c) Express the results of (b) per kernel volume V .

59



SOLUTION:
(a) The photon energy flux is (qr,i)o. Then

(qr,i)o = ṁphhPco/λ

or

ṁph =
(qr,i)oλ

hPco
.

Here we use c = co and co and hP are listed in Table C.1.(b), i.e.,

hP = 6.626 × 10−34 J-s

co = 3.000 × 108 m/s.

Then

ṁph =
1017(W/m2) × 1.064 × 10−6(m)

6.626 × 10−34(J-s) × 3 × 108(m/s)
= 5.353 × 1035 photon/m2-s.

(b) From (2.43), we have
Ṡe,σ = qr,i(1 − ρr)σexe−σexx.

The extinction coefficient is

σex =
0.1645 × 10−42(K1/2m5) × (1026)2(1/m3)2

(106)1/2(K)1/2

(
1 − e−1.35 × 104/106

)
= 2.206 × 104 1/m.

Here ρr = 0, and upon the time and volume integration, we have

∫ ∞

−∞
Ṡe,σdt = Arσex

∫ ∞

−∞

∫ L

0

qr,i(t)σexe−σexxdxdt

= −Ar(e−σexL − 1)
∫ ∞

−∞
qr,i(t)dt

= −Ar(e−2.206×104×194×10−6 − 1)
∫ ∞

−∞
(qr,i)oe

−t2/τ2
dt

= 0.9861Ar(qr,i)oπ
1/2τ, Ar =

πD2

4
.

Using the numerical values, we have Ar = 2.247 × 10−10 m2, and∫ ∞

−∞
Ṡe,σdt = 0.9861 × 2.247 × 10−10(m2) × 1017(W/m2) × π1/2 × 3.3 × 10−9(s)

= 0.1296 J.

(c) Using V = 4.360 × 10−14 m3, we have

Ṡe,σ

V
= σex(qr,i)oπ

1/2τ

= 2.972 × 1012 J/m3.

This is a rather large result.

COMMENT:
Note that, in practice, the focused laser beam will not be uniform and therefore, a radial average should be

taken. Also note that the irradiation flux used is for the focused beam. The beam leaving the laser has a much
larger diameter, which makes for a smaller irradiation flux.
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PROBLEM 2.7.FUN

GIVEN:
In thermoelectric cooling, a pair of p- and n-type semiconductors are jointed at a junction. When an electric

current, given as current flux (or current density) je(A/m2), passes through their junction, heat is absorbed.
This current also produces the undesirable (parasitic) Joule heating. This energy conversion (per unit volume)

is given by (2.33) as

ṡe,J = ρe(T )j2
e ,

where ρe(ohm-m) is the electrical resistivity and varies with temperature ρe = ρe(T ). Figure Pr.2.7 shows a
semiconductor slab (p- or n-type), which is a part of a pair. The energy equation (2.8) would be simplified by
assuming that heat flows only in the x direction, that the heat transfer is in a steady state, and that the energy
conversion term is given above. A small length ∆x is take along the x direction and the conduction heat flux
vectors at x and x + δx are given as qk|x and qk|x+∆x.

qk|x = −1.030 × 104sx W/m2, qk|x+∆x = 1.546 × 104sx W/m2, je = 4 × 106 A/m2, ∆x = 0.1 mm.

SKETCH:
Figure Pr.2.7 shows the semiconductor slab, the current density je, and the conduction heat flux vectors on

both sides of a small length ∆x.

L
�x

�e(T)

x

sn

sn

a

a
se,J = �e je

2

qk x+�x

je

qk x

Semiconductor

Current Density, je

Figure Pr.2.7 A semiconductor slab with a one-dimensional heat conduction and a volumetric energy conversion (Joule
heating). The conduction heat flux vectors are prescribed at locations x and x + ∆x.

OBJECTIVE:
(a) Using (2.8), and assuming that the results for the given small ∆x are valid for ∆x → 0, determine the mag-
nitude of ṡe,J.
(b) Using the relationship for ṡe,J given above, and the value for je given below, determine ρe(T ) and from Tables
C.9(a) and (b) find a material with this electrical resistivity ρe(T ) (ohm-m).

SOLUTION:
(a) From (2.8), we have ∫

∆A

(q · sn)dA

∆V → 0
= − ∂

∂t
ρcpT +

∑
i

ṡi

For steady-state, conduction heat transfer only, and Joule heating as the only energy conversion, this becomes∫
∆A

(qk · sn)dA

∆V
= ṡe,J,

where from Figure Pr.2.7, we have

∆V = a2∆x

∆A = a2.
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Using the values for qx given at locations x and x + ∆x, and noting that for the surface at x we have sn = −sx

and for that at x = x + ∆x, we have sn = sx, we have

(qk|x · sn)∆A + (qk|x+∆x · sn)∆A

∆V
=

{−1.030 × 104(W/m2) × [sx · (−sx)] + 1.546 × 104(W/m2) × [sx · (sx)]}a2

a2∆x

=
(1.030 × 104 + 1.546 × 104)(W/m2)

10−4(m)
= 2.576 × 108 W/m3.

(b) Noting that

ṡe,J = ρe(T )j2
e ,

and solving for ρe(T ), we have

ρe(T ) =
ṡe,J

j2
e

=
2.576 × 108(W/m3)
(4 × 106)2(A2/m4)

= 1.610 × 10−5 W-m/A2 = 1.610 × 10−5 ohm-m,

where we note that (W=A2-ohm).
Note that in Table C.9(b) at T = 700 K, the n-type silicon-germanium alloy has this electrical resistivity.

COMMENT:
Note that heat leaves both surfaces (x and x + ∆x), as expected from∫

∆A

(q · sn)dA

∆V → 0
= ∇ · q > 0.

The products of (q · sn) at x and x + ∆x are both positive here.
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PROBLEM 2.8.FUN

GIVEN:
In some transient heat transfer (i.e., temperature and heat flux vector changing with time) applications, that

portion of the heat transfer medium experiencing such a transient behavior is only a small portion of the medium.
An example is the seasonal changes of the air temperature near the earth’s surface, which only penetrates a very
short distance, compared to the earth’s radius. Then the medium may be approximated as having an infinite
extent in the direction perpendicular to the surface and is referred to a semi-infinite medium. Figure Pr.2.8 shows
such a medium for the special case of a sudden change of the surface temperature from the initial (and uniform
throughout the semi-infinite medium) temperature of T (t = 0) to a temperature Ts. Under these conditions, the
solution for the heat flux is given by

qk,x(x, t) =
k[Ts − T (t = 0)]

(παt)1/2
e−x2/4αt,

where α = k/ρcp is called the thermal diffusivity.
k = 0.25 W/m-K (for nylon), α = 1.29 × 10−5 m2/s (for nylon), Ts = 105◦C, T (t = 0) = 15◦C, xo = 1.5 cm,

to = 30 s.
This conduction heat flux changes with time and in space.

SKETCH:
Figure Pr.2.8 shows the semi-infinite slab, the conduction heat flux, and the local energy storage/release.

�qk,x(x,t)

�T
�t

��cp

Constant Surface
Temperature, Ts

Semi-Infinite Slab
Initially at Uniform

Temperature
T = T(t = 0) Far-Field

Temperature
T(t,x    �) = T(t = 0)

sn

x
�x   0

xo

x   �

Storage

Conduction

Figure Pr.2.8 A semi-infinite slab with an initial temperature T (t = 0) has
its surface temperature suddenly changed to Ts.

OBJECTIVE:
(a) Using (2.1), with no energy conversion and conduction as the only heat transfer mechanism, determine the
time rate of change of local temperature ∂T/∂t at location xo and elapsed time to.
(b) Determine the location of largest time rate of change (rise) in the temperature and evaluate this for the
elapsed time to.

SOLUTION:
(a) Starting from (2.1) and for no energy conversion and a one-dimensional (in the x direction) conduction only,
we have

∇ · q =
(

∂

∂x
sx

)
· (qk,xsx) = −ρcp

∂T

∂t

∂

∂x
qk,x = −ρcp

∂T

∂t

or

−∂T

∂t
=

1
ρcp

∂

∂x
qk,x.
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Using the given expression for qk,x(x, t), we have

∂T

∂t
= −

(
k

ρcp

)
Ts − T (t = 0)

(παt)1/2

(−2x

4αt

)
e
−x2

4αt

=
Ts − T (t = 0)
2π1/2α1/2t3/2

xe
−x2

4αt .

Evaluating this at xo and to, we have

∂T

∂t
=

Ts − T (t = 0)
2π1/2α1/2t3/2

o

xoe

−x2
o

4αto .

Using the numerical values, we have

∂T

∂t
=

(105 − 15)(◦C)
2π1/2(1.29 × 10−5)1/2(m2/s)1/2(30)3/2(s)3/2

× 1.510−2(m)e
− (1.5 × 10−2)2(m)2

4 × 1.29 × 10−5(m2/s) × 30(s)

= 0.6453(◦C/s) × e−0.1453 = 0.5580◦C/s.

(b) We now differentiate the above expression for ∂T/∂t, with respect to x, at which we find the location of the
largest ∂T/∂t occurs. Then by differentiating and using t = t0, we have

∂

∂x

∂T

∂t
=

∂2qk,x

∂x2

=
Ts − T (t = 0)
2π1/2α1/2t3/2

o


e

- x2

4αto − 2x2

4αto
e
- x2

4αto


 = 0.

Then

1 − 2x2

4αto
= 0

or

x = (2αto)1/2.

Now using the numerical values, we have

x = [2 × 1.29 × 10−5(m2/s) × 30(s)]1/2

= 0.02782 m = 2.782 cm.

From part (a), we have

∂T

∂t
= 1.1968(◦C/s) × e−0.5 = 0.7259◦C/s.

COMMENT:
Note that as expected, ∂T/∂t = 0 at x = 0 (because Ts is assumed constant). In Section 3.5.1, we will discuss

this transient problem and define the penetration front as the location beyond which the effect of the surface
temperature change has not yet penetrated and this distance is given as x ≡ δα = 3.6(αt)1/2, as compared to
x = 1.414(αt)1/2 for the location of maximum ∂T/∂t.
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PROBLEM 2.9.FUN

GIVEN:
A device that allows for heat transfer between two fluid streams of different temperatures is called a heat

exchanger. In most applications, the fluid streams are bounded by flowing through ducts and tubes and are also
kept from mixing with each other by using an impermeable solid wall to separate them. This is shown in Figure
Pr.2.9. Assume that radiation and conduction are not significant in each stream and that there is steady-state
heat transfer and no energy conversion. Then there is only bounded fluid stream convection and surface convec-
tion at the separating wall, as shown in Figure Pr.2.9. Assume that the wall has a zero thickness. Also assume
convection heat flux qu a uniform (an average) across the surface area for convection Au. The surface area for
the surface convection over a differential length ∆x is ∆Aku.

SKETCH:
Figure Pr.2.9 shows the two streams and the wall separating them.

Bounded Fluid
Stream 1

Bounded Fluid
Stream 2

Ideally Insulated
Surface

Thin Impermeable Solid Wall
(Negligible Thickness) sn,1

sn,2

qu,2

qu,1

qku

Au,1

Aku = Pku�x

Au,2x

y

�x   0
Ideally Insulated

Surface

Figure Pr.2.9 Two streams, one having a temperature higher than
the other, exchange heat through a wall separating them.

OBJECTIVE:
Starting from (2.8), write the energy equations for the control surfaces ∆A1 and ∆A2 shown. These control

surfaces include both the convection and the surface convection areas. Show that the energy equations become

− Pku

Au,1
qku +

d

dx
qu,1 = 0,

Pku

Au,2
qku +

d

dx
qu,2 = 0.

SOLUTION:
Starting from (2.8), we note that ∂/∂t = 0, ṡ = 0, and q = qu along the axis and q = qku along the y axis on

the wall surface. Then (2.8) becomes, using ∆V1 = Au,1∆x and ∆Aku = Pku∆x,

∫
∆A1

(q · sn)dA

∆V1 → 0
= 0 + 0

=

∫
∆Aku

(qku · sn)dA +
∫

∆Au,1

(qu · sn)dA

∆V1 → 0

=
−qku∆Aku + qu,1(x + ∆x)Au,1 − qu,1(x)Au,1

Au,1∆x

= −qkuPku∆x

Au,1∆x
+

qu,1(x + ∆x) − qu,1(x)
∆x

= −Pkuqku +
d

dx
qu = 0 for ∆x → 0.
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Note that qku · sn,1 = −qku, because sn is pointing opposite to the assumed direction for qku.
Similarly, ∫

∆Au,2

(qu · sn)dA

∆V2 → 0
=

qku∆Aku + qu,2(x + ∆x)Au,2 − qu,2(x)Au,2

Au,2∆x

= Pkuqku +
d

dx
qu,2 = 0 for ∆x → 0.

COMMENT:
Note that the two energy equations mathematically state what is rendered in Figure Pr.2.9, i.e., heat is

convected along each stream and is exchanged through the wall (by surface convection). In Section 7.6.1, we will
use these energy equations to determine the total heat transfer (exchange) rate Qku.
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PROBLEM 2.10.FUN

GIVEN:
A heat transfer medium with a rectangular control volume, shown in Figure Pr.2.10, has the following uniform

heat fluxes at its six surfaces:

qx|x−∆x/2 = −4 W/m2, qx|x+∆x/2 = −3 W/m2,
qy|y−∆y/2 = 6 W/m2, qy|y+∆y/2 = 8 W/m2,
qz|z−∆z/2 = 2 W/m2, qz|z+∆z/2 = 1 W/m2.

The uniformity of heat flux is justifiable due to the small dimensions ∆x=∆y=∆z=2 mm.

SKETCH:
Figure Pr.2.10 A rectangular control volume with the heat flux vector on its six surfaces.

�y

�z
(x, y, z)

�x

y
z

x

qx  x��x/2

�Ax�Ay

�Az

qx  x+�x/2

qy  y��y/2
qz  z��z/2

qy  y+�y/2

qz  z+�z/2

Figure Pr.2.10 A control volume in a heat transfer medium.

OBJECTIVE:
(a) Assume that ∇V → 0 is approximately valid for this small, but finite volume and determine the divergence
of q for the center of this control volume, located at (x, y, z).
(b) Is there a sink or a source of heat in this control volume located at (x, y, z)?
(c) What could be the mechanisms for this source or sink of heat?

SOLUTION:
(a) We have assumed that over each of the six surfaces the heat flux is uniform. Then, we can use (2.8) as

lim
∆V →0

∫
∆A

(q · sn)dA

∆V
≡ ∇ · q = −∂(ρcpT )

∂t
+
∑

i

Ṡi.

The divergence of q is given above in terms of the surface integral. This surface integral is expanded using the
three components of q and sn in the x, y, and z directions. Using that we have

∫
∆A

(q · sn)dA =
∫

∆A

(qx·sn,x + qy·sn,y + qz·sn,z)dA

= (qx+∆x/2 − qx−∆x/2)∆Ax + (qy+∆y/2 − qy−∆y/2)∆Ay +
(qz+∆z/2 − qz−∆z/2)∆Az.
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Then, for the divergence of q we use the definition and approximations to obtain

∇ · q ≡ lim
∆V →0

∫
∆A

(q · sn)dA

∆V
�
∫
∆A

(q · sn)dA

∆V

=
(qx+∆x/2 − qx−∆x/2)∆Ax

∆V
+

(qy+∆y/2 − qy−∆y/2)∆Ay

∆V
+

(qz+∆z/2 − qz−∆z/2)∆Az

∆V

=
(qx+∆x/2 − qx−∆x/2)∆y∆z

∆x∆y∆z
+

(qy+∆y/2 − qy−∆y/2)∆x∆z

∆x∆y∆z
+

(qz+∆z/2 − qz−∆z/2)∆x∆y

∆x∆y∆z
.

Since ∆x = ∆y = ∆z, we have

∇ · q � 1
∆x

(qx+∆x/2 − qx−∆x/2 + qy+∆y/2 − qy−∆y/2 + qz+∆z/2 − qz−∆z/2).

Now, using the numerical values we have

∇ · q =
1

2 × 10−3(m)
(+4 − 3 − 6 + 8 − 2 + 1)(W/m2) = 103 W/m3.

(b) From (2.2), since ∇·q is positive, there is a source in the control volume, i.e., there is a source at the location
(x, y, z). This is because more heat leaves the control surface than enters it.

(c) From the energy equation (2.8), the mechanism for this heat source is storage or energy conversion. There
are many energy conversion mechanisms (to and from thermal energy), for example, those listed in Table 2.1.
When the temperature within the control volume increases, i.e., ∂T/∂t > 0, heat is being stored in the control
volume as sensible heat. Another example for a sink of heat is when there is an endothermic chemical reaction.
Then heat is absorbed in the control volume to move the reaction forward (from reactants to products). When
there is a gas flow and the gas undergoes expansion as it flows through the control volume, heat is absorbed as
the gas performs work (this is called expansion cooling).

COMMENT:
Here we assumed that q is uniform over the surfaces. This is strictly true when ∆A → 0. The assumption of

uniform q over a surface can be justifiably made when the heat flow is unidirectional. When the heat flow over
a surface is zero, the surface is called adiabatic.
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PROBLEM 2.11.FUN

GIVEN:
Although the temperature variation within a heat transfer medium is generally three dimensional, in many

cases there is a dominant direction in which the most significant temperature variation occurs. Then, the use of a
one-dimensional treatment results in much simplification in the analysis. Consider the steady-state surface tem-
peratures given in Figure Pr.2.11(a), for selected locations on a solid, rectangular piece. The heat flows through
the solid by conduction and from its surface to the ambient by surface convection.

SKETCH:
Figure Pr.2.11(a) shows the rectangular slab and the measured temperature at various locations.

Air
Tf,� = 20 C
 uf,� = 1 m/s

Lz = 6 mm
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qku
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Lx /2
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54 C
85 C

84 C

84 C

84 C

30 C
Solid

29 C

54 C

29 C

y

z
x

(0, 0, 0)

Figure Pr.2.11(a) Temperature at various locations on a rectangular plate.

OBJECTIVE:
(a) By examining the gradient of temperature in each direction, determine the dominant conduction heat flow
direction. As an approximation, use

∂T

∂x
� ∆Tx

∆x
,

∂T

∂y
� ∆Ty

∆y
,

∂T

∂z
� ∆Tz

∆z
,

where ∆x is the length over which the temperature change ∆Tx occurs.
(b) Select a control volume that has a differential length in the direction of dominant conduction heat flow and
an integral length over the other two directions. Schematically show this integral-differential volume.
(c) Write an energy equation for this control volume.

SOLUTION:
(a) The three principal directions, x, y, and z for the rectangular solid piece are shown in Figure Pr.2.11(b). The
heat transfer by conduction is given by Fourier’s law (1.11) and using (1.14) we have

qk = −k∇T ≡ −k

(
∂T

∂x
sx +

∂T

∂y
sy +

∂T

∂z
sz

)
.

We now use the approximation for the gradient of temperature and write these as

qk = −k

(
∆Tx

Lx
sx +

∆Ty

Ly
sy +

∆Tz

Lz
sz

)
.

Next we substitute for the temperatures and lengths obtaining

qk = −k

[
30(◦C) − 85(◦C)

0.030(m)
sx +

84(◦C) − 85(◦C)
0.050(m)

sy +
85(◦C) − 84(◦C)

0.006(m)
sz

]
= −k[−1.883 × 103(◦C/m)sx − 2.000 × 101(◦C/m)sy + 1.667 × 102(◦C/m)sz].
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Figure Pr.2.11(b) The heat flow along the x direction, where a differential length ∆x is chosen.

We note that the term in x is at least one order of magnitude larger than any of the other two terms. Then, from
the order of magnitude of the terms, we can approximate the heat flux by

qk � [1.883 × 103(◦C/m) × k(W/m-◦C)]sx,

which represents a one-dimensional conduction heat flow.

(b) Figure Pr.2.11(b) shows the differential length taken along the x direction.

(c) Since the temperature field is steady and there is no energy conversion, (2.7) becomes

∇ · q ≡ lim
∆V →0

∫
∆A

(q · sn)dA

∆V
= 0.

As shown in Figure Pr.2.11(b), based on the one-dimensional intramedium conduction and surface convection,
one can write the limit above as

lim
∆V →0

∫
∆A

(q · sn)dA

∆V
= lim

∆V →0

{
(qku·sn)∆Aku

∆xLyLz
+

[(qk·sn)Ak]x + [(qk·sn)Ak]x+∆x

∆xLyLz

}
.

Here we have Ak = LyLz and ∆Aku = 2(Ly + Lz)∆x. Now, noting that sn on the x and x + ∆x surfaces point
in opposite directions, we have

lim
∆V →0

∫
∆A

(q · sn)dA

∆V
= lim

∆V →0

[
qku

2(Ly + Lz)∆x

∆xLyLz
+

(−qk|x + qk|x+∆x)LyLz

∆xLyLz

]

= qku
2(Ly + Lz)

LyLz
+ lim

∆V →0

−qk|x + qk|x+∆x

∆x
.

Now, the limit in the last term is the definition of a derivative and we have

lim
∆V →0

∫
∆A

(q · sn)dA

∆V
= qku

2(Ly + Lz)
LyLz

+
dqk

dx

and, using Fourier’s law of conduction,

qk = −k
dT

dx
.

Assuming that k is constant, we have finally

qku
2(Ly + Lz)

LyLz
− k

d2T

dx2
= 0.

COMMENT:
Note that the gradient of temperature along the x direction is not uniform. Over the first half of the length

along x, the temperature change is larger than that over the second half. This is a consequence of the local
surface-convection heat flux being proportional to the difference between the solid temperature and the far-field
fluid temperature. We will discuss this in Section 6.8.
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PROBLEM 2.12.FUN

GIVEN:
Many computer disks are read by magnetoresistive transducers. The transducer is located on a thin slider that

is situated slightly above the disk, as shown in Figure Pr.2.12. The transistor is developed using the principle that
its resistance varies with the variation of the surrounding magnetic field. Since its resistance is also temperature
dependent, any temperature change will result in a noise in the readout. When the slider and disk are at the same
temperature, the viscous-dissipation heat generation becomes significant in creating this undesired increase in the
temperature. Assume the flow of air at T = 300 K between the disk and slider is a Newtonian, one-dimensional,
Couette flow, as shown in Figure Pr.2.12. The distance between the disk and the slider is L = 20 nm, and the
relative velocity is ∆ui = 19 m/s.

Use Table C.22, and the relation µf = νf/ρf to determine µf for air at T = 300 K.

SKETCH:
Figure Pr.2.12 shows the disk and slider, the air flow between them, and the viscous dissipation energy

conversion.
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Figure Pr.2.12 A disk read by a magnetoresistive transducer.

OBJECTIVE:
Determine the magnitude of the volumetric viscous-dissipation heat generation ṡm,µ.

SOLUTION:
The properties of air at T = 300 K, (Table C.22), are νf = 15.66 × 10−6 m2/s, and ρf = 1.177 kg/m3.

For the one-dimensional flow in the x direction, we have from (2.52)

ṡm,µ = µf

(
∂ux

∂y

)2

ux = ∆ui

(
1 − y

L

)
∂ux

∂y
=

−∆ui

L

ṡm,µ = 15.66 × 10−6(m2/s) × 1.177(kg/m3) ×
[

192(m/s)2

(2 × 10−8)2(m2)

]
= 1.66 × 1013 W/m3.

COMMENT:
It should be noted that the relation ux = ∆ui(1− y/L) is derived using the no-slip boundary condition. This

condition only holds true if the gap L is greater than the mean-free path of the gas λm. For air at STP, we have
from Table C.7, λ = 10−7 m, which is greater than the gap L = 2 × 10−8 m. Thus, the fluid velocity should be
given in terms of the slip coefficient used for λm > L.
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PROBLEM 2.13.FAM

GIVEN:
Catalytic combustion (and catalytic chemical reaction in general) is an enhancement in the rate of chemical

reaction due to the physical-chemical mediation of a solid surface. For example, in the automobile catalytic
converter the rate of reaction of exhaust-gas unburned fuel is increased by passing the exhaust gas over the
catalytic surface of the converter. The catalytic converter is a solid matrix with a large surface area over which the
exhaust gas flows with a relatively small pressure drop. The catalytic effect is produced by a surface impregnated
with precious metal particles, such as platinum. For example, consider the following chemical kinetic model for
the reaction of methane and oxygen

CH4 + 2O2 → CO2 + 2H2O stoichiometric chemical reaction
ṁr,CH4 = −arρCH4ρ

1/2
O2

e−∆Ea/RgT chemical, kinetic model,

where ṁr,CH4(kg/m2-s) is the reaction-rate per unit surface area. The pre-exponential factor ar(cm5/2/s-g1/2)
and the activation energy ∆Ea(J/kmole) are determined empirically. The model is accurate for high oxygen
concentrations and for high temperatures. The densities (or concentrations) are in g/cm3. Consider the following
catalytic (in the presence of Pt) and noncatalytic (without Pt) chemical kinetic constants:

without Pt : ar = 1.5 × 1011 cm5/2/s-g1/2, ∆Ea = 1.80 × 108 J/kmole,
with Pt : ar = 1.5 × 1012 cm5/2/s-g1/2, ∆Ea = 1.35 × 108 J/kmole.

Use the cgs units (cm, g, s).

OBJECTIVE:
For a mixture of methane and oxygen at a pressure of 1 atm and a temperature of 500◦C:

(a) Determine the densities of CH4 and O2 assuming an ideal-gas behavior,
(b) Determine the rate of reaction per unit surface area ṁr,CH4 .
(c) Comment on the effect of the catalyst.

SOLUTION:
(a) For an ideal gas mixture we have

ρ = ρCH4 + ρO2 =
p

Rg

M
T

M =
νCH4MCH4 + νO2MO2

νCH4 + νO2

,

where νCH4 and νO2 are the stoichiometric coefficients for CH4 and O2 in the chemical reaction.
Also,

ρCH4

ρ
=

νCH4MCH4

νCH4MCH4 + νO2MO2

,
ρO2

ρ
=

νO2MO2

νCH4MCH4 + νO2MO2

.

The molecular weights are found from Table C.4 to be

MCH4 = 12.011 + 4 × 1.008 = 16.04 kg/kmole
MO2 = 2 × 15.999 = 32.00 kg/kmole.

Then

M =
1 × 16.04 + 2 × 32.00

1 + 2
= 26.68 kg/kmole.
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Using the pressure and temperature given

ρ =
1.013 × 105(Pa)

8.314×103(J/kmole-K)
26.68(kg/kmole) (500 + 273.15)(K)

= 0.4205kg/m3

= 0.4205(kg/m3) × 1,000(g/kg) × 10−6(m3/cm3) = 4.205 × 10−4 g/cm3

ρCH4 =
[

1 × 16.04(kg/kmole)
16.04(kg/kmole) + 2 × 32.00(kg/kmole)

]
4.205 × 10−4(g/cm3) = 8.427 × 10−5 g/cm3

ρO2 =
[

2 × 32.00(kg/kmole)
16.04(kg/kmole) + 2 × 32.00(kg/kmole)

]
4.205 × 10−4(g/cm3) = 3.362 × 10−4 g/cm3

.

(b) Now, using

ṁr,CH4 = ρCH4ρ
1/2
O2

are
−∆Ea

RgT

the reaction rate without catalytic effect is given by

ṁr,CH4(without catalyst) = 8.427 × 10−5(g/cm3) × [3.362 × 10−4(g/cm3)]1/2 × 1.5 × 1011(cm5/2/g1/2-s) ×

exp
[
− 1.80 × 108(J/kmole)

8.314 × 103(J/kmole-K) × (500 + 273.15)(K)

]
= 1.598 × 10−7 g/cm2-s.

Using a catalyst, we have

ṁr,CH4(with catalyst) = 8.427 × 10−5(g/cm3) × [3.362 × 10−4( g/cm3)]1/2 × 1.5 × 1012(cm5/2/g1/2-s)

exp
[
− 1.35 × 108(J/kmole)

8.314 × 103(J/kmole-K) × (500 + 273.15)(K)

]
= 1.754 × 10−3 g/cm2-s.

(c) Due to the presence of the catalyst, the surface reaction rate is increased by a factor

ṁr,CH4(with catalyst)
ṁr,CH4(without catalyst)

=
1.754 × 10−3(g/cm2-s)
1.598 × 10−7(g/cm2-s)

= 1.098 × 104.

There is a substantial increase. Reaction rates that are negligibly small when no catalyst is present can be made
substantial with the addition of a catalytic coating.

COMMENT:
Precious metals are deposited on catalyst surfaces as particles. The relevant linear dimensions are on the

order of nanometers. The molecules of the gas are adsorbed on the surface, suffer a chemical modification, are
desorbed, and then react in the gas phase. The total reaction rate for a catalytic converter with surface area Aku

is given by
Ṁr,CH4 = Akuṁr,CH4 .

Using structures such as foams, bundle of tubes, and packed beds, a large surface area per unit volume Aku/V
is possible and large reaction rates are achieved.
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PROBLEM 2.14.FUN

GIVEN:
In order to produce silicon wafers, single-crystal silicon ingots are formed by the slow solidification of molten

silicon at the tip of a cylinder cooled from the base. This was shown in Figure 2.3(c) and is also shown in Figure
Pr.2.14. The heat released by solid to fluid phase change Ṡls(W) is removed from the solid-liquid interface Als by
conduction through the ingot Qk. The energy equation for the solid-fluid interface Als (nonuniform temperature
in the liquid), as given by (2.9), is

Qk = Ṡls,

where the conduction heat flow Qk is given by

Qk = Akk
Tsl−Ts

L
,

where L and Ts are shown in Figure Pr.2.14 and Tls is the melting temperature. The rate of phase-change energy
conversion is

Ṡls = −ρlAsluF ∆hls = −Ṁls∆hls = Ṁls∆hsl,

where ∆hsl > 0.
Assume that the liquid and solid have the same density. L = 20 cm, uF = 4 mm/min.

SKETCH:
Figure Pr.2.14 shows the cooling of molten silicon and the formation of a crystalline silicon.

Crystalline
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Surface Temperature
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Qku
Make-up Heat

Tls

Phase-Change Temperature

Liquid
Silicon (Melt)

Bounding-Surface
Control Surface, Als

Ts
D

L

uF

Sls

qk

Figure Pr.2.14 Czochralski method for single-crystal growth of silicon.

OBJECTIVE:
Using the thermophysical properties given in Tables C.2 (periodic table for ∆hsl) and C.14 (at T = 1,400 K

for k), in Appendix C, determine the temperature Ts (at the top of the ingot).

SOLUTION:
Combining the above equations, we have

Akk
Tsl − Ts

L
= Ṁls∆hsl.

Solving for Ts and using the equation for Ṁls, we have

Ts = Tls − Ṁls∆hlsL

Akk
= Tls − ρlLuF ∆hlsL

Akk
.

Now, we obtain the properties from Tables C.2 (periodic table) and C.14 as Tsl = 1,687 K, ρl = ρs = 2,330
kg/m3, ∆hsl = 1.802 × 106 J/kg, k = 24 W/m-K. Note that from Table C.14, k is obtained for T = 1,400 K,
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which is the highest temperature available. Then, using Ak = Asl = πD2/4, we have

Ts = Tls − ρlAsluF ∆hlsL

Akk

= 1,687(K) − 2,330(kg/m3) × (4 × 10−4/60)(m/s) × 1.802 × 106(J/kg) × 0.2(m)
24(W/m-K)

= (1,687 − 233.3)(K)
= 1,454 K

COMMENT:
Note that the thermal conductivity of solid silicon significantly decreases as the temperature increases. At

room temperature, k is about 150 W/m-K, while at T = 1,400 K, it is 24 W/m-K. Also, the melt is not at a
uniform temperature and is superheated away from Asl. Then, additional heat flows into Asl from the liquid.
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PROBLEM 2.15.FAM

GIVEN:
The electrical resistivity of metals increases with temperature. In a surface radiation emission source made

of Joule-heating wire, the desired temperature is 2,500◦C. The materials of choice are tantalum Ta and tungsten
W. The electrical resistivity for some pure metals, up to T = 900 K, is given in Table C.8. Assume a linear
dependence of the electrical resistivity on the temperature, i.e.,

ρe(T ) = ρe,o[1 + αe(T − To)].

OBJECTIVE:
(a) From the data in Table C.8, determine αe for both metals.
(b) Using the equation above, determine the metals electrical resistivity at T = 2,500◦C.
(c) If the wire has a diameter D = 0.1 mm and a length L = 5 cm (coiled), determine the electrical resistance Re

for both metals at T = 25◦C and T = 2,500◦C.
(d) If a Joule heating rate of 100 W is needed, what current should be applied at T = 2,500◦C?
(e) Determine the voltage needed for this power.

SOLUTION:
(a) From Table C.8, we choose the last set of data for each metal to determine αe. We also use To = 900 K, since
we need to extrapolate beyond 900 K. Then we have

tantalum: αe =
1

ρe,o

∆ρe

∆T
=

1
40.1 × 10−8(ohm-m)

(40.1 − 31.8) × 10−8(ohm-m)
200(K)

= 1.035 × 10−3 1/K

tungsten: αe =
1

21.5 × 10−8( ohm-m)
(21.5 − 15.7) × 10−8(ohm-m )

200(K)
= 1.349 × 10−3 1/K.

(b) Using
ρe = ρe,o[1 + αe(T − To)]

and choosing To = 900 K, for T = 2,773 K we have

tantalum: ρe = 40.1 × 10−8(ohm-m)[1 + 1.035 × 10−3(1/K) × (2,773 − 900)(K)]
= 1.178 × 10−6 ohm-m

tungsten: ρe = 21.5 × 10−8(ohm-m)[1 + 1.349 × 10−3(1/K) × (2,773 − 900)(K)]
= 7.582 × 10−7 ohm-m.

(c) From (2.32), the resistance can be calculated from

Re =
ρeL

A
.

For A = πD2/4, we have

tantalum: Re =
4 × 1.178 × 10−6(ohm-m) × 0.05(m)

π(10−4)2(m2)
= 7.500 ohm

tungsten: Re =
4 × 7.582 × 10−7(ohm-m) × 0.05(m)

π(10−4)2(m2)
= 4.827 ohm.

(d) Substituting (2.31) into (2.28), the Joule heating rate can be written as

Ṡe,J = ReJ
2
e .

Solving for Je we have

Je =

(
Ṡe,J

Re

)1/2

.
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Then

tantalum: Je = [100(W)/7.500(ohm)]1/2 = 3.651 A
tungsten: Je = [100(W)/4.828(ohm)]1/2 = 4.551 A.

(e) The voltage is given by (2.32), i.e.,
∆ϕ = ReJe.

Then

tantalum: ∆ϕ = 7.500(ohm) × 3.651(A) = 27.38 V
tungsten: ∆ϕ = 4.828(ohm) × 4.551(A) = 21.97 V.

COMMENT:
In order to produce the given Joule heating rate with a given voltage, the diameter and length of the wire are

selected accordingly. Care must be taken to keep the wire temperature below the melting point of the wire or
insulation. The temperature of the wire will depend on the heat transfer rate (heat losses) at the wire surface.
The linear extrapolation of resistivity as a function of temperature, so far from the listed values, is not expected
to be very accurate.
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PROBLEM 2.16.FAM

GIVEN:
Electrical power is produced from a thermoelectric device. The thermoelectric junctions are heated (heat

added) by maintaining the hot junction at Th = 400◦C and cooled (heat removed) by maintaining the cold
junction at T = 80◦C. This is shown in Figure Pr.2.16.

There are 120 p-n pairs. The pairs are p- and n-type bismuth telluride (Bi2Te3) alloy with Seebeck coefficients
αS,p = 2.30× 10−4 V/K and αS,n = −2.10× 10−4 V/K. The resistance (for all 120 pairs) to the electrical current
Je produced is Re = 0.02 ohm for the thermoelectric path. For an optimum performance, the external resistance
Re,o is also equal to 0.02 ohm.

SKETCH:
Figure Pr.2.16 shows the p-n junctions in a thermoelectric power generator module. The electrical circuit is

also shown.

Tc

Th

n p n p

−Qh

Re,o

Je

Ceramic Plate

Semiconductor

(External Electrical Resistance)

Qc

Ceramic Plate

Electrical Conductor

Semiconductor

Re,o

Je

Se,P

.

Figure Pr.2.16 A thermoelectric generator.

OBJECTIVE:
(a) Determine the current produced.
(b) Determine the power produced.

SOLUTION:
(a) The electrical circuit diagram for this device is also shown in the text by Figure 2.16(b). The electrical power
generated is given by (2.40). The current can also be found from (2.40) and is given by

Je =
(αS,p − αS,n)(Th − Tc)

Re,o + Re
.

Using the numerical values,

Je =
(2.30 + 2.10) × 10−4(V/K) × (400 − 80)(K)

0.02(ohm) + 0.02(ohm)
= 3.520 A.

(b) The electrical power produced Pe (based on external resistance) is

Pe = J2
e Re,o = (3.52)2(A)2 × 0.02(ohm) = 0.2478 W.

COMMENT:
The Bi-Te alloy is not a high temperature thermoelectric alloy. For higher temperatures (i.e., direct exposure

to combustion gases), Si-Ge alloys are used.
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PROBLEM 2.17.FUN

GIVEN:
A premixed mixture of methane CH4 and air burns in a Bunsen-type burner, as shown in Figure Pr.2.17.

Assume that the flame can be modeled as a plane flame. The reactants (methane and air) enter the flame zone at
a temperature T1 = 289 K. The concentration of methane in the reactant gas mixture is ρF,1 = 0.0621 kgCH4/m3

and the heat of reaction for the methane/air reaction is ∆hr,CH4 = −5.55× 107 J/kgCH4 (these will be discussed
in Chapter 5). For both reactants and products, assume that the average density is ρ = 1.13 kg/m3 and that
the average specific heat is cp = 1,600 J/kg-K (these are temperature-averaged values between the temperature
of the reactants T1 and the temperature of the products T2).

SKETCH:
Figure Pr.2.17 shows the modeled flame. The flame is at the opening of a tube and is shown to be thin.

Reactants, T1

Products, T2

δF

Flame

Tube

qu,2

qu,1

Sr,c

T2

T1

Au

x

T

δF

0

Flame

Figure Pr.2.17 A premixed methane-air flame showing the flame
and the temperature distribution across δF .

OBJECTIVE:
(a) For the control volume enclosing the flame (Figure Pr.2.17) apply the integral-volume energy conservation
equation. Neglect the heat loss by radiation and assume a steady-state condition.
(b) Obtain an expression for the heat generation inside the flame Ṡr,c(W) as a function of the cold flow speed
uf (m/s), the concentration of methane in the reactant gas mixture ρF,1(kgCH4/m3), the heat of reaction for
the methane/air reaction ∆hr,CH4(J/kgCH4), and the area of the control surface Au(m2). Assume a complete
combustion of the methane. [Hint: Use the conservation of mass of fuel equation (1.26) to obtain an expression
for the volumetric reaction rate ṅr,F(kg/m3-s).]
(c) Using the integral-volume energy conservation equation obtained in item (a) and the expression for the heat
generation obtained in item (b) calculate the temperature of the reacted gases (i.e., the adiabatic flame temper-
ature, T2).

SOLUTION:
(a) The heat flux vector tracking is shown in Figure Pr.2.17. The following steps complete the solution.
The integral-volume energy equation (2.9) is

∫
A

q · sndA =
∫

V

(
− ∂

∂t
ρcpT

)
dV +

∫
V

(∑
i

ṡi

)
dV .

For this steady-state process the storage term is zero. The only energy conversion present is conversion from
chemical bond to thermal energy (chemical reaction). The area integral of the normal component of the heat flux
vector over the control surfaces enclosing the flame gives∫

A

q · sndA = −qu,1 Au + qu,2 Au,
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where Au is the surface area of the flame sheet.
Thus, the integral-volume energy conservation equation becomes

−qu,1 Au + qu,2 Au =
∫

V

ṡr,cdV .

The heat flux by convection is given by (2.1) as

qu = ρcpuT.

Using this, the energy equation becomes

−(ρcpuF T )1 Au + (ρcpuF T )2 Au =
∫

V

ṡr,cdV .

Note that the volumetric heat source term depends on the temperature which is not uniform within the flame
(i.e., within the control volume).

(b) The volumetric heat source due to chemical reaction ṡr,c(W/m3-s) can be written as

ṡr,c = ṅr,F∆hr,F,

where ṅr,F(kg/m3-s) is the volumetric reaction rate which gives the mass of fuel (methane) burned per unit
volume and unit time. As ∆hr,F is constant for this constant pressure process, the rate of heat generation Ṡr,c is

Ṡr,c =
∫

V

ṡr,FdV =
∫

V

ṅr,F∆hr,FdV = ∆hr,F

∫
V

ṅr,FdV .

To find the mass consumption rate, we use the conservation of mass equation for methane. The integral-volume
species mass equation (1.26) is ∫

A

ṁF · sndA = −∂MF

∂t
+
∫

V

ṅr,FdV .

The variation of the species mass with respect to time is zero for the steady-state process. For the control volume
shown in Figure Pr.2.17, the net mass flux, in analogy to the net heat flux, is∫

A

ṁF · sndA = −ṁF,1 Au + ṁF,2 Au.

The mass flux of fuel F is ṁF = ρFuF . The mass flux of methane leaving the control volume is zero because all
the methane is burned inside the flame. Therefore, the above equation becomes

−ρFuF Au =
∫

V

ṅr,FdV .

The volumetric variation of the methane mass is due to the chemical reaction only. Thus, using the above equation
we have

Ṡr,c =
∫

V

ṡr,FdV = −ρFuF Au∆hr,F.

(c) Using this, the integral-volume energy equation becomes

−(ρcpuT )1 Au + (ρcpuT )2 Au = −ρFuF Au∆hr,F.

From the conservation of mass of mixture equation (1.25)

(ρu)1 = (ρu)2.

By definition, uF = (ug)1. Then dividing the energy equation by (ρu)1Au, we have

−(cpT )1 + (cpT )2 = −ρF

ρ
∆hr,F.
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Solving for T2, assuming that cp is constant, and using the numerical values given, we have finally

T2 = T1 − ρF∆hr,F

ρcp
= 289(K) − 0.0621(kgCH4

/m3) × [−5.55 × 107(J/kgCH4
)]

1.13(kg/m3) × 1,600(J/kg-K)
= 2,195 K.

COMMENT:
An expression for the volumetric reaction rate ṅr,F can also be obtained by looking at the units. The volumetric

reaction rate is the mass of methane (kgCH4) burned per unit volume (m3) per unit time (s). The mass of
methane burned is equal to the mass of methane available in the reactants, as all the methane is burned in
the flame zone. This mass per unit volume is equal to the density of methane in the reactant mixture ρ. The
time it takes to completely burn this mass of methane is equal to the time it takes for this mixture to travel
through the reaction region. If the thickness of the reaction region is δF, and the velocity of the gas flow is uF ,
the time is given by δF/uF . Thus, the volumetric reaction rate of methane becomes ṅr,F = −ρuF /δF. These
are all constant parameters. Therefore, integrating over the volume of the flame (control volume) results in∫

V
ṅr,FdV = −ρuF V/δF = −ρuF Au and the rate of heat generation becomes Ṡr,c = −∆hr,FρuF Au. Note that

the negative sign arises because methane is being consumed (as opposed to produced) in the chemical reaction.
The average ρ and cp are temperature-averaged values calculated over the temperature range between T1 and

T2.
Note the high temperatures that are achieved in a flame. The assumption of complete combustion is not true

for most combustion processes. Lack of complete mixing of fuel and oxidizer, heat losses, and dissociation of
products, all contribute to a lower flame temperature.

The flame temperature can be reduced by diluting the reactant mixture, i.e., by reducing the amount of
methane as compared to the amount of air. Then the combustion will occur in non-stoichiometric conditions.
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PROBLEM 2.18.FAM

GIVEN:
A moist-powder tablet (pharmaceutical product) is dried before coating. The tablet has a diameter D = 8

mm, and a thickness l = 3 mm. This is shown in Figure Pr.2.18. The powder is compacted and has a porosity, i.e.,
void fraction, Vf/V = 0.4. This void space is filled with liquid water. The tablet is heated in a microwave oven to
remove the water content. The rms of the electric field intensity (e2)1/2 = 103 V/m and the frequency f = 1 GHz.

SKETCH:
Figure Pr.2.18 shows microwave energy conversion in a moist-powder tablet.

D

l

Moist-Powder Tablet

Q 
A
= 0

No Surface Heat
Transfer (Idealized)

Sensible Heat Storage

Powder Particle

Water

Phase-Change
Energy Conversion

Control Volume
Control Surface

�  ρcp   V

Vs

Vl

Vs + Vl
= 0.4

Vl

Slg

dT
dtMicrowave

Energy Conversion

Se,m

Figure Pr.2.18 Microwave heating of a moist-powder tablet.

OBJECTIVE:
(a) Determine the time it takes to heat the water content from the initial temperature of T (t = 0) = 18◦C to the
final temperature of T = 40◦C, assuming no evaporation.
(b) Determine the time it takes to evaporate the water content while the tablet is at a constant temperature
T = 40◦C. For the effective (including the liquid and powder) volumetric heat capacity 〈ρcp〉, which includes both
water and powder, use 2 × 106 J/m3-K. For the water density and heat of evaporation, use Table C.27. Assume
that the dielectric loss factor for the powder is negligible compared to that for the water.

SOLUTION:
When the moist-powder tablet is internally heated by microwave electromagnetic energy conversion, the

temperature of the tablet increases and the moisture evaporates simultaneously. Here we have assumed that first
a rise in the temperature occurs, without any evaporation, and then evaporation occurs.
(a) For the first period, we start with the integral-volume energy equation (2.9) which is

Q|A = −〈ρcp〉V dT

dt
+ Ṡ.

For no heat losses, Q|A = 0. The energy conversion is due to microwave heating only, i.e., Ṡ = Ṡe,m. Then we
have

−〈ρcp〉V dT

dt
+ Ṡe,m = 0.

For the conversion from microwave to thermal energy, we have, from (2.49),

Ṡe,m = 2πfεecεoe2
eVl.

The volume of water, which is 40% the total volume of the tablet (Vl = 0.4V ), and the dielectric loss factor for
water εec,w will be used. Then we have

−〈ρcp〉V dT

dt
+ 2πfεec,wεoe2

e(0.4V ) = 0.
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Integrating the equation above assuming constant properties gives

dT

dt
=

2(0.4)πfεec,wεoe2
e

〈ρcp〉

T (t) − T (t = 0) =
2(0.4)πfεec,wεoe2

e

〈ρcp〉 ∆t1.

Solving for ∆t1 we have

∆t1 =
∆T 〈ρcp〉

2(0.4)πfεec,wεoe2
e

.

From Table C.10, for water at f = 109 Hz, we have εec,w = 1.2. Using the numerical values we have

∆t1 =
(40 − 18)(K) × 2 × 106(J/m3-K)

π(0.8) × 109(1/s) × 1.2 × 8.8542 × 10−12(A2-s2/N-m2) × (103)2(V/m)2

= 1.648 × 103 s = 0.4577 hr.

(b) For the second period, we start again with the integral energy equation which is

Q|A = −〈ρcp〉V dT

dt
+ Ṡ.

Again, no heat losses are considered, i.e., Q|A = 0. The temperature remains constant while the moisture
evaporates and thus dT/dt = 0. The energy conversion is due to microwave heating Ṡe,m and to phase change
only Ṡlg, i.e., Ṡ = Ṡe,m + Ṡlg. Thus, the energy equation becomes

Ṡe,m + Ṡlg = 0.

Using (2.49) and (2.25) we have

Ṡe,m = 2πfεecεoe2
eVl

Ṡlg = −ṅlg∆hlgVl.

The evaporation rate has units of (kg/m3-s). To evaporate all the water we have

Ṁl

∆t2
=

ṅlgVl

∆t2
, or ṅlg =

ρl

∆t2
,ρl =

Ṁl

Vl
.

Then, using the equations above, the energy equation becomes

2πfεec,wεoe2
eVl − ρl

∆t2
∆hlgVl = 0.

Solving for ∆t2 we have

∆t2 =
ρl∆hlg

2πfεec,wεoe2
e

.

From Table C.27, at T = 313.2 K, we have ρl = 991.7 kg/m3 and ∆hlg = 2.406 × 106 J/kg. Then, using the
numerical values, we have

∆t2 =
991.7(kg/m3) × 2.406 × 106(J/kg)

2π × 109(1/s) × 1.2 × 8.8542 × 10−12(A2-s2/N-m2) × (103)2(V/m)2

= 3.574 × 104 s = 9.928 hr.

COMMENT:
Note that the evaporation period is longer than the sensible heating period.
In the sensible heating period, no evaporation was included. In reality, the evaporation occurs simultaneously

with the heating due to the difference in partial pressure of the water inside the powder and outside in the
ambient. This evaporation is controlled by the rate of vapor flow out of the powder. The surface heat transfer
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should also be included if more accurate predictions are required.
We have used a constant amount of water to calculate the microwave heating during the evaporation period.

In reality, the amount of liquid decreases as the vapor is removed. This, along with the surface heat transfer,
should be considered for more accurate predictions.

Note also that no resistance to the vapor flow out of the moist powder was considered. This may become the
limiting transport rate for very fine powders and the increase in the internal pressure could cause the formation
of cracks.
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PROBLEM 2.19.FUN

GIVEN:
The automobile airbag deploys when the pressure within it is suddenly increased. This pressure increase is a

result of the inflow of gaseous products of combustion or pressurized air from an inflater connected to the bag.
The airbag fabric may be permeable, and this results in expansion of the gas as it flows through the fabric, as
rendered in Figure Pr.2.19(a). Assume that the pressure gradient is approximated by

∂p

∂x
� po − pi

D
,

where po and pi are the external and internal pressure and D is the woven-fiber diameter. Consider the gas
flowing with an average gas velocity 〈u〉A,x = 2 m/s, and pressures of pi = 1.5 × 105 Pa and po = 1.0 × 105

Pa. The fabric diameter is D = 0.5 mm. Use the expression for the volumetric energy conversion ṡm,P for the
one-dimensional flow given in Example 2.14.

Use ρcp for air at 300 K (Table C.22).

SKETCH:
Figure 2.19(a) shows an idealization of airbag fabric and permeation of a gas stream through it.

po
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Pressure)

x

pi

(Internal
Pressure)

Gas
(Products of
Combustion

or Com-
pressed Air)

Pore

Permeable
Airbag Filter

Airbag

D

Side View of Filter

u  A,x

Woven Fiber

Figure Pr.2.19(a) An automobile airbag system.

OBJECTIVE:
(a) Determine the volumetric expansion cooling rate ṡm,p.
(b) Write an integral-volume energy equation for the gas flowing through a pore. Allow for expansion cooling
and show the control volume, surface convection, and convection heat flows. Designate the flow area for the pore
as Ax, and use D × Ax for the control volume. For the bounding surfaces, choose the two adjacent woven-fabric
and imaginary-pore walls.
(c) For the case of no surface convection heat transfer, determine the drop in temperature Ti − To.
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SOLUTION:
(a) The expression for pressure cooling or heating for a one-dimensional flow is the particular form of (2.50) given
in Example 2.14. For an ideal gas, this expression is

ṡm,p = 〈u〉A,x
∂p

∂x

= 〈u〉A,x
po − pi

D
.

Using the numerical values, we have

ṡm,p = 2(m/s) × (1.0 − 1.5) × 105(Pa)
5 × 10−4(m)

= −2 × 108 W/m3.

(b) The control volume and control surface for the gas are shown in Figure Pr.2.19(b). The integral energy
equation (2.9) is

Q|A = −ρcpV
dT

dt
+ Ṡ.

x

u  A,x

Control Surface APore Space

Sm,p Ax

Qu x+D� Qu x

Qku

Inlet Conditions:
Ti , pi

Outlet Conditions:
To , po

Figure Pr.2.19(b) Energy equation for a unit cell containing two adjacent woven fabrics.

For steady-state conditions, dT/dt = 0. Neglecting surface radiation, Q|A = −Qu|x +Qu|x+D +Qku. The energy
conversion is due to expansion cooling only. Then, the integral energy equation becomes

−Qu|x + Qu|x+D + Qku = ṡm,pV .

We can write −Qu|x + Qu|x+D in terms of Ti and To as

−Qu|x + Qu|x+D = ρcp〈u〉A,x(−Ti + To).

Then, we have
ρcp〈u〉A,x(−Ti + To) + Qku = ṡm,pV .

The equation above shows that when solid-phase combustion is used in the inflater to generate the gas, the gas
flowing through the fabric cools down due to surface convection heat-transfer (Qku > 0) and expansion cooling
(ṡm,p < 0).

(c) For Qku = 0 and solving for (To − Ti), we have

To − Ti =
ṡm,pAxD

ρcp〈u〉A,x
=

pi − po

ρcp
.

For air at T = 300 K, from Table C.22, we have ρ = 1.177 kg/m3 and cp = 1,005 J/kg-K. Then, using these
values we have

To − Ti =
(1.0 − 1.5) × 105(Pa)

1.177(kg/m3) × 1,005(J/kg-K)
= −42.27◦C.

COMMENT:
The reduction in temperature of the gas as it flows through the fabric is due to expansion cooling. The gas

velocity is not high enough for viscous heating to become important. Also, during an air bag deployment, both
the internal pressure and temperature vary. A typical deployment for a passenger air bag is 80 ms. During
this time, the internal pressure and temperature vary from a peak pressure of p = 40 kPa and a temperature of
T = 500 K to ambient conditions.

86



PROBLEM 2.20.FUN

GIVEN:
When high viscosity fluids, such as oils, flow very rapidly through a small tube, large strain rates, i.e., du/dr

[where r is the radial location shown in Figure Pr.2.20(a)], are encountered. The high strain rate, combined
with large fluid viscosity µf , results in noticeable viscous heating. In tube flows, when the Reynolds number
ReD = ρf 〈u〉AD/µf is larger than 2,300, transition from laminar to turbulent flow occurs. In general, high cross-
section averaged fluid velocity 〈u〉A results in a turbulent flow. The fluid velocity for a laminar flow is shown
in Figure Pr.2.20(a). For laminar flow, the center-line velocity is twice the average velocity, while for turbulent
flow the coefficient is less than two. Assume that the cross-section averaged viscous heating rate, (2.51), is
approximated as

〈ṡm,µ〉A = µf
a2
1〈u〉2A
D2 ,

where a1 = 1 is a constant.

SKETCH:
Figure Pr.2.20(a) shows viscous heating in fluid flow through a small tube.
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Figure Pr.2.20(a) Viscous heating of fluid flow inside a small tube.

OBJECTIVE:
(a) Determine the volumetric heating rate for engine oil at T = 310 K (Table C.23), noting that µf = νfρf ,
〈u〉A=10 m/s, and D = 1 mm.
(b) Apply (2.8) to a differential length along the tube. Allow only for surface convection, convection along x, and
viscous heating, i.e., similar to (2.11), with added energy conversion.

SOLUTION:
(a) The cross-sectional averaged viscous heating rate is

〈ṡm,µ〉A = µf

(
a1〈u〉A

D

)2

.

The dynamic viscosity of engine oil is given in Table C.23 at T = 310 K as µf = ρfνf = 877.8(kg/m3) × 4.17 ×
10−4(m2/s) = 0.3660 Pa-s. Then, using the values given, we have

〈ṡm,µ〉A = 0.3660(Pa-s)
[
1 × 10(m/s)

10−3(m)

]2

= 3.660 × 107 W/m3.

The Reynolds number is

ReD =
〈u〉AD

νf
=

10(m/s) × 10−3(m)
4.17 × 10−4(m2/s)

= 23.98.

Since ReD < 2300, the flow is in the laminar regime.
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(b) The integral energy equation (2.9) for a steady-state condition and heat conversion due to mechanical friction
is

lim
∆V →0

∫
∆A

(q · sn)dA

∆V
= 〈ṡm,µ〉A.

Figure Pr.2.20(b) shows various terms in the energy equation applied to the control volume shown.
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�V = �D2

�x/4

Liquid Flow

qku

qu  x+�x
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Figure Pr.2.20(b) Energy equation for viscous heating in fluid flow through the inside of a small tube.

As shown in Figure Pr.2.20(b), the heat transfer occurs along the r and x directions. Then the net heat transfer
is ∫

∆A

(q · sn)dA = qku∆Aku + (qu|x+∆x − qu|x)Au

= qkuπD∆x + (qu|x+∆x − qu|x)
πD2

4
.

Then

lim
∆V →0

∫
∆A

(q · sn)dA

∆V
= lim

∆V →0

qkuπD∆x + (qu|x+∆x − qu|x)πD2

4
πD2

4 ∆x

= lim
∆V →0

[
4qku

D
+

(qu|x+∆x − qu|x)
∆x

]

=
4qku

D
+

dqu

dx
.

Therefore, the combined integral-and differential- length energy equation becomes

4qku

D
+

dqu

dx
= 〈ṡm,µ〉A.

COMMENT:
Note that for very small D and very large ρf or 〈u〉A, the viscous heating can be significant.
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PROBLEM 2.21.FUN

GIVEN:
During braking, nearly all of the kinetic energy of the automobile is converted to frictional heating at the

brakes. A small fraction is converted in the tires. The braking time, i.e., the elapsed time for a complete stop, is
τ . The automobile mass is M , the initial velocity is uo, and the stoppage is at a constant deceleration (du/dt)o.

OBJECTIVE:
(a) Determine the rate of friction energy conversion for each brake in terms of M,uo, and τ . The front brakes
convert 65% of the energy and the rear brakes convert the remaining 35%.
(b) Evaluate the peak energy conversion rate for the front brake using M = 1,500 kg (typical for a mid-size car),
uo = 80 km/hr, and τ = 4 s.

SOLUTION:
(a) The total instantaneous friction heating rate Ṡm,F is

Ṡm,F = Fu,

where the force F is
F = −M

du

dt
.

Now, using a constant deceleration, we have

Ṡm,F = −M

(
du

dt

)
o

u,

where (
du

dt

)
o

=
∆u

∆t
=

0 − uo

τ
= −uo

τ
.

In order to find an expression for u, we integrate the equation above obtaining

u = −uo

τ
t + a1.

For u(t = 0) = uo we have
u = uo

(
1 − t

τ

)
.

Then, using this we have

Ṡm,F = M
uo

τ
uo

(
1 − t

τ

)

=
Mu2

o

τ

(
1 − t

τ

)
.

Now, for 65% of the power being dissipated in the front breaks we have for each of the front brakes

Ṡm,F = 0.65
Mu2

o

τ

(
1 − t

τ

)
and for each of the rear brakes

Ṡm,F = 0.35
Mu2

o

τ

(
1 − t

τ

)
.

(b) Using the numerical values given, the peak heating rate (i.e., heating rate at t = 0) is

Ṡm,F = 0.65
Mu2

o

τ

= 0.65 × 1,500(kg) × (22.22)2(m/s)2

4(s)
= 1.203 × 105 W = 120.3 kW.

COMMENT:
This is a very large heating rate and its removal from the disc by the heat losses would require a large elapsed

time. Therefore, if the brake is applied frequently such that this heat is never removed, overheating of the brake
pads occurs.
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PROBLEM 2.22.FUN

GIVEN:
In therapeutic heating, biological tissues are heated using electromagnetic (i.e., microwave, and in some cases,

Joule heating) or mechanical (i.e., ultrasound heating) energy conversion. In the heated tissue, which may be a
sore muscle (e.g., an athletic discomfort or injury), some of this heat is removed through the local blood flow and
this is called perfusion heating. Under steady state, the local tissue temperature reaches a temperature where
the surface heat transfer from the tissue balances with the energy conversion rate. Consider the therapeutic
ultrasound heating shown in Figure Pr.2.22(a).

Iac = 5 × 104 W/m2, σac (from Table C.11, for muscle tissue), V (sphere of R = 3 cm), D = 10−3 m,
Aku = 0.02 m2, 〈Nu〉D = 3.66, kf = 0.62 W/m-K (same as water), Tf = 37◦C.

SKETCH:
Figure Pr.2.22(a) shows the ultrasonic therapeutic heating of a vascular tissue.

Blood Vessel with
Temperature, Tf

Acoustic Absorption
Coefficient, σac

Acoustic Intensity, Iac

Tissue with
Temperature, Ts

V

f = 106 Hz

Aku

Ak

Assume qk = 0
(Also qr = 0)

Figure Pr.2.22(a) Therapeutic heating of biological tissue.

OBJECTIVE:
(a) Using (2.9) write the integral-volume energy equation that applies to this steady-state heat transfer. Assume
no conduction and radiation heat transfer and allow for surface convection through the blood vessels distributed
through the tissue with a surface-convection area Aku. Draw a schematic showing the various terms in the energy
equation.
(b) In this energy equation, replace the surface-convection heat transfer with

Akuqku = Aku〈Nu〉D kf

D
(Ts − Tf ),

where 〈Nu〉D is a dimensionless quantity called the dimensionless surface-convection conductance (or Nusselt
number), kf is the blood thermal conductivity, D is the average blood vessel diameter, Ts is the tissue tempera-
ture, and Tf is the blood temperature.
(c) Solve the energy equation for Ts.
(d) Using the following numerical values, determine Ts.

SOLUTION:
(a) The various heat transfer mechanisms and the energy conversion by ultrasound heating are shown in Figure
Pr.2.22(b). From (2.9), for steady-state conditions, we have

Q|A = ṡm,acV ,

where we have assumed a uniform ṡm,ac throughout the volume. From (2.54), we have

ṡm,ac = 2σacIac.
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The surface heat transfer is limited to surface-convection only, i.e.,

Q|A = Akuqku.

Then the energy equation becomes
Akuqku = 2σacIacV .

Figure Pr.2.22(b) shows the various terms in the energy equation applied to the control volume shown.

AkuD

Blood Vessel with
Temperature, Tf

Acoustic Absorption
Coefficient, σac

Acoustic Intensity, Iac

Tissue with
Temperature, Ts

Ak

sm,ac
V

f = 106 Hz

qku

Assume qk = 0
(Also qr = 0)

Figure Pr.2.22(b) Various terms in the energy equation for therapeutic ultrasound heating.

(b) The surface-convection heat transfer is given by

Akuqku = Aku
〈Nu〉Dkf

〈D〉 (Ts − Tf ).

Then, the energy equation becomes

Aku
〈Nu〉Dkf

〈D〉 (Ts − Tf ) = 2σacIacV .

The group 〈Nu〉Dkf/〈D〉 is called the (dimensional) surface-convection conductance or the heat transfer coefficient.
(c) Solving the equation above for Ts, we have

Ts = Tf +
2σacIacV 〈D〉
〈Nu〉DkfAku

.

(d) From Table C.11, σac = 14 m−1. Using the numerical values, we have

Ts = 37(◦C) +
2 × 14(m−1) × 5 × 104(W/m2) × (4/3)π(3 × 10−2)3(m3) × 10−3(m)

3.66 × 0.62(W/m-K) × 0.02(m2)
= 40.49◦C.

COMMENT
The conduction heat losses can be significant and should be included. During heating, the blood vessels

dilate causing D to increase. This results in a decrease in Ts. The Nusselt number, 〈Nu〉D, will be discussed in
Chapter 7.
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PROBLEM 2.23.FAM

GIVEN:
Among the normal paraffins (n-paraffins) are the hydrocarbon fuels, e.g., methane CH4, propane C2H6, and

butane C4H10. Table Pr.2.23 gives two sets of constants for the chemical kinetic model given by

ṅr,F = −arρ
aF
F ρaO

O e−∆Ea/RgT ,

for the CH4 oxidation represented by a single-step, stoichiometric reaction

CH4 + 2O2 → CO2 + 2H2O.

These two sets of parameters are found to give a good agreement between predicted and measured flame speeds
as a function of methane/oxygen ratio.

OBJECTIVE:
Determine the reaction rates ṅr,F at T = 1,000◦C using the above model (with the constants from Table

Pr.2.23).
(a) Use a reactant-rich condition of ρO2 = 0.9307 kg/m3, ρCH4 = 0.2333 kg/m3, and
(b) a product-rich condition of ρO2 = 0.1320 kg/m3, ρCH4 = 0.0328 kg/m3,
to represent two locations within the flame. These are characteristics of CH4 reaction with oxygen (called oxy-fuel
reactions as compared to air-fuel reactions) at one atm pressure.
(c) Compare the results with the prediction of the zeroth-order model given in Example 2.6 by (2.21).

Table Pr.2.23 Constants in chemical kinetic model for methane oxidation.
ar, s−1 ∆Ea, J/kmole aF aO

1.3 × 108 2.026 × 108 –0.3 1.3
8.3 × 105 1.256 × 108 –0.3 1.3

SOLUTION:
The two chemical kinetic models are

ṅr,CH4 = −ar exp
(−∆Ea

RgT

)
zeroth-order-kinetics

ṅr,CH4 = −arρ
aF

CH4
ρaO

O exp
(−∆Ea

RgT

)
first-order-kinetics.

(a) Using the first set of constants, the first-order model and reactant-rich conditions, we have

ṅr,CH4 = −1.3 × 108(1/s)[0.2333(kg/m3)]−0.3[0.9307( kg/m3)]1.3 ×

exp
[ −2.026 × 108(J/kmole)
8,314(J/kmole-K)(1,000 + 273.15)(K)

]
= −0.9004 kg/m3-s.

(b) For the product-rich conditions, we have

ṅr,CH4 = −1.3 × 108(1/s)[0.0328(kg/m3)]−0.3[0.1320( kg/m3)]1.3 ×

exp
[ −2.026 × 108(J/kmole)
8,314(J/kmole-K)(1,000 + 273.15)(K)

]
= −0.1280 kg/m3-s

(c) Using the numerical values from Example 2.6 for the zeroth-order model, we have

ṅr,CH4 = −1.3 × 108(kg/m3-s) exp
[ −2.10 × 108(J/kmole)
8,314(J/kmole-K)(1,000 + 273.15)(K)

]
= −0.3150 kg/m3-s.
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COMMENT:
The zeroth-order chemical kinetic model is a concentration-independent averaged model. Its predictions

are comparable with the first-order chemical kinetic model when the predictions for the reactant-rich and the
product-rich regions of the flame are averaged. The advantage of using the zeroth-order chemical kinetic model
is its relative mathematical simplicity. This will be further explored in Chapter 5. For more accurate predictions,
better models are needed. Some of the more complete models account for hundreds of reactions and tenths of
species taking part in the reaction.
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PROBLEM 2.24.FAM

GIVEN:
In addition to being abundant and readily available, air is a fluid whose temperature can be raised well above

and below room temperature, for usage as a hot or cold stream, without undergoing any phase change. In the
high temperature limit, the main constituents of air, nitrogen (N2) and oxygen (O2), dissociate and ionize at
temperatures above T = 2,000 K. In the low temperature limit, oxygen condenses at T = 90.0 K, while nitrogen
condenses at T = 77.3 K. Consider creating (a) a cold air stream with T2 = 250 K, (b) a hot air stream with
T2 = 1,500 K, and (c) a hot air stream with T2 = 15,000 K.

The air stream is at atmospheric pressure, has a cross-sectional area Au = 0.01 m2, an inlet temperature
T1 = 290 K, and a velocity u1 = 1 m/s, as shown in Figure Pr.2.24(a).

SKETCH:
Figure Pr.2.24(a) gives a general control volume through which an air stream flows, while undergoing energy

conversion.

T2

u2

p2

Qloss = 0

Energy Conversion, S

L

Assume No Heat Loss

T1 = 290 K
u1 = 1 m/s
p1 = 1 atm

Air

Inlet Condition:
Outlet Condition:

Au = 0.01 m2

V

Figure Pr.2.24(a) Heating or cooling of an air stream using various energy conversion mechanisms.

OBJECTIVE:
For each of the cases above, (i) choose an energy conversion mechanism from Table 2.1 that would provide

the required energy conversion mechanisms for heating or cooling, (ii) write the integral-volume energy equations
(2.9) for a steady-state flow and heat transfer. Give the amount of fluid, electromagnetic energy, etc., that is
needed.

SOLUTION:
(a) From Table 2.1, we choose phase-change (evaporation) cooling. This is shown in Figure Pr.2.24(b). The
integral-volume energy equation for a steady-state condition is

Q|A = Ṡlg.

Q = 0

L

Evaporation Cooling of Air

T2 = 250 K
(Cold, Moist Air)

Air
T1 = 290 K

Liquid
Au

Qu,2� Qu,1

Slg = �Mlg �hlg

Figure Pr.2.24(b) Evaporation cooling of a gas stream.

The net heat transfer at the control surface is Q|A = Qu,2−Qu,1. For the energy conversion due to phase change,
we have Ṡlg = −Ṁlg∆hlg. Then, the energy equation becomes

Qu,2 − Qu,1 = −Ṁlg∆hlg.
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The convection heat transfer is given by Qu = AuρcpT . From the conservation of mass equation (1.25) we have

(Auρu)1 = (Auρu)2.

Then, we can write the energy equation as

Auρ1cp,1u1(T2 − T1) = −Ṁlg∆hlg.

Solving for Ṁlg we have

Ṁlg = −Auρ1cp,1u1(T2 − T1)
∆hlg

.

We examine Table C.6 and choose carbon dioxide as the fluid to be evaporated. For this fluid, Tlg = 216.6 K
and ∆hlg = 573.2 × 103 J/kg. From Table C.22, we have at T = 290 K, ρ1 = 1.224 kg/m3. We also assume a
constant specific heat of cp = 1,006 J/kg-K. Using the values given, we have

Ṁlg = −0.01(m2) × 1.224(kg/m3) × 1,006(J/kg-K) × 1(m/s) × (250 − 290)(K)
573.2 × 103(J/kg)

= 8.593 × 10−4 kg/s = 0.8593 g/s.

(b) For T2 = 1,500 K, we choose combustion and the integral-volume energy equation (2.9) becomes

Auρ1cp,1u1(T2 − T1) = −Ṁr,CH4∆hr,CH4 .

This is shown in Figure Pr.2.24(c). Solving for Ṁr,CH4 we have

Ṁr,CH4 = −Auρ1cp,1u1(T2 − T1)
∆hr,CH4

.

Q = 0

Combustion Heating of Air

Gaseous Methane
CH4

Au

Qu,2

Sr,c = �Mr,CH4
 �hr,CH4

T2 = 1500 K
(Hot Flue Gas)

Air
T1 = 290 K

� Qu,1

Figure Pr.2.24(c) Combustion heating of a gas stream.

From Table C.21(a), we have ∆hr,CH4 = −5.553 × 107 J/kg. Then, we have

Ṁr,CH4 = −0.01(m2) × 1.224(kg/m3) × 1,006(J/kg-K) × 1(m/s) × (1,500 − 290)(K)
−5.553 × 107(J/kg)

= 2.683 × 10−4 kg/s = 0.2683 g/s.

(c) From Table 2.1, for T2 = 15,000 K, we choose the Joule heating. After an initial formation of dissociated-
ionized air by a combustion torch, induction coils are used to heat the charged gas (i.e., the plasma) stream. This
is shown in Figure Pr.2.24(d).

The integral-volume energy equation becomes

Auρ1cp,1u1(T2 − T1) = Ṡe,J.

Solving for Ṡe,J we have

Ṡe,J = 0.01(m2) × 1.224(kg/m3) × 1,006(J/kg-K) × 1(m/s) × (15,000 − 290)(K)
= 1.811 × 105 W.
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COMMENT:
In all of these examples, we have neglected any heat losses and assumed complete evaporation and complete

reaction. These idealizations can be removed by their proper inclusion in the energy equation. The use of a
variable cp would require a different form of the energy equation, as shown in Appendix B. For most heat transfer
analysis, a constant, temperature-averaged cp is an acceptable approximation. Also, note that other mechanisms
of heating/cooling could be used, such as thermoelectric and expansion cooling.

Q = 0

Joule Heating of Dissociated, Ionized Air

T2 = 15,000 K
(Thermal Plasma)

Air
T1 = 290 K

Induction Coil

Au

Qu,2� Qu,1

Se,J = ρe je
2 V

je e�
Electron

Figure Pr.2.24(d) A charged, gas stream heated by induction coils.
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PROBLEM 2.25.FUN

GIVEN:
A transparent thin-foil heater is used to keep a liquid crystal display (LCD) warm under cold weather con-

ditions. The thin foil is sandwiched between the liquid crystal and the backlight. A very thin copper foil, with
cross section w = 0.4 mm and l = 0.0254 mm and a total length L = 70 cm, is used as the heating element. The
foil is embedded in a thin polyester membrane with dimensions W = 10 cm and H = 2 cm, which also acts as an
electrical insulator [Figure Pr.2.25(a)].

The thin foil heats the liquid crystal by Joule heating. Assume that the amount of heat flowing to the backlight
panel is the same as the amount flowing to the liquid crystal and that the system is operating under a steady-state
condition. For the electrical resistivity of copper use ρe = 1.725 × 10−8 ohm-m.

SKETCH:
Figure Pr.2.25(a) shows the thin foil heater and its dimensions.

(�)
(+)

l = 0.0254 mm

W = 10 cm
w = 0.4 mm

H = 2 cm

q (W/m2) �ϕ (V)

q (W/m2)

Se,J

.

Figure Pr.2.25(a) A transparent thin-foil heater.

OBJECTIVE:
If the thin foil heater is to provide q = 1,000 W/m2 to the liquid crystal, calculate:

(a) The volumetric rate of heat generation in the wire ṡe,J(W/m3),
(b) The electrical potential ∆ϕ(V) needed,
(c) The current flowing in the wire Je(A), and
(d) Recalculate items (a) to (c) for twice the length L.

SOLUTION:
(a) The volumetric rate of heat generation in the wire ṡe,J(W/m3) is obtained from the integral-volume energy
equation. The steps for the solution are
(i) Draw the heat flux vector. This is shown in Figure Pr.2.25(b).

q(W/m2)

q(W/m2) 

Thin-Foil Heater
Af = WH 

Se,J (W/m3)
.

Figure Pr.2.25(b) Energy equation for the heater.
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(ii) Apply the conservation of energy equation. The integral-volume energy equation is

∫
A

q · sndA = − d

dt

∫
V

(ρcpT ) dV +
∫

V

(∑
i

ṡi

)
dV.

For this steady-state problem the storage term is zero. Solving for the area integral of the normal component of
the heat flux vector over the control surfaces gives [see Figure Pr.2.25(b)]∫

A

q · sndA = q Ak + q Ak = 2qAk,

where Ak = WH is the surface area of the thin-foil heater.
The only energy conversion taking place inside the control volume is the conversion from electromagnetic to

thermal energy by Joule heating. Furthermore, this energy conversion is constant everywhere inside the control
volume. Thus, the right-hand side of the energy equation becomes

∫
V

(∑
i

ṡi

)
dV =

∫
V

ṡe,JdV = ṡe,J Vl,

where Vl = wlL is the volume of the copper foil (heating element).
Finally, the energy equation becomes

2qAk = ṡe,J Vl

or

2qWH = ṡe,JwlL.

(iii) Solving the energy equation for ṡe,J, we have

ṡe,J =
2qWH

wlL
.

From the numerical values given, we have

ṡe,J =
2 × 1,000(W/m2) × 0.02(m) × 0.1(m)

4 × 10−4(m) × 2.54 × 10−5(m) × 0.7(m)
= 5.62 × 108 W/m3.

(b) The electrical potential ∆ϕ(V) can be determined from the volumetric Joule heating using (2.32),

ṡe,J =
∆ϕ2

ρeL2
.

Solving for ∆ϕ(V) and using the data available, we have

∆ϕ = L(ṡe,Jρe)1/2 = 0.7(m) × [5.62 × 108(W/m3) × 1.725 × 10−8(ohm-m)]1/2 = 2.18 V.

(c) The current Je(A) can be calculated from Ohm’s law,

∆ϕ = ReJe,

where the electrical resistance Re is given in (2.32) as

Re =
ρeL

Aw

and Aw = wl is the wire cross-sectional area. Solving for Je and using the data available, we have

Je =
∆ϕwl

ρeL
=

2.18(V) × 4 × 10−4(m) × 2.54 × 10−5(m)
1.725 × 10−8(ohm-m) × 0.7(m)

= 1.8 A.
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(d) For twice the wire length 2L, the heat generation, voltage, and current are

ṡe,J(2L) =
2qWH

wl2L
=

ṡe,J(L)
2

=
5.62 × 108(W/m3)

2
= 2.81 × 108 W/m3

∆ϕ(2L) = 2L
[
ṡe,J(2L)

ρe

]1/2

= 2L

[
ṡe,J(L)ρe

2

]1/2

= (2)1/2L [ṡe,J(L)ρe]
1/2

= (2)1/2∆ϕ(L) = (2)1/22.18(V) = 3.08 V

Je(2L) =
l∆ϕ(2L)wl

ρe2L
=

(2)1/2l∆ϕ(L)wl

ρe2L
=

l∆ϕ(L)wδ

(2)1/2ρeL
=

Je(L)
(2)1/2

=
1.8(A)
(2)1/2

= 1.3 A.

COMMENT:
Notice the high volumetric energy conversion rate which can be achieved by Joule heating. Doubling the

length caused a reduction in power, an increase in voltage, and a reduction in current. A reduction in power leads
to a smaller temperature in the heating element. The drawback is the need for a larger voltage.
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PROBLEM 2.26.FUN

GIVEN:
A single-stage Peltier cooler/heater is made of Peltier cells electrically connected in series. Each cell is

made of p- and n-type bismuth telluride (Bi2Te3) alloy with Seebeck coefficients αS,p = 230 × 10−6 V/K and
αS,n = −210 × 10−6 V/K. The cells are arranged in an array of 8 by 15 (pairs) cells and they are sandwiched
between two square ceramic plates with dimensions w = L = 3 cm [see Figure Pr.2.26(a)]. The current flowing
through the elements is Je = 3 A.

SKETCH:
Figure Pr.2.26(a) shows a thermoelectric module and its various components.

Th

Tc

n p n p

�Qc

�ϕ , Applied Voltage

Je

(+)

(�)

Ceramic Plate

Semiconductor

Qh

Ceramic Plate

Electrical Conductor

Semiconductor

Se,P

Se,P

Ac

Ah

Figure Pr.2.26(a) A single-stage Peltier cooler/heater.

OBJECTIVE:
(a) If the temperature at the cold junction is Tc = 10◦C, calculate the Peltier heat absorbed at the cold junctions
qc(W/m2) (per unit area of the ceramic plate).
(b) If the temperature of the hot junctions reach Th = 50◦C, calculate the Peltier heat released at the hot junctions
qh(W/m2) (per unit area of the ceramic plate).

SOLUTION:
(a) To calculate the heat absorbed at the cold junction we again follow the three steps.
(i) Draw the heat flux vector. This is shown in Figure Pr.2.26(b).
(ii) Apply the conservation of energy equation. The integral-surface energy equation (2.9) is∫

A

q · sndA =
∑

i

Ṡi.

For this steady-state problem, the storage term is zero. The energy conversion term is due to Peltier cooling only.
Then the energy equation becomes

−qcAs = (Ṡe,P)c,

where As = wL is the surface area of the ceramic plate and −Qc is the rate of heat absorbed at the Peltier
junctions.
(iii) Obtain an expression for the heat absorbed due to Peltier cooling. For 8 × 15 Peltier junctions we have

−qcAs = 8 × 15 × (Ṡe,P)c

where (Ṡe,P)c is the heat absorbed at the Peltier cold junction which is given by (2.44)

(Ṡe,P)c = −(αS,p − αS,n)TcJe.

Then, the energy equation becomes

−qcAs = 15 × 8 × [−(αS,p − αS,n)TcJe].
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Figure Pr.2.26(b) The cold and hot surfaces of the thermoelectric module.

(iv) Solve for qc. From the numerical values given, we have

(Ṡe,P)c = −[230 × 10−6(V/K) + 210 × 10−6(V/K)] × 283.15(K) × 3(A) = −0.374 W

(Ṡe,P)c(15 × 8) = −0.374(W) × 120 = −44.8 W

qc =
Qc

wL
=

−44.8(W)
[−0.03(m) × 0.03(m)]

= 49,808 W/m2
.

(b) For the hot junction, a similar approach is used. The heat released is given by (2.41) as

(Ṡe,P)c = (αS,p − αS,n)ThJe = [230 × 10−6(V/K) + 210 × 10−6(V/K)] × 323.15(K) × 3(A) = 0.426 W.

The total heat generated at the hot junction is then

Qh = (Ṡe,P)h(15 × 8) = 0.426(W) × 120 = 51.2 W.

The heat flux at the ceramic plate is

qh =
Qh

wL
=

51.2(W)
0.03(m) 0.03(m)

= 56,848 W/m2
.

COMMENT:
The values calculated above are ideal values for the Peltier heater/cooler. It will be seen in Chapter 3 that

both the Joule heating and the heat conduction through the semiconductor legs of the Peltier cell, reduce the
amount of heat that can be absorbed by a Peltier cooler. The analysis will lead to the definition of the figure of
merit which express the efficiency of the Peltier cooler.
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PROBLEM 2.27.FAM.S

GIVEN:
A pocket combustion heater uses heat released (chemical-bond energy conversion) from the reaction of air

with a powder. The powder is a mixture of iron, water, cellulose (a carbohydrate), vermiculite (a clay mineral),
activated carbon (made capable of absorbing gases), and salt. Air is introduced by breaking the plastic sealant
and exposing the permeable membrane containing the powder to ambient air. Since the air has to diffuse through
the powder, and also since the powder is not mixed, the heat release rate is time dependent, decreasing with
time. We express this as Ṡr,c = Ṡr,oexp(−t/τ), where τ(t) is called the time constant. The pocket heater has
a mass of M = 20 g and a heat capacity of cp = 900 J/kg-K. During the usage, heat leaves the pocket heater
surface. This heat is expressed as a resistive-type heat transfer and is given by Q = (T − T∞)/Rt, where T∞
is the ambient temperature and Rt(◦C/W) is the surface heat transfer resistance. Initially the heater is at the
ambient temperature, i.e., T (t = 0) = T∞. This is shown in Figure Pr.2.27(a).

SKETCH:
Figure Pr.2.27(a) shows the heat transfer model of a combustion pocket heater.

Combustion Handwarmer

Sr,c

M, cp

T(t = 0) = T
�

Qt =
T � T

�

Rt

Figure Pr.2.27(a) A pocket combustion heater and its heat transfer model.

OBJECTIVE:
(a) Write the energy equation for the pocket heater.
(b) Using a software, plot the temperature of the pocket heater T = T (t) versus time, up to t = τ .
(c) What is the maximum heater temperature?

SOLUTION:
(a) Since we use a uniform temperature for the heater, the energy equation is the integral-volume energy equation
(2.9), i.e.,

Q |A = −ρcpV
dT

dt
+ Ṡr,c

= −Mcp
dT

dt
+ Ṡr,c.

Here, the energy conversion term is time dependent, i.e.,

Ṡr,c = Ṡr,oe
−t/τ ,

where Ṡr,o is a constant and τ is called the time constant.
The surface heat transfer rate is given by a surface thermal resistance, i.e.,

Q |A= Qt =
T − T∞

Rt
,

where Rt is the heat transfer resistance and T∞ is the ambient temperature.
Combining the above equations, we have

T − T∞
Rt

= −Mcp
dT

dt
+ Ṡr,oe

−t/τ .
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The initial temperature is T (t = 0) = T∞.

(b) The above energy equation can not be readily integrated to give T = T (t). Here, we use software and provide
the constants M, cp, Ṡr,o, τ, and T∞.
The results are plotted in Figure Pr.2.27(b). We note that initially T increases with time. Then it reaches a
maximum. Finally, it begins to decrease. During the increase, the energy conversion rate is larger than the surface
heat loss term Q |A= Qt. At the time of maximum temperature, when dT/dt = 0, the energy conversion and
surface heat loss exactly balance. Due to the time dependence of Ṡr,c, the temperature begins to decrease after
reaching the maximum and, during the decrease, the energy conversion is less than the surface heat loss. These
are also shown in Figure Pr.2.27(b).

Sr,c < Q A

Tmax = 45.03
T

,  
C

0
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(b) Evolution of Handwarmer Temperatures

12,0009,600 τ7,2004,8002,4000

Sr,c > Q A

T(t = 0) = T
�

t = 594 s

C

Figure Pr.2.27(b) Variation of the temperature of the pocket heater with respect to time.

(c) The maximum temperature is found to be Tmax = 45.03◦C and occurs at t = 594 s. Note that direct contact
of the heater with skin will cause damage.

COMMENT:
The model for heat release rate is an approximation. By proper design of the powder and its packaging, a

uniform heat release rate may be achieved.
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PROBLEM 2.28.FUN

GIVEN:
In electrical power generation using thermoelectric energy conversion, the electrical power can be optimized

with respect to the external electrical resistance.

OBJECTIVE:
Starting from (2.40), show that the maximum power generation occurs for Re,o = Re, i.e., when the external

electrical resistance is equal to the thermoelectric electrical resistance.

SOLUTION:
The electrical power generation given by (2.40) is maximized with respect to Re,o by taking the derivative of

(2.40) and setting the result equal to zero. This gives

∂

∂Re,o
(J2

e Re,o) =
∂

∂Re,o

[
α2

S(Th − Tc)2

(Re,o + Re)2
Re,o

]
= 0

which results in
1 − 2

Re,o

Re,o + Re
= 0

or
Re,o = Re.

COMMENT:
To prove that this is minimum, we take the second derivative of (2.40) and evaluate it for Re,o = Re.

d2

dR2
e,o

(J2
e Re,o) =

α2
S(Th − Tc)2

(Re,o + Re)3

(
−2 − 2 + 6 × 1

2

)
< 0,

and therefore, Re,o = Re results in a minimum in J2
e Re,o.
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PROBLEM 2.29.FUN

GIVEN:
The volumetric pressure-compressibility heating/cooling energy conversion ṡp can be represented in an alter-

native form using cv instead of cp in the energy equation.

OBJECTIVE:
Starting from (B.44) in Appendix B, show that for an ideal gas, the volumetric pressure-compressibility energy

conversion ṡp becomes

ṡp = −p∇ · u =
[(

cp

cv
− 1

)
cvρT

]
∇ · u.

Use the following relation, derived from combining (1.4), (1.5), and (1.6),

cp ≡ cv + T

(
∂p

∂T

∣∣∣∣
v

∂v

∂T

∣∣∣∣
p

)
.

SOLUTION:
Starting from (B.44), we define ṡp as

ṡp ≡ −T
∂p

∂T

∣∣∣∣
v

∇ · u.

From (1.19), for an ideal gas, we have

p =
Rg

M
ρT =

Rg

Mv
T

T
∂p

∂T

∣∣∣∣
v

= T
Rg

M
ρ = p ideal gas.

Then

ṡp = −p∇ · u.

Also, for ideal gas we have

cp ≡ cv + T

(
∂p

∂T

∣∣∣∣
v

∂v

∂T

∣∣∣∣
p

)

= cv + T

(
Rg

Mv

Rg

Mp

)
= cv +

Rg

M
.

Then

p =
Rg

M
ρT = (cp − cv)ρT

=
(

cv

cp
− 1

)
cvρT

or

ṡp = −p∇ · u =
[(

cv

cp
− 1

)
cvρT

]
∇ · u.

COMMENT:
Note that for an incompressible fluid flow, from (B.40) we have

∇ · u = 0 incompressible fluid flow.

Also for an incompressible fluid, we have

∂v

∂T

∣∣∣∣
p

= 0, cp = cv incompressible fluid.

In pressure-compressibility cooling/heating, a large cp/cv (can be optimized by mixing species), a large ∇ · u
(would require a large pressure gradient), along with a large cvρT (high pressure and temperature) would be
needed.
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PROBLEM 2.30.FAM

GIVEN:
A microwave heater is used to dry a batch of wet alumina powder. The microwave source is regulated to

operate at f = 109 Hz and to provide an electrical field with a root-mean-square intensity of (e2)1/2 = 103 V/m.
The effective dielectric loss factor of the alumina powder 〈εec〉 depends on the fluid filling the pores. For a porosity
of 0.4, the effective dielectric loss factor of the completely dry alumina powder is 〈εec〉 = 0.0003 and the effective
dielectric loss factor of the completely wet alumina powder is 〈εec〉 = 6.0.
Note that although both εec and 〈εec〉 are listed, no distinction is made in Table C.10.

OBJECTIVE:
(a) Determine the microwave heating ṡe,m(W/m3) for these two cases.
(b) Discuss the efficiency of the use of microwave heating in drying the alumina powder when the moisture content
(i.e., amount of water in the pores) is small.
(c) From Table C.10, would a sandy soil dry faster or slower than the alumina powder?

SOLUTION:
The volumetric energy conversion by microwave heating is given by

ṡe,m = 2πf〈εec〉εoe2.

(a) For the wet alumina powder, we have

ṡe,m = 2π × 109(1/s) × 6.0 × 8.8542 × 10−12(A2-s2/N-m2) × 106(V/m)2 = 3.338 × 105 W/m3
.

For the dry alumina powder we have

ṡe,m = 2π × 109(1/s) × 0.0003 × 8.8542 × 10−12(A2-s2/N-m2) × 106(V/m)2 = 16.69 W/m3
.

(b) For the same amount of available microwave energy, the wet alumina powder is able to convert 333,795 W/m3

of that energy into volumetric heating. The dry alumina powder only converts 16.7 W/m3 of the available energy
into thermal energy. Therefore, the wet alumina powder utilizes microwave heating more efficiently in the drying
of the powder.

(c) For dry sandy soil, we have

ṡe,m = 2π × 109(1/s) × 0.026 × 8.8542 × 10−12(A2-s2/N-m2) × 106(V/m)2 = 1,446 W/m3
.

Assuming that the particle size and porosity of the sandy soil is similar to that of the alumina powder, and since
dry sandy soil makes more efficient use of microwave heating than dry alumina powder, we can conclude that wet
sandy soil would dry faster.

COMMENT:
Note the ten thousand fold difference in the magnitude of the effective dielectric loss of the dry and the wet

alumina powder. The dielectric loss factor for water at 25◦C is εe,c = 1.2 and the dielectric loss for air is εe,c = 0.
The dielectric loss for most dry ceramics is small. This explains the small volumetric heating rates in ceramics

under low intensity microwave fields.
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PROBLEM 2.31.FUN

GIVEN:
The range-top electrical heater is shown in Figure Pr.2.31(a). It has electrical elements made of a central elec-

trical conductor (electric current carrying) surrounded by an electrical insulator. The electrical insulator should
have a large thermal conductivity to carry the heat generated by Joule heating in the electrical conductor to the
surface for surface convection-radiation heat transfer. This is shown in Figure Pr.2.31(b). During the start-up and
turn-off, the transient heat transfer in the heater becomes significant. In order to analyze this transient heating,
the temperature distribution in the heater is examined. Since the electric conductor also has a high thermal
conductivity, it is treated as having a uniform temperature. However, the electrical insulator (generally an ox-
ide ceramic) has a relatively lower thermal conductivity, and this results in a temperature nonuniformity within it.

SKETCH:
Figures Pr.2.31(a) and (b) show a range-top electrical heater and the layers within the heating element.

Range-Top Electrical Heater

(a) Physical Model

(b) Cross-Section of
      Electrical Heater

qr

qku

Electrical Heater
with Coiled Length L

qku

Sensible Heat Storage

Electrical Insulator
(but Thermal Conductor)

Surface Heat
Transfer

Electrical Conductor
(also Thermal Conductor)

qr

qkR1

R2

R3

Se,J

L (W/m)

Se,J

L (W/m)

Figures Pr.2.31(a) A range-top electrical heater.(b) The various
layers within the heating element.

OBJECTIVE:
(a) Divide the volume of the electrical insulator into three regions, as shown in Figure Pr.2.31(b).
(b) Select a control volume in the region between r = R1 and r = R2 and render the heat transfer through this
control volume.
(c) Show that the energy equation for this control volume allowing for conduction and sensible heat storage in
the electrical insulator is given by

k
∂T

∂x

∣∣∣∣
R1

2R1 − k
∂T

∂x

∣∣∣∣
R2

2R2 = −(ρcp)2(R2
2 − R2

1)
∂T2

∂t
.

SOLUTION:
(a) The control volume and control surface for the volume contained in R1 ≤ r ≤ R2 in the electrical insulator is
shown in Figure Pr.2.31(c).

107



The Length Perpen-
dicular to Page is L

Finite, Small Control Volume �V2

at Uniform Temperature T2(t)

Sensible Heat Storage

Control Surfaces:

Energy Equation for R1 < r < R2

R1 To

r sr

sn,1

sn,2

T1

T2

T3

R2

dT2

dt
�(ρcpV )2

qk  
R2

� qk  
R1

Ak 
R2

= 2�R2L

(ρcp V )2

Ak 
R1

= 2�R1L

Figures Pr.2.31(c) A finite-small control volume in the heater.

(b) The heat transfer is by conduction only. We begin with (2.13) and write

Q|A = − d

dt
[(ρcpT )∆V2∆V2]

and
Q|A = Q|A1 + Q|A2 = [(qk·sn)Ak]R1 + [(qk·sn)Ak]R2 .

From (1.11), the conduction heat transfer qk is related to the temperature gradient. Here we have a one-
dimensional conduction heat flow in the r direction, and

qk = −k
∂T

∂x
sr.

Also, the geometric parameters are

Ak|R1 = 2πR1L , Ak|R2 = 2πR2L , ∆V2 = π(R2
2 − R2

1)L .

(c) Using these and assuming constant ρcp, similar to (2.15), we then have

k
∂T

∂x

∣∣∣∣
R1

(2πR1L) − k
∂T

∂x

∣∣∣∣
R2

(2πR2L) = −(ρcp)2π(R2
2 − R2

1)L
dT2

dt

k
∂T

∂x

∣∣∣∣
R1

2R1 − k
∂T

∂x

∣∣∣∣
R2

2R2 = −(ρcp)2(R2
2 − R2

1)
dT2

dt
.

COMMENT:
To accurately predict the transient temperature distribution in the electrical insulator, its division (i.e., dis-

cretization) into more than three regions is required (as many as twenty regions may be used). This will be
discussed in Section 3.7.
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PROBLEM 2.32.FUN

GIVEN:
Consider air (fluid) flow parallel to a semi-infinite plate (solid, 0 ≤ x ≤ ∞), as shown in Figure Pr.2.32.

The plate surface is at a uniform temperature Tsf . The flow is along the x axis. The velocity of air uf at the
solid surface is zero. Starting from (2.61) show that at a location L along the plate, the surface energy equation
becomes

ks
∂Ts

∂y

∣∣∣∣
y=0−

− kf
∂Tf

∂y

∣∣∣∣
y=0+

= 0 on Asf .

Neglect surface radiation heat transfer, and use us = 0, and uf = 0 on Asf . There is no surface energy
conversion.

SKETCH:
Figure Pr.2.32 shows the parallel air flow over a semi-infinite plate.

x, u �x y = 0+

y = 0-

y

z
L

sn = -sy

sn = -sy

Control Surface
�Asf , �x    0

Solid
Ts = Ts(x,y)

us = 0

uf =us = 0 on Surface

Fluid Flow

w

x    �

qku

Tf = Tf (x,y)

Tsf  Uniform 

Parallel Flow of Air: Far Field Conditions Tf,� , uf,� = uf,� sx

qk,s

qu,f

Figure Pr.2.32 A parallel air flow over a semi-infinite plate (0 ≤ x ≤ ∞),
with a uniform surface temperature Ts.

OBJECTIVE:
Use the definition of surface-convection heat flux qku (positive when leaving the solid toward the gas) given

as

−ks
∂Ts

∂y

∣∣∣∣
y=0−

= −kf
∂Tf

∂y

∣∣∣∣
y=0+

≡ qku on Asf .

SOLUTION:
Starting from (2.62), we have∫

∆Asf→0

[−k(∇T · sn) + ρcpT (u · sn) + qr · sn]fdAsf +
∫

∆Asf→0

[−k(∇T · sn) + ρcpT (u · sn) + qr · sn]sdAsf = Ṡ.

Here, qr and u and Ṡ are all set to zero (no surface radiation heat transfer, no fluid or solid motion on the surface,
and no surface energy conversion). Then∫

∆Asf→0

−kf (∇Tf · sn)dAsf +
∫

∆Asg→0

−ks(∇Ts · sn)dAfs = 0.

Now using the surface unit normal vectors shown in Figure Pr.2.32, and noting that

∇Tf · sn =
∂Tf

∂y
, ∇Ts · sn = −∂Ts

∂y
,
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and evaluating these derivatives in their perspective surface (noting that the control surface wraps around the
surface), i.e., gas at y ≤ 0+ and solid at y ≤ 0−, we have

−kf
∂Tf

∂y

∣∣∣∣
y=0+

+ ks
∂Ts

∂y

∣∣∣∣
y=0−

= 0.

Since the surface-convection heat flux is defined as

qku ≡ −kf
∂Tf

∂y

∣∣∣∣
+

y=0

,

we have

−ks
∂Ts

∂y

∣∣∣∣
y=0−

= −kf
∂Tf

∂y

∣∣∣∣
y=0+

≡ qku.

COMMENT:
Note that, for example for Tsf > Tf,∞, heat flows, from the surface to the gas stream. Then ∂Ts/∂y and

∂Tf/∂y both will be negative. Also note that the relationship between the two derivative is given by this energy
equation, i.e.,

∂Tf/∂y|y=0+

∂Ts∂y|y=0−
=

ks

kf
.
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PROBLEM 2.33.FUN

GIVEN:
The divergence of the heat flux vector ∇ · q is indicative of the presence or lack of local heat sources (energy

storage/release or conversion). This is stated by (2.2). Consider a gaseous, one-dimensional steady-state fluid
flow and heat transfer with a premixed combustion (exothermic chemical reaction) as shown in Figure Pr.2.33(a).
For this, (2.2) becomes

∇ · q =
d

dx
qx = ṡr,c(x).

Here qx = qk,x + qu,x (assuming no radiation) is idealized with a distribution and the source terms.

ṡr,c(x) = −ρF,1uf,1∆hr,F
1

σ(2π)1/2
e−(x−xo)2/2σ2

,

where ρF,1 is the fluid density far upstream of the reaction (or flame) region, uf,1 is the fluid velocity there, and
∆hr,F is the heat of combustion (per kg of fuel). The exponential expression indicates that the reaction begins to
the left of the flame location xo and ends to its right, with the flame thickness given approximately by 6σ. This
is the normal distribution function and represents a chemical reaction that initially increases (as temperature
increases) and then decays and vanishes (as products are formed and fuel depletes).

SKETCH:
Figure Pr.2.33(a) shows the variable source term ṡr,c(x). The flame thickness δ is approximated as 6σ.

6� = �

xo

sr,c qx(x2 = �)qx(x1 = ��)

sr,c

uf,1

��

Gaseous Fuel
and Oxygen

Flame

DownstreamUpstream
�x   �

� �F,1 uf,1 �hr,F

Figure Pr.2.33(a) Variable energy conversion (source) term for combustion in a premixed gaseous flow. The source has
a normal distribution around a location xo. The flame thickness is approximated as δ = 6σ.

OBJECTIVE:
(a) For σ = δ/6 = 0.1 mm, plot qx/(−ρF,1uf,1∆hr,F) and ṡr,c/(−ρF,1uf,1∆hr,F), with respect to x (use xo = 0
and x1 = −δ < x < xL = δ). Assume qx(x = −δ) = 0.
(b) Noting that no temperature gradient is expected at x = x1 = −δ and at x = x2 = δ, i.e., qk,x = 0 at x = x1 and
x = x2, determine qu,x at x = x2, for ρF,1 = 0.06041 kg/m3, uf,1 = 0.4109 m/s, and ∆hr,F = −5.553× 107 J/kg.
These are for a stoichiometric, atmospheric air-methane laminar flame.

SOLUTION:
(a) Using an ordinary differential equation solver such as SOPHT, we integrate

d

dx

qx

(−ρF,1uf,1∆r,F)
=

1
σ(2π)1/2

e
− x2

2σ2 = ṡr,c(x)

for σ = 0.1 mm.
The result for −δ ≤ x ≤ δ is plotted in Figure Pr.2.33(b). Also plotted is ṡr,c(x). We note that qx, which

begins as qx = 0 at x = −δ, reaches a maximum value of 1× (−ρF,1uf,1∆hr,F) at x = δ, while ṡr,c peaks at x = 0
and its magnitude is approximately 4 × (−ρF,1uf,1∆hr,F).
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Figure Pr.2.33(b) Variation of convection heat flux and the energy conversion with respect to axial location.

(b) Using the value of qx at x = x2 = δ, we have

qx(x = x2) = 1 × (−ρF,1uf,1∆hr,F)
= −0.06041(kg/m3) × 0.4109(m/s) × (−5.553 × 107)(J/kg)
= 1.378 × 106 W/m2.

COMMENT:
Note that qx(x) = qk,x(x) + qr,x(x) varies over the flame length. In Chapter 5, we will approximate this

conduction-convection region and use a more realistic (but still simple) source term representing the chemical
reaction. Also note that qu = (ρcpTu)f .
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PROBLEM 2.34.FUN

GIVEN:
A p-n junction is shown Figure Pr.2.34(a). The junction (interface) is at temperature Tj . The ends of the

two materials are at a lower temperature Tc and a higher temperature Th.

SKETCH:
Figure Pr.2.34(a) shows the conduction across a slab containing a thermoelectric p-n junction.

Je (Electric Current)

n-Type Semi-
Conductor (Solid)

p-Type Semi-
Conductor (Solid)

A
Tj

Se,P

Th
Tc

Figure Pr.2.34(a) Conduction heat transfer in a slab containing
a thermoelectric p-n junction.

OBJECTIVE:
(a) Starting from (2.62), write the surface energy equation for the interface. Make the appropriate assumptions
about the mechanisms of heat transfer expected to be significant.
(b) Express the conduction heat transfer as

Qk,n =
Tj − Th

Rk,n
, Qk,p =

Tj − Tc

Rk,p
.

Comment on the signs of Qk,p and Qk,n needed to absorb heat at the junction to produce electrical potential-
current.

SOLUTION:
(a) From (2.60), using n and p to designate the two media, the surface energy equation is

A[(qk · sn)n + (qk · sn)p + (qu · sn)n + (qu · sn)p + (qr · sn)n + (qr · sn)p] = Ṡe,P.

Since both media are not moving, qu = 0. Also, due to the large optical thickness, the radiation heat transfer
with both media is expected to be negligible. Then, using Ṡe,P, the surface energy equation becomes

A[(qk · sn)n + (qk · sn)p] = Ṡe,P.

This can then be written as

Qk,n + Qk,p = Ṡe,P

and is shown in Figure Pr.2.34(b).

A qe,P = Qe,P

Qk,nQk,p

Rk,n Rk,p
Tj

Qk,p

Tc Th

Qk,n

(sn)n(sn)p

Figure Pr.2.34(b) Energy equation for the slab containing the junction.
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(b) Using the equations for the conduction heat transfer,

Qk,n =
Tj − Th

Rk,n

Qk,p =
Tj − Tc

Rk,p
.

Then, using (2.37) for Ṡe,P (for absorption of energy), the energy equation becomes

Tj − Th

Rk,n
+

Tj − Tc

Rk,p
= −αSJeTj .

The minus sign is used for the energy absorption.

(c) Since αS > 0, Je > 0, Tj > 0, (Tj − Th) < 0, Rk,n > 0, (Tj − Tc) > 0 and Rk,p > 0, then Qk,n < 0 and
Qk,p > 0. In order to produce electrical current, we need to have more conduction heat transfer arriving at the
junction than leaving the junction. Therefore, we need

|Qk,n| > |Qk,p| .

COMMENT:
If we assume that Rk,p = Rk,n, then to have energy conversion we need to have (Th − Tj) > (Tj − Tc). Figure

Pr.2.34(b) shows the thermal circuit diagram for this problem.
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PROBLEM 2.35.FUN

GIVEN:
Below are described two cases for which there is heat transfer and possibly energy conversion on a bounding

surface between two media [Figure Pr.2.35 (a) and (b)].
(a) A hot solid surface is cooled by surface-convection heat transfer to a cold air stream and by surface-radiation
heat transfer to its surrounding. Note that the air velocity at the surface is zero, ug = 0. Also, assume that the
radiation is negligible inside the solid (i.e., the solid is opaque).
(b) Two solid surfaces are in contact with each other and there is a relative velocity ∆ui between them. For
example, one of the surfaces is a brake pad and the other is a brake drum.

SKETCH:
Figures Pr.2.35(a) and (b) show a gas-solid and a solid-solid interface.

(a) Surface-Convection and Surface-
Radiation Cooling of a Hot Surface

(b) Friction Heating between Two
Sliding Solid Surfaces

xx

Asg A12

Solid 1

Solid 2

Solid

Air

∆ui

ug

Figure Pr.2.35(a) and (b) Two example of bounding surface between two media.

OBJECTIVE:
For each of the given cases (a) and (b), apply the bounding-surface energy equation (2.62) to the interface

separating the two media. Assume that the surfaces are at uniform temperatures. As a consequence, the heat
transfer at the interface is one-dimensional and perpendicular to the interface.

SOLUTION:
(a) The solid surface is cooled by surface convection and by surface radiation. For this solid-gas interface, the
general bounding-surface energy equation (2.65) is

Asg[−ks(∇T · sn)s − kg(∇T · sn)g + (ρcpTu · sn)s + (ρcpTu · sn)g + (qr · sn)s

+(qr · sn)g] =
∑

i

Ṡi,

where Asg is the solid-gas interfacial area. On the left-hand side of the surface energy equation, the first two
terms are the conduction heat flux vectors in the solid and in the gas phases normal to the surface, the third and
fourth terms are the convection heat flux vectors in the solid and gas phases normal to the surface, and the last
two terms are the radiation heat flux vectors in the solid and gas phases normal to the surface. The right-hand
side accounts for surface energy conversion to thermal energy. At the solid-gas interface, the convection heat
fluxes are zero because the solid is not moving normal to the control surface and the gas phase velocity at the
solid surface is zero (the surface is impermeable to the gas molecules). The radiation heat flux in the solid phase
is zero because the solid is assumed to be opaque to thermal radiation. At this bounding surface, there is no
energy conversion (at low speeds, the energy production due to viscous heating is negligible). Therefore, the
bounding-surface energy equation becomes

Asg[−ks(∇T · sn)s − kg(∇T · sn)g + (qr · sn)g] = 0.

For a uniform surface temperature, the conduction and the radiation heat flux vectors are normal to the surface
(in the direction of the x axis), i.e.,

qk,x = −k(∇T · sn) = −k
dT

dx

qr,x = qr · sn = qr
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and the bounding-surface energy equation becomes

Asg

(
ks

dTs

dx
− kg

dTg

dx
+ qr,g

)
= 0.

Note that the conduction term in the solid is positive as the surface normal in that phase is in the negative
x-direction. The conduction heat flux on the gas side causes the surface-convection heat transfer from the solid
surface to the gas stream. This surface-convection heat transfer is also influenced by the velocity of the flow.
Therefore, the bounding-surface energy equation can be finally written as

ks
dTs

dx
+ qku,g + qr,g = 0.

(b) For the two solid surfaces, the radiation heat flux vectors are zero. The movement of the surfaces creates
a convection heat flux vector in the same direction of the velocity vector. Then, the bounding-surface energy
equation becomes

A12[−k1(∇T · sn)1 − k2(∇T · sn)2 + (ρcpTu · sn)1 + (ρcpTu · sn)2] =
∑

i

Ṡi.

Due to surface friction, there is energy conversion at the interface between the two solids (conversion from
mechanical to thermal energy) and this energy conversion is assumed uniform along the surface. Therefore,

∑
i

Ṡi = Ṡm,F =
∫

A12

qm,F dA = qm,F A12,

and, from Table 2.1,

qm,F = µF pc∆ui.

The velocity vectors for both surfaces are normal to the normal vectors. Thus, the dot product of the velocity
vectors and the normal vectors is zero. As the interface has a uniform temperature, the conduction heat flux
at the surface is one-dimensional and normal to the surface. Therefore, the bounding-surface energy equation
becomes

A12

(
k1

dT1

dx
− k2

dT2

dx

)
= µF pc∆uiA12,

or

+k1
dT1

dx
− k2

dT2

dx
= µF pc∆ui.

COMMENT:
The surface convection heat transfer is transferred from the solid to the fluid by fluid conduction. An en-

hancement in this heat transfer by conduction leads to an enhancement in the surface-convection heat transfer.
Consequences and means of enhancing the fluid conduction heat flux at the solid surface will be explored in
Chapter 6.

The existence of uniform temperature at the bounding surface results in conduction heat transfer normal to
the surface (there is no parallel component).

The convection heat transfer across the interface exists only when there is flow across the interface.
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PROBLEM 2.36.FAM

GIVEN:
An opaque (i.e., a medium that does not allow for any transmission of radiation across it) solid surface is called

a selective radiation surface when its ability to absorb radiation is different than its ability to emit radiation.
This is shown in Figure Pr.2.36. A selective absorber has a higher absorptivity αr compared to its emissivity εr.

SKETCH:
Figure Pr.2.36 shows absorption and emission by an opaque surface. OBJECTIVE:

Se,   /A = �   r σSB T
 4

Surface Emission
Se,α /A = αr qr,i

Surface Absorption

Surface
Reflection
(1 � αr) qr,i

Surface
Emission

qr,   =   r σSB T
 4

Surface
Irradiation

Surface Radiation Properties:
αr (Absorptivity)

  r (Emissivity)

qr,i

Surface Temperature
Ts∋

∋

∋∋

∋

Figure Pr.2.36 A selective thermal radiation absorber.

(a) From Table C.19, choose four surfaces that are selective absorbers and four that are selective emitters. The
data in Table C.19 is for absorption of solar irradiation (a high temperature radiation emission).
(b) Using black-oxidized copper, determine the surface-absorption heat flux for a solar irradiation of 700 W/m2

and surface-emission heat flux at surface temperature of 90◦C.
(c) Determine the difference between the heat absorbed and heat emitted.

SOLUTION:
(a) From Table C.19, we have

Table Pr.2.36: Selective absorbers and reflectors.
Selective Absorber (Good Solar Absorber) Selective Emitter (Good Solar Reflector)
Material εr αr Material εr αr

Chromium Plate 0.15 0.78 Reflective Aluminum 0.79 0.23
Black-oxidized Copper 0.16 0.91 Glass 0.83 0.13
Nickel (Tabor Solar Absorber) 0.11 0.85 White Epoxy Paint 0.88 0.25
Silicon Solar Cell 0.32 0.94 Inorganic Spacecraft Coating 0.89 0.13

(b) From (2.47) and (2.48), we have

Ṡe,α

A
= αrqr,i

Ṡe,ε

A
= −εrσSBT 4.

Using the numerical values for black-oxidized copper, we have

Ṡe,α/A = 0.91 × 700(W/m2) = 637.0 W/m2

Ṡe,ε/A = −0.16 × 5.67 × 10−8(W/m2-K) × (273.15 + 90)4(K)4 = −157.8 W/m2.
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(c) The net heat generated at the surface is

Ṡ

A
=

Ṡe,α

A
+

Ṡe,ε

A
= 637 − 157.8 = 479.2 W/m2

.

There is a net heat gained by the surface.

COMMENT:
The surfaces that have selective behavior, i.e., αr 	= εr , are called nongray surfaces. The gray surfaces are

those for which αr = εr. We will discuss gray and nongray surfaces in Chapter 4.
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PROBLEM 2.37.FUN

GIVEN:
A droplet of refrigeration fluid (refrigerant) R-134a, which is used in automobile air-conditioning systems, is

evaporating. The initial droplet diameter is D(t = 0) and the diameter decreases as heat is absorbed on the
droplet surface from the gaseous ambient by surface convection and radiation.

SKETCH:
Figure Pr.2.37 shows the surface heating and evaporation of a droplet.

D(t)

sn,g

sn,l

Gas

Droplet
D(t = 0) = 3 mm

V =

A = �D2

�D3

qku,g = �10 kW/m2

qr,g = �1 kW/m2

Liquid Evaporation

Slg   A  � � mlg �hlg

1
6

ql = 0

Figure Pr.2.37 Droplet evaporation by surface convection and radiation.

OBJECTIVE:
(a) Starting from (2.62) and by replacing qk,g by qku,g, and noting that the difference between the convection
terms is represented by Ṡlg, write the appropriate surface energy equation. The radiation heat transfer within
the droplet can be neglected. Assume a uniform droplet temperature, i.e., assume the liquid conduction can also
be neglected.
(b) Using the properties listed in Table C.26 (they are for p = 1 atm) and the heat flux rates given in Figure
Pr.2.37, determine the evaporation rate per unit area ṁlg.
(c) Starting with (1.25) and setting the outgoing mass equal to the evaporation rate, derive an expression giving
the instantaneous droplet diameter D(t), as a function of the various parameters.
(d) Determine the time needed for the droplet diameter to decrease by a factor of 10.

SOLUTION:
(a) From (2.62), with (Ṡ/A) = −ṁlg∆hlg from Table 2.1, the surface energy equation becomes

A[(qku · sn)g + (qku · sn)l + (qr · sn)g + (qr · sn)l] = −Aṁlg∆hlg.

Since (qku)l and (qr)l are assumed zero, we have

A[(qku · sn)g + (qr · sn)g] = −Aṁlg∆hlg = 0
(qku · sn)g + (qr · sn)g = −ṁlg∆hlg = 0.

(b) From Table C.26, for R-134a at p = 1 atm, we have Tlg = 246.99 K, ρl = 1374.3 kg/m3 and ∆hlg = 2.168×105

J/kg. Solving the energy equation for ṁlg, we have

ṁlg = −qku,g + qr,g

∆hlg
.

Using the numerical values, we then have

ṁlg = − (−10,000 − 1,000)(W/m2)
2.168 × 105(J/kg)

= 5.074 × 10−2 kg/m2-s.

(c) From (1.25), we have

Ṁlg = Ṁ |A = − d

dt

∫
V (t)

ρldV .
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For constant ρl we then have

Ṁ |A = − d

dt
(ρl

∫
V (t)

dV ) = − d

dt
(ρlV ) = − d

dt

(
ρl

1
6
πD3

)
= −π

2
ρlD

2 dD

dt
.

The mass flow rate Ṁ |A is related to the mass flux by

Ṁ |A = Aṁlg = πD2ṁlg.

Then, from the equations above we obtain
dD

dt
= −2ṁlg

ρl
.

Integrating this equation we have ∫ D(t)

D(t=o)

dD = −
∫ t

0

2ṁlg

ρl
dt.

For constant rate of phase change

D(t) = D(t = 0) − 2ṁlg

ρl
t.

(d) The equation above can be recast as

D(t)
D(t = 0)

= 1 − 2ṁlg

ρlD(t = 0)
t.

Solving for t, we have

t =
[
1 − D(t)

D(t = 0)

]
ρlD(t = 0)

2ṁlg
.

For D(t)/D(t = 0) = 0.1 and using the other values, we have

t = (1 − 0.1)
1374.3(kg/m3)3 × 10−3(m)
2 × 5.074 × 10−2(kg/m2-s)

= 36.57 s.

COMMENT:
(i) This rate of heat flow into the droplet is high, but not very high. In order to evaporate the droplet very
rapidly, surface heat transfers of the order of 100 kW/m2 are used. Also, the heat flux changes as the diameter
decreases because the area decreases. Thus, the rate of evaporation increases as the diameter decreases.
(ii) The droplet evaporation model above is called a heat transfer controlled evaporation. The evaporation can
also be mass transfer controlled if the rate of mass transfer of the vapor from the droplet surface to the ambient
is slower than the rate of heat transfer.
(iii) Refrigerant-134a operates under large pressures, both in the evaporator and in the condenser. The heat of
evaporation decreases as the critical pressure is approached.
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PROBLEM 2.38.FUN

GIVEN:
A thermoelectric element (TE) is exposed at its cold junction surface (at temperature Tc) partly to an electrical

connector (e) and partly to the ambient air (a). This is shown in Figure Pr.2.38. Heat is transferred to the surface
through the thermoelectric element qk,TE in addition to a prescribed heat flux, qTE that combines some parasitic
heating. These are over the surface area Aa + Ae. Heat is also transferred to the surface from the adjacent air
and the connector, over their respective areas Aa and Ae. The area in contact with air undergoes heat transfer
by surface convection qku,a and surface radiation qr,a. The connector heat transfer is by conduction qk,e. There
is a Peltier energy conversion (Ṡe,J)c/Ae at the surface (and since it occurs where the current passes, it occurs
over Ae). The Joule heating (Ṡe,J)c/Ae is also represented as a surface energy conversion (this presentation will
be discussed in Section 3.3.6) and is over the entire element area Aa + Ae.

Aa = 10−6 m2, Ae = 10−6 m2, qk,TE = −4 × 104 W/m2, (Ṡe,J)c/A = 2 × 104 W/m2, (Ṡe,P)c/Ae = −2 ×
105 W/m2, qr,a = 0, qku,a = 0, qTE = 0.

Assume quantities are uniform over their respective areas.

SKETCH:
Figure Pr.2.38 shows the control surface A and the various surface heat transfer and energy conversions.

Wrapping Control Surface, A

Uniform Temperature, Tc

Ambient Air, Aa

Aa + Ae
Thermoelectric

Element
Prescribed
Heat Flux

qTE

Conduction
qk,TE

sn

sn

, Peltier Cooling

, Joule Heating

Thermoelectric
Element

qk,e , Conduction

Electrical Current, Je

Surface
Radiation

Surface
Convection

qr,a
qku,a

(Se,P)c
Ae

(Se,J)c
A

Ae , Electrical Connector

Figure Pr.2.38 The cold-junction surface of a thermoelectric element showing various surface heat transfer and energy
conversions.

OBJECTIVE:
(a) Starting from (2.60), write the surface energy equation for the cold junction control surface A.
(b) Determine qk,e for the given conditions.

SOLUTION:
(a) From (2.60), we have∫

A

(q · sn)dA =
∑

i

Ṡi

∫
A

(q · sn)dA =
∫

Aa+Ae

(qTE · sn)dA +
∫

Aa+Ae

(qk,TE · sn)dA +
∫

Ae

(qk,e · sn)dA +∫
Aa

(qr,a · sn)dA +
∫

Aa

(qku,a · sn)dA

=
∑

i

Ṡi =

[
(Ṡe,P)c

Ae

]
Ae +

[
(Ṡe,J)c

A

]
(Aa + Ae).

Here we have used the appropriate areas for each heat transfer rate and each energy conversion mechanism.
Now, since the various heat flux vectors given in Figure Pr.2.38 are all given as leaving the contact surface, we
have

(Aa + Ae)qTE + (Aa + Ae)qk,TE − Aeqk,e + Aaqr,a + Aaqku,a = Ae

[
(Ṡe,P)c

Ae

]
+ (Aa + Ae)

[
(Ṡe,J)c

A

]
.
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(b) Using the numerical values, we have

(10−6 + 10−6)(m2) × 0 + (10−6 + 10−6)(m2) × (−4 × 104)(W/m2)−
10−6(m2) × qk,e + 10−6(m2) × 0 + 10−6(m2) × 0

= 10−6(m2) × (−2 × 105)(W/m2) + (10−6 + 10−6)(m2) × 2 × 104(W/m2)

or

qk,e = (2 × 4 × 104 − 2 × 105 + 4 × 104)(W/m2)
= −8 × 104 W/m2

or

Qk,e = Aeqk,e = 10−6(m2) × [−8 × 104(W/m2)]
= −8 × 10−2 W.

COMMENT:
Note that heat flows into the electric connecter because Qk,e < 0. This is the effective cooling heat rate and

the object to be cooled is connected to the electric connector (with a thin layer of electrical insulator between
them, in case the object is not a dielectric). In practice, many of these junctions are used to produce the desired
cooling rate. This is discussed in Section 3.7.
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PROBLEM 2.39.FUN

GIVEN:
When the ambient temperature is high or when intensive physical activities results in extra metabolic energy

conversion, then the body loses heat by sweating (energy conversion Ṡlg). Figure Pr.2.39 shows this surface energy
exchange, where the heat transfer to the surface from the tissue side is by combined conduction and convection
qk,t, qu,t and from the ambient air side is by conduction, convection, and surface radiation qk,a, qu,a, qr,a. The
surface evaporation is also shown as Ṡlg/At where At is the evaporation surface area. The tissue conduction
qk,t is significant for lowering the body temperature or removing extra metabolic heat generation (i.e., when the
heat flow is dominantly from the tissue side). Preventing the high ambient temperature from raising the tissue
temperature, however, relies only on intercepting the ambient heat transfer on the surface (i.e., when the heat
flow is dominated by the ambient air side and the tissue conduction is not significant).

Assume that quantities are uniform over their respective surfaces.

SKETCH:
Figure Pr.2.39 shows the various surface heat transfer mechanisms and the surface energy conversion Ṡlg/At.

Slg /At qu,a

qk,a qr,a

qk,t

qu,t

Water Vapor
Water

Evaporation, mlg

Skin Temperature, Ts

Sweat
Glands

Tissue Ambient Air

Wrapping Control Surface, A

sn
sn

Aa = At
At

Figure Pr.2.39 The surface heat transfer, and energy conversion by sweat cooling.
across human skin.

OBJECTIVE:
(a) Starting from (2.60), write the surface energy equation for the skin control surface A (wrapped around the
surface with At = Aa) in Figure Pr.2.39.
(b) For the conditions given below, determine qk,t.

SOLUTION:
(a) From (2.60), we have

Q|A = At(qk · sn)t + At(qu · sn)t + Aa(qk · sn)a + Aa(qu · sn)a + Aa(qr · sn)a

= At

(
Ṡlg

At

)
.

Since the heat flux vectors are defined in Figure Pr.2.39 to be pointing outward from their respective surfaces
(i.e., along sn), then we have

At(qk,t + qu,t) + Aa(qk,a + qu,a + qr,a) = At

(
Ṡlg

At

)

and since all the areas are equal, we have

qk,t + qu,t + qk,a + qu,a + qr,a =
Ṡlg

At
.

(b) Now using the numerical values and qk,a = qku,a, we have

qk,t + 0 + qku,a + 0 + qr,a =
Ṡlg

At
.
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Solving for qk,t, we have

qk,t = −300(W/m2) + 150(W/m2) + 10(W/m2) = −140 W/m2.

This corresponds to heat flowing from the tissue to the surface by conduction at this rate.

COMMENT:
The convection heat fluxes are negligible due to the small velocities. Also note that we used the surface

convection qku,a in place of conduction qk,a because as will be shown in Chapter 6, the air velocity at the surface
is zero (neglecting the small water vapor velocity leaving the surface due to the evaporation). Then the heat
transfer to the air is by conduction, but influenced by the air motion.
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PROBLEM 2.40.FUN

GIVEN:
In laser materials processing-manufacturing, high-power, pulsed laser irradiation flux qr,i is used and most of

this power is absorbed by the surface. Figure Pr.2.40 shows the laser irradiation absorbed Ṡe,α/A = αrqr,i (where
αr is the surface absorptivity), the surface radiation emission flux (Ṡe,ε)/A = εrσSBT 4

s , the gas-side surface
convection qku, and the solid (substrate or working piece) conduction qk,s, over a differential control surface
∆A → 0. Since the irradiation is time dependent (e.g., pulsed), the heat transfer and energy conversions are all
time dependent (and nonuniform over the surface).
εr = 0.8, αr = 0.9, qr,i = 1010 W/m2, Ts = 2 × 103 K, qku = 107 W/m2.

Note that the entire surface radiation is represented as energy conversions Ṡe,α and Ṡe,ε.

SKETCH:
Figure Pr.2.40 shows the laser irradiated surface, the substrate conduction, surface convection, and surface

radiation emission represented as an energy conversion.
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Figure Pr.2.40 Laser irradiation of a substrate and a differential control surface
taken in the laser impingement region.

OBJECTIVE:
(a) Starting with (2.58), write the surface energy equation for the differential control surface ∆A.
(b) Determine qk,s for the conditions given.

SOLUTION:
(a) Starting from (2.58), for differential control surface ∆A, we have∫

∆A

(q · sn)dA = Ṡ = Ṡe,α + Ṡe,ε = ∆Afαrqi − ∆Af εrσSBT 4
s ,

where we have used the energy conversion terms given in Figure Pr.2.40 for the right-hand side. Then noting
that qku and qk,s are along their respective surface normal vectors, we have∫

∆A

(q · sn)dA = ∆Afqku + ∆Asqk,s = ∆Asαrqr,i − ∆AsεrσSBT 4
s .

(b) Solving the above equation for qk,s, using ∆As = ∆Af , we have

qk,s = αrqr,i − εrσSBT 4
s − qku

= 0.9 × 1010(W/m2) − 0.8 × 5.67 × 10−8( W/m2-K4) × (2 × 103)4(K4) − 107(W/m2)
= (9 × 109 − 8.165 × 105 − 107)(W/m2) = 8.989 × 109 W/m2.

COMMENT:
Note that during the irradiation, the surface radiation emission and surface convection are rather small and

negligible.
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Conduction



PROBLEM 3.1.FUN

GIVEN:
Equation (3.25) relates the thermal conductivity to the electrical resistivity of pure solid metals.
Values for the electrical resistivity as a function of temperature are listed in Table C.8 for different pure metals.

OBJECTIVE:
(a) Using (3.25), calculate the predicted thermal conductivity of copper kpr for T = 200, 300, 500, and 1,000 K.
For T = 1,000 K, extrapolate from the values in the table.
(b) Compare the results obtained in (a), for kpr, with the values given in Table C.14, kex. Calculate the percentage
difference from using

∆k(%) =
(

kpr − kex

kex

)
× 100.

(c) Diamond is an electrical nonconductor (σe � 0). However, Figure 3.9(a) shows that the thermal conductivity
of diamond is greater than the thermal conductivity of copper for T > 40 K. How can this be explained?

SOLUTION:
(a) Equation (3.25) relates the electronic contribution in the thermal conductivity ke to the electrical conductivity
σe (inverse of resistivity ρe). Assuming that for copper the electronic contribution is the dominant mechanism
for the thermal conductivity (k � ke), (3.25) can be written as

keρe

T
= 2.442 × 10−8 W-ohm/K2.

From the values of ρe given in Table C.8, the thermal conductivity of copper can be calculated at different
temperatures. Table Pr.3.1 lists the results.

Table Pr.3.1 Thermal conductivity of pure copper.
T , K ρe, ohm-m kpr, W/m-K kex, W/m-K ∆k (%)

200 1.046 × 10−8 466.9 413 13
300 1.725 × 10−8 424.7 401 6
500 3.090 × 10−8 395.2 386 2

1,000 6.804 × 10−8 358.9 352 2

(b) Table Pr.3.1 shows the data obtained from Table C.14 (kex) and the percentage difference between kpr and kex.

(c) The thermal conduction in diamond occurs dominantly by the mechanism of lattice vibration. The transfer
of energy due to lattice vibration is represented by a heat carrier called a phonon and the heat conduction is then
said to be due to phonon transport. The phonon transport is more effective at higher temperatures, as shown in
Figure 3.7(c). At low temperatures, the heat conduction by electron transport is substantial. Therefore, at low
temperatures, copper is a better conductor than diamond. The phonon transport mechanism is also present in
copper, but has a relatively smaller contribution.

COMMENT:
The value of ρe at T = 1,000 K is extrapolated from the values listed in Table C.8.
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PROBLEM 3.2.FAM

GIVEN:
An airplane flies at an altitude of about 10 km (32,808 ft). Use the relation for the polyatomic ideal-gas

thermal conductivity given in Example 3.2.

OBJECTIVE:
Using the relation for the polyatomic ideal gas thermal conductivity given in Example 3.2,

(a) Determine the air thermal conductivity at this altitude. Use the thermophysical properties given in Table
C.7, and assume that cv and cp are constant.
(b) Compare the predicted k with the measured value given in Table C.7. (c) Comment on why k does not change
substantially with altitude.

SOLUTION:
(a) From Example 3.2, we have

k =
5π

32
ρ

(
cv +

9
4

Rg

M

)
as

(
3cv

cp

)
λ.

From Table C.7, we have, for r = 10 km,

ρ = 0.41351 kg/m3
Table C.7

M = 28.965 kg/kmole Table C.7

as = 299.53 m/s Table C.7

λ = 1.97 × 10−7 m Table C.7.

Also from Example 3.2, we have

cv = 719 J/kg-K
cp = 1,006 J/kg-K.

Using the numerical values, we have

k =
5π

32
× 0.41351(kg/m3) ×

(
719 +

9
4
× 8,315

28.964

)
(J/kg-K) × 299.53(m/s)

×
(

3 × 719
1,006

)1/2

× 1.97 × 10−7(m)

k =
5π

32
× 0.41351 × 1,365 × 299.5 × 1.464 × 1.97 × 10−7

= 0.02392 W/m-K.

(b) The measured k from Table C.7 is

k = 0.0201 W/m-K Table C.7.

The difference, in percentage, is

∆k(%) =
0.02392 − 0.0201

0.0201
× 100% = 18.20%.

This is reasonable, considering that we have a mixture of species and the assumptions made in the kinetic theory.

(c) The mean-free path of the air increases with the altitude r, as listed in Table C.7. However, the density de-
creases with r. These two nearly compensate each other (the changes in the speed of sound is not as substantial
as that in λ and ρ), thus making the thermal conductivity not substantially change for 0 < r < 50 km.

COMMENT:
From Table C.7, note that the air molecular weight does not begin to change substantially until an altitude

of about 1,000 km is reached. This is when the air composition begins to change to mostly hydrogen and helium.
The temperature at an altitude of 10 km is T = 233.25 K = −39.9◦C, and the pressure is p = 0.026499 MPa
= 0.2615 atm.
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PROBLEM 3.3.FUN

GIVEN:
Due to their molecular properties, the elemental, diatomic gases have different thermodynamic properties,

e.g., ρ and cp, and transport properties, e.g., k properties. Consider (i) air, (ii) helium, (iii) hydrogen, and (iv)
argon gases at T = 300 K and one atmosphere pressure.

OBJECTIVE:
(a) List them in order of the increasing thermal conductivity. Comment on how a gas gap used for insulation
may be charged (i.e., filled) with different gases to allow none or less heat transfer.
(b) List them in the order of the increasing thermal diffusivity α = k/ρcp. Comment on how the penetration
speed uF can be varied by choosing various gases.
(c) List them in order of increasing thermal effusivity (ρcpk)1/2. Comment on how the transient heat flux qρck(t)
can be varied by choosing various gases.

SOLUTION:
The thermal conductivity, density, and specific heat capacity for each of the four gases are listed in Table C.22

for p = 1 atm. For T = 300 K, we have

(i) air: k = 0.0267 W/m-K Table C.22

ρ = 1.177 kg/m3 Table C.22

cp = 1,005 J/kg-K Table C.22

(ii) helium: k = 0.1490 W/m-K Table C.22

ρ = 0.1624 kg/m3 Table C.22

cp = 5,200 J/kg-K Table C.22

(iii) hydrogen: k = 0.1980 W/m-K Table C.22

ρ = 0.0812 kg/m3 Table C.22

cp = 14,780 J/kg-K Table C.22

(iv) argon: k = 0.0176 W/m-K Table C.22

ρ = 1.622 kg/m3 Table C.22

cp = 621 J/kg-K Table C.22.

(a) Thermal conductivities in order of increasing magnitude are

argon: k = 0.0176 W/m-K
air: k = 0.0267 W/m-K

helium: k = 0.1490 W/m-K
hydrogen: k = 0.1980 W/m-K.

By changing the gas from argon to hydrogen, the conduction heat transfer rate will be increased by a factor of
11.25.

(b) Thermal diffusivities α = k/ρcp in order of increasing magnitude are

argon: α = 1.747 × 10−5 m2/s
air: α = 2.257 × 10−5 m2/s

hydrogen: α = 1.650 × 10−4 m2/s
helium: α = 1.764 × 10−4 m2/s.

From (3.154), uF is proportional to α1/2. Helium has an α that is 10.10 times that of argon. Thus, the penetration
speed for helium is 3.178 times larger than that for argon.
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(c) Thermal effusivities in order of increasing magnitude are

argon: (ρcpk)1/2 = 4.210 W-s1/2/m2-K

air: (ρcpk)1/2 = 5.620 W-s1/2/m2-K

helium: (ρcpk)1/2 = 11.22 W-s1/2/m2-K

hydrogen: (ρcpk)1/2 = 15.42 W-s1/2/m2-K.

From (3.144), we note that qρck(t) is proportional to (ρcpk)1/2. Hydrogen has an effusivity which is 3.622 times
that of argon. Thus, the transient heat flow rate to a semi-infinite stagnant gas layer suddenly heated on its
bounded surface is 3.662 larger for hydrogen, compared to argon.

COMMENT:
We have assumed that the gas remains stagnant (i.e., no thermobuoyant motion) while it undergoes heat

transfer.
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PROBLEM 3.4.FUN

GIVEN:
The bulk (or intrinsic) conductivity refers to the medium property not affected by the size of the medium. In

gases, this would indicate that the mean-free path of the gas molecules in thermal motion λm is much smaller
than the linear dimension of gas volume L. When the linear dimension of the gas volume is nearly the same as
or smaller than the mean-free path, then the gas molecules collide with the bounding surface of the gas with a
probability comparable to that of the intermolecular collisions. This will occur either at low pressure or for very
small L. There are simple, approximation expressions describing this size (or low-dimensionality) effect. These
expressions include parameters modeling the gas molecule-bounding surface collision and energy exchange. One
of these models that is used to predict the size dependence occurring at low gas pressures is

kf (p, T ) =
kf (p = 1 atm, T )

1 +
4a1(2 − γ)

γ(cp/cv + 1)
KnL

,

where KnL is the Knudsen number defined in (1.20), i.e.,

KnL =
λm

L
,

and λm is given by (1.19). Here 0 ≤ γ ≤ 1 is the accommodation factor and a1 is another semi-empirical constant.
For example, for nitrogen in contact with ceramic surfaces, a1 = 1.944, cp/cv=1.401, and γ = 0.8.

Use Table C.22 for kf (p = 1 atm, T = 300 K).

OBJECTIVE:
For nitrogen gas with L = 10 µm, use T = 300 K, and dm = 3× 10−10 m and plot kf/kf (λm 
 L) versus the

pressure and the Knudsen number.

SOLUTION:
From (1.19), we have

λm =
1

21/2π

kBT

d2
mp

=
1

21/2π

(1.381 × 10−23)(J/K) × 300(K)
(3 × 10−10)2(m2) × p(Pa)

=
1.037 × 10−2(Pa-m)

p(Pa)
.

From Table C.22, for air at T = 300 K, we have

kf (p = 1 atm, T = 300 K) = 0.0267 W/m-K.

Then

kf (p, T = 300 K) =
0.0267(W/m-K)

1 +
4 × 1.944 × (2 − 0.8)

0.8(1.401 + 1)
λm(m)

10−5(m)

=
0.0267(W/m-K)

1 + 4.858 × 105(1/m) × λm(m)
.

Figures Pr.3.4(a) and (b) show the variations of kf (p) with respect to p and KnL.

COMMENT:
Note that the relation used here for kf is an approximation. Also note that, as L becomes very large, the

asymptotic value kf (p = 1 atm) is recovered.
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Figure Pr.3.4 Variation of the gas conductivity with respect to (a) pressure and (b) Knudsen number.
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PROBLEM 3.5.FUN

GIVEN:
The lattice (phonon) specific heat capacity is related to the internal energy e, which in turn is given by the

energy of an ensemble of harmonic oscillators as

e =
NA

M

∑
i

Ei

Ei =
hP

2π
finp,i np,i =

1
exi − 1

xi =
hPfi

2πkBT
,

where hP is the Planck constant, kB is the Boltzmann constant, NA is the Avogadro number, M is the molecular
weight, and Ei is the average energy per vibrational mode i of each oscillator.

This represents the solid as a collection of harmonic oscillators, vibrating over a range of frequencies f , with
the number of phonons having a frequency fi given by np,i.

Note that from (3.4), Rg ≡ kBNA.

OBJECTIVE:
Starting from (1.6), and using the above, show that the lattice specific heat capacity is

cv =
Rg

M

∑
i

x2
i e

xi

(exi − 1)2
.

SOLUTION:
The energy per unit mass is

e =
NA

M

∑
i

Ei

=
NA

M

∑
i

hP

2π
finp,i

=
NA

M

∑
i

hP

2π
fi

1
exi − 1

=
NA

M

∑
i

hP

2π
fi

1

exp
(

hPfi

2πkBT

)
− 1

.

The specific heat capacity of a solid at constant volume cv is found by differentiating with respect to temperature
T , i.e.,

cv =
∂e

∂T

∣∣∣∣
v

=
NA

M

∑
i

hP

2π
fi

∂

∂T

[ 1

exp
(

hPfi

2πkBT

)
− 1

]
.

Letting u(xi) = exi − 1, and letting w(u) = u−1, we can simplify the differentiation on the right-hand side as

∂

∂T

[ 1

exp
(

hPfi

2πkBT

)
− 1

]
=

∂

∂T

(
1

exi − 1

)
=

∂

∂T

(
1
u

)
=

∂w

∂T
.

Applying the chain rule, we obtain

∂w

∂T
=

∂w

∂u

∂u

∂xi

∂xi

∂T

= (−u−2)(exi)
(
− hPfi

2πkBT 2

)

=
hPfi

2πkBT 2

exi

(exi − 1)2
.
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Substituting back into the specific heat expression, we have

cv =
∂e

∂T

∣∣∣∣
v

=
NA

M

∑
i

hP

2π
fi

hPfi

2πkBT 2

exi

(exi − 1)2

=
NAkB

M

∑
i

(
hPfi

2πkBT

)2
exi

(exi − 1)2

=
Rg

M

∑
i

x2
i e

xi

(exi − 1)2
, xi =

hPfi

2πkBT
.

COMMENT:
In practice, the summation is difficult to perform and the Debye approximation given by (3.7) is used instead.
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PROBLEM 3.6.FUN

GIVEN:
In the Debye approximation model for the lattice (phonon) specific heat capacity given by (3.7), the number

of vibrational modes or density of state (per unit frequency around a frequency f) is given by the distribution
function

P (f) =
3f2V

2π2u3
p

, V = l3m = n−1,

where V is the volume, lm is the cubic lattice constant, up is the speed of sound (phonon speed), f is the frequency,
and n is the number of oscillators (or atoms) per unit volume. The actual lattice may not be cubic and would
then be represented by two or more lattice parameters and, if the lattice is tilted, also by a lattice angle. Using
this expression, the lattice specific heat capacity is approximated (as an integral approximation of the numerically
exact summation) as

cv =
Rg

M

∑
i

x2
i e

xi

(exi − 1)2
=

Rg

M

∫ fD

0

x2ex

(ex − 1)2
P (f)df, x =

hPf

2πkBT
.

The Debye distribution function (or density of state), when integrated over the frequencies, gives the total number
of vibrational modes (three per each oscillator)

3n =
1
V

∫ fD

0

P (f)df.

OBJECTIVE:
(a) Show that

fD = (6nπ2u3
p)

1/3.

(b) Using this, derive (3.7), i.e., show that

cv = 9
Rg

M

(
T

TD

)3 ∫ TD/T

0

x4ex

(ex − 1)2
dx, TD =

hPfD

2πkB
.

SOLUTION:
(a) The Debye cut-off frequency is related to the number of oscillators by

3 =
∫ fD

0

3f2

2nπ2u3
p

df =
3

2nπ2u3
p

∫ fD

0

f2df.

Evaluating the integral and solving for fD gives

3 =
3

2nπ2u3
p

f3
D

3

f3
D = 6nπ2u3

p

fD = (6nπ2u3
p)

1/3.

(b) Noting that from the definition of the Debye temperature we can write fD = (2πkBTD)/(hP), and recalling
that x(T, f) = (hPf)/(2πkBT ), we can write xD = x(T, f = fD) as

xD =
hPfD

2πkBT
=

hP

2πkBT

2πkBTD

hP
=

TD

T
.
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Substituting the expressions for f and P (f) into the given integral expression for cv gives

cv ≈ Rg

M

∫ fD

0

x2ex

(ex − 1)2
P (f)df

=
Rg

M

∫ xD

0

x2ex

(ex − 1)2
3f2

2nπ2u3
p

2πkBT

hP
dx

=
Rg

M

∫ TD/T

0

3f2kBT

nπu3
phP

x2ex

(ex − 1)2
dx

=
Rg

M

∫ TD/T

0

3f2kBT

nπu3
phP

x2ex

(ex − 1)2
dx ×

(
2πkBThP

2πkBThP

)2

=
Rg

M

∫ TD/T

0

12πk3
BT 3

nu3
ph

3
P

(
fhP

2πkBT

)2

× x2ex

(ex − 1)2
dx

=
Rg

M

∫ TD/T

0

12πk3
BT 3

nu3
ph

3
P

x4ex

(ex − 1)2
dx.

Substituting fD from part (a) into our expression for TD gives

TD =
hPfD

2πkB
=

hP

2πkB
(6nπ2u3

p)
1/3,

which, after some manipulation, gives

k3
B

nu3
ph

3
P

=
1

T 3
D

6π2

(2π)3
.

We then have

cv =
Rg

M

∫ TD/T

0

12πk3
BT 3

nu3
ph

3
P

x4ex

(ex − 1)2
dx

=
Rg

M
12πT 3 k3

B

nu3
ph

3
P

∫ TD/T

0

x4ex

(ex − 1)2
dx

=
Rg

M
12πT 3 1

T 3
D

6π2

(2π)3

∫ TD/T

0

x4ex

(ex − 1)2
dx

= 9
Rg

M

(
T

TD

)3 ∫ TD/T

0

x4ex

(ex − 1)2
dx.

COMMENT:
The Debye approximation gives a reasonable prediction of cv for both metallic and nonmetallic, crystalline

solids.
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PROBLEM 3.7.FUN

GIVEN:
A simple approximate expression is found for the lattice thermal conductivity by only considering the normal

(i.e., momentum conserving) phonon scattering mechanisms. This is done using the expression for cv, given by
(3.7) in the first part of the expression for kp given by (3.26), i.e.,

kp =
1
3
ρcvupλp,

and noting that

λp = upτp.

OBJECTIVE:
As is done in the Debye approximation, use

cvλp =
∫ TD/T

0

cv(x)λp(x)dx, x =
hPf

2πkBT
and xD =

hPfD

2πkBT
=

TD

T
,

and

TD =
hPfD

2πkB
=

hP

2πkB
(6nπ2u3

p)
1/3

to derive an expression for kp as a function of lm as

kp = (48π2)1/3 1
lm

k3
B

h2
P

T 3

TD

∫ TD/T

0

τp
x4ex

(ex − 1)2
dx,

where, for a cubic crystal lattice, lm is a lattice constant related to the number of atoms per unit volume by
l−1
m = n1/3. From (1.19), use ρRg/M = nkB.

SOLUTION:
Substituting for cvλp into (3.26) and then upτp(x) for λp(x), we obtain

kp =
1
3
ρup

∫ TD/T

0

cv(x)λp(x)dx

=
1
3
ρu2

p

∫ TD/T

0

τp(x)cv(x)dx

= 3ρ
Rg

M

(
T

TD

)3

u2
p

∫ TD/T

0

τp
x4ex

(ex − 1)2
dx.

From the definition of the Debye temperature, we have

u2
p

T 2
D

=
(2π)2k2

B

h2
P(6nπ2)2/3

.

Upon substitution for (up/TD)2 in kp, we obtain

kp = 3ρ
Rg

M

T 3

TD

u2
p

T 2
D

∫ TD/T

0

τp
x4ex

(ex − 1)2
dx

= 3ρ
Rg

M

T 3

TD

(2π)2k2
B

h2
P(6nπ2)2/3

∫ TD/T

0

τp
x4ex

(ex − 1)2
dx

= (48π2)1/3ρ
Rg

M

T 3

TD

k2
B

h2
Pn2/3

∫ TD/T

0

τp
x4ex

(ex − 1)2
dx.
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Noting that ρRg/M = nkB, and that l−1
m = n1/3, this further simplifies to

kp = (48π2)1/3nkB
T 3

TD

k2
B

h2
Pn2/3

∫ TD/T

0

τp
x4ex

(ex − 1)2
dx

= (48π2)1/3kB
k2
B

h2
P

T 3

TD
n1/3

∫ TD/T

0

τp
x4ex

(ex − 1)2
dx

= (48π2)1/3 1
lm

k3
B

h2
P

T 3

TD

∫ TD/T

0

τp
x4ex

(ex − 1)2
dx.

COMMENT:
The total phonon time constant is related to the time constants for the normal (momentum conserving, τp,n)

and the resistive (non-momentum conserving, τp,r) processes that work to restore the phonon distribution to
equilibrium (i.e., limit the conduction heat flux by damping the phonon propagation). The determination of the
lattice thermal conductivity is highly dependent on the manner in which τp, and in turn the various τp,n and τp,r,
are evaluated and implemented into the calculation. In the approximate form found here, τp can be evaluated as
τ−1
p = τ−1

p,n + τ−1
p,r , or for this case in which only normal processes are considered, τ−1

p = τ−1
p,n.

This is a simple form of (3.26). Most of the resistive relaxations neglected above are not very significant at
high temperatures (including near room temperature) and therefore, the above simple expression can often be
used. The time constant for a normal process can be approximated as

τp,n = an2πfT 4,

where an is a material constant.
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PROBLEM 3.8.FUN.S

GIVEN:
The crystal size influences the phonon thermal conductivity due to phonon scattering caused by variation of

phonon propagation properties across the crystal surface (similar to light scattering at the interface of two media
of different light propagation properties). This boundary scattering is one of the resistive scattering mechanisms
included in (3.26). Consider aluminum oxide (AL2O3, also called alumina) single crystals at T = 300 K. The
effect of crystal size L can be described by a simple relation for the boundary scattering relaxation time constant
τb as

τb =
L

up
,

where up is the average phonon velocity. Using the material constants for alumina and at T = 300 K, the lattice
conductivity given by (3.26) becomes

kp = bkT 3

[
g1(x,L) +

g2
2(x,L)

g3(x,L)

]
= bk

[
h1(x,L) +

h2
2(x,L)

h3(x,L)

]
,

where bk = 2.240 × 105 W/m-K4 and the gi’s and hi’s represent integrals as defined below.
Some numerical solvers (e.g., SOPHT) have limitations to the size of the numbers which they may use. To

avoid this limitation, the T 3 may be taken into the integral by defining θi = τiT
3 and then rewriting the integrals

in (3.26) as

h1 = g1T
3 =

∫ TD/T

0

θp
x4ex

(ex − 1)2
dx, h2 = g2 =

∫ TD/T

0

θp

θp,n

x4ex

(1 − ex)2
dx,

h3 =
g3

T 3 =
∫ TD/T

0

θp

θp,nθp,r

x4ex

(1 − ex)2
dx,

where

1
θp

=
1

θp,n
+

1
θp,r

=
1

θp,n
+

(∑
i

1
θp,r,i

)

= bnx +
(

2 × bpx
4 + bux2 +

bb

L

)
,

where TD = 596 K, bn = 3.181 × 103 1/K3-s, bp = 3.596 × 101 1/K3-s, bu = 1.079 × 104 1/K3-s, bb =
2.596 × 10−4 m/K3-s.

OBJECTIVE:
Use a solver to plot kp versus grain size, L, for 10−9 ≤ L ≤ 10−4 m.

SOLUTION:
Using a solver such as SOPHT, the integrations are performed numerically. SOPHT is a differential solver,

and therefore the integrals must be transformed into their associated differential forms. For example, the integral

h1 = g1T
3 =

∫ TD/T

0

θp
x4ex

(ex − 1)2
dx

is transformed to the differential form

dh1

dx
= θp

x4ex

(ex − 1)2
.

Since the lower limit of the integral is zero, the solver can then be used to solve for h1(x) with the final desired
answer being h1 = h1(x = TD/T ).

The source code using SOPHT is then
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h1’=dh1dx
h2’=dh2dx
h3’=dh3dx

x=t

L=1e-2 //This is manually changed

bn=3.181e3
bu=1.079e4
bb=2.596e-4
bpv=3.596e1
bk=2.240e5

kern=(xˆ4*exp(x))/(exp(x)-1)ˆ2

ithetap=1/theta p
ithetapn=1/theta pn
ithetapr=1/theta pr

ithetap=ithetapn+ithetapr
ithetapn=bn*x
ithetapr=ithetau+ithetab+ithetapv
ithetau=bu*xˆ2
ithetab=bb/L
ithetapv=2*(bpv*xˆ4)

dh1dx=theta p*kern
dh2dx=theta p/theta pn*kern
dh3dx=theta p/theta pn/theta pr*kern

k=bk*(h1+h2ˆ2/h3)

Note that SOPHT solves initial condition differential equations using t as the independent variable. Here t
has been equated to our x. Each execution of SOPHT at different input values of L must be done for a range of
x = 0 up to xD = TD/T . Note that if the initial conditions for t (i.e., x) or h3 are equal to zero, there will be a
division by zero in the first iterations of the solver execution resulting in an execution error. To avoid this, initial
conditions of 1× 10−10 were used for t (i.e., x) and h3, initial conditions of zero were used for h1 and h2, and the
iteration was run for 1,000 steps from a start of t = 1 × 10−10 to an end of t = xD = TD/T = 1.987.

Figure Pr.3.8 shows the results. Note that for L ≤ 1µm, the effect of the boundary scattering becomes no-
ticeable.

L, m

0.1

1

10

10−10 10−8 10−6 10−4 10−2 1

Alumina (Al2O3)
Single Crystal

T = 300 K

k p
, W

/m
-K

Figure Pr.3.8 Variation of alumina lattice thermal conductivity with respect to crystal dimension.

COMMENT:
Note that 1 Å = 10−10 m = 0.1 nm and as the lattice constant lm = 0.3493 nm (Table 3.1) is reached,

this continuum treatment of the lattice vibration will no longer be valid and a direct simulation (e.g., molecular
dynamic simulation) is needed.
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PROBLEM 3.9.FUN.S

GIVEN:
For thin film deposited on surfaces, the thermal conductivity of the film becomes film-thickness dependent,

if the film thickness L is near or smaller than the heat-carrier, mean-free path. Consider a ceramic, amorphous
silicon dioxide (SiO2, also called silica) where the heat carriers are phonons. This film-thickness dependence of
the thermal conductivity may be approximated as

k =
k(L � λp)

1 +
4
3

λp

L

,

where k(L � λp) is the bulk (or size-independent) thermal conductivity, and λp is the phonon mean-free path.
The reduction in the thermal conductivity (as λp/L increases) is due to the scattering of the phonons at the

boundaries of the thin film.

OBJECTIVE:
Using Tables 3.1 and C.17, plot the variation of k for amorphous silica for 0.6 ≤ L ≤ 6 nm, for T = 293 K.

SOLUTION:
From Table 3.1, we have

SiO2 : λp = 0.6 nm at T = 293 K, Table 3.1.

From Table C.17, we have

SiO2 : k(L � λp) = 1.38 W/m-K Table C.17.

We note that for λp/L = 0.6(nm)/0.6(nm) = 1, we have

k(λp/L = 1) =
1.38(W/m-K)

1 +
4
3
× 1

= 0.5914 W/m-K.

For λp/L = 0.6(nm)/6(nm) = 0.1, we have

k(λp/L = 0.1) =
1.38(W/m-K)

1 +
4
3
× 0.1

= 1.218 W/m-K.

The variation of k as a function of λp/L is shown in Figure Pr.3.9.

k (�p / L   0)

k 
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/  L
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/m
-K

�p / L
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0.276

0.552

0.828

Silica
T = 293 K
�p = 0.6 nm

1.104

1.380

0 0.2 0.4 0.6 0.8 1.0

Figure Pr.3.9 Predicted variation of the thermal conductivity of a thin film, amorphous SiO2 layer as a function of λp

divided by the film thickness.

COMMENT:
Note that 0.6 nm = 6 Å and this means that the mean-free path of the phonon for silicon is only a few lattice

lengths. Also note that this conductivity is along the film thickness. The conductivity along with the film is not
the same and it is less affected by the film thickness.
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PROBLEM 3.10.FUN

GIVEN:
The effective thermal conductivity 〈k〉 is used to describe the conductivity of porous solids (a fluid-solid

composite). In many applications requiring a large surface area for surface convection Aku, such as in heat
storage in solids, packed bed of particles are used. For example, spherical particles are packed randomly or in an
ordered arrangement (e.g., simple, body-centered or face-centered, cubic arrangement). Figure Pr.3.10(a) shows
a simple (also called square-array) cubic arrangement of particles (porosity ε = 0.476). Due to their weight or by
a contact pressure pc, these elastic particles deform and their contact area changes, resulting in a change in the
effective thermal conductivity 〈k〉.

For spheres having a uniform radius R, a Young modulus of elasticity Es, a Poisson ratio νP, and a conductivity
ks, the effective conductivity for the case negligible fluid conductivity (kf = 0) and subject to contact pressure
pc is predicted as

〈k〉
ks

= 1.36
[
(1 − ν2

P)pc

Es

]1/3

.

For aluminum, Es = 68 GPa, νP = 0.25, ks = 237 W/m-K.
For copper (annealed), Es = 110 GPa, νP = 0.343, ks = 385 W/m-K.
For magnesium (annealed sheet), Es = 44 GPa, νP = 0.35, ks = 156 W/m-K.

SKETCH:
Figure Pr.3.10(a) shows the particle arrangements, the contact pressure, the equivalent circuit, and the effective

thermal conductivity 〈k〉.

pc

Ak

qk

qk

qk

Solid Modulus of Elasticity, Es
Young's Modulus, νp
Conductivity, ks

(a) Packed Bed of Spheres in
Square Array Arrangement

(b) Effective Conductivity,  k 

T1 T1

T2 T2

L
kf = 0

Contact
Pressure

Qk,1-2 

Rk =
L

Ak  k

Figure Pr.3.10(a) Packed bed of spherical particles with a simple cubic arrangement and a contact pressure pc. (b) The
effective thermal conductivity 〈k〉.

OBJECTIVE:
Plot 〈k〉 versus pc for 105 ≤ pc ≤ 109 Pa for packed beds of (i) aluminum, (ii) copper, and (iii) magnesium

spherical particles.

SOLUTION:
Figure Pr.3.10(b) shows the results. Copper has the highest effective conductivity 〈k〉 at any given pressure.

COMMENT:
Note that relatively high pressures are considered here (105 Pa = 14.7 psi = 1 atm). Similar results are

obtained by sintering the particles.
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Figure Pr.3.10(b) Variation of the effective conductivity with respect to contact pressure for aluminum, copper, and
magnesium.
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PROBLEM 3.11.FUN.S

GIVEN:
The crystalline lattice thermal conductivity kp is given by (3.26) as

kp = (48π2)1/3 1
lm

k3
B

h2
P

T 3

TD

[
g1(f, T, τp) +

g2
2(f, T, τp, τp,n)

g3(f, T, τp, τp,n, τp,r)

]
,

The integrals gn, gr,1, and gr,2 and the relaxation times τp,n, τp,r, and τp are defined as

g1 =
∫ TD/T

0

τp
x4ex

(ex − 1)2
dx, g2 =

∫ TD/T

0

τp

τp,n

x4ex

(ex − 1)2
dx, g3 =

∫ TD/T

0

τp

τp,nτp,r

x4ex

(ex − 1)2
dx,

1
τp

=
1

τp,n
+

1
τp,r

,
1

τp,n
= an

2πkB

hP
T 5x,

1
τp,r

=
∑

i

1
τp,r,i

,

where x = (hPf)/(2πkBT ), an is a material constant, and the resistive mechanisms in the summation for tau−1
p,r

include the three-phonon umklapp processes, τp,r,u, boundary scattering, τp,r,b, point defect scattering, τp,r,p,
lattice vacancy scattering, τp,r,v, and phonon-electron scattering, τp,r,p-e, among others [6]. For alumina (Al2O3),
the phonon-electron scattering is negligible compared to the other resistive mechanisms, and for simplicity is not
considered here. The overall resistive time constant, due to these resistive mechanisms, is then given by

1
τp,r

=
1

τp,r,p
+

1
τp,r,v

+
1

τp,r,u
+

1
τp,r,b

= A

(
2πkB

hP

)4

T 4x4 + A

(
2πkB

hP

)4

T 4x4 + au

(
2πkB

hP

)2

T 3e−TD/(αT )x2 +
up

L
,

where A, au, and α are also material constants, up is the mean phonon velocity, and L is a characteristic length
scale of the crystal or grain boundaries. Note that vacancies and point defects behave identically as resistance
mechanisms.

Consider a single alumina crystal with linear dimension L = 4.12 mm, and the empirically determined material
constants, an = 2.7 × 10−13 K−4, A = 4.08 × 10−46 s3, au = 1.7 × 10−18 K−1, and α = 2. Also from Table 3.1,
we have TD = 596 K, lm = 0.35 nm, and up = 7,009 m/s.

Substituting these values into the expression for the total phonon relaxation time constant, we have

1
τp

=
1

τp,n
+ (

1
τp,r

)

= bnT 5x + (2 × bpT
4x4 + buT 3e−298/T x2 + bb),

where these new bi constants combine the above ai constants with the other coefficients and are bn = 3.535×10−2

1/K5-s, bp = 1.199 × 10−1 1/K4-s, bu = 2.914 × 104 1/K3-s, and bb = 1.701 × 106 1/s.
Then the expression for the lattice thermal conductivity becomes

kp = bkT 3

[
g1(x, T ) +

g2
2(x, T )

g3(x, T )

]
,

where bk = 2.240 × 105 W/m-K4.

OBJECTIVE:
(a) The integrals in the expression for the crystalline lattice thermal conductivity must be evaluated for a given
temperature. For various temperatures, between T = 1 and 400 K, use a solver and determine kp, and then plot
kp versus T .
(b) Compare the result with typical kp vs. T curves for crystalline nonmetals, as shown in Figure 3.7(c).
Hint: To avoid overflow errors that might occur depending on the solver, factor the T 3 into the brackets containing
the gi integrals (i.e., into the bi constants) before solving.
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SOLUTION:
(a) Using a solver, such as SOPHT, the integrations are performed numerically. SOPHT is a differential solver,
and therefore the integrals must be transformed into their associated differential forms. For example, the integral

g1 =
∫ TD/T

0

τp
x4ex

(ex − 1)2
dx

is transformed to a differential as

dg1

dx
= τp

x4ex

(ex − 1)2
.

Since the lower limit of the integral is zero, the solver can then be used to solve for g1(x) with the final desired
answer being g1 = g1(x = TD/T ).

The source code using SOPHT is then

g1’=dg1dx
g2’=dg2dx
g3’=dg3dx

x=t

Temp=1 //This is manually changed

//Factor in Tempˆ3 from expression for k
//Note b’s are in 1/tau’s
bn=5.535e-2/Tempˆ3
bu=2.914e4/Tempˆ3
bb=1.701e6/Tempˆ3
bpv=1.199e-1/Tempˆ3
bk=2.240e5

kern=(xˆ4*exp(x))/(exp(x)-1)ˆ2

itaup=1/tau p
itaupn=1/tau pn
itaupr=1/tau pr

itaup=itaupn+itaupr
itaupn=bn*Tempˆ5*x
itaupr=itauu+itaub+itaupv
itauu=bu*Tempˆ3*exp(-298/Temp)*xˆ2
itaub=bb
itaupv=2*(bpv*Tempˆ4*xˆ4)

dg1dx=tau p*kern
dg2dx=tau p/tau pn*kern
dg3dx=tau p/tau pn/tau pr*kern

//Tempˆ3 factored in above
k=bk*(g1+g2ˆ2/g3)

Note that SOPHT solves initial condition differential equations using t as the independent variable. Here t
has been equated to our x. Each execution of SOPHT at different input values of T = Temp must be done for a
range of x = 0 up to xD = TD/T . Note that if the initial conditions for t (i.e., x) or g3 are equal to zero, there
will be a division by zero in the first iterations of the solver execution resulting in an execution error. To avoid
this, initial conditions of 1× 10−10 were used for t (i.e., x) and g3, initial conditions of zero were used for g1 and
g2, and the iteration was run for 1,000 steps from a start of t = 1 × 10−10 to and end of t = xD = TD/T . For
each different input value of T , the correct end value of the iteration of t = t(T ) must be entered.

Note that for small T (i.e., T < 20 K), x becomes large (i.e., x = t > 30) and the numerator and denominator
of kern in the SOPHT program both become large and exceed the capability of the software. Plotting the gi’s
and the kp versus x will show that, for small T , the solution for these variables have already converged to near
constant values and that the iterations only need be run to an end of x = t = 25 or 30, instead of x = TD/T , to
obtain acceptable predictions.
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Figure Pr.3.11 Predicted variation of the lattice thermal conductivity with respect to temperature.

The results are plotted in Figure Pr.3.11 for several temperatures.
(b) We note that kp peaks around T = 27 K, where kp is about 6,543 W/m-K. Comparing to Figure 3.11(c),
the results are similar to those for sodium-fluoride, another nonmetal. Note the initial, sharp rise in the low-
temperature region were the interphonon scattering is not significant (i.e., τp,r,u → 0). The constants used here
slightly underpredict kp at T = 300 K, where the measured value given in Table 3.1 is kp = 36 W/m-K and the
predicted value is kp = 27.6 W/m-K.

COMMENT:
Note that the boundary scattering will only be significant when T is small (since all other scattering mech-

anisms have a strong, slightly nonlinear dependence on T ). This boundary scattering is addressed in Problem
3.8.FUN.
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PROBLEM 3.12.FUN

GIVEN:
Similar to Example 3.6, consider the internal surface of the three surfaces to be covered with an insulation

layer of thickness l = 5 cm and thermal conductivity k = 0.1 W/m-K. The outside surface is at temperature
T1 = 90◦C and the temperature at the inside surface of the insulation is T2 = 40◦C. The surfaces have an outside
area A1 = 1 m2 and are of the geometries shown in Figure Pr.3.12, i.e., (a) a planar surface with area A1 = LyLz,
(b) a cylinder with area A1 = 2πR1Ly and length Ly = 1 m, and (c) a sphere with surface area A1 = 4πR2

1.

SKETCH:
Figure Pr.3.12 shows the three surfaces to be lined (inside) by insulation.

Ly

R1

R1

A1

(b) Cylindrical Surface (c) Spherical Surface

l
l = Lx

l

A1

T1
T2

Ly

(a) Plane Surface

Lz

A1

T1

T2

T2

T1

Figure Pr.3.12 (a), (b), and (c) Three geometries to be lined (inside) with insulation.

OBJECTIVE:
For each of these geometries, calculate the rate of heat loss through the vessel surface Qk,2−1(W). Compare

your results with the results of Example 3.6 and comment on the differences among the answers. Neglect the
heat transfer through the ends (i.e., assume a one-dimensional heat transfer).

SOLUTION:
The one-dimensional conduction heat flow rate is given by

Qk,2−1 =
T2 − T1

Rk,1-2
.

(a) For a plane surface with an area A1 = LyLz and thickness l,

Rk,1-2 =
l

Akk
=

0.05(m)
1(m2) × 0.1(W/m-K)

= 0.5◦C/W

Qk,2-1 =
T2 − T1

Rk,1-2
=

40(◦C) − 90(◦C)
0.5(◦C/W)

= −100 W.

(b) For a cylinder with an external radius R1 = A1/2πLy, length Ly = 1 m, and an internal radius R2 = R1 − l

Rk,1-2 =
ln(R1/R2)

2πkLy
=

ln[( 1
2π )(m)/( 1

2π − 0.05)(m)]
2π × 0.1(W/m-K) × 1(m)

= 0.600◦C/W

Qk,2-1 =
T2 − T1

Rk,1-2
=

40(◦C) − 90(◦C)
0.600(◦C/W)

= −83.3 W.
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(c) For a sphere with an external radius R1 = (A1/4π)1/2 and an internal radius R2 = R1 − l

Rk,1-2 =
1/R2 − 1/R1

4πk
=

1/[(4π)−1/2 − 0.05] − 1/(4π)−1/2

4π × 0.1(W/m-K)
= 0.608◦C/W

Qk,2-1 =
T2 − T1

Rk,1-2
=

40(◦C) − 90(◦C)
0.608(◦C/W)

= −82.3 W.

(d) Contrary to results obtained from placing insulation on the outside surface, the rate of heat transfer decreases
as the geometry changed from the flat plate to the cylinder and the sphere. The increase in curvature for a
cylinder or a sphere, as compared to a flat plate, decreases the available area on the inside surface, for heat
transfer, as the radius decreases. As the heat transfer rate Qk,2-1(W) is proportional to the heat transfer area
Ak, a reduction on the available area for heat transfer causes a reduction on the heat transfer rate.

COMMENT:
For a given l, as the axis of a cylinder or the center of a sphere is approached, the area for heat transfer

decreases, resulting in a large-resistance to heat flow. The heat transfer rate Qk,2-1 is negative because T2 < T1.
The heat transfer rate Qk,1-2 has the same magnitude but the opposite sign. The negative sign is mostly a matter
of convention and the notation Qk,i-j indicates the heat transfer rate from temperature Ti to temperature Tj .
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PROBLEM 3.13.FUN

GIVEN:
Consider an infinite plane wall (called a slab) with thickness L = 1 cm, as shown in Figure Pr.3.13.

The thermophysical properties of copper and silica aerogel are to be evaluated at 25◦C and 1 atm [Table C.14
and Figure 3.13(a)].

SKETCH:
Figure Pr.3.13 shows the one-dimensional, steady-state conduction across a slab.

L

Ak

T2

qk,1-2

T1

Figure Pr.3.13 One-dimensional conduction across a slab.

OBJECTIVE:
(a) Calculate the conduction thermal resistance AkRk,1−2[◦C/(W/m2)], if the wall is made of copper.
(b) Calculate the conduction thermal resistance AkRk,1−2[◦C/(W/m2)], if the wall is made of silica aerogel.
(c) If the heat flux through the wall is qk,2-1 = 1,000 W/m2 and the internal wall temperature is T1 = 60◦C,
calculate the external wall temperature T2 for the two materials above.
(d) Express the results for items (a) and (b) in terms of the Rk-value.

SOLUTION:
(a) From Table C.14, the thermal conductivity of pure copper at 300 K is k = 401 W/m-K. The conduction
thermal resistance is

AkRk,1-2 =
L

k
=

0.01(m)
401(W/m-K)

= 2.5 × 10−5 ◦C/(W/m2).

(b) From Figure 3.13(a), at p = 1 atm, the thermal conductivity of silica aerogel at 300 K is k = 0.0135 W/m-K.
This value is for conditions close to our specified conditions of p = 1 atm and T = 298 K, therefore this would be
a better value to use than one linearly extrapolated from Table C.15. The conduction thermal resistance is

AkRk,1-2 =
L

k
=

0.01(m)
0.0135(W/m-K)

= 7.4 × 10−1 ◦C/(W/m2).

(c) The rate of heat flow per unit area through the wall qk,1-2(W/m2) is

qk,1-2 =
Qk,1-2

Ak
=

T1 − T2

AkRk,1-2
.

For a heat flow per unit area of qk,1-2 = 1,000 W/m2, an internal wall temperature of T2 = 60◦C, the external
wall temperature T1 for each of the two cases above is
(i) copper

T1 = T2 + qk,1-2(AkRk,1-2) = 60(◦C) + 1,000(W/m2) × 2.5 × 10−5[◦C/(W/m2)] = 60.02◦C,
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(ii) silica aerogel

T1 = T2 + qk,1-2(AkRk,1-2) = 60(◦C) + 1,000(W/m2) × 7.4 × 10−1[◦C/(W/m2)] = 800◦C.

(d) The Rk-value for each of the situations above is
(i) copper

Rk-value =
L

Akk
=

0.0328(ft)
1(ft2) × 231.9(Btu/hr-ft-◦F)

= 1.4 × 10−4 ◦F/(Btu/hr),

(ii) silica aerogel

Rk-value =
L

Akk
=

0.0328(ft)
1(ft2) × 0.00781(Btu/hr-ft-◦F)

= 4.2◦F/(Btu/hr).

COMMENT:
The conversion factor for thermal conductivity from W/m-K to Btu/hr-ft-◦F is obtained from Table C.1(a).
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PROBLEM 3.14.FAM

GIVEN:
A furnace wall (slab) is made of asbestos (ρ = 697 kg/m3) and has a thickness L = 5 cm [Figure Pr.3.14(i)].

Heat flows through the slab with given inside and outside surface temperatures. In order to reduce the heat
transfer (a heat loss), the same thickness of asbestos L is split into two with an air gap of length La = 1 cm
placed between them [Figure Pr.3.14(ii)].

Use Tables C.12 and C.17 to evaluate the conductivity at 273 K or 300 K.

SKETCH:
Figure Pr.3.14 shows the insulating furnace wall with and without an air gap.

L L/2 L/2La

T2T1

(i) Asbestos Wall (ii) Asbestos Wall with Air Gap

T2T1

qk,1-2 qk,1-2

Air AsbestosAsbestos

Figure Pr.3.14 A furnace wall. (i) Insulated without an air gap. (ii) With an air gap.

OBJECTIVE:
Determine how much the heat flow out of the wall would decrease (show this as a percentage of the heat flow

without the air gap).

SOLUTION:
The conduction heat flux through the wall is

Akqk,1-2 =
T1 − T2

AkRk,1-2
.

The conduction resistance for a plane wall is

AkRk,1-2 =
L

ks
.

From Table C.17, for asbestos with ρ = 697 kg/m3 at T = 273 K, ks = 0.23 W/m-K, and the conduction
resistance becomes

AkRk,1-2 =
0.05(m)

0.23(W/m-K)
= 0.217 K/(W/m2).

For the composite wall, the conduction heat flow through the wall is

Akqk,1-2 =
T1 − T2

Ak(Rk,Σ)1-2
,

where

Ak(Rk,Σ)1-2 =
L/2
ks

+
La

ka
+

L/2
ks

=
L

ks
+

La

ka
.

From Table C.12, for air at T = 300 K, ka = 0.0267 W/m-K, and the equivalent conduction resistance becomes

AkRk,Σ,1-2 = 0.217[K/(W/m2)] +
0.01(m)

0.0267(W/m-K)
= 0.591 K/(W/m2).
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The percentage of reduction of the heat flow through the wall is

(Qk,1-2)i − (Qk,1-2)ii

(Qk,1-2)i

× 100 =

1
AkRk,1-2

− 1
AkRk,Σ,1-2

1
AkRk,1-2

=

1
0.217[K/(W/m2)]

− 1
0.591[K/(W/m2)]

1
0.217[K/(W/m2)]

× 100% = 63.3%.

The heat flow rate through the composite wall is 63.3% lower than the heat flow through the solid wall.

COMMENT:
Here the air-gap resistance is in series with the wall resistance. This is the most effective use of the air gap.

When the air-gap resistance is placed in parallel, it is not as effective.
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PROBLEM 3.15.FUN

GIVEN:
A low thermal-conductivity composite (solid-air) material is to be designed using alumina as the solid and

having the voids occupied by air. There are three geometric arrangements considered for the solid and the fluid.
These are shown in Figure Pr.3.15. For all three arrangements , the fraction of volume occupied by the fluid (i.e.,
porosity) ε is the same. In the parallel arrangement, sheets of solid are separated by fluid gaps and are placed
parallel to the heat flow direction. In the series arrangement, they are placed perpendicular to the heat flow. In
the random arrangement, a nonlayered arrangement is assumed with both solid and fluid phase continuous and
the effective conductivity is given by (3.28).

SKETCH:
Figure Pr.3.15 shows the three geometries for solid-fluid arrangements.

x

T1

Qk,1-2(W)

T2
Solid

Fluid

Parallel Arrangement

Composite Insulation

Series Arrangement

Random Arrangement

Solid

Fluid

Solid

FluidL

Figure Pr.3.15 Three solid-fluid arrangements for obtaining a low
thermal conductivity composite.

OBJECTIVE:
(a) Show that the effective thermal conductivity for the parallel arrangement is given by

〈k〉 = kf ε + ks(1 − ε)

and that, for the series arrangement, the effective thermal conductivity is given by

1
〈k〉 =

ε

kf
+

(1 − ε)
ks

.

The porosity ε is defined as the volume occupied by the fluid divided by the total volume of the medium, i.e.,

ε =
Vf

Vf + Vs
.

Also note that 1 − ε = Vs/(Vf + Vs).
(b) Compare the effective conductivity for the three arrangements for ε = 0.6 using the conductivity of alumina
(Table C.14) and air (Table C.22) at T = 300 K.
(c) Comment regarding the design of low-conductivity composites.
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SOLUTION:
(a) (i) Series Arrangement:
The equivalent thermal resistance for resistances arranged in series is given by

Rk,Σ =
n∑

i=1

Rk,i.

For n layers of fluid and solid placed in series, the summation becomes

Rk,Σ = n(Rk,f + Rk,s).

The solid and fluid resistances are

Rk,f =
Lf

kfAf
, Rk,s =

Ls

ksAs
.

The equivalent resistance can be expressed in terms of the effective thermal conductivity 〈k〉 as

Rk,Σ =
L

〈k〉A.

From the equations above and noting that Af = As = A and L = n(Lf + Ls), we obtain

Lf + Ls

〈k〉 =
Lf

kf
+

Ls

ks
,

or rearranging, we have
1
〈k〉 =

(
Lf

Lf + Ls

)
1
kf

+
(

Ls

Lf + Ls

)
1
ks

.

The porosity ε is defined as

ε =
Vf

Vf + Vs
.

The volumes of the fluid and solid phases can be rewritten as Vf = nAfLf and Vs = nAsLs, respectively. Then
noting that Af = As, the porosity can be rewritten as

ε =
Lf

Lf + Ls
.

Also, note that

Vs

Vf + Vs
=

Vs + Vf − Vf

Vf + Vs
=

Vs + Vf

Vf + Vs
− Vf

Vf + Vs
= 1 − ε

and using the expressions for the volumes
Ls

Lf + Ls
= 1 − ε.

Therefore, substituting we have

1
〈k〉 =

ε

kf
+

1 − ε

ks
.

(ii) Parallel Arrangement:
The equivalent thermal resistance for resistances arranged in parallel is

1
Rk,Σ

=
n∑

i=1

1
Rk,i

.

For n layers of fluid and solid arranged in parallel, we have

1
Rk,Σ

= n

(
1

Rf
+

1
Rs

)
.
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As before, the solid and fluid resistances are

Rk,f =
Lf

kfAf
, Rk,s =

Ls

ksAs

and the equivalent resistance can be expressed in terms of the effective thermal conductivity 〈k〉 as

Rk,Σ =
L

〈k〉A.

For the parallel arrangement Lf = Ls = L and A = n(Af + As). Then we have

〈k〉(Af + As) = kfAf + ksAs,

which can be rearranged as

〈k〉 =
(

Af

Af + As

)
kf +

(
As

Af + As

)
ks.

The volumes of the fluid and solid phases, as before, can be rewritten as Vf = nAfLf and Vs = nAsLs. Then
noting that Lf = Ls, we can write

ε =
Af

Af + As
, 1 − ε =

As

As + Af
.

Therefore, from the equations above, we have

〈k〉 = εkf + (1 − ε)ks.

(b) The thermal conductivities of alumina and air are

alumina: T = 300 K, ks = 36 W/m-K Table C.14

air: T = 300 K, kf = 0.0267 W/m-K Table C.22.

For each of the arrangements, for ε = 0.6, the effective thermal conductivities 〈k〉 are
Series:

1
〈k〉 =

ε

kf
+

1 − ε

ks
=

0.6
0.0267

+
0.4
36

⇒ 〈k〉 = 0.044 W/m-K.

Parallel:

〈k〉 = εkf + (1 − ε)ks = 0.6 × 0.0267 + 0.4 × 36 = 14.4 W/m-K.

Random: Using (3.28)

〈k〉
kf

=
(

ks

kf

)0.280−0.757 log(ε)−0.057 log(ks/kf )

,

we obtain

〈k〉 = 0.0267
(

36
0.0267

)0.280−0.757 log(0.6)−0.057 log(36/0.0267)

= 0.19 W/m-K.

(c) The series arrangement leads to the lowest thermal conductivity possible for a medium composed of solid and
fluid thermal resistances and for a given porosity. In the design of an insulating material, one should attempt to
approach that limit.

COMMENT:
The series resistance allows for the high resistance to dominate the heat flow path.
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PROBLEM 3.16.FAM

GIVEN:
During hibernation of warm-blooded animals (homoisotherms), the heart beat and the body temperature are

lowered and in some animals the body waste is recycled to reduce energy consumption. Up to 40% of the total
weight may be lost during the hibernation period. The nesting chamber of the hibernating animals is at some
distance from the ground surface, as shown in Figure Pr.3.16(a)(i). The heat transfer from the body is reduced
by the reduction in the body temperature T1 and by the insulating effects of the body fur and the surrounding air
(assumed stagnant). A simple thermal model for the steady-state, one-dimensional heat transfer is given in Figure
Pr.3.16(a)(ii). The thermal resistance of the soil can be determined from Table 3.3(a). An average temperature
T2 is used for the ground surrounding the nest. The air gap size Ra − Rf is an average taken around the animal
body.

R1 = 10 cm, Rf = 11 cm, Ra = 11.5 cm, T1 = 20◦C, T2 = 0◦C.
Evaluate air properties at T = 300 K, use soil properties from Table C.15, and for fur use Table C.15 for hair.

SKETCH:
Figure Pr.3.16(a) shows a simple thermal model with conduction heat transfer through the fur, air, and

surrounding ground.

Ra

r � �, T = T2

Rf

Woodchuck Body

Surface, T2

Air, ka

Fur, kf

Soil, ks

L

Nest
Chamber

Main
Entrance

Side Entrance

(i) Diagram of Woodchuck Home (ii) Simple Thermal Model

R1

T1

Sr,c

Figure Pr.3.16(a) Conduction heat transfer from a warm-blooded animal during hibernation.
(i) Diagram of woodchuck home. (ii) Thermal model.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine Q1-2 for (i) L = 2.5Ra, and (ii) L = 10Ra.

SOLUTION:
(a) Figure Pr.3.16(b) shows the thermal circuit diagram, starting from the body node T1 and after encountering
the resistances Rk,1-f , Rk,f-a, Rk,a-2, node T2, which is the far-field thermal condition, is reached.

Rk,a-2 Rk,f-a Rk,1-f

Q1-2

T2

T1

Sr,c

Figure Pr.3.16(b) Thermal circuit diagram.

(b) From Figure Pr.3.16(b), we have

Q1-2 =
T1 − T2

Rk,1-f + Rk,f-a + Rk,a-2
.
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From Table 3.2, we have

Rk,1-f =

1
R1

− 1
Rf

4πkf

Rk,f-a =

1
Rf

− 1
Ra

4πka
.

From Table 3.3(a), we have

Rk,a-2 =
1 − Ra

2L
4πksRa

for L > 2Ra.

The thermal conductivities are

kf = 0.036 W/m-K Table C.15

ka = 0.0267 W/m-K Table C.22

ks = 0.52 W/m-K Table C.15.

Using the numerical values, we have

Rk,1-f =

1
0.10(m)

− 1
0.11(m)

4π × 0.036(W/m-K)
= 2.010 K/W

Rk,f-a =

1
0.11(m)

− 1
0.115(m)

4π × 0.0267(W/m-K)
= 1.178 K/W

(i) Rk,a-2 =
1 − 1

5
4π × 0.52(W/m-K) × 0.115(m)

= 1.065 K/W

(ii) Rk,a-2 =
1 − 1

20
4π × 0.52(W/m-K) × 0.115(m)

= 1.264 K/W.

Then

(i) Q1-2 =
(20 − 0)(K)

(2.010 + 1.178 + 1.065)(K/W)
= 4.703 W

(ii) Q1-2 =
(20 − 0)(K)

(2.010 + 1.178 + 1.264)(K/W)
= 4.492 W.

There is only a slightly larger Q1-2 for the nest closer to the surface.

COMMENT:
Note that the conductivity of fur we used is for the direction perpendicular to the fibers and this is lower

than what is expected along the fiber (because the fibers have a higher conductivity than the air filling the space
between the fibers). Also note that for L 
 Ra, the results of Tables 3.2 and 3.3(a), for Rk, are identical (as
expected).
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PROBLEM 3.17.FAM

GIVEN:
A spherical aluminum tank, inside radius R1 = 3 m, and wall thickness l1 = 4 mm, contains liquid-vapor

oxygen at 1 atm pressure (Table C.26 for T1 = Tlg). The ambient is at a temperature higher than the liquid-gas
mixture. Under steady-state, at the liquid-gas surface, the heat flowing into the tank causes boil off at a rate
Ṁlg = Ṁg. In order to prevent the pressure of the tank from rising, the gas resulting from boil off is vented
through a safety valve. This is shown in Figure Pr.3.17(a). Then, to reduce the amount of boil-off vent Ṁg(kg/s),
insulation is added to the tank. First a low pressure (i.e., evacuated) air gap, extending to location r = R2 = 3.1 m,
is placed where the combined conduction-radiation effect for this gap is represented by a conductivity ka = 0.004
W/m-K. Then a layer of low-weight pipe insulation (slag or glass, Table C.15) of thickness l2 = 10 cm is added.
The external surface temperature is kept constant at T2 = 10◦C.

Evaluate the thermal conductivity of aluminum at T = 200 K.

SKETCH:
Figure Pr.3.17(a) shows a tank containing cryogenic liquid oxygen and having heat leaking into the tank from

its higher ambient temperature.

Cryogenic Tank (Liquid O2)

Vented Gas, Mg

Tank Pressure, pg

Insulation

Aluminum

Low-Pressure Air,
Combined Radiation-
Conduction Effect is
Shown with ka

Outside Surface
Temperature, T2

Gaseous O2

Liquid O2

Liquid Gas
Phase Change

Heat Leak into Tank

Qk,2-1

T1 = Tlg (at pg)

Slg
r

R1
l1

l2

R2

1

1'

2

2'

Figure Pr.3.17(a) A tank containing a cryogenic liquid and having heat leak to it from a higher temperature ambient.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the rate of heat leak Qk,2−1.
(c) Determine the amount of boil off Ṁg.
(d) Determine the temperature at the inner-surface (r = R2) of the insulation T2.

SOLUTION:
(a) The thermal circuit diagram for this heat flow is shown in Figure Pr.3.17(b). The temperature at the inner
surface of the insulation layer is labeled as T2′ , and the outer surface of the aluminum shell as T1′ .

(b) From the diagram, we have

Qk,2-1 =
T2 − T1

Rk,1-1′ + Rk,1′-2′ + Rk,2′-2
.
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Q1 = 0

Qk,2-1
Slg = − Mlg ∆hlg

Rk,1-1'
T1 = Tlg

A1 = Alg
Aluminum

Shell
Rk,1'-2'T1' T2' T2

Air Shell
Rk,2'-2

Insulation
Shell

Figure Pr.3.17(b) Thermal circuit diagram.

From Table 3.2, we have for a spherical shell

Rk,1-1′ =

1
R1

− 1
R1 + l1

4πkAl

Rk,1′-2′ =

1
R1 + l1

− 1
R2′

4πka

Rk,2′-2 =

1
R2′

− 1
R2′ + l2

4πki
.

From Table C.26, we have

T1 = Tlg = 90.18 K
∆hlg = 2.123 × 105 J/kg Table C.26.

From Table C.14, we have (at T = 200 K)

kAl = 237 W/m-K Table C.14.

From Table C.15, we have (for low weight pipe insulation)

ki = 0.033 W/m-K Table C.15.

Using the numerical values, we have

Rk,1-1′ =

1
3(m)

− 1
(3 + 0.004)(m)

4π × 237(W/m-K)
= 1.490 × 10−7 K/W

Rk,1′-2′ =

1
(3 + 0.004)(m)

− 1
3.1(m)

4π × 0.004(W/m-K)
= 2.052 × 10−1 K/W

Rk,2′-2 =

1
3.1(m)

− 1
(3.1 + 0.1)(m)

4π × 0.033(W/m-K)
= 2.432 × 10−2 K/W.

The largest resistance is that of low-pressure air.
Then

Qk,2-1 =
[(10 + 273.15) − 90.18](K)

(1.490 × 10−7 + 2.052 × 10−1 + 2.432 × 10−2)(K/W)

=
192.97

2.295 × 10−1 (W) = 8.408 × 102 W.

(c) The boil off is determined from the energy equation for the surface T1. With no other surface heat transfer
for surface node T1, we have (3.87) as

Q1 = Qk,2-1 = −Ṡlg energy equation for node T1,
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where from Table 2.1,
Ṡlg = −ṁlgAlg∆hlg energy conversion by phase change.

There is a minus sign because heat is absorbed during evaporation. Then from the above two equations, we have

Ṁlg =
Qk,2-1
∆hlg

.

Using the numerical values, we have

Ṁlg =
8.408 × 102(W)

2.123 × 105(J/kg)
= 3.960 × 10−3 kg/s = 3.960 g/s.

(d) The temperature T2′ , as shown in Figure Pr.3.17(b), is found by the thermal circuit diagram, i.e.,

Qk,2-1 = Qk,2-2′ =
T2 − T2′

Rk,2′-2

or

T2′ = T2 − Qk,2-2′Rk,2′-2
= 10(◦C) − 8.408 × 102(W) × 2.432 × 10−2(◦C/W)
= 10(◦C) − 20.45(◦C) = −10.45◦C.

COMMENT:
This heat leak rate, Qk,2-1 = 840.8 W, is considered large. Additional insulation is required to reduce the

heat leak rate.
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PROBLEM 3.18.FAM

GIVEN:
A teacup is filled with water having temperature Tw = 90◦C. The cup is made of (i) porcelain (Table C.15),

or (ii) stainless steel 316. The cup-wall inside diameter is R and its thickness is L. These are shown in Figure
Pr.3.18(a). The water is assumed to be well mixed and at a uniform temperature. The ambient air is otherwise
quiescent with a far-field temperature of Tf,∞, and adjacent to the cup the air undergoes a thermobuoyant motion
resulting a surface-convection resistance Rku.

Tf,∞ = 20◦C, L = 3 mm, AkuRku = 10−3K/(W/m2).
Use L 
 R to approximate the wall as a slab and use Aku = Ak.

SKETCH:
Figure Pr.3.18(a) shows the cup wall, the uniform water temperature Tw, the far-field temperature Tf,∞, and

the surface convection resistance Rku.

R

Luf,�

Tf,�

Ts

AkuRku

Cup
Wall

(i) Porcelain
(ii) Stainless Steel 316

Tw

Thermobuoyant
Air Motion

g
Air

Figure Pr.3.18(a) A cup filled with hot water. The cup is made of (i) porcelain, or (ii) stainless steel 316. The ambient
air is otherwise quiescent with a thermobuoyant motion adjacent to the cup wall.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the cup outside surface temperature Ts for cases (i) and (ii).

SOLUTION:
(a) The thermal circuit diagram for the heat flowing through the cup wall is shown in Figure Pr.3.18(b).

RkuTf,� Ts Tw
Rk,w-s

Qw-�

Figure Pr.3.18(b) Thermal circuit diagram.

(b) To determine Ts, we note that the heat flows through the cup wall and the adjacent thermobuoyant-motion
resistance, as shown Figure Pr.3.18(b). Then

Qw-∞ =
Tw − Ts

Rk,w-s
=

Ts − Tf,∞
Rku

,

or solving for Ts, we have

Rku(Tw − Ts) + Rk,w-s(Tf,∞ − Ts) = 0

or

Ts =
RkuTw + Rk,w-sTf,∞

Rku + Rk,w-s
.
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Now, from Table 3.2, we have (for L 
 R)

Rk,w-s =
L

Akkw
.

Then using Aku = Ak, we have

Ts =
AkuRkuTw +

L

kw
Tf,∞

AkuRku +
L

kw

.

Now, from Tables C.15 and C.16, we have

(i) porcelain: kw = 1.5 W/m-K Table C.15

(ii) stainless steel 316: kw = 13 W/m-K Table C.16.

Determining Ts, we have

(i) Ts =
10−3[K/(W/m2)] × (90 + 273.15)(K) +

3 × 10−3(m)
1.5(W/m-K)

× (20 + 273.15)(K)

(10−3 + 3 × 10−3/1.5)[K/(W/m2)]

Ts =
(3.632 × 10−1 + 5.863 × 10−1)

3.000 × 10−3 = 316.5 K = 43.35◦C

(ii) Ts =
10−3[K/(W/m2)] × (90 + 273.15)(K) +

3 × 10−3(m)
13(W/m-K)

× (20 + 273.15)(K)

(10−3 + 3 × 10−3/13)[K/(W/m2)]

=
3.632 × 10−1 + 6.765 × 10−2

10−3 + 2.308 × 10−4 = 350.1 K = 76.92◦C.

COMMENT:
The temperature sensor at the surface of the human fingers would sense Ts = 43.35◦C as warm and tolerable

and Ts = 76.92◦C as hot and intolerable.

163



PROBLEM 3.19.FAM

GIVEN:
Gaseous combustion occurs between two plates, as shown in Figure Pr.3.19(a). The energy converted by

combustion Ṡr,c in the gas flows through the upper and lower bounding plates. The upper plate is used for
surface radiation heat transfer and is made of solid alumina (Table C.14). The lower plate is porous and is made
of silica (Table C.17, and include the effect of porosity). The porosity ε = 0.3 and the randomly distributed pores
are filled with air (Table C.22, use T = Ts,2). Each plate has a length L, a width w, and a thickness l. The
outsides of the two plates are at temperatures Ts,1 and Ts,2.

Ṡr,c = 104 W, Ts,1 = 1,050◦C, Ts,2 = 500◦C, L = 0.3 m, w = 0.3 m, l = 0.02 m.

SKETCH:
Figure Pr.3.19(a) shows combustion occurring between two plates, one plate is a conductor and the other an

insulator.

Plate 1 (Solid Alumina)
Radiant Heating Plate
Outside Temperature, Ts,1

Plate 2 (Porous Silica)
Insulating Plate
Outside Temperature, Ts,2l

Lw

Tg Sr,c
Uniform Gas
Temperature

Figure Pr.3.19(a) Combustion between two plates; one plate is a conductor
while the other is an insulator.

OBJECTIVE:
(a) Draw the steady-state thermal circuit diagram.
(b) Determine the effective conductivity of the lower plate.
(c) Determine the uniform gas temperature Tg.
(d) Determine the fraction of heat flow through each plate.

SOLUTION:
The gas temperature is spatially uniform and the inner walls of plates 1 and 2 are at Tg. There is 1-D con-

duction through the plates.

(a) The thermal circuit diagram is shown in Figure Pr.3.19(b).

Tg

Q1

Ts,1

Rk,g-1Qk,g-1

Ts,2

Rk,g-2Qk,g-2

Q2

Sr,c

.

Figure Pr.3.19(b) Thermal circuit diagram.

(b) The lower plate has a ε = 0.3 and consists of solid silica with randomly distributed pores filled with air. Since
the combustion is our source of heat, we expect Ts,2 to be the lowest temperature in plate 2. For lack of a more
appropriate value, we evaluate all the properties of the plate at this temperature. We also assume that the air
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occupying the pore space is in thermal equilibrium with the solid and thus evaluate the gas properties at this
temperature as well. Therefore, we have at Ts,2 = 500◦C = 773.15 K, (Tables C.17 and C.22)

ks = 1.38 W/m-K (at T=293 K, only data available) Table C.17

kg = 0.0544 W/m-K by interpolation Table C.22.

Using Equation 3.28 for the effective conductivity of a random porous medium, we have

ks

kg
=

1.38(W/m-K)
0.0544(W/m-K)

= 25.37

〈k〉
kg

=
(

ks

kg

)0.280−0.757 logε−0.057 log(ks/kf )

〈k〉 = (0.0544W/m-K)(25.37)0.280−0.757 log(0.3)−0.057 log(25.37)

〈k〉 = 0.373 W/m-K.

(c) Applying the conservation of energy around the gas node in the figure for steady state conditions, we have

Qk,g-1 + Qk,g-2 = −(ρc)gV
dTg

dt
+ Ṡr,c

Tg − Ts,1

Rk,1
+

Tg − Ts,2

Rk,2
= Ṡr,c,

where plate 1 is assumed to be at Ts,1 = 1,323 K, at which k1 = kAl2O3 = 5.931. Then, the thermal conduction
resistance is

Rk,1 =
�

k1A
=

�

k1Lw
=

0.02(m)
5.931(W/m-K) × (0.3 × 0.3)(m)2

= 0.0375◦C/W

Rk,2 =
�

k2A
=

�

〈k〉Lw
=

0.02(m)
0.373(W/m-K) × (0.3 × 0.3)(m)2

= 0.596◦C/W.

Substituting these values into the conservation of energy equation and solving for Tg gives

Tg − 1,323.15(K)
0.037(◦C/W)

+
Tg − 773.15(K)
0.596(◦C/W)

= 104 W

Tg = 1,643 K.

(d) The conservation of energy equation says that the fraction of energy going through the top plate Qk,g-1 plus
the fraction of energy going through the bottom plate Qk,g-2 is equal to the amount of energy being generated
Ṡr,c. Therefore,

Qk,g-1
Ṡr,c

=

Tg − Ts,1

Rk,1

Ṡr,c

=
8539.7(W)
10,000(W)

= 0.854 of the energy generated flows through the top plate

Qk,g-2
Ṡr,c

=

Tg − Ts,2

Rk,2

Ṡr,c

=
1460.13(W)
10,000(W)

= 0.146 of the energy generated flows through the bottom plate.

COMMENT:
The ratio of the two heat flow rates is 5.85. This can be further improved by increasing the porosity and

thickness of the insulation.
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PROBLEM 3.20.FAM

GIVEN:

In IC engines, during injection of liquid fuel into the cylinder, it is possible for the injected fuel droplets to
form a thin liquid film over the piston. The heat transferred from the gas above the film and from the piston
beneath the film causes surface evaporation. This is shown in Figure Pr.3.20(a). The liquid-gas interface is at
the boiling temperature, Tlg, corresponding to the vapor pressure. The heat transfer from the piston side is by
one-dimensional conduction through the piston and then by one-dimensional conduction through the thin liquid
film. The surface-convection heat transfer from the gas side to the surface of the thin liquid film is prescribed as
Qku.

Qku = −13,500 W, ∆hlg = 3.027 × 105 J/kg (octane at one atm pressure, Table C.4), kl = 0.083 W/m-K
(octane at 360 K, Table C.13), Tlg = 398.9 K (octane at 1 atm pressure, Table C.4), ρl = 900 kg/m3, ks = 236
W/m-K (aluminum at 500 K, Table C.14), T1 = 500 K, L = 3 mm, l = 0.05 mm, D = 12 cm.

SKETCH:

Figure Pr.3.20(a) shows the liquid film being heated by surface convection and by substrate conduction.

Tlg , kl

L

Liquid Film

Piston

l

D

Cylinder

Qku

ks

T1

Figure Pr.3.20(a) An IC engine, showing liquid film formation on top of the piston.

OBJECTIVE:

(a) Draw the thermal circuit diagram and write the corresponding energy equation for the liquid-gas interface.
(b) For the conditions given, determine the rate of evaporation of the liquid film, Ṁlg(kg/s).
(c) Assuming that this evaporation rate remains constant, determine how long it will take for the liquid film to
totally evaporate.

SOLUTION:

(a) The thermal circuit is shown in Figure Pr.3.20(b).

T1

Qk,1-2

T2 = Ts T3 = Tlg

Qk,2-3

Rk,1-2 Rk,2-3
Slg

.

Q1 Qku

Figure Pr.3.20(b) Thermal circuit diagram.

The energy equation for node T3 is

Qku − Qk,1-3 = Ṡlg

Qku − T1 − T3

Rk,Σ
= −Ṁlg∆hlg.
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(b) Ṁlg will increase as the film thickness decreases, since Rk,2-3 decreases. For the conditions given, we assume
a quasi-steady state. Then we have from Figure Pr.3.20(b) for Rk,Σ

Rk,Σ = Rk,1-2 + Rk,2-3

=
L

ksA
+

l

klA
=

0.003(m)

236(W/m-K) × π × 0.122

4 (m2)
+

0.00005(m)

0.083(W/m-K) × π × 0.122

4 (m2)

= 0.001124(K/W) + 0.05326(K/W) = 0.0544 K/W.

Therefore, from the energy equation we have

−13,500(W) − (500 − 398.9)(K)
0.0544(K/W)

= −Ṁlg × 3.027 × 105(J/kg).

Then

Ṁlg = 0.051 kg/s.

(c) From (b) we noted that Ṁlg will increase as the film thickness decreases. If we assume Ṁlg to be constant,
we can find an upper limit to the amount of time it would take to completely evaporate the liquid film. Then

Ṁlg =
dM

dt
= constant

=
Mi − Mf

ti − tf
=

Mi − 0
∆t

=
ρlV

∆t
=

ρlAl

∆t

∆t =
ρlAl

Ṁlg

=
900(kg/m3) × π×0.122

4 (m2) × 0.00005(m)
0.051(kg/s)

= 0.01 s.

COMMENT:
The heat conduction from the piston is only a small fraction of the heat supplied to the liquid film.
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PROBLEM 3.21.FUN

GIVEN:
A two-dimensional, periodic porous structure has the solid distribution shown in Figure Pr.3.21(a). This is

also called a regular lattice. The steady-state two-dimensional conduction can be shown with a one-dimensional,
isotropic resistance for the case of kA 
 kB .

Use a depth w (length perpendicular to the page).

SKETCH:
Figure Pr.3.21(a) shows the solid geometry which is a continuous zig-zag arm of thickness l in a periodic

structure with length L between each arm.

l

L kB

Solid

Vacuum
kA = 0

Unit Cell

Qk,1-2

Figure Pr.3.21(a) A two-dimensional, periodic structure composite with material A having a conductivity much smaller
than B.

OBJECTIVE:
(a) Draw the thermal circuit model.
(b) Show that for kA/kB 
 1, the effective thermal conductivity 〈k〉 is

〈k〉
kB

= 1 − ε1/2,
kA

kB

 1,

where ε is the porosity (void fraction) defined by (3.27).

SOLUTION:
(a) Figure Pr.3.21(b) shows the thermal circuit model for the unit cell.

Rk,1-1' Rk,1'-2

(i) Actual Thermal Circuit Model (ii) Equivalent Thermal Circuit Model

Qk,1-2

Rk,1-1'

Rk,1-2

T1'

T2

Qk,1-2

T2T1

T1'

T1

Rk,1'-2

 L
Ak  k

Figure Pr.3.21(b) Thermal circuit diagram and the equivalent circuit.
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(b) The overall conduction resistance Rk,Σ for this circuit is, based on (3.78) and (3.82),

1
Rk,1-2

=
1

Rk,1-1′ + Rk,1′-2
+

1
Rk,1-1′ + Rk,1′-2

=
2

Rk,1-1′ + Rk,1′-2
,

where

Ak = lw

Rk,1-1′ = Rk,1′-2 =
L + l

lwkB

1
Rk,1-1′

=
lwkB

L + l
.

The porosity (3.27) can be shown to be

ε =
VA

VA + VB
=

2L2[
2(L + l)

21/2

]2 =
L2

(L + l)2
.

Now using

Rk,1-2 ≡ L1

L1w〈k〉 =
1

w〈k〉 =
L + l

lwkB
,

where L is the arm length.
Finally, we have

〈k〉
kB

=
l

L + l
= 1 − ε1/2.

COMMENT:
Note that for ε = 0, i.e., L = 0, we recover 〈k〉 = kB and for ε = 1, i.e., l = 0, recover 〈k〉 = 0 (no heat transfer

through vacuum). Also note that this effective resistance is a combination of series and parallel resistance.
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PROBLEM 3.22.FUN

GIVEN:
The effective thermal conductivity of two-dimensional, periodic-structure (i.e., regular lattice) composites can

be estimated using one-dimensional resistance models. Figure Pr.3.22 shows a simple, two-dimensional unit cell
with material B being continuous and material A being the inclusion [similar to the three-dimensional, periodic
structure of Section 3.3.2(C)].

Use only the porosity (void fraction) ε and the conductivities kA and kB . Use a depth w (length perpendicular
to the page).

SKETCH:
Figure 3.22(a) shows the composite with material B being continuous and material A being the inclusion.

l

L

kA

kB

Material B

Unit
Cell

Material A

Qk,1-2

Figure Pr.3.22(a) A two-dimensional, periodic structure with material B being continuous.

OBJECTIVE:
(a) Derive an expression for the effective conductivity 〈k〉 of this composite using a series-parallel arrangement of
resistances.
(b) Derive an expression for the effective conductivity 〈k〉 of this composite using a parallel-series arrangement of
resistances.
(c) Show that for the case of kA/kB 
 1, the result for the parallel-series arrangement is

〈k〉
kB

= 1 − ε1/2,

where ε is the porosity (this result is also obtained in Problem 3.34).

SOLUTION:
The series-parallel and parallel-series resistance arrangements of the Figure Pr.3.22(a) structure are shown in

Figure Pr.3.22(b).
(a) For the circuit shown in Figure Pr.3.22(b)(i), we have

Rk,1-2 = Rk,1-1′,B +
1

1
Rk,1′-2′,B

+
1

Rk,1′-2′,A

+ Rk,2′-2,B .

The individual resistances are

Rk,1-1′,B = Rk,2′-2,B =
l

(L + 2l)wkB

Rk,1′-2′,A =
L

LwkA

Rk,1′-2′,B =
L

2lwkB
.

The porosity of the structure is defined as

ε =
VA

VA + VB
=

L2

(L + 2l)2
.
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(i) Series-Parallel Arrangement

(ii) Parallel-Series Arrangement

Qk,1-2

Qk,1-2

Rk,1'-2',A

Rk,1-2,B

Rk,1'-2',ARk,1-1',B Rk,2'-2,B
T2T2'T1'T1

Rk,1'-2',B

Rk,2'-2,BRk,1-1',B T2T1 1' 2'

Figure Pr.3.22(b) Thermal circuit diagram for the two resistance arrangements.

Then

Rk,1-2 ≡ L + 2l

(L + 2l)w〈k〉
=

L

2lwkB + LwkA
+

2l

(L + 2l)wkB
.

From these, we have

kB

〈k〉 =
ε1/2

1 − ε1/2 + ε1/2(kA/kB)
+ 1 − ε1/2.

Note that this does not lead to 〈k〉/kB = 1 − ε1/2 for the case of kA 
 kB .

(b) For the circuit shown in Figure Pr.3.22(b)(ii), we have

Rk,1-2 =
1

Rk,1-1′,B + Rk,1′-2′,A + Rk,2′-2,B
+

1
Rk,1-2,B

.

The individual resistances are

Rk,1-1′,B =
l

LwkB

Rk,1′-2′,A =
L

LwkA

Rk,2′-2,B =
l

LwkB

Rk,1-2,B =
L + 2l

2lwkB
.

The porosity is the same as determined above. Then

1
Rk,1-2

=
L + 2l

(L + 2l)w〈k〉
=

1
2l

LwkB
+

L

LwkA

+
2lwkB

L + 2l

=
kBε1/2

ε1/2 + (1 − ε1/2)(kA/kB)
+ (1 − ε)1/2.
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From this, we have

kB

〈k〉 =
ε1/2 + (1 − ε1/2)(kA/kB)

(1 − ε1/2)ε1/2 + ε1/2(kA/kB) + (1 − ε1/2)2(kA/kB)
.

(c) For the case of the parallel-series arrangement, and for kA/kB 
 1, the above equation becomes

kB

〈k〉 =
1

1 − ε1/2
or

〈k〉
kB

= 1 − ε1/2.

COMMENT:
The actual, two-dimensional heat flow results in an effective resistance that is between these two effective

resistances. As kA/kB becomes closer to unity, the difference between the models decreases and vice versa for
kA/kB far from unity.

Note that the three-dimensional parallel-series solution given by (3.86) gives, for kA 
 kB , 〈k〉/kB = (1 −
ε2/3)/(1 − ε2/3 + ε). This gives a higher 〈k〉/kB , compared to the two-dimensional result.
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PROBLEM 3.23.FUN

GIVEN:
In the one-dimensional, steady-state conduction treatment of Section 3.3.1, for planar geometries, we assumed

a constant cross-sectional area Ak. In some applications, although the conduction is one-dimensional and cross
section is planar, the cross-sectional area is not uniform. Figure Pr.3.23 shows a rubber-leg used for the vibration
isolation and thermal insulation of a cryogenic liquid container. The rubber stand is in the form of truncated
cone [also called a frustum of right cone, a geometry considered in Table C.1(e)].

Note that ∆V = πR2(x)∆x, as ∆x → 0.
T2 = 20◦C, T1 = 0◦C, L2 = 4 cm, L1 = 10 cm, R1 = 1.5 cm, k = 0.15 W/m-K.

SKETCH:
Figure Pr.3.23 shows the rubber leg, its geometry and parameters, and the one-dimensional heat conduction.

qk

qk

R1

R(x) =      x

Rubber Leg

Ideally
Insulated

q = 0
Ak(x)

T1

T2 > T1

R2

L1

x

L2
R1
L1

Figure Pr.3.23 One-dimensional, steady-state heat conduction in
a variable area rubber leg.

OBJECTIVE:
(a) Starting from (3.29), with ṡ = 0, use a variable circular conduction area Ak(x) = πR2(x), while R(x) varies
linearly along the x axis, i.e.,

R(x) =
R1

L1
x,

as shown in Figure Pr.3.23. Then derive the expression for the temperature distribution T = T (x).
(b) Using this temperature distribution, determine Qk,1-2 and Rk,1-2, by using (3.46) and noting that there are
no lateral heat losses.
(c) Evaluate Qk,1-2, for the conditions given below.
(d) Use a constant surface area with 〈R〉 = (R1 + R2)/2, and the conduction resistance for a slab, and compare
Qk,1-2 with that from part (c).

SOLUTION:
(a) Starting from (3.29) with ṡ = 0, we use ∆V = πR2(x)∆x, and the result is∫

∆A

(qk · sn)dA

∆V → 0
=

(qkAk)x+∆x − (qkAk)x

πR2(x)∆x
= 0.

Using Ak = πR2(x) and R(x) = R1x/L1, we have

π

(
R1

L1

)2 [
(qkx2)x+∆x − (qkx2)x

]
πR2(x)∆x

= 0

or

(qkx2)x+∆x − (qkx2)x

∆x → 0
= 0
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or

d(qkx2)
dx

= 0.

Now using (1.11), and noting that T = T (x), we have

d

dx

[(
−k

dT

dx

)
x2

]
= 0,

or

d

dx

(
dT

dx
x2

)
= 0.

Integrating once gives

dT

dx
x2 = a1.

Integrating again gives

T =
∫

a1

x2 dx + a2

= −a1

x
+ a2.

Now using the thermal conditions

T (x = L1) = T1

T (x = L1 + L2) = T2,

we have

T1 = − a1

L1
+ a2

T2 = − a1

L1 + L2
+ a2.

Solving for a1 and a2, we have

T = T1 + (T2 − T1)

1
x
− 1

L1

1
L1 + L2

− 1
L1

.

(b) Now noting that from (3.46) we have

Qk,x = Ak(x)
(
−k

dT

dx

∣∣∣∣
x

)
,

and differentiating T = T (x), we obtain

Qk,x =
πR2(x)(−k)(T1 − T2)

1
L1

− 1
L1 + L2

(
− 1

x2

)
.

Evaluating this at x = L2, we have

Qk,x = Qk,1-2 = πk
R2

1

L2
1

1
1
L1

− 1
L1 + L2

(T1 − T2)
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or

Rk,1-2 =

1
L1

+
1

L1 + L2

πkR2
1/L2

1

.

(c) Using the numerical values, we have

Qk,1-2 = π × 0.15(W/m-K) × (0.015)2(m2)
(0.10)2(m2)

1
1

0.1(m)
− 1

0.14(m)

(0 − 20)K

= −7.423 × 10−2 W.

(d) Using a constant area with

〈R〉 =
R1 + R2

2
=

R1

2L1
[L1 + (L1 + L2)]

= 0.018 m.

Then from Table 3.2 for a slab we have

Qk,1-2 = π〈R〉2k(T1 − T2)/L2 = −7.635 × 10−2 W.

This is very close to the results for the variable area in part (c).

COMMENT:
Note that here R1/L1 = 0.15 and as this ratio becomes smaller, the role of the variable area becomes more

significant.
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PROBLEM 3.24.FAM

GIVEN:
A pair of aluminum slabs with a surface roughness of 〈δ2〉1/2 = 0.25 µm are placed in contact (with air as the

interstitial fluid). A heat flux of qk = 4 × 104 W/m2 flows across the interface of the two slabs.

OBJECTIVE:
Determine the temperature drop across the interface for contact pressures of 105 and 106 Pa.

SOLUTION:
The heat flux flowing through the contact between the two solids is related to the temperature difference

across the contact by (3.95)

qk,c =
Qk,c

Ak
=

∆Tc

AkRk,c
.

From Figure 3.25, for a pair of soft aluminum surfaces in air, having root-mean-square roughness 〈δ2〉1/2 =
0.25 µm, for each of the contact pressures, the contact thermal conductance is

p = 105 Pa, 1/AkRk,c � 8.2 × 103 W/m2-◦C Figure 3.25

p = 106 Pa, 1/AkRk,c � 1.5 × 104 W/m2-◦C Figure 3.25.

From Equation (3.95), for qk,c = 4 × 104 W/m2, the temperature jumps across the contact interface for each
contact pressure are

p = 105 Pa, ∆Tc = 4.9◦C

p = 106 Pa, ∆Tc = 2.7◦C.

COMMENT:
A high joint pressure is usually necessary to reduce the contact resistance. The use of thermal conductivity

pastes and greases also reduces the contact thermal resistance. This occurs because the air present at the contact
is replaced by the more conductive paste. These pastes are usually made of a polymer filled with submicron metal
particles.
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PROBLEM 3.25.FAM

GIVEN:
Thin, flat foil heaters are formed by etching a thin sheet of an electrical conductor such as copper and then

electrically insulating it by coating with a nonconductive material. When the maximum heater temperature is
not expected to be high, a polymer is used as coating. When high temperatures are expected, thin sheets of mica
are used. Mica is a mineral silicate that can be cleaved into very thin layers. However, a disadvantage of the
use of mica is that the mica surface offers a much higher thermal-contact resistance, thus requiring a larger joint
pressure pc.

Figure Pr.3.25(a) shows a thin circular heater used to deliver heat to a surface (surface 1). The solid between
surface 1 and the heater is aluminum (Table C.14) and has a thickness L1 = 5 mm. In order to direct the
heat to this surface, the other side of the heater is thermally well insulated by using a very low conductivity
fiber insulating board (Table C.15) with thickness L2 = 10 mm. The temperature of the aluminum surface is
maintained at T1 = 100◦C, while the outer surface of the thermal insulation is at T2 = 30◦C. The heater generates
heat by Joule heating at a rate of Ṡe,J/Ak = 4 × 104 W/m2 and is operating under a steady-state condition.

Use the thermal conductivities at the temperatures given in the tables or at 300 K.

SKETCH:
Figure Pr.3.25(a) shows the layered composite with the energy conversion.

Aluminum

Fibrous Insulating Board

Mica Heater

Ak

Surface 1 at
T1 = 100 C

T2 = 30  C

Se,J

Rk,c

L1 = 5 mm

L 2 = 10 mm

Uniform Heater
Temperature Th

(Nk,h < 0.1)

Figure Pr.3.25(a) A thin-foil heater encased in mica and placed between an aluminum and an insulation layer.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the heater temperature Th for the case of contact resistances of (i) Ak Rk,c = 10−4 [K/(W/m2)],
and (ii) Ak Rk,c = 4 × 10−2 [K/(W/m2)].
(c) Comment on the answers obtained above if the heater is expected to fail at Tmax = 600◦C.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.3.25(b).

(b) To find the heater temperature, the integral-volume energy equation (3.161) is applied to the heater node Th.
Under steady-state conditions we have

Qh +
∑

j

Th − Tj

Rk,h-j
= Ṡe,J.

The temperatures T1 and T2 are known. Therefore, the heat transfer through the thermal resistances are written
as functions of these temperatures. As Qh = 0 (there is no prescribed surface heat transfer), we have

Th − T1

(Rk,Σ)h-1
+

Th − T2

(Rk,Σ)h-2
= Ṡe,J.

For the resistances arranged in series, the overall thermal resistances (Rk,Σ)h-1 and (Rk,Σ)h-2 are

(Rk,Σ)h-1 = Rk,c + Rk,i-1
(Rk,Σ)h-2 = Rk,c + Rk,i-2.
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Fiber Insulating Board

Aluminum

Mica Heater

Qh,i,2

Qi-1

Qh,i,1

Qi-2

Se,J

T1

Rk,i-1

Ti,1

Ti,2

Rk,c

Rk,c

Rk,i-2

Th

T2

T1 = 100 OC

T2 = 30 OC

Se,J Rk,c
Ak L

1 
=

 5
 m

m
L

2 
=

 1
0 

m
mTi,2

Ti,1

Interface (i)
Uniform Temperature, Th

Figure Pr.3.25(b) Thermal circuit diagram.

The conduction resistances Rk,i-1 and Rk,i-2 for the slabs are

Rk,i-1 =
L1

k1Ak

Rk,i-2 =
L2

k2Ak
,

and the contact resistance Rk,c is given in the problem statement.
The thermal conductivities are needed to calculate the thermal resistances. For each of the materials we have alu-
minum (Table C.14, T = 300 K) k = 237 W/m-K and fiber insulating board (Table C.15, T = 294 K) k = 0.048
W/m-K .

Solving for Th, we have

Th =
Ṡe,J +

T1

(Rk,Σ)h-1
+

T2

(Rk,Σ)h-2
1

(Rk,Σ)h-1
+

1
(Rk,Σ)h-2

.

(i) For the first case

AkRk,c = 1 × 10−4 ◦C/(W/m2)

AkRk,i-1 =
L1

k1
=

0.005
237

= 2.110 × 10−5 ◦C/(W/m2)

AkRk,i-2 =
L2

k2
=

0.01
0.048

= 2.083 × 10−1 ◦C/(W/m2).

The equivalent resistances are

Ak(Rk,Σ)h-1 = AkRk,c + AkRk,i-1
= 1 × 10−4[◦C/(W/m2)] + 2.110 × 10−5[◦C/(W/m2)]
= 1.211 × 10−4 ◦C/(W/m2)

Ak(Rk,Σ)h-2 = AkRk,c + AkRk,i-2
= 1 × 10−4[◦C/(W/m2)] + 2.083 × 10−1[◦C/(W/m2)]
= 2.084 × 10−1 ◦C/(W/m2).
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Dividing all the terms by Ak and solving for Th we have

Th =

Ṡe,J

Ak
+

T1

Ak(Rk,Σ)h-1
+

T2

Ak(Rk,Σ)h-2
1

Ak(Rk,Σ)h-1
+

1
Ak(Rk,Σ)h-2

=
4 × 104(W/m2) +

100(◦C)
1.211 × 10−4[◦C/(W/m2)]

+
30(◦C)

2.084 × 10−1[◦C/(W/m2)]
1

1.211 × 10−4[◦C/(W/m2)]
+

1
2.084 × 10−1[◦C/(W/m2)]

= 105◦C.

(ii) For the second case

AkRk,c = 4 × 10−2◦C/(W/m2).

The conduction thermal resistances remain the same. The equivalent resistances now become

Ak(Rk,Σ)h-1 = AkRk,c + AkRk,i-1
= 4 × 10−2[◦C/(W/m2)] + 2.110 × 10−5[◦C/(W/m2)]
= 4.002 × 10−2 ◦C/(W/m2)

Ak(Rk,Σ)h-2 = AkRk,c + AkRk,i-2
= 4 × 10−2[◦C/(W/m2)] + 2.083 × 10−1[◦C/(W/m2)]
= 2.483 × 10−1 ◦C/(W/m2).

Solving for Th we have

Th =

Ṡe,J

Ak
+

T1

Ak(Rk,Σ)h-1
+

T2

Ak(Rk,Σ)h-2
1

Ak(Rk,Σ)h-1
+

1
Ak(Rk,Σ)h-2

=
4 × 104(W/m2) +

100(◦C)
4.002 × 10−2[◦C/(W/m2)]

+
30(◦C)

2.483 × 10−1[◦C/(W/m2)]
1

4.002 × 10−2[◦C/(W/m2)]
+

1
2.483 × 10−1[◦C/(W/m2)]

= 1,469◦C.

(c) The heater is rated for 600◦C. Therefore, it would operate normally under case (i) (smaller contact thermal
resistance), but it would fail under case (ii) (larger contact thermal resistance).

COMMENT:
Note that a small air gap present in series with other low resistance layers causes a large decrease in the heat

flow rate and a large increase in the temperature drop.
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PROBLEM 3.26.FAM

GIVEN:
The automobile exhaust catalytic converter (for treatment of gaseous pollutants) is generally a large surface

area ceramic or metallic monolith that is placed in a stainless steel housing (also called can). Figure Pr.3.26(a)
shows a ceramic (cordierite, a mineral consisting of silicate of aluminum, iron, and magnesium) cylindrical mono-
lith that is placed inside the housing with (i) direct ceramic-stainless contact, and (ii) with a blanket of soft
ceramic (vermiculite, a micacious mineral, mat) of conductivity kb placed between them.

The blanket is placed under pressure and prevents the gas from flowing through the gap. The direct contact
results in a contact resistance similar to that of stainless steel-stainless steel with 〈δ2〉1/2 = 1.1 to 1.5 µm and
pc = 105 Pa. The soft blanket (vermiculite mat) has a thickness l1 = 3 mm and kb = 0.4 W/m-K.

Use T1 = 500◦C, T2 = 450◦C, and stainless steel AISI 316 for thermal conductivity.

SKETCH:
Figure Pr.3.26(a) shows a catalytic converter with and without a ceramic blanket.

(i) Without Soft Ceramic Blanket Present

Side-View of Catalytic Converter and Housing

T2

T1

Added Soft-Blanket
kb = 0.4 W/m-K

(ii) With Soft Ceramic Blanket Present

CO, HC, NOx , Air CO2 + H2O + N2

T2 = 450oC

T1 = 500oC

L = 25 cm

R2 = 7 cm
R1 = 6.7 cm

l2 (Stainless steel) = 3 mm

l1 (Contact)= 0

Cordierite Large
Surface Area Monolith
(Catalytic Converter)

Contact Resistance, Rk,c
Automobile

Exhaust Stainless-Steel Housing

r
L = 25 cm

R2 = 7 cm
R1 = 6.4 cm

l2 (Stainless steel)
 = 3 mm

l1'(Blanket)
= 3 mm

Automobile
Exhaust

r

Cordierite Monolith

Housing

Figure Pr.3.26(a) An automobile catalytic converter (i) without and (i) with a soft
ceramic blanket.

OBJECTIVE:
(a) Draw the thermal circuit diagrams.
(b) Determine the heat flow between surface at temperature T1 and surface at temperature T2 (i) without and
(ii) with the soft ceramic blanket, i.e., Qk,1−2.

SOLUTION:
(a) The thermal circuit diagrams for cases (i) and (ii) are shown in Figure Pr.3.26(b).

(b) The heat flow rate is written from the thermal circuit model of Figure Pr.3.26(b) as

(Qk,1-2)without blanket =
T1 − T2

Rk,c + Rk,1′-2
.
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T2T1 T1'
Q2 (To Ambient)− Q1 (From Monolith)

− Q1

Rk,c

Contact
Resistance

Rk,1'-2

Stainless-Steel
Resistance

Qk,1-2

T2T1 T1'
Q2 (To Ambient)

Rk,1-1'

Soft-Blanket
Resistance

Rk,1'-2

Stainless-Steel
Resistance

Qk,1-2

(i)

(ii)

Figure Pr.3.26(b) Thermal circuit diagrams for cases (i) and (ii).

Here R1 = R2 − l2 = 6.7 cm. From Figure 3.25, for stainless-steel contact with 〈δ2〉1/2 = 1.1 to 1.5µm and
pc = 105 Pa, we have

1
AkRk,c

= 2 × 102 (W/m2)/◦C Figure 3.25.

The area is

Ak = 2πR1L.

The stainless-steel shell resistance is found from Table 3.2, using the geometrical designations of Figure Pr.
3.26(a), to be

Rk,1′-2 =
ln

R2

R1

2πLks
,

where from Table C.16, we have

ks = 13 W/m-K. Table C.16

(c) From Figure Pr.3.26(b), we have

(Qk,1-2)with blanket =
T1 − T2

Rk,1-1′ + Rk,1′-2
.

Here R1 = R2 − l2 − l′1 = 6.4 cm, Rk,1′-2 remains the same, and

Rk,1-1′ =
ln

R1′

R1

2πLkb
.

Using the numerical results, we have
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Rk,c =
1

2 × 102(W/m2−◦C) × 2πR1L

=
1

2 × 102(W/m2−◦C) × 2π × 0.067(m) × 0.25(m)
= 4.750 × 10−2 ◦C/W

Rk,1′-2 =
ln
(

0.07 m
0.067 m

)
2π × 0.25 m × 13(W/m-K)

= 2.145 × 10−3 ◦C/W

Rk,1-1′ =
ln
(

0.07 m
0.064 m

)
2π × 0.25 m × 0.4(W/m-K)

= 7.291 × 10−2 ◦C/W.

For the heat flow, we have

(Qk,1-2)without blanket =
(500 − 450)(◦C)

(4.750 × 10−2 + 2.145 × 10−3)( ◦C/W)
= 1.006 × 103 W

(Qk,1-2)with blanket =
(500 − 450)(◦C)

(7.291 × 10−2 + 2.145 × 10−3)( ◦C/W)
= 6.662 × 102 W.

COMMENT:
The soft ceramic blanket prevents flow leaks at the housing contact and reduces the heat loss to the housing

(Rk,1-1′ is larger than Rk,c).
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PROBLEM 3.27.FAM

GIVEN:
A thermoelectric power generator uses the heat released by gaseous combustion to produce electricity. Since

the low temperature thermoelectric materials undergo irreversible damage (such as doping migration) at temper-
atures above a critical temperature Tcr, a relatively low conductivity material (that withstands the high flame
temperature; this is referred to as a refractory material) is placed between the flame and the hot junction, as
shown in Figure Pr.3.27(a). Additionally, a copper thermal spreader is placed between the refractory material
and the hot junction to ensure even distribution of the heat flux into the thermoelectric device. It is desired to
generate 20 W of electricity from the thermoelectric module, where this power is 5% of the heat supplied (−Qh)
at the hot junction Th. The refractory material is amorphous silica with conductivity ks. In addition, there is a
contact resistance Rk,c between the copper thermal spreader and the hot junction. The surface area of the hot
junction is a × a.

Tg = 750◦C, Tcr = 250◦C, ks = 1.36 W/m-K, a = 6 cm, AkRk,c = 10−4 K/(W/m2).

SKETCH:
Figure Pr.3.27(a) shows the electrical power generation unit with the thermoelectric cooler and the combustion

flue-gas stream. The low-conductivity (refractory) material used to lower Th (to protect the thermoelectric module
from high temperatures) is also shown.

Combustion
Flue Gas

Refractory Slab

Copper Thermal Spreader

Thermoelectric
Module

Spring (For Reduction in Thermal
             Contact Resistances)

Th = Tcr 
(Hot Junction)

Rk,c 
(Contact Resitance)

Tg

Sr,c

.

-Qh

Water
Cooled

Heat
Sink

L

a

Figure Pr.3.27(a) A thermoelectric module, used for power generation, receives heat from a combustion flue gas
stream. To reduce the temperature of the hot junction, a refractory slab is used.

OBJECTIVE:
(a) Draw the thermal circuit diagram for node Th using the combustion flue gas temperature Tg.
(b) Determine the thickness of the refractory material L, such that Th = Tcr.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.3.27(b).

− Qh

Rk,g-h Rk,c
Th = TcrTg

Sr,c

Figure Pr.3.27(b) Thermal circuit diagram.

(b) From Figure Pr.3.27(b), the expression for −Qh in terms of Th and Tg is

−Qh =
Th − Tg

Rk,g-h + Rk,c
.
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Then from Table 3.2, for a slab, we have

Rk,g-h =
L

Akks
.

Using this, we have

−Qh =
Th − Tg

L

Akks
+

AkRk,c

Ak

or

L

Akks
+

AkRk,c

Ak
=

Tg − Th

Qh

or

L =
Tg − Th

Qh
Akks − AkRk,cks, Ak = a2.

Using the numerical values and noting that

Qh =
P

η
=

20(W)
0.05

= 400 W,

we have

L =
(750 − 250)(K)

400(W)
× (0.06)2(m2) × 1.36(W/m-K) − 10−4[K/(W/m2)] × 1.36(W/m-K)

= 6.120 × 10−3(m) − 1.36 × 10−4(m) = 5.984 × 10−3 m = 5.984 mm.

COMMENT:
Since active cooling of the cold junction is needed to maintain a low Tc, most of the heat arriving at the hot

junction is transferred to the cold junction by conduction. This is the reason for the low efficiency.
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PROBLEM 3.28.FAM

GIVEN:
In order to reduce the contact resistance, the contacting solids are physically bonded by using high tempera-

tures (as in fusion or sintering) or by using material deposition (as in physical vapor deposition or solidification
of melts). This creates a contact layer which has a contact thickness Lc (that is nearly twice the rms roughness)
and a contact conductivity kc. This contact conductivity is intermediate between the conductivity of the joining
materials A and B (with kA < kB), i.e.,

kA ≤ kc ≤ kB for kA < kB .

Consider a contact resistance between a bismuth telluride slab (material A) and copper (material B) slab. This
pair is used in thermoelectric coolers, where the semiconductor, doped bismuth telluride is the thermoelectric
material and copper is the electrical connector. Then use a general relationship kc = kA+a1(kB−kA), 0 ≤ a1 ≤ 1,
and plot (semilog scales) the temperature drop across the junction ∆Tc, for the following conditions, as a function
of a1. Here a1 depends on the fabrication method used.

kA = 1.6 W/m-K, kB = 385 W/m-K, Lc = 2〈δ2〉1/2 = 0.5 µm, qk = 105 W/m2.

SKETCH:
Figure Pr.3.28(a) shows the contact region with a physical bonding of materials A and B forming an alloy

AB.

qk

qk

Material A, kA

Contact Layer in Physical Bonding of Contacting
Materials and Contact Conductivity, kc

∆Tc Lc = 2  δ2  1/2

Material B, kB

Contact Layer with Contact Conductivity kc ,
and Contact Layer Thickness Lc

Alloy A-B
(Physical Bonding)

Figure Pr.3.28(a) A contact layer in a physical bounding of contacting materials; also shown is the contact
conductivity kc.

OBJECTIVE:
Use a general relationship kc = kA +a1(kB −kA), 0 ≤ a1 ≤ 1, and plot (semilog scales) the temperature drop

across the junction ∆Tc, for the following conditions, as a function of a1. Here a1 depends on the fabrication
method used.

SOLUTION:
From (3.96), we have

∆Tc = qk
Lc

kc

and using the expression for kc, we have

∆Tc(K) = qkL
1

kA + a1(kB − kA)

=
105(W/m2) × 5 × 10−7(m)

[1.6 + a1(385 − 1.6)](W/m-K)
.

Figure Pr.3.28(b) shows the variation of ∆Tc with respect to a1. These results show that ∆Tc changes over three
orders of magnitude, as a1 is changed from 0 to 1.

COMMENT:
High kc becomes essential in obtaining temperatures close to the cold junction temperature, when surfaces

are brought in contact with the cold junction for heat transfer and cooling.
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T

c 
, K

a1

kC = kA + a1(kB � kA)
kA = 1.6 W/m-K
kB = 385 W/m-K

10

1

0.1

0.01
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Figure Pr.3.28(b) Variation of the temperature jump across the contact region, as a function of junction conductivity
parameter a1.
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PROBLEM 3.29.FUN

GIVEN:
In a thermoelectric cell, the Joule heating that results from the passage of the electric current is removed

from the hot and cold ends of the conductor. When the electrical resistivity ρe or the current density je are large
enough, the maximum temperature can be larger than the temperature at the hot-end surface Th. This is shown
in Figure 3.27(b).

OBJECTIVE:
(a) From the temperature distribution given by (3.104), determine the expression for the location of the maximum
temperature in the conductor.
(b) Both the p- and the n-type legs have the same length L = 2 cm. The cross-sectional area of the n-type leg
is An = 2.8 × 10−5 m2. Calculate the cross-sectional area for the p-type leg Ap if the figure of merit is to be
maximized. Use the electrical and thermal properties of the p-type and n-type bismuth telluride given in Table
C.9(b).
(c) Determine the magnitude and the location of the maximum temperature for the p-type leg, when Th = 40◦C,
Tc = −2◦C, and Je = 6 A.
(d) Determine the rate of heat removal from the hot and cold ends per unit cross-sectional area (An + Ap).

SOLUTION:
(a) The temperature distribution along a conductor with internal Joule heating is given by (3.104) as

T = Tc +
x

L
(Th − Tc) +

ρej
2
eL2

2k

(
x

L
− x2

L2

)
.

To find the point in which the temperature is maximum, we differentiate T with respect to x and set the result
equal to zero,

dT

dx
=

1
L

(Th − Tc) +
ρej

2
eL2

2k

(
1
L

− 2x

L2

)
= 0.

Solving for x gives

x =
L

2
+

k

ρej2
e

(Th − Tc)
L

.

(b) To maximize the figure of merit Ze (3.120), for a given temperature difference Th −Tc, the ratio Re,h-c/Rk,h-c
must be minimized. Minimizing this ratio with respect to the geometric parameters of the Peltier cooler,
LnAp/LpAn, gives (3.121)

LnAp

LpAn
=
(

ρe,pkn

ρe,nkp

)1/2

.

The properties for the p- and n-type materials are given in Table C.9(a). For p- and n-type bismuth telluride
alloys, kp = 1.70 W/m-K, ρe,p = 1 × 10−5 ohm-m, αS,p = 230 × 10−6 V/◦C, kn = 1.45 W/m-K, ρe,n = 1 × 10−5

ohm-m, αS,n = −210 × 10−6 V/◦C. For Ln = Lp = 0.02 m and An = 2.8 × 10−5 m2, the area of the p-type leg is

Ap = An

(
kn

kp

)1/2

= 2.8 × 10−5(m2) ×
(

1.45
1.70

)1/2

= 2.59 × 10−5 m2.

(c) The location in the p-type leg in which the temperature is maximum is given above. The current density is

je =
Je

Ap
=

6(A)
2.59 × 10−5(m2)

= 2.32 × 105 A/m2
.

Then

x(Tmax) =
L

2
+

k

ρej2
e

(Th − Tc)
L

=
0.02
2

(m) +
1.70(W/m-K)

10−5(ohm-m)(2.32 × 105)2(A2)
× (40 + 2)(◦C)

0.02(m)
= 0.0167 m = 1.67 cm.
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The maximum temperature is obtained from the temperature distribution (3.104)

Tmax = Tc +
x

L
(Th − Tc) +

ρej
2
eL2

2k

(
x

L
− x2

L2

)

= −2(◦C) +
0.0167(m)
0.02(m)

× [40(◦C) + 2(◦C)]

+
10−5(ohm-m) × (2.32 × 105)2(A2) × 0.022(m2)

2 × 1.70(W/m-K)
×
{

0.0167(m)
0.02(m)

−
[
0.0167(m)
0.02(m)

]2
}

= 41.8◦C.

(d) The cooling power is given by (3.115)

Qc = −αSJeTc +
Th − Tc

Rk,h-c
+

1
2
Re,h-cJ2

e ,

where

Rk,h-c =
(

kpAp

Lp
+

knAn

Ln

)−1

= 236.3◦C/W

Re,h-c =
ρe,pLp

Ap
+

ρe,nLn

An
= 0.0149 ohm.

Then

Qc = −(230 × 10−6 + 210 × 10−6)(V/◦C) × 6(A) × 271(◦C) +
42(◦C)

236.3(◦C/W)

+
1
2
× 0.0149(ohm) × 62(A2) = −0.27 W

or
qc =

−0.27
An + Ap

= −5,009 W/m2
.

The heat generated at the hot end is given by (3.125), i.e.,

Qh = −Qc + Re,h-cJ2
e + αSJe(Th − Tc)

Qh = 0.27(W) + 0.01497(ohm) × 62(A2) + 440 × 10−6(V/◦C) × 6(A) × 42(◦C) = 0.92 W

or
qh =

0.92
An + Ap

= 17,069 W/m2
.
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Figure Pr.3.29 Temperature distribution along the conductor, showing a maximum near the hot junction.

COMMENT:
The temperature distribution along the p-type leg of the Peltier cooler is parabolic, as given by (3.104). Figure

Pr.3.29 shows the temperature distribution for the data given in item (c). Notice the maximum occurring near
the hot end of the junction.
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PROBLEM 3.30.FUN

GIVEN:
A thermoelectric cooler has bismuth telluride elements (i.e., p- and n-type pairs) that have a circular cross

section of diameter d = dn = dp = 3 mm and a length L = Ln = Lp = 2 cm, as shown in Figure Pr.3.30(a). The
temperatures of the hot and cold ends are Th = 40◦C and Tc = −2◦C.

SKETCH:
Figure Pr.3.30(a) shows the heat flowing into the cold junction of thermoelectric cooler unit.

Lp = Ln

dp dn

p n

Hot Surface, Th

Cold Surface, Tc

�Qc

Je

Bismuth Telluride

Figure Pr.3.30(a) A thermoelectric cooler unit.

OBJECTIVE:
Determine the cooling power for each junction, if the current corresponds to (a) the current that maximizes

the cooling power Qc,
(b) the current that is half of this optimum current, and
(c) the current that is twice the optimum current.

SOLUTION:
(a) The current that maximizes the cooling power is given by (3.117) as

Je(Qc,max) =
αSTc

Re,h-c
.

The electrical resistance is given by (3.116) and using ρe,p and ρe,n from Table C.9(a) for bismuth telluride, we
have

Re,h-c =
ρe,pLp

Ap
+

ρe,nLn

An
=

L

A
(ρe,p + ρe,n) =

0.02(m)
π × (0.0015)2(m2)

× 2 × 10−5(ohm-m) = 0.0566 ohm.

For the n- and p-type bismuth telluride, from Table C.9(b), αS = αS,p−αS,n = 440 µV/K. The maximum current
is

Je(Qc,max) =
440 × 10−6(V/K) × 271.15(K)

0.0566(ohm)
= 2.11 A.

The cooling power is given by (3.115),

Qc = −αSJeTc +
Th − Tc

Rk,h-c
+

1
2
Re,h-cJ2

e .
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The thermal resistance is given by (3.116) and using k from Table C.9(a), we have

Rk,h-c =
(

kpAp

Lp
+

knAn

Ln

)−1

=
L

A

1
(kp + kn)

=
0.02(m)

π × (0.0015)2(m2)
× 1

(1.70 + 1.45)(W/m-◦C)
= 898.2◦C/W.

Finally, the maximum cooling power is

Qc = −(440 × 10−6)(K/V) × 2.11(A) × 271.15(K) +
42(◦C)

898.2(◦C/W)
+

0.0566(ohm) × (2.11)2(A2)
2

= −0.079 W.

(b) The cooling power for half the current (1.06 A) is

Qc = −(440 × 10−6)(K/V) × 1.06(A) × 271.15(K) +
42(◦C)

898.2(◦C/W)
+

×0.0566(ohm) × (1.06)2(A2)
2

= −0.047 W.

(c) The cooling power for twice the current (4.22 A) is

Qc = −(440 × 10−6)(K/V) × 4.22(A) × 271.15(K) +
42(◦C)

898.2(◦C/W)
+

×0.0566(ohm) × (4.22)2(A2)
2

= 0.048 W.

COMMENT:
For a given pair and geometry, the cooling power varies with the applied current. Figure Pr.3.30(b) shows the

negative of the cooling power as a function of the current for this Peltier cooler. As the current increases, both
the Peltier cooling and the Joule heating increase. However, the Joule heating increases with the square of the
current and, for large values of current, its contribution overcomes that of the Peltier cooling.

Another possible optimization is the geometric optimization. Figure Pr.3.30(c) shows the negative of the
cooling power as a function of the ratio of cross-sectional area over length Ak/L for the three different currents
used in the problem. Note that for each current there is a maximum in the cooling power. For small values of
Ak/L, the thermal resistance is large, thus reducing the heat conduction. However, the electrical resistance is
also large and that increases the Joule heating. For large values of Ak/L the opposite occurs. The optimum point
is given by the balance between the thermal and the electrical resistances.
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Figure Pr.3.30(b) Variation of cooling power (−Qc) with respect to the current.
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Figure Pr.3.30(c) Variation of cooling power (−Qc) with respect to the ratio of conductor cross sectional area to length.
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PROBLEM 3.31.FUN

GIVEN:
A thermoelectric device is used for cooling a surface to a temperature Tc.
For each bismuth telluride thermoelectric, circular cylinder conductor, use dn = dp = 1.5 mm, and Ln = Lp = 4

mm. The hot junction is at Th = 40◦C.

SKETCH:
Figure Pr.3.31 shows the thermoelectric cooler unit.

Lp = Ln

dp dn

p n

Hot Surface, Th

Cold Surface, Tc

�Qc

Je

Bismuth Telluride

Figure Pr.3.31 A thermoelectric cooler unit.

OBJECTIVE:
For the conditions given below, determine (a) the minimum Tc, (b) the current for this condition, and (c) the

minimum Tc for a current Je = 1 A.

SOLUTION:
(a) The minimum Tc for a given Th is given by

(Th − Tc)max =
α2

ST 2
c

2Re,h-c/Rk,h-c
=

α2
ST 2

c

2Re,h-cR−1
k,h-c

.

The electrical and thermal resistances are given by

Re,h-c =
(

ρeL

A

)
n

+
(

ρeL

A

)
p

R−1
k,h-c =

(
kA

L

)
n

+
(

kA

L

)
p

.

From the data given,

An = Ap =
πd2

n

4
=

π(0.0015)2(m2)
4

= 1.767 × 10−6 m2

Ln = Lp = 0.004 m.

For the bismuth-telluride elements, from Table C.9(a), ρe,n = ρe,p = 10−5 ohm-m, kn = 1.70 W/m-K, kp = 1.45
W/m-K, and αS = αS,p − αS,n = 230 × 10−6(V/K)+ 210 × 10−6(V/K) = 440 × 10−6 V/K. The resistances then
become

Re,h-c = 2
10−5(ohm-m) × 0.004(m)

1.767 × 10−6(m2)
= 0.0453 ohm

R−1
k,h-c =

1.767 × 10−6(m2)
0.004(m)

[1.70(W/m-K) + 1.45(W/m-K)] = 0.00139 W/K.
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The minimum Tc is then given by

313.15(K) − Tc(K) =

[
440 × 10−6(V/K)

]2
T 2

c

(2)0.0453(ohm) × 0.00139(W/K)

T 2
c + 6.512 × 102Tc − 2.038 × 105 = 0

or
Tc = 231 K.

(b) The current for this temperature is given by

Je =
αSTc

Re,h-c
=

440 × 10−6(V/K) × 231(K)
0.0453(ohm)

= 2.245 A.

(c) The minimum temperature for a current of Je = 1 A is found by setting the cooling power to zero. From
(3.115),

Qc = −αSJeTc + R−1
k,h-c (Th − Tc) +

1
2
Re,h-cJ2

e = 0.

Solving for Tc gives

Tc =
R−1

k,h-cTh + 1
2Re,h-cJ2

e

αsJe + R−1
k,h-c

=
0.00139(W/K) × 313.15(K) + 1

2 × 0.0453(ohm)12(A2)
440 × 10−6(V/K) × 1(A) + 0.00139(W/K)

= 250.2 K.

COMMENT:
Note that for a square cross section, A = d2

n = 2.25 × 10−6 m2, we have

Re,h-c = 0.03556 ohm
R−1

k,h-c = 0.00177 W/K
Je = 2.859 A
Tc = 258.8 K.
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PROBLEM 3.32.FUN

GIVEN:
A thin-film thermoelectric cooler is integrated into a device as shown in Figure Pr.3.32(a). In addition to heat

conduction through the p- and n-type conductors, heat flows by conduction through the substrate. Assume a
one-dimensional parallel conduction through the p- and n-type conductors and the substrate.

Model the conduction through the substrate as two conduction paths (one underneath each of the p- and
n-type legs). Begin with (3.115) and use the optimum current.

SKETCH:
Figure Pr.3.32(a) shows the thermoelectric cooler unit, the heat source and sink, and the substrate.

(−)

(+)

l2

l1

w

k2

Electrical Conductor, Th

Electrical Conductor, Tc

Load
Substrate

Electrical Insulator

Se,J

n-Typep-Type

Je

L

kn = kp = k1

Figure Pr.3.32(a) A thin-film thermoelectric cooler placed over a substrate.

OBJECTIVE:
(a) Draw the thermal circuit diagram for heat flow between the Th and Tc nodes.
(b) Show that the maximum temperature difference is

(Th − Tc)max(Qc = 0) =
ZeT

2
c

2
(

1 +
l2k2

l1k1

) .

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.3.32(b). The conduction heat flow is through two parallel
paths. The energy equation for Tc node is given by (3.115), which we rewrite as

Qc = −αSJeTc + (Th − Tc)
[(

1
Rk,h-c

)
1

+
(

1
Rk,h-c

)
2

]
+

1
2
Re,h-cJ2

e .

QhQc

Se,J + Se,P

(Rk,h-c)1

(Rk,h-c)2

Se,J + Se,P

L 

l1 
l2 

Thermoelectric ElementSubstrate

Figure Pr.3.32(b) Thermal circuit diagram.

194



For (Th −Tc)max with Qc = 0 and Je corresponding to the optimum performance as given by (3.117), we have

Je = αSTc
Re,h-c

Qc = 0 = −αS

(
αSTc
Re,h-c

)
Tc + (Th − Tc)

[
1

(Rk,h-c)1
+ 1

(Rk,h-c)2

]
+ 1

2Re,h-c
α2

ST 2
c

R2
e,h-c

or

0 = −1
2

α2
ST 2

c

Re,h-c
+ (Th − Tc)

[
1

(Rk,h-c)1
+

1
(Rk,h-c)2

]
.

(b) Solving for (Th − Tc)max, we have

(Th − Tc)max(Qc = 0) =
α2

ST 2
C

2
Re,h-c

(Rk,h-c)1

[
1 +

(Rk,h-c)1
(Rk,h-c)2

] .

Using the thermoelectric figure of merit given by (3.120), we have

(Th − Tc)max(Qc = 0) =
ZeTc

2
[
1 +

(Rk,h-c)1
(Rk,h-c)2

] .

From (3.116), and for kp = kn = k1, we have

(Rk,h-c)−1
1 = 2

Ak,1k1

L
, Ak,1 = l1w

(Rk,h-c)−2
2 = 2

Ak,2k2

L
, Ak,2 = l2w.

Using these, we have

(Th − Tc)max(Qc = 0) =
ZeTc

2
(

1 +
l2k2

l1k1

) .

COMMENT:
The heat conduction through the substrate is not one dimensional. Also, parasitic heat is conducted to the

cold junction from locations other than the hot junction.
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PROBLEM 3.33.DES.S

GIVEN:
A miniature vapor sensor is cooled, for enhanced performance, by thermoelectric coolers. The sensor and its

thermoelectric coolers are shown in Figure Pr.3.33(a). There are four bismuth-telluride thermoelectric modules
and each module is made of four p-n layers (forming four p-n junctions) each p- and n-layer having a thickness l,
length L, and width w. The sensor and its substrate are assumed to have the ρcp of silicon and a cold junction
temperature Tc(t).

The hot junction temperature Th(t) is expected to be above the far-field solid temperature T∞. The conduction
resistance between the hot junctions and T∞ is approximated using the results of Table 3.3(b), for steady-state
resistance between an ambient placed on the bounding surface of a semi-infinite slab (Th) and the rest of the slab
(T∞) [shown in Table 3.3(b), first entry]. This is

Rk,h-∞ =
ln

4w

2a
πkw

=
ln

2w

a
πkw

, Qk,h-∞ =
Th(t) − T∞

Rk,h-∞
.

Initially there is a uniform sensor temperature, Tc(t = 0) = Th(t = 0) = T∞. For heat storage of the thermoelectric
modules, divide each volume into two with each portion having temperature Tc or Th.

l = 3 µm, w = 100 µm, L = 300 µm, a = 24 µm, T∞ = 20◦C, Je = 0.010 A.

SKETCH:
Figure 3.33(a) shows the thermoelectrically cooled vapor sensor.

Je

Si

Electrical Insulator SiO2 Layer
(Negligible Thickness)

Porous Silicon Layer

Thermoelectric Module

Electrode

Si

T
�

 

Th

Tc

n-Type Thermoelectric
(Bismuth Telluride)

p-Type Thermoelectric
(Bismuth Telluride)

Si

T
�

 
(Far-Field

Temperature)

Tc(t)

Thin Capacitance
Electrode (Al)

Heat ConductionThin Capacitance
Electrode (Al Grid)

Sensor Module, T(t)

Thin Porous Silicon Layer
(Absorber, Sensor) Vapor Diffusion

Th(t)

w
qkqk

a = 8l

w

L

l

Figure Pr.3.33(a) A thermoelectrically cooled vapor sensor showing the four molecules.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine and plot the sensor temperature Tc.
(c) Determine the steady-state sensor temperature Tc(t → ∞).

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.3.33(b). The sensible heat storage/release in the ther-
moelectric module is modeled by dividing its volume into two with one portion having the assumed uniform

196



� [   (ρcpV)S +    (ρcpV)TE]        + (Se,J)c + (Se,P)c
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2

of Sensor of One Module1
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1
4
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Qk,c-h

Qc = 0

Qk,h-�

Figure Pr.3.33(b) Thermal circuit diagram.

temperature Tc(t) and the other one Th(t). The heat conduction from the hot junction to the surrounding silicon
is given by the conduction resistance Rk,h-∞.
(b) The integral-volume energy equation (2.9) for the cold junction (including the heat storage/release for the
sensor and half of the thermoelectric modules) is

Qc + Qk,c-h = −(ρcpV )s
dTc

dt
−
(

1
2
ρcpV

)
TE

dTc

dt
+ (Ṡe,J)c + (Ṡe,P)c cold junctions

Qk,h-c + Qk,h-∞ = −
(

1
2
ρcpV

)
TE

dTh

dt
+ (Ṡe,J)h + (Ṡe,P)h hot junctions,

where

Qc = 0

Qk,c-h = Tc − Th
Rk,c-h

, R−1
k,c-h = 4

(Rk,c-h)p
+ 4

(Rk,c-h)n

Vs = aw2, VTE = awL

(Ṡe,J)c = (Ṡe,J)h = 1
2J2

e Re, Re,h-c = 4(Re,h-c)p + 4(Re,h-c)n

(Ṡe,P)c = −4αSJeTc, αS = αS,p − αS,n

(Ṡe,P)h = 4αSJeTh

(Rk,h-c)p = L
kplw

, (Rk,h-c)n = L
knlw

(Re,h-c)p = ρe,pL
lw

, (Re,h-c)n = ρe,nL
lw

Rk,h-∞ = ln(2w/a)
πkw

.

Note that we have used one thermoelectric module and 1/4 of the sensor volume in the energy equations.
From Table C.9(a), for bismuth telluride, we have

αS,n = −210 × 10−6 V/◦C Table C.9(a)

αS,p = 230 × 10−6 V/◦C Table C.9(a)

ρe,n = 1.00 × 10−5 ohm-m Table C.9(a)

ρe,p = 1.00 × 10−5 ohm-m Table C.9(a)

kn = 1.45 W/m-K Table C.9(a)

kp = 1.70 W/m-K Table C.9(a).

From Table C.2, for bismuth at T = 300 K, we have

ρe = 9,790 kg/m3 Table C.2

cp,TE = 122 J/kg-K Table C.2.
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From Table C.2, for silicon at T = 300 K, we have

ρs = 2,330 kg/m3 Table C.2

cp,s = 678 J/kg-K Table C.2

ks = 149 W/m-K Table C.2.

The computed (using a solver, such as SOPHT) cold junction temperature Tc(t) is plotted in Figure Pr.3.33(c),
as a function of time. The steady state is reached at an elapsed time at nearly t = 0.06 = 60 ms.
Also plotted is Th = Th(t) and the results show that Th remains constant and nearly equal to T∞. This is due to
the rather small resistance between these two modes (i.e., Rk,h-∞ 
 Rk,h-c).

Th(t) , T�

Tc(t)

T
, K

240

300

288

276

264

252

t, s

0.10.080.060.040.020

Tc(t    �) = 254.7 K

Figure Pr.3.33(c) Variation of the hot and cold junction temperatures, with respect to time.

(c) The steady-state, cold junction temperature is found from Pr.3.33(c), or by solving the steady state energy
equation (3.174). The result is

Tc(t → ∞) = 254.7 K = −18.40◦C.

COMMENT:
With a smaller volume for the sensor, the response time can be reduced. Although neglected here, the parasitic

heat leaks (i.e., Qc < 0) into the sensor prevent achieving low temperatures and also increases the response time.
The electric power is 4J2

e Re,h-c = 0.016 W = 16 mW and is considered reasonable for microelectronics. Also,
since Th � T∞, the closed-form solution to (3.172) can also be used. Note that since (Ṡe,P)c depends on Tc, we
should use

Qk,c-h − (Ṡe,P)c =
Tc − Th

Rk,c-h
+ αSJeTc

= Tc(
1

Rk,c-h
+ αSJe) − Th(

1
Rk,c-h

)

= (Tc − Th)(
1

Rk,c-h
+ αSJe) + αSJeTh

≡ Tc − Th

R′
k,c-h

+ Qc.

Then we use this newly defined Rk,c-h and a1 = −Qc in (3.172).
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PROBLEM 3.34.FUN

GIVEN:
A highly localized Joule heating applied to myocardium via a transvenous catheter can destroy (ablate) the

endocardial tissue region that mediates life-threatening arrhythmias. Alternating current, with radio-frequency
range of wavelength, is used. This is shown in Figure Pr.3.34(a)(i). The current flowing out of the spherical tip
of the catheter flows into the surrounding tissue, as shown in Figures Pr.3.34(a)(ii) and (iii). Due to the rapid
decay of the current flux, the Joule heating region is confined to a small region Re ≤ r ≤ R1 adjacent to the
electrode tip. The total current Je leaving the spherical tip results in a current density

je =
Je

4πr2 .

The tissue having a resistivity ρe will have a local energy conversion rate ṡe,J = ρej
2
e .

T2 = 37◦C, Re = 1.0 mm, R1 = 1.3 mm, ρe = 2.24 ohm-m, Je = 0.07476 A.
Use Table C.17 for k of muscle. Assume steady-state heat transfer.

SKETCH:
Figure Pr.3.34(a)(i) The Joule heating of myocardium region by a spherical electrode tip. (ii) The small

heated region. (iii) Heat flow out of the heated region by conduction.

Je

(i) Radio-Frequency Catheter Ablation of Myocardium

(ii) Joule-Heating Region

Heart

Endocardial Tissue

Transvenous Catheter
(Electrode)

Ablation Region

Re r

je(r)

se,J (r)

Tissue
�e

Spherical Tip
of Electrode

(iii) Temperature Decay Region

R1

R2    �, T2

Re
r

Se,J (r)

Qk,1-2

Tissue
k

Electrode

Control Surface A at T1

Region of Joule Heating Region of Temp-
erature Decay

R1

Figure Pr.3.34(a) Radio-frequency catheter ablation of myocardium showing the small a heated region and the
conduction heat transfer from this region.

OBJECTIVE:
Assuming that all the energy conversion occurs in the region Re ≤ r ≤ R1, then the heat is conducted from

this region toward the remaining tissue. The far-field temperature is T2, i.e., as r → ∞, T → T2.
(a) Derive the expression for the local Ṡe,J(r) and comment on its distribution.
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(b) Draw the thermal circuit diagram and write the surface energy equation for its surface located at r = R1.
Use the conduction resistance for a spherical shell (Table 3.2).
(c) Determine T1(R1) for the following conditions.

SOLUTION:
(a) The Joule heating per unit volume is given by (2.33), i.e.,

ṡe,J = ρej
2
e .

The current flux je is related to the total current, for the spherical geometry considered, through

je =
Je

4πr2 .

Then

ṡe,J = ρe
J2

e

16π2r4 .

This shows that the local Joule heating rate drops very quickly as r increases. This is the reason for the small
Joule heating region.

(b) The thermal circuit diagram for the surface node T1 is shown in Figure Pr.3.34(b).

Se,J

Qk,1-2

Rk,1-2

T2
T1

A1

Figure Pr.3.34(b) Thermal circuit diagram.

The surface energy equation is

Ṡe,J = Qk,1-2 =
T1 − T2

Rk,1-2
.

From Table 3.2 for R2 → ∞, we have

Rk,1-2 =
1

4πR1k
.

The integrated energy conversion rate Ṡe,J is

Ṡe,J =
∫ R1

Re

ρe
J2

e

16π2r4 4πr2dr

=
ρeJ

2
e

4π

∫ R1

Re

r−2dr

=
−ρeJ

2
e

4π

(
1

R1
− 1

Re

)

=
ρeJ

2
e

4π

(
1

Re
− 1

R1

)
.

(c) Solving the energy equation for T1, we have

T1 = T2 + Ṡe,JRk,1-2

= T2 +
ρeJ

2
e

4π

(
1

Re
− 1

R1

)
1

4πR1k

= T2 +
ρeJ

2
e

16π2R1k

(
1

Re
− 1

R1

)
.
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Using the numerical values, we have

Ṡe,J =
2.24(ohm-m) × 0.074762(m2)

4π
×
[

1
10−3(m)

− 1
1.3 × 10−3(m)

]
= 0.230 W.

From Table C.17 (for muscle tissue), k = 0.41 W/m-K. Then

T1 = 37(◦C) +
0.230(W)

4π × 1.3 × 10−3(m) × 0.41(W/m-K)
= 37(◦C) + 34.36(◦C) = 71.36◦C.

COMMENT:
Since in the Joule heating the local ṡe,J drops so rapidly with the increase in r, in practice a microwave heater,

with a helical coil antenna design is used.
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PROBLEM 3.35.FUN

GIVEN:
Refractive surgical lasers are used to correct the corneal refractive power of patients who are near-sighted,

far-sighted, or astigmatic in their vision. These corneal reshaping procedures can be performed via several mech-
anisms, including ablation of the corneal surface to change the focal length, removal of a section of the cornea
causing reformation, and reshaping of the corneal tissue by thermal shrinkage effects. In order to achieve minimal
tissue thermal damage due to the laser ablation, we need to investigate the thermal behavior of the corneal tissue
to understand the local thermal effects of laser heating, and to predict the potential for an unintentional injury
during laser surgery.

Heat transfer in corneal tissue is modeled as a sphere of radius R1 = 5 mm, with the energy source positioned
at the center of the sphere [Figure Pr.3.35(a)(i)]. A small diameter laser beam with Ṡe,α = Arαrqr,i = 220 mW
is used.

Assume a steady-state conduction heat transfer.

SKETCH:
Figure Pr.3.35(a) shows the eye laser surgery and the heat transfer model.

2R1

T1

k

T2

R2qr,i

Steady-State
Conduction

Beam

Laser Generator

(i) Laser Eye Surgery (ii) Thermal Model

Iris

Pupil

Cornea

Se,�

Lens

Se,α

Figure Pr.3.35(a)(i) Laser eye surgery showing the absorbed irradiation. (ii) The thermal model.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine Rk,1-2.
(c) Determine T1 of the laser beam at R1 = 1 mm, using the energy equation.
(d) Plot the variation of T with respect to r.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.3.35(b).

Rk,1-2

Qk,1-2

Se,α

T1 T2

Figure Pr.3.35(b) Thermal circuit diagram.

(b) Using (3.64), we have

Rk,1-2 =

(
1

R1
− 1

R2

)
4πk

=
T1 − T2

Qk,1-2
.

Given that R1 = 1 mm, R2 = 5 mm, and k = 0.6 W/m-K, we have

Rk,1-2 =

1
0.001(mm)

− 1
0.005(mm)

4π × (0.6W/m-◦C)
= 106.1◦C/W.
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(c) From above, we have

Qk,1-2 =
T1 − T2

Rk,1-2
,

with Qk,1-2 = Ṡe,α = 220 mW.
Solving for T1, we have

T1 = 60.34◦C.

(d) We determine T = T (r) using the differential-volume energy equation (3.35). For spherical shells with a
constant conductivity k, a dominant radial temperature gradient, and no volumetric conversion, we have

− 1
r2

d

dr
kr2 dT

dr
= ṡ

or
− 1

r2

d

dr
r2 dT

dr
= 0.

Integrating this once, we have
dT

dr
=

a1

r2 .

Integrating this once, we have

T (r) = −a1
1
r

+ a2.

The boundary conditions are

T1 = −a1
1

R1
+ a2 and T2 = −a1

1
R2

+ a2.

Solving for a1 and a2, we have

a1 =
T2 − T1

1
R1

− 1
R2

, a2 =


 T2 − T1

1
R1

− 1
R2


 1

R1
+ T1.

Then

T (r) = T1 +


 T2 − T1

1
R1

− 1
R2


(

1
R1

− 1
r

)
.

Figure Pr.3.35(c) shows the plot of T (r) versus R1 ≤ r ≤ R2.

COMMENT:
Note that T (r) drops rapidly as r increases. Also note that T (r = R1) = 60.84◦C is far above the reversible

temperature limit of 42◦C. The region with T > 42◦C is shown in Figure Pr.3.35(c).
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R1 = 1 2 3 4

Irreversible
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r, mm

T
,  

 C

42  C

Figure Pr.3.35(c) Variation of the tissue temperature with respect to the radial position r.
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PROBLEM 3.36.FUN

GIVEN:
Cardiac ablation refers to the technique of destroying heart tissue that is responsible for causing alternations

of the normal heart rhythm. A well-localized region of the endocardial tissue is destroyed by microwave heating.
The electric field is provided through a catheter that is inserted into the heart through a vein. One example of
this cardiac ablation and the microwave catheter design is shown in Figure Pr.3.36(a). The region Re < r < Ro

is heated with Re = 1 mm and frequency f = 3.00× 1011 Hz. A long catheter is assumed, so the heat transfer is
dominant in the cylindrical cross-sectional plane [shown in Figure Pr.3.36(a)].

The dielectric loss factor for heart tissue is εec = 17.6 and its thermal conductivity is k = 0.45 W/m-K.

SKETCH:
Figure Pr.3.36(a) shows the microwave antenna and the heated tissue region.

Tissue

Antenna
Antenna

Myocardium

Coaxial Cable

Torso

Re

Ro

r

se,m = 2�f   o   ecee

To

dT
dr

= 0

2

Cylindrical Cross Section

��

Figure Pr.3.36(a) A microwave catheter used for ablation of cardiac tissue.

OBJECTIVE:
(a) Assuming a zero temperature gradient r = Re, start with the one-dimensional (radial direction) differential
energy equation with ṡe,m = ṡe,m(r), then integrate this differential equation to obtain the radial distribution of
the temperature T = T (r). It is known that e2

e = e2
e,o(Re/r)2. In addition to thermal conditions dT/dr = 0 at

r = Re use T = To at r = Ro.
(b) In order to perform a successful ablation, the microwave antenna needs to produce a temperature Te = 353
K (80◦C) at r = Re. Given that temperature decreases to the normal tissue temperature To = 310.65 K (37.5◦C)
at r = 1 cm, determine the required electric field intensity ee,o to produce this temperature.
(c) Plot the variation of T (r) with respect to r for several values of ee,o.

SOLUTION:
(a) The energy equation for steady state conduction with an energy conservation in cylindrical coordinate is given
by (3.33), i.e.,

∇ · qk = −1
r

d

dr
rk

dT

dr
= ṡe,m(r),

ṡe,m(r) = 2πfεoεece
2
e, e2

e = e2
e,o

(
Re

r

)2

.

Then

−1
r

d

dr
rk

dT

dr
= 2πfεoεece

2
e,o

(
Re

r

)2

.
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Using a = 2πfεoεece
2
e,oR

2
e, we have

−1
r

d

dr
rk

dT

dr
= a

1
r2

−dT

dr
=

a

k

ln r

r
+

a1

k

1
r

−
∫ To

Te

dT =
∫ Ro

Re

a

k

ln r

r
dr +

∫ Ro

Re

a1

k

1
r
dr

dT =
a(ln r)2

2k
+

a1

k
ln r + a2.

To solve for the constants a1 and a2, we use the following bounding surface thermal conditions:

at r = Re,
∂T

∂r
= 0

at r = Ro, T = To.

Then
0 =

a

k

ln r

r
+

a1

kr
, a1 = −a ln Re

and

Te − To =
a

k

(ln Ro)2

2
− a ln Re ln Ro

k
+ a2

a2 =
a

k
lnRe ln Ro − a

k

(ln Ro)2

2
+ (Te − To).

Substituting for a1 and a2, the radial temperature distribution is

T (r) = To − a

k

[
(ln r)2

2
− ln Re ln r + lnRe ln Ro − (ln Ro)2

2

]
.

(b) Using Te = 355 K and To = 310.65 K (at r = Re = 1 mm and Ro = 1 cm, respectively), we have a1 = 0.047
W/m-K, a1/k = 1.04, and the required ee,o is 160 V/m.

(c) Figure Pr.3.36(b) shows the variation of temperature T (r) with respect to r, for several values of ee,o.

305
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ee,o = 160 V/m

150

100

40 30 20 10

Figure Pr.3.36(b) Variation of T (r) with respect to r for several values of ee,o.

COMMENT:
Note that the zero derivative of the temperature at r = Re shows no heat loss across this surface.
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PROBLEM 3.37.FUN

GIVEN:
The thermoelectric figure of merit Ze = α2

S/(Re/Rk) is maximized by minimizing Re/Rk.

OBJECTIVE:
Begin with the relations for Re and Rk, and the electrical and thermal properties, i.e., ρe,n, ρe,p. Then

calculate kn, kp, and the geometrical parameters Ln, Ak,n, Lp, and Ak,p, as given by (3.116).
(a) Then assume that Ln = Lp and minimize Re/Rk with respect to Ak,p/Ak,n. Then show that

LnAk,p

LpAk,n
=

Ak,p

Ak,n
=
(

ρe,pkn

ρe,nkp

)1/2

for optimum Ze,

which is (3.121).
(b) Use this in (3.120), and show that

Ze =
α2

S

[(kρe)1/2
p + (kρe)1/2

n ]
, optimized figure of merit.

SOLUTION:
(a) From (3.116), we have

Re

Rk
=

[(
ρeL

Ak

)
p

+
(

ρeL

Ak

)
n

][(
Akk

L

)
p

+
(

Akk

L

)
n

]

= (ρek)p + (ρek)n + ρe,pkn
Ak,n

Ak,p

Lp

Ln
+ ρe,nkp

Ak,p

Ak,n

Ln

Lp
.

Using Ln = Lp, we have

Re

Rk
= (ρek)p + (ρek)n + ρe,pkn

Ak,n

Ak,p
+ ρe,nkp

Ak,p

Ak,n
.

Taking the derivative with respect to Ak,p/Ak,n, and setting the resultant to zero, we have

d(Re/Rk)
d(Ak,p/Ak,n)

= −ρe,pkn

(
Ak,n

Ak,p

)2

+ ρe,nkp = 0,

or, while remembering that Ln = Lp,

LnAk,p

LpAk,n
=
(

ρe,pkn

ρe,nkp

)1/2

.

(b) Making this substitution, we have

Re

Rk
= (ρek)p + (ρek)n + ρe,pkn

(
ρe,nkp

ρe,pkn

)1/2

+ ρe,nkp

(
ρe,pkn

ρe,nkp

)1/2

= (ρek)p + (ρek)n + 2(ρe,pkn)1/2(ρe,nkp)1/2

= [(ρek)1/2
p + (ρek)1/2

n ]2.

Then (3.120) becomes

Ze =
α2

S

[(kρe)1/2
p + (kρe)1/2

n ]2
.

COMMENT:
The length requirement Lp = Ln is indeed a practical necessity.
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PROBLEM 3.38.FUN

GIVEN:
Begin with the differential-length energy equation (3.102), and use the prescribed thermal boundary condi-

tions (3.103) for a finite length slab of thickness L.

OBJECTIVE:
(a) Derive the temperature distribution given by (3.104).
(b) Show that the location of the maximum temperature is

x(Tmax) =
L

2
+

k(Th − Tc)
ρej

2
eL

.

(c) Comment on this location for the case of (i) je → 0, and (ii) je → ∞.

SOLUTION:
(a) Starting with (3.102), i.e.,

−k
d2T

dx2 = ρej
2
e ,

d2T

dx2 = −ρej
2
e

k
,

and performing the integration once, we have

dT

dt
= −ρej

2
e

k
x + a1.

Integrating once more, we have

T (x) = −ρej
2
e

2k
x2 + a1x + a2.

Now, the conditions at x = 0 and x = L are given by (3.103), i.e.,

T (x = 0) = Tc, T (x = L) = Th.

Using the first of these conditions, we have

T (x = 0) = Tc = −ρej
2
e

2k
(0)2 + a1(0) + a2

or

a2 = Tc.

Using the second of these conditions, we have

T (x = L) = Th = −ρej
2
e

2k
L2 + a1L + Tc

or

a1 =
Th − Tc

L
+

ρej
2
eL

2k
.

Then for a1 and a2, we have

T (x) = Tc +
x

L
(Th − Tc) +

ρej
2
e

2k
x(L − x).

(b) By differentiating the temperature distribution with respect to x, and setting the resultant to zero, we have

dT (x)
dx

=
Th − Tc

L
+

ρej
2
e

2k
(L − x) − ρej

2
ex

2k

=
Th − Tc

L
+

ρej
2
eL

2k
− ρej

2
ex

k
= 0.
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Solving for x, we have

x(Tmax) =
k(Th − Tc)

ρej
2
eL

+
L

2
.

(c) For (i), where je = 0, we have x(Tmax)je=0, i.e., there is not a location for the maximum temperature within
0 ≤ x ≤ L. This indicates that no maximum will occurs (i.e., linear temperature distribution).
For (ii), where je → ∞, we have x(Tmax) = L/2, i.e., for a finite difference between Th and Tc, the location of
the maximum temperature is at the center (for a very large volumetric Joule heating rate).

COMMENT:
As shown in Figure 3.27, as je is increased, x(Tmax) moves toward the center. Note that there is current

for which x(Tmax) = L, i.e., the hot surface will be the location of Tmax (with no gradient in temperature, and
therefore, no conduction at x = L). This current density is found by

x(Tmax) = L =
L

2
+

k(Th − Tc)
ρej

2
eL

or

je =
[
2k(Th − Tc)

ρeL
2

]1/2

.
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PROBLEM 3.39.FUN

GIVEN:
The optimum coefficient of performance for the thermoelectric cooler ηcop, given by (3.126), is based on a

current that optimizes it. This current is also given in (3.126).

OBJECTIVE:
Derive the expression for the optimum current, i.e.,

Je[∂ηcop/∂Je = 0] =
αS(Th − Tc)

Re,h-c[(1 + ZeTo)1/2 − 1]
,

where Ze is given by (3.120) and

To =
Th + Tc

2
.

SOLUTION:
Starting from (3.126), we differentiate ηcop with respect to Je and we have

∂ηcop

∂Je
=

αSJeTc − Re,h-cJe

Re,h-cJ2
e + αSJe(Th − Tc)

−
[αSTc − R−1

e,h-c(Th − Tc) − 1
2
Re,h-cJ2

e ][2Re,h-cJe + αS(Th − Tc)]

[Re,h-cJ2
e + αSJe(Th − Tc)]2

= 0

or

(αSTc − Re,h-cJe)[Re,h-cJ2
e + αSJe(Th − Tc)] − [αSJeTc + R−1

k,h-c(Th − Tc) +
1
2
Re,h-cJ2

e ][2Re,h-cJe + αS(Th − Tc)] = 0

or

αSTcRe,h-cJ2
e − R2

e,h-cJ
3
e + α2TcJe(Th − Tc) − Re,h-cJ2

e αS(Th − Tc) − 2αSJ2
e TcRe,h-c −

α2
SJeTc(Th − Tc) + 2R−1

k,h-c(Th − Tc)JeRe,h-c + R−1
k,h-c(Th − Tc)2αS + R2

e,h-cJ
3
e +

1
2
Re,h-cJ2

e αS(Th − Tc) = 0.

Then

−αSJ2
e TcRe,h-c − 1

2
Re,h-cJ2

e α2
S(Th − Tc) + 2R−1

k,h-cRe,h-cJe(Th − Tc) + R−1
k,h-c(Th − Tc)2αS = 0.

By combining the terms containing J2
e , we have

Re,h-cαS

(
Th − Tc

2
+ Tc

)
J2

e − 2R−1
k,h-cRe,h-c(Th − Tc)Je − R−1

k,h-cαS(Th − Tc) = 0.

The acceptable solution to this quadratic equation is

Je =
2R−1

k,h-cRe,h-c(Th − Tc) +
{

[2R−1
k,h-cRe,h-c(Th − Tc)]2 + 4R−1

k,h-cRe,h-cα2
S(Th − Tc)2

(
Th − Tc

2
+ Tc

)}1/2

2Re,h-cαS

(
Th − Tc

2
+ Tc

) .

Then

Je = R−1
k,h-cRe,h-c(Th − Tc)

1 +
[
1 + Ze

(
Th − Tc

2
+ Tc

)]1/2

Re,h-cαS

(
Th − Tc

2
+ Tc

)

= R−1
k,h-cRe,h-c(Th − Tc)

1 + (1 + ZeTo)1/2

Re,h-cαSTo

=
R−1

k,h-c(Th − Tc)
αS

1 + (1 + ZeTo)1/2

To
, To =

Th + Tc

2
, Ze =

α2
S

R−1
k,h-cRe,h-c

.
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This can be rearranged by multiplying and dividing to achieve

Je =
R−1

k,h-c(Th − Tc)
αS

[
Re,h-c
Rk,h-c

]
1 + (1 + ZeTo)1/2

To

[
(1 + ZeTo)1/2 − 1
(1 + ZeTo)1/2 − 1

]

=
αS(Th − Tc)

Re,h-c[(1 + ZeTo)1/2 − 1]
.

COMMENT:
To arrive at the optimum ηcop, we substitute this current in the definition for ηcop, i.e., (3.126), and expand

the expressions and then re-combine them.
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PROBLEM 3.40.FUN

GIVEN:
In thermoelectric cooling, the lowest temperature for the cold junction Tc corresponds to Qc = 0 and is given

by (3.119). Further lowering of Tc is possible by using thermoelectric units in averaged stages. A two-stage unit
is shown in Figure Pr.3.40(a). Assume that the temperature drops across the electrical conductor and insulator
are negligible such that the top junction is at Tc, the intermediate junction is at T1, and the lower junction is at
Th. Also assume no heat loss at the T1 junction, Q1 = 0, Use the bismuth telluride p-n pair and assume Qc = 0.

a = 1 mm, L = 1.5 mm, Th = 40◦C, Je = 4 A.

SKETCH:
Figure Pr.3.40(a) shows the two-stage thermoelectric cooler. The temperature drops across the electrical

insulators and conductors are assumed to be negligible.

a
a

a
aL

n p

�Qc

a
a

a
aL

p n

Qh

Th

Tc

Electrical
Conductor

Electrical Insulator

T1

Figure Pr.3.40(a) A two-stage thermoelectric cooler unit.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Show that Tc(Qc = 0) is given by

Tc =

RcJ
2
e +

Th

Rk

RkαSJe + 2
+

1
2
ReJ

2
e

αSJe +
(

1 − 1
RkαSJe + 2

)
1

Rk

.

(c) Start by writing the junction energy equation (3.115) for the Tc and T1 junctions. Determine Tc(Qc = 0) for
the above conditions.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.3.40(b). Heat losses from junctions Tc and T1 are assumed
to be zero.

(b) The energy equations for Tc and T1 nodes are found using (3.115), i.e.,

Qc +
Tc − T1

Rk
= −αSJeTc +

1
2
ReJ

2
e

Q1 +
T1 − Tc

Rk
+

T1 − Th

Rk
= −αSJeT1 + ReJ

2
e ,

where we have used the same Rk and Re for both stages.
Noting that Qc = Q1 = 0, we need to eliminate T1 between these two equations and then solve for Tc. From the
second equation, we have

αSJeT1 +
2T1

Rk
=

Th + Tc

Rk
+ ReJ

2
e
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Qc = 0

Q1 = 0

Tc

T1

Ac

A1

Qk,1-cRk,1-c

Qk,h-1
Rk,h-1

Th

(Se,P)c + (Se,J)c

(Se,P)1 + (Se,J)1

Qh

Figure Pr.3.40(b) Thermal circuit diagram.

or

T1 =

Th + Tc

Rk
+ ReJ

2
e

2
Rk

+ αSJe

.

Now substituting this in the first equation, we have

0 = −αSJeTc +
T1

Rk
− Tc

Rk
+

1
2
ReJ

2
e =

−αSJeTc +
1

Rk

ReJ
2
e +

Th + Tc

Rk

αSJe +
2

Rk

− Tc

Rk
+

1
2
ReJ

2
e =

−αSJeTc +
ReJ

2
e +

Th

Rk

RkαSJe + 2
+
(

1
RkαSJe + 2

− 1
)

Tc

Rk
+

1
2
ReJ

2
e .

Solving for Tc we have

Tc =

ReJ
2
e +

Th

Rk

RkαSJe + 2
+

1
2
ReJ

2
e

αSJe −
(

1
RkαSJe + 2

− 1
)

1
Rk

.

(c) From Example 3.14, for a bismuth telluride pair and for the given geometry, we have

αS = 4.4 × 10−4 V/K
Re = 0.030 ohm
Rk = 4.762 × 102 K/W.

Then

Tc =

0.030(ohm) × 42(A2) +
(273.15 + 40)(K)

476.2(K/W)
476.2(K/W) × 4.4 × 10−4(V/K) × 4(A) + 2

+
1
2
× 0.030(ohm) × 42(A2)

4.4 × 10−4(V/K) × 4(A) −
[

1
476.2(K/W) × 4.4 × 10−2(V/K) × 4(A) + 2

− 1
]

1
476.2(K/W)

.
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Tc =

0.48 + 0.6576
0.8381 + 2

+ 0.24

1.760 × 10−3 −
(

1
0.8381 + 2

− 1
)

1
476.2

ohm-A2

V-A/K

=
0.4008 + 0.24

1.760 × 10−3 + 1.360 × 10−3

V/A A2

V-A/K
= 205.4 K.

COMMENT:
Note that for a single-stage unit, from (3.115) we have

Tc(Qc = 0) =

1
2
ReJ

2
e +

Th

Rk

αSJe +
1

Rk

=

1
2
× 0.030 × 42 +

313.15
476.2

4.4 × 10−4 × 4 +
1

476.2

=
0.24 + 0.6576

1.760 × 10−3 + 2.10 × 10−3 = 232.5 K.

As expected, this is higher than Tc found in part (c) for the two-stage thermoelectric cooler unit.
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PROBLEM 3.41.DES

GIVEN:
An in-plane thermoelectric device is used to cool a microchip. It has bismuth telluride elements with dimen-

sions given below. A contact resistance Rk,c = lc/Akkc, given by (3.94), is present between the elements and the
connector. These are shown in Figure Pr.3.41(a). The contact conductivities kc is empirically determined for two
different connector materials and are

kc = 10kTE copper connector

kc = kTE solder connector,

where kTE is the average of p- and n-type materials.
L = 150 µm, w = 75 µm, a = 4 µm, Th = 300 K.

SKETCH:
Figure Pr.3.41(a) shows the miniaturized thermoelectric cooler unit.

Tc

Thermoelement

Substrate,
Assumed an Ideal Insulator (ks = 0)

a

Ts,c

Contact Resistance, Rk,c

Microchip
(Cooled Area)

L

w

Electrical Connector
(Copper or Solder)

lc

1 mm

Th
Tc

Figure Pr.3.41(a) A miniaturized thermoelectric device with a thermal contact resistance between the thermoelectric
elements and the connectors.

OBJECTIVE:
(a) Draw the thermal circuit diagram showing the contact resistance at each end of the elements.
(b) Determine the optimum current for cold junction temperature Tc = 275 K.
(c) Determine the minimum Tc [i.e., (3.119)] for these conditions.
(d) For Tc = 275 K, determine Qc,max from (3.118).
(e) Using this Qc,max and (3.96), determine ∆Tc = Ts,c − Tc and plot Ts,c versus lc for 0 < lc < 10 µm, for both
the copper and solder connectors.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.3.41(b).

(b) The current for this temperature is given by (3.117), i.e.,

Je =
αSTc

Re,h-c
.
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Je

Se,J = Re Je
1
2Control Surface Ac

Control Surface Ah

2
Se,J = Re Je

1
2

2

Se,P =  αS Je Th
Se,P =  �αS Je Tc

TcTh

Qh � Qc

Qk,h-c =
Th � Tc
Rk,h-c

Ts,c

Rk,cRk,c

Ts,h

.

. .

.

Figure Pr.3.41(b) Thermal circuit diagram.

The electrical resistance is given by (3.116) and, using the ρe values from Table C.9(a), we have

αS,p = 230 × 10−6 V/K Table C.9(a)

αS,n = −210 × 10−6 V/K Table C.9(a)

ρe = 10−5 ohm-m Table C.9(a)

kp = 1.70 W/m-K Table C.9(a)

kn = 1.45 W/m-K Table C.9(a),

Re,h-c =
ρe,pLp

Ap
+

ρe,nLn

An
=

L

wa
(ρe,p + ρe,n)

=
1.5 × 10−4(m)

7.5 × 10−5(m) × 4 × 10−6(m)
× 2 × (10−5)(ohm-m) = 10 ohm.

Using αS = αS,p − αS,n = 440 µV/K, the current is then

Je =
(440 × 10−6)(V/K) × 275(K)

10(ohm)
= 1.210 × 10−2 A.

(c) The minimum Tc for a given Th is given by (3.119) as

(Th − Tc)max =
α2

ST 2
c

2Re,h-c/Rk,h-c

R−1
k,h-c =

Ak,pkp

Lp
+

Ak,nkn

Ln
=

wa

L
(kp + kn) =

7.5 × 10−5(m) × 4 × 10−6(m)
1.5 × 10−4(m)

(1.70 + 1.45)(W/m-K)

= 6.360 × 10−6 W/K.

This minimum Tc is found from

300(K) − Tc(K) =
[440 × 10−6(V/K)]2T 2

c (K2)
2 × 10(ohm) × 6.360 × 10−6(W/K)

= 1.522 × 10−3T 2
c (K2)

or
Tc,min = 223.8 K.

(d) For Tc = 275 K, Qc,max can be found by (3.118) as

Qc,max = − α2
ST 2

c

2Re,h-c
+ R−1

k,h-c(Th − Tc)

= − [440 × 10−6(V/K)]2 × (275)2(K2)
2 × 10(ohm)

+ 6.360 × 10−6(W/K) × (25)(K) = (−7.321 × 10−4 + 1.590 × 10−4)(W)

= −5.731 × 10−4 W.
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(e) The value of the average thermoelectric conductivity is

kTE =
kp + kn

2
=

1.70 + 1.45
2

= 1.575 W/m-K.

The value of the gap conductivity can be found using the given relationships to be

kc = 10kTE = 15.75 W/m-K copper connector
kc = kTE = 1.575 W/m-K solder connector.

By varying values of lc, the thermal contact resistance can then be found using (3.94),

Rk,c =
lc

kcAk
=

lc
kcwa

.

Finally, Ts,c is found using (3.127) as

Qc =
Tc − Ts,c

Rk,c

or

Ts,c = Tc − QcRk,c = 275(K) + 5.731 × 10−4(W) × lc

3 × 10−10(m2)kc

.

The plots of Ts,c versus lc for both the copper and solder connectors are shown in Figures Pr.3.41(c) and (d).
Note that while the contact resistance of the copper connector is negligible, that of the solder is not.

0 2 4 6 8 10

T
s,

c 
, K

lc , �m

275.0

275.2

275.4

275.6

275.8

276.0

276.2

276.4

Copper Connector, kc = 10 kTE

0 2 4 6 8 10

T
s,

c 
, K

lc , �m

275

277

279

281

283

285

287

289

Solder Connector, kc = kTE

(c)

(d)

Figure Pr.3.41 Variation of the rise in cold junction temperature across the contact resistance, with respect to the
contact gap length, for (c) copper and (d) solder connectors.
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COMMENT:
As lc increases, the value of Ts,c increases linearly. For the copper connectors, and for lc = 10 µm, the

temperature rise across the contact is 1.213◦C (4.852 percent the temperature difference of 25◦C). The cold side
temperature is still far enough below Th = 300 K to cool the microchip. If the solder connector is used, then the
value of Ts,c will rise about 12.13◦C (48.52 percent the temperature difference). For this reason, copper or other
materials with high thermal and electrical conductivity are used for the connections between the thermoelectric
pairs. Note that the substrate thermal conductivity is assumed zero. In practice this has a finite value and
reduces the performance.
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PROBLEM 3.42.FAM

GIVEN:
To melt the ice forming on a road pavement (or similarly to prevent surface freezing), pipes are buried under

the pavement surface, as shown in Figure Pr.3.42(a). The pipe surface is at temperature T1, while the surface is
at temperature T2. The magnitude of the geometrical parameters for the buried pipes are given below.

Use the thermophysical properties of soil (Table C.17).
L = 5 cm, D = 1 cm, l = 2 m, w = 20 cm, T1 = 10◦C, T2 = 0◦C.
Assume that the conduction resistances given in Table 3.3(a) are applicable.

SKETCH:
Figure Pr.3.42(a) shows the hot-water carrying buried pipes.

D

l

w

L

Tf = T1

T2

Qk,1-2
Hot Water Pipe

Ice-Covered Surface

Melting of Surface Ice by Burried Pipes Carrying Hot Water

Soil, �k�

Figure Pr.3.42(a) Hot-water carrying buried pipes used for melting of an ice layer on a pavement surface.

OBJECTIVE:
(a) Draw the thermal circuit diagram for each pipe.
(b) From Table 3.3(a), determine the conduction resistance for (i) a single pipe (i.e., cylinder) independent of the
adjacent pipes, and (ii) a pipe in a row of cylinders with equal depth and an axial center-to-center spacing w.
(c) Determine Qk,1-2 per pipe for both cases (i) and (ii), and then compare.

SOLUTION:
(a) Figure Pr.3.42(b) shows the thermal circuit diagram for each pipe.

Rk,1-2 Qk,1-2

T2

T1

Figure Pr.3.42(b) Thermal circuit diagram.

(b) The conduction resistance for each pipe is given by Table 3.3(a), i.e.,

Rk,1-2 =
ln
(

4L

D

)
2πkl

for D < L < l.

Using (3.128), we have

Qk,1-2 =
T1 − T2

Rk,1-2
.
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From Table C.17, we have

soil: 〈k〉 = 0.52 W/m-K = 0.52 W/m-◦C Table C.17

Then

Rk,1-2 =
ln
[
4 × 0.05(m)

0.01(m)

]
2 × π × 0.52(W/m-◦C) × 2(m)

=
ln(20)
6.535

(◦C/W) = 0.4584◦C/W for each pipe.

(c) For the heat transfer per pipe, we have

Qk,1-2
∣∣
for each pipe =

(10 − 0)(◦C)
0.4584(◦C/W)

= 21.81 W.

COMMENT:
The center-to-center spacing of adjacent pipes w was assumed to be sufficiently large such that the heat

transfer from each pipe could be assumed independent of the adjacent pipes. As w decreases, the effect of the
adjacent pipes on the heat transfer of a single pipe must be considered. The correlation for the thermal resistance
from a single cylinder to a row of cylinders at equal depth in a semi-infinite solid, as a function of center-to-center
spacing w, is given in Table 3.3(a),i.e.,

Rk,1-2 =
ln
[( w

πR

)
sinh

(
2πL

w

)]
2πkl

for each cylinder in a row of cylinders.

The variation of Rk,1-2 for each pipe of a row of cylinders as a function of the spacing w is given in Figure Pr.3.42(c).
Also shown is the Rk,1-2 for a single cylinder. Note that the thermal resistance for each pipe in the row increases
as w decreases. This is because the adjacent pipes raise the temperature of the solid medium, resulting in a
decrease in the heat transfer from each pipe.

2.5
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1.5

1

0.5

0
0 0.1 0.2 0.3 0.4 0.5 0.6
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k,

1-
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,  
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/W
 (

pe
r 
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lin

de
r)

Single Cylinder
Approximation for
Given L, D, and l

Single Cylinder
Row of Cylinders

w, m

L = 5 cm
D = 1 cm
l = 2 m

Figure Pr.3.42(c) Variation of conduction resistance with respect to pipe spacing.
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PROBLEM 3.43.FUN

GIVEN:
The steady-state conduction in a two-dimensional, rectangular medium, as shown in Figure Pr.3.43, is given

by the differential volume energy equation (B.55), i.e.,

∇qk = −k
∂2T

∂x2 − k
∂2T

∂y2 = 0.

This is called a homogeneous, linear, partial differential equation and a general solution that separates the
variable is possible, if the boundary (bounding-surface) conditions can also be homogeneous. This would require
that the temperatures on all surfaces be prescribed, or the bounding surface energy equation be a linear resistive
type. When the four surface temperatures are prescribed, such that three surfaces have a temperature and dif-
ferent from the fourth, the final solution would have a simple form.

SKETCH:
Figure Pr.3.43 shows the geometry and the prescribed temperatures on the four surfaces.

Ly

Two-Dimensional
Temperature Distribution

T = T(x,y)

Lz

Lx

T1 , T
* = 0

T1 , T
* = 0

T1 , T
* = 0

T2 , T
* = 1

x

y

Figure Pr.3.43 A rectangular, two-dimensional geometry with prescribed
surface temperatures.

OBJECTIVE:
(a) Using the dimensionless temperature distribution

T ∗ =
T − T1

T2 − T1
,

show that the energy equation and boundary conditions become

∂2T ∗

∂x2 +
∂2T ∗

∂y2 = 0, T ∗ = T ∗(x, y)

T ∗(x = 0, y) = 0, T ∗(x = Lx, y) = 0, T ∗(x, y = 0) = 0, T ∗(x, y = Ly) = 1.

(b) Use the method of the separation of variables (which is applicable to this homogeneous differential equation
with all but one boundary conditions being also homogeneous), i.e.,

T ∗(x, y) = X(x)Y (y)

to show that the energy equation becomes

− 1
X

d2X

dX2 =
1
Y

d2Y

dy
.

(c) Since the left-hand side is only a function of x and the right-hand side is a function of y, then both sides
should be equal to a constant. This is called the separation constant. Showing this constant as b2, show also that

d2X

dx2 + b2X = 0

d2Y

dy2 + b2Y = 0.
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Then show that the solutions for X and Y are

X = a1 cos(bx) + a2 sin(bx)
Y = a3e

−by + a4e
by

or
T ∗ = [a1 cos(bx) + a2 sin(bx)](a3e

−by + a4e
by).

(d) Apply the homogeneous boundary conditions to show that

a1 = 0
a3 = a4

a2a4 sin(bLx)(eby − e−by) = 0.

Note that the last one would require that
sin(bLx) = 0

or
bLx = nπ, n = 0, 1, 2, 3, · · · .

(e) Using these, show that

T ∗(x, y) = a2a4 sin
(

nπx

Lx

)
(enπy/Lx − e−nπy/Lx)

≡ an sin
(

nπx

Lx

)
sinh

(
nπy

Lx

)
.

Since n = 1, 2, 3, · · · and differential equation is linear, show that

T ∗ =
∞∑

n=0

an sin
(

nπx

Lx

)
sinh

(
nπy

Lx

)
.

(f) Using the last (i.e., nonhomogeneous) boundary condition and the orthogonality condition of the special
function sin(z), it can be shown that

an =
2[1 + (−1)n+1]

nπ sinh(nπLy/Lx)
, n = 0, 1, 2, 3, · · · .

Then express the final solution in terms of this and verify that all boundary conditions are satisfied.

SOLUTION:
(a) Using the prescribed temperatures T1 and T2, we have

T ∗(x, y) =
T (x, y) − T1

T2 − T1

and the energy equation and boundary conditions become

∂2T ∗(x, y)
∂x2 +

∂2T ∗(x, y)
∂y2 = 0

T ∗(x = 0, y) = T ∗(x = Lx, y) = T ∗(x, y = 0) = 0
T ∗(x, y = Ly) = 1.

(b) Using
T ∗(x, y) = X(x)Y (y)

in the above energy equation, we have

Y (y)
d2X(x)

dx2 + X(x)
d2Y (y)

dy2 = 0
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or

− 1
X(x)

d2X(x)
dx2 =

1
Y (y)

d2Y (y)
dy2 .

This results in two ordinary differential equations being equal, while each side can only be a function of one
independent variable. This will only be possible if these two equations are equal to a constant.

(c) Using intuition for the form of the solution, we set this constant equal to b2. Then we have

d2X(x)
dx2 + b2X(x) = 0

d2Y (y)
dy2 − b2Y (y) = 0.

The solutions to these two differential equations take the form of special sinusoidal and exponential (or hyperbolic)
functions, respectively. These are

X(x) = a1 cos(bx) + a2 sin(bx)
Y (y) = a3e

−by + a4e
by

or
T ∗(x, y) = [a1 cos(bx) + a2 sin(bx)](a3e

−by + a4e
by).

(d) Using T ∗(x = 0, y) = 0, we have

0 = (a1 cos 0 + a2 sin 0)(a3e
−by + a4e

by)

or
a1 = 0.

Using Tx,y=0 = 0, we have
0 = a2 sin(bx)(a3 + a4)

or
a3 + a4 = 0, or a3 = −a4.

Using T ∗(x = Lx, y) = 0, we have
0 = a2 sin(bLx)(a3e

−by + a4e
by)

or
sin(bLx) = 0.

This would require that
b =

nπ

Lx
, n = 0, 1, 2, 3, · · · .

(e) Now combining these, we have

T ∗(x, y) = a2a4 sin

[
nπx

Lx

(
e
nπy
Lx − e

−nπy
Lx

)]

≡ an sin
(

nπx

Lx

)
sinh

(
nπy

Lx

)
,

where we have used

an = 2a2a4

sinh(z) ≡ ez + e−z

2
.

We expect an to depend on n and this will be shown below.
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Since n = 0, 1, 2, 3, · · · , and since the energy equation used is a linear differential equation, the sum of the
solutions corresponding to n = 0, n = 1, n = 2, etc., is also a solution. Then

T ∗(x, y) =
∞∑

n=0

an sin
(

nπx

Lx

)
sinh

(
nπy

Lx

)
.

(f) Using T ∗(x, y = Ly) = 1, we have

1 =
∞∑

n=0

an sin
(

nπx

Lx

)
sin

(
nπLy

Lx

)

We now multiply both sides by sin(nπx/Lx) and then integrate the resultants over 0 ≤ x ≤ Lx. Then it can be
shown that

an =
2[1 + (−1)n+1]

nπ sinh(nπLy/Lx)
.

Now combining these, we have

T ∗(x, y) =
2
π

∞∑
n=0

1 + (−1)n+1

n
sin

(
nπx

Lx

) sinh
(

nπy

Lx

)

sinh
(

nπLy

Lx

) .

COMMENT:
The series solution would require a large number of terms in order to obtain a smooth temperature distribution.

In a later exercise, we will compare this result with that found from a finite-small volume numerical solution.
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PROBLEM 3.44.FAM

GIVEN:
In order to maintain a permanent frozen state (permafrost) and a firm ground, heat pipes are used to cool

and freeze wet soil in the arctic regions. Figure Pr.3.44(a) shows a heat pipe, which is assumed to have a uniform
temperature T1, placed between the warmer soil temperature T2, and the colder ambient air temperature Tf,∞.
The heat transfer between the heat pipe surface and the ambient air is by surface convection and this resistance
is given by AkuRku. The heat transfer between the pipe and soil is by conduction. Assume a steady-state heat
transfer.

D = 1 m, Lku = 5 m, Lk = 2 m, Tf,∞ = −20◦C, T2 = 0◦C, AkuRku = 10−1 K/(W/m2).
Use Table 3.3(b) to determine the resistance Rk,1-2.

SKETCH:
Figure Pr.3.44(a) shows the heat pipe, the far-field ambient air temperature Tf,∞, and the soil temperature T2.

Far-Field Fluid
Temperature, Tf,�

Pipe at Uniform
Temperature
Tf,� < T1 < T2

Far-Field Soil
Temperature, T2

Crossing
Air Stream

Lku

Lk

D

Wet Soil

Ambient Air

Heat Pipe

Sls

Rk,1-2

(Aku Rku)1-�
g

Figure Pr.3.44(a) A rendering of a heat pipe used for the maintenance of a permafrost layer in the arctic regions.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the heat pipe temperature T1 and the amount of heat flow rate Qk,2-1.
(c) If this heat is used entirely in phase change (solidification of liquid water), determine the rate of ice formation
around the buried pipe.

SOLUTION:
(a) The thermal circuit diagram is shown Figure Pr.3.44(b). From node T1, heat flows by surface convection and
by conduction.

Sls = �Mls �hls

T1

T2

Q2

Tf,�

Rku,1-�

Rk,1-2

Qku,1-�

Qk,1-2

Figure Pr.3.44(b) Thermal circuit diagram.

(b) From Figure Pr.3.44(b), we have

Qk,1-2 + Qku,1-∞ = 0 =
T1 − T2

Rk,1-2
+

T1 − Tf,∞
Rku,1-∞

.
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From Table 3.3(b), for an indented object in a semi-infinite medium (soil), we have

Rk,1-2 =
ln(4Lk/D)

2πkLk
,

where k is the soil conductivity. From Table C.17, we have

k = 0.52 W/m-K Table C.17.

Then

Rk,1-2 =
ln

4 × 2(m)
1(m)

2π × 0.52(W/m-K) × 2(m)
= 0.3182 K/W = 0.3182◦C/W.

For Rku, we have

Rku =
AkuRku

Aku
=

AkuRku

πDLku + πD2/4

=
10−1[K/(W/m2)]

π × 1(m) × 5(m) + π × 12(m2)/4
= 6.063 × 10−3 K/W = 6.063◦C/W.

Solving the energy equation for T1, we have

T1 =

T2

Rk,1-2
+

Tf,∞
Rku,1-∞

1
Rk,1-2

+
1

Rku,1-∞

=

0◦C
0.3182(◦C/W)

+
−20◦C

6.063 × 10−3(◦C/W)
(3.143 + 1.649 × 102)(W/◦C)

= −19.63◦C.

Qk,2-1 =
T2 − T1

Rk,1-2
=

[0 − (−19.63)](◦C)
0.3182(◦C/W)

= 61.69 W.

(c) From Figure Pr.3.44(b), we have

Q2 + Qk,2-1 = Ṡls.

From Table 2.1, we have

Ṡls = −Ṁls∆hls.

From Table C.4, for water, we have

∆hsl = 3.336 × 105 J/kg = −∆hls,

then

Ṁls =
Qk,2-1
∆hsl

=
61.69(W)

3.336 × 105(J/kg)
= 1.849 × 10−4 kg/s = 0.1849 g/s = 665.7 g/hr.

COMMENT:
Note that since Rku,1-∞ 
 Rk,1-2, the heat-pipe temperature is nearly that of the ambient air, i.e., T1 � Tf,∞.
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PROBLEM 3.45.FAM.S

GIVEN:
In scribing of disks by pulsed laser irradiation (also called laser zone texturing) a small region, diameter D1,

is melted and upon solidification a protuberance (bump) is formed in this location. The surface of the liquid
pool formed through heating is not uniform and depends on the laser energy and its duration, which in turn also
influences the depth of the pool L1(t). These are shown in Figure Pr.3.45(a). Assume that the irradiated region
is already at the melting temperature T1 = Tsl and the absorbed irradiation energy (Ṡe,α)1 is used to either melt
the substrate Ṡsl, or is lost through conduction Qk,1-2 to the substrate. This simple, steady-state thermal model
is also shown in Figure Pr.3.45(b). The irradiation is for an elapsed time of ∆t.

D1 = 10 µm, (Ṡe,α)1 = 48 W, ∆t = 1.3 × 10−7 s, T2 = 50◦C.
Use the temperature, density, and heat of melting of nickel in Table C.2 and, the thermal conductivity of

nickel at T = 1, 400 K in Table C.14.
The energy conversion rate Ṡsl is given in Table 2.1 and note that Ṁsl = Ml/∆t, where Ml = ρVl(t). Use

Table 3.3(b) for the conduction resistance and use L(t = ∆t) for the depth.

SKETCH:
Figure Pr.3.45(a) and (b) show the irradiation melting and the simple, steady-state heat transfer model.

Lens

(a) Laser Zone Texturing

(b) Simple, Steady-State Thermal Model

Focused Laser Beam

Inscription Site Far-Field Temperature, T2

Constant Melt Temperature, T1 = Tsl

Hard Disk Drive: Ni-P (12% W,P)

qr,i

L (t)

D1

Ssl,1 + (Se,�)1

Qk,1-2

D1

Figure Pr.3.45(a) Laser zone texturing of a disk. (b) The associated simple, steady-state heat transfer model..

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the depth of the melt L1, after an elapsed time ∆t.

SOLUTION:
(a) Figure Pr.3.45(c) shows the steady-state thermal circuit diagram.

Constant Melt
Temperature,
T1 = Tsl

T2

Rk,1-2

Qk,1-2

Q1 = 0

Ssl,1 + (Se,�)1

Figure Pr.3.45(c) Thermal circuit diagram.
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(b) From Figure Pr.3.45(c), we have the energy equation

Qk,1-2 = (Ṡe,α)1 + Ṡsl,1.

From Table 3.2, we have

Qk,1-2 =
Tsl − T2

Rk,1-2

From Table 2.1, we have

Ṡsl,1 = −Ṁsl∆hsl

= −Ṁl∆hsl

= −ρ
Vl(t)
∆t

∆hsl

= −ρπD2
1

L1(t)
∆t

∆hsl

Then solving for L1(t), we have

Tsl − T2

Rk,1-2
= (Ṡe,α)1 − ρπD2

1

L(t)
∆t

∆hsl

or

L(t = ∆t) =

[
(Ṡe,α)1 − Tsl − T2

Rk,1-2

]
∆t

ρπD2
1∆hsl

.

From Table 3.3(b), for a cylindrical indentation, we have

Rk,1-2 =
ln(4L/D1)

4πkL
.

Here we assume that

Rk,1-2 =
ln[4L(t = ∆t)/D1]

4πkL(t = ∆t)
.

From Table C.14, at T = 1,400 K for nickel, we have

k = 80 W/m-K Table C.14.

From Table C.2, for nickel, we have

ρ = 8,900 kg/m3 Table C.2

Tsl = 1,728 K Table C.2

∆hsl = 2.91 × 105 J/kg Table C.2.

Then using the numerical values, we have

L(t = ∆t) =

[
48(W) − (1,728 − 323.15)(K)

Rk,1-2(K/W)

]
× 1.3 × 10−7(s)

8,900(kg/m3) × π × (10−5)2(W2) × 2.91 × 105(J/kg)

Rk,1-2 =
ln[4L(t = ∆t)/10−5(m)]

4π × 80(W/m-K) × L(t = ∆t)
.

Solving these using a solver (such as SOPHT), we have

L(t = ∆t) =
6.240 × 10−6(J) − 1.826 × 10−4(K-s)

Rk,1-2(K/W)
8.137 × 10−1(J/m)

Rk,1-2 =
ln[4 × 105 × L(t = ∆t)]

1.005 × 103(W/m-K) × L(t = ∆t)
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or

L(t = ∆t) = 6.127 × 10−6 m = 6.127 µm
Rk,1-2 = 145.6 K/W.

COMMENT:
The steady-state conduction resistance is not expected to be accurate. The transient resistance is expected

to be smaller and thus have a more significant rule. The initial heating, to the melting temperature Tsl, can be
modeled similarly and its inclusion will reduce the final pool depth.
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PROBLEM 3.46.FUN

GIVEN:
To estimate the elapsed time for the penetration of a change in the surface temperature of the brake rotor,

the results of Table 3.4 and Figure 3.33(a) can be used. Consider the brake rotor shown in Figure Pr.3.46.
Use carbon steel AISI 1010 for the rotor at T = 20◦C, and 2L = 3 cm.

SKETCH:
Figure Pr.3.46 shows the friction heating of the rotor.

LL

Brake Pad
Rotor

Assumed
Symmetric Line

Sm,F

Figure Pr.3.46 Surface friction heating and its penetration into the brake rotor, during the braking period.

OBJECTIVE:
(a) For the conditions given above, determine the penetration time.
(b) If the brake is on for 4 s, is the assumption of a uniform rotor temperature valid during the braking period ?
(c) If the surface-convection cooling occurs after braking and over a time period of 400 s, is the assumption of a
uniform rotor temperature valid during the cooling period?

SOLUTION:
(a) From Table C.16, for carbon steel AISI 1010, we have

ρ = 7,830 kg/m3 Table C.16

cp = 434 J/kg-K Table C.16

k = 64 W/m-K Table C.16

α =
k

ρcp
= 18.8 × 10−6 m2/s. Table C.16.

Assuming that results of Figure 3.33(a)(ii) for a finite slab of thickness 2L apply here, we have for (3.150)

FoL,o =
tα

L2 = 0.07.

Then the elapsed time is

t = 0.07
L2

α

= 0.07
(1.5 × 10−2)2(m2)
1.88 × 10−5(m2/s)

= 0.8378 s.

(b) Figure 3.33(a)(ii) shows that for a nearly uniform temperature, a larger Fourier number is needed. As an
approximation from Figure 3.33(a)(ii), we choose FoL = 1.0 to indicate nearly uniform temperature. Then the
elapsed time is

t = 1.0
L2

α
= 11.97 s.

This is large compared to the braking time of t = 4 s. Therefore, we cannot justifiably assume a uniform rotor
temperature during the braking period.
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(c) During the surface-convection cooling of t = 400 s, the changes occurring over the rotor surface will have
a sufficient time to penetrate through the rotor (only t = 11.97 s is needed for a nearly complete penetration).
Then we can justify the use of a uniform temperature assumption during the cooling period.

COMMENT:
Note that we have used the constant surface temperature results of Table 3.4 for the finite slab, while in

practice, the surface temperature continues to rise during the brake period and drop during the cooling period.
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PROBLEM 3.47.FUN

GIVEN:
The time-periodic variation of the surface temperature of a semi-infinite slab (such as that shown in Figure

Ex.3.17) can be represented by an oscillating variation

Ts = T (t = 0) + ∆Tmaxcos(ωt),

where ω = 2πf is the angular frequency, f (1/s) is the linear frequency, and ∆Tmax is the amplitude of the surface
temperature change. The solution to the energy equation (3.134), with the above used for the first of the thermal
conditions in (3.135), is

T (x, t) − T (x, t = 0)
∆Tmax

= exp
[
−x

( ω

2α

)1/2
]

cos
[
ωt + x

( ω

2α

)1/2
]

.

OBJECTIVE:
Show that the penetration depth δα, defined by

T (x, t) − T (x, t = 0)
∆Tmax

= 0.01,

is given by

δα

(2αt)1/2
= 1.725,

which is similar to the penetration depth given by (3.148).
Evaluate the penetration depth after an elapsed time equal to a period, i.e., t = τ = 1/f , where τ(s) is the

period of oscillation.

SOLUTION:
Upon examining the solution

T (x, t) − T (x, t = 0)
∆Tmax

= exp
[
−x

( ω

2α

)1/2
]

cos
[
ωt + x

( ω

2α

)1/2
]

,

we note that the exponential term is a spatial attenuation factor, while the cosine term is a combined temporal-
spatial phase lag function. For the determination of the penetration depth, the spatial factor can be written as

exp
[
−δα

( ω

2α

)1/2
]

= exp

[
−δα

(
2πf

2α

)1/2
]

= exp

[
−δα

(
2π

2ατ

)1/2
]

= exp
[
−δα

( π

ατ

)1/2
]

.

Similarly,

cos
[
ωt + x

( ω

2α

)1/2
]

= cos
[
2π + δα

( π

ατ

)1/2
]

.

From the definition of penetration depth, we have:

exp
[
−δα

( π

ατ

)1/2
]

cos
[
2π + δα

( π

ατ

)1/2
]

= 0.01.

Using a solver (such as SOPHT), this gives

δα

( π

ατ

)1/2

= 1.528.
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To compare with (3.148), we rearrange to obtain

δα

2(ατ)1/2
= 1.528

1
2π1/2

= 0.4310.

This is similar in form to (3.148), except that the constant is 0.4310 (instead of 1.8).

COMMENT:
This shows that the assumption made in Example 3.17 is valid, regarding similarity of penetration depths for

the periodic and for the sudden (pulsed) change in the surface temperature.
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PROBLEM 3.48.FAM

GIVEN:
Pulsed lasers provide a large power qr,i for a short time ∆t. In surface treatment of materials (e.g., laser-shock

hardening), the surface is heated by laser irradiation using very small pulse durations. During this heating, the
transient conduction through the irradiated material can be determined as that of a semi-infinite solid subject
to constant surface heating −qs = qr,i; this is shown in Figure Pr.3.48, with the material being a metallic alloy
(stainless steel AISI 316, Table C.16). The heated semi-infinite slab is initially at T (t = 0). In a particular
application, two laser powers (assume all the laser irradiation power is absorbed by the surface), with different
pulse lengths ∆t, are used. These are (i) −qs = 1012 W/m2, ∆t = 10−6 s, and (ii) −qs = 1010 W/m2, ∆t = 10−4 s.

SKETCH:
Figure Pr.3.48 shows the surface irradiated by a laser and the penetration of the heat into the substrate.

Stainless
Steel Workpiece

Prescribed Laser Irradiation
�qs (W/m2)

0

T(x,t)

x

δα(t)

T(t = 0)

Figure Pr.3.48 Pulsed laser irradiation of a stainless steel workpiece and the anticipated transient temperature
distribution within the workpiece.

OBJECTIVE:
(a) Determine the surface temperature T (x = 0, t = ∆t) after elapsed time t = ∆t, for cases (i) and (ii).
(b) As an approximation, use the same expression for penetration depth δα(t) as that for the semi-infinite slabs
with a prescribed surface temperature, and determine the penetration depth after the elapsed time t = ∆t, for
cases (i) and (ii).
(c) Comment on these surface temperatures and penetration depths.

SOLUTION:
(a) From Table 3.4, for the case of a prescribed surface heat flux qs, we have the expression for T (x, t) as

T (x, t) = T (t = 0) − qs(4αt)1/2

π1/2k
e
− x2

4αt +
qsx

k

{
1 − erf

[
x

(4αt)1/2

]}
.

Evaluating this at x = 0 and t = ∆t, we have

T (x = 0, t = ∆t) = T (t = 0) − qs(4α∆t)1/2

π1/2k
.

From Table C.16, we have, for stainless steel 316

α = 3.37 × 10−6 m2/s Table C.16

k = 13 W/m-K Table C.16.
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Then using the numerical values, we have

(i) T (x = 0, t = 10−6s) = 20(◦C) − (−1012)(W/m2) × [4 × (3.37 × 10−6)(m2/s) × 10−6(s)]1/2

π1/2 × 13(W/m-K)
= 20(◦C) + 1.594 × 105(◦C) = 1.594 × 105 ◦C.

(ii) T (x = 0, t = 10−6s) = 20(◦C) − (−1010)(W/m2) × [4 × (3.37 × 10−6)(m2/s) × 10−4(s)]1/2

π1/2 × 13(W/m-K)
= 20(◦C) + 1.594 × 104(◦C) = 1.594 × 104 ◦C.

These are tremendously large surface temperatures sustained for a very short time (thus the name laser-shock
harding).

(b) From (3.148), for a semi-infinite slab with a sudden change in the surface temperature, we have the penetration
depth given as

δδ = 3.6α1/2t1/2.

Then using the numerical values, we have

(i) δα(t = ∆t) = 3.6 × (3.37 × 10−6)1/2(m2/s)1/2 × (10−6)1/2(s)1/2

= 6.609 × 10−6 m = 6.609 µm
(ii) δα(t = ∆t) = 3.6 × (3.37 × 10−6)1/2(m2/s)1/2 × (10−4)1/2(s)1/2

= 6.609 × 10−5 m = 66.09 µm.

(c) The thin region near the surface is shocked by this large temperature change and this allows for the rear-
rangement of the molecules. Then upon cooling, any crystalline defects (and also any surface impurities) will be
removed.

COMMENT:
During very fast thermal shocks, the lattice nuclei may not be in thermal equilibrium with their electron

clouds. The electrons having a much smaller mass heat up much faster than the nuclei. Also, any phase change
occurring during the shock treatment will not follow the equilibrium phase diagrams, which are generally obtained
through controlled and much slower heating/cooling processes.
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PROBLEM 3.49.FUN

GIVEN:
In a solidification process, a molten acrylic at temperature T (t = 0) is poured into a cold mold, as shown in

Figure 3.49, to form a clear sheet. Assume that the heat of solidification can be neglected.
L = 2.5 mm, Tls = 90◦C, T (t = 0) = 200◦C, Ts = 40◦C.

SKETCH:
The planar mold and the acrylic melt are shown in Figure Pr.3.49.

Ly >> L

2L

Plane of Symmetry

Cooled Mold, T = 40 C

Melt
T(t = 0) = 200 C

(Acrylic)

Lz >> L

z

x
y

Figure Pr.3.49 Solidification of an acrylic melt in a mold having a constant temperature Ts.

OBJECTIVE:
(a) Determine the elapsed time for the cooling front to reach the central plane of the melt.
(b) Determine the elapsed time for the temperature of the central plane of the melt to reach the glass transition
temperature Tls.

SOLUTION:
From Table C.17, we have for acrylic (at T = 293 K)

α = 1.130 × 10−7 m2/s Table C.17.

(a) From Figure 3.33(a)(ii), or from (3.151), the time (Fourier number) for the penetration to reach the central
plane is

FoL = 0.07 =
αt

L2

or

t =
L2FoL

α
=

(2.5 × 10−3)2(m2) × 0.07
1.130 × 10−7(m2/s)

= 3.872 s.

(b) From Figure 3.33(a)(ii) for a finite slab, we have

Tls − T (t = 0)
Ts − T (t = 0)

=
(90 − 200)(◦C)
(40 − 200)(◦C)

= 0.6875,

and by interpolating the value of FoL for x/L = 0, we have

FoL = 0.57.

Then

FoL =
αt

L2
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or

t =
L2FoL

α
=

(2.5 × 10−3)2(m2) × 0.57
1.130 × 10−7(m2/s)

= 31.53 s

COMMENT:
Note that for a significant change in the central-plane temperature, an elapsed time is needed which is many

times that for just penetrating to the location of the central plane. We can approximately account for the heat
of solidification ∆hls by adjusting the specific heat capacity.
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PROBLEM 3.50.FAM

GIVEN:
During solidification, as in casting, the melt may locally drop to temperatures below the solidification tem-

perature Tls, before the phase change occurs. Then the melt is in a metastable state (called supercooled liquid)
and the nucleation (short of) of the solidification resulting in formation of crystals (and their growth) begins after
a threshold liquid supercool is reached. Consider solidification of liquid paraffin (Table C.5) in three different
molds. These molds are in the form of (i) a finite slab, (ii) a long cylinder, and (iii) a sphere, and are shown in
Figure Pr.3.50. The melt in the molds in initially at its melting temperature T (t = 0) = Tsl. Then at t = 0 the
mold surface is lowered and maintained at temperature Ts.

Assume that solidification will not occur prior to this elapsed time.
Ts = 15◦C, L = R = 2 cm, T = (x = 0, t) = T (r = 0, t) = To = 302.
Use the properties of polystyrene (Table C.17).

SKETCH:
Figure Pr.3.50 shows the three geometries of the paraffin mold.

L

r
R = L

R = L
r

�

�

�

�

x

Ts > Tsl
T(x = 0, t) = To

Initially at
T(t = 0) = Tsl

Parafin (Wax) Melt

(i) Finite-Slab Mold

(ii) Long-Cylinder
Mold

(iii) Sphere Mold

Figure Pr.3.50 Paraffin (wax) melt is cooled in a mold (three different geometries) and is gradually solidified.

OBJECTIVE:
Determine the elapsed time needed for the temperature at the center of the mold, i.e., T (x = 0, t) = T (r = 0, t)

to reach a threshold value To, for molds (i), (ii) and (iii). Assume that solidification will not occur prior to this
elapsed time.

SOLUTION:
We will use the graphical results given in Figures 3.33(a) and (b) to determine t. The center temperature is

desired, and noting that T (t = 0) = Tsl,

T − T (t = 0)
Ts − T (t = 0)

=
To − Tsl

Ts − Tsl
.

From Table C.5, we have

Tsl =310.0 K Table C.5

∆hsl =2.17 × 105 J/kg Table C.5.
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Then

To − Tsl

Ts − Tsl
=

(302 − 310)(K)
(298.15 − 310)(K)

= 0.6751.

Now from Figures 3.33(a) and (b), we have

(i) slab: x = 0, FoL � 0.55 Figure 3.33(a)(ii)
(ii) cylinder: r = 0, FoR � 0.27 Figure 3.33(a)(i)
(iii) sphere: r = 0, FoR � 0.18 Figure 3.33(a)(ii),

where

FoL =
αt

L2 , FoR =
αt

R2 , α =
k

ρcp
.

From Table C.17, we have (assume the same properties as polystyrene)

α = 7.407 × 10−8 m2/s Table C.17

Then

(i) slab: t =
FoLL2

α
=

0.55 × (2 × 10−2)2(m2)
7.407 × 10−8(m2/s)

= 2,970 s

(ii) cylinder: t =
FoRR2

α
=

0.27 × (2 × 10−2)2(m2)
7.407 × 10−8(m2/s)

= 1,458 s

(iii) sphere: t =
FoRR2

α
=

0.18 × (2 × 10−2)2(m2)
7.407 × 10−8(m2/s)

= 972.1 s.

COMMENT:
Note that the slab mold requires three times more elapsed time compared to the sphere. This is due to the

monotonically decreasing volume of the sphere as the center is approached, thus requiring a smaller heat (or time)
to change the local temperature. Here we used a large supercooling. In practice, solidification begins at a smaller
supercooling, thus requiring less time. Inclusion of the solid-liquid phase change is discussed in Section 3.8.
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PROBLEM 3.51.FAM

GIVEN:
An apple (modeled as a sphere of radius R = 4 cm), initially at T (t = 0) = 23◦C is placed in a refrigerator at

time t = 0, and thereafter, it is assumed that its surface temperature is maintained at Ts = 4◦C.
Use the thermophysical properties of water at T = 293 K from Table C.23. Use the graphical results given in

Figure 3.33(b).

OBJECTIVE:
(a) Determine the elapsed time it takes for the thermal penetration depth to reach the center of the apple.
(b) Determine the elapsed time for the center temperature to reach T = 10◦C.

SOLUTION:
(a) For the penetration depth to reach the center of the apple, assuming that the temperature changes by 1 %,
we have

T ∗ =
T − T (t = 0)
Ts − T (t = 0)

= 0.01 at
r

R
= 0.

From Figure 3.33(b), the Fourier number for these conditions is nearly 0.03. From the definition of the Fourier
number (3.131), we have

FoR =
αt

R2
= 0.03.

From Table C.23, for water at T = 293 K, we have α = 143 × 10−9 m2/s. Solving for t, we have

t =
0.03R2

α
=

0.03 × [0.04(m)]2

143 × 10−9(m2/s)
= 336 s = 5.6 min.

(b) For the center temperature condition T = 10◦C, we have

T ∗ =
T − T (t = 0)
Ts − T (t = 0)

=
10 − 23
4 − 23

= 0.68 at
r

R
= 0.

Again, from Figure 3.33(b) the Fourier number for these conditions is approximately 0.19. From the definition of
the Fourier number and solving for t, we have

t =
0.19R2

α
=

0.19 × [0.04(m)]2

143 × 10−9(m2/s)
= 2126 s = 35 min.

COMMENT:
It is not an easy task to keep the surface temperature constant. Inside a refrigerator, most likely there is a

surface-convection boundary condition at the apple surface. This will be studied in Chapter 6.
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PROBLEM 3.52.FAM

GIVEN:
In a summer day, the solar irradiation on the surface of a parking lot results in an absorbed irradiation flux

qs = −500 W/m2, as shown in Figure Pr.3.52. The parking lot surface is covered with an asphalt coating that
has a softening temperature of 55◦C.

The initial temperature is T (t = 0) = 20◦C.
Assume that all the absorbed heat flows into the very thick asphalt layer
Use the properties of asphalt in Table C.17.

SKETCH:
Figure Pr.3.52 shows a thick asphalt layer, treated as a semi-infinite slab, suddenly heated by solar irradiation.

The temperature distribution beneath the surface is rendered for several elapsed times.

t, Elapsed Time
Asphalt

Prescribed Surface Heat Flux
qr,i = �qs (W/m2)

0
T(t = 0)

T(x,t)

x

Figure Pr.3.52 Temperature variation within a thick asphalt layer, suddenly heated by solar irradiation.

OBJECTIVE:
Determine the elapsed time it takes for the surface temperature of the parking lot to rise to the softening

temperature.

SOLUTION:
For a semi-infinite slab with a constant heat flux boundary condition the temperature as a function of x and

t is given by Table 3.4 as

T (x, t) − T (t = 0) = −2qs

k

(
αt

π

)1/2

e
−x2

4αt +
qsx

k

[
1 − erf

(
x

2
√

αt

)]
.

For the surface of the asphalt layer, x = 0. The solution becomes

Ts(t) − T (t = 0) = −2qs

k

(
αt

π

)1/2

.

For asphalt, from Table C.17, k = 0.06 W/m-K and α = 0.03 × 10−6 m2/s. Solving for t and using the data
given, we have

t =
π

α

[
(Ts − Ti)k

−2qs

]2

=
π

0.03 × 10−6(m2/s)

{
[55(◦C) − 20(◦C)] × 0.06(W/m-K)

−2 × (−500)(W/m2)

}2

= 462 s = 7.7 min.

COMMENT:
The solution presented in Table 3.4 applies for a constant (with respect to time), prescribed heat flux qs

(W/m2).
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PROBLEM 3.53.FAM

GIVEN:
In a shaping process, a sheet of Teflon (Table C.17) of thickness 2L, where L = 0.3 cm, is placed between two

constant-temperature flat plates and is heated. The initial temperature of the sheet is T (t = 0) = 20◦C and the
plates are at Ts = 180◦C. This is shown in Figure Pr.3.53.

SKETCH:
Figure Pr.3.53 shows a Teflon sheet heated on its two surfaces.

Mold

T (t = 0)

Symmetry Line
L

Ts

Teflon

Figure Pr.3.53 Thermal forming of a Teflon sheet.

OBJECTIVE:
Determine the time it takes for the center of the sheet to reach 20◦C below Ts.

SOLUTION:
Treating the Teflon as a distributed system consisting of a slab bounded on two sides with a prescribed surface

temperature Ts, for T ∗, we have

T ∗ =
T (t) − T (t = 0)
Ts − T (t = 0)

=
(160 − 20)(◦C)
(180 − 20)(◦C)

= 0.875.

From Figure 3.33(a), for x/L = 0 (centerline), the Fourier number is

Fo =
αt

L2
≈ 0.9.

The thermal diffusivity of Teflon, from Table C.17, is α = 0.34 × 10−6 m2/s, and therefore

t =
(0.9)(0.3 × 10−2)2(m2)

0.34 × 10−6(m2/s)
= 24 s.

COMMENT:
The assumption of constant mold temperature is good for a preheated metal mold. This is due to the high

effusivity (ρcpk)1/2 of metals when compared to those of polymers.
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PROBLEM 3.54.FUN.S

GIVEN:
When human skin is brought in contact with a hot surface, it burns. The degree of burn is characterized

by the temperature of the contact material Ts and the contact time t. A first-degree burn displays no blisters
and produces reversible damage. A second-degree burn is moist, red, blistered, and produces partial skin loss.
A third-degree burn is dry, white, leathery, blisterless, and produces whole skin loss. A pure copper pipe with
constant temperature Ts = 80◦C is brought in contact with human skin having ρcp = 3.7×106 J/m3-◦C, k = 0.293
W/m-◦C, and T (t = 0) = 37◦C for a total elapsed time of t = 300 s.

Use the solution for transient conduction through a semi-infinite slab with prescribed surface temperature to
answer the following.

SKETCH:
Figure Pr.3.54(a) shows how the first-, second- and third-degree burns of human tissues are defined based on

categories.

t, s

Degree-Time Relation for Various Burns

40

50

60

70

80

90

100

110

120

0.1 1 10 100

3rd Degree Burn
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1st Degree Burn

T
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Figure Pr.3.54(a) Thermal damage (burn) to a human skin and the regions of
various degrees of burn.

OBJECTIVE:
(a) Plot the temperature distribution T (x, t)(◦C) as a function of position x(mm) at elapsed times t = 1, 10, 20,
40, 50, 100, 150, 200, 220, 240, 280, and 300 s.
(b) Use this plot, along with the plot shown in Figure Pr.3.54(a), to estimate the maximum depths for the first-,
second-, and third-degree burns, after an elapsed time t = 300 s.

SOLUTION:
(a) The solution for the transient conduction through a semi-infinite slab, (3.142) is used, i.e.,

T (x, t) = T (t = 0) + [Ts + T (t = 0)]
{

1 − erf
[

x

2(αt)1/2

]}
,

where

α =
k

ρcp
=

0.293(W/m-◦C)
3.7 × 106(J/m3-◦C)

= 7.919 × 10−8 m2/s, T (t = 0) = 37◦C, and Ts = 80◦C.

The temperature distribution is shown in Figure Pr.3.54(b) for several elapsed times.

(b) We are interested in finding the maximum depth of the first-, second-, and third-degree burns. This is most
easily done using the following steps.

(i) Pick the lowest possible temperature that causes a first-degree burn using Figure Pr.3.54(a).
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Figure Pr.3.54(b) Distribution of the tissue temperature for several elapsed times.

(ii) Using Figure Pr.3.54(a), find the time needed at this temperature to produce first-degree burns.
(iii) Using this temperature and time, find a depth from the graph in Figure Pr.3.54(b).
(iv) Add one degree to the temperature found in step (i).
(v) Using the same graph, find the time needed at this new temperature to produce a first-degree burn.
(vi) Using this temperature and time, find a depth from the graph in Figure Pr.3.54(b).
(vii) If this depth is greater than the one found in step (iii), go to step (iv).
(viii) If this depth is less than the one found in step (iii), stop.
(ix) Repeat this process for the second- and third-degree burns.

From Figure Pr.3.54(b), we find that the maximum depth for a first-degree burn is x = 8.6± 0.4 mm (marked
in Figure Pr.3.54(b) at T = 45◦C at t = 35 s).

For the second-degree burn, we have x = 5.8 ± 0.4 mm (at T = 53◦C at t = 50 s).
For the third-degree burn, x = 4.75 ± 0.4 mm (at T = 58◦C at t = 12 s).

COMMENT:
The above results are conservative estimates. We have assumed a constant temperature between the time

of thermal front arrival and the burn initiation, while this location experiences an increase in temperature with
time. Therefore, the actual extent of the burn regions could be deeper than indicated. The transient conduction
solution also assumes constant thermal properties and that heat is not carried away by the blood perfusion. The
thermal properties change with depth, as layers of tissues such as muscle and fat are encountered.
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PROBLEM 3.55.FAM

GIVEN:
A hole is to be drilled through a rubber bottle stopper. Starting the hole in a soft room-temperature rubber

often results in tears or cracks on the surface around the hole. It has been empirically determined that the rubber
material at the surface can be hardened sufficiently for crack- and tear-free drilling by reducing the surface tem-
perature at x = 1 mm beneath the surface to below T = 220 K . This reduction in temperature can be achieved by
submerging the rubber surface into a liquid nitrogen bath for a period of time. This is shown in Figure Pr.3.55.

Assume that by submerging, the surface temperature drops from the initial uniform temperature T (x, t =
0) = 20◦C to the boiling temperature of the nitrogen Tlg, and then remains constant.

Use the saturation temperature of nitrogen Tlg at one atm pressure (Table C.26) and the properties of soft
rubber (Table C.17).

SKETCH:
Figure Pr.3.55 shows the surface of a bottle stopper suddenly placed in contact with liquid nitrogen.

Rubber Bottle StopperLiquid
Nitrogen

x

Ts = Tlg

Figure Pr.3.55 A rubber bottle stopper is temporally submerged in
a liquid nitrogen bath.

OBJECTIVE:
Determine after an elapsed time of t = 10 s, (a) the temperature 1 mm from the surface T (x = 1 mm, t = 10 s),

(b) the temperature 3 mm from the surface T (x = 3 mm, t = 10 s), and (c) the rate of heat flowing per unit area
out of the rubber surface qs(x = 0, t = 10 s)(W/m2).
(d) Is t = 10 s enough cooling time to enable crack- and tear-free drilling of the hole?

SOLUTION:
Since we are asked to evaluate conditions after a elapsed time t, this is a transient problem. Since we are

given no information about the size of the rubber stopper, we assume we can treat this as a semi-infinite medium
with a constant surface temperature Ts = Tlg. The solution for the temperature distribution in a semi-infinite
medium subject to a constant imposed surface Ts temperature is given by (3.140), i.e.,

T = T (t = 0) + [Ts − T (t = 0)][1 − erf(η)],

where

η(x) =
x

(4αt)1/2
.

From Table C.26, we have Tlg = 77.35 K for nitrogen. Initially, the stopper is at a uniform temperature
T (x, t = 0) = 20◦C = 293.15 K. From Table C.17, we have α = 0.588 × 10−7 m2/s and k = 0.13 W/m-K
for the rubber stopper.

(a) x = 1 mm and t = 10 s

η(x = 0.001 m) =
0.001(m)

[4 × 0.588 × 10−7(m2/s) × 10(s)]1/2
=

0.001(m)
1.5336 × 10−3(m)

= 0.652

erf(η) = erf(0.652) = 0.642 Table 3.5

T = 293.15(K) + (77.35 − 293.15)(K) × (1 − 0.642) = 215.8 K.
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(b) x = 3 mm and t = 10 s

η(x = 0.003 m) =
0.003(m)

[4 × 0.588 × 10−7(m2/s) × 10(s)]1/2
=

0.001(m)
1.5336 × 10−3(m)

= 1.956

erf(η) = erf(1.956) = 0.994 Table 3.5

T = 293.15(K) + (77.35 − 293.15)(K) × (1 − 0.994) = 291.9 K.

(c) The solution for the heat flowing out of a semi-infinite medium subject to a constant temperature boundary
condition is given by (3.145) as

qs = qρck = −k[Ts − T (t = 0)]
(παt)1/2

= −0.13(W/m-K) × [77.35(K) − 293(K)]
[π × 0.588 × 10−7(m2/s) × 10(s)]1/2

= 20,627 W out of the rubber.

(d) After 10 s, the temperature of the rubber within the first millimeter of depth will be 215.84 K or lower. This
is below the maximum temperature limit for crack-tear free drilling, i.e., T0 = 220 K. Therefore, 10 s is enough
cooling time to enable crack-tear free drilling of the hole.

COMMENT:
Note that the temperature at a distance of 1 mm from the surface has been lowered by 76.2 K, while the

temperature 3 mm from the surface has been lowered by only 1.3 K. Therefore, as long as the rubber stopper
has a thickness greater than 3 mm, the thermal penetration has not traveled across the rubber stopper and our
assumption of a semi-infinite solid is shown to be valid.
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PROBLEM 3.56.FAM

GIVEN:
The friction heat generation Ṡm,F (energy conversion) occurring in grinding flows into a workpiece (stainless

steel AISI 316 at T = 300 K) and the grinder (use properties of brick in Table C.17 at T = 293 K). This is shown
in Figure Pr.3.56(a). For a thick (i.e., assumed semi-infinite) grinder and a thick workpiece, the fraction of the
heat flowing into the workpiece a1 can be shown to be

a1 =
(ρcpk)1/2

w

(ρcpk)1/2
w + (ρcpk)1/2

g

,

where the properties of the workpiece are designated by w and that of the grinder by g.
t = 15 s, L = 1.5 mm, Ṡm,F /A = 105 W/m2.

SKETCH:
Figure Pr.3.56(a) shows the grinding wheel, the workpiece, and the friction heating at the cylindrical surface.

L

Workpiece (w)

Location for
Temperature
Monitoring

Grinder (g)

Angular
Speed

Sm,F /A

Figure Pr.3.56(a) Friction heating of a stainless steel workpiece and the division
of the generated heat.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Use this relation for a1 and the transient temperature distribution resulting from the sudden heating of a
semi-infinite slab at a constant heat flux, given in Table 3.4, to determine the temperature of the workpiece at
location L from the interface and after an elapsed time of t.

SOLUTION:
(a) The thermal circuit is shown in Figure Pr.3.56(b). The friction heating rate splits into two parts flowing into
the grinder and the workpiece.

(1 - a1)Sm,F /A
.

R�ck(t)

Tw(t)

R�ck(t)

Ts(t)

a1Sm,F /A
.

Sm,F /A
.

Figure Pr.3.56(b) Thermal circuit diagram.

(b) From Table C.16, for stainless steel AISI 316 at T = 300 K, we have ρw = 8,238 kg/m3, cp,w = 468 J/kg-K,
kw = 13 W/m-K, and αw = 3.37 × 10−6 m2/s.

From Table C.17 for brick at T = 293 K, we have ρg = 1,925 kg/m3, cp,g = 835 J/kg-K, kg = 0.72 W/m-K,
and αg = 0.45 × 10−6 m2/s.
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From these, we have

(ρcpk)w = 50.12 × 106 W2-s/m4-K2

(ρcpk)g = 1.157 × 106 W2-s/m4-K2.

Then the fraction of heat flowing into the workpiece is

a1 =
(ρcpk)1/2

w

(ρcpk)1/2
w + (ρcpk)1/2

g

=
(50.12 × 106)1/2

(1.157 × 106)1/2 + (50.12 × 106)1/2
= 0.8681.

Applying the surface energy equation (2.62) to node Ts, we have

Ṡm,F /A = qw + qg = qtot to node Ts.

Therefore, for the heat flux flowing out of the surface is

qw = a1qtot = a1Ṡm,F /A

= (0.8681) × (105)(W/m2) = 86,809 W/m2.

This corresponds to a prescribed heat flux into the workpiece of

qs = −qw.

From Table 3.4, the transient temperature distribution in the workpiece is

Ts(x, t) = Ts(t = 0) − qs(4αwt)1/2

π1/2kw

e
− x2

4αwt +
qsx

kw

{
1 − erf

[
x

(4αwt)1/2

]}
.

Then at t = 15 s and x = 0.0015 m, we have

4αwt = 4 × 3.376 × 10−6(m/s2) × 15(s) = 2.022 × 10−4 m2

erf
[

x

(4αwt)1/2

]
= erf

[
0.0015(m)

(2.022 × 10−4)1/2(m)

]
= erf(0.1055) = 0.1185 Table 3.5.

Solving for the temperature, we have

Ts(x, t) = Ts(t = 0) − qs(4αwt)1/2

π1/2kw

e
− x2

4αwt +
qsx

kw

{
1 − erf

[
x

(4αwt)1/2

]}

Ts(x = L, t = 1.5 s) = 300(K) − (−86,809)(W/m2) × (2.022 × 10−4)1/2(m)
π1/2(13)(W/m-K)

exp
[
− (0.0015)2(m2)

2.022 × 10−4(m2)

]

+
(−86,809)(W/m2) × (0.0015)(m)

(13)(W/m-K)
[1 − (0.1185)]

= 300(K) − [−52.98(K)] + [−8.83(K)] = 344.14 K = 71◦C.

COMMENT:
Note that a large fraction of the heat flows into the workpiece because of its larger effusivity. Also note that

if a larger elapsed time is allowed, the temperature will be higher and can reach the damage threshold.
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PROBLEM 3.57.FUN

GIVEN:
Two semi-infinite slabs having properties (ρ, cp, k)1 and (ρ, cp, k)2 and uniform, initial temperatures T1(t = 0)

and T2(t = 0), are brought in contact at time t = 0.

OBJECTIVE:
(a) Show that their contact (interfacial) temperature is constant and equal to

T12 =
(ρcpk)1/2

1 T1(t = 0) + (ρcpk)1/2
2 T2(t = 0)

(ρcpk)1/2
1 + (ρcpk)1/2

2

.

(b) Under what conditions does T12 = T2(t = 0)? Give an example of material pairs that would result in the limit.

SOLUTION:
(a)Assuming a constant contact surface temperature, we use (3.140) for the temperature distribution and use

Ts = T12, i.e., for the two semi infinite slabs we have

T1(t) − T1(t = 0)
T12 − T1(t = 0)

= 1 − erf(η) = 1 − 2
π1/2

∫ η

0

e−η2
dη

T2(t) − T2(t = 0)
T12 − T2(t = 0)

= 1 − erf(η) = 1 − 2
π1/2

∫ η

0

e−η2
dη

η =
x

2(αt)1/2
.

Since the heat flowing out of one of the slabs flows into the other, we have

qs = q12 = q1(x = 0) = q2(x = 0),

where x = 0 is the location of the interface.
From (3.143), we relate q12 and the derivative of the temperatures, i.e.,

q12 = −k1
∂T1

∂x

∣∣∣∣
x=0

= −
(
−k2

∂T2

∂x

∣∣∣∣
x=0

)
.

We note that from the chain rule for differentiation, we have

∂

∂x
=

∂η

∂x

∂

∂η

=
1

2(αt)1/2

∂

∂η
.

Then

∂T1(t)
∂x

∣∣∣∣
x=0

=
1

2(α1t)1/2

(
− 2

π1/2
e−η2

)
η=0

[T12 − T1(t = 0)]

=
1

2(α1t)1/2

(
− 2

π1/2

)
[T12 − T1(t = 0)]

∂T2(t)
∂x

∣∣∣∣
x=0

=
1

2(α2t)1/2

(
− 2

π1/2

)
[T12 − T2(t = 0)].

Then using the equality of the surface heat fluxes, we have

−k1

[ −1
(πα1t)1/2

]
× [T12 − T1(t = 0)] = k2

[ −1
(πα2t)1/2

]
× [T12 − T2(t = 0)]
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or
− k1

(k/ρcp)
1/2
1

[T12 − T1(t = 0)] =
k2

(k/ρcp)
1/2
2

[T12 − T2(t = 0)]

or

T12 =
(ρcpk)1/2

1 T1(t = 0) + (ρcpk)1/2
2 T2(t = 0)

(ρcpk)1/2
1 + (ρcpk)1/2

2

.

(b) From Tables C.16 and C.17, we can choose material pairs for which one material has a much larger (ρcpk)1/2,
which is called the thermal effusivity. For example, metals have high ρ, low cp, and high k. We choose copper
from Table C.16 and wood for Table C.17. Then

copper (pure): ρ = 8,933 kg/m3 Table C.16

cp = 385 J/kg-K Table C.16

k = 401 W/m-K Table C.16

wood (pine): ρ = 525 kg/m3 Table C.17

cp = 2,750 J/kg-K Table C.17

k = 0.12 W/m-K Table C.17.

Then

copper (pure): (ρcpk)1/2
1 = 3.714 × 104 W-s1/2/m2-K

wood (pine): (ρcpk)1/2
2 = 4.162 × 102 W-s1/2/m2-K.

Using these, we have

T12 =
3.714 × 104 × T1(t = 0) + 4.162 × 102 × T2(t = 0)

3.714 × 104 + 4.162 × 102

� T1(t = 0).

This shows that the contact temperature will be the initial copper temperature T1(t = 0), i.e., the wood will
instantly take on the surface temperature of the copper.

COMMENT:
Note that we initially assumed that the contact temperature T12 is constant and this allowed us to use the

transient solutions for the constant surface temperature.
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PROBLEM 3.58.FAM.S

GIVEN:
For thermal treatment, the surface of a thin-film coated substrate [initially at T (t = 0)] is heated by a pre-

scribed heat flux qs = −109 W/m2 (this heat flux can be provided for example by irradiation) for a short period.
This heating period to (i.e., elapsed time) is chosen such that only the temperature of the titanium alloy (Ti-2 Al-2
Mn, mass fraction composition) thin film is elevated significantly (i.e., the penetration distance is only slightly
larger than the thin-film thickness). The thin film is depicted in Figure Pr.3.58.

SKETCH:
Figure Pr.3.58 shows a thin film over a semi-infinite substrate, is heated by irradiation.

x

l

T(t = 0)
T(l,t)

Titanium Substrate

Titanium-Alloy
Thin Film

Prescribed Surface Heat Flux
�qs (W/m2)

Figure Pr.3.58(a) A thin-film coated, semi-infinite substrate heated by irradiation.

OBJECTIVE:
Determine the required elapsed time to for the temperature of the interface between the thin film and the

substrate, located at distance l = 5 µm from the surface, to raise by ∆T (l, to) = T (l, to)−T (t = 0) = 300 K. Note
that this would require determination of t from an implicit relation and would require iteration or use of a software.

SOLUTION:
Table 3.4 gives the temperature distribution for a semi-infinite slab with a prescribed heat flux at the surface.

For qs constant on the surface,

T − T (t = 0) = −2qs

k

(
αt

π

)1/2

e
− x2

4αt +
qsx

k

{
1 − erf

[
x

(4αt)1/2

]}
.

This equation requires k and α. From Table C.16, for a Ti-2 Al-2 Mn alloy at 300 K, k = 8.4 W/m-K and
α = 4 × 10−6 m2/s.

From the problem statement, T (l, to) − T (t = 0) = ∆T = 300 K, qs = −109 W/m2, and x = l = 5 × 10−6 m.
Substituting these values into the equation above, we have

300 = 2.687 × 105 × t1/2 e
−1.563 × 10−6

t − 5.952 × 102 ×
[
1 − erf

(
1.250 × 10−3

t1/2

)]
.

The equation is an implicit relation for time. The solution can be obtained from an equation solver software or by
hand calculation, iteratively. The method of successive substitutions can be used for the iterative solution. For
this method, the above equation is written explicitly for one of the occurrences of the variable time. Choosing
the time t appearing in the first term in the right-hand side, the equation is rewritten as

tnew =




3.332 × 10−3 − 2.216 × 10−3erf
(

1.250 × 10−3

t1/2

)

e
−1.563 × 10−6

t




2

.

The solution requires guessing a value of t and solving for tnew. The process ends when t and tnew are sufficiently
close. When the initial guess is close to the final answer, the convergence is stable and requires only a few
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iterations. A suitable initial guess can be obtained by calculating the time it takes for the surface temperature
to be raised by ∆T . For the surface, x = 0, the equation for T becomes

T − T (t = 0) =
−2qs

k

(
αto
π

)1/2

.

Solving for to gives

to =
π

α

(
∆Tk

−2qs

)2

.

Using the known values,

to =
π

4 × 10−6(m2/s)

[
300(K) × 8.4(W/m-K)

2 × 109(W/m2)

]2

= 1.25 × 10−6 s = 1.25 µs.

The temperature at a depth of 5 µm will take longer to be raised by ∆T . The value of to gives a starting point
for the iterations. Table Pr.3.58 shows the iterations. The error function is interpolated from Table 3.5.
The solution after 5 iterations is t = 7.8 µs.

Table Pr.3.58 Results for successive iterations.

t, s η = 1.250 × 10−3/t1/2 erf(η) tnew, s

2 × 10−6 0.884 0.7880 1.201 × 10−5

4 × 10−6 1.625 0.6223 8.334 × 10−6

6 × 10−6 0.5103 0.5289 7.856 × 10−6

7.6 × 10−6 0.4534 0.4775 7.801 × 10−6

7.8 × 10−6 0.4476 0.4721 7.800 × 10−6

COMMENT:
The solution found using software [Figure Pr.3.58(b)] is to = 7.785 µs. The result obtained above shows that

the use of Table 3.5 for the error function is acceptable. Note also that the same solution could be obtained if
the time variable inside the exponential function were chosen as tnew.

0 2E-6 4E-6 6E-6 8E-6 1E-5

t, s

0

100

200

300

400

T
 -

 T
 (

t=
0)

 , 
K

(7.8E-6 s, 300.51K)

Figure Pr.3.58(b) Variation of temperature, at a location x = 5 µm from the surface, with respect to time.
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Figure Pr.3.58(c) shows the temperature distributions as a function of the depth x for different values of time.
Notice that the derivative dT/dx at the surface is constant, because qs is constant at the surface. Also, the
penetration depth increases with time. For the elapsed time of 8 µs, the ∆T at the surface is above 600 K.

From Figure Pr.3.58(c) we observe that for t = 8 µs there was substantial heat penetration into the substrate.
In order to account for the change of properties between the thin film and the substrate, other solution techniques
need to be used. One example of such a technique is the use of finite (i.e., small) volumes, presented in Section 3.7.

0.0 5.0 x 10 
-6

x , m

� 200

0

200

400
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∆T
 , 

K

t = 0.1 µs
t = 0.5 µs
t = 1 µs
t = 2 µs
t = 5 µs
t = 10 µs

Thin
Film

Substrate

1.0 x 10 
-5 1.5 x 10 

-5 2.0 x 10 
-5

Figure Pr.3.58(c) Distribution of temperature near the surface, at several elapsed times.
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PROBLEM 3.59.FAM

GIVEN:
An automobile tire rolling over a paved road is heated by surface friction, as shown in Figure Pr.3.59. The

energy conversion rate divided by the tire surface area is Ṡm,F /At, and this is related to the vehicle mass M and
speed uo through

Ṡm,F

At
=

MgµF uo

At
.

A fraction of this, a1Ṡm,F /At, is conducted through the tire. The tire has a cover-tread layer with a layer thickness
L, which is assumed to be much smaller than the tire thickness, but is made of the same hard rubber material as
the rest of the tire. The deep unperturbed temperature is T (t = 0).

The properties for hard rubber are listed in Table C.17.
T (t = 0) = 20◦C, g = 9.807 m/s2, uo = 60 km/hr, L = 4 mm, At = 0.4 m2, to = 10 min, µF = 0.015, a1 =

0.1.

SKETCH:
Figure Pr.3.59 shows friction heating and heat transfer into a tire and the location from the surface.

Cover-Tread
      Layer

T(t = 0)

T(x,t)

x

Hard Rubber

L

Sm, F

At
qs =

Uniform Surface Heat Flux 

a1

uo

Sm,F

At

Atg

.

0

Figure Pr.3.59 Surface friction heating of a tire laminate.

OBJECTIVE:
Determine the temperature at this location L, after an elapsed time to, using (a) M = 1,500 kg, and (b)

M = 3,000 kg.

SOLUTION:
(a) Applying the energy equation to the contact area, and assuming all the heat flows into the tire,

qs = −a1
Ṡm,F

At

= −a1
MgµF uo

At

= −0.1
1,500(kg) × 9.807(m/s2) × 0.015×60,000(m/hr)

3,600(s/hr)
0.4(m2)

= −919.4 W/m2
.

From Table 3.4, the transient temperature distribution (for prescribed qs) in the workpiece is given as

T (x, t) = T (t = 0) − qs(4αt)1/2

π1/2k
e
− x2

4αt +
qsx

k

{
1 − erf

[
x

(4αt)1/2

]}
.
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For hard rubber, using Table C.17, we have, k = 0.15 W/m-K, α = 0.6219 x 10−7 m2/s.
Then at t = 10 × 60 s and at x = 0.004 m, we have

4αt = 1.493 × 10−4 m2

erf
[

x

(4αt)1/2

]
= erf

[
0.004(m)

(1.493 × 10−4)1/2(m)

]
= erf (0.3274) = 0.3560 Table 3.5.

Solving for the temperature, we have

T (x, t) = T (t = 0) − qs(4αt)1/2

π1/2k
e
− x2

4αt +
qsx

k

{
1 − erf

[
x

(4αt)1/2

]}

T (x = 4 mm, t = 600 s) = 293.15(K) − −919.4(W/m2) × (1.493 × 10−4)1/2(m)
π1/2 × 0.15(W/m-K)

exp
[
− (0.004)2(m2)

1.493 × 10−4(m2)

]

+
−919.4(W/m2) × 0.004(m)

0.13(W/m-K)
(1 − 0.3560)

= 293.15(K) − [−37.94(K)] + [−15.79(K)] = 315.3 K = 42.15◦C.

(b) Using M = 3,000 kg, qs = −1,838.8 W/m2, and solving for temperature, we have

T (x = 4 mm, t = 600 s) = 293.15(K) − −1,838.8(W/m2) × (1.493 × 10−4)1/2(m)
π1/2 × 0.15(W/m-K)

exp
[
− (0.004)2(m2)

1.493 × 10−4(m2)

]

+
−1,838.8(W/m2) × 0.004(m)

0.15(W/m-K)
(1 − 0.3560)

= 293.15(K) − [−75.88(K)] + [−31.58(K)] = 337.5 K = 64.30◦C.

COMMENT:
As the tire heats up, the surface convection heat transfer rate increases. Therefore, the amount of heat

conducting through the tire surface decreases with an increase in surface temperature.
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PROBLEM 3.60.FAM

GIVEN:
In ultrasonic welding (also called ultrasonic joining), two thick slabs of polymeric solids to be joined are placed

in an ultrasonic field that causes a relative motion at their joining surfaces. This relative motion combined with
a joint pressure causes a surface friction heating at a rate of Ṡm,F /A. This heat flows and penetrates equally
into these two similar polymeric solids. The two pieces are assumed to be very thick and initially at a uniform
temperature T (t = 0).

Ṡm,F /A = 104 W/m2, Tsl = 300◦C, T (t = 0) = 25◦C, and use the properties of Teflon (Table C.17).

SKETCH:
Figure Pr.3.60(a) shows the two solid surfaces in sliding contact and the friction heat flow into each of the

pieces.

x = 0

Sm,F

Ak

Control Surface

.

q

q

Figure Pr.3.60(a) The solids in sliding contact and friction heat flow into both of them.

OBJECTIVE:
How long would it take for the contacting surfaces of the two polymers in contact to reach their melting

temperature Tsl?

SOLUTION:
The two pieces are very thick and therefore are assumed to behave as semi-infinite slabs. The surface friction

heating occurs uniformly over the entire contact surface and the resulting generated heat flows equally into each
piece.

The two pieces in contact are drawn schematically in Figure Pr.3.60(a). Performing a surface conservation of
energy analysis on the contacting surface and noting that the heat flows equally into both the upper and lower
pieces gives

qupper + qlower = 2q = Ṡm,F /A

q =
Ṡm,F

2A
.

By symmetry, we only need to analyze one of the pieces to determine when the surface temperature reaches the
melting temperature. The control volume for the lower piece is rendered in Figure Pr.3.60(b).

x = 0

Sm,F

Ak

Control Surface

.

q = �qs

�

Figure Pr.3.60(b) Control volume for the solids in sliding contact.

As shown, the heat flux entering across the control surface into the volume is equal to the negative of that
leaving one side of the control surface, i.e. qs = −q. The resulting conservation of energy equation is solved, and
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the solution for T (x, t) is given in Table 3.4 as

T (x, t) = T (t = 0) − 2qs(αt)1/2

π1/2k
e−

x2
4αt +

qsx

k

{
1 − erf

[
x

2(αt)1/2

]}
.

At location x = 0, this equation becomes

T (x = 0, t) − T (t = 0) = −2qs(αt)1/2

π1/2k

∆T (0, t) = Tsl − T (t = 0) = −2(− Ṡm,F

2A )(αt)1/2

π1/2k
.

For Teflon at T = 293 K, k = 0.26 W/m-K and α = 0.34 × 10−6 m2/s. Solving for t we have

t =

[
∆Tπ1/2k

(Ṡm,F /A)α1/2

]2

=

(
∆Tk

Ṡm,F /A

)2
π

α

=
(300◦C − 25◦C)2 × (0.26 W/m-K)2 × π

(104 W/m2)2 × (0.34 × 10−6 m2/s)

=
(300 − 25)2(◦C)2 × (0.26)2(W/m-K)2 × π

(104)2(W/m2)2 × (0.34 × 10−6)(m2/s)
= 472.37 s = 7.87 min.

COMMENT:
The process time is inversely proportional to Ṡm,F to the second power. The process time can be decreased

by increasing Ṡm,F .
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PROBLEM 3.61.FAM

GIVEN:
A thin film is heated with irradiation from a laser source as shown in Figure Pr.3.61(a). Assume that all

the radiation is absorbed (i.e., αr,1 = 1). The heat losses from the film are by substrate conduction only. The
film can be treated as having a uniform temperature T1(t) i.e., Nk,1 < 0.1, and the conduction resistance Rk,1-2
through the substrate can be treated as constant.

SKETCH:
Figure Pr.3.61(a) shows the thin film, over a substrate, heated by laser irradiation.

Film, T1(t)
(Nk,1 < 0.1)
T1(t = 0) = 20oC

(ρcp)1 = 106 J/m3-K
αr,1 = 1
Ar,1 = Ak

Substrate
Ts,2 = 20oC
k = 1.3 W/m-K

Laser Source
qr,i = 106 W/m2

L2 = 5 mm

L1 = 10 µm

Figure Pr.3.61(a) Laser radiation heating of a thin film over a substrate.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the time needed to raise the temperature of the film T1(t) to 500◦C.

SOLUTION:
(a) Figure Pr.3.61(b) shows the thermal circuit for the problem. Note that the thin film is lumped into a single
node and the thick film is modeled as a conduction resistance constant with time.

Rk,1-2
Qk,1-2

T1

T2

� (ρcpV)1 + (Se,�)1
dT1
dtQ1= 0

Q2

Figure Pr.3.61(b) Thermal circuit diagram.

(b) To determine the time needed to raise the film temperature to 500◦C, the energy equation is applied to the
thin film. The integral form of the energy equation is

Q|A = − (ρcpV )1
dT1

dt
+ (Ṡe,α)1.
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From Figure Pr.3.61(b), we notice that Q|A has only a conduction component. The energy source is due to
radiation adsorption with αr = 1 and εr = 0. Therefore, the energy equation becomes

T1 − Ts,2

Rk,1-2
= − (ρcpV )1

dT1

dt
+ αr,1qr,iAr,1.

The conduction resistance is given by

Rk,1-2 =
L2

ksAk
=

5 × 10−3(m)
1.3(W/m-K)Ak

=
3.85 × 10−3[K/(W/m2)]

Ak
.

The thermal capacitance is

(ρcpV )1 = 106
(
J/m3-K

)
10 × 10−6 (m) Ak = 10

(
J/m2-◦C

)
Ak.

The source term is
Ṡ1 = αr,1qr,iAr,1 = (1) × 106

(
W/m2

)
Ar,1.

The solution for T1 is given by (3.172). Solving for t, we have

t = −τ1 ln
[

T1 − Ts,2 − a1τ1

T1(t = 0) − Ts,2 − a1τ1

]
,

where

τ1 = (ρcpV )1 Rk,1-2 =
3.85 × 10−3

(
K/(W/m2)

)
Ak

10
(
J/m2-K

)
Ak = 3.85 × 10−2 s

a1 =
Ṡ1

(ρcpV )1
=

106
(
W/m2

)
Ar,1

10
(
J/m2-K

)
Ak

= 105 K/s

and Ar,1 = Ak has been used. Then

t = −3.85 × 10−2(s) ln
[
500 (◦C) − 20 (◦C) − 105(1/s) × 3.85 × 10−2(s)
20 (◦C) − 20 (◦C) − 105(1/s) × 3.85 × 10−2(s)

]
= 0.0051 s = 5.1 ms.

COMMENT:
Note that the response is rather fast. The radiation reflection from the surface and radiation emission from

the surface will be addressed in Chapter 4.
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PROBLEM 3.62.FUN

GIVEN:
Carbon steel AISI 4130 spheres with radius R1 = 4 mm are to be annealed. The initial temperature is

T1(t = 0) = 25◦C and the annealing temperature is Ta = 950◦C. The heating is done by an acetylene torch. The
spheres are placed on a conveyor belt and passed under the flame of the acetylene torch. The surface-convection
heat flux delivered by the torch (and moving into the spheres) is given as a function of the position within the
flame by (see Figure Pr.3.62)

qs(t) = qku = qo sin
(
π

x

L

)
,

where L = 2 cm is the lateral length of the flame and qo = −3 × 106 W/m2 is the heat flux at the center of the
flame.

Assume that the surface of the spheres is uniformly heated and neglect the heat losses. Use the properties at
300 K, as given in Table C.16.

SKETCH:
Figure Pr.3.62 shows a sphere placed on a conveyer and passed under a torch. The surface heat flux is also

given, as a function of location.

Conveyor Belt

Variation of Heat
Flux Within Flame

T1(t)
Steel Sphere

L
x

ub

qo

qs(x)

Acetylene-Oxygen
Torch

Acetylene
Flame

Figure Pr.3.62 Heating of carbon steel spheres placed on a conveyor.

OBJECTIVE:
Using a lumped-capacitance analysis (Nku,1 < 0.1) and starting from (3.160), find the speed of the conveyor

belt ub needed for heating the spheres from T1(t = 0) to Ta.

SOLUTION:
Treating each sphere as a lumped-capacitance system, the integral-volume energy equation (3.161) becomes

Q|A =
∫

A1

(q · sn)dA = −(ρcpV )1
dT

dt
+ Ṡi.

As the convection heat flux vector points to the surface and there is no energy conversion inside the spheres, we
have ∫

A

(q · sn)dA = −qs(t)A

Ṡi = 0.

The energy equation becomes

(ρcpV )1
dT1

dt
= −qs(t)A1.
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Using the equation for qs(t), we have

(ρcpV )1
dT1

dt
= −qo sin

(πx

L

)
A1.

Note that the distance traveled along the flame x can be related to the elapsed time t by

x = ubt.

Now, using this relation we have

(ρcpV )1
dT1

dt
= qo sin

(πub

L
t
)

A1.

Separating the variables and integrating gives

dT1 =
−qoA1

(ρcpV )1
sin

(πub

L
t
)

dt

∫ Ta

T1(t=0)

dT1 =
−qoA1

(ρcpV )1

∫ t

0

sin
(πub

L
t
)

dt

Ta − T1(t = 0) =
−qoA1

(ρcpV )1
L

πub

[
1 − cos

(πub

L
t
)]

.

The final time t is the time it takes to travel through the flame and is given by t = L/ub. Then

Ta − T (t = 0) =
−2qoA1

(ρcpV )1
L

πub
.

For spheres, we have

V1

A1
=

4
3πR3

1

4πR2
1

=
R1

3
.

Then

Ta − T (t = 0) =
−6qo

(ρcp)1R1

L

πub
.

The properties for carbon steel AISI 4130 at 300 K, from Table C.16, are ρ1 = 7,840 kg/m3 and cp,1 = 460
J/kg-K. Solving for ub gives

ub =
−6qoL

π(ρcp)1R1[Ta − T (t = 0)]
=

6 × 3 × 106(W/m2) × 0.02(m)
π × 7,840(kg/m3) × 460(J/kg-K) × 0.004(m) × [950(◦C) − 25(◦C)]

= 0.008 m/s = 51.5 cm/min.

COMMENT:
We would need a smaller speed ub if we considered the presence of heat losses. The lumped-capacitance

analysis is valid when Nku,1 < 0.1 and this will be discussed in Chapter 6, in the context of surface-convection
heat transfer qku.
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PROBLEM 3.63.FAM.S

GIVEN:
An electrical resistance regulator is encapsulated in a rectangular casing (and assumed to have a uniform

temperature T1, i.e., Nk,1 < 0.1) and attached to an aluminum slab with thickness L = 3 mm. The slab is in
turn cooled by maintaining its opposite surface at the constant ambient temperature T2 = 30◦C. This slab is
called a heat sink and is shown in Figure Pr.3.63(a). Most of the time, the regulator provides no resistance to
the current flow, and therefore, its temperature is equal to T2. Intermittently, the regulator control is activated
to provide for an ohmic resistance and then energy conversion from electromagnetic to thermal energy occurs.
A joint pressure is exerted to reduce the contact thermal resistance at the interface between the regulator and
the heat sink. However, as the regulator temperature reaches a threshold value T1,o = 45◦C, the thermal stresses
warp the regulator surface and the contact resistance changes from AkRk,c = 10−3 K/(W/m2) to a larger value of
AkRk,c = 10−2 K/(W/m2). The regulator has (ρcpV )1/Ak = 1.3×105 J/K-m2 and the amount of heat generated
by Joule heating is Ṡe,J/Ak = 2× 104 W/m2. Neglect the heat losses from the regulator to the ambient. Assume
that the conduction resistance in the aluminum slab is steady state (i.e., constant resistance) and the energy
storage in the slab is also negligible.

Use the thermal conductivity of aluminum at T = 300 K.

SKETCH:
Figure Pr.3.63(a) shows a regulator subject to the Joule heating and attached to a substrate with a thermal

contact resistance.

T2 = 30 C

Regulator: Uniform
Temperature T1(t)

(Nk,1 < 0.1) Rk,c

Se,J
Ak , (ρcpV)1

L = 3 mm

Aluminum Slab
(Heat Sink)

(+)
(−)

Figure Pr.3.63(a) An electrical resistance regulator attached to a substrate with
a thermal contact resistance.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Use the lumped-capacitance analysis to determine the required time to reach the threshold temperature
Tc = 45◦C.
(c) Starting with T1,o as the initial temperature and using the new contact resistance AkRk,c, determine the time
required to reach T1 = T2 + 2 Tc.
(d) Determine the steady-state temperature.
(e) Make a qualitative plot of the regulator temperature versus time, showing (i) the transition in the contact
resistance, and (ii) the steady-state temperature.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.3.63(b).

(b) To find the switch temperature, the integral-volume energy equation (3.161) is applied to the switch node T1.
For transient conditions, we have

Q1 +
∑

j

T1 − Tj

Rk,1-j
= −ρcpV

dT1

dt
+ Ṡe,J.
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Aluminum Slab
(Heat Sink)

Uniform Temperature, T1(t)

T2

T1

Ti

Rk,c

Rk,i-2

Q1-i

Qi-2

T2 = 30 OC

L
 =

 3
 m

m

Rk,cAk

Interface (i)

-(ρCpV)1        + Se,J
dT1

 dt
-(ρCpV)1        + Se,J

dT1

 dt

Figure Pr.3.63(b) Thermal circuit diagram.

The temperature T2 is known. Therefore, the heat flux through the thermal resistances is written as a function
of T2. The energy equation for node 1 is

T1 − T2

(Rk,Σ)1-2
= −ρcpV

dT1

dt
+ Ṡe,J.

For the resistances arranged in series, the overall thermal resistance (Rk,Σ)1-2 is

(Rk,Σ)1-2 = Rk,c + Rk,i-2.

The conduction resistance Rk,i-2 for the slab is (Table 3.2)

Rk,i-2 =
L

k2Ak
,

and the contact resistance Rk,c is given in the problem statement.
The thermal conductivity k2 is needed to calculate the thermal resistance. For aluminum (Table C.14, T = 300

K) we obtain k2 = 237 W/m-K. The solution for T1(t), given by (3.172), is

T1(t) = T2 + [Ti(t = 0) − T2]e−t/τ1 + a1τ1(1 − e−t/τ1),

where

τ1 = (ρcpV )1(Rk,Σ)1-2

a1 =
Ṡe,J − Q1

(ρcpV )1
.

For the initial heating period, the conditions are: T1(t = 0) = 30◦C, T1(t) = Tc = 45◦C, AkRk,c = 10−3

K/(W/m2). From the data given,

AkRk,i-2 =
L

k2
=

0.003
237

= 1.266 × 10−5 K/(W/m2)

Ak(Rk,Σ)1-2 = AkRk,c + AkRk,i-2 = 10−3 + 1.266 × 10−5 = 1.013 × 10−3 K/(W/m2)

τ1 = (ρcpV )1(Rk,Σ)1-2 =
ρcpV

Ak
Ak(Rk,Σ)1-2 = (1.3 × 105) × (1.013 × 10−3) = 1.316 × 102 s
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a1 =
Ṡe,J − Q1

(ρcpV )1
=

(
Ṡe,J

Ak
− Q1

Ak

)
Ak

(ρcpV )1
=

2 × 104 − 0
1.3 × 105

= 1.538 × 10−1 K/s.

Solving for time gives

t = −τ1 ln
T1(t) − T2 − a1τ1

T1(t = 0) − T2 − a1τ1

= −1.316 × 102(s) ln
45(◦C) − 30(◦C) − (1.538 × 10−1)(◦C/s) × (1.316 × 102)(s)

0 − (1.538 × 10−1)(◦C/s) × (1.316 × 102)(s)
= 177.8 s � 3.0 min

(c) At T1 = 45◦C, the contact resistance changes to AkRk,c = 10−2 K/(W/m2). The overall resistance and the
time constant τ1 become (note that a1 remains the same)

Ak(Rk,Σ)1-2 = AkRk,c + AkRk,i-2 = 10−2 + 1.266 × 10−5 = 1.001 × 10−2 K/(W/m2)

τ1 = (ρcpV )1(Rk,Σ)1-2 =
ρcpV

Ak
Ak(Rk,Σ)1-2 = 1.3 × 105 × 1.001 × 10−2 = 1.302 × 103 s.

For this second heating period, T1(t = 0) = 45◦C and T1(t) = T2 + 2Tc = 120◦C. Then

t = −τ1 ln
T1(t) − T2 − a1τ1

T1(t = 0) − T2 − a1τ1

= −1.302 × 103(s) ln
120(◦C) − 30(◦C) − (1.538 × 10−1)(◦C/s) × (1.302 × 103)(s)
45(◦C) − 30(◦C) − (1.538 × 10−1)(◦C/s) × (1.302 × 103)(s)

= 675.7 s � 11.3 min.

(d) The steady-state temperature is the condition for t → ∞. Setting t → ∞ in (3.172), we obtain

T1(t → ∞) = T2 + a1τ1 = 30 + (1.538 × 10−1) × (1.302 × 103) = 230.2◦C.

(e) Figure Pr.3.63(c) shows T1 as a function of time. At T1 = 45◦C, the change in the contact resistance causes a
change in heat loss, from a smaller heat loss to a larger heat loss. This appears in the graph as an abrupt change
in slope, from a smaller to a steeper slope.

0 1000 2000 3000 4000
t , s

0

50

100

150

200

250

300

T
1 ,

 o C

T1 = 45 oC

T1 = 120 oC

T1 = 230 oC

Figure Pr.3.63(c) Time variation of the regulator temperature for the periods with different constant resistance.

COMMENT:
Note that the increase in contact resistance results in a much larger regulator temperature. Applying joint

pressure or thermal grease will assist in reducing the contact resistance.
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PROBLEM 3.64.FAM

GIVEN:
In laser back-scribing, a substrate is heated and melted by radiation absorption. Upon solidification, a volume

change marks the region and this is used for recording. An example is given in Figure Pr.3.64(a), where irradiation
is provided through a thick glass layer and arrives from the backside to a thin layer of alumina. The alumina
layer absorbs the radiation with an extinction coefficient σex,1 that is much larger than that of glass. Assume
that the alumina layer is at a uniform, but time-varying temperature (because of the high thermal conductivity
of alumina compared to the glass, i.e., Nk < 0.1). Also assume that the conduction resistance in the glass is
constant.

a = 100 µm, l1 = 0.6 µm, l2 = 3 µm, qr,i = 3 × 109 W/m2, σex,1 = 107 1/m, ρr = 0.1, T1(t = 0) = 20◦C,
T2 = 20◦C, Tsl,1 = 1,900◦C.

SKETCH:
Figure Pr.3.64(a) shows laser back-scattering by volumetric absorption of irradiation.

l1

Q1 = 0

l2

aa

Se,r

Laser

Alumina
(Conductive

Oxide)

Glass

Other Layers

Scribing Layer 

qr,i

ρr qr,i

k2 , 
σex,2 =

 0

(ρcp)1 , 
σex,1

(1 � ρr) qr,i

T1(t = 0)
Uniform Temperature T1

T2

Figure Pr.3.64(a) Laser back-scribing on a compact disk storage device.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the time it takes to reach the melting temperature of the alumina Tsl,1.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.3.64(b). As stated in the problem, a constant conduction
resistance is assumed for the glass layer. The temperature of the scribing layer is assumed uniform and time
dependent. The absorbed irradiation is shown with (Ṡe,r)1. This is the absorption integrated over the layer.

Rk,1-2
Qk,1-2

T2

T1

� (ρcpV)1 + (Se,r)1
dT1
dt

Figure Pr.3.64(b) Thermal circuit diagram.
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(b) The energy absorbed in layer 1 is found from integrating (2.43), i.e.,

(Ṡe,r)1 =
∫

V1

(Ṡe,r/V )dV1 = a2

∫ l1

0

qr,i(1 − ρr)σex,1exp(−σex,1x)dx

= a2qr,i(1 − ρr)[1 − exp(−σex,1l1)]
= (10−4)2(m2) × (3 × 109)(W/m2) × (1 − 0.1) ×

{1 − exp[−107(1/m) × 6 × 10−7(m)]}
= 26.933 W.

The transient temperature of layer 1 is given by (3.172), i.e.,

T1(t) = T2 + [T1(t = 0) − T2] exp(−t/τ1) + a1τ1[1 − exp(−t/τ1)]
= T2 + a1τ1(1 − exp(−t/τ1)

a1 =
(Ṡe,r)1
(ρcpV )1

, τ1 = (ρcpV )1Rk,1-2.

From Table C.17, we have for alumina (at T=293 K)

ρ1 = 3,975 kg/m3 Table C.17

cp,1 = 765 J/kg-K Table C.17.

From Table C.17, we have for a glass plate (at T = 293 K)

k2 = 0.76 W/m-K Table C.17.

The volume is

V1 = a2l1 = (10−4)2(m2) × (6 × 10−7)(m)
= 6 × 10−15 m3.

The time constant is

τ1 = (ρcpV )1Rk,1-2

Rk,1-2 =
l2

Akk2
=

l2

a2k2

=
3 × 10−6(m)

(10−4)2(m2) × 0.76(W/m-K)
= 394.74 K/W.

Note that this large resistance is due to the small conduction area Ak. Then

τ1 = 3,975(kg/m3) × 765(J/kg-K) × (6 × 10−15)(m3) × 394.74(K/W)
= 7.202 × 10−6 s
= 7.202 µs.

Also

a1 =
26.933(W)

3,975(kg/m3) × 765(J/kg-K) × (6 × 10−15)(m3)
= 1.4762 × 109◦C/s.

Solving for t, we have

T1(t) − T2

a1τ1
= 1 − exp(−t/τ1) or exp(−t/τ1) = 1 − T1(t) − T2

a1τ1

or

t = −τ1ln
[
1 − T1(t) − T2

a1τ1

]

= −7.202 × 10−6(s)ln
[
1 − (1,900 − 20)(◦C)

1.4762 × 109(◦C/s) × 7.202 × 10−6(s)

]
= 1.402 × 10−6 s = 1.402 µs.
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COMMENT:
The assumption of constant conduction resistance in the glass layer can be relaxed by dividing the glass layer

into many smaller layers (Section 3.7). In practice, the layer temperature is pulsed and its time variation should
by taken into account. This results in a nonuniform distribution of the absorbed energy, once the reflections at
the various internal boundaries are included.
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PROBLEM 3.65.FUN

GIVEN:
In applications such as surface friction heat generation during automobile braking, the energy conversion rate

Ṡm,F decreases with time. For the automobile brake, this is modeled as

Ṡm,F (t) = (Ṡm,F )o

(
1 − t

to

)
t ≤ to.

For a semi-infinite solid initially at T (t = 0), when its surface at x = 0 experiences such time-dependent surface
energy conversion, the surface temperature is given by the solution to (3.134). The solution, for these initial and
bounding-surface conditions, is

T (x = 0, t) = T (t = 0) +
(

5
4

)1/2 (Ṡm,F )o

Akk
(αt)1/2

(
1 − 2t

3to

)
,

where Ṡm,F /Ak is the peak surface heat flux qs.
(Ṡm,f )o/Ak = 105 W/m2, to = 4 s, T (t = 0) = 20◦C.

OBJECTIVE:
Consider a disc-brake rotor made of carbon steel AISI 1010.

(a) Plot the surface temperature T (x = 0, t) for the conditions given below and 0 ≤ t ≤ to.
(b) By differentiating the above expression for T (x = 0, t) with respect to t, determine the time at which
T (x = 0, t) is a maximum.

SOLUTION:
(a) From Table C.16 for carbon steel AISI 1010, we have

k = 64 W/m-K Table C.16

α = 1.88 × 10−5 m2/s Table C.16.

Figure Pr.3.65 shows the variation of surface temperature with respect to time.
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= 10 

5 W/m2

T (x = 0, t = 2 s) = 91.41oC

Figure Pr.3.65 Variation of surface temperature with respect to time.

(b) The differentiation of T (x = 0, t) with respect to t gives

dT (x = 0, t)
dt

=
(

5
4

)1/2 (Ṡm,F )o

Akk

[
α1/2

(
1
2
t−1/2

)(
1 − 2t

2to

)
− 2α1/2t1/2

3to

]

=
(

5
4

)1/2 (Ṡm,F )o

Akk
α1/2

(
1
2
t−1/2 − t1/2

3to
− 2t1/2

3to

)

=
(

5
4

)1/2 (Ṡm,F )o

Akk
α1/2

(
1
2
t−1/2 − t1/2

to

)
= 0.
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This gives

1
2
− t

to
= 0 or

t

to
=

1
2
.

COMMENT:
The maximum surface temperature, occurring at t = to/2, is

T (x = 0, t = to/2) =
(

5
9

)1/2 (Ṡm,F )o

Akk
(αt)1/2 = 91.41◦C.
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PROBLEM 3.66.FUN

GIVEN:
The energy equation (3.171) for a lumped capacitance (integral-volume) system with a resistive-type surface

heat transfer.
The initial condition is T1 = T1(t = 0) at t = 0.

OBJECTIVE:
Derive the solution (3.172) for T = T1(t) starting from the energy equation (3.171), which applies to a lumped-

capacitance system with a resistive-type surface heat transfer.

SOLUTION:
We start from the energy equation (3.171), i.e.,

Q|A,1 = Q1 +
T1(t) − T2

Rt,1-2
= −(ρcpV )1

dT1(t)
dt

+ Ṡ1

integral-volume(lumped capacitance)

energy equation with a resistive-type surface heat transfer,

with T2 being constant and the initial condition of T1 = T1(t = 0).
We rewrite this ordinary differential equation (initial-value problem) as

dT1

dt
+

1
(ρcpV )1Rt,1-2

(T1 − T2) =
Ṡ1 − Q1

(ρcpV )1
dT1

dt
+

T1 − T2

τ1
= a1, τ1 = (ρcpV )1Rt,1-2, a1 =

Ṡ1 − Q1

(ρcpV )1
.

Using substitution, we have
dθ

dt
+

θ

τ1
= a1, θ = T1 − T2.

First we find the homogeneous solution by setting a1 = 0, i.e.,

dθ

dt
+

θ

τ1
= 0, θh = Ae−t/τ1 .

Then we find the particular solution by setting dθ/dt = 0, i.e.,

θ

τ1
= a1, θ = a1τ1.

Now combining the solutions, we have
θ = Ae−t/τ1 + a1τ1.

Applying the initial condition, we have

T1(t = 0) − T2 = Ae−0/τ1 + a1τ1

or
A = T1(t = 0) − T2 − a1τ1.

Then
T1(t) − T2 = [T1(t = 0) − T2]e−t/τ1 + a1τ1(1 − e−t/τ1),

which is (3.172).

COMMENT:
Note that for the steady-state solution, i.e., t → ∞, we have

T1(t → ∞) = T2 + a1τ1

= T2 + (Ṡ1 − Q1)Rk,1-2.

The steady-state solution is reached when t ≤ 4τ1.
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PROBLEM 3.67.FAM

GIVEN:

Water is heated (and assumed to have a uniform temperature, due to thermobuoyant motion mixing) from
T1(t = 0) to T1(t = tf ) = Tf by Joule heating in a cylindrical, portable water heater with inside radius R1 and
height l, as shown in Figure Pr.3.67(a). The ambient air temperature T2 is rather low. Here we assume that the
outside surface temperature (located at outer radius R2) is the same as the ambient temperature (i.e., we neglect
the resistance to heat transfer between the outside surface and the ambient). Two different heater wall designs,
with different R2 and ks, are considered.

R1 = 7 cm, l = 15 cm, T1(t = 0) = T2 = 2◦C, tf = 2,700 s, Ṡe,J = 600 W.
Evaluate the water properties at T = 310 K (Table C.23). Neglect the heat transfer through the top and

bottom surfaces of the water heater, and treat the wall resistance as constant.

SKETCH:

Figure Pr.3.67(a) shows the portable water heater and its Joule heater and side walls.

l R2

R1

(Se,J)1

.

Water
T1(t)

T2

ks

Figure Pr.3.67(a) A portable water heater.

OBJECTIVE:

(a) Draw the thermal circuit diagram.
(b) Determine the water temperature Tf after an elapsed time tf using, (i) a thin AISI 302 stainless-steel wall
(Table C.16) with outer wall radius R2 = 7.1 cm, and (ii) a thicker nylon wall (Table C.17) with R2 = 7.2 cm.
(c) Compare the results of the two designs.

SOLUTION:
(a) The water has lumped thermal capacitance (uniform temperature) and is losing heat by conduction through
the cylindrical side walls of the container. The thermal circuit is shown in Figure Pr.3.67(b).

Rk,1-2

T1(t) T2

Qk,1-2

Se,J

.
-(�cV )1

dT1

dt
+

Figure Pr.3.67(b) Thermal circuit diagram.
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(b) The water is a lumped system with a single resistive conduction heat transfer. Applying conservation of
energy to node T1, we have

Q |A = Qk,1-2 = −(ρcV )1
dT1

dt
+ Ṡ1

=
T1 − T2

Rk,1-2
= −(ρcV )1

dT1

dt
+ (Ṡe,J)1.

The solution to this differential equation for T1(t) (with constant Ṡ) is given as

T1(t) = T2 + [T1(t = 0) − T2]e−t/τ1 + a1τ1(1 − e−t/τ1),

where

τ1 = (ρcV )1Rk,1-2 and a1 =
(Ṡe,J)1
(ρcV )1

.

Since T1(t = 0) = T2, this reduces to

T1(t) = T2 + a1τ1(1 − e−t/τ1).

The volume of the container is

V1 = πR2
1l = π × 0.072(m2) × 0.15(m)

= 2.309 × 10−3 m3.

From Table C.23 (T1 = 310 K), ρ1 = 995.3 kg/m3 and c = 4,178 J/kg-K. The thermal capacitance of the water
is then

(ρcV )1 = 995.3(kg/m3) × 4,178(J/kg-K) × 2.309 × 10−3(m3)
= 9,602 J/K.

For a cylindrical shell, the conduction resistance is

Rk,1-2 =
ln(R2/R1)

2πlks
.

(i) AISI 302 stainless steel, R1 = 0.071 m.
From Table C.16, ks = 15 W/m-K. Then we have

Rk,1-2 =
ln(R2/R1)

2πlks
=

ln(0.071/0.07)
2 × π × 0.15(m) × 15(W/m-K)

= 1.003 × 10−3 ◦C/W

a1 =
(Ṡe,J)1
(ρcV )1

=
600(W)

9,601.95(J/K)
= 0.0625 ◦C/s,

τ1 = (ρcV )1Rk,1-2 = 9,601.95(J/K) × 1.003 × 10−3(◦C/W) = 9.631 s.

Upon substitution at t = 2,700 s, we have

T1(t) = T2 + a1τ1(1 − e−t/τ ) = 2◦C + 0.0625(◦C/s) × 9.631(s) × (1 − e−2,700(s)/9.631(s))
= 2◦C + 0.602(◦C) × (1 − e−280.3) = 2.6◦C.

(ii) Nylon, R2 = 0.072 m.
From Table C.17, ks = 0.25 W/m-K. Then we have

Rk,1-2 =
ln(R2/R1)

2πlks
=

ln(0.072/0.07)
2 × π × 0.15(m) × 0.25(W/m − K)

= 0.1196◦C/W,

a1 =
(Ṡe,J)1
(ρcV )1

=
600(W)

9,601.95(J/K)
= 0.0625◦C/s,

τ1 = (ρcV )1Rk,1-2 = 9,601.95(J/K) × 0.1196(◦C/W) = 1,148 s.
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Upon substitution at t = 2,700 s, we have

T1(t) = T2 + a1τ1(1 − e−t/τ ) = 2◦C + 0.0625(◦C/s) × 1,148(s) × (1 − e−2,700(s)/1,148(s))
= 2◦C + 71.75(◦C) × (1 − e−2.35) = 66.9◦C.

(c) For the given external surface temperature, the high thermal conductivity and the wall thickness of the stain-
less steel produces a wall thermal resistance for design (i) that is too low to allow for the water to be heated
higher than 2.6◦C. The low thermal conductivity and larger wall thickness of the Nylon produces a wall ther-
mal resistance nearly 1000× higher than that of design(i), thus allowing the water to be heated to and above
the desired temperature. Of the two designs, design (ii) is superior. Increasing the wall thickness and/or de-
creasing the thermal conductivity of the wall (by selecting an alternate material) would further improve the design.

COMMENT:
Note that we have neglected heat losses from the bottom and top surface and these can be significant.
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PROBLEM 3.68.FAM

GIVEN:
A hot lead sphere is cooled by rolling over a cold surface, with a contact resistance (Rk,c)1-2, which is ap-

proximated by that between a pair of soft aluminum surfaces with 〈δ2〉 = 0.25 µm. The surface-convection and
radiation heat transfer are represented by a constant heat transfer rate Q1.

D1 = 2 mm, T1(t = 0) = 300◦C, T2 = 30◦C, up = 0.5 m/s, Ak,c = 0.1 mm2, Q1 = 0.1 W.

SKETCH:
Figure Pr.3.68(a) shows the rolling sphere and the contact resistance.

up

Q1

x
D1

T1(t = 0)

T2 > T1(t = 0)

Lead Sphere, T1(t)

Contact Resistance
(Rk,c)1-2

Contact Pressure, pc , Due to
Weight, Mg, and Applied Force, F

−(ρckV)1
dT1
dt

Figure Pr.3.68(a) A hot lead sphere is cooled by rolling over a cold surface.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Assume a uniform sphere temperature and determine the elapsed time required for the sphere temperature
to reach 50◦C above T2.
(c) Use this elapsed time and evaluate the Fourier number FoR for the sphere. From this magnitude and by using
Figure 3.33(b)(ii) for estimation, is the assumption of uniform temperature valid?
(d) By approximating the internal, steady-state resistance as Rk,1 = (D1/2)/πD2

1k1 = 1/(2πD1k1), evaluate
Nk,1 and comment on the validation of uniform sphere temperature assumption from the relative temperature
variations inside and outside the object.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.3.68(b).

(Rk,c)1-2

T2

T1(t = 0)

T1(t)
Control Surface, A1

�(�cpV)1

Qk,1-2

Q1

dT1
dt

Figure Pr.3.68(b) Thermal circuit diagram.

(b) From (3.172), we have

T1(t) = T2 + [T1(t = 0) − T2]e−t/τ1 + a1τ1(1 − e−t/τ1),

τ1 = (ρcpV )1(Rk,c)1-2, a1 =
Ṡ1 − Q1

(ρcpV )1
= − Q1

(ρcpV )1
,

since Ṡ1 = 0.
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From Table C.16, we have for lead

ρ1 = 11,340 kg/m3 Table C.16

cp,1 = 129 J/kg-K Table C.16

k1 = 35.3 W/m-K Table C.16

α1 = 2.41 × 10−5 m2/s Table C.16.

(3.1)

Then using V1 = πD3
1/6, we have

(ρcpV )1 = 11,340(kg/m3) × 129(J/kg-K) × π × (2 × 10−3)3(m3)/6 = 6.128 J/K.

From Figure 3.25, we have for pc = 105 Pa and soft Al-Al surfaces with 〈δ2〉1/2 = 0.25 µm

(Ak,cRk,c)−1
1-2 = 8 × 103 (W/m2)/K.

Then

(Rk,c)1-2 =
(Ak,cRk,c)1-2

Ak,c
=

1
8 × 103[(W/m2)/K] × 10−7(m2)

= 1.25 × 103 K/W

τ1 = 6.128(J/K) × 1.25 × 103(K/W) = 7,659.5 s

a1 = − 0.1(W)
6.128(J/K)

= −0.0163 K/s

T1(t) = (30 + 50)(◦C) = 30(◦C) + (300 − 30)(◦C)e−t/7,659.5(s)(−0.0163)(K/s) × 7,659.5(s) ×
[
1 − e−t/7,659.5(s)

]
.

Solving for t, we have

t = 6,239 s
L = upt = 0.5(m/s) × 6.236(s) = 3,120 m.

(c) From Figure 3.33(b)(ii), the Fourier number is defined as

FoR =
α1t

R2
1

=
4α1t

D2
1

=
4 × 2.41 × 10−5(m2/s) × 6.236(s)

(2 × 10−3)2(m2)
= 150.3.

From Figure 3.33(b)(ii), if the surface temperature was suddenly changed, then this elapsed time t, or its dimen-
sionless value FoR, would be sufficient to establish a uniform temperature. Here we do not have a constant surface
temperature, but we can state that there is a sufficient elapsed time to allow for a nearly complete penetration
of surface temperature changes, i.e., it is safe to assume a uniform temperature.

(d) From (3.161) we have

Nk,1 =
Rk,1

Rk,1-2
=

Rk,1

(Rk,c)1-2

= =
1/(2πD1k1)

1.25 × 103(K/W)

=
1

2π × 2 × 10−3(m) × 35.3(W/m-K) × 1.25 × 103(K/W)
= 1.803 × 10−3 
 0.1.

This shows that the internal resistance is negligible and a lumped capacitance is also valid from the inside-outside
temperature variation point of view.

COMMENT:
We have verified that, here, there is a negligible penetration temperature nonuniformity (i.e., large FoR) and

a negligible internal temperature variation compared to the external temperature variation (i.e., small Nk,1). As
the volume becomes smaller, this assumption becomes more readily satisfied. These are the assumptions used in
the finite-small volume treatment of the heat transfer media (by division of the medium into small, but yet finite
volumes). Also, note that we have not determined pc and that a large pc would require an applied force (other
than the particle weight).
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PROBLEM 3.69.FAM.S

GIVEN:
A thin, flexible thermofoil (etched foil) heater with a mica (a cleavable mineral) casing is used to heat a

copper block. This is shown in Figure Pr.3.69(a). At the surface between the heater and the copper block, there
is a contact resistance (Rk,c)1-2. Assume that the heater and the copper block both have small internal thermal
resistances (Nk,1 < 0.1), so they can be treated as having uniform temperatures T1(t) and T2(t), with the initial
thermal equilibrium conditions T1(t = 0) = T2(t = 0). The other heat transfer rates, from the heater and the
copper block are prescribed (and constant) and are given by Q1 and Q2. If the heater temperature T1(t) exceeds a
threshold value of Tc = 600◦C, the heater is permanently damaged. To avoid this, the thermal contact resistance
is decreased by the application of an external pressure (i.e., large contact pressure pc).

For mica, use the density and specific heat capacity for glass plate in Table C.17.
R = 3 cm, L1 = 0.1 cm, L2 = 3 cm, Ṡe,J = 300 W, Q1 = 5 W, Q2 = 50 W, T1(t = 0) = T2(t = 0) = 20◦C.

SKETCH:
Figure Pr.3.69(a) A thermofoil heater is used to heat a copper block. There is a contact resistance between

the two.

L2

L1

R

+ �

pc

Q2

Q1Se,J

Joule Heating

Contact
Resistance

(Rk,c)1-2

Thermofoil Heater
with Mica casing

T1(t)

Copper Block
T2(t)

Figure Pr.3.69(a) A copper block is heated with a thin heater through a contact resistance.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Plot T1(t) and T2(t) with respect to time, for 0 ≤ t ≤ 100 s, for (i) Ak(Rk,c)1-2 = 10−3 K/(W/m2), and (ii)
Ak(Rk,c)1-2 = 10−2 K/(W/m2).

SOLUTION:
(a) The thermal circuit diagram is given in Figure Pr.3.69(b).

�(�cpV)2

(Rk,c)1-2 Qk,1-2

Se,J � (�cpV)1

Heater, T1

Q1 (Prescribed and Constant)

Q2 (Prescribed and Constant)

Copper Block, T2
dT2
dt

dT1
dt

Figure Pr.3.69(b) Thermal circuit diagram.

(b) This is a two-node thermal system and for each node we use (3.161), i.e.,

Q1 + Qk,1-2 = −(ρcpV )1
dT1

dt
+ Ṡe,J, Nk,1 < 0.1 (3.2)

Q2 + Qk,2-1 = −(ρcpV )2
dT2

dt
, Nk,2 < 0.1, (3.3)
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where

V1 = πR2L1, V2 = πR2L2,

Qk,1-2 =
T1(t) − T2(t)

(Rk,1-2)
T1(t = 0) = T2(t = 0) = T (t = 0).

From Tables C.16 and C.17, we have

mica: ρ1 = 2,710 kg/m3 Table C.17

cp,1 = 837 J/kg-K Table C.17

copper: ρ2 = 8,933 kg/m3 Table C.16

cp,2 = 385 J/kg-K Table C.16.

Then

(ρcpV )1 = 2,710(kg/m3) × 837(J/kg-K) × π × (0.03)2(m2) × 10−3(m) = 6.413 J/K
(ρcvV )2 = 8,933(kg/m3) × 385(J/kg-K) × π × (0.03)2(m2) × 3 × 10−2(m) = 2.918 × 102 J/K.

(Rk,c)1-2 =
Ak(Rk,c)1-2

Ak
=

10−2[K/(W/m2)]
πR2 =

10−2[K/(W/m2)]
π × (0.03)2(m2)

= 3.536 K/W, for Ak(Rk,c)1-2 = 10−2 K/(W/m2)
= 0.3536 K/W, for Ak(Rk,c)1-2 = 10−3 K/(W/m2).

The two energy equations become, for Ak(Rk,c)1-2 = 10−2 K/(W/m2),

5 +
T1(t) − T2(t)

3.536
= −6.413 × dT1(t)

dt
+ 300

50 +
T2(t) − T1(t)

3.536
= −2.918 × 102 × dT2(t)

dt
,

T1(t = 0) = T2(t = 0) = 20◦C.

The variations of T1(t) and T2(t) with respect to time are plotted in Figure Pr.3.69(c). Due to its smaller mass,
the heater heats up quickly and when (Rk,c)1-2 is large, this results in temperatures in excess of the damaging
threshold temperature Tc = 600◦C.

COMMENT:

Note that the assumption of a uniform temperature may be valid for the copper block, but not for the heater
[especially for the smaller (Rk,c)1-2]. In this case, the heater should be divided into segments (along its thickness)
and a separate energy equation should be written for each segment (i.e., finite-small volume energy equations).
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Figure Pr.3.69(c) Variation of the two node temperatures with respect to time.
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PROBLEM 3.70.FAM

GIVEN:
An initially cold T1(t = 0), pure aluminum spherical particle is rolling over a hot surface of temperature Ts

at a constant speed uo and is heated through a contact conduction resistance Rk,c. This is shown in Figure
Pr.3.70(a).

T1(t = 0) = 20◦C, Ts = 300◦C, Tf = 200◦C, D1 = 4 mm, Rk,c = 1,000 K/W, uo = 0.1 m/s.
Determine the pure aluminum properties at T = 300 K.

SKETCH:
Figure Pr.3.70(a) shows the falling spherical particle and the heat transfer by contact conduction.

Pure Aluminum Ball, T1(t)

uo

D  Surface Temperature Ts (Uniform)

g

1

Contact
Resistance Rk,c L

Figure Pr.3.70(a) A pure aluminum ball rolls over a hot surface and
is heated by contact conduction.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Is the assumption of a uniform temperature valid? Use Rk,1 = 1/(4πD1k1) for the internal conduction resis-
tance.
(c) Determine the length L the ball has to travel before its temperature reaches Tf . Assume that the contact
conduction is the only surface heat transfer (surface-convection and radiation heat transfer are assumed negligible).

SOLUTION:
(a) Figure Pr.3.70(b) shows the thermal circuit diagram. Heat transfer to the ball is by contact conduction only.

Ts
T1(t)

Rk,c−(ρcpV)1       
dT1

dt 

Qk,1-s

Figure Pr.3.70(b) Thermal circuit diagram.

(b) Lumped capacitance treatment is justified when Rk,i/Rk,i-j ≡ Nk,i < 0.1, i.e., (3.161). Using Rk,1 =
1/(4πD1k1), and k1 = 237 W/m-K (Table C.16), we have

Nk,1 =

1
4πD1k1

Rk,c
=

1
4 × π × 0.004(m) × 237(W/m-K)

1,000(K/W)

Nk,1 = 8.385 × 10−5 
 0.1, then the uniform temperature assumption is valid.
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(c) The transient temperature of the ball is given by (3.172), i.e.,

T1(t) = Ts + [T1(t = 0) − Ts] exp(−t/τ1) + a1τ1[1 − exp(−t/τ1)].

Since there is no heat loss and heat generation, i.e., Ṡ1 − Q1 = a1 = 0, this reduces to

T1(t) = Ts + [T1(t = 0) − Ts] exp(−t/τ1),

where

τ1 = (ρcpV )1Rk,c.

The volume is

V1 =
4π

3

(
D

2

)3

=
4π

3

[
0.004

2

]3

= 3.355 × 10−8 m3.

From Table C.16, for pure aluminum, we have

ρ1 = 2,702 kg/m3

cp,1 = 903 J/kg-K
τ1 = 2,702(kg/m3) × 903(J/kg-K) × 3.355 × 10−8(m3) × 1,000(W/K)
τ1 = 81.85 s.

Then, using the values given, solving for time,

473.15(K) = 573.15(K) + [(293.15 − 573.15)(K)] e
−t

81.85

t = 84.27 s.

Using L = t uo, with uo = 0.1 m/s, we have

L = 8.427 m.

COMMENT:
The heat transfer to the ambient by surface convection is neglected but becomes increasingly more important

as T1 increases. Surface radiation also becomes important. These would increase the required length (time).
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PROBLEM 3.71.FUN

GIVEN:
In printed-circuit field-effect transistors, shown in Figure Pr.3.71(a), the electrons are periodically accelerated

in the active layer and these electrons are scattered by collision with the lattice molecules (which is represented
as collision with the lattice phonons), as well as collision with the other electrons and with impurities. These
collisions result in the loss of the kinetic energy (momentum) of the electrons (represented by the Joule heating)
and this energy is transferred to the lattice molecules due to local thermal nonequilibrium between the electrons
having temperature Te and the lattice having temperature Tl.

An estimate of the electron temperature Te can be made using the concept of relaxation time. As discussed
in the footnote on page 288, the energy equation for the electron in a lattice unit cell can be written as

Te(t) − Tl

τe
− dTe(t)

dt
= ae = 0.1

me,ou
2
e

3kB

(
2

τm
− 1

τe

)
ue = µoe,

where the term on the left is the heat transfer from electron to the lattice, the first term on the right is storage,
and the second term is energy conversion. Here the coefficient 0.1 in a1 represents that 0.9 of the heat generated
is conducted to surroundings. The electron drift velocity is related to the electric field and the electron mobility
and the mass used is the effective electron mass 0.066me. The two relaxation times are the electron momentum
relaxation time τm, and the electron-lattice relation time τe. Assume that the lattice temperature is constant
(due to the much larger volume of the lattice molecules, compared to the electrons).

me,o = 0.066me, me = 9.109 × 10−3 kg, kB = 1.3807 × 10−23 J/K, µo = 0.85 m2/V-s, e = 5 × 105 V/m,
τm = 0.3 ps, τe = 8 ps, Tl = 300 K, Te(t = 0) = Tl.

SKETCH:
Figure Pr.3.71(a) shows the transient heat generation (Joule heating) in the electron transport layer.

Source Gate Drain
Active Layer

Semi-Insulating
SubstrateSilicon Substrate

Electron
Transfer

Depletion
Region

Joule
Heating Se,J

�ϕds , Applied Voltage

�ϕg Jd

.

Heat Transfer
to Lattice

Te - Tl
�e

Loss of
Kinetic
Energy
Due to

Collisions

Qe (A large 
fraction of Se,J)

Drift
Velocity ue

Lattice
Molecule Tl

Electron Te

.

e-

Figure Pr.3.71(a) The printed-circuit field-effect transistor and heat generation by electron kinetic energy loss due to
collisions. The electron heat transfer as a unit cell is also shown.

OBJECTIVE:
For the conditions given below, plot the electron temperature, using the solution (3.172), with respect to time,

up to an elapsed time of t = 100 ps.
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SOLUTION:
We begin with the solution (3.172) for the electron temperature, i.e.,

Te(t) = Tl + [Te(t = 0) − Tl]e−t/τl + a1τl(1 − e−t/τl)
= Tl + a1τl(1 − e−t/τl),

since Te(t = 0) = Tl.
From the problem statement, we have for ae

ae = 0.1
me,ou

2
e

3kB

(
2

τm
− 1

τe

)
,

ue = µoe.

and using the numerical values, we have

Te(t) = 300(K) + 1.715 × 1014(K/s) × 8 × 10−12(s) × [1 − e−t/8×10−12(s)].

Figure Pr.3.71(b) shows the variation of the electron temperature with respect to time. As expected, within
4 time constants 4τe, the electron reaches its steady-state temperature.

2,000

t, ps

T
e 

, K

1,600

100806040200
0

400

800

1,200

Te (t     �) = 1,672 K 

Tl = 300 K = Te (t = 0) 

Figure Pr.3.71(b) Variation of the electron temperature with respect to time.

COMMENT:
Note that the steady-state temperature is also found by setting the time derivation equal to zero, i.e.,

Te(t → ∞) − Tl

τe
= ae

or

Te(t → ∞) = Te + a1τe = 1,672K

Depending on the switching time, the electric field (applied voltage) is turned off and therefore, the Joule heating
is on for a period. This period is generally longer than τe.
Also note that we have allowed for 0.9a1 to leave as Qc (heat loss by conduction to surroundings). By including
the conduction through the active and semi-insulating layers, this heat loss can be determined as part of the
solution.
Since from (3.173), we have

ae =
Ṡe − Qe

(ρcpV )e
,

here, Ṡe/V is rather large.

281



PROBLEM 3.72.FAM

GIVEN:
Due to defects in the brake pad or the rotor geometry, the friction heat generation Ṡm,F may not have a

uniform distribution over the brake pad-rotor contact surface. This results in a hot spot at the locations of high
contact, and due to the thermal expansion, these hot spots continue to have further increase in contact pressure.
Eventually very high temperatures and a failure occurs. Consider the friction energy conversion occurring over
a rotor surface. The rotor is idealized as a ring of inner radius Ri, outer radius Ro, and thickness l, as shown
in Figure Pr.3.72(a). Under normal contact, the energy conversion will be equally distributed over the entire
contact surface and a uniform temperature T1(t) can be assumed. Under hot-spot contact, assume that the
energy is dissipated over a ring with the inner and outer radii Ri,1 and Ro,1 (with the same thickness l), resulting
in a uniform temperature T1(t) (i.e., Nk,1 < 0.1) and that the rest of the rotor is at a constant temperature T2

with heat flowing by conduction from T1(t) to T2 with a constant resistance Rk,1-2. This is only a very rough
approximation.

Ṡm,F = 30 kW, Ro = 18 cm, Ri = 13 cm, Ro,1 = 16 cm, Ri,1 = 15 cm, (ρcp)1 = 3.5 × 106 J/m3-K,
Rk,1-2 = 1◦C/W, T1(t = 0) = 20◦C, T2 = 20◦C.

SKETCH:
Figure Pr.3.72(a) shows the areas and for the normal and the hot-spot braking.

Friction Energy
Conversion

An Idealized Disc-Brake Rotor

For Hot-Spotting,
the Rest of Rotor at

Constant Temperature, T2

Hot-Spot Contact
Area, T1(t)

Ro

l
Sm,F

Ro,1

Ri,1

Ri

Figure Pr.3.72(a) A disc-brake rotor with (i) normal pad-rotor contact, and (ii) with hot-spot partial surface contact.

OBJECTIVE:
(a) Draw the thermal circuit diagram for (i) normal contact with no heat transfer, and (ii) hot-spot contact with
Qk,1-2 as the heat transfer.
(b) Determine the temperature T1(t) for cases (i) and (ii) after an elapsed time of t = 4 s.
(c) Comment on the difference in T1(t = 4 s) for cases (i) and (ii).

SOLUTION:
(a) The thermal circuit diagrams are shown in Figure Pr.3.72(b). The prescribed heat transfer rate Q1 = 0. For
case (ii), a resistance-type heat transfer Qk,1-2 exists and T2 is prescribed and constant.

Q1 = 0

S1 = Sm,F

−(ρcpV)1
dT
dt

T1(t)

Q1 = 0

Qk,1-2

Rk,1-2

T1(t) T2

(i) Normal Contact (ii) Hot-Spot Contact

S1 = Sm,F −(ρcpV)1
dT
dt

Figure Pr.3.72(b) Thermal circuit diagram.

(b) The time-dependent, uniform temperature T1(t) is given by (3.169) for the case of no resistive-type heat
transfer and (3.172) for the case with a resistance-type heat transfer.
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(i) From (3.169), we have

T1(t) = T1(t = 0) +
Ṡm,F

(ρcpV )1
t

V1 = π(R2
o − R2

i )l.

Using the numerical values, we have

V1 = π(R2
o − R2

i )l
= π[0.182(m2) − 0.132(m2)] × 0.015(m)
= 7.300 × 10−4 m3

T1(t = 4 s) = 20(◦C) +
3 × 104(W) × 4(s)

3.5 × 106(J/m3-K) × 7.300 × 10−4(m3)
= 20(◦C) + 46.97(◦C)
= 66.97◦C.

(ii) From (3.172), we have

T1(t) = T2 + [T1(t = 0) − T2]e−t/τ1 + a1τ1(1 − e−t/τ1)

τ1 = (ρcpV )1Rk,1-2, a1 =
Ṡm,F

(ρcpV )1
.

Since T1(t = 0) = T2, we have

T1(t = 0) = T2 + a1τ1(1 − e−t/τ1)
= T2 + Ṡm,F Rk,1-2(1 − e−t/τ1).

Now noting the smaller volume, and using the numerical values, we have

V1 = π(R2
o,1 − R2

i,1)l

= π[0.162(m2) − 0.152(m2)] × 0.015(m)
= 1.460 × 10−4 m3

τ1 = 3.5 × 106(J/m3-K) × 1.460 × 10−4(m3) × 1(K/W)
= 5.110 × 102 s

T1(t = 4s) = 20(◦C) + 3 × 104(W) × 1(K/W) × [1 − e−4(s)/511.0(s)]
= 20(◦C) + 233.9(◦C) = 253.9◦C.

(c) By comparing the results of (i) and (ii) in (b), we note that for (ii) there is an additional 180◦C rise in the tem-
perature. When multiple braking is made (as in stop-and-go or down-hill breaking), this increase is compounded
each time the brake is applied. Then temperatures above the damage threshold of the brake pad material are
reached.

COMMENT:
Note that since τ1 = 511.0 s is much larger than the elapsed time of t = 4 s, we could have neglected the heat

transfer during the brake period. Then we could have used (3.169) also for case (ii). This would give, for case
(ii),

T1(t) = 20(◦C) +
3 × 104(W) × 4(s)

3.5 × 106(J/m3-K) × 1.460 × 10−4(m3)
= 20(◦C) × 234.8(◦C)
= 254.8◦C.

For longer elapsed times, (3.172) should be used.
Note that the uniform rotor temperature assumption may not be valid for such a short elapsed time. Then a
distributed, penetration treatment may be made.
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PROBLEM 3.73.FUN.S

GIVEN:
A thermal barrier coating in the form of spray deposited, zirconia particles, is used as a thin layer to protect a

substrate. Figures Pr.3.73(i) and (ii) show a typical barrier coating and a representative two-dimensional conduc-
tion network model. The heat conduction through the gas filling the voids is neglected. The thermal conductivity
for the zirconia particles is ks = 1.675 W/m-K, and the porosity of the coating is approximately ε = 0.25. The
geometrical properties of the representative network model are given in Table Pr.3.73.

SKETCH:
Figure Pr.3.73(i) shows the micrograph of the thermal barrier coating, and (ii) shows the two-dimensional,

representative conduction network model.
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ks

T1

Adiabatic

Arm Node

Adiabatic

kf = 0

Thin Thermal 
Protection Film Pore

7

L

(i) (ii)

Figure Pr.3.73(i) Micrograph of a thermal barrier coating, and (ii) a two-dimensional, representative conduction
network model.

OBJECTIVE:
(a) Determine the estimated effective thermal conductivity 〈k〉yy (along the y axis) for the film layer by using the
two-dimensional thermal circuit diagram given in Figure Pr.3.73(ii).

Table Pr.3.73 The geometrical properties of the representative network model.

Arm l, µm L, µm Arm l, µm L, µm

1-7 1.5 12 11-16 3.2 10
2-4 3 7 12-13 8 11
3-5 5 9 12-17 4 15
4-5 3 8 13-14 2 6
4-6 0.8 10 13-15 2 9
5-9 5 13 14-19 3 12
6-8 5 10 15-18 3.25 13
6-9 1 12 15-20 1.2 19
7-8 2.5 16 16-21 7.5 10
7-11 5 19 17-18 3 6
9-10 3.5 11 17-21 2.5 18
10-13 2 13 18-22 3 4
11-12 2.25 20 19-20 1 6
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(The network model also represents the thermal circuit diagram for the layer.) Neglect the thermal conductivity
of the gas filing the pores (kf = 0). Take the length along the z axis (perpendicular to page) w = 1 m. Use as the
temperature at the lower boundary Lz, T1 = 225◦C, and the temperature at the upper boundary, T2 = 400◦C (for
effective conductivity is independent of these values). Write one-dimensional, steady-state conduction heat flow
for each arm and an energy equation for each node. Solve the set of linear algebraic equations for the temperature
of each node. Calculate the total heat flux, i.e., Qk, leaving the upper surface and determine the effective thermal
conductivity from the expression

Qk = 〈k〉yyLxLz
(T2 − T1)

Ly
.

Take Lx = Ly = 100 µm. Note also that left and right boundaries of the network model are adiabatic, i.e., no
heat flows across these boundaries.
(b) Compare the result of (a) with the analytical result for an isotropic, periodic unit-cell model given by

〈k〉
k

= 1 − ε1/2, 〈k〉xx = 〈k〉yy.

SOLUTION:
(a) For each arm, a one-dimensional steady-state conduction heat flow rate (a total of 26 relations), and for each
node an energy equation (a total of 16 equations) are written. For example, for arm 13-14, we have

Q13-14 = Ak,13-14ks
T14 − T13

L13-14
, Ak,13-14 = l13-14Lz

Q13-14 + Q13-15 − Q12-13 − Q10-13 = 0.

Since the left and right boundaries of the network model are adiabatic, then for example for node 10, the energy
equation becomes

Q9-10 = Q10-13.

The set of linear algebraic equations is solved by a solver such as SOPHT.
We have ks = 1.675 W/m-K, and the result is

〈k〉yy = 0.413 W/m-K.

(b) Using the analytical result for an isotropic, periodic unit-cell model, we have

〈k〉yy = ks(1 − ε1/2) = 1.675(W/m-K) × (1 − 0.251/2) = 0.8375 W/m-K.

COMMENT:
The analytical result gives us a higher value, since it assumes a geometry for the thermal barrier coating as

composed of an isotropic, periodic unit cell. As is evident from the two-dimensional network model, the geometry
cannot be assumed as isotropic, periodic unit cells. The predictions can be improved by using a larger number of
nodes and by including the third dimension.
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PROBLEM 3.74.FUN

GIVEN:
Steady-state conduction in a rectangular, two-dimensional medium with prescribed temperatures on the

bounding surfaces.
Lx = Ly,∆x = ∆y = Lx/N.

SKETCH:
Figure Pr.3.74(a) shows the two-dimensional medium divided into finite-small volumes.

Ly

Two-Dimensional
Temperature Distribution

T = T(x,y)

Finite Small
Volume

Lz

Lx

T1 , T
* = 0

T(0,1)

T(1,0)

T(1,1)

T1 , T
* = 0

T1 , T
* = 0

T2 , T
* = 1

x

y

�x

�y

Figure Pr.3.74(a) Two-dimensional, steady-state conduction in a rectangular medium. The discretized finite-small
volumes are also shown.

OBJECTIVE:
(a) Determine the temperature distribution for the two-dimensional, steady-state conduction in the rectangular
geometry shown in Figure Pr.3.74. Use the dimensionless temperature and lengths

T ∗(x, y) =
T (x, y) − T1

T2 − T1
, x∗ =

x

Lx
, y∗ =

y

Ly
.

(b) Plot the results for N = 3, 15, and 21.
(c) Compare the results with the exact series solution

T ∗(x, y) =
2
π

∞∑
n=1

1 + (−1)n+1

n
sin

(
nπx

Lx

)
sinh(nπy/Lx)
sinh(nπLy/Lx)

by showing the results on the same plot.
Lx = Ly = 20 cm, ∆x = ∆y = Lx/N .

SOLUTION:
(a) The finite-volume energy equation for two-dimensional heat transfer with the Cartesian coordinates, is given
by (3.184), for the interior nodes. This written for ∆x = ∆y, is

T ∗
i,j − T ∗

i,j

∆x

k∆yLz

+
T ∗

i,j − T ∗
i+1,j

∆x

k∆yLz

+
T ∗

i,j − T ∗
i,j−1

∆y

k∆xLz

+
T ∗

i,j − T ∗
i,j+1

∆y

k∆xLz

= 0

Since we have chosen ∆x = ∆y, we have

4T ∗
i,j − T ∗

i−1,j − T ∗
i+1,j − T ∗

i,j−1 − T ∗
i,j+1 = 0.

Here i = 3, · · ·N − 1, and j = 2, 3, · · ·N − 1, with i designating the x-direction index and j designating the
y-direction index.
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For nodes i = 2 and N and j = 2 and N , we have a different energy equation. For example, for i = 2, and
2 < j < N , we have

3.5T ∗
2,j − 0.5T ∗

1,j − T ∗
3,j − T ∗

2,j−1 − T ∗
2,j+1 = 0.

These are N2 interior nodes and the above energy equations are written for each node.
The surface nodes T ∗

0,j , T
∗
N+1,j , T

∗
i,0 and T ∗

i,N+1 are all prescribed. All are set to zero except T ∗
i,N+1 = 1.

A solver, such as SOPHT, is used to determine Ti,j for the interior nodes.

(b) Figure Pr.3.74(b) shows the plot of numerical results obtained using N = 3, 15, and 21. Since the plotter uses
a curve fit to the discrete data, all results appear the same, although for N = 3, only 3 interior nodes are used.
The results for the series solution are also shown and are nearly identical to those obtained numerically (they
cannot be distinguished on the figure). At least 50 terms are needed in the series solution for a converged solution.
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Figure Pr.3.74(b) Distribution of T ∗(x∗, y∗) obtained by finite-small volume method using N = 3, 15, and 21, and also
by the series solution.

The temperature found at (x∗ = 0.125, y∗ = 0.125) for N = 3 is T ∗ = 0.03571. For N = 15 at the same loca-
tion, we find T ∗ = 0.03051, and for N = 21, T ∗ = 0.03044. The exact solution for this location is T ∗ = 0.03036.
This shows that for N > 15 a relatively accurate result is obtained.

COMMENT:
In practice, the number of increments N is increased until the results no longer change within a small,

acceptable criterion.
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PROBLEM 3.75.FUN

GIVEN:
A porcelain workpiece (in form of a circular disk) is ablated by laser irradiation. The piece is held inside a

cooling ring, as shown in Figure Pr.3.75(a), to maintain its outer surface at a temperature Ts. For the ablation,
the temperature of the ceramic much reach a threshold temperature Tsg (i.e., a sublimation temperature), over
the area of interest. The radiation is absorbed only over the surface Ar,α, and there is surface convection over
the rest of the area Aku. Assume a steady-state heat transfer and a uniform temperature along the z and φ axes
[i.e., T = T (r) only].

Assume all irradiation is absorbed on the surface. For the central node, node 1, use Rr/2 as the inner surface
location for the determination of the conduction resistance.

R = 3 cm, Rr = R/5, l = 3 mm, qr,i = 106 W/m2, Ts = 90◦C, AkuRku = 10−3 K/(W/m2), Tf,∞ = 120◦C.

SKETCH:
Figure Pr.3.75(a) shows the workpiece and the cooling ring around it.

2Rr
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R

Aku = A � Ar,�

Ts

l
R

z
r

�

Workpiece
Aku Rku

Far-Field Air
Temperature

Tf,� Laser Beam

Cooling Ring

Coolant FlowNode 1

Workpiece

Ts (Maintained
Temperature)

Laser Generator

Laser Irradiation, qr,i

Figure Pr.3.75(a) A porcelain workpiece is irradiated for ablation. The workpiece is cooled at its periphery by a
coolant carrying ring.

OBJECTIVE:
Divide the porcelain piece into N segments, i.e., ∆r = R/N , and apply the finite-small volume energy equation

(3.176) to each segment.
(a) Draw the thermal circuit diagram for the entire disk.
(b) Determine the segment temperature Ti for N = 5.

SOLUTION:
(a) Figure Pr.3.75(b) shows the thermal circuit diagram for N = 5 or ∆r = R/5. Note that Q1 = 0, because the
only heat transfer from A1 is by conduction Qk,1-2.

(b) The energy equation (3.176) for V1, under steady-state conditions, is

Q|A,1 = Qk,1-2 = (Ṡr,α)1 = Ar,αqr,i.

For Qk,1-2, from Table 3.2, we have

Qk,1-2 =
T1 − T2

Rk,1-2
, Rk,1-2 =

ln
3∆r/2
Rr/2

2πkl
.

Note that the nodes are located at the center of each segment, except for node 1, where to avoid singularity, we
have used Rr/2. The conductivity of porcelain is given in Table C.15, i.e.,

k = 1.5 W/m-K Table C.15.
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Figure Pr.3.75(b) Thermal circuit diagram.

Then

Rk,1-2 =
ln

3 × 3 × 10−2(m)/5 × 2
3 × 10−2(m)/5 × 2

2π × 1.5(W/-K) × 3 × 10−3(m)
= 38.85 K/W

(Ṡr,α)1 = πR2
rqr,i = π

(3 × 10−2)2(m2)
25

× 106(W/m2)

= 1.131 × 102 W.

The energy equation (3.176), for V2, is

Q|A,2 = Qk,2-1 + Qk,2-3 + Qku,2-∞ = 0,

where

Qk,2-1 = −Qk,1-2, Rk,2-1 = Rk,1-2

Qk,2-3 =
T2 − T3

Rk,2-3
, Rk,2-3 =

ln
5∆r/2
3∆r/2
2πkl

Qku,2-∞ =
T2 − Tf,∞
Rku,2-∞

, Rku,2-∞ =
AkuRku

π

[(
2R

5

)2

−
(

R

5

)2
] .

Then

Rk,2-3 =
ln

5
3

2π × 1.5(W/m-K) × 3 × 10−3(m)
= 18.06 K/W

Rku,2-∞ =
10−3[K/(W/m2)]

π × 3
25

× (3 × 10−2)2(m2)
= 2.947 K/W.
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Similarly,

Rk,3-4 =
ln

7
5

2π × 1.5 × 3 × 10−3 = 11.90 K/W

Rk,4-5 =
ln

9
7

2π × 1.5 × 3 × 10−3 = 8.887 K/W

Rk,5-∞ =
ln

1
9/10

2π × 1.5 × 3 × 10−3 = 3.726 K/W

Rku,3-∞ =
10−3

π × 5
25

× (3 × 10−3)2
= 1.768 K/W

Rku,4-∞ =
10−3

π × 7
25

× (3 × 10−3)2
= 1.263 K/W

Rku,5-∞ =
10−3

π × 9
25

× (3 × 10−3)2
= 0.9822 K/W.

Using a solver (such as SOPHT), we solve for T1 to T5, from the five energy equations.
The results are

T1 = 4,804◦C
T2 = 409.8◦C
T3 = 142.9◦C
T4 = 121.3◦C
T5 = 114.4◦C.

COMMENT:
By increasing N , a more accurate prediction of T1 is obtained. However, the lack of surface convection and

the localized irradiation does result in the desired high temperature T1 (for ablation).
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PROBLEM 3.76.FUN.S

GIVEN:
The effective thermal conductivity of some porous media can be determined using the random network model.

In one of these models, a regular lattice is used, but the locations of the nodes, within the regular lattice, are
generated randomly and then connected, forming a network. The thicknesses (for a two- or three-dimensional
geometry) of these connectors (i.e., arms) are then assigned based on the porosity and any other available in-
formation. The network can represent the solid or the fluid part of the medium. A 3 × 3 square unit-cell,
two-dimensional random network model is shown in Figure Pr.3.76(a). This is determined by randomly selecting
the location of each node within its unit cell space. The coordinates of each node, and the length and the thickness
for each arm are given in Table Pr.3.76.

Assume that the heat transfer between adjacent nodes is one dimensional and steady. For the arms, use
the thermal conductivity of aluminum (Table C.16). Assume that the thermal conductivity of the fluid is
much smaller than that of the solid. The left and right boundaries of the medium are ideally insulated.
The temperature for the lower boundary of the medium, [(x, y) = (0.0)], is maintained at Tc = 100◦C, (i.e.,
Tc = T1 = T6 = T11 = 100◦C), while the temperature for the upper boundary, [(x, y) = (3, 0)], is maintained at
Th = 200◦C, (i.e., Th = T5 = T10 = T15 = 200◦C).

Table Pr.3.76 Coordinates of each node, and the length and the thickness of each arm, for a two-dimensional,
random network model.

Node (x, y) Li,j(mm) li,j(mm)

1 (0.76,0.00) L1,2 = 0.715 l1,2 = 0.414

2 (0.13,0.34) L2,3 = 1.581 l2,3 = 0.213
L2,7 = 1.059 l2,7 = 0.055

3 (0.92,1.71) L3,4 = 0.622 l3,4 = 0.152
L3,8 = 1.105 l3,8 = 0.197

4 (0.47,2.14) L4,5 = 0.932 l4,5 = 0.344
L4,9 = 0.970 l4,9 = 0.376

5 (0.83,3.00)

6 (1.73,0.00) L6,7 = 0.788 l6,7 = 0.151

7 (1.17,0.54) L7,8 = 1.047 l7,8 = 0.232
L7,12 = 1.596 l7,12 = 0.215

8 (1.93,1.26) L8,9 = 1.059 l8,9 = 0.469
L8,13 = 0.314 l8,13 = 0.125

9 (1.44,2.15) L9,10 = 0.935 l9,10 = 0.071
L9,14 = 1.592 l9,14 = 0.316

10 (1.83,3.00)

11 (2.38,0.00) L11,12 = 0.854 l11,12 = 0.417

12 (2.75,0.77) L12,13 = 0.887 l12,13 = 0.222

13 (2.18,1.45) L13,14 = 1.602 l13,14 = 0.118

14 (2.84,2.91) L14,15 = 0.577 l14,15 = 0.322

15 (2.27,3.00)

SKETCH:
Figure Pr.3.76(a) shows a two-dimensional regular (periodic) lattice with random location of nodes within the

lattice, making for a random network model.

OBJECTIVE:
(a) Draw the thermal circuit diagram using the geometrical data. Write the energy equation for each node, along
with the conduction heat transfer relation for each arm.
(b) Determine the total conduction heat transfer rate, Qk,h-c.
(c) Using

Qk,h-c ≡ Ak(Th − Tc)〈k〉
L

,
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Figure Pr.3.76(a) The random network model in an ordered lattice.

for L = 10−3 m and Ak = 3 × 10−6 m2, determine the effective thermal conductivity 〈k〉.

SOLUTION:
(a) Figure Pr.3.76(a) shows the 3 × 3 square unit cell and the random network.
The porosity ε is determined by first determining the solid fraction by adding the area of all solid arms. Then
this area is divided by the total area and then subtracted from unity.

(b) For each arm, a, one-dimensional steady-state conduction relation (total 18 relations), and for each node an
energy equation (total 9 equations) are written. For example, for arm 1 - 2, we have

Q1-2 = Ak,1-2ks
T2 − T1

L1,2

Q1-2 − Q2-3 − Q2-7 = 0.

The set of linear algebraic equations is solved by a solver such as SOPHT.
From Table C.16, we have ks = 237 W/m-K, at T = 300 K. The result is

Qk,h-c = 4.283 W.

(c) Using the above definition, we have

〈k〉 = 42.83 W/m-K.

COMMENT:
The effective thermal conductivity for the series arrangement is given by

1
〈k〉 =

ε

kf
+

(1 − ε)
ks

.

The effective conductivity for the parallel arrangement is given by

〈k〉 = kf + ks(1 − ε).

For the isotropic, unit-cell geometry, we have

〈k〉 = ks(1 − ε1/2).
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Using these relations, the variation of the dimensionless effective conductivity with respect to porosity is plotted in
Figure Pr.3.76(b). Figure Pr.3.76(b) shows that the dimensionless effective conductivity for the random network is
lower than that for the unit-cell model, for a given porosity.Also note that there are overlaps at the interceptions of
the arms. This should be considered in calculating the total solid area. Neglecting this, we use Figure Pr.3.76(b).
The curve fitting of Figure 3.76(b) is used to calculate the actual porosity. In Figure 3.76(c), the results for the
actual porosity is also shown.
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Figure Pr.3.76(b) Variation of the dimensionless effective conductivity with respect to porosity.
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Figure Pr.3.76(c) Actual porosity versus the calculated porosity.
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PROBLEM 3.77.FAM

GIVEN:
The friction heating during skating over ice layers causes melting, and the thickness of this melt at the end

of the blade δα may be estimated when the blade surface temperature Ts = Tl,o is known. Figure Pr.3.77 shows
the blade length L in contact with the ice, with the skating speed designated as us.

Tl,o = 10◦C, Tsl = 0◦C, L = 0.20 m, up = 2 m/s.
Use properties of water given in Tables C.4 and C.27 (at T = 275 K).

SKETCH:
Figure Pr.3.77 shows the length L for the contact and the blade edge temperature Ts.

us

g

Melt Formation
Under Skate BladeLength of Blade in

Contact with Ice

Ice
Ts = Tl,o

x
L

δα

Figure Pr.3.77 Melt formation during ice skating.

OBJECTIVE:
In order to estimate the elapsed time used in determining δα, we can use t = L/us. For the conditions given,

determine the liquid film thickness δα assuming that the one-dimensional melting analysis of Section 3.8 is appli-
cable.

SOLUTION:
From (3.198), we have

δα(t) = 2ηo(αlt)1/2,

where ηo is found from Table 3.7 and depends on the Stefan number given by (3.197), i.e.,

Stel =
cp,l(Tl,0 − Tsl)

∆hsl
.

From Tables C.4 and C.27 (T = 275K), we have for water

∆hsl = 3.336 × 105 J/kg Table C.4

ρl = 1,000 kg/m3 Table C.27

cp,l = 4,211 J/kg Table C.27

kl = 0.547 W/m-K Table C.27

αl =
(

k

ρcp

)
l

=
(0.547)(W/m-K)

1,000(kg/m3) × 4,211(J/kg)
= 1.299 × 10−7 m2/s

Stel =
4,211(J/kg) × (10 − 0)(K)

3.336 × 105(J/kg)
= 0.1262

Stel

π1/2
= 0.07121.

Then from Table 3.7, we have

ηo = 0.2062.
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The elapsed time is

t =
L

us
=

0.20(m)
2(m/s)

= 0.10 s

δα(t = 0.10 s) = 2 × 0.2062 × [1.299 × 10−7(m2/s) × 0.10(s)]1/2

= 4.700 × 10−5 m
= 47 µm.

COMMENT:
The one-dimensional analysis overestimates the heat flow rate and the liquid thickness. Also, due to the

skater weight, the liquid will be forced out. This is called close-contact melting and this tends to increase the
heat transfer rate.
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PROBLEM 3.78.FUN

GIVEN:
For the conduction-melting of a semi-infinite solid initially at the melting temperature Tsl and suddenly ex-

posed to Tl,o > Ts at its surface (x = 0), the temperature distribution in the melt is given by (3.194).

OBJECTIVE:
(a) Derive this temperature distribution using the energy equation (3.189) and the thermal conditions at x = 0
and x = δα(t), i.e., as given by (3.190) to (3.191), i.e.,

Tl(x, t) = a1 + a2erf(η)

Tl(x, t) − Tl,0

Tsl − Tl,o
=

erf(η)
erf(ηo)

.

Use the similarity variable (3.195) and an error function solution, i.e., similar to (3.140), with erf(η) defined by
(3.141)
(b) Using (3.192), show that ηo is determined from (3.196).

SOLUTION:
(a) The differential energy equation for the semi-infinite medium is given by (3.189), i.e.,

∂2Tl

∂x2 − 1
αl

∂Tl

∂t
= 0.

Based on the similarity solution for transient conduction in a semi-infinite slab, given in Section 3.5.1, we choose
the similarity variable (3.136), i.e.,

η =
x

2(αlt)1/2
,

and a solution of the type

Tl(x, t) = a1 + a2erf(η).

Now using (3.190), we have

Tl(x = 0, t) = Tl,0 = a1 + a2erf(0).

Using Table 3.5, we note that erf(0) = 0, then

a1 = Tl,0.

Next we use (3.191), i.e.,

Tl[x = δα(t)] = Tsl = Tl,0 + a2erf(ηo),

where

ηo =
δα(t)

2(αlt)1/2

and ηo is a constant.
Solving for a2, we have the melt temperature distribution

a2 =
Tsl − Tl,0

erf(ηo)
=

Tl(x, t) − Tl,0

erf(η)
Tl(x, t) − Tl,0

Tsl − Tl,0
=

erf(η)
erf(ηo)

.
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(b) Now using (3.192) or (3.200), we have the condition for the determination of ηo, i.e.,

kl
∂Tl

∂x

∣∣∣∣
x=δα(t)

= −ρl∆hsluF = −ρl∆hsl
α

1/2
l

t1/2
ηo.

From the definition of erf(η) given by (3.141), we have

∂

∂x
erf(η) =

∂

∂x

2
π1/2

∫ η

0

e−z2
dz.

We need to use the chain rule, i.e.,

∂

∂x
=

∂η

∂x

∂

∂η
=

1
2(αlt)1/2

∂

∂η

or

∂

∂x
erf(η) =

2
π1/2

1
2(αlt)1/2

eη2
.

Then from the interface energy equation, we have

−kl(Tsl − Tl,o)
e−η2

o

π1/2(αlt)1/2erf(ηo)
= ρl∆hsl

α
1/2
l

t1/2
ηo, αl =

kl

(ρcp)l

or

cp,l
(Tl,0 − Tsl)
π1/2∆hsl

= ηoe
η2

oerf(ηo).

This is (3.196).

COMMENT:
Note that

δα(t) = 2ηo(αlt)1/2,

where ηo is the root to (3.196). This relation is in a form similar to (3.148), if we use ηo = 1.8 or Stel/π1/2 = 45.46.
In arriving at (3.148), we assume that T ∗ = 0.01. Then the case of Stel/π1/2 = 45.46 corresponds to the small
conduction heat transfer rate through the surface x = δα(t) which is a result of a very small temperature gradient.
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PROBLEM 3.79.FAM

GIVEN:
To remove an ice layer from an inclined automobile windshield, shown in Figure Pr.3.79, heat is supplied by

a thin-film Joule heater. The heater maintains the surface temperature of the window at Tl,0. It is determined
empirically that when the melt thickness reaches δα = 1 mm, the ice sheet begins to fall from the window.

Assume that the heat transfer through the liquid water is one dimensional and occurs by conduction only, that
the ice is at the melting temperature Tls, and neglect the sensible heat of the liquid water. Use the properties of
water at T = 273 K from Table C.23 and Table C.6.

SKETCH:
Figure Pr.3.79 shows an ice layer melting over a glass sheet with the heat provided by a thin-film Joule heater.

x

Se,J

Tls

Tl,o

δα

Liquid Water (Initially Ice)

Windshield

Ice

Figure Pr.3.79 Melting of ice on an automobile windshield.

OBJECTIVE:
Determine how long it will take for the ice to be removed t and estimate the amount of thermal energy∫ t

0
qdt(J/m2) required when (a) Tl,0 = 4◦C, and (b) Tl,0 = 15◦C.

SOLUTION:
The position of the melting front is given by (3.198)

δα(t) = 2ηo(αlt)1/2.

The constant ηo is the solution to (3.194), i.e.,

aoe
η2

oerf(ηo) =
Stel

π1/2
,

where the liquid Stefan number is defined by (3.197)

Stel =
cp,l(Tl,0 − Tsl)

∆hsl
.

The total energy per unit area spent to melt the 1 mm ice layer is given by integrating (3.200), i.e.,∫ t

o

−qkdt =
∫ t

o

ρl∆hslaoαl
1/2

t1/2
dt = 2ρl∆hslηoαlt

1/2 = ρl∆hslδα(t).

The properties for water are found from Table C.23, T = 273 K, ρl = 1,002 kg/m3, cp,l = 4,217 J/kg-K,
αl = 131 × 10−9 m2/s, from Table C.6, ∆hsl = 333.60 × 103 J/kg, Tsl = 273.2 K.

For each of the surface temperatures we have

(a) Tl,0 = 4◦C= 277.15 K
The Stefan number is

Stel =
cp,l(Tl,0 − Tsl)

∆hsl
=

4,217(J/kg-K) × (277.15 − 273.2)(K)
333.60 × 103(J/kg)

= 0.0499.
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For Stel/π1/2 = 0.0282, from interpolation in Table 3.5 we obtain ηo = 0.16063.
Solving for time gives

t =
1
αl

(
δα

2ηo

)2

=
1

131 × 10−9

(
0.001

2 × 0.16063

)2

= 74 s � 1.2 min.

The total energy per unit area is then∫ t

0

−qkdt = ρl∆hslδα(t) = 1,002(kg/m3) × 333.60 × 103(J/kg) × 0.001(m) = 3.341 × 105 J/m2
.

(b) Tl,0 = 15◦C:
The Stefan number is

Stel =
cp,l(Tl,0 − Tsl)

∆hsl
=

4,217(J/kg-K) × (288.15 − 273.2)(K)
333.60 × 103(J/kg)

= 0.1890.

For Stel/π1/2 = 0.1066, from interpolation in Table 3.5 we obtain ηo = 0.30022.
Solving for time gives

t =
1
αl

(
δα

2ηo

)2

=
1

131 × 10−9

(
0.001

2 × 0.30022

)2

= 21 s.

As the ice thickness is still the same, the total energy per unit area required remains the same,
∫ t

0
qkdt =

3.341 × 105 J/m2.

COMMENT:
When the liquid water begins to flow due to the action of gravity, the assumption of pure conduction heat

transfer is no longer valid. However, the water layer thickness is small enough that the treatment made here will
suffice.
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PROBLEM 3.80.DES

GIVEN:
In a thermostat used to control the passage of coolant through secondary piping leading to the heater core of

an automobile, solid-liquid phase change is used for displacement of a piston, which in turn opens the passage of
the coolant. The thermostat is shown in Figure Pr.3.80(i). The phase-change material is a wax that undergoes
approximately 15% volume change upon solidification/melting. The response time of the thermostat is mostly
determined by the time required for complete melting of the wax. This in turn is determined by the speed of
penetration of the melting front into the wax and the time for its complete penetration. Two different designs
are considered, and are shown in Figures Pr.3.80(ii) and (iii). In the design shown in Figure Pr.3.80(iii), the wax
reservoirs have a smaller diameter D2 compared to that of the first design, shown in Figure Pr.3.80(ii). Therefore,
it is expected that in the three-reservoir design the wax will melt faster.

To solve the melting problem using the analysis of Section 3.8, we need to assume that the front is planar.
Although this will result in an overestimation of the time required for melting, it will suffice for comparison of the
two designs. Due to unavailability of complete properties for the wax, use the phase-change properties of Table
C.5 for paraffin and the properties of engine oil in Table C.23 for the wax liquid phase. The melting temperature
is a function of pressure and is represented by the Clausius-Clapeyron relation (A.14). Here, neglect the pressure
variation and use a pressure of one atm and a constant melting temperature.

Use the properties of engine oil at T = 310 K. Tl,0 = 80◦C, D1 = 8 mm, D2 = 3 mm.

SKETCH:
Figure Pr.3.80 shows the coolant thermostat and the (i) single and (ii) three reservoir designs.

Hot Water Closed

(ii) Single Reservoir (iii) Three Reservoirs

Wax
Melting Front δ(t)

δ(t)

δ(t)

Open

Piston

Tf,� > Tsl ( pl)

Wax Liquid

Solid
Solid

Liquid

Volume Increased Due
to Melting Wax

Bellow

Q A(t)

Ts

Tl,0

Tsl

D1

D2

High Conduc-
tivity Solid

(i) Automotive Coolant Thermostat

Figure Pr.3.80 (i) An automotive coolant thermostat. The solid-liquid phase change actuates the piston. (ii) The
single-reservoir design. (iii) The three-reservoir designs.

OBJECTIVE:
Determine the time it takes for the complete melting of the wax in the one- and three-reservoir designs.
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SOLUTION:
The penetration distance is given by (3.198), i.e.,

δ(t) = 2ηo(αt)1/2.

For complete penetration, we have δ = D/2, or

D

2
= 2ηo(αlt)1/2 or t =

D2

16η2
oαl

,

where t is the elapsed time needed. Then

t1 =
D2

1

16η2
oαl

, t2 =
D2

2

16η2
oαl

.

From these, the smaller D results in a smaller elapsed time t.
The thermophysical properties from Tables C.5. and C.23, are
paraffin (at 1 atm pressure):

Tsl = 310.0 K Table C.5

∆hsl = 2.17 × 105 J/kg Table C.5

engine oil (at T = 310 K):

αl = 8.70 × 10−8m2 Table C.23

cp,l = 1,950 J/kg-K Table C.23.

Here ao is found from Table 3.7 and depends on the Stefan number, which is given by (3.197), i.e.,

Stel =
cp,l(Tl,0 − Tsl)

∆hsl

=
1,950(J/kg-K) × (273.15 + 80 − 310)(K)

2.17 × 105(J/kg)
= 0.3878.

Then

Stel

π1/2
= 0.2188.

From Table 3.7, we have

ηo = 0.4005 Table 3.7.

Now, for the elapsed times, we have,

t1 =
(0.008)2(m2)

16 × (0.4005)2 × 8.70 × 10−8(m2/s)
= 286.6 s

t2 =
(0.003)2(m2)

16 × (0.4005)2 × 8.70 × 10−8(m2/s)
= 40.31 s.

COMMENT:
Note the much lower response time for the smaller diameter wax reservoir. The planar approximation of the

front results in an underestimation of the response time. This is because, in the radial system, as the center is
reached, a smaller conduction area becomes available and this increases the penetration speed.
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PROBLEM 3.81.FAM

GIVEN:
In a grinding operation, material is removed from the top surface of a small piece of pure copper with di-

mensions shown in Figure Pr.3.81(a). The grinding wheel is pressed against the copper workpiece with a force
Fc = 50 N and there is an interfacial velocity ∆ui = 20 m/s. The coefficient of friction between the two surfaces
is µF = 0.4. The copper is initially at temperature T1(t = 0) = 20◦C.

SKETCH:
Figure Pr.3.81(a) shows copper being ground and expanding due to friction heating.

L = 5 cm

Ac

w = 2.5 cm

l = 0.5 cm

(Sm,F)1  (Due to Grinding)
Workpiece

Uniform
Temperature T1(t)

(Nt,1 < 0.1) y x
zq1

Figure Pr.3.81(a) Friction heating of a copper workpiece by grinding resulting
in thermal expansion.

OBJECTIVE:
(a) Assuming a uniform copper temperature T1(t), i.e., Nt,1 < 0.1, and a constant surface heat loss rate per unit
area q1 = 675 W/m2, draw the thermal circuit diagram.
(b) Assuming an unconstrained expansion, determine the elapsed time needed to cause the copper length L to
thermally expand by ∆L = 0.5 mm. Neglect all nonthermally induced stresses and strains.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.3.81(b).

−(ρcpV)1

T1(t)

Uniform
Temperature

Q1 (constant)

Workpiece

(constant)

dT1
dt (Sm,F)1  (constant)

Figure Pr.3.81(b) Thermal circuit diagram.

(b) Before using the lumped capacitance, i.e., the single-node energy equation with a constant surface heat transfer
rate (3.169), we determine the strain in the x-direction and the temperature needed to induce the desired strain.
From (3.204) we have

∆L∗ = βs(T1 − To)

where

βs = 1.7 × 10−5(1/K) and To = 20◦C
∆L∗ = ∆L/L = 5 × 10−4(m)/0.05(m) = 0.01.

Then

0.01 = 1.7 × 10−5 × (T1 − 20)(◦C)
T1 = 608.2◦C.
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From (3.169), we have

T1 = T1(t = 0) +
−q1A1 + S1

(ρcpV )1
t,

where

A1 = 2(wL) + 2(lL) + 2(wl)
= 2(0.025 × 0.05)(m2) + 2(0.005 × 0.05)(m2) + 2(0.005 × 0.025)(m2)
= 0.00325 m2

V1 = wlL

= 0.025(m) × 0.005(m) × 0.05(m)
= 6.25 × 10−6 m3.

The energy conversion by mechanical friction is given in Table C.1(d), i.e.,

(Ṡm,F )1/A = µF × pc × ∆ui

pc = Fc/Ac = 50(N)/0.00125(m2) = 40,000 N/m2

Ac = Lw

= 0.05 × 0.025(m2)
= 0.00125 m2.

Then

(Ṡm,F )1/A = 0.4 × 40,000(N/m2) × 20(m/s) = 320,000 W/m2

(Ṡm,F )1 = 320,000(W/m2) × 0.00125(m2)
= 400 W.

From (3.169), using the properties for pure copper given in Table C.16, ρ = 8933 kg/m3, cp = 385 J/kg-K,
k = 401 W/m-K, we have

608.2(◦C) = 20(◦C) +
[−675(W/m2) × (0.00325)(m2) + 400(W)]

8,933(kg/m3) × 385(J/kg-K) × 6.25 × 10−6(m2)
× t

588.2(◦C) =
397.8
21.5

(◦C/s)t

t = 31.8 s.

COMMENT:
In order to verify the validity of a uniform temperature (in the presence of energy conversion) within the

workpiece, we determine the internal conduction resistance, from Table 3.2, as

Rk,1 = L/Akk = l/Ack

= 0.005(m)/[0.00125(m) × 401(W/m-K)] = 0.01 K/W.

For the temperature difference between the top and bottom surface of the workpiece designated by ∆T , and
allowing the entire energy conversion Ṡm,F = 400 W to flow through the workpiece, we have

(Ṡm,F )1 =
∆T

Rk

or

∆T = Ṡm,F Rk = 400(W) × 0.01(K/W) = 4 K.

Since we are dealing with a relatively high temporal temperature rise T1 −T1(t = 0) = 588.2 K, this temperature
variation across the workpiece is insignificant and the two surfaces can be assumed the same temperature.
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PROBLEM 3.82.FUN

GIVEN:
The thermal stress in an idealized disc-brake rotor can be determined using some simplifying assumptions.

The cast-iron rotor is shown in Figure Pr.3.82(a), along with a prescribed temperature distribution T = T (r).
The temperature distribution is steady and one dimensional and the stress tensor would have planar, axisym-

metric stresses given by principal components τrr(r), τθθ(r). It can be shown that these stresses are expressed
as

τrr(r) = −Esβs

r2

∫
r(τ − τo)dr + a1 − a2

r2

τθθ(r) =
Esβs

r2

∫
r(T − To)dr − Esβs(T − To) + a1 − a2

r2

τzz(r) = 0.

For cast iron, Es = 2 × 1011 Pa, and βs is listed in Table C.16. Also R = 17 cm, To = 100◦C, TR = 400◦C.

SKETCH:
Figure Pr.3.82(a) shows the rotor and its temperature distribution.

r
� R

Sm,F

TR

T0
r R0

�zz = 0
(Planar Stress)

�
��

(r)

Disc-Brake Rotor

�rr(r)

Figure Pr.3.82(a) The temperature distribution within a disc-brake rotor and the induced, planar axisymmetric
thermal stresses.

OBJECTIVE:
(a) Determine the integration constants a1 and a2 using the mechanical conditions. Note that at r = R, there is
no radial stress (for surface), and that at r = 0 the stresses should have a finite magnitude.
(b) Plot the distribution of the radial and tangential rotor thermal stresses with respect to the radial location.

SOLUTION:
(a) Using the temperature distribution

T = TR + (To − TR)
(

1 − r2

R2

)
,

We have

T − To = (TR − To)
r2

R2 .

Since at r = 0, the stresses have to be finite, we have a2 = 0.
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Performing the integrations, we have

τrr(r) = −Esβs

r2

∫
r(TR − To)

r2

R2 dr + a1

= −Esβs(TR − To)r2

4R2 + a1

τθθ(r) =
Esβs(TR − To)r2

4R2 − Esβs(TR − To)r2

R2 + a1

= −3Esβs(TR − To)r2

4R2 + a1

Using τrr = 0 at r = R, we have

0 = −Esβs(TR − To)R2

4R2 + a1

or

a1 =
Esβs(TR − To)

4
.

Then

τrr(r) =
Esβs(TR − To)

4

(
1 − r2

R2

)

τθθ(r) =
Esβs(TR − To)

4

(
1 − 3

r2

R2

)
.

(b) From Table C.16, we have
carbon steel: βs = 1.15 × 10−5 1/K.

Using the numerical results, we have

Esβs(TR − To)
4

=
2 × 1011(Pa) × 1.15 × 10−5(1/K)

4
(400 − 100)(K)

= 1.725 × 108 Pa.

Figure 3.82(b) shows the variation of τrr(r) and τθθ(r) with respect to r. Note that at r = 0, the two stresses are
equal and at r = R, we have τrr = 0, as expected.

�3.6 x 108

�2.4 x 108

�1.2 x 108

0

1.2 x 108

2.4 x 108

0 3.4 6.8 10.2 13.6 17

���

r, cm r = R

�rr

�
rr

 , 
�
�
�
 , 

Pa

Figure Pr.3.82(b) Variation of τrr(r) and τθθ(r) with respect to r.

COMMENT:
Note that the largest stress is for τθθ and occurs at r = R.
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PROBLEM 3.83.FUN

GIVEN:
Consider the thermal stress due to a nonuniform temperature T = T (r) in an aluminum rod encapsulated in

a glass shell. This is shown in Figure Pr.3.83. Since the thermal expansion coefficient βs is much smaller for the
fused silica glass (Figure 3.43), we assume that the periphery of the aluminum rod is ideally constrained. For
the axisymmetric geometry and temperature-stress conditions we have here the stress and strain distributions as
given by [5].

τrr(r) = −Esβs

r2

∫
r(T − To)dr + a1 +

a2

r2

τθθ(r) = −Esβs

r2

∫
r(T − To)dr − Esβs(T − To) + a1 − a2

r2

∆R(r) =
βs(1 + νP)

r

∫
r(T − To)dr +

a1(1 − νP)r
Es

− (1 + νP)a2

Esr
.

The temperature distribution within the aluminum rod is estimated as

T (r) = TR + (To − TR)
(

1 − r2

R2

)
.

The two constants of integration, a1 and a2, are determined using the mechanical conditions of a finite stress at
r = 0 and an ideal constraint at r = R.

τmax,g = −300 MPa, Es = 68 GPa, νP = 0.25, To = 80◦C, R = 4 cm.

SKETCH:
Figure Pr.3.83 shows the aluminum rod encapsulated in a low thermal expansion coefficient glass.

Assume Ideally
Constrained Surface

Aluminum Rod

Fused Silica Glass Shell

To

TR

T(r)

R�

r
�rr

���

Figure Pr.3.83 Thermal stress induced in an aluminum rod encapsulated in a
fused-silica glass shell.

OBJECTIVE:
(a) Determine the integration constants a1 and a2 and write the expression for τrr(r = R).
(b) Using the conditions given, determine the temperature TR at which the ultimate compression stress of the
glass τmax,g is reached, i.e., τrr(r = R) = τmax,g.

SOLUTION:
(a) We rewrite the temperature distribution as

T (r) = TR + (To − TR)
(

1 − r2

R2

)
.

Since at r = 0, the stresses have to be finite, a2 = 0.
Next we use the second mechanical condition, i.e., ∆Rr(r = R) = 0, i.e.,

0 =
βs(1 + νP)

R

∫ R

0

r(TR − To)
r2

R2 dr +
a1(1 − νP)R

Es
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or

0 =
βs(1 + νP)

R3 (TR − To)
1
4
R4 +

a1(1 − νP)R
Es

or

a1 = −Esβs(1 + νP)(TR − To)
4(1 − νP)

.

Using this in τrr, we have

τrr(r = R) = −Esβs

R2

∫ R

0

r(TR − To)
r2

R2 dr − Esβs(1 + νP)(TR − To)
4(1 − νP)

= −Esβs(TR − To)
4

(
1 +

1 + νP

1 − νP

)
.

(b) From Table C.16, we have

βs = 2.25 × 10−5 1/K Table C.16.

Using the numerical values, we have

−3 × 108(Pa) = −6.8 × 1010(Pa) × 2.25 × 10−5(1/K) × (TR − 80)(K)
4

×
[
1 +

(1 + 0.25)
(1 − 0.25)

]
= −6.375 × 105(TR − 80)

TR = 550.6◦C.

COMMENT:
We did not determine τθθ(r), but it can simply be done since a1 and a2 are known. Note that TR is independent

of R, but depends on the temperature distribution.
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Chapter 4

Radiation



PROBLEM 4.1.FUN

GIVEN:
A piece of polished iron, with a surface area Ar = 1 m2, is heated to a temperature Ts = 1,100◦C.

OBJECTIVE:
(a) Determine the maximum amount of thermal radiation this surface can emit.
(b) Determine the actual amount of thermal radiation this surface emits. Interpolate the total emissivity from
the values listed in Table C.18.
(c) What fraction of the radiation energy emitted is in the visible (λ between 0.39 and 0.77 µm), near infrared
(λ between 0.77 and 25 µm), and far infrared (λ between 25 and 1,000 µm) ranges of the electromagnetic spectrum?

SOLUTION:
(a) The maximum amount of thermal radiation that a surface can emit is the blackbody emissive power Eb(Ts),
which is given by (4.6), i.e.,

Eb(Ts) = σSBT 4
s .

For Ts = (1,100 + 273.15)(K) = 1,373.15 K, we have

Eb = 5.67 × 10−8 (W/m2-K4) × (1,373.15)4(K4) = 201,584 W/m2
.

(b) For the polished iron, from Table C.18, we have εr � 0.41. Then the radiation emitted by the surface is given
by (4.13), i.e.,

Qr,ε = εrArEb = 0.41 × 1(m2) × 210,584(W/m2) = 82,649 W.

(c) The fraction of radiation energy emitted in the visible range of the electromagnetic spectrum is given by (4.8),
i.e.,

Fλ1T -λ2T = F0-λ2T − F0-λ1T .

For Ts = 1,373.15 K, with interpolation from Table 4.1, we have

λ1T = 0.39(µm) × 1,373.15(K) = 535.53 µm-K, then F0-λ1T = 0
λ2T = 0.77(µm) × 1,373.15(K) = 1,057.33 µm-K, then F0-λ2T = 0.0013.

Then,

F0.39T -0.77T = 0.0013 − 0 = 0.0013 = 0.13%.

For the fraction of radiation energy emitted in the near infrared range of the electromagnetic spectrum, we have

λ1T = 0.77(µm) × 1,373.15(K) = 1,057.33 µm-K, then F0-λ1T = 0.0013
λ2T = 25(µm) × 1,373.15(K) = 34,329 µm-K, then F0-λ2T = 0.9968.

Then,

F0.77T -25T = 0.9968 − 0.0013 = 0.9955 = 99.55%.

For the fraction of radiation emitted in the far infrared range of the spectrum we have

λ1T = 25(µm) × 1,373.15(K) = 34,329 µm-K, then F0-λ1T = 0.9968
λ2T = 1,000(µm) × 1,373.15(K) = 1,373,000 µm-K, then F0-λ2T = 1.

Then,

F25T -1000T = 1 − 0.9968 = 0.0032 = 0.32%.

COMMENT:
The results show that practically 100% of the thermal radiation emitted by a surface at Ts = 1,110◦C is

emitted in the near infrared range of the spectrum (0.77 µm ≤ λ ≤ 25 µm).
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PROBLEM 4.2.FUN

GIVEN:
A blackbody radiation source at Ti = 500◦C is used to irradiate three different surfaces, namely, (i) aluminum

(commercial sheet), (ii) nickel oxide, and (iii) paper. The irradiating surfaces have an area Ar = 1 m2 and are
assumed gray, diffuse, and opaque. Use the emissivities in Table C.18 [for (ii) extrapolate; for others use the
available data].

OBJECTIVE:
(a) Sketch the radiation heat transfer arriving and leaving the surface, showing the black-body emitter and the
irradiated surface [see Figure 4.9(b)]. Show heat transfer as irradiation Qr,i, absorption Qr,α, reflection Qr,ρ,
emission Qr,ε, and radiosity Qr,o.
(b) If the three surfaces are kept at Ts = 100◦C, determine the amounts of reflected and absorbed energies.
(c) Determine the rates of energy emitted and the radiosity for each surface.
(d) Determine the net radiation heat transfer rate for each surface. Which surface experiences the highest amount
of radiation heating?

SOLUTION:
(a) Figure Pr.4.2 shows the radiation energy arriving and leaving the surface. From (4.14), the reflected radiation
is given by

Qr,ρ = Arρrqr,i,

where qr,i is the irradiation flux impinging on the surface. All this irradiation arrives from emission by a blackbody
surface at Ti = 773 K. Then using (4.13), we have

Qr,ρ = ArρrσSBT 4
i .

The absorbed energy is given by (4.14), i.e.,

Qr,α = ArαrσSBT 4
i .

Since the surfaces are opaque (τr = 0), we have from (4.19)

αr + ρr = 1.

Assuming that the surfaces are gray, we have from (4.20)

αr = εr.

Then the reflected and absorbed energy can be rewritten as

Qr,ρ = Ar(1 − εr)σSBT 4
i

Qr,α = ArεrσSBT 4
i .

(b) Surface 1: Aluminum, Commercial Sheet
From Table C.18, for T = 373 K (it is the only data available), εr = 0.09. Thus

Qr,ρ = 1(m2) × (1 − 0.09) × 5.67 × 10−8(W/m2-K4) × (773.15)4(K4) = 18,437 W
Qr,α = 1(m2) × 0.09 × 5.67 × 10−8(W/m2-K4) × (773.15)4(K4) = 1,823 W.

Surface 2: Nickel Oxide
From Table C.18, for T = 373.15 K (an extrapolation of the data available is possible), εr = 0.345. Then

Qr,ρ = 1 × (1 − 0.345) × 5.67 × 10−8 × (773.15)4 = 13,220 W
Qr,α = 1 × 0.345 × 5.67 × 10−8 × (773.15)4 = 6,990 W.
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Qr,i = Ar qr,i

Qr,α = Ar αr qr,i

Irradiation

Absorption

Qr,o = Ar qr,o

Radiosity

Qr,ρ = Ar ρr qr,i

Reflection

Qr,   = Ar   r Eb(Ts)
Emission

Ti

Ts

∋
∋

Figure Pr.4.2 An opaque, diffuse surface at temperature Ts, irradiated by a blackbody surface at temperature Ti.

Surface 3: Paper
From Table C.18, for T = 308 K (the data available is limited), εr = 0.95. Then

Qr,ρ = 1 × (1 − 0.95) × 5.67 × 10−8 × (773.15)4 = 1,012 W
Qr,α = 1 × 0.95 × 5.67 × 10−8 × (773.15)4 = 19,247 W.

(c) Surface 1:
From (4.13), we have the surface emission as

Qr,ε = ArεrσSBT 4
s

= 1(m2) × 0.09 × 5.67 × 10−8(W/m2-K4) × (373.15)4(K4) = 98.94 W.

From (4.22), we have the radiosity as

Qr,o = Qr,ρ + Qe,ε

= 18,437(W) + 98.94(W) = 18,536 W.

Surface 2: Qr,ε = 1 × 0.345 × 5.67 × 10−8 × (373.15)4 = 379.3 W
Qr,o = 13,270(W) + 379(W) = 13,649 W.

Surface 3: Qr,ε = 1 × 0.95 × 5.67 × 10−8 × (373.15)4 = 1,044 W
Qr,o = 1,013(W) + 1,044(W) = 2,057 W.

(d) The net radiation heat transfer is given by (4.24), i.e.,

Qr = Qr,o − Qr,i

Qr,i = Arqr,i = ArσSBT 4
i

Surface 1: Qr = 18,536(W) − 1(m2) × 5.67 × 10−8(W/m2-K4) × (773.15)4(K4) = −1,724 W.

Surface 2: Qr = 13,649(W) − 20,260(W) = −6,611 W.

Surface 3: Qr = 2,057(W) − 20,260(W) = −18,203 W.

COMMENT:
Examining the net radiation heat transfer to the three surfaces, we note that surface 3 (paper) is the most

heated by radiation (net radiation heat transfer into this surface, which is negative, as the largest magnitude). The
emissivity data, as a function of temperature is not available for most materials. Usually, it becomes necessary
to estimate a value from limited data. This increases the uncertainty in the analysis of radiation heat transfer.
For applications that need more accuracy, the measurement of the radiation properties, for the surfaces at the
temperatures of interest, may be required.
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PROBLEM 4.3.FUN

GIVEN:
Three different surfaces are heated to a temperature Ts = 800◦C. The total radiation heat flux leaving these

surfaces (i.e., the radiosity) is measured with a calorimeter and the values (qr,o)1 = 6,760 W/m2, (qr,o)2 = 21,800
W/m2, and (qr,o)3 = 48,850 W/m2 are recorded.

Assume that the reflected radiation is negligible compared to surface emission and that the surfaces are opaque,
diffuse, and gray.

OBJECTIVE:
(a) Determine the total emissivity for each of these surfaces.
(b) Comment on the importance of considering the surface reflection in the measurement of surface emissivity εr.

SOLUTION:
The radiant heat flux leaving a surface is the sum of the emitted and the reflected radiation, i.e.,

Arqr,o = Arqr,ε + Arρrqr,i.

(a) Assuming that the reflection part is much smaller than the emitted part, and using the Stefan-Boltzmann law
(4.6), we have

qr,o = qr,ε = εrσSBT 4
s for qr,ε � qr,ρ = ρrqr,i.

This equation is then used to find εr. For each of the surfaces we have
Surface 1: (qr,o)1 = 6,760 W/m2

εr,1 =
(qr,o)1
σSBT 4

s

=
6,760

5.67 × 10−8(W/m2-K4) × (1,073.15)4(K4)
= 0.09,

Surface 2: (qr,o)2 = 21,800 W/m2

εr,2 =
(qr,o)2
σSBT 4

s

=
21,800

5.67 × 10−8(W/m2-K4) × (1,073.15)4(K4)
= 0.29,

Surface 3: (qr,o)2 = 48,850 W/m2

εr,3 =
(qr,o)3
σSBT 4

s

=
48,850

5.67 × 10−8(W/m2-K4) × (1,073.15)4(K4)
= 0.65.

(b) When qr,ρ cannot be neglected, then the irradiation flux qr,i as well as the reflectivity (ρr = 1−εr, for opaque,
gray surfaces) must be included. If the irradiation heat flux qr,i or ρr are large, the above procedure for the
determination of εr does not lead to accurate results.

COMMENT:
Emissivities of the order of 0.1 are characteristic of commercial aluminum. The other two emissivities are

found, for example, for refractory brick and opaque quartz, both of which are ceramics.

313



PROBLEM 4.4.FAM

GIVEN:
In an incandescent lamp, the electrical energy is converted to the Joule heating in the thin-wire filament and

this is in turn converted to thermal radiation emission. The filament is at T = 2,900 K, and behaves as an opaque,
diffuse, and gray surface with a total emissivity εr = 0.8.

OBJECTIVE:
Determine the fractions of the total radiant energy and the amount of emitted energy in the (a) visible, (b)

near infrared, and (c) the remaining ranges of the electromagnetic spectrum.

SOLUTION:
The radiation energy emitted by the filament is given by (4.13), i.e.,

qr,ε = εrσSBT 4.

The fraction of radiant energy emitted over a wavelength range between λ1 and λ2, for a gray surface, is given
by (4.8), i.e.,

(qr,ε)λ1-λ2 = Fλ1T -λ2T εrσSBT 4.

(a) For the visible range of the spectrum, λ1 = 0.39 µm and λ2 = 0.77 µm, then,

Fλ1T -λ2T = F0-λ2T − F0-λ1T .

From Table 4.1,

F0-λ2T = F0-2233 = 0.10738
F0-λ1T = F0-1131 = 0.002766.

Then

(qr,ε)visible = (0.10738 − 0.002766) × 0.8 × 5.67 × 10−8(W/m2-K4) × 2,9004(K4)

= 3.356 × 105 W/m2.

(b) For the near infrared range of the spectrum, λ1 = 0.77 µm, and λ2 = 25 µm. Then
from Table 4.1

F0-λ2T = F0-72,500 � 1.0.

Therefore,

(qr,ε)near infrared = (1 − 0.10738) × 0.8 × 5.67 × 10−8(W/m2-K4) × 2,9004(K4)

= 2.864 × 106 W/m2.

(c) For the remaining range of the spectrum, we have

(qr,ε)remaining = 0.002766 × 0.8 × 5.67 × 10−8(W/m2-K4) × 2,9004(K4)

= 8,874 W/m2.

COMMENT:
Note that most of the radiant energy is emitted in the near infrared range of the spectrum. A relatively

small fraction (10.46 percent) is in the visible portion of the spectrum, and nearly none in the ultraviolet and far
infrared ranges.
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PROBLEM 4.5.FUN

GIVEN:
The equation of radiative transfer describes the change in the radiation intensity Ir as it experiences local

scattering, absorption, and emission by molecules or larger particles. In the absence of a significant local emission,
and by combining the effects of scattering and absorption into a single volumetric radiation property, i.e., the
extinction coefficient σex (1/m), we can describe the ability of the medium to attenuate radiation transport
across it. Under this condition, we can write the equation of radiative transport for a one-dimensional volumetric
radiation heat transfer as

dIλ

dx
= −σexIλ radiative transport for nonemitting media

or by integrating this over all the wavelength and solid angles (as indicated in the second footnote of Section
4.1.2), we have arrive at the radiation heat flux qr

dqr

dx
= −σexqr.

SKETCH:
Figure Pr.4.5 shows the attenuation in a medium with a portion of the incoming radiation qr,i reflected on

the surface (x = 0) and the remaining entering the medium.

qr,i

Absorbed Radiation

Reflected Radiation

Prescribed
Irradiation

 ρr qr,i

Se,σ
V

= se,σ

x

Absorbing and Scattering
Medium, σex (1/m)

Local
Radiation
Intensity

qr(x)

Figure Pr.4.5 Radiation attenuating (absorbing and scattering) medium with a surface (x = 0) reflection.

OBJECTIVE:
(a) Integrate this equation of radiative transfer, using qr(x = 0) = qr,i(1−ρr), where ρr is the surface reflectivity,
as shown in Figure Pr.4.5, and show that

qr(x = 0) = qr,i(1 − ρr)e−σexx.

(b) Starting from (2.1), and assuming one-dimensional, volumetric radiation heat transfer only, show that

qr,i(1 − ρr)σexe−σexx = −ṡe,σ = − Ṡe,σ

V
,

which is also given by (2.43), when we note that the attenuation of radiation is represented by ṡe,σ as a source of
energy.

SOLUTION:
(a) We begin with the equation of radiative transfer

dqr

dx
= −σexqr

and integrate this once to obtain

qr = a1e
−σexx.

Then we use the condition at the surface, x = 0, and we have

qr(x = 0) = qr,i(1 − ρr).
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or

qr(x) = qr,i(1 − ρr)e−σexx.

(b) Starting from (2.1), for volumetric radiation only and under steady-state heat transfer, we have

∇ · qr =
d

dx
qr(x) = ṡe,σ.

using the solution for qr(x) we have

d

dx
qr,i(1 − ρr)e−σexx = ṡe,σ

or

qr,i(1 − ρi)
d

dx
e−σexx = ṡe,σ

or

−qr,i(1 − ρr)σexe−σexx = ṡe,σ.

We note that the attenuation of radiation, which shows a net heat transfer into the differential volume, is repre-
sented on the right-hand side of the energy equation as positive ṡe,σ (i.e., as a source). Therefore, we have used
a negative sign in the definition for ṡe,σ given in Table 2.1, and ṡe,σ is positive.

COMMENT:
Attenuation of radiation heat flux could have been included in the divergence of qr if we had given a more

general description of qr. This requires the introduction of a general equation of radiative transfer which is left
to the advance studies.

Also note that σex = 1/λph, where λph is the phonon mean-free path. The large magnitude for σex (large
attenuation and small λph) gives rise to a significant absorption of irradiation. Figure 2.13 gives examples of
σex(1/m) for various absorbing-scattering media.
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PROBLEM 4.6.FUN

GIVEN:
When the optical thickness defined by (2.44), σ∗

ex = σexL, for a heat transfer medium of thickness L and
extinction coefficient σex is larger than 10, the emission and transfer of radiation can be given by the radiation
heat flux as (for a one-dimensional heat flow)

qr,x = −16
3

σSBT 3

σex

dT

dx
diffusion approximation for optically thick (σ∗

ex > 10) heat transfer media.

This is called the diffusion approximation.
The equation of radiation transfer, for an emitting medium with a strong absorption, becomes

dIr,b

d(x/ cos θ)
= −σexIr + σexIr,b, πIr,b = Er,b = σSBT 4,

where x/ cos θ is the photon path as it travels between surfaces located at x and x + ∆x, as shown in Figure
Pr.4.6.

The radiation heat flux is found by the integration of Ir over a unit sphere, i.e.,

qr =
∫ 2π

0

∫ π

0

sIr cos θ sin θdθdφ.

Note that this integral is over a complete sphere. Also note that Ir,b is independent of θ and φ. For the x

direction, using Figure Pr.4.6, we have qr,x =
∫ 2π

0

∫ π

0
Ir cos θ sin θdθdφ.

SKETCH:
Figure Pr.4.6 shows the geometry considered and the angles used.

�
�

x

x

x � �x
2
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x/cos�

Absorbing/Emitting Medium
with Large Optical Thickness

Local
Temperature

T(x)

Ir, s

x � �x
2

�x   0

�ex = �ex L >10*

Figure Pr.4.6 Radiation intensity Ir traveling in an optically thick, emitting medium.

OBJECTIVE:
Using the equation of radiative transfer and the definition of qr, both in the given, derive the given expression

for qr,x for the diffusion approximation.

SOLUTION:
The equation of radiative transfer can be rearranged as

Ir =
dIr,b cos θ

σexdx
+ Ir,b.

Upon integration, we have for qr,x

qr,x =
∫ 2π

0

∫ π

0

(
−dIr cos θ

σexdx
+ Ir,b

)
cos θd sin θdθdφ.
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Now, noting that Ir,b is independent of θ and φ (as discussed in Section 4.1.2) we have

qr,x = − dIr,b

σexdx

∫ 2π

0

∫ π

0

cos2 θ sin θdθdφ

+ Ir,b

∫ 2π

0

∫ π

0

cos θ sin θdθdφ

= − dIr,b

σexdx
× 4

3
π + Ir,b × 0

= − 4π

3σex

dIr,b

dx
.

Now, using πIr,b = Eb = σSBT 4
1 , we have

qr,x = − 4
3σex

dEb

dx
= −4σSB

3σex

dT 4

dx
= −16

3
σSBT 3

σex

dT

dx
.

COMMENT:
In replacing dIr/dx with dIr,b/dx in the equation of radiative transfer, we are eliminating all the distant

radiation heat transfer effects by approximating the local intensity as

Ir = Ir,b − cos θ

σex

dIr,b

dx
.

Note that Er is the integral of Ir over a unit hemisphere as discussed in Section 4.1.2.
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PROBLEM 4.7.FAM

GIVEN:
The human eye is sensitive to the visible range of the photon wavelength and has a threshold for detection of

about Eb,λ = 0.0936 W/m-µm at wavelength of λ = 0.77 µm (largest wavelength in the red band, Figure 4.1).
This corresponds to the Draper point in Figure 4.2(a).

OBJECTIVE:
(a) The turtle eye is sensitive to the infrared range and if the threshold for detection is the same, but at λ = 1.5 µm,
determine the corresponding temperature at which the turtle can detect blackbody emission.
(b) Using this temperature, at what wavelength would Eb,λ peak?
(c) Would this turtle eye be able to detect radiation emission from a tank containing liquid water at one atm
pressure (Table C.3)?

SOLUTION:
(a) From (4.2), we have

Eb,λ(T, λ) =
a1

λ5(ea2/λT − 1)
= 0.0936 W/m2-µm,

a1 = 3.742 × 108 W-µm4/m2, a2 = 1.439 × 104 µm-K, λ = 1.5 µm.

ea2/λT = 1 +
a1

Eb,λλ5

a2

λT
= ln

(
1 +

a1

Eb,λλ5

)

T =
a2

λ ln
(

1 +
a1

Eb,λλ5

) .

Using the numerical values, we have

T =
1.439 × 104(µm-K)

1.5(µm) ln
[
1 +

3.742 × 108(W-µm4/m2)
0.0936(W/m2-µm) × (1.5)5(µm5)

]

=
9.593 × 103(K)

ln(1 + 5.265 × 108)
=

9.593 × 103(K)
2.008 × 101

= 477.7 K.

(b) From Figure 4.2(a), we have Eb,λ having its maximum value at λmaxT = 2,898 µm-K.
Then

λmax =
2,898(µm-K)

477.7(K)
= 6.067 µm.

(c) The boiling point is the highest temperature that the liquid will have. From Table C.3, we have for water at
one atm pressure,

Tlg = 373.2 K < 477.7 K

Therefore, the emission from this tank is not detectable by the turtle eye.

COMMENT:
From Figure 4.2(a), note that for a given Eb,λ and T , there are two wavelength ranges, one is the short and

one is the long wavelength range. Here we have selected the short wavelength. Also, it should be kept in mind
that λ is multivalued when solving for λ as the unknown.
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PROBLEM 4.8.FUN

GIVEN:
Dielectrics, e.g., ceramics such as SiC, have very small extinction index κ and also small refraction index n

(optical properties). On the other hand metals have large κ and n. Figure Pr.4.8 shows the interface between
two media, 1 and 2, which have different optical properties.

The normal (i.e., θ = 0) emissivity, for the dielectrics and metals, is predicted using these optical properties
and a simple relation given by

εr =
4
n2

n1(
n2

n1
+ 1

)2

+ κ2

,

where, as shown in Figure 4.6, 1 and 2 (or i and j) refer to the two media and here we use air as media 1 (with
n1 = 1).

The measured values of n and κ at λ = 5 µm are given as

SiC : n2 = 2.4, κ = 0.07, λ = 5 µm
Al : n2 = 9, κ = 65, λ = 5 µm
air : n1 = 1.

SKETCH:
Figure Pr.4.8 shows the interface between two media with different optical properties.

Surface Emissivity, rMedium 1

Interface

Medium 2
SiC or Al

(Optical Properties: n2 , �)

Air (Optical Properties: n1 = 1)

∋
Figure Pr.4.8 Interface between two media with different optical properties.

OBJECTIVE:
(a) Determine the total hemispherical emissivity εr for SiC and Al in contact with air.
(b) Compare these values with the measured values of εr given in Table C.18.

SOLUTION:
(a) Using the above relation, we have

SiC: εr =
4 × 2.4

1(
2.4
1

+ 1
)2

+ (0.07)2
= 0.8301

Al: εr =
4 × 9

1(
9
1

+ 1
)2

+ (65)2
= 0.008324.

(b) From Table C.18, we have

SiC: εr = 0.83 to 0.96
Al: εr = 0.008324 to 0.18 (fine to rough polish).

While the results of SiC are close to what is given in Table C.18, the predicted value for Al is for an ideally
polished surface.
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COMMENT:
Although the general trend of high εr for dielectrics and smaller εr for the metals are predicted, for more

accuracy the wavelength dependence of n and κ should be included and then integrated as indicated by (4.11).
Also note that for n2 = 1 and κ2 = 0, we obtain εr = αr = 1, from the relation given above. This indicates
that the photons would continue to travel through the interface when this surface does not mark any change in
the optical properties. As stated in Figure 4.6, n and κ are related to the three fundamental electromagnetic
properties of matter.
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PROBLEM 4.9.FAM

GIVEN:
Some surface materials and coatings are selected for their radiation properties, i.e., their emissivity εr and

absorptivity αr. Consider the following selections based on surface radiation properties. All surfaces are at
Ts = 300 K.

(i) Space suit (αr for low heat absorption).
(ii) Solar collector surface (αr for high heat absorption and εr for low heat emission).
(iii) Surface of thermos (αr for low heat absorption).

OBJECTIVE:
(a) Choose the materials for the applications (i) to (iii) from Table C.19.
(b) Determine the emissive power for the selected surfaces (i) to (iii).
(c) Determine the surface reflectivity for the selected surfaces (i) to (iii), assuming no transmission (opaque sur-
face).

SOLUTION:
(a) In Table C.19 we search for the closest match.
(i) For low solar absorption, from Table C.19, we choose coatings such as white potassium zirconium silicate,
αr = 0.13, εr = 0.89.
(ii) For the solar collector surface coating, from Table C.19, we choose black oxidized copper, εr = 0.16, αr = 0.91,
a highly nongray (selective) surface.
(iii) For the surface of the thermos, we can choose from Table C.19, aluminum foil, εr = 0.025, αr = 0.10.

(b) The emissive power is given by (4.13) as

Er,s = εr,sσSBT 4
s .

Then
(i) white potassium zirconium silicate:

Er,s = 0.89 × 5.67 × 10−8(W/m2-K4) × (300)4(K4)
= 408.8 W/m2

(ii) black-oxidized copper:

Er,s = 0.16 × 5.67 × 10−8(W/m2-K4) × (300)4(K4)
= 73.48 W/m2

(iii) aluminum foil:

Er,s = 0.025 × 5.67 × 10−8(W/m2-K4) × (300)4(K4)
= 11.48 W/m2.

(c) From (4.15), we have for opaque surfaces (written for the total quantities)

αr + ρr + τr = 1
αr + ρr = 1, for τr = 0 (opaque surface).

ρr = 1 − αr.

Then
(i) Write potassium zirconium silicate:

ρr = 1 − 0.13 = 0.87

(ii) black-oxidized copper:

ρr = 1 − 0.91 = 0.09
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(iii) aluminum foil:

ρr = 1 − 0.1 = 0.90.

COMMENT:
Note that some of these materials are highly nongray (i.e., αr and εr are vastly different).
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PROBLEM 4.10.FAM

GIVEN:
The view factors between two surfaces making up part of an enclosure are given for some geometries in Table

4.2 and Figures 4.11(a) to (e).

SKETCH:
Figures Pr.4.10(a) to (e) show five surface pairs for which the view factors are sought.

4R1

4R

Surface 4

Surface 2

Surface 3
(Top Opening)

(a) Inside Surface of Cylinder
(Excluding Top Surface) to
Top Surface: F1-2

(b) Inside, Side Surfaces of
Rectangle to Itself: F1-1

(c) Vertical Side of Right Angle
Wedge to Its Horizontal Side: F2-1

(d) Surface of Inner Cylinder to
Top Opening of Annulus: F1-3

(e) Surface of a Sphere Near a Coaxial
Disk to Rest of Its Surroudings: F2-3

Surface 1

R1
a

2a

a/2

2R1

2aa

2a

2R1

R2 = R1/4

R1

R Surface 2

Surface 1

Surface 3

Surface 1
(4 sides)

Surface 2

Surface 1
(Sphere)

Surrounding
Surface 3

Surface 2 (Disk)

Surface 2

Surface 1

Figure Pr.4.10(a) to (e) View factors between surface pairs for five different surface pairs in different geometries.

OBJECTIVE:
Determine the view factors (Fi-j , with i and j specified for each case on top of the figures) for the five surface

pairs shown in Figures Pr.4.10(a) to (e).
Note that, for the geometry shown in Figure Pr.4.10(a), the view factor can be found using only the summation

and the reciprocity rules (4.33) and (4.34), and by using simple inspection (i.e., no tables or figures are needed)
of the limiting view factor (i.e., surfaces that are completely enclosed by another surface).

SOLUTION:
(a) To determine F1-1, we begin by noting that F2-1 (from the disk to the rest of the cylinder) is equal to unity
i.e., F2-1 = 1.

Now we return to surface 1 and use the summation rule (4.33), i.e.,

F1-1 + F1-2 = 1 summation rule

or

F1-1 = 1 − F1-2.
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To determine F1-2, we use the reciprocity rule (4.34), i.e.,

Ar,1F1-2 = Ar,2F2-1 reciprocity rule

or

F1-2 =
Ar,2

Ar,1
F2-1

=
πR2

2πR(4R) + πR2 F2-1

=
1

8 + 1
F2-1

=
1
9
× 1 =

1
9
.

Note that

F1-1 = 1 − 1
9

=
8
9
.

Note that the lower disk area is part of surface 1.

(b) To determine F1-1, we begin by writing the summation rule for surface 1, i.e.,

F1-1 + F1-2 + F1-3 = 1 summation rule

or

F1-1 = 1 − 2F1-2,

where we have used the symmetry to write F1-2 = F1-3.
To determine F1-2, we use the reciprocity rule

F1-2 =
Ar,2

Ar,1
F2-1, reciprocity rule.

To determine F2-1, we use the summation rule for surface 2, i.e.,

F2-1 + F2-2 + F2-3 = 1 summation rule

or

F2-1 = 1 − F2-3,

where F2-2 = 0, because it is planar.
We determine F2-3 from Figure 4.11(b) for

w

l
=

2a

2a
= 1,

a

l
=

a

2a
=

1
2

F2-3 � 0.12 Figure 4.11(b).

Then

F1-1 = 1 − 2F1-2 = 1 − 2
Ar,2

Ar,1
F2-1 = 1 − 2

Ar,2

Ar,1
(1 − F2-3)

= 1 − 2
2a2

2(4a2) + 2(2a2)
(1 − 0.12) = 1 − 1

3
(1 − 0.12) = 0.7067.

(c) To determine F1-2, we use Figure 4.11(c) and the reciprocity rule, i.e.,

F2-1 =
Ar,1

Ar,2
F1-2

=
2a × a
1
2
a × a

F1-2 = 4F1-2

w

a
=

2a

a
= 2,

l

a
=

1
2
a

a
=

1
2

F1-2 � 0.08 Figure 4.11(c).
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Then

F2-1 = 4 × 0.08 = 0.32.

(d) To determine F2-1, we begin with the summation rule for surface 1, i.e.,

F1-1 + F1-2 + F1-3 + F1-4 = 1
2F1-3 = 1 − F1-2

F1-3 =
1
2
(1 − F1-2),

where we have used the symmetry condition for surfaces 1 and 3, and observed that F1-1 = 0 (because it is a
convex surface) to determine F1-2.
We now use the reciprocity rule and Figure 4.11(e) i.e.,

F1-2 =
Ar,2

Ar,1
F2-1

R1

R2
=

1
2
,

l

R2
=

4R1

2R1
= 2

F2-1 � 0.415 Figure 4.11(e).

Then

F1-3 =
1
2
(1 − F1-2) =

1
2

(
1 − Ar,2

Ar,1
F2-1

)

=
1
2

(
1 − 2π × 2R1 × 4R1

2π × R1 × 4R1
× 0.415

)

=
1
2
(1 − 0.830) = 0.085.

(e) To determine F1-3, we begin with the summation rule for surface 2, i.e.,

F2-1 + F2-2 + F2-3 = 1

or

F2-3 = 1 − F2-1,

where F2-2 = 0 because it is planar.
To determine F2-1, we use the reciprocity rule and the results of Table 4.2, i.e.,

F2-1 =
Ar,1

Ar,2
F1-2

R2

l
=

1
4
R1

2R1
=

1
8

F1-2 =
1
2




1 − 1[
1 +

(
R2

l

)2
]1/2




=
1
2

{
1 − 1

[1 + 0.1252]1/2

}
=

1
2
(1 − 0.9923) = 0.003861.

Then

F2-3 = 1 − F2-1 = 1 − Ar,1

Ar,2
F1-2

= 1 − 4πR2
1

π

(
1
4
R1

)2 F1-2 = 1 − 64F1-2 = 0.7529.

326



COMMENT:
In general, to determine a view factor, first inspect and find an available view factor and then work toward

the unknown using the summation and reciprocity rules.
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PROBLEM 4.11.FUN

GIVEN:
Two planar surfaces having the same area A = A1 = A2 are to have three different geometries/arrangements,

while having nearly the same view factor F1-2. These are coaxial circular disks, coaxial square plates, and per-
pendicular square plates, and are shown in Figure Pr.4.11.

SKETCH:
Figure Pr.4.11 shows the three geometries/arrangements.

Parallel (Coaxial
Circular Disks)

Parallel (Coaxial
Square Plates)

R1

R2

A1

l l

A1 A1

A2

w = a
a

A2

Perpendicular
(Square Plates)

A2

w = a

w = a

a

Configurations of Surfaces
A1 and A2 (where A1 = A2)

Figure Pr.4.11 Two planar surfaces having the same area and three different geometries/arrangements.

OBJECTIVE:
(a) Determine this nearly equal view factor F1-2 (shared among the three geometries).
(b) Under this requirement, are the disks or the plates placed closer together?

SOLUTION:
(a) The view factors for parallel disks, parallel plates, and perpendicular plates, are given in Figures 4.11(a), (b),
and (c). We note that for the perpendicular arrangement, F1-2 is determined once the plate geometry is known.
So, we begin in Figure 4.11(c) and note that for l = a = w, we have

l∗ = 1, w∗ = 1.

Then from Figure 4.11(c), we have

F1-2 � 0.2 Figure 4.11(c).

Now, this view factor is found in Figure 4.11(b), i.e.,

F1-2 = 0.2, for w∗ =
w

l
= 1, a∗ =

a

l
= 1 Figure 4.11(b).

Nearly the same view factor is found in Figure 4.11(a), i.e.,

F1-2 � 0.2 for
1

R∗
1

=
l

R1
= 1.70 =

l

R2
, or R∗

2 =
R2

l
= 0.588 Figure 4.11(a).

(b) Since the areas are all the same, we have

A = πR2 disk

= a2 square plate

or

R =
a

π1/2
.

Then we have

l = 1.70R = 1.70
a

π1/2
= 0.9591a disks

l = a plates.
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Then the disks are placed slightly closer together, but under the approximations made reading from the graphs,
this is negligible.

COMMENT:
Note that while the parallel arrangements allow for achieving higher F1-2 by reducing l, the perpendicular

arrangement results in a constant F1-2, once the plate geometries are fixed.
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PROBLEM 4.12 FUN

GIVEN:
The blackbody surface can be simulated using a large cavity (i.e., an enclosure with a small opening). The

internal surfaces of the cavity have a total emissivity εr,1 which is smaller than unity; however, due to the large
cavity surface area, compared to its opening (i.e., mouth), the opening appears as a blackbody surface. To show
this, consider the cylindrical enclosure shown in Figure Pr.4.12(a). The surrounding is assumed to be a blackbody
at T∞.

SKETCH:
Figure Pr.4.12(a) shows the use of apparent emissivity for construction of a blackbody emitter using a deep

graybody cavity.

Qr,1-�

T1' = T1

Ar,1 = πDL + πD2/4

LD D

T1   r,1

T
� Ar,� >> Ar,1'

F1'-� = 1

  r,� = 1

Cavity

Surrounding

(i) Radiation Exchange with
Cavity Surface

(ii) Apparent Radiation Exchange
with Cavity Mouth

T
� Ar,� >> Ar,1'

F1'-� = 1

  r,� = 1

  r,1

Surrounding

Qr,1'-� = Qr,1-�

Ar,1' = πD2/4

Cavity Mouth

∋

∋ ∋

∋

Cavity
Mouth Ar,1'

Figure Pr.4.12(a)(i) Surface radiation from a cavity. (ii) The concept of apparent emissivity for the cavity opening.

OBJECTIVE:
(a) Equate the net radiation heat transfer Qr,1-∞ from the cavity surface in Figure Pr.4.12(a)(i) to that in Figure
Pr.4.12(a)(ii). In Figure Pr.4.12(a)(ii), we use the cavity opening area and an apparent emissivity εr,1

′. Then
derive an expression for this apparent emissivity.
(b) Show that this apparent emissivity tends to unity for L � D.

SOLUTION:
(a) The thermal circuit diagrams for both cases are shown in Figure Pr.4.12(b). The cavity surface and the
surrounding of the opening are treated as blackbody surfaces. The surface radiation heat flow for the two-surface
enclosure of Figure Pr.4.12(a)(i) is given by (4.48), i.e.,

Qr,1-∞ = Qr,1-1′ =
Eb,1(T1) − Eb,∞(T∞)(

1 − εr,1

Arεr,1

)
1

+
1

Ar,1F1-1′
+ 0

.

Using the reciprocity rule, (4.34),

Qr,1-∞ =
Eb,1 − Eb,∞(T∞)(

1 − εr,1

Arεr,1

)
1

+
1

Ar,1′F1′-1

.
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T1

Eb,1

(Rr,  )1

(qr,o)1

(qr,o)� = Eb,� 

(Rr,F)1-� = 1
Ar,1 F1-�

Thermal Circuit Model

(i) (ii)

1
Ar,1' F1'-�

Qr,1-�

T1' = T1

Eb,1' = Eb,1

(Rr,  )1'

(qr,o)1'

(qr,o)� = Eb,� 

(Rr,F)1'-� = 

Qr,1'-� = Qr,1-�

� �

Figure Pr.4.12(b) Thermal circuit diagrams for the two-cases.

For surface 1′, from (4.49) and Figure 4.12(b)(ii), we also have

Qr,1′-∞ =
Eb,1(T1) − Eb,∞(T∞)(
1 − εr

Arεr

)
1′

+
1

Ar,1′F1′,∞

=
Eb,1(T1) − Eb,∞(T∞)

1
Ar,1′εr,1′

, for F1′-∞ = 1 with Ar,∞ � Ar,1

≡ Qr,1-∞.

Solving for εr,1′ , from these two equations, we have

1
Ar,1′εr,1′

=
1

1 − εr,1

Ar,1εr,1
+

1
Ar,1′F1′-1

εr,1′ =
1

Ar,1′

Ar,1

1 − εr,1

εr,1
+

Ar,1′

Ar,1′

1
F1′-1

=
1

Ar,1′

Ar,1

1 − εr,1

εr,1
+ 1

since F1′-1 = 1.

Now, we use the diameter and length of the cylindrical cavity to have

Ar,1′ = πD2/4
Ar,1 = πDL + πD2/4.

Then, the apparent emissivity of the cavity is

εr,1′ =
1

D

4L + D

1 − εr,1

εr,1
+ 1

.

(b) For large L/D, i.e., a deep cavity, we have,

lim
L/D→∞

εr,1′ = lim
L/D→∞

1
1

4L/D + 1
1 − εr,1

εr,1
+ 1

=
1

0 + 1
= 1,

i.e., to the surrounding, the cavity appears as a blackbody surface.

COMMENT:
For a given εr,1, the ratio L/D needed to make εr,1′ near unity, is determined from the above equation. The

smaller εr,1, the larger L/D needs to be for creating an apparent blackbody surface.
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PROBLEM 4.13.FAM

GIVEN:
Liquid oxygen and hydrogen are used as fuel in space travel. The liquid is stored in a cryogenic tank, which

behaves thermally like a thermos. Radiation shields (highly reflecting aluminum or gold foils) are placed over the
tank to reduce irradiation to the tank surface [Figure Pr.4.13(a)]. The surface of the tank has a total emissivity
of εr,1 = 0.7 and the shields have an emissivity of εr,s = 0.05. Consider placing one [Figure Pr.4.13(a)(i)] and two
[Figure Pr.4.13(a)(ii)] radiation shields on the tank.

Assume that the surface of the tank is T1 = 80◦C above the saturation temperature of the liquid at one atm
pressure, the tank is facing away from the sun, and the deep sky temperature is T2 = 3 K.

SKETCH:
Figure Pr.4.13(a) shows the idealized tank surface and the radiation shields.

Tank Surface
   r,1 = 0.7
T1 = Tlg + 80  C

Radiation
Shield
   r,s = 0.05

Deep Sky
T2 = 3 K

Liquid
H2 or O2

(i) One Shield (ii) Two Shields

Deep Sky
T2 = 3 K

Liquid
H2 or O2

∋

∋ Tank Surface
   r,1 = 0.7
T1 = Tlg + 80  C

∋

Radiation
Shield
   r,s = 0.05∋

Figure Pr.4.13(a) Surface-radiation heat transfer from a cryogenic liquid tank. (i) With one shield. (ii) With two
shields.

OBJECTIVE:
(a) Draw the thermal circuit diagrams.
(b) Determine the rate of heat flowing out of the tank per unit area for liquid oxygen and liquid hydrogen.

SOLUTION:
(a) The thermal circuit for one radiation shield is shown in Figure Pr.4.13(b) and for two radiation shields, in
Figure Pr.4.13(c).

Surface 1 Shield Surface 2

(Rr,F)1-s

T1 Eb,1

Qr,1

(qr,0)1

(Rr,  )1

Qr,1-s

(qr,0)s

(Rr,  )s

-Qr,s

Eb,s Ts Eb,s

(Rr,F)s-2

Qr,s

(qr,0)s

(Rr,  )s

Qr,s-2

(qr,0)2

(Rr,  )2

-Qr,2

Eb,2 T2

Q2Q1

� � � �

Figure Pr.4.13(b) Thermal circuit diagram for one shield.

Surface 1 Shield Surface 2

(Rr,F)1-s

T1 Eb,1

Qr,1

(qr,0)1

(Rr,  )1

Qr,1-s

(qr,0)s

(Rr,  )s

-Qr,s

Eb,s Ts Eb,s

(Rr,F)s-2

Qr,s

(qr,0)s

(Rr,  )s

Qr,s-2

(qr,0)2

(Rr,  )2

-Qr,2

Eb,2 T2

Q2Q1

Shield

(qr,0)s

(Rr,  )s

-Qr,s

Eb,s Ts Eb,s

Qr,s

(qr,0)s

(Rr,  )s(Rr,F)s-s

Qr,s-s

� � � � � �

Figure Pr.4.13(c) Thermal circuit diagram for two shields.
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(b) (i) For one radiation shield, the temperatures T1 and T2 are given (i.e., Eb,1 and Eb,2 are known). From (4.50),
the heat transfer rate between surfaces 1 and 2 can then be expressed as a function of the potential difference
Eb,1 − Eb,2 and the overall resistance (Rr,Σ)1-2, i.e.,

Qr,1-2 =
Eb,1 − Eb,2

(Rr,Σ)1-2
.

The overall resistance, for the radiation resistances arranged in series, is

(Rr,Σ)1-2 =
∑

j

Rr,j =
1 − εr,1

Ar,1εr,1
+

1
Ar,1F1-s

+
1 − εr,s

Ar,sεr,s
+

1 − εr,s

Ar,sεr,s
+

1
Ar,sFs-2

+
1 − εr,2

Ar,2εr,2

=
1 − εr,1

Ar,1εr,1
+

1
Ar,1F1-s

+
[
2
1 − εr,s

Ar,sεr,s
+

1
Ar,sFs-2

]
+

1 − εr,2

Ar,2εr,2
.

The view factors for infinite, parallel plates are unity, F1-s = Fs-2 = 1, and all the surface areas are equal,
Ar,1 = Ar,s = Ar. The total emissivities for the surfaces are εr,1 = 0.7, εr,s = 0.05, and εr,2 = 1 (note that the
deep sky behaves as a black body). Thus, the equivalent resistance becomes

(Rr,Σ)1-2 =
1 − 0.7
0.7Ar

+
1

Ar
+ 2

1 − 0.05
0.05Ar

+
1

Ar
+ 0 =

1.43 + 39
Ar

=
40.43
Ar

.

Oxygen: From Table C.4, we have Tlg = 90 K. Then, the tank surface temperature becomes T1 = 90(K)+80(K) =
170 K. The deep sky temperature is T2 = 3 K. Therefore, heat transfer rate is,

Qr,1-2 =
σSB(T 4

1 − T 4
2 )

(Rr,Σ)1-2

=
5.67 × 10−8(W/m2-K4) × [

1704(K4) − 34(K4)
]

40.43
Ar

= 1.17(W/m2) × Ar(m2)

or

qr,1-2 =
Qr,1-2

Ar
= 1.17 W/m2

.

Hydrogen: From Table C.4, we have Tlg = 20.4 K. Then, the tank surface temperature becomes T1 = 20.4(K) +
80(K) = 100.4 K. Therefore, the heat transfer rate is

Qr,1-2 =
σSB(T 4

1 − T 4
2 )

(Rr,Σ)1-2

=
5.67 × 10−8(W/m2-K4) × [

100.44(K4) − 34(K4)
]

40.43
Ar

= 0.14(W/m2) × Ar(m2)

or

qr,1-2 =
Qr,1-2

Ar
= 0.14 W/m2

.

(ii) For two radiation shields, the thermal circuit is shown in Figure Pr.4.13(c). For the overall thermal resistance,
an equation similar to the one above is obtained. For two radiation shields, with the same surface radiation
properties (same εr,s), the term within brackets is multiplied by two. Therefore, we have

(Rr,Σ)1-2 =
∑

j

Rr,j =
1 − εr,1

Ar,1εr,1
+

1
Ar,1F1-s

+ 2
[
2
1 − εr,s

Ar,sεr,s
+

1
Ar,sFs-2

]
+

1 − εr,2

Ar,2εr,2
.
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From the data available

(Rr,Σ)1-2 =
1 − 0.7
0.7Ar

+
1

Ar
+ 2

[
2
1 − 0.05
0.05Ar

+
1

Ar

]
+ 0 =

1.43 + 78
Ar

=
79.43
Ar

.

Oxygen:

Qr,1-2 =
σSB(T 4

1 − T 4
2 )

(Rr,Σ)1-2

=
5.67 × 10−8(W/m2-K4) × [

1704(K4) − 34(K4)
]

79.43
Ar

= 0.5960(W/m2) × Ar(m2)

or

qr,1-2 =
Qr,1-2

Ar
= 0.5960 W/m2

.

Hydrogen:

Qr,1-2 =
σSB(T 4

1 − T 4
2 )

(Rr,Σ)1-2

=
5.67 × 10−8(W/m2-K4) × [

100.44(K4) − 34(K4)
]

79.43
Ar

= 0.073(W/m2) × Ar(m2)

or

qr,1-2 =
Qr,1-2

Ar
= 0.073 W/m2

.

COMMENT:
Note that the thermal resistance due to the radiation shield is 39/1.43 = 27 times larger than the resistance

due to the surface grayness of the tank alone. If the tank faces the sun, there would be absorption of solar
irradiation at the tank surface and this heat would flow into the tank.
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PROBLEM 4.14.DES

GIVEN:
A single-junction thermocouple psychrometer is used to measure the relative humidity in air streams flowing

through ducts, as shown in Figure Pr.4.14. In the simplest design, the thermocouple psychrometer consists of a
thermocouple bead, which is exposed to the humid air stream, connected simultaneously to a DC power source
and a voltmeter. Initially, a voltage is applied to the thermocouple, causing a decrease in the bead temperature,
due to the energy conversion from electromagnetic to thermal energy by the Peltier effect. This cooling causes
the condensation of the water vapor and the formation of a liquid droplet on the thermocouple bead. When the
temperature drops to temperature Tt,o, the power source is turned off and the voltage generated by the thermo-
couple is recorded. Since the droplet temperature is lower than the ambient temperature, the droplet receives heat
from the ambient by surface convection and surface radiation. This causes the evaporation of the droplet. The
voltage measured between the thermocouple leads is related to the temperature of the thermocouple bead/water
droplet. An equilibrium condition is reached when the net heat flow at the droplet surface balances with the
energy conversion due to phase change. This equilibrium temperature is called the wet-bulb temperature for the
air stream Twb.

Figure Pr.4.14 shows the thermocouple placed in the air stream. The duct diameter is much larger than the
thermocouple bead. The water droplet has a diameter Dd = 0.5 mm and its surface is assumed to be a blackbody.
The tube surface is opaque, diffuse, and gray and has a surface emissivity εr,2 = 0.5 and a temperature T2 = 300
K. The evaporation rate of the water is estimated as ṁlg = 0.00017 kg/m2-s.

SKETCH:
Figure Pr.4.14 shows the thermocouple psychrometer with a screen radiation shield.

Humid Air Flow

T2 = 300 K
 r,2 = 0.5

Voltmeter

DC Power Source

Thermocouple Wires

Wire Cage (Screen)

Water Droplet

Thermocouple Psychrometer
T1 = 297 K,   r,1 = 1

∆ϕ (V)

Dd

Ds

 r,3 = 0.1

∋

∋

∋

Figure Pr.4.14 Thermocouple psychrometer with a screen radiation shield.

OBJECTIVE:
(a) If the droplet temperature is T1 = 290 K, determine the net heat transfer by surface radiation between the
bead and the tube surface and express it as a percentage of the energy conversion due to liquid-vapor phase
change.
(b) If the bead is protected by a porous spherical wire cage with diameter Ds = 3 mm and the ratio between
the open area and total area a1 = Avoid/Atotal = 0.7, calculate the reduction in the net heat transfer by surface
radiation ∆Qr,1. The surface of the wires is opaque, diffuse, and gray, and has an emissivity εr,3 = 0.1. Using
the available results for radiation between two surfaces separated by a screen, and for Ar,2 � Ar,3 > Ar,1, the
overall radiation resistance is given by

(Rr,Σ)1-2 =
1 − εr,1

εr,1Ar,1
+

1

a1Ar,1 +
1

1
Ar,1(1 − a1)

+ 2
(

1 − εr

Arεr

)
3

.
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(c) In order to reduce the amount of heat transfer between the droplet and the tube surface by surface radiation,
should we increase or decrease a1 = Avoid/Atotal and εr,3?

SOLUTION:
(a) If the presence of the thermocouple wire is neglected, the droplet and the tube form a two-surface enclosure.
The net radiation heat transfer is then given by (4.47) as

Qr,1 =
σSB(T 4

2 − T 4
1 )

1 − εr,1

εr,1Ar,1
+

1
Ar,1F1-2

+
1 − εr,2

Ar,2εr,2

.

The view factor between the droplet and the tube, for a very long tube, is F1-2 = 1. Also, assuming that
Ar,2 � Ar,1, the net radiation heat transfer becomes

Qr,1 =
σSB(T 4

2 − T 4
1 )

1
εr,1Ar,1

.

Using the numerical values

Qr,1 =
5.67 × 10−8(W/m2-K4) × (3004 − 2974)(K)4

1
1 × π × (0.5 × 10−3)2(m)2

= 1.42 × 10−5 W.

The energy conversion due to phase change is given by

Ṡlg = −Ṁlg∆hlg = −ṁlg∆hlgA1 = −ṁlg∆hlgπD2
d.

From Table C.4, ∆hlg = 2,256 kJ/kg, and then,

Ṡlg = −0.00017(kg/m2-s) × 2,256 × 103(J/kg) × π(0.5 × 10−3)2(m)2

= −3.01 × 10−4 W.

The ratio of the radiation heat transfer and the energy conversion due to liquid-gas phase change is

−Qr,1

Ṡlg

=
−1.42 × 10−5(W)
−3.01 × 10−4(W)

= 0.047.

Therefore, for these conditions, the radiation heat transfer is equal to 4.7% of the heat used for evaporation of
the liquid.

(b) Using the available result for screens, the net radiation heat transfer between two surfaces separated by a
screen with void fraction a1 = Avoid/(Avoid + Asolid) is,

Qr,1 =
σSB(T 4

2 − T 4
1 )

(Rr,Σ)1-2
,

where

(Rr,Σ)1-2 =
1 − εr,1

εr,1Ar,1
+

1
1
1

Ar,1F1-2

+
1

1
Ar,1F1-3

+ 2
(

1 − εr,3

Ar,3εr,3

)
+

1
Ar,2F2-3

+
1 − εr,2

Ar,2εr,2
.

The view factors are F1-2 = a1 and F2-3 = F1-3 = (1 − a1), and assuming that Ar,2 � Ar,3 > Ar1, we have

(Rr,Σ)1-2 =
1 − εr,1

εr,1Ar,1
+

1

a1Ar,1 +
1

1
Ar,1(1 − a1)

+
2(1 − εr,3)
Ar,3εr,3

.
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Using the numerical values, we have

(Rr,Σ)1-2 =
1 − 1

π × (0.5 × 10−3)2(m)2 × 1

+
1

0.7 × π × (0.5 × 10−3)2(m)2 +
1

1
π × (0.5 × 10−3)2 × 0.3

+
2(1 − 0.1)

π × (3 × 10−3)(m)2 × 0.1
= 1.325 × 106 1/m2.

Then, the net heat transfer by surface radiation becomes

Qr,1 =
5.67 × 10−8(W/m2-K4) × (3004 − 2974)(K)4

1.325 × 106(1/m2)
= 1.37 × 10−5 W.

The ratio to the energy conversion is

−Qr,1

Ṡlg

=
−1.37 × 10−5(W)
−3.01 × 10−4(W)

= 0.045.

The reduction of thermal radiation due to shielding by the screen is only ∆Qr,1 = 4.5%.

(c) Increasing the radiation thermal resistance (Rr,Σ)1-2 causes a decrease in the net heat transfer by radiation.
From the expression for (Rr,Σ)1-2, to decrease the thermal radiation we should decrease a1 and decrease εr,3 (i.e.,
we should use a polished, metal shield).

COMMENT:
To allow for the surface-convection evaporation of the droplet, it is necessary to use a screen with a large a1.

The reduction of the effect of the surface radiation is desirable.
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PROBLEM 4.15.DES

GIVEN:
The polymer coating of an electrical wire is cured using infrared irradiation. The wire is drawn through a

circular ceramic oven as shown in Figure Pr.4.15(a). The polymer coating is thin and the drawing speed uw is
sufficiently fast. Under these conditions, the wire remains at a constant and uniform temperature of T1 = 400 K,
while moving through the oven. The diameter of the wire is d = 5 mm and its surface is assumed opaque, diffuse,
and gray with an emissivity εr,1 = 0.9. The oven wall is made of aluminum oxide (Table C.18), has a diameter
D = 20 cm, and length L = 1 m, and its surface temperature is T2 = 600 K. One of the ends of the furnace is
closed by a ceramic plate with a surface temperature T3 = 600 K and a surface emissivity εr,3 = 0.5. The other
end is open to the ambient, which behaves as a blackbody surface with T4 = 300 K. Ignore the heat transfer by
surface convection.

SKETCH:
Figure Pr.4.15(a) shows the wire and its surface radiation surroundings.

End Plate
T3 = 600 K
  r,1 = 0.9

Furnace Wall (Alumina)
  r,2 , T2 = 600 K

Ambient:
T4 = 300 K

 r,4 = 1

T1 = 400 K,   r,1 = 0.9 uw
(Speed of Wire)

L

d
DWire

∋

∋
∋

∋

Figure Pr.4.15(a) A wire drawn through an oven.

OBJECTIVE:
(a) Draw the thermal circuit diagram for the four-surface radiation enclosure and write all of the relations for
determination of the net heat transfer by radiation to the wire surface Qr,1.
(b) Assuming that the wire exchanges heat by radiation with the tube furnace surface only (i.e., a two-surface
enclosure), calculate the net heat transfer by surface radiation to the wire surface Qr,1.
(c) Explain under what conditions the assumption made on item (b) can be used. Does the net heat transfer
by surface radiation at the wire surface increase or decrease with an increase in the furnace diameter D (all the
other conditions remaining the same)? Explain your answer.

SOLUTION:
(a) The thermal circuit diagram for the four-surface enclosure is shown in figure Pr.4.15(b). The energy equations
are given below.
Surface 1:

−Q1 = Qr,1 = Qr,1-2 + Qr,1-3 + Qr,1-4, Qr,1 =
Eb,1 − (qr,o)1

1 − εr,1

εr,1Ar1

.

Surface 2:
−Q2 = Qr,2 = Qr,2-1 + Qr,2-3 + Qr,2-4, Qr,2 =

Eb,2 − (qr,o)2
1 − εr,2

εr,2Ar2

.

Surface 3:
−Q3 = Qr,3 = Qr,3-1 + Qr,3-2 + Qr,3-4, Qr,3 =

Eb,3 − (qr,o)3
1 − εr,3

εr,3Ar3

.

Surface 4:
−Q4 = Qr,4 = Qr,4-1 + Qr,4-2 + Qr,4-3, Qr,4 =

Eb,4 − (qr,0)4
1 − εr,4

εr,4Ar4

.
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Figure Pr.4.15(b) Four-surface thermal circuit diagram.

The surface-radiation heat transfer rates are

Qr,1-2 =
(qr,0)1 − (qr,o)2

1
F1-2Ar,1

, Qr,1-2 = −Qr,2-1

Qr,1-3 =
(qr,0)1 − (qr,o)3

1
F1-3Ar,1

, Qr,1-3 = −Qr,3-1

Qr,1-4 =
(qr,0)1 − (qr,o)4

1
F1-4Ar,1

, Qr,1-4 = −Qr,4-1

Qr,2-3 =
(qr,0)2 − (qr,o)3

1
F2-3Ar,2

, Qr,2-3 = −Qr,3-2

Qr,2-4 =
(qr,0)2 − (qr,o)4

1
F2-4Ar,2

, Qr,2-4 = −Qr,4-2

Qr,3-4 =
(qr,0)3 − (qr,o)4

1
F3-4Ar,3

, Qr,3-4 = −Qr,4-3

The view factors are

F1-1 + F1-2 + F1-3 + F1-4 = 1
F2-1 + F2-2 + F2-3 + F2-4 = 1
F3-1 + F3-2 + F3-3 + F3-4 = 1
F4-1 + F4-2 + F4-3 + F4-4 = 1

Ar,1F1-2 = Ar,2F2-1, Ar,1F1-3 = Ar,3F3-1
Ar,1F1-4 = Ar,4F4-1, Ar,2F2-3 = Ar,3F3-2
Ar,2F2-4 = Ar,4F4-2, Ar,3F3-4 = Ar,4F4-3.

There are 16 view factors and 10 view factor equations. Therefore, 6 view factors need to be determined inde-
pendently. Considering that F11 = F33 = F44=0, we need to determine 3 view factors from graphs or equations.
The emissive powers are

Eb,1 = σSBT 4
1 , Eb,2 = σSBT 4

2 , Eb,3 = σSBT 4
3 , Eb,4 = σSBT 4

4 .

339



The variables are

T1, T2, T3, T4, Q1, Q2, Q3, Q4, Qr,1, Qr,2, Qr,3, Qr,4, Qr,1-2, Qr,1-3, Qr,1-4, Qr,2-1, Qr,2-3,
Qr,2-4, Qr,3-1, Qr,3-2, Qr,3-3, Qr,4-1, Qr,4-2, Qr,4-3, Eb,1, Eb,2, Eb,3, Eb,4,

(qr,o)1, (qr,o)2, (qr,o)3, (qr,o)4.

Therefore, there are 32 unknowns and 28 equations. Four unknowns must then be specified. For this problem,
the 4 temperatures are known.

(b) The simplified formulation assumes a two-surface enclosure formed by the oven and the wire. For this situation,
the net heat transfer to the wire surface is

−Qr,1 = Qr,2-1 =
σSB(T 4

2 − T 4
1 )

1 − εr,1

Ar,1εr,1
+

1
Ar,1F1,2

+
1 − εr,2

Ar,2εr,2

.

For this two surface enclosure, F1-2 = 1. From Table C.18 for alumina at T2 = 600 K, we have εr,2 = 0.58. Then,
using the values given,

−Qr,1 =
5.67 × 10−8(W/m2-K4) × (6004 − 4004)(K4)

1 − 0.9
π × (5 × 10−3)(m) × 1(m) × 0.9

+
1

π × (5 × 10−3)(m) × 1(m)
+

1 − 0.58
π × (0.2)(m) × 1(m) × 0.58

=
5.67 × 10−8(W/m2-K4)(6004 − 4004)(K4)

7.07 + 63.7 + 1.15
= 82 W.

(c) The resistance (Rr,ε)2 is already small, so a further increase in D2 will increase Qr,1 only by a small amount.

COMMENT:
The assumption made in item (b) is acceptable when the view factor from the wire to the furnace, F1-2, is

approximately one. In this case, there is a negligible radiation heat transfer between the wire surface and surfaces
3 and 4. The view factor F1-2 can be obtained from the relation in Figure 4.11(e) (F1-2 = F2-1Ar,2/Ar,1). Figure
Pr.4.15(c) shows the variation of the view factor F1-2, with respect to the ratio of radius of the wire R1 to the
oven radius R2, keeping the other dimensions constant. We observe that the view factor is always larger than 0.9
and approaches 1 as R1 approaches R2. Therefore, with an increase in the furnace diameter, the heat transfer to
the wire decreases.

0.0 0.2 0.4 0.6 0.8 1.0

R1 /R2
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0.2

0.4

0.6

0.8

1.0

F
1-

2  ,
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3

F1-2

F1-3

L = 1 m

Figure Pr.4.15(c) Variation of view factor F1-2 with respect to R1/R2.
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PROBLEM 4.16.FUN

GIVEN:
As in the application of radiation shields discussed in Section 4.4.5, there are applications where the surface

radiation through multiple (thin, opaque solid) layers (or solid slabs) is of interest. This is rendered in Figure
Pr.4.16. Since for large N (number of layers) the local radiation heat transfer becomes independent of the presence
of the far away layers, we can then use the local (or diffusion approximation) approximation of radiation heat
transfer and use the temperature difference (or local temperature gradient) between adjacent layers and write

qr,x ≡ −〈kr〉dT

dx
= −〈kr〉T2 − T1

l
= −〈kr〉Tc − Th

L
,

where l is the spacing between adjacent layers. This radiant conductivity is

〈kr〉 =
4εeσSBT 3l

2 − εr
, T =

[
(T 2

1 + T 2
2 )(T1 + T)

4

]1/3

.

SKETCH:
Figure Pr.4.16 shows the multilayer system, where all surfaces have the same emissivity and surface area. The

radiant conductivity 〈kr〉 and the radiant-conductivity based resistance Rkr are also shown.

a

N21

A Medium made of
N Parallel Surfaces

(ii) Thermal Circuit Model Using  
      Radiant Conductivity   kr

High Conductivity,
Very Thin,

Diffuse, Gray,
Opaque Solid Slabs

a

L
x

l

Ar

Tc ,   r

Th ,   r

l =  L
N +1

qr,x = −  kr
dT
dx

T2 ,   r
T1 ,   r

(i) Surface-Radiation in Multiple
      Parallel Layers (Zero Thickness)
      and Its Representation by 
      Radiant Conductivity   kr

Rkr
  l

Ar   kr

Qr,x

T1 T2

, Ar = a2

∋

∋
∋

�

Figure Pr.4.16(i) Surface radiation in a multilayer (each layer opaque) system. (ii) Its thermal circuit representation by
radiant conductivity.

OBJECTIVE:
(a) Start from (4.47) for radiation between surfaces 1 and 2 and assume that l 
 a, such that F1-2 = 1. Then
show that

qr,1-2 =
εrσSB(T 4

1 − T 4
2 )

2 − εr
.

(b) Use that linearization of (4.72) to show that

qr,1-2 =
4εrσSBT 3(T1 − T2)

2 − εr
forT1 → T2,

i.e., for small diminishing difference between T1 and T2.
(c) Then using the definition of qr,x given above, derive the given expression for radiant conductivity 〈kr〉.

SOLUTION:
(a) Starting from (4.47), we have for surface radiation between surfaces 1 and 2

Qr,1-2 =
Eb,1 − Eb,2

1 − εr

Arεr
+

1
ArF1-2

+
1 − εr

Arεr

,
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where we have the same area Ar and emissivity εr for both surfaces.
Since l 
 a, then from Figure 4.11(b), F1-2 = 1 and we have

qr,1-2 =
Qr,1-2

Ar
=

σSB(T 4
1 − T 4

2 )
2
εr

− 1
=

εrσSB(T 4
1 − T 4

2 )
2 − εr

.

(b) Using T1/T2 � 1, we use the results of (4.72), i.e.,

(T 4
1 − T 4

2 ) = (T 2
1 + T 2

2 )(T 2
1 − T 2

2 )
= (T 2

1 + T 2
2 )(T1 + T2)(T1 − T2)

≡ 4T 3(T1 − T2)

where we have defined

(T 2
2 + T 2

1 )(T1 + T2) = 4T 3.

Note that for T1 → T2, i.e., a diminishing temperature differences between two adjacent layers, we will have
T = T1 = T2. Using the results of (a), we then have

qr,1-2 =
4εrσSBT 3(T1 − T2)

2 − εr
.

(c) Next, we use the definition and the results of (b), i.e.,

qr,x = qr,1-2 ≡ −〈kr〉T2 − T1

l

=
4εrσSBT 3(T1 − T2)

2 − εr
= −〈kr〉T2 − T1

l
.

Then solving for 〈kr〉, we have

〈kr〉 =
4εrσSBT 3l

2 − εr
.

COMMENT:
Note that we did not allow for any conduction resistance through each layer. This can be significant for high

emissivity, but low conductivity solids (e.g., polymeric materials such as paper and fabrics).
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PROBLEM 4.17.FAM

GIVEN:
A short, one-side closed cylindrical tube is used as a surface radiation source, as shown in Figure Pr.4.17(a).

The surface (including the cylindrical tube and the circular closed end) is ideally insulated on its outside surface
and is uniformly heated by Joule energy conversion, resulting in a uniform inner surface temperature T1 = 800◦C.
The heat transfer from the internal surface to the surroundings is by surface radiation only.

T∞ = 100◦C, εr,1 = 0.9, D = 15 cm, L = 15 cm.

SKETCH:
Figure Pr.4.17(a) shows the one-side closed cavity with its wall heated by Joule energy conversion exchanging

radiation with surroundings.

(−)

Closed End

Open End of Cavity
Surface 2, T2 = T

�
,   r,2 = 1

Qr,1-�

Se,J
Tc ,   r,1

(+) L

D

T
�

 ,   r,�

∋

∋

∋

Figure Pr.4.17(a) Surface radiation from a one-end closed cavity, to its surroundings.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the required Joule heating rate Ṡe,J.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.4.17(b).

T1 Eb,1 (Rr,  )1

(qr,o)1

Qr,1
(qr,o)2

T2 = T
�

Eb,2(Rr,  )2

Qr,1-2

(Rr,F)1-2

Q1

Se,J

.

� �

Figure Pr.4.17(b) Thermal circuit diagram.

(b) The radiation source here is the inner surface of a one-side closed cylindrical tube. It is at a uniform
temperature T1. Therefore, the inner surface of the tube and the closed end can be modeled as a single node at
T1. This surface exchanges heat by radiation with the surrounding through the open end (surface 2). Surface 2 is
a blackbody surface (εr,2 = 1) and we have a two-surface enclosure. The corresponding thermal circuit diagram is
shown in Figure Pr.4.17(b). The conservation of energy equation applied to node T1 (for steady-state condition)
gives

Qr,1-∞ + Q1 = Qr,1-2 + Q1 = Ṡe,J.

Since the outer surface is insulated, Q1 → 0, and then

Eb,1 − Eb,∞
(Rr,ε)1 + (Rr,F )1-2 + (Rr,ε)2

= Ṡe,J,
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where

(Rr,ε)1 =
1 − εr,1

Ar,1εr,1

(Rr,F )1-2 =
1

Ar,1F1-2

(Rr,ε)2 =
1 − εr,2

Ar,2εr,2
.

Also

Ar,1 =
πD2

4
+ πDL =

π × (0.15)2(m)2

4
+ π × (0.15)(0.15)(m)2 = 0.0884 m2.

As noted, all net radiation exchange between surface 1 and the surrounding must pass through the remaining
open end. For simplicity, this end can be thought of as an imaginary surface 2 of area Ar,2 = πD2/4 = 0.01767 m2

and at T2 = T∞ = 373.15 K, that would provide the same effect as the surroundings for radiation heat exchange.
This is drawn schematically in the lower part of Figure Pr.4.17(b), where Qr,1-2 is equal to Qr,1-∞. Note that
F2-1 = 1 by inspection, since the imaginary end surface is a flat end of the tube. Then

(Rr,ε)1 =
1 − εr,1

Ar,1εr,1
=

1 − 0.9
0.0884(m2) × 0.9

= 1.258 m−2

(Rr,F )1-2 =
1

Ar,1F1-2
=

1
Ar,2F2-1

=
1

0.01767(m2) × 1
= 56.588 m−2

(Rr,ε)2 =
1 − 1

Ar,∞ × 1
= 0.

Then the energy equation becomes

Qr,1-∞ = Qr,1-2 = Ṡe,J =
Eb,1 − Eb,2

(Rr,ε)1 + (Rr,F )1-2 + (Rr,ε)2

Ṡe,J =
σSB(T 4

1 − T 4
2 )

(Rr,ε)1 + (Rr,F )1-2 + (Rr,ε)2

Ṡe,J =
5.67 × 10−8(W/m2-K4)[(1,073.15 K)4 − (373.15 K)4]

1.258(1/m2) + 56.588(1/m2) + 0

Ṡe,J = 1,041 W.

COMMENT:
For cavities, the opening can be treated as a blackbody surface having the temperature of the surrounding.

This allows for radiation leaving the cavity to the surrounding with no reflection from the opening and also allows
for the surrounding to emit into the cavity.
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PROBLEM 4.18.FAM

GIVEN:
A cylindrical piece of wood (length L and diameter D) is burning in an oven as shown in Figure Pr.4.18(a).

The wood can be assumed to be in the central region of the cube furnace (with each oven side having length
a). The internal oven surface temperature is T2. The burning rate is Ṁr,c, and the heat of combustion is ∆hr,c.
Assume that the only surface heat transfer from the wood is by steady-state radiation.

T2 = 80◦C, Ṁr,c = 2.9 × 10−4 kg/s, ∆hr,c = −1.4 × 107 J/kg, εr,1 = 0.9, εr,2 = 0.8, D = 5 cm, L = 35 cm,
a = 1 m.

Use geometrical relations (not the tables) to determine the view factors.

SKETCH:
Figure Pr.4.18(a) shows the cylindrical piece of wood.

Sr,c = �Mr,c �hr,c

Piece of Wood
L

Da

a
a

  r,1 , T1

  r,2 , T2

�

�

Figure Pr.4.18(a) A cylindrical piece of wood burning in an oven.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the wood surface temperature T1.
(c) What would T1 be if T2 were lowered by 80◦C?

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.4.18(b).

(Rr ,  )1 (Rr ,F)1-2 (Rr ,  )2

(qr ,o)1 (qr ,o)2Eb,1 Eb,2 T2
Q2

T1

Qr ,1-2

Sr,c
. ��

Figure Pr.4.18(b) Thermal circuit diagram.

(b) Applying the conservation of energy equation to node T1, and noting steady-state, we have

Q|A = Qr,1-2 = Ṡr,c

Eb,1 − Eb,2

Rr,Σ
= −Ṁr,c∆hr,c

σSB(T 4
1 − T 4

2 )
Rr,Σ

= −Ṁr,c∆hr,c.
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The total radiation thermal resistance is then found with

A1 = Ashaft + Aends = πDL + 2 ×
(

πD2

4

)
= πD(L + D/2) = π × 0.05(m) × [0.35(m) + 0.05(m)/2]
= 0.0589 m2

A2 = Abox = 6(a × a) = 6 × 1(m) × 1(m)
= 6 m2

F1-2 = 1 by inspection.

Then

(Rr,ε)1 =
1 − εr,1

A1εr,1
=

1 − 0.9
0.0589(m2) × 0.9

= 1.886 1/m2

(Rr,F )1-2 =
1

A1F1-2
=

1
0.0589(m2) × 1

= 16.977 1/m2

(Rr,ε)2 =
1 − εr,2

A2εr,2
=

1 − 0.8
6(m2) × 0.8)

= 0.04167 1/m2

or

Rr,Σ = (Rr,ε)1 + (Rr,F )1-2 + (Rr,ε)2
= 1.886(1/m2) + 16.977(1/m2) + 0.04167(1/m2)
= 18.90 1/m2.

Then solving for T1, we have

T1 =
[
T 4

2 − Rr,Σ

σSB

Ṁr,c∆hr,c

]1/4

=
{

[80 + 273.15]4(K)4 − 18.90(1/m2)
5.67 × 10−8(W/m2-K4)

× [2.9 × 10−4(kg/s)][−1.4 × 107(J/kg)]
}1/4

= 1,081.7 K = 808.6◦C.

(c) If T2 is lowered by 80◦C to 0◦C, we have

T1 =
[
T 4

2 − Rr,Σ

σSB

Ṁr,c∆hr,c

]1/4

=
{

[0 + 273.15]4(K) − 18.904(1/m2)
5.67 × 10−8(W/m2-K4)

× [2.9 × 10−4(kg/s)][−1.4 × 107(J/kg)]
}1/4

= 1,079.8 K = 806.6◦C.

COMMENT:
The surface-convection heat transfer (due to the thermobuoyant fluid motion) can be significant and would

tend to reduce the surface temperature.
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PROBLEM 4.19.FUN

GIVEN:
Consider two square (each length a) parallel plates at temperatures T1 and T2 and having an equal emissivity

εr. Assume that the distance between them l is much smaller than a (l 
 a).

OBJECTIVE:
(a) Show that radiative heat flux between surface 1 and 2 is

qr,1-2 =
εrσSB(T 4

1 − T 4
2 )

2 − εr
.

(b) Show that if a radiation shield having the same size and emissivity is placed between them, then

qr,1-2 =
εrσSB(T 4

1 − T 4
2 )

2(2 − εr)
.

SOLUTION:
(a) For two, parallel plates placed very close to each other (l 
 a), we have from Figure 4.11(b), for the view
factor

F1-2 = 1.

Then (4.48) for a two-surface enclosure becomes

Qr,1-2 =
Eb,1 − Eb,2

1 − εr

Arεr
+

1
Ar

+
1 − εr

Arεr

=
Eb,1 − Eb,2

2
Arεr

− 1
Ar

=
Ar(Eb,1 − Eb,2)

2
εr

− 1

=
ArεrσSB(T 4

1 − T 4
2 )

2 − εr

or

qr,1-2 =
Qr,1-2

Ar
=

εrσSB(T 4
1 − T 4

2 )
2 − εr

.

(b) With one shield added, starting from (4.50), we have

Qr,1-2 =
Eb,1 − Eb,2

2[(Rr,ε)1 + (Rr,F )1-2 + (Rr,ε)2]

=
Eb,1 − Eb,2

2
(

1 − εr

Arεr
+

1
Ar

+
1 − εr

Arεr

) ,

where again we have used F1-s = Fs-2 = 1.
Then following the steps in part (a), we have

qr,1-2 =
εrσSB(T 4

1 − T 4
2 )

2(2 − εr)
.

COMMENT:
Note that as highly reflective (εr → 0) surfaces are used, qr,1-2 = εrσSB(T 4

1 − T 4
2 )/4, which shows a direct

proportionality between qr,1-2 and εr.
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PROBLEM 4.20.FUN

GIVEN:
Two very large, parallel plates at maintained temperatures T1 and T2 are exchanging surface radiation heat.

A third large and thin plate is placed in between and parallel to the other plates [Figure Pr.4.20(a)]. This plate
has periodic voids (e.g., as in a screen) and the fraction of void area to total surface area is ε = Avoids/Atotal. The
screen is sufficiently thin such that its temperature T3 is uniform across the thickness. All plates have opaque,
diffuse, and gray surfaces with the same total emissivity εr.

SKETCH:
Figure Pr.4.20(a) shows the surface-radiation heat transfer between two plates separated by a screen.

   = Avoid

Asolid + Avoid

Surface 1
at T1

(  r)1 =   r

(i) Physical Model

(ii) Radiation Heat Flow Paths

Surface 2
at T2

(  r)2 =   r

Surface 1 Surface 3

Solid Void

Surface 2

Surface 3
(Screen)

at T3
(  r)3 =   r

�Q1

Q2
Qr,1 �Qr,2

Qr,1-3 Qr,2-3

�Qr,3

Qr,1-2 = �Qr,2-1

Qr,3

� �

� �

� �

�

Void

Figure Pr.4.20(a)(i) and (ii) Surface radiation heat transfer between two plates separated by a screen.

OBJECTIVE:
(a) Draw the thermal circuit.
(b) Derive the expression for the net heat transfer rate by surface radiation between surfaces 1 and 2, i.e., Qr,1-2,
given by

Qr,1-2
Ar

=
Eb,1 − Eb,2

2
[
1 − εr

εr
+

1
2ε + εr(1 − ε)

] .

(Suggestion: Use a three-surface enclosure and allow for heat transfer between surfaces 1 and 2 directly through
the screen voids and indirectly through the solid portion of the screen. The screen has radiation exchange on
both of its sides, with a zero net heat transfer).
(c) Comment on the limits as ε → 0 and ε → 1.
(d) Would Qr,1-2 increase or decrease with an increase in the emissivity of the screen?

(Suggestion: Analyze Qr,1-2 in the limits for εr → 0 and εr → 1.)

SOLUTION:
(a) The thermal circuit diagram for the problem is shown in Figure Pr.4.20(b).
(b) The temperatures T1 and T2 are known. Therefore, the radiation heat transfer rate from surface 1 to surface
2, Qr,1-2, is found from Figure Pr.4.20(b) as

Qr,1-2 =
Eb,1 − Eb,2

(Rr,Σ)1-2
,
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(Rr,F)1-3

T1 Eb,1

Qr,1

(qr,0)1

(Rr,  )1

Qr,1-3

(qr,0)3

(Rr,  )3

-Qr,3

Eb,3 T3 Eb,3

(Rr,F)3-2

Qr,3

(qr,0)3

(Rr,  )3

Qr,3-2

(qr,0)2

(Rr,  )2

-Qr,2

Eb,2 T2

Q2Q1

(Rr,F)1-2

� � � �

Figure Pr.4.20(b) Thermal circuit diagram.

where the overall resistance for the thermal circuit is

(Rr,Σ)1-2 =
1 − εr,1

Ar,1εr,1
+

1
1(
1

Ar,1F1-2

) +
1

1
Ar,1F1-3

+
1 − εr,3

Ar,3εr,3
+

1 − εr,3

Ar,3εr,3
+

1
Ar,3F3-2

+
1 − εr,2

Ar,2εr,2
.

Here, surface 3 refers to the solid part of the screen only (Ar,3 = Asolid). Three view factors are needed, F1-2,
F1-3, and F3-2. The view factor from surface 3 to surface 2 is unity, because surface 2 is infinite and parallel
to surface 3 (F3-2 = 1). By symmetry, the view factor from surface 3 to surface 1 is also unity. Applying the
reciprocity rule (4.34) to F3-1, we obtain

Ar,3F3-1 = Ar,1F1-3.

Solving for F1-3 gives

F1-3 =
F3-1Ar,3

Ar,1
=

Ar,3

Ar,1
.

Using the relation 1 − ε = Asolid/(Asolid + Avoid), we have

F1-3 = 1 − ε.

Applying the summation rule (4.33) to surface 1 gives

F1-1 + F1-2 + F1-3 = 1.

For surface 1, F1-1 = 0. Solving for F1-2 gives

F1-2 = 1 − F1-3 = ε1.

All the surfaces have the same total emissivity εr. Then we have

(Rr,Σ)1-2 =
1 − εr

Ar,1εr
+

1
1(
1

Ar,1ε

) +
1

1
Ar,1(1 − ε)

+
1 − εr

Ar,3εr
+

1
Ar,3

+
1 − εr

Ar,2εr
.

The surface areas are Ar,1 = Ar,2 = Ar and Ar,3 = (1 − ε1)Ar. Then

(Rr,Σ)1-2 = 2
(

1 − εr

Arεr

)
+

1

Arε +
1

2
Ar(1 − ε)

+
2

1 − ε

(
1 − εr

Arεr

) .

Finally,

Qr,1-2 =
Eb,1 − Eb,2

(Rr,Σ)1-2

=
Eb,1 − Eb,2

2
(

1 − εr

Arεr

)
+

1

Arε +
1

2
Ar(1 − ε)

+
2

1 − ε

(
1 − εr

Arεr

)
.

349



After dividing by Ar, we have

qr,1-2 =
Qr,1-2

Ar

=
Eb,1 − Eb,2

2
(

1 − εr

εr

)
+

1

ε +
1

2
1 − ε

+
2

1 − ε

(
1 − εr

εr

)

=
Eb,1 − Eb,2

2
[
1 − εr

εr
+

1
2ε + εr(1 − ε)

] .

(c) It is always a good idea to check the limits of your solution to see whether they agree with your physical
understanding of the problem. In the limit when ε → 1, we have

lim
ε1→1

qr,1-2 =
Eb,1 − Eb,2

2
εr

− 1
,

which is the surface radiation heat flux between two infinite, parallel, flat plates. In the limit when ε → 0, we
have

lim
ε1→0

qr,1-2 =
Eb,1 − Eb,2

2
(

2
εr

− 1
) ,

which is the surface radiation heat flux between two infinite, parallel, flat plates when one radiation shield is
placed between them.

(d) From the expression for qr,1-2, we have for the case of εr = 0

qr,1-2 =
Eb,1 − Eb,2

∞ = 0,

i.e, no surface-radiation heat transfer occurs.
For the case of εr = 1, we have

qr,1-2 =
Eb,1 − Eb,2

1
ε

= ε(Eb,1 − Eb,2).

This shows that the radiation heat transfer decreases by a factor of ε when the surfaces (including the screen) are
blackbodies.

COMMENT:
Note that even a screen with a large ε1 can reduce the heat transfer rate between the surfaces.
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PROBLEM 4.21.FUN

GIVEN:
In surface-radiation heat transfer between surfaces 1 and 2, the enclosure geometry dependence of the radiation

heat flux qr,2-1 is examined using four different geometries. These are shown in Figures Pr.4.21(a)(i) through (iv)
and are: parallel plates, coaxial cylinders, coaxial spheres, and a disk facing an enclosing hemisphere. The plates
are assumed to be placed sufficiently close to each other and the cylinders are assumed to be sufficiently long,
such that for all the four enclosure geometries the radiation is only between surfaces 1 and 2 (i.e., two-surface
enclosures).

T1 = 120◦C, T2 = 90◦C, εr,1 = εr,2 = 0.8.

SKETCH:
Figure Pr.4.21(a) shows the four geometries.

a = 2R1

R2 = 1.2R1

R2 = 1.2R1

R2 = R1

R1

R1

R1

w = 2R1

l

(i) Parallel Plates (ii) Coaxial Cylinders

(iii) Coaxial Spheres (iv) Circular Disk Surrounded
by a Hemisphere

qr,2-1

� � , � �

Ar,2 , T2 , r,2

Ar,2 , T2 , r,2

Ar,1 , T1 , r,1

Ar,1 , T1 , r,1

qr,2-1

qr,2-1
qr,2-1

Ar,2 , T2 , r,2

Ar,1 , T1 , r,1 Ar,2 , T2 , r,2

Ar,1 , T1 , r,1

w
l 

a
l 

� �
l

R2 

�

�

�

�
�

�

�

�

Figure Pr.4.21(a)(i) through (iv) Four enclosure geometries used in determining the dependence of qr,2-1 on the
enclosure geometry.

OBJECTIVE:
(a) Draw the thermal circuit diagram (one for all geometries).
(b) Determine qr,2-1 = Qr,2-1/Ar,2 for the geometries of Figures Pr.4.21(a)(i)-(iv), for the given conditions.

SOLUTION:
(a) Figure Pr.4.21(b) shows the thermal circuit diagram for all the geometries.

(qr,o)1T1 Eb,1 T2Eb,2

Qr,1 = Qr,1-2 = �Qr,2-1 = �Qr,2

(qr,o)2(Rr,  )1 (Rr,  )1(Rr,F)1-2

Q1 Q2

� �

Figure Pr.4.21(b) Thermal circuit diagram.

(b) The radiation heat transfer Qr,2-1 is given by (4.47), i.e.,

Qr2-1 =
σSB(T 4

2 − T 4
1 )

1 − εr,1

Ar,1εr,1
+

1
Ar,1F1-2

+
1 − εr,2

Ar,2εr,2

.
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(i) For the parallel plate, we have

Ar,1 = Ar,2 = wa = 4R2
1

F1-2 = 1 (for w∗ → ∞, a∗ → ∞) Figure 4.11(b)

Then

Qr,2-1
Ar,2

= qr,2-1 =
σSB(T 4

2 − T 4
1 )

1 − εr,1

εr,1
+

1
1

+
1 − εr,2

εr,2

=
5.67 × 10−8(W/m2-K4)[(363.15)4 − (393.15)4](K4)

2 × (1 − 0.8)
0.8

+ 1

= −3.685 × 102(W/m2)
0.5 + 1

= −245.7 W/m2.

(ii) For long, coaxial cylinders, we have

Ar,1 = 2πR1l, Ar,2 = 2πR2l

F1-2 = 1 since all radiation leaving surface 1 is assumed to arrive at surface 2.

Then

Qr,2-1
Ar,2

= qr,2-1 =
σSB(T 4

2 − T 4
1 )(

R2

R1

)
1 − εr,1

εr,1
+

R2

R1
+

1 − εr,2

εr,2

= − 3.685 × 102(W/m2)

(1.2)
1 − 0.8

0.8
+ 1.2 +

1 − 0.8
0.8

=
−3.685 × 102(W/m2)

0.3 + 1.2 + 0.25
= −210.6 W/m2.

(iii) For coaxial spheres,we have

Ar,1 = 4πR2
1, Ar,2 = 4πR2

2

F1-2 = 1 since all radiation leaving surface 1 arrives at surface 2.

Then

Qr,2-1
Ar,2

= qr,2-1 =
σSB(T 4

2 − T 4
1 )(

R2

R1

)2 1 − εr,1

εr,1
+
(

R2

R1

)2

+
1 − εr,2

εr,2

=
−3.685 × 102(W/m2)

(1.2)2
1 − 0.8

0.8
+ (1.2)2 +

1 − 0.8
0.8

= −3.685 × 102(W/m2)
0.36 + 1.44 + 0.25

= −179.8 W/m2.

(iv) For a disk surrounded by a hemisphere, we have

Ar,1 = πR2
1, Ar,2 = 2πR2

2

F1-2 = 1 since all radiation leaving surface 1 arrives at surface 2.
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Then

Qr,2-1
Ar,2

= qr,2-1 =
σSB(T 4

2 − T 4
1 )

2
(

R2

R1

)2 1 − εr,1

εr,1
+ 2

(
R2

R1

)2

+
1 − εr,2

εr,2

=
−3.685 × 102(W/m2)

2 × 1 − 0.8
0.8

+ 2 +
1 − 0.8

0.8

= −3.685 × 102(W/m2)
0.5 + 2 + 0.25

= −134.0 W/m2.

COMMENT:
Note that, due to the change in the surface areas, the magnitude of the surface radiation heat flux decreases

as we move from the planar surface to the curved surfaces (resulting in an increase in surface area Ar,2).
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PROBLEM 4.22.FAM

GIVEN:
A hemispherical Joule heater (surface 1) is used for surface-radiation heating of a circular disk (surface 2).

This is shown in Figure Pr.4.22(a). In order to make an efficient use of the Joule heating, a hemispherical cap
(surface 3) is placed around the heater surface and is ideally insulated.

R1 = 5 cm, R2 = 5R1, T1 = 1,100 K, T2 = 500 K εr,1 = εr,2 = 1.
Assume that F1-2 corresponds to that from a sphere to a disk (i.e., assume that the upper hemisphere does

not see the disk).

SKETCH:
Figure Pr.4.22(a) shows the heater, the disk, and the reradiating surface.

Electrical Heater
(Surface 1)

Ideally
Insulated

Q3 = 0

Reradiating Surface,
Similar to Reflector

(Surface 3)

Surface Radiation
Heated Disk
(Surface 2)

Se,J
T1 , r,1 = 1

T2 , r,2 = 1

l = R2

R2
R1

�

�

Qr,1-2

Figure Pr.4.22(a) A Joule heater is used for surface-radiation heating of a disk. A reradiating hemisphere is used to
improve the heating rate.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine Qr,1-2 for the given conditions.
(c) Determine Qr,1-2 without the reradiator and compare the results with the results in (b).

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.4.22(b).

(qr,o)3 = Eb,3

(qr,o)2 = Eb,2(qr,o)1 = Eb,1

(Rr,F)2-3
(Rr,F)1-3

(Rr,F)1-2

(Rr,�)1 = 0 (Rr,�)2 = 0

Qr,1-2 Qr,1-2

Q3 = 0

T3

T1

Se,J
Eb,1

T2
Eb,2

Figure Pr.4.22(b) Thermal circuit diagram.

(b) Noting that (Rr,ε)1 = (Rr,ε)2 = 0, because εr,1 = εr,2 = 1, (4.60) applies to this three-surface enclosure with
one surface reradiating, i.e.,

Qr,1-2 =
σSB(T 4

1 − T 4
2 )

1

Ar,1F1-2 +
1

1
Ar,1F1-3

+
1

Ar,2F2-3

.
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Here we obtain F1-2 from Table 4.2, noting that R∗
2 = R2/l = 1, i.e.,

F1-2 =
1
2

[
1 − 1

(1 + R2/l)1/2

]
=

1
2

(
1 − 1

21/2

)
= 0.1464.

Then using the summation rule (4.33), we have

F1-1 + F1-2 + F1-3 = 1, F1-1 = 0 (planar surface)

or

F1-3 = 1 − F1-2 = 1 − 0.1464 = 0.8536.

To find F2-3, we use the summation rule again, i.e.,

F2-1 + F2-2 + F2-3 = 1, F2-2 = 0 (planar surface)

or

F2-3 = 1 − F2-1 = 1 − Ar,1

Ar,2
F1-2

= 1 − 2πR2
1

πR2
2

F1-2 = 1 − 2
25

× 0.1464 = 0.9883,

where we have used the reciprocity rule (4.34).
Now we use these numerical values to evaluate Qr,1-2, i.e.,

Qr,1-2 =
σSB(T 4

1 − T 4
2 )

1

2π(0.05)2(m2) × 0.1464 +
1

1
2π(0.05)2(m2) × 0.8536

+
1

π(0.25)2(m2) × 0.9883

=
5.67 × 10−8(W/m2-K4)[(1,100)4 − (500)4](K4)

1

0.0023(m2) +
1

74.58(1/m2) + 5.153(1/m2)

=
7.946 × 104(W/m2)

67.379(1/m2)
= 1,180 W.

(c) When the reradiating surface is not present, then the heat transfer between surface 1 and 2 is found from
Figure Pr.4.22(b), where the only resistance between the two surfaces is (Rr,F )1-2, i.e.,

Qk,1-2 =
Eb,1 − Eb,2

1
Ar,1F1-2

=
7.947 × 104(W/m2)

1
0.0023

(1/m2)
= 182.78 W.

COMMENT:
Note that the radiation heat transfer rate has increased by 6.6 folds, when the reradiating surface is used.
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PROBLEM 4.23.FAM

GIVEN:
A flat radiation heater is placed along a vertical wall to heat the passing pedestrians who may stop temporarily

and face the heater. The heater is shown in Figure Pr.4.23(i) and is geometrically similar to a full-size mirror.
The heater surface is at T1 = 600◦C and the pedestrians have a surface temperature of T2 = 5◦C. Assume that
the surfaces are opaque, diffuse, and blackbody surfaces (total emissivities are equal to one). Also assume that
both the heater and the pedestrian have a rectangular cross section with dimensions a = 50 cm and w = 170 cm
and that the distance between them is l = 40 cm, as shown in Figure Pr.4.6(ii).

SKETCH:
Figure Pr.4.23(a) shows the heater and the pedestrian and the idealized surface radiation geometry.

Pedestrian
  r,2 = 1
T2

Reradiating or
Open Surfaces

(i) Physical Model (ii) An Approximation

Qr,1-2

Qr,1-2

l
a

w

Heater
  r,1 = 1
T1

Pedestrian

Radiating Surface
(Heater)

T2,   r,2 = 1

T1,   r,1 = 1

∋
∋

∋

∋

Figure Pr.4.23(a)(i) Physical model of a radiant wall, pedestrian heater. (ii) Idealized model.

OBJECTIVE:
(a) Draw the thermal circuit diagram for a three-surface enclosure (including the surroundings as a blackbody
surface).
(b) Determine the net radiation heat transfer from the heater to the pedestrian Qr,1-2.
(c) Determine the net radiation heat transfer to the pedestrian, when a reradiating (i.e., ideally insulated) surface
is placed around the heater and pedestrian to increase the radiant heat flow Qr,1-2.

SOLUTION:
(a) A fictitious surface can be wrapped around the open air space between the pedestrian and the heater. This
fictitious surface is treated as an additional radiation surface (surface 3) and the problem becomes a three-surface
enclosure with diffuse, gray surfaces. For these blackbody three surfaces, the thermal circuit is presented in Figure
Pr.4.23(b).

 

Eb,1

= (q
r,o

)
1

T1
Q1

(Rr,F)1-2

Q
r,1-3

(R
r,

F
) 1-

3

Q
r,2-3(R

r,F )2-3

Eb,3  = (q
r,o

)
3

T3

Q3

T2
Q2

Q
r,1-2

Eb,2

= (q
r,o

)
2

Figure Pr.4.23(b) A three-surface blackbody enclosure. Radiation heat transfer flow to surface 2 from surface 1 and
when surface 3 is reradiating (Q3 = 0), heat flows indirectly from surface 1 to 2.
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(b) The surface-radiation heat transfer rate from surface 1 to surface 2 is found from Figure Pr.4.23(b) as

Qr,1-2 =
Eb,1 − Eb,2

(Rr,Σ)1-2
,

where, for the unity emissivities, we have

(Rr,Σ)1-2 =
1

Ar,1F1-2
.

The view factor F1-2 is obtained from Figure 4.11(b). For surfaces 1 and 2, w∗ = w/l = 1.7(m)/0.4(m) = 4.25,
a∗ = a/l = 0.5(m)/0.4(m) = 1.25. From Figure 4.11(b) we obtain F1-2 = 0.39. The area for surface 1 is
A1 = aw = 0.5(m) × 1.7(m) = 0.85 m2. Therefore

(Rr,Σ)1-2 =
1

0.85(m2) × 0.39
= 3.03 1/m2

The heat transfer rate is

Qr,1-2 =
σSB(T 4

1 − T 4
2 )

(Rr,Σ)1-2

=
5.67 × 10−8(W/m2-K4) × [

873.154(K4) − 278.154(K4)
]

3.03(1/m2)
= 10,765 W.

(c) If surface 3 is perfectly insulated, Q3 = 0 (surface 3 is called a reradiating surface). In this case, the overall
thermal resistance is found from Figure Pr.4.23(b) as

(Rr,Σ)1-2 =
1

1
1

Ar,1F1-2

+
1

1
Ar,1F1-3

+
1

Ar,2F2-3

.

The view-factor F1-2 was obtained above. The view factors F1-3 and F2-3 need to be determined. From the
summation rule (4.33), we have

F1-1 + F1-2 + F1-3 = 1.

Since F1-1 = 0, we have

F1-3 = 1 − F1-2 = 1 − 0.39 = 0.61.

From the reciprocity rule and noting that Ar,2 = Ar,1, F2-3 = F1-3 = 0.61. Then, Ar,2 = Ar,1 = 0.85 m2 and we
have

(Rr,Σ)1-2 =
1

1
1

0.85(m2) × 0.39

+
1
2

0.85(m2) × 0.61

= 1.69 1/m2.

Finally, the heat transfer rate is

Qr,1-2 =
σSB(T 4

1 − T 4
2 )

(Rr,Σ)1-2

=
5.67 × 10−8(W/m2-K4)

[
873.154(K4) − 278.154(K4)

]
1.69(1/m2)

= 19,300 W.

COMMENT:
Note that by placing the reradiating surface, the heat transfer from the heater to the pedestrian has nearly

doubled.
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PROBLEM 4.24.FAM

GIVEN:
A source for thermal irradiation is found by a Joule heater placed inside a solid cylinder of radius R1 and

length l. Then a hollow cylinder of radius R2 and length l is placed coaxially around it with this outer cylinder
and the top part of the opening ideally insulated. This is shown in Figure Pr.4.24(a) with the radiation leaving
through the opening at the bottom spacing between the cylinders (surface 2). This results in surface 1 being the
high temperature surface with direct and reradiation exchange with surface 2.

T2 = 400 K, εr,1 = 0.8, Ṡe,J = 1,000 W, R1 = 1 cm, R2 = 5 cm, l = 10 cm.

SKETCH:

Figure Pr.4.24(a) shows the heated inner cylinder and the reradiating and the opening surfaces.

Se,J

l R1
R2 Radiation Enclosure

(Volume between
Cylinders and Top 
and Bottom Surfaces)

Surface 3'
Surface 3

Surface 3''

Q3 = 0 (Reradiating)
Solid Cylinder
with Embedded
Joule Heater

T1 , r,1

T2 , r,2 = 1

(Radiation Heat
Transfer for

Process Heating)

Q2

∋
∋

Figure Pr.4.24(a) Surface 1 is heated by Joule heating and through direct and reradiation allows for radiation to leave
for surface 2.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the view factors F1′-2, F1-3, and F2-3, using Figures 4.11(d) and (e), and the designations of Figure
Pr.4.24(a).
(c) Determine the heater surface temperature T1.

SOLUTION:
(a) Figure Pr.4.24(b) shows the thermal circuit diagram. Both direct and reradiating radiation are shown.

Q2

�Qr,2

(qr,o)3 = Eb,3

(Rr,F)3-2(Rr,F)1-3

(Rr,F)1-3

(Rr,  )1

Qr,1

(qr,o)2

T2 , Eb,2

T1 , Eb,1

(Rr,  )2

Se,J

T3

Re-Radiating 
Surface

�

�

Figure Pr.4.24(b) Thermal circuit diagram.
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(b) Using Figure Pr.4.24(b), and (4.60), we have

Qr,1 = Ṡe,J

=
σSB(T 4

1 − T 4
2 )(

1 − εr

Arεr

)
1

+
1

Ar,1F1-2 +
1

1
Ar,1F1-3

+
1

Ar,2F2-3

+
(

1 − εr

Arεr

)
2

.

Here we have εr,2 = 1, and also

Ar,1 = 2πR1l, Ar,2 = π(R2
2 − R2

1).

For the view factors, we begin by using Figure 4.11(e). We define surface 3
′
[see Figure Pr.4.24(a)] and the inner

surface of the outer cylinder and obtain F1-3′ by using the reciprocity rule (4.34), i.e.,

F1-3′ =
Ar,3′

Ar,1
F3′-1.

To obtain F3′-1, we use Figure 4.11(e) with

1
R∗ =

R1

R2
=

0.01(m)
0.05(m)

= 0.2

l

R2
=

0.10(m)
0.05(m)

= 2

and then we obtain F3′-1 � 0.15.
To obtain F1-3 we use the summation rule (4.33) for surface 1, i.e.,

F1-1 + F1-3′ + 2F1-3′′ = 1,

where we have noted that the top (3
′′
) and bottom (2) surfaces between the two cylinders are identical. Here

F1-1 = 0, and we obtain

F1-2 = F1-3′′ =
1 − F1-3′

2
=

1 − Ar,3′

Ar,1
F3′-1

2

=
1 − R2

R1
F3′-1

2

=
1 − 0.05(m)

0.01(m)
× 0.15

2
= 0.125.

Then

F1-3 = F1-3′ + F1-3′′ = 0.75 + 0.125 = 0.875 view factor between surface 1 and the reradiating surfaces 3.

To determine, F2-3, we use the summation rule for surface 2, i.e.,

F2-2 + F2-1 + F2-3 = 1
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or

F2-3 = 1 − F2-2 − F2-1
= 1 − F2-1

= 1 − Ar,1

Ar,2
F1-2

= 1 − 2πR1l

π(R2
2 − R2

1)
0.125

= 1 − 2π × 0.01 × 0.1
π(0.052 − 0.012)

× 0.125

= 0.8958.

(c) We now solve the energy equation for T1, i.e.,

T 4
1 = T 4

2 +
Ṡe,J

σSB



(

1 − εr

Arεr

)
1

+
1

Ar,1F1-2 +
1

1
Ar,1F1-3

+
1

Ar,2F2-3




T 4
1 = (400)4(K4) +

1,000(W)
5.67 × 10−8(W/m2-K4)

×


 1 − 0.8

2π × 0.01(m) × 0.1(m) × 0.8
+

1

2π × 0.01 × 0.1(m2) × 0.125 +
1(
1

2π × 0.01 × 0.1(m2) × 0.875

) +
1(
1

π(0.052 − 0.012)(m2) × 0.895

)



= 2.560 × 1010(K4) + 1.76 × 1010(K4-m2) ×
39.79(1/m2) +

1

7.854 × 10−4(m2) +
1

1.819 × 102(m2)
+

1
1.482 × 102(m2)




T 4
1 = 2.56 × 1010(K4) + 1.76 × 1010(K4) ×

(
39.79 +

1
7.854 × 10−4 + 1.225 × 10−2

)
= [2.560 × 1010 + 1.76 × 1010 × (39.79 + 76.71)](K4)

or

T1 = 1,200 K.

COMMENT:
Note that this is a rather large temperature for the inner cylinder. This is below the melting temperature of

oxide ceramics. Note that reradiation by surfaces 3
′
and 3

′′
reduces T , significantly, by reducing the view-factor

resistance from 1/Ar,1F1-2 to what was used above.
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PROBLEM 4.25.FUN.S

GIVEN:
Consider three opaque, diffuse, and gray surfaces with temperatures T1 = 400 K, T2 = 400 K, and T3 = 300

K, with surface emissivities εr,1 = 0.2 and εr,2 = εr,3 = 0.5, and areas Ar,1 = Ar,2 = Ar,3 = 1 m2.

OBJECTIVE:
(a) For (i) surfaces 1 and 2 forming a two-surface enclosure (i.e., F1-2 = 1), and (ii) surfaces 1, 2, and 3 forming a
three-surface enclosure (assume a two-dimensional equilateral triangular enclosure), is there a net radiation heat
transfer rate Qr,1-2 between surfaces 1 and 2?
(b) If there is a nonzero net heat transfer rate, what is the direction of this heat transfer?
(c) Would this heat transfer rate change if T3 = 500 K?
(d) What is the temperature T3 for which Qr,1-2 = 0?

SOLUTION:
(a)(i) Figure Pr.4.25(a) shows the thermal circuit diagram for surfaces 1 and 2 forming a two-surface enclosure.
In this case, the net radiation heat transfer rate is

Qr,1-2 =
σSB(T 4

1 − T 4
2 )

(Rr,Σ)1-2
.

Since T1 = T2, there is a zero net heat transfer between surfaces 1 and 2, regardless of the value of the surface
emissivities.

T1 Eb,1 (Rr,  )1

(qr,o)1

Qr,1
(qr,o)2

T2Eb,2(Rr,  )2

�Qr,2Qr,1-2

(Rr,F)1-2

Q1 Q2

∋ ∋

Figure Pr.4.25(a) Thermal circuit diagram for the two-surface enclosure.

(ii) Figure Pr.4.25(b) shows the thermal circuit diagram for surfaces 1, 2 and 3 forming a three-surface enclosure.
Then, the net radiation heat transfer rates on surfaces 1, 2 and 3 are
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Figure Pr.4.25(b) Thermal circuit diagram for the three-surface enclosure.
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Qr,1 =
Eb,1 − (qr,o)1

1 − εr,1

εr,1Ar,1

=
(qr,o)1 − (qr,o)2

1
F1-2Ar,1

+
(qr,o)1 − (qr,o)3

1
F1-3Ar,1

Qr,2 =
Eb,2 − (qr,o)2

1 − εr,2

εr,2Ar,2

=
(qr,o)2 − (qr,o)1

1
F2-1Ar,2

+
(qr,o)2 − (qr,o)3

1
F2-3Ar,2

Qr,3 =
Eb,3 − (qr,o)3

1 − εr,3

εr,3Ar,3

=
(qr,o)3 − (qr,o)2

1
F3-1Ar,3

+
(qr,o)3 − (qr,o)2

1
F3-2Ar,3

.

Note that, even with Eb,1 = Eb,2, since εr,1 	= εr,2, there may be a non-zero net heat transfer rate Qr,1-2
between surfaces 1 and 2. The view factors and areas are all the same, i.e., F1-2 = F1-3 = F2-3 = 0.5 and
Ar,1 = Ar,2 = Ar,3 = 1 m2. The surface resistances then become

(Rr,ε)1 =
1 − εr,1

εr,1Ar,1
= 4

(Rr,ε)2 =
1 − εr,2

εr,2Ar,2
= 1

(Rr,ε)3 =
1 − εr,3

εr,2Ar,3
= 1.

Therefore, the equations for the net heat transfer rates become

Eb,1 − (qr,o)1
4

=
(qr,o)1 − (qr,o)2

2
+

(qr,o)1 − (qr,o)3
2

Eb,2 − (qr,o)2
1

=
(qr,o)2 − (qr,o)1

2
+

(qr,o)2 − (qr,o)3
2

Eb,3 − (qr,o)3
1

=
(qr,o)3 − (qr,o)1

2
+

(qr,o)3 − (qr,o)2
2

.

Upon re-arranging, we have

1.25(qr,o)1 − 0.5(qr,o)2 − 0.5(qr,o)3 = 0.25Eb,1

−0.5(qr,o)2 + 2(qr,o)2 − 0.5(qr,o)3 = Eb,2

−0.5(qr,o)1 − 0.5(qr,o)2 + 2(qr,o)3 = Eb,3,

where Eb,1 = Eb,2 = 1,451.52 W/m2 and Eb,3 = 459.27 W/m2.
Solving the linear system of equations above (e.g., using SOPHT) we obtain, (qr,o)1 = 1,090.7 W/m2, (qr,o)2 =
1,198.95 W/m2, and (qr,o)3 = 802.047 W/m2.
Therefore, the net heat transfer rate between surfaces 1 and 2 is

Qr,1-2 =
(qr,o)1 − (qr,o)2

1
F1-2Ar,1

=
(1,090.7 − 1,198.95)(W/m2)

2(1/m2)

= −54.13 W.

(b) The negative sign indicates that heat is transferred from surface 2 to surface 1, i.e., from the larger to the
smaller one.

(c) For T3 = 500 K, we have Eb,3 = 3,543.75 W/m2, and solving the new system of linear equations, we obtain
(qr,o)1 = 2,212.33 W/m2, (qr,o)2 = 1,984.09 W/m2 and (qr,o)3 = 2,820.98 W/m2, and the net heat transfer rate
between surfaces 1 and 2 becomes

Qr,1-2 =
(2,212 − 1,984)(W/m2)

2(1/m2)
= 114.1 W.

Note that the heat transfer now occurs from surface 1 to surface 2, i.e., from the smaller to the larger emissivity.
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(d) For Qr,1-2 = 0, we need T3 = 400 K. In this case (qr,o)1 = (qr,o)2 = (qr,o)3 = Eb,1 = Eb,2 = Eb,3 = 1,452
W/m2.

COMMENT:
When the temperatures are equal, but emissivities or areas are not, the presence of a third surface results in

a net radiation heat transfer between these surfaces.
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PROBLEM 4.26.FAM

GIVEN:
Surface-radiation absorption is used to melt solid silicon oxide powders used for glass making. The heat is

provided by combustion occurring over an impermeable surface 1 with dimensions a = w = 1 m, as shown in
Figure Pr.4.26. The desired surface temperature T1 is 1,600 K. The silicon oxide powders may be treated as a
surface 2, with the same area as the radiant heater, at a distance l = 0.25 m away from the heater, and at a
temperature T2 = 873 K. The surroundings are at T3 = 293 K. Assume that all surfaces are ideal blackbody
surfaces.

SKETCH:
Figure Pr.4.26(a) shows the radiating surface 1 heating surface 2 in a three-surface enclosure.

Silicon Oxide
T2 = 873 K

Radiant Heater
T1 = 1,600 K

Flame
l

a

w

Ambient
T3 = 293 K

Figure Pr.4.26(a) Surface radiant heater heated by a flame over it and forming a three-surface radiation enclosure.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the net radiation heat transfer to the silicon oxide surface.

SOLUTION:
(a) The thermal circuit for a three-surface enclosure is shown in Figure Pr.4.26(b).
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Figure Pr.4.26(b) Graybody thermal circuit diagram.

(b) Since all the surfaces are blackbodies (εr,i = 1) the surface-grayness resistances are zero and the radiosities
become equal to the blackbody emissive powers. The thermal circuit then reduces to the one shown in Figure
Pr.4.26(c). The net radiation heat transfer rate leaving surface 2 is

Qr,2 = Qr,2-1 + Qr,2-3

=
Eb,2 − Eb,1

(Rr,F )2-1
+

Eb,2 − Eb,3

(Rr,F )2-3
.
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Figure Pr.4.26(c) Blackbody thermal circuit diagram.

The view-factor resistances are

(Rr,F )2-1 =
1

Ar,2F2-1
, (Rr,F )2-3 =

1
Ar,2F2-3

.

The view factor between surfaces 2 and 1 can be evaluated from Figure 4.11(b). From the dimensions of the
two plates and the distance separating them, w∗ = w/l = 1(m)/0.25(m) = 4, a∗ = a/l = 1(m)/0.25(m) = 4.
The view factor is then approximately F1-2 = 0.63. Using the reciprocity rule (4.34), F2-1Ar,2 = F1-2Ar,1 and as
Ar,1 = Ar,2, F2-1 = F1-2 = 0.63. Using the summation rule for surface 2 we have F2-1 + F2-2 + F2-3 = 1. Since
F2-2 = 0 (because surface 2 is flat), we have F2-3 = 1 − F2-1 = 0.37.
Then, the view-factor resistances become

(Rr,F )2-1 =
1

Ar,2F2-1
=

1
1 (m) × 1 (m) × 0.63

= 1.59 1/m2

(Rr,F )2-3 =
1

Ar,2F2-3
=

1
1 (m) × 1 (m) × 0.37

= 2.70 1/m2
.

Finally, the net heat transfer rate leaving surface 2 is

Qr,2 =
σSB

(
T 4

2 − T 4
1

)
(Rr,F )2-1

+
σSB

(
T 4

2 − T 4
3

)
(Rr,F )2-3

=
5.67 × 10−8

(
W/m2-K4

) [
8734

(
K4
)− 1,6004

(
K4
)]

1.59
(
1/m2

) +

5.67 × 10−8
(
W/m2-K4

) [
8734

(
K4
)− 2934

(
K4
)]

2.70
(
1/m2

)
= −213,353 (W) + 12,031 (W) = −201,322 W.

COMMENT:
One of the difficulties in operating an oven like this is stabilizing the flame over of the ceramic plate. One

alternative is to use a porous radiant burner. However, an impermeable ceramic plate prevents the combustion
products from contaminating the glass.
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PROBLEM 4.27.FUN

GIVEN:
Surface-radiation emission can be redirected to a receiving surface using reradiating surfaces. Figure Pr.4.27(a)

renders such a redirection design using a reradiating surface 3. Surface 3 is ideally insulated and is treated as a
single surface having a uniform temperature T3. Surface 1 has a temperature T1 higher than that of surface 2,
T2.

R1 = 25 cm, R2 = 25 cm, F1-2 = 0.1, εr,1 = 1.0, εr,2 = 1.0, T1 = 900 K, T2 = 400 K.
Note that since surfaces 1 and 2 are blackbody surfaces, (qr,o)1 = Eb,1 and (qr,o)2 = Eb,2.

SKETCH:
Figure Pr.4.27(a) shows the two blackbody, surface-radiation heat transfer surfaces, and the reradiating third

surface.

Direct

Redirection of Radiation
Using a Reradiating Surface

Reradiation

Surface 3

Qr,1-2

Q3 = 0
Qr,1-2

R1

R2

T2 , r,2

T1 , r,1

∋

∋

Figure Pr.4.27(a) Two blackbody surfaces that are exchanging surface-radiation heat and are completely enclosed by a
reradiation surface.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine Qr,1-2 for the given conditions.
(c) Compare this with Qr,1-2 without reradiation.
(d) Show the expression for Qr,1-2 for the case of F1-2 = 0 and comment on this expression.

SOLUTION:
(a) The thermal circuit diagram for surface radiation from surface 1 to surface 2, with the presence of the rera-
diating surface 3, is shown in Figure Pr.4.27(b).

(b) The net surface radiation between surface 1 and 2 is determined from Figure 4.27(b) or from (4.60). Then
for the case of εr,1 = εr,2 = 1, we have

Qr,1-2 = Qr,1 =
Eb,1 − Eb,2

1

Ar,1F1-2 +
1

1
Ar,1F1-3

+
1

Ar,2F2-3

,

where

Ar,1 = Ar,2 = πR2 = π(0.25)2(m2)
= 0.1963 m2.

We use the summation rule (4.33) to find

F1-3 = 1 − F1-1 − F1-2 = 1 − 0 − 0.1 = 0.9

F2-3 = 1 − F2-2 − F2-1 = 1 − F2-2 − Ar,1F1-2
Ar,2

= 0.9.
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Q3 = 0
T3

Q1

Q2T2

T1

(qr,o)2 = Eb,2

(qr,o)3 = Eb,3

(Rr,F)1-2

(Rr,F)1-3

(Rr,F)3-1

(qr,o)1 = Eb,1

Figure Pr.4.27(b) Thermal circuit diagram.

Qr,1-2|with reradiation =
5.67 × 10−8(W/m2-K4) × (9004 − 4004)(K4)

0.1963(m3) × 0.1 +
1

1
0.1963(m3) × 0.9

+
1

0.1963(m3) × 0.9



−1

=
3.575 × 104(W/m2)

[0.01963(m3) + 0.08834(m2)]−1

= 3.860 kW.

(c) For Qr,1-2|no reradiation, we have from Figure Pr.4.27(b)

Qr,1-2|no reradiation =
Eb,1 − Eb,2

1
Ar,1F1-2

=
3.575 × 104(W/m2)

[0.01963(m2)]−1

= 0.7018 kW.

This is substantially less than the one with reradiation, i.e., thus it is only 18.18% of (b).

(d) For the case of F1-2 → 0, we have F1-3 → 1, F2-3 → 1. Note that we still assume that we have a three-surface
enclosure. Then (4.60) becomes

Qr,1-2 = (Eb,1 − Eb,2)
[

1
Ar,1F1-3

+
1

Ar,1F2-3

]−1

= (Eb,1 − Eb,2)
Ar,1F1-3

2

=
Ar,1

2
(Eb,1 − Eb,2) for F1-2 → 0.

Examining Figure Pr.4.27(b) shows that for (Rr,F )1-2 → ∞, the radiation is completely transferred by reradia-
tion, subject to two view-factor resistances.

COMMENT:
The reradiating surface 3 does facilitate surface-radiation heat transfer between surfaces 1 and 2, but there

is a finite geometrical resistance associated with this participation. Note that we have assumed a three-surface
enclosure as we allowed F1-2 → 0, which also allowed for surface radiation heat transfer. In practice, as F1-2 → 0,
these will only by a two-surface enclosure.
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PROBLEM 4.28.FAM

GIVEN:
Fire barriers are used to temporarily protect spaces adjacent to fires. Figure Pr.4.28 shows a suspended fire

barrier of thickness L and effective conductivity 〈k〉 (and 〈ρ〉 and 〈cp〉) subjected to a flame irradiation (qr,i)f .
The barrier is a flexible, wire-reinforced mat made of a ceramic (high melting temperature, such as ZrO2) fibers.
The barrier can withstand the high temperatures resulting from the flow of (qr,i)f into the mat until, due to
thermal degradation of the fibers and wires, it fails. In some cases the barrier is actively water sprayed to delay
this degradation.

The transient conduction through the mat, subject to a constant (qr,i)f , can be treated analytically up to
the time that thermal penetration distance δα reaches the back of the mat x = L. This is done by using the
solution given in Table 3.4 for a semi-infinite slab, and by neglecting any surface radiation emission and any
surface convection. Assume that these simplifications are justifiable and the transient temperature T (x, t) can
then be obtained, subject to a constant surface flux qs = (qr,i)f and a uniform initial temperature T (t = 0).

L = 3 cm, 〈k〉 = 0.2 W/m-K, 〈ρ〉 = 600 kg/m3, cp = 1,000 J/kg-K, (qr,i)f = −105 W/m2, T (t = 0) = 40◦C.

SKETCH:
Figure Pr.4.28 shows the suspended fire-barrier mat.

Fire

(qr,i)f

L

T(t = 0)

x
Suspended
Fire Barrier

Protected
Space

k  ,  �  ,  cp

Figure Pr.4.28 A fire barrier is used to protect a space adjacent to a fire.

OBJECTIVE:
(a) Determine the elapsed time t for the thermal penetration using (3.148).
(b) Determine the surface temperature T (x = 0, t) at this elapsed time.
(c) Using the melting temperature of ZrO2 in Figure 3.8, would the mat disintegrate at this surface?

SOLUTION:
(a) Using the thermal penetration depth given by (3.148), we have

δα = L = 3.6(αt)1/2, α =
〈k〉

〈ρ〉〈cp〉
α =

0.2(W/m-K)
600(kg/m3) × 1,000(J/kg-K)

= 3.333 × 10−7 m2/s.

Solving for t, we have

t =
L2

(3.6)2α
=

(0.03)2(m2)
(3.6)2 × 3.333 × 10−7(m2/s)

= 208.3 s.
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(b) Using Table 3.4, for qs = (qr,i)f , and for x = 0 we have the transient surface temperature given by

T (x = 0, t) = T (t = 0) − (qr,i)f (4αt)1/2

π1/2〈k〉

= 40(◦C) − (−105)(W/m2) × [4 × 3.333 × 10−7(m2/s) × 208.3(s)]1/2

π1/2 × 0.2(W/m-K)
= 40(◦C) + 4,701(◦C)
= 4,741◦C.

(c) From Table 3.9, for ZrO2, we have a melting temperature of Tlg = 2,715◦C. We expect the mat to melt (and
sublimated) at this surface.

COMMENT:
The flame irradiation is readily estimated using (4.62), with the known relevant thermal-chemical-physical

properties of the flame. Here we did not include the heat of melting (and sublimation) of the mat materials.
Inclusion of these reduces the surface temperature. Also by soaking the mat with water, the temperature is
further reduced (due to evaporation energy conversion).
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PROBLEM 4.29.FAM

GIVEN:
Using reflectors (mirrors) to concentrate solar irradiation allows for obtaining very large (concentrated) irra-

diation flux. Figure Pr.4.29 shows a parabolic concentrator that results in concentration irradiation flux (qr,i)c,
which is related to the geometric parameters through the energy equation applied to solar energy, i.e.,

(qr,i)swL = (qr,i)cDL,

where D is the diameter, DL is the projected cross-sectional area of the receiving tube, and wL is the projected
concentrator cross-sectional area receiving solar irradiation.

The concentrated irradiation is used to produce steam from saturated (at T = Tlg) water, where the water
mass flow rate is Ṁl. The absorptivity of the collector is αr,c and its emissivity εr,c is lower (nongray surface).
In addition to surface emission, the collector loses heat to the ambient through surface convection and is given
as a prescribed Qku. Assume that collector surface temperature is Tc = Tlg.

(qr,i)s = 200 W/m2, Qku = 400 W, Tc = Tlg = 127◦C, αr,c = 0.95, εr,c = 0.4, D = 5 cm, w = 3 m, L = 5 m.
Use Table C.27 for properties of saturated water.

SKETCH:
Figure Pr.4.29(a) shows the concentration and the steam producing collector.

Steam, Ml

Solar Irradiation
(qr,i)s

(qr,i)s

Coaxial
Tube, Tc

(qr,i)c

Qku

Parabolic
Concentrator
(Reflector)

Control Volume
Around Collector

L

w

Se,� + Se, + Slg

Water
Turning

to
Steam

Water, Ml

∋

Figure Pr.4.29(a) A concentrator-solar collector system used for steam production.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the stream production rate Ṁl.

SOLUTION:
(a) Figure Pr.4.29(b) shows the thermal circuit diagram. The only surface heat transfer is the surface convection
and there are three energy conversion mechanisms (because the surface is a nongray surface, radiation absorption
and emission are treated as energy conversions).

Se,� = DL �r,c (qr,i)c

Qku

Tc

Ac

Se,   = � � DL   r,c �SB Tc
4

Slg = � Ml �hlg

�
�

Figure Pr.4.29(b) Thermal circuit diagram.

(b) The energy equation from Figure Pr.4.29(b), and similarly from (4.60), becomes

Q|A,c = Ṡr,α + Ṡr,ε + Ṡlg

Qku = DLαr,c(qr,i)c − πDLεr,cσSBT 4
c − Ṁl∆hlg.
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Note that for the irradiation we have used the projected area DL and for the emission we have used the surface
area πDL. Solving for Ṁl, and using DL(qr,i)c = wL(qr,i)s, we have

Ṁl =
αr,cwL(qr,i)s − πDLεr,cσSBT 4

c − Qku

∆hlg
.

From Table C.27, at T = (273.15 + 127)(K) = 400.15 K, we have

∆hlg = 2.183 × 106 J/kg.

Using the numerical values, we have

Ṁl =
0.95 × 3(m) × 5(m) × 200(W/m2) − π × 0.05(m) × 0.4 × 5(m) × 5.67 × 10−8(W/m2-K4) × (400.15)4(K)4 − 400(W)

2.183 × 106(J/kg)

=
(2,850 − 456.8 − 400)(W)

2.183 × 106(J/kg)
= 9.131 × 10−4 kg/s = 0.9131 g/s.

COMMENT:
Note that from Figure 4.18, the value we used for (qr,i)s is close to the annual average over the earth surface,

i.e., 〈(qr,i)s〉A = 172.4 W/m2. The seasonal and daily peaks in (qr,i)s lead to much larger instantaneous stream
production rates.
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PROBLEM 4.30.FAM

GIVEN:
Pulsed lasers may be used for the ablation of living-cell membrane in order to introduce competent genes, in

gene therapy. This is rendered in Figure Pr.4.30(a). The ablation (or scissors) laser beam is focused on the cell
membrane using a neodymium yttrium aluminum garnet (Nd:YAG) laser with λ = 532 nm = 0.532 µm, and a
focus spot with diameter D = 500 µm. There is a Gaussian distribution of the irradiation across D, but here we
assume a uniform distribution.

Assume a steady-state heat transfer. Although the intent is to sublimate Ṡsg the targeted membrane region
for a controlled depth (to limit material removal to the thin, cell membrane), the irradiation energy is also used in
some exothermic chemical reaction Ṡr,c and in some heat losses presented by Q (this includes surface emission).

D = 500 nm, L = 10 nm, ρ = 2 × 103 kg/m3, (qr,i)l = 1010 W/m2, ∆hsg = 3 × 106 J/kg, Ṡr,c = −7 × 10−4

W, Q = 3 × 10−4 W, αr = 0.9.

SKETCH:
Figure Pr.4.30(a) shows the ablating membrane.

L

D

10 �m

Ablation (Scissor Beam)

Laser Ablation of Living Stem Cells

Competent
Gene

Deleting
Laser Beam

Laser Tweezer

Cut Volume:

Faulty
Gene

Organelles

Membrane

Laser Tweezer
(Holder Beam)

(qr,i)l 

Figure Pr.4.30(a) A living cell is ablated at a region on its membrane, for introduction of competent genes.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the required duration of the laser pulse ∆t, for the given conditions.

SOLUTION:
(a) The thermal circuit diagram is given in Figure Pr.4.30(b). Under steady state, the irradiation energy is used
for sublimation, endothermic chemical reaction, and heat losses.

Q

T
Se,� + Ssg + Sr,c

Figure Pr. 4.30(b) Thermal circuit diagram.

(b) From Figure Pr.4.30(b), and similarly from (4.60), the energy equation for the targeted volume is

Q|A = Q = Ṡe,α + Ṡsg + Ṡr,c
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or

Q = αr
πD2

4
(qr,i)l − Ṁ∆hsg + Ṡr,c

= αr
πD2

4
(qr,i)l − ρ

πD2L

4∆t
∆hsg + Ṡr,c

Solving for ∆t, we have

1
∆t

=
αr

πD2

4
(qr,i)l + Ṡr,c − Q

ρ
πD2L

4
∆hsg

=
0.9 × π(5 × 10−7)2(m2)

4
× 1010(W/m2) − 7 × 10−4(W) − 3 × 10−4(W)

2 × 103(kg/m3) × π × (5 × 10−7)2(m2) × 10−8(m) × 3 × 106(J/kg)
4

=
1.767 × 10−3(W) − 7 × 10−4(W) − 3 × 10−4(W)

1.178 × 10−11

∆t = 1.536 × 10−8 s = 15.36 ns.

COMMENT:
Due to lack of specific data, we have estimated the heat of sublimation based on a physical bond similar to

water.
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PROBLEM 4.31.FUN

GIVEN:
When thermal radiation penetrates a semitransparent medium, e.g., a glass plate, reflection, absorption, and

transmission occur at the interface between two adjacent media along the radiation path, e.g., each of the glass/air
interfaces for a glass plate surrounded by air. These multiple absorptions and reflections result in an overall at-
tenuation, absorption, and reflection of the radiation incident in the glass plate. These effects are modeled as
overall transmittance, absorptance, and emittance. The glass plate is then assumed diffuse and gray.

Consider a glass plate bounded by its two infinite, parallel surfaces, as shown in Figure Pr.4.31. The glass
plate has a transmittance τr,2 = 0.1 and an absorptance αr,2 = 0.7. Its temperature T2 is assumed uniform across
the thickness. The surfaces are opaque, diffuse, and gray with total emissivity εr,1 = εr,3 = 0.5.

SKETCH:
The semi-transparent layer is shown in Figure Pr.4.31, along with the various radiation flux terms.

(qr,i)3

Q3

Q2

L
w

(qr,i)1

(qr,o)a

Surface a

Opaque Surface 3

Opaque Surface 1

Surface b

Semitransparent
Medium, T2

(qr,o)b

ρr,3(qr,i)3

ρr,1(qr,i)1

  r,3Eb,3

  r,1Eb,1

(qr,o)3

(qr,i)a
ρr,2(qr,i)a

ρr,2(qr,i)b

  r,2Eb,2

  r,2Eb,2

τr,2(qr,i)b

τr,2(qr,i)a

αr,2(qr,i)a

αr,1(qr,i)1

αr,2(qr,i)b

(qr,i)b

(qr,o)1

Q1

  r,2 , τr,2 , αr,2

  r,2 , τr,2 , αr,2

  r,3 , T3

  r,1 , T1

αr,2(qr,i)2

∋
∋

∋

∋∋

∋

∋ ∋

Figure Pr.4.31 Radiative heat transfer across a glass plate.
The glass is placed between two parallel solid surfaces.

OBJECTIVE:
(a) Show that the net heat transfer by surface radiation from both sides of the glass plate is given by

Qr,a

Ar,2
=

1
ρr,2 (1 − ζ2)

{
[ρr,2(1 − ζ2) − 1](qr,o)a + ζ(qr,o)b + (1 − ζ)εr,2

}
Qr,b

Ar,2
=

1
ρr,2 (1 − ζ2)

{
[ρr,2(1 − ζ2) − 1](qr,o)b + ζ(qr,o)a + (1 − ζ)εr,2

}
,

where ζ = ρr,2/τr,2.
(b) Write a system of equations that would allow for the solution of the problem and identify the set of variables
that are being solved for and the number of variables that need to be known.
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(c) If there is no other heat transfer from the glass plate, write the energy equation to be solved the glass plate
temperature T2 and write the expression for T2.
(d) Compare the results of this problem with the results of Problem Pr.4.31. Is there an analogy between the
transmittance of the glass plate and the porosity of the screen?

SOLUTION:
(a) A radiation balance at any surface gives

Qr

A
= qr,o − qr,i.

For surface b of the glass plate, the radiosity (qr,o)b is given by

(qr,o)b = τr,2(qr,i)a + ρr,2(qr,i)b + εr,2Eb,2.

Analogously, the radiosity for surface a is given by

(qr,o)a = τr,2(qr,i)b + ρr,2(qr,i)a + εr,2Eb,2.

Solving for the irradiation (qr,i)a, we have

(qr,i)a =
(qr,o)a

ρr,2
− εr,2Eb,2

ρr,2
− τr,2

ρr,2
(qr,o)b.

Substituting this into the equation for (qr,o)b and rearranging, we have

(qr,o)b =
τr,2

ρr,2
(qr,o)a +

(
ρr,2 −

τ2
r,2

ρr,2

)
(qr,0)b +

(
1 − τr,2

ρr,2

)
εr,2Eb,2.

Solving for (qr,o)b, we obtain

(qr,o)b =
1

ρr,2

(
1 − τ2

r,2

ρ2
r,2

) [
(qr,o)b − τr,2

ρr,2
(qr,o)a −

(
1 − τr,2

ρr,2

)
εr,2Eb,2

]
.

Then, substituting this expression into the expression for Qr,b/A, we finally obtain

Qr,b

A
=

1
ρr,2(1 − ζ2)

{[ρr,2(1 − ζ2) − 1](qr,o)b + ζ(qr,o)a + (1 − ζ)εr,2Eb,2}

where, ζ = τr,2 / ρr,2.
By symmetry, for surface a we obtain

Qr,a

A
=

1
ρr,2(1 − ζ2)

{[ρr,2(1 − ζ2) − 1](qr,o)a + ζ(qr,o)b + (1 − ζ)εr,2Eb,2}.

(b) The solution would require energy equations for all surfaces and relations for radiation exchange between the
surfaces.
Surface 1:

Qr,b

Ar,1
=

1
ρr,2

[εr,1Eb,1 − (1 − ρr,1)(qr,o)1]

Qr,1-b
Ar,1

= (qr,o)1 − (qr,o)b

−Q1 = Qr,1 = Qr,1-b
Eb,1 = σSBT 4

1 .
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Surface 3:

Qr,3

Ar,3
=

1
ρr,3

[εr,3Eb,3 − (1 − ρr,3)(qr,o)3]

Qr,3-a
Ar,3

= (qr,o)3 − (qr,o)a

−Q3 = Qr,3 = Qr,3-a
Eb,3 = σSBT 4

3 .

Surface 2:

Qr,b

Ar,2
=

1
ρr,2(1 − ζ2)

{[ρr,2(1 − ζ2) − 1](qr,o)b + ζ(qr,o)a + (1 − ζ)εr,2Eb,2}
Qr,a

Ar,2
=

1
ρr,2(1 − ζ2)

{[ρr,2(1 − ζ2) − 1](qr,o)a + ζ(qr,o)b + (1 − ζ)εr,2Eb,2}

Qr,a-3 = −Qr,3-a
Qr,b-1 = −Qr,1-b
−Q2 = Qr,b + Qr,a

Qr,b = −Qr,b-1
Qr,a = −Qr,a-3
Eb,2 = σSBT 4

2 .

The unknowns are,

T1, T2, T3, Q1, Q2, Q3, Qr,1, Qr,2, Qr,3, Qr,1-b, Qr,b-1, Qr,3-a, Qr,a-3,
Eb,1, Eb,2, Eb,3, (qr,o)1, (qr,o)a, (qr,o)b, (qr,o)3

There are 20 unknowns and 17 equations. Therefore, 3 unknowns need to be specified. These could be, for
example, the temperatures T1 and T3 and the heat transfer rate Q2 could be set to zero.

(c) Using the expressions for (qr,o)a and (qr,o)b in the energy equation for the glass plate, we obtain

− Q2

Ar,2
=

1
ρr,2(1 − ζ2)

{2(1 − ζ)εr,2Eb,2 − [1 − ζ − ρr,2(1 − ζ2)][(qr,o)a + (qr,o)b]

For the case when Q2 = 0, after solving the equation above for Eb,2, we have

Eb,2 =
1 − ρr,2(1 + ζ)

2εr,2
[(qr,o)a + (qr,o)b]

=
αr,2

2εr,2
[(qr,o)a + (qr,o)b],

or

T2 =
1

σSB

{
αr,2

2εr,2
[(qr,o)a + (qr,o)b]

}1/4

.

(d) The porosity of the screen a1 in Problem 4.5 behaves like the transmittance of the glass plate τr,2. Note that,
in contrast to Problem 4.5, this problem has been solved assuming that the transmitted fraction of the radiosity
of surface 1 becomes part of the radiosity of surface a (the same is used for 3 and b).

COMMENT
Semi-transparent layers are treated as shown in Figure Pr.4.31, by allowing the transmitted radiation to

interact with the surroundings. For semi-transparent thin films, similar relations are derived.

376



PROBLEM 4.32.FUN

GIVEN:
Semitransparent, fire-fighting foams (closed cell) have a very low effective conductivity and also absorb radia-

tion. The absorbed heat results in the evaporation of water, which is the main component (97% by weight) of the
foam. As long as the foam is present, the temperature of the foam is nearly that of the saturation temperature
of water at the gas pressure. A foam covering (i.e., protecting) a substrate while being exposed to a flame of
temperature Tf is shown in Figure Pr.4.32.

The foam density 〈ρ〉 and its thickness L, both decreases as a results of irradiation and evaporation. However,
for the sake of simplicity here we assume constant 〈ρ〉 and L. The absorbed irradiation, characterized by the
flame irradiation flux (qr,i)f and by the foam extinction coefficient σex, results in the evaporation of foam. The
flame is a propane-air flame with a composition given below.

〈ρ〉 = 30 kg/m3, σex = a1〈ρ〉, a1 = 3 m2/kg, L = 10 cm, R = 1 m, Tf = 1,800 K, pCO2
= 0.10 atm,

pH2O = 0.13 atm, εs = 10−7, ρr = 0.
Assume no heat losses.

SKETCH:
Figure Pr.4.32 shows the foam layer, the flame, and the protected substrate.

Flame Irradiation

Radius of Flame Region

Foam

Substrate

R
(qr,i)f

Volumetric
Radiation
Absorption

Protective Closed-
Cell Foam

Protected Substrate

 �r qr,i

Tf

se,�
L

x

sij
Volumetric
Phase Change

�

�ex

Figure Pr.4.32 A fire-fighting foam layer protecting a substrate from flame irradiation. A close-up of the closed-cell
foam is also shown.

OBJECTIVE:
(a) Write the energy equation for the constant-volume foam layer.
(b) Determine the flame irradiation flux (qr,i)f impinging on the foam.
(c) Determine the rate of irradiation absorbed into the foam layer Ṡe,σ. Use (2.43) and integrate it over the foam
thickness L.
(d) Assuming that irradiation heat absorbed results in the foam evaporation, determine the elapsed time for the
complete evaporation of the foam, Use (2.25) with ∆hlg being that of water at T = 100◦C.

SOLUTION:
(a) The energy equation for the constant foam volume is the integral-volume energy equation (2.9). The result
for a steady-state conduction, and with no heat loss, is

Q|A = 0 = Ṡe,σ + Ṡlg.

From (2.43) and (2.25), we have

Ṡe,σ =
∫

V

ṡe,σdV = πR2

∫ L

o

ṡe,σdx

= πR2

∫ L

o

(qr,i)f (1 − ρr)σexe−σexxdx

Ṡlg = −Ṅlg∆hlg = −M

∆t
∆hlg = −〈ρ〉V

∆t
∆hlg,
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where we have assumed a constant evaporation rate M/∆t, and ∆t is the elapsed time for complete evaporation.

(b) The flame irradiation flux is determined from (4.62), i.e.,

(qr,i)f = εr,fσSBT 4
f .

The propane-air flame considered has the same condition as those of Example 4.11. From Example 4.11, we have

(qr,i) = 9.52 × 104 W/m2.

(c) The integral over L gives

Ṡe,σ = πR2(qr,i)f (1 − ρr)
∫ L

o

σexe−σexdx

= −πR2(qr,i)f (1 − ρr)e−σex |L0
= −πR2(qr,i)f (1 − ρr)(e−σexL − 1)
= πR2(qr,i)f (1 − ρr)(1 − e−σexL).

Note that when σexL → ∞, all the radiation is absorbed in the foam layer. Using the numerical results, we have

Ṡe,σ = π × 12(m2) × 9.52 × 104(W/m2) × (1 − 0) ×
[
1 − e−3(m2/kg)×30(kg/m3

)×0.1(m)
]

= 2.989 × 105(W)(1 − 0.0001234)
= 2.989 × 105 W

This shows that all the irradiation has been absorbed by the foam layer, because σ∗
ex = σexL = 9.

(d) From the energy equation
〈ρ〉V
∆t

∆hlg = Ṡe,σ

or

∆t =
〈ρ〉V ∆hlg

Ṡe,σ

=
〈ρ〉πR2L∆hlg

Ṡe,σ

.

The heat of evaporation is obtained from Table C.4., i.e.,

water: ∆hlg = 2.256 × 106 J/kg Table C.4.

Using the numerical values, we have

∆t =
30(kg/m3) × π × 12(m2) × 0.1(m) × 2.256 × 106(J/kg)

2.989 × 105(W)
= 71.14 s,

COMMENT:
The decrease in the foam thickness L and density 〈ρ〉 will influence the absorption of irradiation. However, as

long as σexL > 4, nearly all the radiation is absorbed within the foam layer.
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PROBLEM 4.33.FAM

GIVEN:
Flame radiation from a candle can be sensed by the temperature sensors existing under the thin, skin layer of

the human hands. The closer the sensor (or say hand) is, the higher irradiation flux qr,i it senses. This is because
the irradiation leaving the approximate flame surface (qr,i)fAr,f , Ar,f = 2πR1L, is conserved. This is rendered
in Figure Pr.4.33. Then, assuming a spherical radiation envelope R2, we have

2πR1L(qr,i)f = 4πR2
2qr,i for R2

2 � R2
1.

L = 3.5 cm, R1 = 1 cm, R2 = 10 cm, Tf = 1,100 K, pCO2 = 0.15 atm, pH2O = 0.18 atm, εs = 2 × 10−7.

SKETCH:
Figure Pr.4.33 shows the candle flame envelope and a hand sensing it a distance R2 from the center.

Distance to
Observer

Approximate
Flame Envelope

Wick

Melt
Candle (Wax)

Ar = 4�R2

qr,i (qr,i)f

L

R1

R2

Palm of
Hand

2

Figure Pr.4.33 A candle flame and the sensing of its irradiation at a distance R2 from the flame center line.

OBJECTIVE:
(a) Determine the flame irradiation flux (qr,i)f at the flame envelope for the given heavy-soot condition.
(b) Determine qr,i at r = R2, using the given relation.

SOLUTION:
(a) The flame irradiation flux is found from (4.62), i.e.,

(qr,i)f = 〈εr,f 〉σSBT 4
f ,

where for (4.63), we have for ∆εr = 0,

〈εr,f 〉 = 〈εr,CO2〉 + 〈εr,H2O〉 + 〈εr,soot〉.
The emissivity for the CO2 and H2O band emissions are determined using the partial pressures and the mean
beam length 〈λph〉. The mean beam length is found from Table 4.4, where for a cylindrical flame we have

〈λph〉 = 1.9R1 Table 4.4.

Then for Tf = 1,100 K, we have

pCO2〈λph〉 = 0.15(atm) × 1.9 × 0.01(m)
= 0.002850 atm-m

〈εr,CO2〉 � 0.028 Figure 4.20(a)

pH2O〈λph〉 = 0.18 × 1.9 × 0.01 = 0.003420 atm-m
〈εr,H2O〉 � 0.014 Figure 4.20(b)

〈εr,soot〉 � 0.220 Figure 4.20(c)

〈εr,f 〉 = 0.028 + 0.014 + 0.220 = 0.262
(qr,i)f = 0.220 × 5.67 × 10−8(W/m2-K4) × (1,100)4(K4)

= 1.826 × 104 W/m2.
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(b) Using the radiation heat flow conservation equation given above, and solving for qr,i(r = R2), we have

qr,i =
2πR1L

4πR2
2

(qr,i)f

=
0.01(m) × 0.035(m)

2 × (0.10)2(m2)
× 1.826 × 104(W/m2)

= 319.6 W/m2.

COMMENT:
The irradiation heat flux qr,i drops as the distance to the hand R2 increases. Therefore, to sense the heat, the

hand needs to be brought close to the flame envelope.

380



PROBLEM 4.34.DES

GIVEN:
New coating technologies employ ultraviolet curable coatings and ultraviolet radiation ovens. The coatings

contain monomers and oligomers that cross link to form a solid, cured film upon exposure to the ultraviolet
radiation. The radiation is produced by a mercury vapor or a gallium UV (ultraviolet) lamp. The intensity of
the radiation is selected to suit the type of coating applied, its pigmentation, and its thickness. One advantage
of the UV-curable coatings is that a smaller amount of solvent is used and discharged to the atmosphere during
curing.

In a wood coating-finishing process, the infrared fraction of the emitted radiation is undesirable. The infrared
radiation can heat the wood panels to a threshold temperature where the resins leach into the coating before it
cures, thus producing an inferior finish. To prevent this, inclined selective surfaces, which reflect the ultraviolet
fraction of the radiation, are used. Figure Pr.4.34(i) shows a UV oven. A wood panel, with length L1 = 80 cm,
and width w = 1 m, occupies the central part of the oven and a bank of UV lamps, with length L2 = 50 cm and
width w = 1 m, are placed on both sides of the workpiece. The top surfaces act as selective reflecting surfaces,
i.e., absorb the infrared radiation and reflect the ultraviolet radiation. They are cooled in their back by a low
temperature air flow in order to minimize emission of infrared radiation.

The UV lamps emit (Ṡe,ε/Ar)2 = (qr,o)2 = 7×105 W/m2 which is 95% in the ultraviolet range of the spectrum
and 5% in the visible and infrared range of the spectrum. The wood boards have a curing temperature T1 = 400
K and behave as a blackbody surface. The selective surfaces have a temperature T3 = 500 K and the emissivity
and reflectivity shown in Figure Pr.4.34(ii).

SKETCH:
Figure Pr.4.34(i) and (ii) show the oven and the selective reflector.

(ii) Selective Reflections
(i) Oven, lamps, workpiece, and reflectors

L1

L2

L2

Selective Reflect-
ing Surfaces
T3 = 500 K

Air Flow

Bank of
UV Lamps

Wood Slab
T1 = 400 K

  r,1 = 1

(Qr,o)2/2

L3

w

ρr,3

ρ r
 , 

  r

1.0

0
10�3 1030.4

0.5
  r,3

λ, µm

∋
∋

∋

�Qku�3

Figure Pr.4.34 Ultraviolet irradiation. (i) UV oven. (ii) Selective reflections.

OBJECTIVE:
(a) Determine the amount of heat transfer by surface convection Qku(W) needed to keep the selective surfaces at
T3 = 500 K.
(b) Determine the radiation heat transfer in the ultraviolet range Qr,1(UV) and infrared and visible range
Qr,1(IR + V) reaching the workpiece (surface 1).
(c) Determine the maximum allowed temperature for the selective surfaces T3,max, such that the amount of infrared
and visible radiation reaching the workpiece is less than 3% of the ultraviolet radiation [i.e., Qr,1(IR + V)/Qr,1(UV) <
0.03].

SOLUTION:
(a) The integral-volume energy equation (4.66), applied to the reflection surface at T3, gives

Q|A,3 = Ṡ3.
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Assuming that the only heat transfer from the surface is by surface convection,

Q|A,3 = Qku,3 = qku,3Aku,3.

For this node, the energy conversions occur by absorption and emission of thermal radiation, i.e.,

Ṡ3 = (Ṡe,α)3 + (Ṡe,ε)3.

The energy conversion by radiation absorption is given by (4.64), i.e.,

(Ṡe,α)3 = Ar,3

∫ ∞

0

(αr,λ)3(qr,λ,i)3dλ,

where (qr,λ,i)3 is the irradiation on surface 3 and the integration is done over all the wavelengths λ. The irradiation
on surface 3 is given by the spectral form of (4.35), i.e.,

(qr,i,λ)3Ar,3 = F1-3Ar,1(qr,0,λ)1 + F2-3Ar,2(qr,0,λ)2.

Dividing both sides by Ar,3 and using the reciprocity rule (4.34), we obtain,

(qr,i,λ)3 = F3-1(qr,0,λ)1 + F3-2(qr,0,λ)2.

The radiosity from surface 1 is

(qr,0,λ)1 = (ρr,λ)1(qr,i,λ)1 + (εr,λ)1(Eb,λ,1)1.

Substituting into the equation for (qr,i,λ)3 we obtain,

(qr,i,λ)3 = F3-1[(ρr,λ)1qr,i,λ + (εr,λ)1Eb,1,λ] + F3-2(qr,o,λ)2.

From Figure Pr.4.34(ii), the selective surface has a constant reflectivity and emissivity for the wavelength intervals
0 to 0.4 µm and 0.4 µm to very large wavelengths. Then the surface absorption is written as

(Ṡe,α)3 = Ar,3,λ

∫ 0.4

0

αr,3(qr,i,λ)3dλ +
∫ ∞

0.4

(qr,i,λ)3dλ.

From Figure Pr.4.34(ii), αr,λ,3 = 0 for 0 
 λ < 0.4 µm and αr,λ,3 = εr,λ,3 = 1 for 0.4 µm < λ < ∞. Then, using
the equation for (qr,i,λ)3 and (ρr,λ)1 = 1 − (εr,λ)1 = 0, we have

(Ṡe,α)3 = Ar,3

∫ ∞

0.4

(qr,λ,i)3dλ

= Ar,3

[
F3-1

∫ ∞

0.4

Eb,1,λdλ + F3-2
∫ ∞

0.4

(qr,o,λ)2dλ

]
.

The fraction of the total blackbody radiation emitted in a wavelength interval λ1T -λ2T is found from (4.7), i.e.,

Fλ1T -λ2T =

∫ λ2

0

Eb,1,λλdλ −
∫ λ1

0

Eb,1,λdλ

σSBT 4 .

Then ∫ ∞

0.4

Eb,1,λdλ = (1 − F0-0.4T )σSBT 4
1 .

For surface 2, only 5% of the emitted radiation is at wavelengths above 0.4 µm and then∫ ∞

0.4

(qr,o,λ)2dλ = 0.05(qr,o,λ)2.

Then

(Ṡe,α)3 = Ar,3[F3-1(1 − F0-0.4T )σSBT 4
1 + F3-2(0.05)(qr,o)2].
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From Table 4.1, we obtain, F0-0.4T1 = F0-160 = 0, as expected. For the geometry of the enclosure, we obtain
F1-3 = F2-3 = 1. Then, using the reciprocity rule (4.34), we have

F3-1 =
Ar,1F1-3

Ar,3
= 1 × 0.8(m)

3.6(m)
= 0.22

F3-2 =
Ar,2F2-3

Ar,3
= 1 × 1.0(m)

3.6(m)
= 0.28.

Using the numerical values, the radiation absorbed is

(Ṡe,α)3 = 3.6(m2)[0.22 × 5.67 × 10−8(W/m2-K4) × (400)4(K)4 + 0.28 × 0.05 × 7 × 105(W/m2)]
= 36,430 W.

The energy conversion due to radiation emission is found from (4.65), i.e.,

Ṡe,α = −Ar,3

∫ ∞

0

(εr,λ)3(Eb,λ)3dλ.

Using Figure Pr.4.34(ii), and using the definition of the fraction of the blackbody emissive power, we have

(Ṡe,ε)3 = −Ar,3

[
(1 − F0-0.4T3)σSBT 4

3

]
.

For T3 = 500 K, from Table 4.3, we have F0-0.4T3 = 0. Then,

(Ṡe,ε)3 = −3.6(m2) × 5.67 × 10−8(W/m2-K) × (500)4(K)4

= −12,758 W.

Then, from the energy equation,

Qku,3 = (qkuAku)3 = (Ṡe,α)3 + (Ṡe,ε)3

Solving for qku,3, we have

qku,3 =
36,430(W) − 12,758(W)

3.6(m2)
= 6,576 W/m2.

(b) The irradiation on surface 1 is given by

(qr,i,λ)1 = F1-3(qr,o,λ)3 + F1-2(qr,o,λ)2.

Since F1-2 = 0, then from the equation for (qr,o,λ)3, we have

(qr,i,λ)1 = F1-3[(ρr,λ)3(qr,i,λ)3 + (εr,λ)3(Eb,λ)3].

The radiation leaving the surface in the infrared and visible ranges of the spectrum is

Qr,1(IR + V ) = Ar,1

∫ ∞

0.4

(qr,i,λ)1dλ.

Using Figure Pr.4.34(ii), we then have

Qr,1(IR + V ) = Ar,1F1-3σSBT 4
3

= 0.8(m2) × 1 × 5.67 × 10−8(W/m2-K4) × (500)4(K4)
= 2,835 W.

The radiation heat transfer reaching surface 1 in the ultraviolet range is

Qr,1(UV ) = Ar,1

∫ ∞

0.4

(qr,i,λ)1dλ.
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Again, using the equation for (qr,i)1 and Figure Pr.4.34(ii), we have

Qr,1(UV ) = Ar,1F1-3ρr,3

∫ ∞

0.4

(qr,i,λ)3dλ.

The fraction reflected by surface 3 is∫ ∞

0.4

(qr,i,λ)3dλ = 0.95 × (qr,o)2F3-2.

Then

Qr,1(UV ) = Ar,1F1-3ρr,3 × 0.95 × (qr,o)2F3-2.

From the numerical values, we have

Qr,1(UV ) = 0.8(m2) × 1 × 0.95 × 7 × 105(W/m2) × 0.28
= 148,960 W.

(c) For a fraction of IR and V radiation equal to 3 % of the radiation in the UV, we have

Qr,1(IR + V )
Qr,1(UV )

=
σSBT 4

3,max

Qr,1(UV )
= 0.03

Solving for T3,

T3,max = [
0.03 × 148,960(W)

5.67 × 10−8(W/m2-K)
]1/4 = 529.9 K.

COMMENT:
Note that Qku,3 = 2.367×104 W, while Qr,1(UV ) = 1.490×105 W. This shows that a large fraction of energy

emitted by the lamp arrives on the workpiece.
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PROBLEM 4.35.DES

GIVEN:
Consider the efficiency of a solar collector with and without a glass cover plate. In a simple model for a solar

collector, all the surfaces around the collector, participating in the radiation exchange, are included by defining
a single average environment temperature Ta. A solar collector and the various heat flows considered are shown
in Figure Pr.4.35.

The irradiation from the sun has a magnitude (qr,i)s = 800 W/m2 and the irradiation from the atmosphere
(diffuse irradiation) is given by (qr,i)a = σSBT 4

a , where Ta = 290 K is the effective atmospheric temperature. The
cover plate (made of low iron glass) has a total transmittance for the solar irradiation of τr,2 = 0.79. For the
infrared emission, the glass surface can be considered diffuse and gray with an emissivity εr,2 = 0.9. The absorber
plate (coated with the matte black) is opaque, diffuse, and gray and has absorptivity αr,1 = 0.95. The glass
plate is at a temperature T2 = 310 K and heat losses by surface-convection heat transfer occur at the rate of 400
W/m2. The interior of the solar collector is evacuated and the bottom heat losses by conduction are at a rate of
qk,1-a = 40 W/m2. The collector surface is rectangular with dimensions w = 1 m and L = 2 m. For the cases (i)
with a glass cover, and (ii) with no glass cover, determine the following. (Use T1 = 340 K.)

SKETCH:
Figure Pr.4.35 shows the collector with the cover plate.

Insulation

Environment, Ta

Box

Water

Vacuum

w
L

Absorber Plate
T1

(qr,i)s (W/m2)
(qr,i)a (W/m2)

τr,2 (qr,i)a+s (W/m2)

Qk,1-a (W)

Coolant Flow

Cover Glass Plate
T2

.
(Se,  )2 (W)∋

�Qu�L (W)

�Qu�0 (W)

�Qku�2-a (W)

Figure Pr.4.35 A solar collector with a cover glass plate and the associated heat transfer terms.

OBJECTIVE:
For the cases (i) with a glass cover, and (ii) with no glass cover, determine the following.

(a) Determine the amount of heat transferred to the coolant 〈Qu〉L-0(W).
(b) Determine the thermal efficiency η, defined as the heat transferred to the coolant divided by the total irradi-
ation.

SOLUTION:
(i) With a Glass Cover:
(a) From the assumptions above, the integral-volume energy equation (2.9) applied to the collector gives

Q|A,1 = Ṡ1,

where

Q|A,1 = 〈Qu〉L − 〈Qu〉0 + 〈Qku〉2-a + Qk,1-a

and

Ṡ1 = (Ṡe,α)1 + (Ṡe,ε)2.
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The energy conversion by radiation absorption is due to absorption of solar radiation at the absorber plate (mostly
UV and V) and absorption of radiation from the environment at the cover plate (IR and V). Then, noting that
only a fraction τr,2 of the solar radiation is transmitted through the cover plate, we have

(Ṡe,α)1 = τr,2αr,1(qr,i)sAr,1 + αr,2(qr,i)aAr,2.

Using the numerical values and using (4.18), αr,2 = εr,2, Ar,1 = Ar,2 = w × L and (qr,i)a = σSBT 4
a . Then

(Ṡe,α)1 = 0.79 × 0.95 × 800(W/m2) × 1(m) × 2(m) +
0.9 × 5.67 × 10−8(W/m2-K4) × 2904(K4) × 1(m) × 2(m)

= (1,200.9 + 721.8)(W) = 1,922.7 W.

The radiation emitted by the absorber plate is reabsorbed internally or at the cover plate. The cover plate emits
radiation to the surroundings which is given by

(Ṡe,ε)2 = −Ar,2εr,2σSBT 4
2 .

Using the values given,

(Ṡe,ε)2 = −1(m) × 2(m) × 0.9 × 5.67 × 10−8(W/m2-K4) × 3104(K4)
= −942.5 W.

Then, solving for the net convective heat transfer to the fluid, we have

〈Qu〉L-0 ≡ 〈Qu〉L − 〈Qu〉0 = (Ṡe,α)1 + (Ṡe,ε)2 − 〈Qku〉2-a − Qk,2-a
= 1,922.7(W) − 942.5(W) − [200(W/m2) + 40(W/m2)] × 1(m) × 2(m)
= 500.2W

(b) The thermal efficiency of the collector is

η =
〈Qu〉L − 〈Qu〉0
(qr,i)s + (qr,i)a

=
500.2(W)

800(W/m2) + 5.67 × 10−8(W/m2-K4) × 2904(K4) × 1(m) × 2(m)
= 0.3122 = 31.22%.

(ii) Without a Glass Cover:
(a) The radiation absorbed is

(Ṡe,α)1 = Ar,1αr,1[(qr,i)s + (qr,i)a].

From the numerical values, we have

(Ṡe,α)1 = 1(m) × 2(m) × 0.95[800(W/m2) + 5.67 × 10−8(W/m2-K4) × 2904(K4)]
= 2,282(W).

The radiation emission from the absorber plate at T1 is

(Ṡe,ε)1 = −Ar,1εr,1σSBT 4
1

= −1(m) × 2(m) × 0.95 × 5.67 × 10−8(W/m2-K4) × 3404(K)4

= −1,439.6 W.

Then the integral-volume energy equation (2.9) gives, where we now have 〈Qku〉1-a as surface 2 has been removed,

〈Qu〉L-0 = 〈Qu〉L − 〈Qu〉0 = (Ṡe,α)1 + (Ṡe,ε)1 − 〈Qku〉1-a − Qk,1-a
= 2,282(W) − 1,439.6(W) − 1(m) × 2(m) × [200(W/m2) + 40(W/m2)]
= 362 W.

(b) The thermal efficiency is then

η =
〈Qu,L〉 − 〈Qu,0〉
(qr,i)s + (qr,i)a

=
362(W)

1,602(W)
= 22.60%.
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COMMENT:
Both the surface convection and conduction heat losses are different when a cover plate is used. The surface-

convection heat loss from the higher-temperature absorber plate is larger than that from the cover plate. This will
be discussed in Chapter 6. With the cover plate, the temperature of the absorber increases, and the conduction
heat losses also increase. The use of an additional cover plate (as in a double-glazed flat plate solar collector),
increases the thermal efficiency even more.
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PROBLEM 4.36.FUN

GIVEN:
Cirrus clouds are the thin, high clouds (usually above 6 km) in the form of trails or streaks composed of

“delicate white filaments, or tenuous white patches and narrow bands.” Due to the atmospheric conditions
at these high altitudes (low temperature and high relative humidity), these clouds contain large amounts of ice
crystals. An important effect of these clouds in the atmosphere is the absorption and emission of thermal radiation,
which plays an important role in the upper troposphere water and the heat budget. This may significantly affect
the earth’s climate and the atmospheric circulation.

A cirrus uncinus cloud (a hook-like cloud appearing at an altitude between 5 to 15 km, and indicating a slowly
approaching storm) has an average thickness L. The extinction coefficient for the cloud is σex = 2.2× 10−3 1/m.
The intensity of the irradiation at the top of the cloud is (qr,i)s = 830 W/m2, as shown in Figure Pr.4.36. Assume
that the surface reflectivity of the cloud is zero.

Assume that the volume-averaged density and the specific heat of the cloud are ρ = 0.8 kg/m3 and cp = 2,000
J/kg-K.

SKETCH:
Figure Pr.4.36 shows the irradiation heating cloud layer.

(qr,i)s (W/m2)

σe,x

Cloud

Earth's Surface

Lx

Figure Pr.4.36 Irradiation heating of a cloud layer.

OBJECTIVE:
(a) Determine the amount of radiation absorbed by the cloud Ṡe,α/A, for L = 1,000 m.
(b) The length-averaged cloud temperature 〈T 〉L is defined as

〈T 〉L =
1
L

∫ L

0

Tdx.

Determine the time variation of the length-averaged cloud temperature d〈T 〉L/dt for the cloud thickness L = 1,000
m. Neglect the heat transfer by surface convection and the energy conversion due to phase change (i.e., the air
is in equilibrium with the cloud).

SOLUTION:
(a) From Table C.1(d), the local volumetric absorption is

Ṡe,σ

V
= (1 − ρr)(qr,i)sσexe−σexx.

Integrating this over length L along the x direction, we have

Ṡe,σ

A
=
∫ L

0

Ṡe,σ

v
dx = (1 − ρr)(qr,i)sσex

∫ L

0

e−σexx = (1 − ρr)(qr,i)s(1 − e−σexL).

For zero surface reflectivity, ρr = 0, we have

Ṡr,α

A
= (qr,i)s(1 − e−σexL).
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Using the numerical values, we have

Ṡe,σ

A
= 830(W/m2)

[
1 − e−2.2 × 10−3(1/m)1,000(m)

]
= 738 W/m2.

Therefore, 89% of the incident radiation is absorbed by the cloud.

(b) For a differential-volume at a distance x along the cloud is

∇ · q = −ρcp
dT

dt
+ ṡe,σ.

From Table C.1(d), the volumetric absorption of irradiation at the depth x is

ṡe,σ =
Ṡe,σ

V
= (1 − ρr)qr,iσεxe−σεxx = (qr,i)sσexe−σexx.

Neglecting any other heat transfer from this cloud, we have

0 = −ρcp
dT

dt
+ (qr,i)sσεxe−σεxx.

Integrating this energy equation over the cloud thickness L and dividing the result by L, we have

0 = −ρcp
d

dt

(
1
L

∫ L

0

Tdx

)
+ (qr,i)sσεx

(
1
L

∫ L

0

e−σεxxdx

)

= −ρcp
d

dt
〈T 〉L +

(qr,i)s

L

(
1 − e−σεxL

)
.

Thus, the time variation of 〈T 〉L is

d〈T 〉L
dt

=
(qr,i)s

ρcpL

(
1 − e−σεxL

)
.

From the numerical values given, we have

d〈T 〉L
dt

=
830(W/m2)

0.8(kg/m3) × 2,000(J/kg-K) × 1,000(m)
×
[
1 − e−2.2 × 10−3(1/m) × 1,000(m)

]
= 4.6 × 10−4 K/s = 40 K/day.

COMMENT:
Note the relation between the energy equations used in (a) and (b). The length-averaged temperature is the

temperature used in the integral form of the energy equation, for which the energy conversion in (a) applies.
The energy absorption by the cloud is by the water droplets, mostly by the ice particles. This energy affects the
growth of the ice particles which in turn affects the air temperature and air circulation within and underneath the
cloud. This may have important implications on the upper atmosphere circulation and the earth surface energy
budget. The effect of radiation absorption on the growth rate of ice particles is explored in Problem 4.37.
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PROBLEM 4.37.FUN

GIVEN:
Consider a cirrus cloud with an average thickness L = 1 km and at an altitude of r = 8 km from the earth’s

surface. The top of the cloud is exposed to the deep space and receives solar radiation at the rate (qr,i)s = 1,353
W/m2. The bottom of the cloud is exposed to the earth’s surface. The extinction coefficient for the cloud is
σex = 2.2 × 10−3 1/m. This is shown in Figure Pr.4.37(a).
(i) A spherical ice particle at the top of the cloud has a temperature of T1 = −35◦C, and a diameter d = 100 µm.
The ice surface is opaque, diffuse, and gray with an emissivity εr,1 = 1. The particle is moving under the effect
of the draft air currents and has no preferred orientation relative to the solar irradiation. The deep sky behaves
as a blackbody with a temperature of T3 = 3 K.
(ii) Another ice particle at the bottom of the cloud has the same temperature, dimensions, and surface radiation
properties, but it is exposed to the earth’s surface. The earth’s surface is opaque, diffuse, and gray, has a surface-
averaged temperature T2 = 297 K, and a total emissivity εr,2 = 0.9.

SKETCH:
Figure Pr.4.37(a) shows a cloud layer with ice particles located (i) at top and (ii) at the bottom of the cloud

layer undergoing radiation heat transfer.

(qr,i)s (W/m2)

T2 = 297 K
  r,2 = 0.9

T1 = 238 K
  r,1 = 1

Deep Sky
T3 = 3 K
  r,3 = 1

Cloud

Earth's Surface
(ii) Ice Particle on Bottom

(i) Ice Particle on Top
L = 1 km
x

r

∋

∋

∋

Figure Pr.4.37(a) Ice-particle heat transfer for a particle (i) at the top, and (ii) at the
bottom of a cloud layer.

OBJECTIVE:
For each of these two particles perform the following analyses.

(a) Track the heat transfer vector and show the energy conversions. Note that the particles lose heat by surface
convection, and that phase change (frosting or sublimation) also occurs.
(b) Draw the thermal circuit diagram for the particles.
Assuming that the cloud is optically thick (i.e., there is a significant attenuation of the radiation across the cloud)
the radiation heat transfer between two positions 1 and 2 in the cloud with emissive powers Eb,1 and Eb,2 is given
by

Qr,1-2 =
(Eb,1 − Eb,2)

3σex/4Ar
.

This resistance can be added in series with the surface-grayness and view-factor resistances between two surfaces
enclosing the cloud.
(c) Determine the net heat transfer for each particle.
(d) Neglecting the surface-convection heat transfer and assuming a steady-state condition, determine the rate of
growth by frosting (or by sublimation) of the ice particles. For the heat of sublimation use ∆hsg = 2.843 × 106

J/kg and for the density of ice use ρs = 913 kg/m3.
(e) From the above results, are these particles expected to grow or decay in size? Would the radiation cooling or
heating rate differ for particles of a different size?

SOLUTION:
(a) The heat transfer vector tracking and the energy conversion terms are shown in Figure Pr.4.37(b).
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Figure Pr.4.37(b) Track of the heat flux vector around an ice particle in a cloud layer.

(b) The thermal circuit diagram for heat transfer from a particle at the bottom of the cloud layer is shown in
Figure Pr.4.37(c).

Qr,2

T2 (Rr,  )2 (Rr,F)2-1
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(qr,o)2
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(qr,o)1

Eb,1 T1 Eb,1

(qr,o)1

(Rr,F)1-3(Rr,  )1

-Qr,3

T3Eb,3

(qr,o)3

Q2

Qr,1-3

(Rr,σex)1-3 (Rr,  )3

Q3

� � � �

Figure Pr.4.37(c) Thermal circuit diagram for an ice particle at the bottom of the cloud layer.

(c)(i) For an ice particle at the top of the cloud, the integral-volume energy equation (2.9) energy equation is

Q|A,1 = −(ρcpV )1
dT1

dt
+ Ṡ1.

The energy conversion is due to radiation absorption and solid-gas phase change (sublimation), i.e.,

Ṡ1 = Ṡe,α + Ṡsg.

The energy conversion due to radiation absorption is

Ṡe,α = αr,1(qr,i)sA1.

The net heat transfer at the particle surface is

Q|A,1 = Qku + Qr,1-3 + Qr,1-2

where Qr,1-3 and Qr,1-2 are the surface-radiation heat transfer between particle and sky and particle and earth.
The surface radiation heat transfer between the particle and sky is given by

Qr,1-3 =
σSB(T 4

1 − T 4
3 )

(Rr,Σ)1-3
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where,

(Rr,Σ)1-3 =
1 − εr,1

εr,1A1
+

1
F1-3A1

+
1 − εr,3

εr,3A3
.

Considering that A3 � A1 and F1-3=1 we have,

(Rr,Σ)1-3 =
1

A1εr,1

The surface-radiation heat transfer between the particle and the earth is affected by the presence of the cloud,
which absorbs and scatters radiation. Assuming that the diffusion approximation for the radiation flux within
the cloud applies (5.64), this surface radiation heat transfer is given by

Qr,1-2 =
σSB(T 4

1 − T 4
2 )

(Rr,Σ)1-2
,

where the overall radiation resistance, and using the resistance for the volumetric absorption of radiation, is given
by

(Rr,Σ)1-2 =
1 − εr,1

εr,1A1
+

1
F1-2A1

+
1 − εr,2

εr,2A2
+

3σexL

4A1
.

Considering that A2 � A1 and F1-2 = 0.5 we have

(Rr,Σ)1-2 =
1

A1

(
1

εr,1
+ 1 +

3σexL

4

)
.

Therefore, the net radiation heat transfer and absorption for the ice particle at the top of the cloud is

Qr,1,t = −αr,1(qr,i)sA1 +
σSB(T 4

1 − T 4
3 )(

1
A1εr,1

) +
σSB(T 4

1 − T 4
2 )

1
A1

(
1

εr,1
+ 1 +

3σexL

4

)

or

Qr,1,t

A1
= −αr,1(qr,i)s +

σSB(T 4
1 − T 4

3 )(
1

εr,1

) +
σSB(T 4

1 − T 4
2 )

1
εr,1

+
3σexL

4
+ 1

.

Using the numerical values, we have

Qr,1,t

A1
= −1 × 1,353(W/m2) +

5.67 × 10−8(W/m2-K4) × (238.154 − 34)(K4)
1

+

5.67 × 10−8(W/m2-K4) × (238.154 − 2974)(K4)
1
1

+
3 × 2.2 × 10−3(1/m) × 1,000(m)

4
+ 1

= −1,353(W/m2) + 182(W/m2) − 71(W/m2)
= −1,242 W/m2.

The negative sign means that the particle is being heated by radiation.
(ii) For the particle at the bottom of the cloud, the radiation absorption is

Ṡe,α = αr,1qr,iA1.

The irradiation is attenuated by volumetric absorption, as discussed in Section 2.3.2(E). The irradiation flux at
the bottom of the cloud is given by (2.42), i.e.,

qr,i = (qr,i)s(1 − ρr,1)e−σexL.
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With εr,1 = 1 (i.e., ρr,1 = 0), we have

qr,i = (qr,i)se
−σexL.

Then, as given in Table C.1(d)

Ṡe,α = αr,1(qr,i)sσexe−σexLA1.

The net surface-radiation heat transfer, in analogy to the particle at the top, is

Qr,1-2 =
σSB(T 4

1 − T 4
2 )(

1
A1εr,1

)

Qr,1-3 =
σSB(T 4

1 − T 4
3 )

1
A1

(
1

εr,1
+ 1 +

3σexL

4

) .

Therefore, the net radiation heat transfer is,

Qr,1,b

A1
= −αr,1(qr,i)sσexe−σexL +

σSB(T 4
1 − T 4

2 )(
1

εr,1

) +
σSB(T 4

1 − T 4
3 )

1
εr,1

+ 1 +
3σexL

4

Using the numerical value, we have

Qr,1,b

A1
= −1 × 1,353(W/m2) × 2.2 × 10−3(1/m) × e−2.2 × 10−3(1/m) × 1,000(m)

+
5.67 × 10−8(W/m2-K4) × (238.154 − 2974)(K4)

1

+
5.67 × 10−8(W/m2-K4) × (238.154 − 34)(K4)

2 +
3 × 2.2 × 10−3(1/m) × 1,000(m)

4
= (−0.33 − 258.8 + 49.8)( W/m2)
= −209 W/m2.

Note that the particle at the bottom of the cloud is also being heated, but at a much smaller rate.

(d) For a steady-state condition, the integral-volume energy equation (2.9) becomes

Q|A1 = Ṡ1.

Neglecting surface convection and using the results calculated in item (b), we have

Qr,1 = Ṡsg

The energy conversion by sublimation (Table 2.1) is given by

Ṡsg

A1
= −Ṁsg∆hsg

The rate of sublimation is related to the rate of growth by

Ṁsg = −ρs
dV1

dt

Then

1
A1

dV1

dt
=

Qr,1

A1ρs∆hsg
=

qr,1

ρs∆hsg
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For the particle at the top

1
A1

dV1

dt
=

−1,242(W/m2)
913(kg/m3) × 2.843 × 106(J/kg)

= −4.78 × 10−7 m/s = −0.478 µm/s.

For the particle at the bottom

1
A1

dV1

dt
=

−209(W/m2)
913(kg/m3) × 2.843 × 106(J/kg)

= −8.05 × 10−8 m/s = −0.0805 µm/s.

(e) Both particles are expected to decrease in size. The particle at the top would disappear faster than the particle
at the bottom. Larger particles would take longer to sublimate due to their larger volume.

COMMENT:
The surface-convection heat transfer from the particle surface influences the particle growth (or decay) rates.
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PROBLEM 4.38.DES

GIVEN:
A flat-plate solar collector is modeled as a surface with equivalent total absorptance αr,1 and emittance εr,1,

which represent the surface and wavelength average of the absorptivity and emissivity of all the internal and
external surfaces (it also accounts for the transmissivity of the cover plate). The solar collector and the model
are shown in Figure Pr.4.38.

The solar collector receives solar irradiation (qr,i)s = 800 W/m2 and atmospheric irradiation (qr,i)a = σSBT 4
a ,

where Ta = 290 K is the effective atmospheric temperature (it accounts for the emission and scattering of the radia-
tion by the atmosphere). This radiation is incident on the collector plate surface, which has area L×w = 1×2(m2).
The collector surface temperature is T1 = 310 K and it loses heat by surface-convection heat transfer at a rate
〈qku〉1-∞ = 400 W/m2 and also by surface radiation emitted to the surroundings (Ṡe,ε)1. The bottom of the
collector loses heat by conduction at a rate qk,1-∞ = 50 W/m2. The total absorptance of the solar collector is
αr,1 = 0.9 and the total emittance is εr,1 = 0.3.

SKETCH:
Figure Pr.4.38 shows the solar collector and the various heat transfer from the collector plate.

τr,2,s = 0.79
  r,2 = 0.9

Solar
Irradiation

qr,i

Water
Inlet,
�Qu�0

Water
Outlet,
�Qu�L

Air Flow
(Wind)

(qr,i)s (W/m2)

Qr,1-� (W)

Qk,1-� (W)

Qku (W)

L = 2 m

w = 1 m

(qr,i)a (W/m2)
(i) (ii)

∋

�Qu�L�Qu�0

�Qu�L-0 (W)

Figure Pr.4.38(i) and (ii) A solar collector and the collector plate heat transfer.

OBJECTIVE:
(a) Determine the amount of heat transferred to the fluid 〈Qu〉L-0 = 〈Qu〉L − 〈Qu〉0 (W).
(b) Determine the thermal efficiency η, defined as the ratio of the heat transferred to the fluid to the total irra-
diation.

SOLUTION:
(a) The integral-volume energy equation (2.9) applied to the collector gives

Q|A,1 = Ṡ1,

where

Q|A,1 = qku,1-∞Aku + qk,1-∞Ak + 〈Qu〉L,0

and

Ṡ1 = (Ṡe,α)1 + (Ṡe,ε)1.

The radiation absorbed is (noting that εr,1 = αr,1)

(Ṡe,α)1 = Ar,1[(αr,1)s(qr,i)s + (αr,1)V +IRσSBT 4
a ]

= 1(m) × 2(m) × [0.90 × 800(W/m2) + 0.3 × 5.67 × 10−8(W/m2-K4) × (290)4(K)4]
= 1,680 W.
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The radiation emitted is

(Ṡe,ε)1 = −Ar,1(αr,1)V +IRσSBT 4
1

= −1(m) × 2(m) × 0.3 × 5.67 × 10−8(W/m2-K4) × (310)4(K)4

= −314.18 W.

Then the convection heat transfer is

〈Qu〉L-0 = (〈Qu,L〉 − 〈Qu,0〉) = (Ṡe,α)1 + (Ṡe,ε)1 − qku,1-∞Aku − qk,1-∞Ak

= 1,680.62(W) − 314.18(W) − 1(m) × 2(m) × [400(W/m2) + 50(W/m2)]
= 466.4 W.

(b) The thermal efficiency is defined as

η =
〈Qu〉L-0

Ar,1[(qr,i)s + σSBT 4
a ]

=
466.4(W)

1(m) × 2(m) × [800(W/m2) + 5.67 × 10−8(W/m2-K4) × 2904(K4)]
= 0.1942.

The efficiency in converting total solar irradiation to sensible heat of the water stream is 19.42%.

COMMENT:
Note that the effective temperature of the collector T1 is smaller than the water temperature. This temperature

is basically an average temperature for the cover plate, which is the emitting surface.
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PROBLEM 4.39.DES

GIVEN:
Table Pr.4.39 gives a short list of materials used as selective surface coatings, i.e., coatings that have different

absorption properties for shorter and longer wavelength ranges. Other materials are listed in Table C.19. For each
of the two applications below, choose from Table Pr.4.39 the coating that results in the optimum performance.

Table Pr.4.39 Spectral absorptivity and emissivity properties for some selective coatings.
Coating αr,λ(0.3 ≤ λ ≤ 3 µm) εr,λ(3 ≤ λ ≤ 50 µm)

black, chrome electro-deposited 0.95 0.15
copper oxide 0.87 0.15
aluminum hard-anodized 0.03 0.80
Teflon 0.12 0.85

Figure Pr.4.39(i) shows a solar collector. The absorber plate is exposed directly to the solar and atmospheric
irradiation (qr,i)a, as shown in Figure Pr.4.39(i). The intensity of the solar radiation is (qr,i)s = 800 W/m2.
The net radiation emitted by the atmosphere is given by (qr,i)a = σSBT 4

a , where Ta = 290 K is the effective
atmospheric temperature (i.e., the “sky” temperature). The absorber plate has a surface L×w = 1×2 m2 and it
is at a temperature of T1 = 80◦C. The collector is insulated from below and the surface-convection heat transfer
is neglected. Choose a material from Table Pr.4.39 that would result in the maximum convection heat removal
〈Qu〉L-0 (W) (i.e., maximum heating of the fluid) from the collector and determine the heat flow rate.

Figure Pr.4.39(ii) shows a radiative cooler. A satellite in orbit around the earth uses radiation cooling to
reject heat [Figure Pr.4.39(ii)]. As the satellite rotates, it is temporarily exposed to the sun. The intensity of
the solar irradiation is (qr,i)s = 1,353 W/m2. The plate has an area L × w = 50 × 50 cm2 and its temperature
is T1 = 250 K. The deep sky temperature is Tsky = 3 K. Choose a material that would give the maximum heat
transfer Qr,1(W) and determine this heat flow rate.

SKETCH:
Figures Pr.4.39(i) and (ii) show the two applications of selective radiation coatings.

(ii)(i)

Insulation

w
L

Absorber Plate
T1 = 80 OC = 353.15 K
αr,s , αIR

Radiative Cooler
T1 = 250 K

αr,s , αIR

(qr,i)s (W/m2) (qr,i)a (W/m2) (qr,i)s (W/m2)

L

w

�Qu�L (W)

�Qu�0 (W)

(qr,i)sky (W/m2)

Q1 (W)

(Sr, )1�

(Sr, )1�

Figure Pr.4.39(i) A solar collector. (ii) A radiative cooler. Both use
selective radiation absorption.

OBJECTIVE:
(a) For the solar collector in Figure Pr.4.39(i), choose a material from Table Pr.4.39 that would result in the
maximum convection heat removal 〈Qu〉L-0 (W) (i.e., maximum heating of the fluid) from the collector and de-
termine the heat flow rate.
(b) For the radiative cooler in Figure Pr.4.39(ii), choose a material that would give the maximum heat transfer
Qr,1(W) and determine this heat flow rate.
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SOLUTION:
(a) For a flat plate solar collector we need a large absorptivity in the wavelength range characteristic of the solar
irradiation and a small emissivity in the wavelength characteristic of radiation emitted at low temperatures. Both
the black, chrome electro-deposited and the copper-oxide coatings would perform well under these conditions. To
calculate the net convection heat transfer 〈Qu〉L-0, we use the integral-volume energy equation,

Q|t,1 = Ṡ1

where

Q|A,1 = Qu,L − Qu,0

≡ 〈Qu〉L-0

and

Ṡ1 = (Ṡe,α)1 + (Ṡe,ε)1

The energy conversion due to the absorption of irradiation is given by (4.64), i.e.,

(Ṡe,α)1 = Ar,1

∫ ∞

0

(αr,λ)1(qr,i,λ)1dλ.

We assume that the surfaces are gray in the wavelength range shown in Table Pr.4.39 and that solar irradiation
occurs at the short wavelength and atmospheric irradiation occurs at the long wavelength range. Then we have
(using εr,λ = αr,λ),

Ṡe,α = Ar,1[αr,λ(0.3 ≤ λ < 3 µm)(qr,i)s + εr,λ(3 ≤ λ < 50 µm)σSBT 4
a ].

Using the values given for black, chrome electro-deposited coating, we have

(Ṡe,α)1 = 1(m) × 2(m)[0.95 × 800(W/m2) + 0.15 × 5.67 × 10−8(W/m2-K4) × (290)4(K)4]
= 1,640 W.

The emitted radiation is emitted in the larger wavelength range, and we have

(Ṡe,ε)1 = −Ar,1εr,λ(3 ≤ λ < 50 µm)σSBT 4
1

= −1(m) × 2(m) × 0.15 × 5.67 × 10−8(W/m2-K4) × (353.15)4(K)4 = −264 W.

Then the convection heat transfer is

〈Qu〉L-0 = (Ṡe,α)1 + (Ṡe,ε)1
= 1,640(W) − 264(W) = 1,376 W.

(b) In order to reject the maximum amount of heat possible, the radiative cooler should have a large emissivity
in the large wavelength range and a small absorptivity at short wavelength ranges. Both the hard-anodized
aluminum and the Teflon would perform well under these conditions. The net radiation heat transfer is due to
absorption and emission of radiation. Then the integral-volume energy equation is

Q|A,1 = (Ṡe,α)1 + (Ṡe,ε)1.

The radiation absorption is

(Ṡe,α)1 = Ar,1[αr,λ(0.3 ≤ λ < 3 µm)(qr,i)s + εr,λ(3 ≤ λ < 50 µm)σSBT 4
sky]

= 0.5(m) × 0.5(m) × [0.03 × 1,353(W/m2) + 0.80 × 5.67 × 10−8(W/m2-K4) × (3)4(K)4]
= 10.15 W.

The radiation emitted is

(Ṡe,ε)1 = −Ar,1εr,λ(3 ≤ λ < 50 µm)σSBT 4
1

= −0.5(m) × 0.5(m) × 0.80 × 5.67 × 10−8(W/m2-K4) × (250)4(K)4

= −44.30 W.
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Then

Q1 = Q|A,1 = (Ṡe,α)1 + (Ṡe,ε)1
= 10.15 − 44.30(W) = −34.15 W.

COMMENT:
Note that for (b), the negative Q|A,1 indicates that heat must be provided to surface A1. This heat can be

provided by sensible heat, i.e., cooling down, of the satellite. Other selective surfaces are listed in Table C.19.
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PROBLEM 4.40.DES.S

GIVEN:
The high temperature of the automobile exhaust can be used to promote catalytic reactions and conversions

(this is called a close-coupled converter) of some gaseous pollutants (such as unburned hydrocarbons) over cat-
alytic metal-oxide surfaces. When the converter is placed close to, but downstream of an internal combustion
engine, the exhaust pipe leading to the converter is insulated. One scenario is the addition of a radiation shield
around of the outside of the exhaust pipe. This is shown in Figure Pr.4.40(a). The gap between the pipe and the
shield contains air, and heat transfer occurs by conduction and by surface radiation.

The external surface of the shield exchanges heat with its surroundings by surface radiation and surface con-
vection. The surface-convection heat loss of the external surface of the shield is estimated as qku = 4,000 W/m2.
The surroundings behave as a blackbody at T3 = 300 K. The exhaust pipe has an outside diameter D1 = 5 cm,
a surface temperature of T1 = 800 K, and its surface is diffuse, opaque, and gray with a surface emissivity of
εr,1 = 0.7. The shield has an inside diameter D2,i = 5.4 cm and an outside diameter D2,o = 5.5 cm and is made
of chromium coated carbon steel AISI 1042. Its surface is opaque, diffuse, and gray and has a surface emissivity
εr,2 = 0.1. For the thermal conductivity of air use ka = 0.04 W/m-K.

SKETCH:
Figure Pr.4.40(a) shows the exhaust pipe, the radiation shield, and the surroundings of the shield.

Air

T1 = 800 K
  r,1 = 0.7

Ambient Surface:
T3 = 300 K
  r,3 = 1

Exhaust Pipe

Shield

D2,o
D1

D2,i

  r,2 = 0.1

qu (W/m2)

qr (W/m2) qk (W/m2)

qku (W/m2) qr (W/m2)

∋

∋
∋

Figure Pr.4.40(a) Insulation of an automobile exhaust pipe.

OBJECTIVE:
(a) Determine the net heat transfer from the exhaust pipe to the ambient for a L = 1 m long pipe.
(b) Comment on the effect of the pipe wall conduction thermal resistance on the total heat transfer from the
exhaust pipe.
(c) Keeping all the other conditions the same, would the heat transfer from the exhaust pipe increase or decrease
with an increase of the inside diameter of the shield (while keeping the thickness constant)? (Suggestion: Plot
the variation of Q1 for 5.2 cm ≤ D2,i ≤ 7 cm.)

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.4.40(b) under a steady-state condition and with no energy
generation present. Applying the integral-volume energy equation to nodes T1, T2,i, T2,o and T3, we have

Q1 = Qk,1-2 + Qr,1-2 = Qku + Qr,2-3 = Q3.
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Figure Pr.4.40(b) Thermal circuit diagram.

The conduction, surface radiation and surface convection heat transfer rates are given by

Qk,1-2 =
T1 − T2,i

Rk,1-2

Qr,1-2 =
σSB(T1

4 − T2,i
4)

(Rr,Σ)1-2
Qku = Aku,3qku

Qr,2-3 =
σSB(T 4

2,i − T3
4)

(Rr,Σ)2-3

(Qk)2,i-2,o =
T2,i − T2,o

(Rk)2,i-2,o
.

The conduction thermal resistance through the air gap is

Rk,1-2 =
ln(R2,i/R1)

2πkaL
=

ln[2.7(cm)/2.5(cm)]
2π × 0.04(W/m-K) × 1(m)

= 0.3062◦C/W.

The overall radiation thermal resistance through the air gap is

(Rr,Σ)1-2 =
1 − εr,1

Ar,1εr,1
+

1
Ar,1F1-2

+
1 − εr,2

Ar,2εr,2
.

Using F1-2 =1 and the areas

Ar,1 = πD1L = π × 5 × 10−2(m) × 1(m) = 0.157 m2

Ar,2 = πD2L = π × 5.4 × 10−2(m) × 1(m) = 0.170 m2,

we have

(Rr,Σ)1-2 =
1 − 0.7

0.157(m2) × 0.7
+

1
0.157(m2) × 1

+
1 − 0.1

0.170(m2) × 0.1
= 62.04 1/m2.

The conduction thermal resistance through the pipe wall is (using ks for steel from Table C.16),

(Rk)2,i-2,o =
ln(R2,o/R2,i)

2πksL
=

ln[2.75(cm)/2.7(cm)]
2π × 50(W/m-K) × 1(m)

= 5.84 × 10−5 ◦
C/W

The overall radiation resistance from the pipe surface to the surrounding is

(Rr,Σ)2-3 =
1 − εr,2

Ar,2,oεr,2
+

1
Ar,2,oF2-3

+
1 − εr,3

Ar,3εr,3

Using F2-3 =1, Ar,3 � Ar,2,o and

Ar,2,o = πD2,oL = π × 5.5 × 10−2(m) × 1(m) = 0.173 m2,
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we have

(Rr,Σ)2-3 =
1 − 0.1

0.173(m2) × 0.1
+

1
0.173(m2)

= 57.80 1/m2.

Noting that (Rk)2,i-2,o 
 Rk,1-2, (Rr,Σ)1-2, and (Rr,Σ)2-3, we can assume that T2,i = T2,o � T2. Then the energy
equation for node T2 becomes

Q|A,2 = Qk,1-2 + (Qr,Σ)1-2 − Qku + (Qr,Σ)2-3 = 0.

Using the equation for the heat transfer rates, we have

T1 − T2

Rk,1-2
+

σSB(T 4
1 − T 4

2 )
(Rr,Σ)1-2

− Qku − σSB(T 4
2 − T 4

3 )
(Rr,σ)2-3

= 0.

This is a fourth order polynomial equation on T2. Solving for T2 using a solver (such as SOPHT), we obtain T2

= 619.7 K. The heat transfer rate Q1 is then given by

Q1 =
T1 − T2

Rk,1-2
+

σSB(T 4
1 − T 4

2 )
(Rr,Σ)1-2

= 827.7 W.

(b) The conduction resistance through the pipe wall, if taken into account, would reduce the heat transfer rate
Q1. However, here, due to the relatively high thermal conductivity of steel and the small thickness of the pipe
wall, its effect on Q1 is negligible.

(c) Increasing the diameter of the shield D2,i increases the conduction resistance through the air gap, but also
decreases the radiation resistance, and increases the surface convection. The combined result of these effects is
shown in Figure Pr.4.40(c). Note that there is a minimum in the heat transfer rate Q1 for D2,i = 5.8 cm, for
which Q1 = 808 W.

0.05 0.06 0.07 0.08 0.09 0.10

D2,i  , m

700

800

900

1,000

1,100

1,200

Q
1  ,

 W

Minimum Heat Transfer Rate
from Surface 1

Figure Pr.4.40(c) Variation of the heat loss with respect to the shielded diameter D2,i.

COMMENT:
Here, the dependency of the surface-convection heat transfer rate on the external diameter D2,o through qku

is neglected. This will be discussed in Chapter 6. Also, with the increase in the gap size, between the shield and
the pipe, there is an increase in the importance of the surface-convection heat transfer in the gap (when compared
to the conduction heat transfer). This thermobuoyant flow and heat transfer is explained in Chapters 6. When
the conduction resistance across the pipe wall is not neglected, we obtain T2,i = 619.758 K, T2,o = 619.709 K and
Q2,i-2,o = 827.708 W. Note the negligible difference between these results and the results obtained in part (a).
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PROBLEM 4.41.DES

GIVEN:
During continuous thermal processing of silicon wafers, to heat the wafers to a desired temperature, the wafers

are stacked vertically and moved through an evacuated, cylindrical radiation oven at speed uw. This is shown in
Figure Pr.4.41(i). Consider a unit cell formed by two adjacent wafers. This is shown in Figure Pr.4.41(ii). The
wafers have a diameter D1 = 100 mm, the distance separating the wafers is l = 30 mm, and the wafers are placed
coaxially to the oven wall, which is also cylindrical. The diameter of the ceramic oven is D2 = 300 mm. The oven
surface is opaque, diffuse, and gray with surface emissivity εr,2 = 0.9 and surface temperature T2 = 800 K. The
wafers surface is also diffuse, opaque, and gray with emissivity εr,1 = 0.01.

SKETCH:
Figure Pr.4.41(a) shows the wafer-furnace.

(i) (ii)

D1

Wafers

Wafer
T1 = 500 K
  r,1 = 0.01

Oven Wall
T2 = 800 K
  r,2 = 0.9

Axis of Symmetry

     Unit Cell
Furnace

uw

l

D2

Qr,1-2

∋∋

Figure Pr.4.41(a)(i) Silicon wafers moving and heating in a radiation oven. (ii) The unit cell formed by two adjacent
wagers is also shown.

OBJECTIVE:
(a) Assuming that the wafers have a uniform temperature T1 = 500 K, determine the net heat transfer by surface
radiation between the oven and a wafer Qr,1.
(b) During this process, the wafers enter the oven at an initial temperature lower than 500 K. As they move
through the oven, they are heated by surface radiation from the oven walls until they reach a near steady-state
temperature. Assuming that the axial variation of temperature (along the thickness) is negligible, quantitatively
sketch the radial distribution of the wafer temperature at several elapsed times (as the wafer moves through the
oven).
(c) Apply a combined integral-differential length energy equation to a wafer. Use the integral length along the
thickness and a differential length along the radius. Express the surface-radiation heat transfer in terms of a
differential radiation resistance, which depends on a differential view factor.

SOLUTION:
(a) The surface of a wafer exchanges radiation heat transfer with the other wafers facing it and with the oven
surface. As the wafer has a uniform temperature T1, the surface of two adjacent wafers, which are at the same
temperature T1, and the oven form a two-surface enclosure, as shown in Figure Pr.4.41(a)(ii). Then, the net
surface radiation heat transfer is given by (4.47), i.e.,

Qr,1-2 =
σSB(T 4

1 − T 4
2 )

(Rr,Σ)1-2
,

where the overall radiation resistance is

(Rr,Σ)1-2 =
1 − εr,1

Ar,1εr,1
+

1
Ar,1F1-2

+
1 − εr,2

Ar,2εr,2
.

The view factor F1-2 is obtained from Figure 4.11(a) and by using the summation rule.
From Figure 4.11(a), using R1 = 100(mm)/30(mm) = 3.33, and R2 = 3.33, we obtain F1-1 = 0.72. Then using
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the summation rule, we have

F1-2 = 1 − F1-1 = 1 − 0.72 = 0.28.

The areas are

Ar,1 =
2πD2

1

4
=

2 × π × (100 × 10−3)2(m2)
4

= 0.0157 m2

Ar,2 = πD2l = π × 300 × 10−3(m) × 30 × 10−3(m) = 0.0283 m2.

Then, the overall radiation resistance becomes

(Rr,Σ)1-2 =
1 − 0.01

0.01 × 0.0157(m2)
+

1
0.28 × 0.0157(m2)

+
1 − 0.9

0.9 × 0.0283(m2)
= 6,302.54(1/m2) + 227.36(1/m2) + 3.93(1/m2)
= 6,537 1/m2.

The net heat transfer by surface radiation is then

Qr,1-2 =
5.67 × 10−8(W/m2-K4)(5004 − 8004)(K4)

6,537(1/m2)
= −3.008 W.

(b) Figure Pr.4.41(b) shows the qualitative, radial temperature distribution of wafer temperature at several
elapsed times. Also shown is the expected steady-state temperature distribution.

(c) The integral-differential length analysis for a wafer with thickness w gives

lim
∆A→0

∫
∆A

(q · sn)dA

∆V
= lim

∆A→0

{
qr2π[(r + ∆r)2 − r2]
π[(r + ∆r)2 − r2]w

+
−qk,r2πrw + qk,r+∆r2π(r + ∆r)w

π[(r + ∆r)2 − r2]w

}

= lim
∆A→0

[
2qr

w
+

−qk,r2r + qk,r+∆r2(r + ∆r)
2r∆r + ∆r2

]
.

0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0

Time increasing

t = 0 s

t  = 1

r/R1

T1 − T1(t = 0)
T2 − T1(t = 0)

Figure Pr.4.41(b) Qualitative radial distribution of the wafer temperature, at several elapsed times.

Considering that for small ∆r∆r2 
 2r∆r, we have

lim
∆A→0

∫
∆A

(q · sn)dA

∆V
= lim

∆A→0

[
2qr

w
+
(−rqk,r + rqk,r+∆r + ∆rqr,r+∆r

r∆r

)]
.
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The second term can be rewritten as

lim
∆A→0

(−rqk,r + rqk,r+∆r + ∆rqr,r+∆r

r∆r

)
= lim

∆A→0

(
qk,r+∆r − qk,r

∆r
+

qk,r+∆r

r

)

=
∂qk

∂r
+

qk

r
=

1
r

∂

∂r
(rqk).

Thus, the integral-differential length energy equation becomes

2qr

w
+

1
r

∂

∂r
(rqk) = −ρcp

∂T

∂t
.

The heat flux by radiation is

qr = lim
∆A→0

Qr,1-2
∆Ar

,

where

Qr,1-2 =
σSB(T 4 − T 4

2 )
(∆Rr,Σ)1-2

and

(∆Rr,Σ)1-2 =
1 − εr,1

∆Arεr,1
+

1
∆ArF∆Ar-2

+
1 − εr,2

Ar,2εr,2
,

where F∆Ar-2 is the view factor between the differential area ∆Ar and surface 2. Then

qr = lim
∆A→0

σSB(T 4 − T 4
2 )

1 − εr,1

εr,1
+

1
F∆Ar-2

+
(

1 − εr,2

εr,2

)
∆Ar

Ar,2

=
σSB(T 4 − T 4

2 )
1 − εr,1

εr,1
+

1
F∆Ar,2

.

The view factor F∆Ar-2 is the view factor from a cylindrical shell (ring), with radial length ∆r, to the oven
surface. This is given in reference [9] as a function of geometric parameters.

COMMENT:
The radiation heat flow rate into the wafer Qr,i is rather small, but the mass of a silicon wafer is not very

large. Therefore, speedy heat-up is possible. An increase in l will increase Qr,1.
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PROBLEM 4.42.FAM

GIVEN:
A gridded silicon electric heater is used in a microelectromechanical device, as shown in Figure Pr.4.42.

The heater has an electrical resistance Re and a voltage ∆ϕ is applied resulting in the Joule heating. For
testing purposes, the heater is raised to a steady-state, high temperature (i.e., glowing red). The gridded heater
is connected to a substrate through four posts (made of silicon oxide, for low conductivity kp), resulting in
conduction heat loss through four support posts. The substrate is at Ts and has an emissivity εr,s. The upper
heater surface is exposed to large surface area surroundings at Tsurr. Treat the heater as having a continuous
surface (i.e., solid, not gridded), with a uniform temperature T1.

Ts = 400◦C, Tsurr = 25◦C, w = 0.5 mm, a = 0.01 mm, l = 0.01 mm, εr,1 = 0.8, εr,s = 1, Re = 1,000 ohm,
∆ϕ = 5 V, kp = 2 W/m-K.

You do not need to use tables or figures for the view factors. Use (2.28) for Ṡe,J.

SKETCH:
Figure Pr.4.42(a) shows the heater and the supporting posts.

Substrate

Se,J

Tsurr

Asurr  >> A1

kp

l

Silicon Oxide

(�)

(+)

\
\

\ \ \ \ \ \ \ \ \ \ \ \ \

w

w

T1 ,   r,1

Silicon

∋

Ts ,   r,s

∋

aa

Figure Pr.4.42(a) A miniature gridded heater connected to a substrate by four support posts and raised to a glowing
temperature.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the heater temperature T1.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure 4.42(b). Heat transfer from the heater is by surface radiation
to the surroundings and the substrate, and by conduction through the posts.

(b) The energy equation, from Figure Pr.4.41(b), is

Qr,1-surr + Qr,1-s + Qk,1-s = Ṡe,J.

From (2.28), we have

Ṡe,J =
∆ϕ2

Re
.

The view factors between the upper surface and surroundings is unity F1-surr = 1. The view factor between the
lower surface and the substrate F1-s is also assumed unity, using w 
 l in Figure 4.11(b).
The surface radiation for unity view factor and Ar,surr 
 A1, and for εr,s = 1, are given by (4.49), i.e.,

Qr,1-surr = Ar,1εr,1σSB(T 4
1 − T 4

surr)
Qr,1-s = Ar,1εr,1σSB(T 4

1 − T 4
s ), Ar,1 = w2.
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Tsurr

Eb,surr

Eb,� Se,J =

T
�

Eb,�

Eb,�

Ts Ts

Qr,�-surr

Qk,�-sQr,�-s

(Rr,�)�-surr

(Rr,�)�-s

Rk,�-s

��2

Re

Figure Pr.4.42(b) Thermal circuit diagram.

The conduction resistance is found from Table 3.2, i.e.,

Qk,1-s =
T1 − T2

Rk,1-s
=

4Apkp

l
(T1 − Ts), Ap = a2.

The energy equation becomes

w2εr,1σSB(2T 4
1 − T 4

surr − T 4
s ) +

4a2kp

l
(T1 − Ts) =

∆ϕ2

Re

or

(5 × 10−4)2(m2) × 0.8 × 5.67 × 10−8(W/m2-K4) × [2T 4
1 − (298.15)4(K4) − (673.15)4(K4)] +

4 × (10−5)2(m2) × 2(W/m-K)
10−5(m)

× (T1 − 673.15)(K) =
52(V 2)

1,000(ohm)

or

1.134 × 10−14 × (2T 4
1 − 7.902 × 109 − 2.053 × 1011) + 8.000 × 10−5 × (T1 − 673.15) = 0.025.

Solving for T1, we have

T1 = 860.5 K.

COMMENT:
Note that the dull red is identified as the Draper point in Figure 4.2(a) with T = 798 K. In practice, the heater

is a gridded silicon with a polysilicon coating. Also note that since w/l = 50, the F1-s, from Figure 4.11(b), is
unity.
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PROBLEM 4.43.FAM

GIVEN:
A spherical cryogenic (hydrogen) liquid tank has a thin (negligible thickness), double-wall structure with the

gap space filled with air, as shown in Figure Pr.4.43. The air pressure is one atm.
εr,1 = 0.05, εr,2 = 0.05, R1 = 1 m, R2 = 1.01 m, T1 = −240◦C, T2 = −80◦C.
Use (3.19) for low and moderate gas pressure gases to determine any pressure dependence of the gas conduc-

tivity. Use Table C.22 for the atmospheric pressure properties of air and use T = 150 K.

SKETCH:
Figure Pr.4.43(a) shows the tank, walls, and the air gap.

R1

R2

qk

qr

�Q1 = Q2-1

Metallic Walls

  r,2

  r,1
Air at Pressure p(atm)

T2

T1
Vent

Liquid
Hydrogen

∋

∋

Figure Pr.4.43(a) A cryogenic (liquid hydrogen) tank has a double-wall structure with the space between the thin walls
filled with atmospheric or subatmospheric pressure air.

OBJECTIVE:
(a) Draw the thermal circuit diagram for heat flow between the outer and inner walls.
(b) Determine the rate of heat transfer to the tank Q2-1.
(c) Would Q2-1 change if the air pressure is reduced to 1/10 atm? How about under ideal vacuum (p = 0, k = 0)?

SOLUTION:
(a) Figure Pr.4.43(b) shows the thermal circuit diagram. The heat flows by conduction and radiation from surface
2 to surface 1.

Qk,2-1

�Q1 Q1 = Q2-1

T1T2

Rk,2-1

Rr,�

Eb,2
Eb,1

Qr,2-1

Figure Pr.4.43(b) Thermal circuit diagram.

(b) From Figure Pr.4.43(b), we have

Q2-1 =
T2 − T1

Rk,2-1
+

Eb,2 − Eb,1

Rr,Σ
,

where from Table 3.3, we have

Rk,2-1 = Rk,1-2 =
(

1
R1

− 1
R2

)
/4πk,
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and for a two-surface enclosure of the gap space we have from (4.47),

Rr,Σ =
(

1 − εr

Arεr

)
1

+
1

Ar,1F1-2
+
(

1 − εr

Arεr

)
2

.

Here F1-2 = 1 and Ar,1 = 4πR2
1 and A2 = 4πR2

2.
From Table C.22, for air at T = 150 K, we have

k = 0.0158 W/m-K Table C.22

Then

Rk,2-1 =
(

1
1
− 1

1.01

)
/4π × 0.0158(W/m-K)

= 4.986 × 10−2 K/W

Rr,Σ =
1 − 0.05

4π × (1)2(m2) × 0.05
+

1
4π × (1)2(m2)

+
1 − 0.05

4π × (1.01)2(m2) × 0.05
= (1.512 + 0.07957 + 1.482)(1/m2) = 3.074 1/m2.

Then

Q2-1 =
(193.15 − 33.15)(K)
4.986 × 10−2(K/W)

+
5.67 × 10−8(W/m2-K4)[(193.15)4 − (33.15)4](K4)

3.074(1/m2)
= 3,209(W) + 25.65(W) = 3,235 W.

(c) From (3.19), we note that there is no pressure dependence of k for the monatomic gases at low and moderate
pressures. This is also true for the diatomic gas mixtures such as air. Then

Q2-1 = 3,235 W p = 0.1 atm.

For p = 0 which gives k = 0, we have radiation heat transfer only, and

Q2-1 = 25.65 W p = 0.

COMMENT:
Air is made of oxygen and nitrogen and their condensation temperature (boiling point) at p = 1 atm is given

in Table C.4 as Tlg = 90.0 K and Tlg = 197.6 K, respectively. Then it becomes necessary to evacuate the gap
space in order to avoid condensate formation which collects in the gap, at the bottom of the tank under gravity.
In practice, the outer surface is insulated to lower the surface temperature much below −80◦C.

Note the small contribution due to radiation (due to the small emissivities).
Also as the gas pressure drops, the possibility of gas molecules colliding with the walls becomes greater than

that for the intermolecular collisions. Then the size (gap between the walls) should be included. This is left as
an end of Chapter 3 problem and includes the Knudsen number KnL = λm/L as a parameter, where λm is the
molecular mean-free path given by (1.19) and L = R2 − R1.
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PROBLEM 4.44.FUN

GIVEN:
In surface radiation through multiple, opaque layer systems, such as the one shown in Figure Pr.4.44, the rate

of conduction through the layers can be significant. To include the effect of the layer conductivity, and also the
layer spacing indicated by porosity, use the approximation that the local radiation heat transfer is determined by
the local temperature gradient, i.e.,

qr,x = −〈kr〉dT

dx
= −〈kr〉T2 − T1

l1 + l2
, 〈kr〉 = 〈kr〉(ks, ε, εr, T2, l2),

where 〈kr〉 is the radiant conductivity.

SKETCH:
Figure Pr.4.44 shows a multiple, finite thickness l1 and conductivity ks parallel layer (opaque) system and its

thermal circuit model.

(i) Multiple, Opaque, Finite-
      Conductivity Layers (Slabs)

a

a
x

l1
l2

Ar

ksGap: kf = 0

qr,x = � kr
dT
dx

T2 , r
T1

T1' , r

Solid with 
Diffuse, Gray,

Opaque Surface 
and Finite-

Thickness and 
Conductivity

(ii) Thermal Circuit Model
Using Radiant Conductivity   kr

Rkr

Rk Rr,�

 l1 + l2
Ar   kr

Qr,x

T1 T1' T2

, Ar  = a2

∋
∋

Figure Pr.4.44(i) Surface-radiation and solid conduction through a system of parallel slabs.
(ii) Thermal circuit diagram.

OBJECTIVE:
(a) Using the thermal circuit diagram representing Qr,x in Figure Pr.4.44(ii), start from (4.47) and use F1′-2 = 1
for l2 
 a, and then use (4.72) to linearize T 4

1′ − T 4
2 and arrive at

qr,x =
4εrσSBT 3(T

′
1 − T2)

2 − εr
.

(b) Then add Rk and use T1 − T2 to arrive at the radiant conductivity expression 〈kr〉

〈kr〉 =
1

1 − ε

ks
+

(2 − εr)ε
4εrσSBT 3l2

, ε =
l2

l1 + l2

or
〈kr〉

4σSBT 3l2
=

1
4σSBT 3l2(1 − ε)

ks
+

(2 − εr)ε
εr

or
kr

4σSBT 3l1
=

εrN
−1
r (1 − ε)−1

εr + N−1
r (2 − εr)

, Nr =
4σSBT 3l1

ks
.

SOLUTION:
(a) Starting from (4.47) and assuming F1′-2 = 1 [from Figure 4.11(b)], we have

qr,x = qr,1′-2 =
1

Ar

Eb,1′ − Eb,2

1 − εr

Arεr
+

1
Ar

+
1 − εr

Arεr

=
σSB(T 4

1′ − T 4
2 )

2
εr

− 1
=

εrσSB(T 4
1′ − T 4

2 )
2 − εr

.
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Now, from (4.72), using

T 4
1′ − T 4

2 = (T 2
1′ + T 2

2 )(T 2
1′ − T 2

2 )
= (T 2

1′ + T 2
2 )(T1′ + T2)(T1′ − T2)

= 4T 3(T1′ − T2),

where we have defined

4T 3 ≡ (T 2
1′ + T 2

2 )(T1′ + T2)

as the average temperature for the case of T1′ → T2 → T . Then

qr,x =
4εrσSBT 3(T1′ − T2)

2 − εr
.

(b) From Table 3.2, we use the conduction resistance to write, using Figure Pr.4.44(i),

qr,x =
1

Ar

T1 − T1′

Rk
=

T1 − T1′

l1/ks
.

Now, noting that the conduction and radiation resistance are in series, we have

qr,x =
T1 − T2

Ar(Rk + Rr,Σ)
=

T1 − T2

l1
ks

+
2 − εr

4εrσSBT 3

= − 1
l1

(l1 + l2)ks
+

(2 − εr)l2
4εrσSBT 3l2(l1 + l2)

T2 − T1

l1 + l2

= − 1
1 − ε

ks
+

(2 − εr)ε
4εrσSBT 3l2

T2 − T1

l1 + l2
, ε =

l2
l1 + l2

≡ −〈kr〉T2 − T1

l1 + l2
or

〈kr〉 =
1

1 − ε

ks
+

(2 − εr)ε
4εrσSBT 3l2

.

or
〈kr〉

4σSBT 3l2
=

1
4σSBT 3l2(1 − ε)

ks
+

(2 − εr)ε
εr

Now using the conduction-radiation number Nr defined by (4.75), we have

kr

4σSBT 3l1
=

εrN
−1
r (1 − ε)−1

εr + N−1
r (2 − εr)

.

Note that using l instead of l2 gives

kr

4σSBT 3l1
=

1
4σSBT 3l1(1 − ε)

ks
+

(2 − εr)(1 − ε)
εr

.

COMMENT:
Note that for ks → ∞, i.e., an ideally conducting solid, we have

〈kr〉 =
4εrσSBT 3l2
(2 − εr)ε

, ks → ∞.

This shows an increase in 〈kr〉 as the fraction of high conductivity solid (ks → ∞) increases (i.e., ε decreases).
Note that when εr → 0, then there is no heat transfer (infinite radiation resistance), because heat has to be
transferred by radiation between surfaces in order to be conducted across the layer (here zero conductivity is
assumed for the fluid occupying the space between the surfaces).
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PROBLEM 4.45.FUN.S

GIVEN:
The measured effective thermal conductivity of porous solids, such as that for packed zirconium oxide fibers

given in Figure 3.13(b), does include the radiation contribution. The theoretical prediction can treat the conduc-
tion and radiation heat transfer separately. In a prediction model (derivation for cubic particles is left as an end
of the chapter problem), the effective, combined (total) conductivity for a periodic porous solid is given by

〈kkr〉 = 〈kk〉 + 〈kr〉

〈kr〉 = 4DσSBT 3 εr(1 − ε)1/3N−1
r

εr + N−1
r (2 − εr)

, Nr =
4σSBT 3D

ks

〈k〉 = kf

(
ks

kf

)0.280−0.757 log ε+0.057 log(ks/kf )

Using these, we can compare the predicted and measured results.
Here ε is the porosity, D is the fiber-diameter, εr is the fiber emissivity, kf is the fluid, and ks is the solid

conductivity.
D = 10 µm, 〈ρ〉 = 1,120 kg/m3.
Use 〈ρ〉 = ερf +(1− ε)ρs = (1− ε)ρs, for ρf 
 ρs, to determine ε. For air use kf = 0.0267(W/m-K)+5.786×

10−5(W/m-K4)× (T − 300)(K), and use the only data available for zirconium oxide ks and ρs in Table C.17. For
emissivity use εr = 0.9 − 5.714 × 10−4(T − 300)(K) based on Table C.18 for zirconium oxide.

OBJECTIVE:
(a) Plot the variation of 〈kkr〉 with respect to T for 300 K ≤ T ≤ 1,000 K, for the zirconium oxide and air system.
(b) Compare the results with the experimental results of Figure 3.13(b).
(c) Is radiation contribution significant in this material?

SOLUTION:
(a) From Table C.17, we have for zirconia

ρs = 5,680 kg/m3, ks = 1.675 W/m-K Table C.17 for the porosity.

Using 〈ρ〉 = ερf + (1 − ε)ρf and noting that ρf (from Table C.22) is much smaller than ρs, we have

1 − ε =
〈ρ〉
ρs

=
1,120(kg/m3)
5,680(kg/m3)

= 0.1972

or

ε = 0.8028.

Using a solver-plotter, the results for 〈kkr〉 versus T is plotted in Figure Pr.4.45. Note the rather linear increase
with respect to T . This is due to the assumed linear increase in kf with T .

(b) Using the experimental results plotted in Figure 3.13(b), we choose T = 400◦C = 673.15 K and this experi-
mental result is also shown in Figure Pr.4.45. The agreement is rather good.

(c) The radiation conductivity 〈kr〉 is not large, 〈kr〉 = 0.0004399 W/m-K at T = 1,000 K, due to the small
particle diameter D. The lower emissivity at higher temperatures also makes 〈kr〉 small.

COMMENT:
In Figure 3.13(b), the results for higher and lower 〈ρ〉 do not agree as well with the predictions, however, in

all of these data, the role of radiation is not significant in the temperature range considered, because D is small.
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Figure Pr.4.45 Variation of the total thermal conductivity of zirconium oxide air packed bed of fibers, with respect to
temperature.
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PROBLEM 4.46.FAM.S

GIVEN:
A spherical carbon steel AISI 1010 piece of diameter D = 1 cm, initially at T1(t = 0) = 1,273 K, is cooled

by surface radiation to a completely enclosing cubic oven made of white refractory brick with each side having a
length L = 10 cm and a surface temperature T2 = 300 K. Assume that all the surfaces are opaque, diffuse, and
gray. For the carbon steel sphere use the higher value for the emissivity of oxidized iron, listed in Table C.18.

OBJECTIVE:
(a) Using a software, plot the variation of the piece temperature with respect to time.
(b) Determine the time it takes for the piece to reach T1 = 600 K and compare this result (i.e., the numerical
solution) with the one predicted by (4.82) (i.e., the analytic solution).

SOLUTION:
(a) Figure Pr.4.46 shows the variation in the workpiece temperature with respect to time, along with the associ-
ated computer code from SOPHT.

(b) For the carbon steel sphere (node T1), we have (from Tables C.16 and C.18, and the given geometry),
ρ1 = 7,830 kg/m3, cp,1 = 434 J/kg-K, εr,1 = 0.89, V1 = πD3/6 = 5.236× 10−7 m3, A1 = πD2 = 3.141× 10−4 m2.

For the white refractory brick walls (node T2), we have (from Table C.18, and the given geometry), εr,1 = 0.29
(for T = 1,373 K), A1 = 6(L × L) = 6(0.1 m × 0.1 m) = 0.06 m2,
and using (4.82) gives

σSBT 3
2

Rr,Σ(ρcpV )1
t =

1
4

[
ln
∣∣∣∣T2 + T1

T2 − T1

∣∣∣∣− ln
∣∣∣∣T2 + T1(t = 0)
T2 − T1(t = 0)

∣∣∣∣+ 2tan−1 T1

T2
− 2tan−1 T1(t = 0)

T2

]
,

where T1(= 0) = 1,273 K, T2 = 300 K, and T1 = T1(t) = 600 K.
The radiation resistance between the sphere and the walls is given by (4.48) as

Rr,Σ = (Rr,ε)1 + (Rr,F )1-2 + (Rr,ε)2

=
(

1 − εr

εrA

)
1

+
(

1
A1F1-2

)
+
(

1 − εr

εrA

)
2

,

where F1-2 = 1.
Substituting into (4.82) and solving for t, we give

t = 162 s.

COMMENT:
The numerical solution for this relatively simple problem, is very accurate. Figure Pr.4.46 gives t = 161.7 s.
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// Problem 4.46
// Note that the initial condition on T1 will be specified in the Solve window
// Volumetric Transient Node, 1
T1’ = dT1dt // Must be first equation in the set
QA1 = -rho1*cp1*V1*dT1dt + S1dot // Conservation of energy, W
QA1 = Qr1 // Summation of heat transfer leaving node, W
rho1 = 7830 // Density of medium, kg/mˆ3
cp1 = 434 // Specific heat, J/kg-K
d1 = 0.01 // sphere diameter, m
V1 = pi*d1ˆ3/6 // Volume, mˆ3
S1dot = 0 // Energy conversion, W

// Surface radiation for node 1
Qr1 = Qr12 // Surface radiation heat transfer, W
// Net radiation heat transfer between surface 1 & 2
Qr12 = (Eb1-Eb2)/Rrs12 // Radiation heat transfer between surfaces, W
Eb1 = sigmaSB*T1ˆ4 // Emissive power of node 1, W/mˆ2
Eb2 = sigmaSB*T2ˆ4 // Emissive power of node 2, W/mˆ2
T2 = 300 // Temperature of node 2, K

// Two-surface radiation resistance
Rrs12 = (1-epsilonr1)/(Ar1*epsilonr1)+1/(Ar1*F12)+(1-epsilonr2)/(Ar2*epsilonr2)
// equivalent radiation resistance, 1/mˆ2
epsilonr1 = 0.89 // Surface 1 emissivity
epsilonr2 = 0.29 // Surface 2 emissivity
Ar1 = pi*d1ˆ2 // Surface 1 area, mˆ2
l2 = 0.1 // cube side length, m
Ar2 = 6*l2ˆ2 // Surface 2 area, mˆ2
F12 = 1 // View factor

sigmaSB = 5.67e-8 // Stefan-Boltzmann constant

Figure Pr.4.46 Variation of workpiece temperature with respect to time and the computer code from SOPHT.

415



PROBLEM 4.47.FUN

GIVEN:
An idealized bed of solid particles is shown in Figure Pr.4.47. The heat is transferred through the bed by

surface radiation and the cubic solid particles have a finite conductivity ks, while conduction through the fluid is
neglected (kf = 0). We use the radiant conductivity 〈kr〉 defined through

qr,x = −〈kr〉dT

dx
= −〈kr〉T2 − T1

l1 + l2
,

〈kr〉 = 〈kr〉(ks, ε, εr, T, l2).

SKETCH:
Figure Pr.4.47(a) shows the bed and a simplified thermal circuit model.

Rkr

Rk Rr,Σ

 l1 + l2
Ar   kr

, Ar   = a2

Qr,x

T1
T1'

T2

(i) Surface Radiation and Solid Conduction
      in a Bed of Cubic Particles

(ii) Thermal Circuit Model
      Using Radiant Conductivity   kr

l2

a

a
l1

l1

l1

Gap: kf = 0 ks

Solid with 
Diffuse, Gray,

Opaque Surface 
and Finite-

Dimensions and 
Conductivity

T2 ,   r
T1' ,   r

T1 ∋
∋

Figure Pr.4.47(a)(i) A bed of cubical particles with surface radiation and solid conduction. (ii) Simplified thermal
circuit diagram.

OBJECTIVE:
(a) For the thermal circuit model shown in Figure Pr.4.47(ii), determine the radiation resistance Rr,Σ between
two adjacent surfaces 1′ and 2. Assume that F1′-2 = 1 and use the linearization given in (4.72).
(b) Add the conduction resistance using series resistances to arrive at

〈kr〉
4σSBT 3l2(1 − ε)2/3

=
1

4σSBT 3l2(1 − ε)1/3

ks
+

(2 − εr)ε1/3

εr

ε = 1 − l31
(l1 + l2)3

=
l32

(l1 + l2)3

kr

4σSBT 3l1
=

εrN
−1
r (1 − ε)−1

εr + N−1
r (2 − εr)

, Nr =
4σSBT 3l1

ks
.

SOLUTION:
(a) Starting from (4.47), with F1′-2 = 1 and all surfaces having the same emissivity εr, we have

Qr,1′-2 =
Eb,1′ − Eb,2

1 − εr

Ar(1 − ε)2/3εr

+
1

Ar(1 − ε)2/3
+

1 − εr

Ar(1 − ε)2/3εr

=
Ar(1 − ε)2/3(Eb,1′ − Eb,2)

2(1 − εr)
εr

+ 1

=
Ar(1 − ε)2/3(Eb,1′ − Eb,2)

2
εr

− 2 + 1

=
Ar(1 − ε)2/3σSB(T 4

1′ − T 4
2 )

2 − εr

εr

, Ar = a × a, ε = 1 − l31
(l1 + l3)

, (1 − ε)2/3 =
l21

(l1 + l2)3
,
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where (1 − ε)2/3 is the solid area fraction (as compared to 1 − ε which is solid volume fraction).

Now similar to (4.72), we linearize this for T1′ → T2 → T , i.e.,

(T 4
1′ − T 4

2 ) = (T 2
1′ + T 2

2 )(T 2
1′ − T 2

2 )
= (T 2

1′ + T 2
2 )(T1′ + T2)(T1′ − T2) = 4T 3(T1′ − T2)

4T 3 ≡ (T 2
1′ + T 2

2 )(T1 + T2)

where T is an average temperature. Then

Qr,1′-2 =
Ar(1 − ε)2/34σSBT 3(T1′ − T2)

2 − εr

εr

=
T1′ − T2

1
4σSBArT

3(1 − ε)2/3

(
2 − εr

εr

) .

(b) Now adding the conduction heat transfer (Table 3.2) as a series resistance, we have

Qr,1-2 =
T1 − T2

l1

Ar(1 − ε)2/3ks

+
1

Ar(1 − ε)2/34σSBT 3

(
2 − εr

εr

)

qr,1-2 =
Qr,1-2

Ar
=

T1 − T2

l1

(1 − ε)2/3ks

+
1

(1 − ε)2/34σSBT 3

(
2 − εr

εr

)

≡ −〈kr〉T2 − T1

l1 + l2
.

Then using l1 = (l1 + l2)(1 − ε)1/3, and l2 = (l1 + l2)ε1/3, we have

〈kr〉
4σSBT 3l2(1 − ε)2/3

=
1

4σSBT 3l2(1 − ε)1/3

ks
+

(2 − εr)ε1/3

εr

or

〈kr〉
4σSBT 3l1

=
εrN

−1
r (1 − ε)1/3

εr + N−1
r (2 − εr)

, Nr =
4σSBT 3l1

ks
.
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COMMENT:
Note that for l1 → 0 (ε → 1), we have

〈kr〉 =
4σSBεrT

3l2
2 − εr

.

For ks → ∞, we have

〈kr〉 =
4σSBεrT

3l2(1 − ε)1/3

2 − εr
.

Figure Pr.4.44(b) shows the variation of the dimensionless radiant conductivity 4σSBl1T
3/〈kr〉 with respect to

the inverse of conduction-radiation N−1
r = ks/(4σSBT 3l1) for various surface emissivity εr. The results are for

ε = 0.478 (corresponding to a square-array arrangement of touching spherical particles).
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Figure Pr.4.47(b) Variation of dimensionless radiant conductivity
with respect to the inverse of conduction-radiation number.

Note that from the above relation for 〈kr〉, for εr = 1, we have

〈kr〉
4σSBT 3l1

= (1 − ε)1/3,

where

l2(1 − ε)1/3 = l2
l1

l1 + l2
=

l2
l1 + l2

l1 = ε1/3l1.

Now using ε = 0.476, we have a value of 〈kr〉/4σSBT 3l1 = 0.8062 which matches the value in Figure Pr.4.44(b).
From the figure, note the role of Nr on the radiant conductivity.
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PROBLEM 4.48.FUN

GIVEN:
In the limit of a optically thick medium, σ∗

ex = σexL > 10, the extinction coefficient σex and the radiant
conductivity are used interchangeably and are related through

qr,x ≡ −〈kr〉dT

dx

= − 4
3σex

dEb

dx
= −16

3
σSBT 3

σex

dT

dx
.

Then

〈kr〉 =
16σSBT 3

3σex
.

For a packed bed of cubical particles of finite conductivity ks, surface emissivity εr, and linear dimension l1, with
interparticle spacing l2, the radiant conductivity can be shown to be approximated by

〈kr〉 =
1

1
ks(1 − ε)1/3

+
(2 − εr)ε1/3

4σSBεrT
3l2(1 − ε)2/3

or

σex =
16σSBT 3

3ks(1 − ε)1/3
+

4(2 − εr)ε1/3

3εrl2(1 − ε)2/3
.

OBJECTIVE:
(a) Determine σex for a bed of alumina cubical particles at T = 500 K, with εr = 0.7 ε = 0.4, ks = 36 W/m-K,
and (i) l2 = 3 cm, and (ii) l2 = 3 µm.
(b) Repeat (a) for amorphous silica particles, εr = 0.45, ks = 1.38 W/m-K, keeping other parameters the same.
(c) Compare these with the results of Figure 2.13 and comment.

SOLUTION:
(a) Alumina, (i) l2 = 0.03 m

σex =
16 × 5.67 × 10−8(W/m2-K4) × (500)3(K3)

3 × 36(W/m-K)(1 − 0.4)1/3
+

4(2 − 0.7) × 0.41/3

3 × 0.7 × 3 × 10−2(m) × (1 − 0.4)2/3

= 1.245(1/m) + 85.51(1/m) = 86.75 1/m.

(ii) For l2 = 3 × 10−6 m, we have

σex = 1.245(1/m) + 8.551 × 105(1/m) = 8.551 × 105 1/m.

(b) Amorphous silica, (i) l2 = 0.03 m

σex =
16 × 5.67 × 10−8 × (500)3

3 × 1.38(1 − 0.4)1/3
+

4(2 − 0.45) × 0.41/3

3 × 0.45 × 3 × 10−2(m) × (1 − 0.4)2/3

= 32.47(1/m) + 158.6(1/m) = 191.0 1/m.

(ii) For l2 = 3 × 10−6 m, we have

σex = 32.47(1/m) + 1.585 × 106(1/m) = 1.586 × 105 1/m.

(c) In Figure 2.13, for a packed bed of spherical particles (material is not identified), we have σex of about 20
1/m for a particle diameter of 3 cm and about 2× 105 1/m for a particle diameter of 3 µm. These are in general
agreement with the above results.
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COMMENT:
In the expression used for 〈kr〉, a one-dimensional conduction in series with surface radiation is used. Therefore,

the model should be considered an approximation. Note that the conduction contribution decreases as the particle
spacing decreases.

Also note that from the expression for radiant conductivity, if we define the phonon mean-free path as

λph =
1

σex
=

2εrl2(1 − ε)2/3

4(2 − εr)ε1/3
,

then λph decreases with decreasing εr (smaller surface emission) and increasing ε (there is less surface to emit
radiation).
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PROBLEM 4.49.FAM

GIVEN:
Spherical, pure, rough-polish aluminum particles of diameter D1 and emissivity εr,1 are heated by surface

radiation while traveling through an alumina ceramic tube kept at a high temperature T2. The tube has an inner
diameter D2, a length l, and an emissivity εr,2. This is shown in Figure Pr.4.49(a). A particle arrives at the
entrance to the tube with an initial, uniform temperature T1(t = 0), and exits the tube with a final, uniform
temperature T1(t = tf ). Assume that, throughout the time of travel, the fraction of radiative heat transfer
between the particle and the open ends of the tube is negligible (i.e., the view factor F1-ends = 0).

D1 = 10 µm, D2 = 3 mm, l = 5 cm, T1(t = 0) = 20◦C, T1(t = tf ) = Tsl (aluminum, Table C.16),
T2 = 1,283 K.

Evaluate the emissivities from Table C.18 and the properties of aluminum at T = 300 K (Table C.16).

SKETCH:
Figure Pr.4.49(a) shows a particle flowing in a tube while being heated by surface radiation from the tube

wall.

D2

l

Aluminum
Particle,

D1

Alumina Tube,

T1(t),    r,1,  ks,1

T
2
,    r,2

Exit

Inlet

x

up Ar,1 = πD1
2

Ar,2 = πD2l

V1 =    D1
3π

6
_

∋

∋

Figure Pr.4.49(a) Particles heated in a tube by surface radiation.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the speed up = l/tf at which the particle must move through the tube in order to exit at the
melting temperature T1(t = tf ) = Tsl.
(c) Approximate the internal conduction resistance to be (D1/2)/(Ar,1ks,1), where ks,1 is the thermal conductivity
of the solid aluminum, and determine if the assumption of uniform temperature within the particle is valid.

SOLUTION:
(a) To determine the particle speed up = l/tf , we must determine the time tf for the particle to be heated to the
melting temperature of aluminum T1(t = tf ) = Tsl = 933 K (Table C.16).

Since the sphere is very small and consists of aluminum which has a high thermal conductivity, we will
initially assume it to behave as a lumped-capacitance thermal mass. The thermal circuit diagram is shown in
Figure Pr.4.49(b).

(Rr,  )1

T1(t) T2

Qr,1-2

-(�cV )1
dT1

dt

Eb,1 Eb,2
(qr,o)1 (qr,o)2

(Rr,F)1-2 (Rr,  )2� �

Figure Pr.4.49(b) Thermal circuit diagram.
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The sphere is a lumped system with a single resistive radiation heat transfer. Applying conservation of energy
to node T1, we have

Q |A = Qr,1-2 = −(ρcV )1
∂T1

∂t

=
Eb,1 − Eb,2

(Rr,Σ)1-2
= −(ρcV )1

∂T1

∂t

=
σSB(T 4

1 − T 4
2 )

(Rr,ε)1 + (Rr,F )1-2 + (Rr,ε)2
= −(ρcV )1

∂T1

∂t
.

The solutions to this differential equation is given as

σSBT 3
2

(Rr,Σ)1-2(ρcV )1
tf =

1
4

[
ln
∣∣∣∣T2 + T1(t = tf )
T2 − T1(t = tf )

∣∣∣∣− ln
∣∣∣∣T2 + T1(t = 0)
T2 − T1(t = 0)

∣∣∣∣+ 2tan−1

(
T1(t = tf )

T2

)
− 2tan−1

(
T1(t = 0)

T2

)]
.

The volume and areas relevant to the problem are

V1 = πD3
1/6 = π × (10 × 10−6)3(m3)/6

= 5.236 × 10−16 m3,

Ar,1 = A1 = πD2
1 = π × (10 × 10−6)2(m2)

= 3.142 × 10−10 m2,

Ar,2 = A2 = πD2l = π × 0.003(m) × 0.05(m)
= 4.712 × 10−4 m2,

From Table C.16 (T1 = 300 K), ρ1 = 2,702 kg/s and c = 903 J/kg-K. The thermal capacitance of the particle is
then

(ρcV )1 = 2,702(kg/m3) × 903(J/kg-K) × 5.236 × 10−16(m3)
= 1.278 × 10−9 J/K.

From Table C.18, the emissivity of the rough polish aluminum is εr,1 = 0.18 and of the nylon is εr,2 = 0.78. The
grayness resistances are then

(Rr,ε)1 =
1 − εr,1

εr,1Ar,1
=

1 − 0.18
0.18 × 3.142 × 10−10(m2)

= 1.450 × 1010 1/m2
,

(Rr,ε)2 =
1 − εr,2

εr,2Ar,2
=

1 − 0.78
0.78 × 4.712 × 10−4(m2)

= 598.58 1/m2
.

From the summation rule for the view factors from surface 1,
n∑

j=1

Fi-j = F1-1 + F1-2 + F1-ends = 1.

Since F1-1 = 0 and F1-ends ≈ 0, then F1-2 ≈ 1. Then the view factor resistance between surfaces 1 and 2 is

(Rr,F )1-2 =
1

Ar,1F1-2
=

1
3.142 × 10−10(m2) × 1

= 3.183 × 109 1/m2
,

and the total radiative resistance is

(Rr,Σ)1-2 = (Rr,ε)1 + (Rr,F )1-2 + (Rr,ε)2
= 1.450 × 1010(1/m2) + 3.183 × 109(1/m2) + 598.58 (1/m2)

= 1.768 × 1010 1/m2
.
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Upon substitution into our thermal conservation of energy equation

σSBT 3
2

(Rr,Σ)1-2(ρcV )1
tf =

1
4

{
ln
∣∣∣∣T2 + T1(t = tf )
T2 − T1(t = tf )

∣∣∣∣− ln
∣∣∣∣T2 + T1(t = 0)
T2 − T1(t = 0)

∣∣∣∣
+2tan−1

[
T1(t = tf )

T2

]
− 2tan−1

[
T1(t = 0)

T2

]}
,

we can solve for tf [noting T1(t = 0) = (20 + 273.15)(K) = 293.15 K] as

5.67 × 10−8(W/m2-K4) × (1,283)3(K3)
1.768 × 1010(1/m2) × 1.278 × 10−9(J/K)

× tf =
1
4

{
ln
∣∣∣∣1,283(K) + 933(K)
1,283(K) − 933(K)

∣∣∣∣− ln
∣∣∣∣1,283(K) + 293(K)
1,283(K) − 293(K)

∣∣∣∣+
2 × tan−1

[
933(K)

1,283(K)

]
− 2 × tan−1

[
293(K)

1,283(K)

]}
5.30(1/s) × tf = 0.25 × (1.846 − 0.465 + 1.257 − 0.449)

tf = 0.103 s.

The velocity of the particle through the tube must then be such that it travels the entire length of the tube in tf
seconds, i.e.,

up = l/tf = 0.05(m)/0.103(s) = 0.48 m/s.

(b) The assumption of uniform temperature distribution can be validated by considering the conduction-radiation
number Nr, given by (4.74) where

Nr =
Rk,i

Rr,Σ/(4σSBT 3
m

),

where Rk,i is the internal conduction resistance and Tm is the radiation mean temperature. From Table C.16 for
aluminum, ks,1 = 237 W/m-K. Then

Rk,i =
D1/2

Ar,1ks,1
=

10 × 10−6(m)/2
3.142 × 10−10(m2) × 237(W/m-K)

= 67.15 K/W,

T 3
m =

(T 2
2 + T 2

1 )(T2 + T1)
4

= 0.25 × [(1,2832 + 9332)(1,283 + 933)](K3)

= 1.394 × 109 K3.

Upon substitution into Nr, we have

Nr =
Rk,i

Rr,Σ/4σSBT 3
m

,

=
67.15(K/W)

1.768 × 1010(1/m2)/[4 × 5.67 × 10−8(W/m2-K4) × 1.394 × 109(K3)]
= 1.2 × 10−6.

Here, Nr < 0.1, therefore the assumption of uniform temperature within the particle is valid.

COMMENT:
Surface-convection heating will also occur during the flight and should be included.
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PROBLEM 4.50.FUN

GIVEN:
A highly insulated thermos depicted in Figure Pr.4.50 has five layers of insulation shields on the outside.

The wall has two glass layers separated by an evacuated space [Figure Pr.4.50(a)(i)], or a cork board [Figure
Pr.4.50(a)(ii)].

T1 = 90◦C, T3 = 20◦C, l = 1 mm, L = 7 mm, εr,s = 0.04, εr,2 = 0.9, εr,3 = 1.

SKETCH:
Figure Pr.4.50(a) shows the thermos with five radiation shields with and without a cork board between the

glass layers.

Thermos
Wall with
Vacuum

Radiation
Shields

  r,s = 0.04

Glass Plates
  r,2 = 0.9 Surrounding

Surface
T3 = 20oC
  r,3 = 1

Hot Fluid
T1 = 90oC

Hot Fluid
T1 = 90oC

Thermos Wall
with Cork

(ii) With Cork

(i) Without Cork

L = 7 mm

l = 1 mml = 1 mm

q1

q1

Ak = Ar = A

∋

∋

∋

Figure Pr.4.50(a) Surface radiation from a thermos having radiation shields (i) With a cork board wall. (ii) Without a
cork board wall.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the heat transfer per unit area associated with each of these designs. Comment on the preference
of the cork board or the vacuum. Also, assume that all the surfaces are diffuse and gray. The glass is assumed
opaque to radiation.

SOLUTION:
(i) Thermos wall with vacuum:
(a) The heat transfer is by conduction and radiation. Figure Pr.4.50(b) shows the thermal circuit diagram. Note
that εr,i = εr,o = εr,2.
(b) Using Figure Pr.4.50(b), we have

Qk,1-i =
T1 − Ti

Rk,1-i

Qr,i-o =
Eb,i − Eb,o

(Rr,Σ)i-o

Qk,o-2 =
To − T2

Rk,o-2

Qr,2-3 =
Eb,2 − Eb,3

(Rr,Σ)2-3
.
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For n plane, parallel radiation shields with
the same surface properties, this block is 
repeated n times.

Glass Plate Vacuum Glass Plate Radiation Shield Surroundings

Conduction
Resistance

Surface-Grayness
Resistance

Conduction
Resistance

Surface-Grayness
Resistance

Surface-Grayness
Resistance

Surface-Grayness
Resistance

Surface-Grayness
Resistance

Surface-Grayness
Resistance

(Rr,F)i-0

Ti Eb,i

Qr,i

(qr,0)i

(Rr,  )i

Qr,i-0

(qr,0)0

(Rr,  )0

-Qr,0

Eb,0 T0

(Rr,  )s

Qk,0-2

Eb,2

Rk,0-2

Qr,s

(qr,0)s

(Rr,F)s-3

Qr,s-3

Eb,3 T3

Q3

(qr,0)2

(Rr,F)2-s

Qr,2-s

(qr,0)s

-Qr,s

Ts

(Rr,  )s(Rr,  )2

Qr,2

T1

Qk,1-i

Rk,1-i

Q1

T2 Eb,s Eb,s (qr,0)3

(Rr,  )3

-Qr,3

� � � � � �

Figure Pr.4.50(b) Thermal circuit diagram without cork board.

From Figure Pr.4.50(b), we have

−Q1 = Qk,1-i = Qr,i-o = Qk,o-2 = Qr,2-3 = Q3.

The blackbody emissive power is

Eb,i = σSBT 4
i .

All the thermal resistances can be calculated from the data given. Then, the equations above form a system of
4 equations and 4 unknowns. The unknowns are Ti, To, T2, and Q1. The equations are nonlinear because of the
T 4 terms.

To solve for the resistances, the thermal conductivity of the glass plate is needed. From Table C.17, we have
kg = 0.76 W/m-K. The resistances are

AkRk,1-i =
l

kg
=

0.001(m)
0.76(W/m-K)

= 0.0013 K/(W/m2), Ak = Ar = A

Ar (Rr,Σ)i-o = Ar (Rr,ε)i + Ar (Rr,F )i-o + Ar (Rr,ε)o

=
1 − εr,i

εr,i
+

1
Fi-o

+
1 − εr,o

εr,o

=
1 − 0.9

0.9
+ 1 +

1 − 0.9
0.9

= 1.22

AkRk,o-2 =
l

kg
=

0.001(m)
0.76(W/m-K)

= 0.0013 K/(W/m2)

Ar (Rr,Σ)2-3 = Ar (Rr,ε)2 + Ar (Rr,F )2-s1 + 5
[
2 (Rr,ε)s + (Rr,F )s1-s2

]
+ Ar (Rr,ε)3

=
1 − εr,2

εr,2
+

1
F2-3

+ 5
[
2
(

1 − εr,s

εr,s

)
+

1
Fs1-s2

]
+

1 − εr,3

εr,3

=
1 − 0.9

0.9
+ 1 + 5

[
2
(

1 − 0.04
0.04

)
+ 1

]
+

1 − 1
1

= 246.11.

The energy equations are then written as

−Q1

A
=

T1 − Ti

0.0013[K/(W/m2)]
=

Eb,i − Eb,o

1.22
=

To − T2

0.0013[K/(W/m2)]
=

Eb,2 − Eb,3

246.11
.

The thermal resistances between surfaces 1 and i, surfaces i and o, and surfaces o and 2, are small compared to
the resistance between surfaces 2 and 3. This allows us to use the approximation

T2 � To � Ti � T1.

Using this approximation (another reason to adopt this is discussed in COMMENT), we have

−Q1

A
� Eb,1 − Eb,3

246.11
.
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Using the numerical values, we have

−Q1

A
� 5.67 × 10−8(W/m2-K4)

[
363.154(K)4 − 293.154(K)4

]
246.11

= 2.305 W/m2
.

(ii) Thermos wall with cork:
(a) The thermal circuit for the system with the cork is shown in Figure Pr.4.50(c).

For n plane, parallel radiation shields with
the same surface properties, this block is 
repeated n times.

Glass Plate Glass Plate Radiation Shield Surroundings

Conduction
Resistance

Conduction
Resistance

Conduction
Resistance

Surface-Grayness
Resistance

Surface-Grayness
Resistance

Surface-Grayness
Resistance

Surface-Grayness
Resistance

Rk,0-2

Ti

Qk,i-0

T0

Rk,i-0

Qk,0-2

Eb,2T2

(Rr,  )s

Qr,2

(Rr,  )2

Qr,s

(qr,0)s

(Rr,F)s-3

Qr,s-3

Eb,3 T3

Q3

(qr,0)s

(Rr,  )s

-Qr,s

Ts

(Rr,F)2-s

Qr,2-s

T1

Qk,1-i

Rk,1-i

Q1

(qr,0)2 Eb,s Eb,s (qr,0)3

(Rr,  )3

-Qr,3

Cork

� � � �

Figure Pr.4.50(c) Thermal circuit diagram with cork board.

(b) The heat transfer within the space between the glass plates, instead of being by radiation, is by conduction
through the cork. Between surfaces 1 and 2, conduction is the only heat transfer mode. This allows us to write
the heat flux between surfaces 1 and 2 as

Qk,1-2 =
T1 − T2

(Rk,Σ)1-2
,

where

Ak (Rk,Σ)1-2 =
l

kg
+

L

kc
+

l

kg
.

From Table C.17, for cork board, we have kc = 0.043 W/m-K. Thus

Ak (Rk,Σ)1-2 =
0.001(m)

0.76(W/m-K)
+

0.007(m)
0.043(W/m-K)

+
0.001(m)

0.76(W/m-K)

= 0.165 K/(W/m2).

The heat flux can then be written as, noting that Ak = Ar = A,

−Q1

A
=

T1 − T2

0.165[K/(W/m2)]
=

Eb,2 − Eb,3

246.11

The conduction resistance is again much smaller than the radiation resistance. This allows us to assume that
T2 � T1. Using this approximation, the heat flux can be calculated from

−Q1

A
� Eb,1 − Eb,3

246.11
= 2.305 W/m2

.

COMMENT:
Using a solver (to solve the nonlinear system of equations) results in the following values:

(i) Ti = 363.147 K, To = 362.889 K, T2 = 362.886 K, − Q1/A = 2.294 W,

(ii) Ti = 363.147 K, To = 362.774 K, T2 = 362.771 K, − Q1/A = 2.290 W.

Note that the temperatures Ti to T2 are nearly equal to T1. Also, the calculated heat fluxes are very close
to those found using the approximations. Due to the existence of the five radiation shields, the use of vacuum
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or cork between the glass plates has little effect on the heat loss. The relative magnitude of the conduction and
radiation resistances can be compared by using the conduction-radiation number Nr defined in (4.75). For the
radiation between surfaces 2 and 3 with T1 = T2, the average temperature is

Tm =

[(
T 2

2 + T 2
3

)
(T2 + T3)

4

]1/3

=

[(
363.152 + 293.152

)
(363.15 + 293.15)

4

]1/3

= 329.4 K.

Comparing the conduction resistance between surfaces o and 2 with the radiation resistance between 2 and 3, we
have from (4.74)

Nr =
4σSBT 3

mRk,o-2
(Rr,Σ)2-3

=
4σSBT 3

mAkRk,0-2
Ar(Rr,Σ)2-3

=
4 × 5.67 × 10−8(W/m2-K4) × 329.43(K)3 × 0.0013[K/(W/m2)]

246.11
= 4.28 × 10−5.

As Nr 
 1, the conduction resistance can be neglected. Because of the series arrangement for the resistances,
the system is radiation-resistance dominated.
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PROBLEM 4.51.FAM.S

GIVEN:
A person with a surface temperature T1 = 31◦C is standing in a very large room (Ar,2 � Ar,1) and is losing

heat by surface radiation to the surrounding room surfaces, which are at T2 = 20◦C [Figure Pr.4.51(a)]. Model
the person as a cylinder with diameter D = 0.4 m and length L = 1.7 m placed in the center of the room, as
shown in Figure Pr.4.51(a). Neglect surface-convection heat transfer and the heat transfer from the ends of the
cylinder.

Assume that all the surfaces are opaque, diffuse, and gray. Assume negligible contact resistance between the
clothing and the body.

SKETCH:
Figure Pr.4.51(a) shows the person losing heat by surface radiation, to the surrounding walls, (i) with no

clothing, and (ii) with a layer of clothing.

Physical Model

(i) No Clothing (ii) With Clothing

An Approximation

D = 0.4 m

L = 1.7 m

T1 = 31oC
  r,1 = 0.9 T1 = 31oC

T1 = 31oC

Room Temperature
T2 = 20oC

Room Temperature
T2 = 20oC

Qr,1-2

D = 0.4 m

l = 1 cm

L = 1.7 m Qr,s-2

Qr,1-2

Clothing

Ts ,   r,s = 0.7

∋

∋

Figure Pr.4.51(a) A physical model and approximation for surface-radiation heat exchange between a person and his or
her surrounding surfaces, with (i) no clothing and (ii) a layer of clothing.

OBJECTIVE:
For a steady-state condition, (a) draw the thermal circuit and (b) determine the rate of heat loss for the case
of (i) no clothing covering a body with a surface emissivity εr,1 = 0.9, and (ii) for the case of added clothing of
thickness l = 1 cm with a conductivity k = 0.1 W/m-K and a surface emissivity εr,s = 0.7.

Comment on the effect of the clothing, for the given temperature difference.

SOLUTION:
(i) No Clothing:
(a) For no clothing, the thermal circuit is shown in Figure Pr.4.51(b).
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(Rr,F)1-2

T1 Eb,1

Qr,1

(qr,0)1

(Rr,  )1

Qr,1-2

(qr,0)2

(Rr,  )2

-Qr,2

Eb,2 T2

Q1 Q2

��

Figure Pr.4.51(b) Thermal circuit diagram for no clothing included.

(b) From Figure Pr.4.51(b), the heat transfer rate from the body to the walls is given by

Qr,1-2 =
Eb,1 − Eb,2

(Rr,ε)1 + (Rr,F )1-2 + (Rr,ε)2
.

The radiation thermal resistances are

(Rr,ε)1 =
1 − εr,1

Ar,1εr,1
=

1 − 0.9
[π × 0.4(m) × 1.7(m)] × 0.9

= 0.05201 1/m2

(Rr,F )1-2 =
1

Ar,1F1-2
=

1
[π × 0.4(m) × 1.7(m)] × 1

= 0.4681 1/m2

(Rr,ε)2 
 (Rr,ε)1.

Here F1-2 = 1, because the cylinder is surrounded by the room walls. Also Ar,2 � Ar,1(note that no assumption
is made about εr,2). This allows us to neglect the wall surface-grayness resistance. Solving for Qr,1-2, we have

Qr,1-2 =
5.67 × 10−8(W/m2-K4) × [304.154(K4) − 293.154(K4)]

0.05201(1/m2) + 0.4681(1/m2)
= 127.8 W.

(ii) With Clothing:
(a) By covering the body with clothing, a conduction thermal resistance is created in the path of the heat transfer.
Figure Pr.4.51(c) shows the thermal circuit.

(Rr,F)s-2

Ts Eb,s

Qr,s

(qr,0)s

(Rr,  )s

Qr,s-2

(qr,0)2

(Rr,  )2

-Qr,2

Eb,2 T2

Q1 Q2

T1

Qk,1-s

Rk,1-s

Clothing

Conduction
Resistance

Clothing Surface Walls

Surface-Grayness
Resistance

Surface-Grayness
Resistance

View-Factor
Resistance

� �

Figure Pr.4.51(c) Thermal circuit diagram for clothing included.

(b) Applying the energy equation to the Ts node, we have

Qk,1-s = Qr,s-2.

The conduction and radiation heat transfer rates are

Qk,1-s =
T1 − Ts

Rk,1-s

Qr,s-2 =
Eb,s − Eb,2

(Rr,ε)s + (Rr,F )s-2 + (Rr,ε)2
.
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The thermal resistances are

Rk,1-s =
ln (R2/R1)

2πkL
=

ln [(0.2 + 0.01)(m)/0.2(m)]
2 × π × 0.1(W/m-K) × 1.7(m)

= 0.0457 ◦C/W

(Rr,ε)s =
1 − εr,s

Ar,sεr,s
=

1 − 0.7
[π × (0.4 + 0.02)(m) × 1.7(m)] × 0.7

= 0.191 1/m2

(Rr,F )s-2 =
1

Ar,sFs-2
=

1
[π × (0.4 + 0.02)(m) × 1.7(m)]1

= 0.446 1/m2

(Rr,ε)2 
 (Rr,ε)s.

Then

Qr,1-2 =
T1 − Ts

0.0456
(◦C/W) =

σSB

(
T 4

s − T 4
2

)
0.191(1/m2) + 0.446(1/m2)

=
σSB

(
T 4

s − T 4
2

)
0.637(1/m2)

,

where T1 = 304.15 K, T2 = 293.15 K, and σSB = 5.67 × 10−8 W/m2-K4. This is an implicit equation for Ts. The
solution can be obtained iteratively. First, we rewrite this as an algebraic equation in Ts,

Ts = T1 − 4.059 × 10−9(K−3) × (T 4
s − T 4

2 )

and using T1 and T2, we have

Ts = 304.15(K) − 4.059 × 10−9(K−3) × (T 4
s − 7.385 × 109)(K4).

Using the method of successive substitutions, the equation above is rearranged as

T new
s = 304.15(K) − 4.059 × 10−9(K−3) × [(T old

s )4 − 7.385 × 109(K4)]

Table Pr.4.51 presents the results for three iterations.

Table Pr.4.51 Results obtained for three iterations.

T old
s , K T new

s , K

300 301.25
301.10 300.70
300.70 300.94

After about 10 iterations, the solution converges to Ts = 300.87 K.
The heat transfer rate can then be calculated from

= Qk,1-s =
(304.15(K) − 300.87(K)

0.0456(◦C/W)
= 71.93 W.

Alternatively, we can use a solver (such a SOPHT).

COMMENT:
The clothing has the shape of a cylindrical shell and requires the appropriate equation for the conduction

thermal resistance. If the equation for a slab is used instead, the conduction thermal resistance is

Rk,1-2 =
l

Ak,avek
=

0.01(m)
[π × ( 0.42+0.40

2 )(m) × 1.7(m)] × 0.1(W/m-K)
= 0.0457 ◦C/W

This is a good approximation for this problem, because l/R = 0.01/0.2 = 0.05 
 1.
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To determine whether the conduction thermal resistance could be neglected when compared to the radiation
thermal resistance, the conduction-radiation number Nr could be used. The linearized Nr is given by (4.75), i.e.,

Nr =
4σSBT 3

mRk,1-s
Rr,Σ

,

where the linearized average temperature Tm is

Tm =

[(
T 2

s + T 2
2

)
(Ts + T2)

4

]1/3

.

The highest value for Ts is achieved when the conduction resistance is negligible and it is equal to T1. Using
Ts = T1 = 304.15 K, we find that Tm = 298.7 K and Nr is

Nr =
4 × 5.67 × 10−8(W/m2-K4) × (298.7)3(K3) × 0.0456(◦C/W)

0.637(1/m2)
= 0.433.

This indicates that the conduction thermal resistance is 43.3% of an equivalent (linearized) radiation thermal
resistance and therefore, cannot be neglected (the assumption that Rk,1-s 
 Rr,Σ does not apply). Note that
using the definition of Nr and the calculated temperature we obtain,

Nr =
T1 − Ts

Ts − T2
=

304.15(K) − 300.87(K)
300.87(K) − 293.15(K)

= 0.425.

The small difference is due to the linearization of the difference (Eb,s−Eb,2) used in the definition of the radiation
thermal resistance used in the equation for Nr.
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PROBLEM 4.52.FAM

GIVEN:
A thin film is heated with irradiation from a laser source with intensity qr,i = 106 W/m2, as shown in Figure

Pr.4.52(a). The heat losses from the film are by surface emission and by conduction through the substrate.
Assume that the film can be treated as having a uniform temperature T1(t) and that the conduction resistance
through the substrate can be treated as constant.

SKETCH:
Figure Pr.4.52(a) shows the radiation heating of a thin film with heat loss by substrate conduction.

L2 = 5 mm

L1 = 10 µmT1(t)
T1(t = 0) = 20 C

Ts,2 = 20 Ck = 1.3 W/m-K

αr = 1
  r = 0

(ρcp)1 = 106 J/m3-K

qr,i = 106 W/m2

∋

Figure Pr.4.52(a) Laser irradiation heating of a thin film on a substrate.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) For an initial temperature T1(t = 0) = 20◦C, determine the time needed to raise the temperature of the film
T1 to 500◦C.

SOLUTION:
(a) Figure Pr.4.52(b) shows the thermal circuit for the problem. Note that the thin film is lumped into a single
node and the thick film is modeled as a conduction resistance constant with time.

Rk,1-2Qk,1-2

T1

T2

(Sr,�)1

Q2

Figure Pr.4.52(b) Thermal circuit diagram.

(b) The energy equation is applied to the thin film to determine the time needed to raise the film temperature to
500◦C. The integral-volume energy equation is (4.76)

Q|A = − (ρcpV )1
dT1

dt
+ Ṡ1.

From Figure Pr.4.52(b), we notice that Q|A has only a conduction component. The energy convection terms are
due to radiation absorption with αr = 1 and radiation emission with εr = 0. Then from (4.66) we have

T1 − T2

Rk,1-2
= − (ρcpV )1

dT1

dt
+ αrqr,iAr.
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The conduction resistance is given by

Rk,1-2 =
L2

ksAk
=

5 × 10−3 (m)
1.3 (W/m-K)Ak

=
3.85 × 10−3[◦C/(W/m2)]

Ak
.

The thermal capacitance is

(ρcpV )1 = 106(J/m3-◦C ) × 10 × 10−6 (m) Ak = 10(J/m2-◦C)Ak.

The energy conversion term is

Ṡ1 = αrqr,iAr = (1) × 106(W/m2)Ar.

The solution to this integral-volume energy equation is given in Section 3.5.2, i.e.,

t = −τ1 ln
[

T1 − Ts,2 − a1τ1

T1(t = 0) − Ts,2 − a1τ1

]
,

where

τ1 = (ρcpV )1 Rk,1-2 =
3.85 × 10−3[◦C/(W/m2)]

Ak
10(J/m2-◦C)Ak = 3.85 × 10−2 s

a1 =
Ṡ1

(ρcpV )1
=

106(W/m2)Ar

10(J/m2-◦C)Ak
= 105 1/s,

and Ar = Ak has been used. Then

t = −3.85 × 10−2(s) ln
[
500 (◦C) − 20 (◦C) − 105(1/s) × 3.85 × 10−2(s)
20 (◦C) − 20 (◦C) − 105(1/s) × 3.85 × 10−2(s)

]
= 0.0051 s = 5 ms.

COMMENT:
The assumption of constant substrate resistance is probably not a valid assumption for small elapsed times.

In this case, there is a penetration of the transient conduction front and the equivalent thermal resistance changes
with time.
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PROBLEM 4.53.DES

GIVEN:
A pipeline carrying cryogenic liquid nitrogen is to be insulated. Two scenarios, shown in Figure Pr.4.53, are

considered. The first one [Figure Pr.4.53(i)] consists of placing the pipe (tube) concentrically inside a larger
diameter casing and filling the space with microspheres insulation material. The microspheres have an effective
thermal conductivity of 〈k〉 = 0.03 W/m-K. The tube has an outside diameter D1 = 2 cm and the casing has an
inside diameter D2 = 10 cm. Another scenario [Figure Pr.4.53(ii)] consists of placing a thin polished metal foil
between the tube and the casing, thus forming a cylindrical shell with diameter D3 = 6 cm, and then evacuating
the spacings. Both the tube and casing have an emissivity εr,1 = εr,2 = 0.4 and the thin foil has an emissivity
εr,3 = 0.05. The tube is carrying liquid nitrogen and has a surface temperature T1 = 77.3 K and the casing has
a surface temperature T2 = 297 K.

SKETCH:
Figure Pr.4.53 shows the tube insulation.

Nitrogen

T1 = 77.3 KT2 = 297 K

Microspheres
Insulation

(i)

(ii)

Tube

Casing

Nitrogen

Vacuum
Shield (Thin
Metallic Foil)
  r,2 = 0.05

D2D1

T1 = 77.3 K
  r,1 = 0.4

T2 = 297 K
  r,2 = 0.4

Tube

Casing

L

D2
D1

D3

L

Qr,1-2

∋

∋∋

Figure Pr.4.53(i) and (ii) Two scenarios for insulation of a cryogenic fluid tube.

OBJECTIVE:
(a) Determine the net heat transfer to liquid nitrogen for the two scenarios using a tube length L = 1 m.
(b) How thick should the microsphere insulation be to allow the same heat transfer as that for the evacuated,
radiation shield spacing?

SOLUTION:
(a) (i) For the microsphere insulation, the conduction thermal resistance, from Table 3.1, is

LRk,1-2 =
ln (R2/R1)

2π〈k〉 =
ln[5(cm)/1(cm)]

2π(0.03)(W/m-K)
= 8.54 K/(W/m).

Then, the conduction heat transfer is,

Qk,1-2
L

=
T1 − T2

Rk,1-2
=

(77.3 − 297)(K)
8.54(K/W)

= −25.7 W/m.

(ii) With one radiation shield placed between surfaces 1 and 2, the overall radiation thermal resistance is

(Rr,Σ)1-2 =
1 − εr,1

Ar,1εr,1
+

1
Ar,1F1-3

+ 2
(

1 − εr,3

Ar,3εr,3

)
+

1
Ar,3F3-2

+
1 − εr,2

Ar2εr,2
.

For F1-3 = F3-2 = 1 and using the values given,

L(Rr,Σ)1-2 = 23.87 + 15.92 + 2 × 100.80 + 5.31 + 4.77 = 251.47 1/m.
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Then, the net radiation heat transfer is

Qr,1-2
L

=
σSB(W/m2-K4) × (77.34 − 2974)(K)4

251.47(1/m2)
= −1.743 W/m.

(b) Equating the expression for the conduction heat transfer to the result for the net radiation heat transfer, we
have

−1.743(W/m) =
(77.3 − 297)(K)

LRk,1-2
.

Solving for LRk,1-2 we obtain

LRk,1-2 = 126.0 K/(W/m).

From the expression for Rk,1-2 and solving for R2, we obtain finally

R2 = 2.042 × 108 m.

COMMENT:
Note how effective the radiation shield and vacuum are in reducing the heat transfer from the pipe. One

assumption used is that conduction and surface convection heat transfer through the evacuated gap are negligible.
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PROBLEM 4.54.FAM

GIVEN:
Automatic fire sprinklers, shown in Figure Pr.4.54(a), are individually heat activated, and tied into a network

of piping filled with pressurized water. When the heat flow from a fire raises the sprinkler temperature to its
activation temperature Tm = 165◦F, a lead alloy solder link will melt, and the pre-existing stress in the frame and
spring washer will eject the link and retainer from the frame, allowing the water to flow. An AISI 410 stainless
steel sprinkler having a mass Ms = 0.12 kg and an initial temperature T1(t = 0) = 72◦F is used to extinguish a fire
having a temperature T∞ = 1,200◦F and an area Ar,∞ much greater than the area of the sprinkler Ar,1 = 0.003
m2. Assume that the dominant source of heat transfer is radiation and that the lumped capacitance analysis is
valid.

SKETCH:
Figure Pr.4.54(a) shows the fire sprinkler actuated by heat transfer and raised to a threshold temperature.

Water Supply

Fusible Alloy

Melting-Activated Sprinkler

Spring

Valve

Figure Pr.4.54(a) A fire extinguisher actuated by rise in temperature caused by surface-radiation heating.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the elapsed time t needed to raise the sprinkler temperature to the actuation temperature.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure 4.54(b).

Rr,Σ
Eb,1(t)

Qr,1

Q1
  r,1

T1(t)

Eb,�

-(ρcpV )1
dT1

dt

�

Figure Pr.4.54(b) Thermal circuit diagram.

(b) We use the transient lumped-capacitance analysis and from (4.80), we have

σSBT 3
∞

Rr,ε(ρcpV )1
t =

1
4

[
ln
∣∣∣∣T∞ + T1

T∞ − T1

∣∣∣∣− ln
∣∣∣∣T∞ + T1(t = 0)
T∞ − T1(t = 0)

∣∣∣∣+ 2 tan−1 T1

T∞
− 2 tan−1 T1(t = 0)

T∞

]
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where

Rr,ε = (Rr,ε)1 + (Rr,F )1-∞ + (Rr,ε)2

(Rr,ε)1 =
(

1 − εr

Arεr

)
1

=
1 − 0.13

0.003(m2) × 0.13
= 2,230.8 1/m3

(Rr,F )1-∞ =
1

Ar,1F1-∞
=

1
0.003(m2)

= 333.33 1/m3, F1-∞ = 1

(Rr,ε)2 =
(

1 − εr

Arεr

)
2

� 0, Ar,o � Ar,1

Rr,ε = 2,564.13 1/m3.

The properties are (AISI 410 stainless steel, Table C.16), ρ = 7,770 kg/m3, k = 25 W/m-K, and cp = 460 J/kg-K
and (AISI 410 stainless steel, Table C.19), εr,1 = 0.13.
The volume V1, is

ρ =
M

V
, V =

M

ρ
=

0.12(kg)
7,770(kg/m3)

= 1.544 × 10−5 m3.

Using (4.80) with T∞ = 1,200◦F = 422 K, T1(t = 0) = 72◦F = 295.4 K, and Tm = 165◦F = 347 K, we have

5.67 × 10−8(W/m2-K4) × (922)3(K3)
2,564.13(1/m2) × (7,770 × 460 × 1.544 × 10−5)(J/K)

t =
1
4

[
ln
∣∣∣∣922 + 347
922 − 347

∣∣∣∣− ln
∣∣∣∣922 + 295.4
922 − 295.4

∣∣∣∣+ 2 tan−1 347
922

−2 tan−1 295.4
922

]

3.14 × 10−4 t =
1
4
[0.7916 − 0.664 + 0.7199 − 0.62]

3.14 × 19−4 t = 0.05687 s
t = 181.1 s � 3 min.

COMMENT:
The time needed to start the sprinkler is rather high, t = 23 min. The heat transfer by surface convection

reduces t. In order to obtain a more accurate prediction, the thermobuoyant flow surface convection should be
included.
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PROBLEM 4.55.FUN

GIVEN:
Heat transfer by conduction and surface radiation in a packed bed of particles with the void space occupied

by a gas is approximated using a unit-cell model. Figure Pr.4.55(i) shows a rendering of the cross section of
a packed bed of monosized spherical particles with diameter D and surface emissivity εr. A two-dimensional,
periodic structure with a square unit-cell model is used. The cell has a linear dimension l, with the gas and solid
phases distributed to allow for an interparticle contact and also for the presence of the pore space, as shown in
Figure Pr.4.55(ii). The thermal circuit model for this unit cell is shown in Figure Pr.4.55(iii).

The surface radiation is approximated by an optically thick medium treatment. This allows for a volumetric
presentation of radiation (this is discussed in Section 5.4.6). This uses the concept of radiant conductivity 〈kr〉.
One of the models for 〈kr〉 is

〈kr〉 =
4σSBT 3D

2
εr

− 1
=

4εrσSBT 3D

2 − εr
.

SKETCH:
Figure Pr.4.55 shows the cross section of the packed bed of spheres, the unit-cell model, the thermal circuit

model for the unit cell. The radiant conductivity is combined with the gas conductivity in Rkr,f .

(i) Physical Model

(ii) Two-Dimensional
       Unit-Cell Model

(iii) Thermal Circuit
       Model for Unit Cell

a1l

a1l/2
a1l/4

l/2

l

l

w

(1 − a1)(1 −   )l (1 − a1)  l

  r

G
as

�Rk,s�1

Gas

Cross-Section of a
Packed Bed of
Spherical Particles

Porosity  

  r

qkr

ks
D kf

Solid

qkr

So
lid

qkr

(Rk,s)2

(Rkr,f)3

(Rkr,f)2

(Rkr,f)1

(Rkr,f)2

(Rk,s)3

Tc

Th

(Rk,s)1

qkr

∋

∋

∋

∋

∋

Figure Pr.4.55(i) Physical model of a packed bed of spherical particle with the pore space filled with a gas. (ii) A
simplified, two-dimensional unit-cell model. (iii) Thermal circuit model for the unit cell.

OBJECTIVE:
Using the geometric parameters shown in Figure Pr.4.55(ii), show that the total thermal conductivity for the

thermal circuit model of Figure Pr.4.55(iii) is

〈kkr〉 =
qkr

(Th − Tc)l
= (1 − a1)(1 − εr)ks +

a1

1
(kf + 〈kr〉) + ks

+
1

4(kf + 〈kr〉) +
1

4ks

+ (1 − a1)ε(kf + 〈kr〉).
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Here we have combined the surface radiation with the gas conduction such that in Figure Pr.4.55(iii), Rkr,f

uses kf + 〈kr〉 as the conductivity.

SOLUTION:
The effective thermal conductivity is defined as

qkr ≡ Th − Tc

Akr〈Rkr〉 =
(Th − Tc)l

〈k〉 , Akr = lw,

where w is the depth of the unit cell.
The heat flows through the various resistances shown in Figure Pr.4.55(iii). Combining these, we have

1
〈Rkr〉 =

1
(Rk,s)1

+
1

1
1

(Rkr,f )1
+

1
(Rk,s)2

+ (Rkr,f )2 + (Rkr,f )3
+ (Rk,s)3.

The six resistances are determined using Table 3.1 for the slab resistance along with the geometrical parameters
of Figure Pr.4.45(ii). Then, we have

(Rk,s)1 =
l

(1 − a1)(1 − ε)lwks

(Rkr,f )1 =
l/2

a1l

2
w(kf + 〈kr〉)

(Rk,s)2 =
l/2

a1l

2
wks

(Rk,f )2 =
l/4

a1lw(kf + 〈kr〉)
(Rk,s)3 =

l/4
a1lwks

(Rk,f )2 =
l

(1 − a1)εlw(kf + 〈kr〉) .

Combining these, we have

〈kkr〉 =
1

w〈Rkr〉 = (1 − ar)(1 − εr)ks +
1

1
a1(kf + 〈kr〉) + ks

+
1

4a1(kf + 〈kr〉) +
1

4a1ks

+ (1 − a1)ε(kf + 〈kr〉).

which is the desired expression.

COMMENT:
To verify the results, take the case of a1 = 1 and ε = 0. Then by setting kf +〈kr〉 = ks, we will have 〈kkr〉 = ks,

as expected. Also for the case of ε = 0 and a1 = 0, we have 〈kkr〉 = ks, as expected.
Note that 〈kr〉 is given in terms of the surface emissivity εr. In Section 5.4.6 we will give another expression for
〈kr〉.
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PROBLEM 4.56.FAM.S

GIVEN:
The range-top electrical heater has an electrical conductor that carries a current and produces Joule heating

Ṡe,J/L(W/m). This conductor is covered by an electrical insulator. This is shown in Figure Pr.4.56(a). In
electrical insulator should be a good thermal conductor, in order to a avoid large temperature drop across it. It
should also have good wear properties, therefore various ceramics (especially, oxide ceramics) are used. Here we
consider alumina (Al2O3).

Consider a heater with a circular cross section, as shown Figure Pr.4.56(a). Neglect the conduction resis-
tance between the electrical conductor (central cylinder) and the electrical insulator (cylindrical shell). Assume
a steady-state surface radiation heat transfer only (from the heater surface).

Ri = 1 mm, Ṡe,J/L = 5 × 103 W/m, T2 = 30◦C, εr,1 = 0.76.

SKETCH:
Figure Pr.4.56(a) shows the heater and its insulation shell.

Ro

2Ri

Electrical
Insulator, k1

Surroundings

Range-Top Electrical Heater

Electrical
Conductor, TH

Rk,c = 0
T1 ,   r,1 , Ar,1

T2 , Ar,2 >> Ar,1

Se,J /L (W/m)

Length, L∋

Figure Pr.4.56(a) A range-top electrical heater with a cylindrical heating element made of an inner electrical conductor
and an outer electrical insulator.

OBJECTIVE:
(a) Draw the thermal circuit diagram for the heater.
(b) Plot the heater temperature TH with respect to the outer radius Ro, for 2 ≤ Ro ≤ 20 mm, and the conditions
given below.
(c) Plot TH with respect to the conduction-radiation number Nr = Rk,H−1/[Rr,Σ/(4σSBT 3

m)], where Tm is defined
by (4.73).

SOLUTION:
(a) Figure Pr.4.56(b) shows the thermal circuit diagram. The heat flow per unit length Ṡe,J/L encounters
conduction and a surface-radiation resistances.

TH
T1 T2Eb,1 Eb,2Rk,H-1 Rr,�

Qr,1-2Qr,H-1

Ar,1

Se,J

Figure Pr.4.56(b) Thermal circuit diagram.
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(b) The energy equation for the heating surface Ar,1, is written using Figure 4.56(b), i.e.,

Q|A,1 = Qr,1-2 = Ṡe,J,

or and since the same flows through the electrical insulator, we have

TH − T1

Rk,H-1
=

TH − T1

ln(Ro/Ri)
2πk1L

= Ṡe,J

=
Eb,1 − Eb,2

Rr,Σ
= 2πRoLεr,1σSB(T 4

1 − T 4
2 ) = Ṡe,J,

where we have used Table 3.2 for Rk,H-1 and (4.49) for Rr,Σ, with (Rr,ε)2 → 0 for Ar,2 � Ar,1 and F1-2 = 1.
Then solving for T1 and TH , we have

T1 =

(
T 4

2 +
Ṡe,J/L

2πRoεr,1σSB

)1/4

TH = T1 +
(Ṡe,J/L) ln(Ro/Ri)

2πk1

=

(
T 4

2 +
Ṡe,J/L

2πRoεr,1σSB

)1/4

+
(Ṡe,J/L) ln(Ro/Ri)

2πk1
.

The thermal conductivity is found at T = 1,300 K in Table C.14, as

k1 = 6.0 W/m-K Table C.14.

We also have Ṡe,J/L = 5 × 103 W/m, T2 = (273.15 + 30) K = 303.15 K, and Ri = 1 mm.
Using these numerical values, we have

TH =
[
(303.15)4(K4) +

5 × 103(W/K)
2πRo × 0.76 × 5.67 × 10−8(W/m2-K4)

]1/4

+
5 × 103(W/m) × ln(Ro/0.001)

2π × 6(W/m-K)

=
(

8.446 × 109 +
1.846 × 1010

Ro

)1/4

+ 1.326 × 102(K) ln
(

Ro

0.001

)
.

Figure Pr.4.56(c) shows the variation of TH with respect to Ro. Note that as Ro increases, the surface area Ar,1

increases proportional to Ro, while the conduction resistance increases as ln(Ro). This results in a continuous
decrease of TH as Ro increases.

T
H

 , 
K

Ro , m

1,000

1,200

1,400

1,600

1,800

2,000

0.002 0.004 0.006 0.01 0.02

Figure Pr.4.56(c) Variation of the heater temperature with respect to insulator outer radius.
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(c) From (4.74), we have

Nr =
Rk,H-1

Rr,Σ/(4σSBT 3
m)

=

ln(Ro/Ri)
2πk1L

1
2πRoLεr,1(4σSBT 3

m)

= 4σSBT 3
m

Roεr,1

k1
ln(Ro/Ri).

From (4.73), we have

Tm =
[
(T 2

1 + T 2
2 )(T1 + T2)
4

]1/3

.

Using the numerical values, we have

Nr = 4 × 5.67 × 10−8(W/m2-K4)T 3
m ×

Ro × 0.76 × ln
Ro

0.001
6(W/m-K)

= 2.873 × 10−8Ro ln
(

Ro

0.001

)
T 3

m

T1 =

(
T 4

2 +
Ṡe,J/L

2πRoεr,1σSB

)1/4

=
(

8.446 × 109 +
1.846 × 1010

Ro

)1/4

.

Figure Pr.4.56(d) shows the variation of Nr with respect to Ro. As Ro → Ri, the conduction resistance (and
therefore, Nr) decreases and TH → T1.

N
r

Ro , m

0.06

0.08

0.1

0.2

0.4

0.6

0.002 0.004 0.006 0.01 0.02

Figure Pr.4.56(d) Variation of conduction-radiation number with respect to insulator outer radius.

COMMENT:
Note that increasing the dielectric layer thickness Ro − Ri, decreases the heater temperature TH by reducing

the overall resistance. Also note that even for Nr < 0.1, there is still a conduction resistance and this influences
TH .
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PROBLEM 4.57.FAM

GIVEN:
Ice is formed in a water layer as it flows over a cooled surface at temperature Tc. Assume that the surface

of the water is at the saturation temperature Tls and that the heat transfer across the water layer (thickness L)
is by steady-state conduction only. The top of the water layer is exposed to the room-temperature surroundings
at temperature T∞, as shown in Figure Pr.4.57(a). Assume that water and the surrounding surfaces are opaque,
diffuse, and gray (this is a reasonable assumption for water in the near infrared range which is applicable in this
problem).

Tls = 0◦C, Tc = −10◦C, T∞ = 300 K, L = 2 mm, εr,l = 1.
Assume that the ice is being formed at the top surface of the water layer. Evaluate the water properties at

T = 280 K (Tables C.4, and Table C.13).

SKETCH:
Figure Pr.4.57(a) shows ice formation by conduction through the water layer. There is also surface radiation

between the water surface and the surrounding surfaces.

Tls,

Ak,l = Ar,l = Al

TcL  Liquid Water (and Ice)

= − mls ∆hls

Sls 

 Al

T
�

Ar,� >> Ar,l

Ice Formation

g

 r,l

∋
Figure Pr.4.57(a) Ice is formed in a thin water layer cooled from below.

OBJECTIVE:
(a) Draw the thermal circuit diagram for the water surface.
(b) Determine the rate of ice formation per unit area ṁls = Ṁls/Al.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.4.57(b). Heat transfer from the surroundings to the surface
of the water is by surface radiation and heat transfer across the water layer is by conduction.

(b) The energy equation, from Figure Pr.4.57(b), is

Qr,l-∞ + Qk,l-c = Ṡls.

The view factor between the surface of the water and surroundings is unity, Fl-∞ = 1. The surface radiation for
the unity view factor, for Ar,l 
 Ar,∞, and εr,1 = 1, is given by (4.49), i.e.,

Qr,l-∞ = Ar,l σSB (T 4
ls − T 4

∞).

The conduction resistance is found from Table 3.2, and when used in Qk,l-c, gives

Qk,l-c =
Tls − Tc

Rk,l-c
=

Ak,lkw

L
(Tls − Tc).

Then, the energy equation becomes

Ar,lσSB (T 4
ls − T 4

∞) +
Ak,lkw

L
(Tls − Tc) = Ṡls.
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Tls

Eb,l

Eb,�

T
�

Tc

Qr,l-�

Qk,1-c

(Rr,�)l-�

Rk,l-c

= − mls ∆hls
Sls 

 Al

Figure Pr.4.57(b) Thermal circuit diagram.

Since Ṡls/Al = −ṁls∆hls, the energy equation becomes

Ar,lσSB (T 4
ls − T 4

∞) +
Ak,lkw

L
(Tls − Tc) = −ṁlsAl∆hls,

From Tables C.4 and C.13, we have kw = 0.582 W/m-K, and ∆hls = −∆hsl = −333.6 × 103 J/kg.
Using the numerical values given, we have

Ar,l × 5.67 × 10−8(W/m2-K4) × (273.154 − 3004)(K4) +
(273.15 − 263.15)(K)(

2 × 10−3(m)
Ak,l × 0.582(W/m-K)

) =

−ṁlsAl × (−333.6 × 103)(J/kg),
−143.6Ar,l + 2,910Ak,l = −ṁlsAl × (−333.6 × 103)(J/kg),

or

ṁls = 8.284 × 10−3 kg/m2-s = 8.284 g/m2-s.

where we have used Al=Ar,l=Ak,l.

COMMENT:
Note that surface radiation is not negligible. In practice the ice is formed adjacent to the cooled surface and

heat is conducted through the ice. Also note that the heat gained by radiation is approximately 5% of the heat
removed by conduction.
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Chapter 5

Convection: Unbounded Fluid Streams



PROBLEM 5.1.FAM

GIVEN:
In order to protect exhaust line walls from exposure to high-temperature exhaust gases, these walls are covered

by a sacrificial layer. This is shown in Figure Pr.5.1(a). Upon exposure to high temperature exhaust gas and
a rise in temperature, this sacrificial layer undergoes a pyrolytic thermal degradation, produces pyrolytic gases,
and becomes porous. The pyrolytic gas flows toward the heated surface, thus providing for transpiration cooling
and prevention of the large heat load Qs from reaching the wall. Treat the pyrolytic gas as air at T = 600 K and
assume a steady-state gas flow that is uniform through the layer. Assume that the area for conduction-convection
is πDl and use the planar presentation of the resistance as given by (5.14).

Tf,1 = 300 K, Tf,2 = 900 K, 〈k〉 = 0.5 W/m-K, uf = 50 cm/s, D = 80 cm, l = 1 m, L = 1.5 cm.

SKETCH:
Figure Pr.5.1(a) shows the sacrificing layer lining and the heat transfer to the layer.

x

Q1

-Qs -Qs

Qu

Tf,1

Tf,2

Gas Evolved
by Pyrolysis of

Sacrificing Layer

Exhaust Gas

Flue-Gas
Stream

Sr,c

Sacrificing Layer
(a Fiber-Filler

Composite)

uf

D
L

l

k

Control Surface

Combustion
Chamber

Figure Pr.5.1(a) Exhaust line walls covered by sacrificial layers.

OBJECTIVE:
(a) Draw the thermal circuit diagram and show the energy equation for surface node Tf,1.
(b) For the conditions given above, determine the rate of heat flowing into the wall.

SOLUTION:
(a) The thermal circuit diagram for node Tf,1 is shown in Figure Pr.5.1(b).

Tf,2

Q1

Tf,1

(Rk,u)1-2

Q(x=0)

Figure Pr.5.1(b) Thermal circuit diagram.

(b) The heat flow rate Q1 is determined from the energy equation for node 1, which is found by examining Figure
Pr.5.1(b) as

Q|A = Q1 + Q(x = 0) = 0.

Then from (5.23), we have

Q1 = −Ak,u〈k〉
L

PeL

ePeL − 1
(Tf,1 − Tf,2)

Ak,u = πDl, PeL =
ufL

〈α〉 , 〈α〉 =
〈k〉

(ρcp)f
.
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From Table C.22, for air at T = 600 K, we have

ρf = 0.589 kg/m3 Table C.22

cp,f = 1038 J/kg-K Table C.22.

Then

α =
0.5(W/m-K)

0.589(kg/m3) × 1038(J/kg-K)
= 8.178 × 10−4 m2/s.

PeL =
0.5(m/s) × 0.015(m)
8.178 × 10−4(m2/s)

= 9.171.

Using the numerical values, Q(x = 0) is

Q1 = −π × 0.8(m) × 1(m) × 8(W/m-K)
0.015(m)

× 9.171
e9.171 − 1

(300 − 900)(K) = 767.3 W.

COMMENT:
Note that as PeL increase, less heat flows into the substrate. Materials which produce significant pyrolytic

gases, as a result of thermal degradation, are used.
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PROBLEM 5.2.FAM

GIVEN:
The axial conduction-convection resistance may be large, when compared to other heat transfer resistances.

In flow through a tube, as shown in Figure Pr.5.2, the axial conduction-convection resistance Rk,u is compared
to the average convection resistance 〈Ru〉L (this will be discussed in Chapter 7). The average velocity of the fluid
flowing in the tube is uf and the average fluid inlet and outlet temperatures are Tf,1 and Tf,2.

The average convection resistance is given (for the case of small NTU , to be discussed in Chapter 7) by

〈Ru〉L =
1

3.66πLkf
.

uf = 0.2 m/s, D = 5 cm, and L = 30 cm.
Evaluate the properties for air at T = 350 K from Table C.22, and for engine oil at T = 350 K from Table C.23.

SKETCH:
Figure Pr.5.2 shows the two resistances in a tube flow and heat transfer.

L

D
Rk,u

�Ru�L

Ts

Tf,2Tf,1

Average
Convection Resistance

Axial Conduction-
Convection Resistance

uf

Ak,u = �D2/4

Fluid
Stream

Figure Pr.5.2 Comparison of lateral (surface-convective) and axial (conduction-convective) resistances.

OBJECTIVE:
(a) For the conditions given above determine the ratio of Rk,u/Rku when the fluid is air.
(b) Determine the ratio of Rk,u/Rku when the fluid is engine oil.

SOLUTION:
Using the definition of Rk,u given in Table 5.1, and using Ak,u = πD2/4, the ratio of the two resistances is

Rk,u

〈Ru〉L =

L

Ak,ukf

ePeL − 1
PeLePeL

1
3.66πLkf

=

L

(πD2/4)kf

1
3.66πLkf

ePeL − 1
PeLePeL

= 3.66 × 4
L2

D2

ePeL − 1
PeLePeL

,

where from (5.9),

PeL =
ufL

αf
.

From Tables C.22 and C.23 at T = 350 K

air : αf = 2.944 × 10−5 m2/s Table C.22

engine oil : αf = 7.74 × 10−8 m2/s Table C.23.
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Then for (a),

PeL =
0.2(m/s) × 0.30(m)
2.944 × 10−5(m2/s)

= 2,038.

This will be a very large argument for the exponential function. By noting that for PeL � 1,

ePeL − 1
ePeL

� 1,

the ratio of the resistances can be expressed as

Rk,u

〈Ru〉L = 3.66 × 4
L2

D2

1
PeL

.

And so, for (a),

Rk,u

〈Ru〉L = 3.66 × 4 × (0.30)2(m2)
(0.05)2(m2)

1
2,038

= 0.2586 for air.

For (b),

PeL =
0.2(m/s) × 0.30(m)
7.44 × 10−8(m2/s)

= 8.065 × 105

Rk,u

〈Ru〉L = 3.66 × 4 × (0.30)2(m2)
(0.05)2(m2)

1
8.065 × 105

= 6.535 × 10−3 for engine oil.

COMMENT:
Since we are comparing two resistances, in addition to PeL, the ratio L/D is also important. This is because

the resistance 〈Ru〉L decreases with an increase in L, while the resistance Rk,u increases with an increase in
L. Therefore, a large PeL is needed to make the axial conduction-convection resistance negligible, unless L/D is
small. Here the surface-convection resistance dominates for the oil. But for air at this speed, the axial conduction-
convection resistance is relatively significant.
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PROBLEM 5.3.FAM

GIVEN:
Transpiration surface cooling refers to flowing a fluid through a permeable solid toward the surface to intercept

and remove a large amount of heat flowing to the surface. This imposed heat input Qs is called the heat load.
The flowing fluid opposes the axial conduction heat transfer and results in a lower surface temperature, compared
to that of conduction heat transfer only (i.e., no permeation). This is shown in Figure Pr.5.3(a). Air is made to
flow through a porous ceramic slab to protect a medium (a substrate) beneath the ceramic.

Qs = −103 W, uf = 10 cm/s, Tf,1 = 20◦ C, 〈k〉 = 0.5 W/m-K, w = l = 20 cm, L = 5 cm.
Evaluate the air properties at T = 500 K.

SKETCH:
Figure Pr.5.3(a) shows air flowing toward the surface and intercepting the imposed heat load.

Porous WallSubstrate

Transpiration
Air Stream

L
x

w

lT

Tf,2
�Qs

uf

Ak,u

Tf (x)
Tf,1

(Heat Load)

0 L

Figure Pr.5.3(a) Transpiration surface cooling.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) For the conditions given below, determine the surface temperature Tf,2.
(c) For comparison, determine Tf,2 using uf = 0, i.e., (5.15).

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.5.3(b).

Tf,1 Tf,2

�Qs

(Qk,u)1-2

Figure Pr.5.3(b) Thermal circuit diagram.

(b) The energy equation for node Tf,2, shown in Figure Pr.5.3(b), is

Q|A = −(Qk,u)1-2 + Qs = 0,

where from (5.13) (Qk,u)1-2 =
Tf,1 − Tf,2

(Rk,u)1-2

(Rk,u)1-2 =
L(ePeL − 1)

Ak,u〈k〉PeLePeL

PeL =
ufL

αf
, αf =

〈k〉
(ρcp)f

, Ak,u = lw.
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Solving the energy equation for Tf,2, we have

Tf,2 = Tf,1 − Qs(Rk,u)1-2

= Tf,1 − Qs
L

lw〈k〉
ePeL − 1
PeLePeL

.

From Table C.22, for air at T = 500 K, we have ρf = 0.706 kg/m3 and cp,f = 1017 J/kg-K. Then

〈α〉 =
〈k〉

(ρcp)f
=

0.5(W/m-K)
0.706(kg/m3) × 1017(J/kg-K)

= 6.964 × 10−4 m2/s

PeL =
0.1(m/s) × 0.05(m)
6.964 × 10−4(m2/s)

= 7.180.

The temperature of surface 2 is then

Tf,2 = 293.15(K) − (−103)(W) × 0.05(m)
0.2(m) × 0.2(m) × 0.5(W/m-K)

× e7.180 − 1
7.180 × e7.180

= 293.15(K) + 347.9(K) = 641.1 K = 367.9◦C.

(c) For the case of uf = 0, we have from (5.15),

(Rk,u)1-2 = Rk,1-2 =
L

Ak,u〈k〉 ,

and

Tf,2 = Tf,1 − Qs
L

lw〈k〉 ,

or

Tf,2 = 293.15(K) − (−103)(W) × 0.05(m)
0.2(m) × 0.2(m) × 0.5(W/m-K)

= 293.15(K) + 2,500(K) = 2,793 K = 2,520◦C.

COMMENT:
Note that by providing a cold air flow, the surface temperature is reduced significantly. The air flow removes

the heat by convection and prevents a large fraction of the heat load from entering the substrate. The heat flow
rate into the substrate is given by (5.23).
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PROBLEM 5.4.FUN

GIVEN:
The one-dimensional, axial conduction-convection thermal resistance is given by (5.14), i.e.,

Rk,u =
L

Ak,ukf

ePeL − 1
PeLePeL

.

OBJECTIVE:
Show that in the limit as PeL → 0, this resistance becomes the conduction thermal resistance for a slab (Table

3.2).

SOLUTION:
We begin by taking the limit of (5.14) for PeL → 0, i.e.,

lim
PeL→0

Rk,u = lim
PeL→0

L

Ak,ukf

ePeL − 1
PeLePeL

=
L

Ak,ukf
lim

PeL→0

ePeL − 1
PeLePeL

.

Applying the L’Hopital rule, we have

lim
PeL→0

ePeL − 1
PeLePeL

= lim
PeL→0

ePeL

ePeL + PeLePeL
= lim

PeL→0

1
1 + PeL

= 1.

Therefore,

lim
PeL→0

Rk,u =
L

Ak,ukf
.

This is the conduction resistance for a slab given in Table 3.2. The area for conduction is the same as the area
for conduction and convection.

COMMENT:
The Péclet number is a ratio of the fluid axial conduction and convection resistances, as given by (5.9), i.e.,

PeL =
Rk,f

Ru,f
.

When the convection resistance becomes very large, the heat transfer occurs primarily by conduction, being
controlled by the conduction thermal resistance given above. Similarly, as the convection resistance become very
small (PeL → ∞), the primary transport will be by convection.
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PROBLEM 5.5.FAM

GIVEN:
In a space shuttle, a permeable O-ring is used as a thermal barrier and in order to optimize its function, the

permeation of combustion flue gas allows for gradual pressure equalization around it. This O-ring is shown in
Figure Pr.5.5. The braided carbon fiber O-ring has an average porosity ε. The mass flow rate through the O-ring
is Ṁf . Assume an ideal, square cross-sectional area L × L. The length of the O-ring is l = 1 m.

ε = 0.5, L = 0.7 cm, Ṁf = 3.25 g/s, Tf,1 = 1,700◦C, Tf,2 = 100◦C.
For the gas use the properties of air at T = 900◦C. Use thermal conductivity of carbon at T = 900◦C. Use

(3.28) to determine the effective thermal conductivity 〈k〉.

SKETCH:
Figure Pr.5.5 shows the permeable O-ring.

Mf
Tf,1 Tf,2

x

Phenolic

Permeable, Braided O-Ring

Braided Carbon O-Ring,
Idealized as Square
Cross-Section, L x L

Carbon-Fiber Strands
(12,000 per Cross-Section)

Gas
Stream

Figure Pr.5.5 A permeable O-ring, made of braided carbon fiber, is used as a thermal barrier and gradual pressure
equalizer.

OBJECTIVE:
Determine the rate of heat transfer (Qk,u)1-2 = Qx=L.

SOLUTION:
The heat transfer rate (Qk,u)1-2 is given by (5.13), i.e.,

(Qk,u)1-2 =
Tf,1 − Tf,2

(Rk,u)1-2

= (Tf,1 − Tf,2)Ak,u〈k〉PeLePeL

ePeL − 1
,

where we have used the effective conductivity 〈k〉 for the carbon-fiber and air composite.
Since we are given the porosity, we use (3.28) for 〈k〉, i.e.,

〈k〉
kf

=
(

ks

kf

)0.280−0.757 log ε−0.057 log(ks/kf )

.

The Péclet number is given by (5.9), i.e.,

PeL =
ufL

〈α〉 , 〈α〉 =
〈k〉

(ρcp)f
,

where

Ṁf = Ak,uρfuf or uf =
Ṁf

Auρf
, Ak,u = Au = lL.

Interpolating from Table C.14, we have, for carbon at T = 900 K,

ks = 2.435W/m-K Table C.14.
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Interpolating from Table C.22, we have, for air at T = 900K,

ρf = 0.392 kg/m3 Table C.22

cp,f = 1,111 J/kg-K Table C.22

kf = 0.0625 W/m-K Table C.22.

Then,

ks

kf
=

2.435(W/m-K)
0.0625(W/m-K)

= 38.96

〈k〉 = 0.0625(W/m-K) × (38.96)0.280−0.757×log(0.5)−0.057 log(38.96)

= 0.0625(W/m-K) × 4.609 = 0.2881 W/m-K.

Also,

uf =
3.25 × 10−3 kg/s

1(m) × 0.007(m) × 0.392(kg/m3)
= 1.184 m/s

Then

PeL =
ufL

〈α〉 =
ufL(ρcp)f

〈k〉
=

1.184(m/s) × 0.007(m) × 0.392 × 1,111(J/m3-K)
0.2884(W/m-K)

= 12.53.

For the heat flow rate we have, for Au = lL,

(Qk,u)1-2 = (1,700 − 100)(◦C) × 1(m) × 0.007(m) × 12.53 × e12.53

e12.53 − 1
= 140.3 W.

COMMENT:
Although intended as a thermal barrier, here PeL is large enough to cause a large heat flow. The dimension-

less temperature distribution along the flow direction is given in Figure 5.3 and shows the strong influence of
convection.

454



PROBLEM 5.6.FUN

GIVEN:
The temperature distribution in a fluid stream with axial conduction and convection and subject to prescribed

temperatures Tf,1 and Tf,2 at locations x = 0 and x = L, respectively, is given by (5.12).

OBJECTIVE:
Starting from the dimensionless, one-dimensional steady-state differential-volume energy equation (5.7), and

by using (5.10) and (5.11), derive (5.12).

SOLUTION:
Equation (5.7) is a dimensionless energy equation and is a second-order, ordinary differential equation with

the boundary conditions given by (5.10) and (5.11), i.e.,

d2T ∗
f

dx∗2 − PeL

dT ∗
f

dx∗ = 0

T ∗
f (x∗ = 0) = 1

T ∗
f (x∗ = L) = 0

The first integration gives an exponential solution

dT ∗
f

dx∗ = a1e
PeLx∗

.

Integrating this again, gives

T ∗
f =

a1

PeL
ePeLx∗

+ a2.

Using the boundary conditions, we have

1 =
a1

PeL
+ a2 or a1 = (1 − a2)PeL

0 = a1
ePeL

PeL
+ a2 or a2 = −a1

ePeL

PeL
.

Eliminating a2,

a1 =
(

1 + a1
ePeL

PeL

)
PeL

a1 = PeL + a1e
PeL

a1 =
PeL

1 − ePeL
,

so that,

a2 = − ePeL

1 − ePeL
.

Using these expressions for a1 and a2, we have

Tf∗ =
PeL

1 − ePeL

ePeLx∗

PeL
− ePeL

1 − ePeL

=
ePeLx∗ − ePeL

1 − ePeL

=
ePeL − ePeLx∗

ePeL − 1

=
ePeL − 1 − (ePeLx∗ − 1)

ePeL − 1

= 1 − ePeLx∗ − 1
ePeL − 1

.
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COMMENT:
Note that for large PeL, we have ePeL � 1 and ePeLx∗ � 1. Then

Tf∗ = 1 − ePeLx∗−PeL = 1 − ePeL(x∗−1),

which has an exponential behavior, as shown in Figure 5.3. For small values of PeL, we expect ePeL and ePeLx∗

as

ePeL = 1 + PeL + .... .

Then

T ∗
f = 1 − PeLx∗

PeL
= 1 − x∗,

which is the expected linear behavior, as shown in Figure 5.3.
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PROBLEM 5.7.FUN

GIVEN:
Impermeable, extended surfaces (fins) are used to assist in surface-convection heat transfer by providing an

extra surface area. By allowing flow through the fins (e.g., in boiling heat transfer, the surface tension is used to
draw the liquid through the fins and this liquid evaporates on the surface), the heat flow rate at the base of the
fin can increase substantially. To demonstrate this, consider the permeable fins shown in Figure Pr.5.7(a).

Assume that the fluid stream starts from the fin top and leaves very close to the base (x = 0). Then a
unidirectional flow with velocity uf can be assumed (this imply that the fluid stream continues to flow through
the base). Here water is allowed to flow through fins made of sintered metallic particles.

L = 2 mm, R = 0.5 mm, Tf,1 = 70C, Tf,2 = 80◦C, 〈k〉 = 20 W/m-K.
Evaluate the water properties at T = 350 K.

SKETCH:
Figure Pr.5.7(a) shows a simplified model for the permeable fins attached to a surfaces.

g

Fluid Stream
Entrance

Ideally Insulated
and Impermeable

Fluid Stream Exit

Se,J

(qk,u)1-2

Tf,1 < Tf,2

L

R

uf,2

x

Assuming Fluid
Stream Continues

Substrate

Permeable
(Porous) Fin,  k

Tip

Base
Tf,2

Figure Pr.5.7(a) A permeable fin is used to direct a fluid stream toward the base. A simple model is also used.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the heat flow rates through each fin (Qk,u)1-2 and (qk,u)1-2, for (ii) uf = 0.1 m/s, and uf = 0.

SOLUTION:
(a) Figure Pr.5.7(b) shows the thermal circuit diagram. The only heat transfer to be determined is (Qk,u)1-2.

Tf,1

Tf,2

Rk,u  1-2
Qk,u  1-2

Se,J

Figure Pr.5.7(b) Thermal circuit diagram.

(b) From Table 5.1, we have

(Qk,u)1-2 =
Tf,1 − Tf,2

(Rk,u)1-2

=
Tf,1 − Tf,2

L

Aku〈k〉
ePeL−1

PeLePeL

, PeL =
ufL

〈α〉 , 〈α〉 =
〈k〉

(ρcp)f
.

Here we have

Ak,u = πR2.
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From Table C.23, for water at T = 350 K, we have

ρf = 975.7 kg/m3 Table C.23

cp,f = 4,194 J/kg-K Table C.23.

(i) Using the numerical values, we have, for uf = 1 m/s,

〈α〉 =
20(W/m-K)

(975.7)(kg/3) × 4,194(J/kg-K)
= 4.887 × 10−6 m2/s

PeL =
0.1(m/s) × 2 × 10−3(m)

4.887 × 10−6(m2/s)
= 40.92

(Qk,u)1-2 =
(70 − 80)(◦C)

2 × 10−3(m)
π(5 × 10−4)2(m2) × 20(W/m-K)

e40.92 − 1
40.92 × e40.92

=
−10(◦C)

3.111(◦C/W)
= −3.214 W

(qk,u)1-2 =
(Qk,u)1-2

Ak,u
= − 3.214(W)

π(5 × 10−4)2(m2)
= −4.092 × 106 W/m2.

(ii) For uf = 0, we have from (5.15)

(Rk,u)1-2 = Rk,1-2 =
L

Aku〈k〉

=
2 × 10−3(m)

π × (5 × 10−4)2(m2) × 20(W/m-K)
= 127.3◦C/W.

Then

(Qk,u)1-2 =
−10(◦C)

127.3(◦C/W)
= −7.854 × 10−2 W

(qk,u)1-2 =
(Qk,u)1-2

Ak,u
=

−7.855 × 10−2 W
π(5 × 10−4)2(m2)

= −1.000 × 105 W/m2.

Comparing the results for (i) and (ii), the heat transfer rate at the base is significantly increased (by a factor
equal to PeL = 40.92). This is due to interception (and removal by convection) of the heat flow by the opposing
fluid flow (as shown by the temperature distribution of Figure 5.3).

COMMENT:
Note that we have assumed that locally the fluid and solid have the same temperature Tf . This is the

condition of negligible surface-convection heat transfer resistance between the fluid and solid. This resistance
will be discussed in Chapter 7. Also, we have neglected the effect of added conductivity (this is called thermal
dispersion) due to the nonuniformity of the velocity in the pores.
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PROBLEM 5.8.FUN

GIVEN:
Capillary pumping (or wicking) refers to flow of liquid through and toward the porous solids by the force of

surface tension (an intermolecular force imbalance at the liquid-gas interface). In capillary pumped evaporators,
heat is also provided to the porous solid surface such that the liquid is completely evaporated on the surface.
Figure Pr.5.8(a) shows three capillary-pumped evaporators, distinguished by the relative direction of the heat and
liquid flows. These are used in heat pipes (to be discussed in Example 8.1) and in enhanced, surface evaporations.

Figure Pr.5.8(b) renders a counter heat-water capillary evaporator, where the liquid flow rate Ṁl flowing
through the wick(distributed as attached, permeable cylinders) is evaporated at location L1. Assume that the
liquid is at Tf,1 = Tf,2 = Tlg at x = L1, such that (Qk,u)1-2 = 0. The temperature at T (x = L1) is the saturation
temperature, so the heat for evaporation is provided by conduction in the region adjacent to the surface, i.e.,
L1 ≤ x ≤ L1 + L2. Then Qk,2-3 is determined from Table 3.2. This simple thermal circuit model is also shown
in Figure Pr.5.8(b).

R = 0.5 mm, L2 = 150 µm, Tlg = 100◦C, T3 = 105◦C, 〈k〉 = 10 W/m-K.
Determine saturated water properties from table C.27, at T = 373.15 K.

SKETCH:
Figure Pr.5.8(a) shows three different capillary-pumped evaporators and Figure Pr.5.8(b) shows the counter

heat-liquid flow evaporator considered.

Liquid Wick (Wet
Porous Solid)

Vapor

Vapor

Liquid

Liquid
Substrate

g
g

Slg

qk

(i) Counter Heat-
Liquid Flow

(ii) Cross Heat-
Liquid Flow

(iii) Counter-Cross
Heat-Liquid Flow

qk

qk

Capillary Pumped Evaporators

Slg

Vapor

Slg

Figure Pr.5.8(a) Various capillary pumped evaporators, based on the relative direction of the heat and liquid flows.

L1

x

gL2
T3

Slg , Tf,2 = Tlg

Tf,2 = Tlg

Vapor

Water Flow
Ml , Tf,1 = Tf,2

Wick (Wet,
Porous Solid)

(ii) (i) 

Surface Evaporation

Se,J

Ml

� qk,2-3

Counter Heat-Liquid Flow
Capillary Evaporator

Thermal Circuit
Diagram

�Qk,2-3

Rk,2-3

T3

Slg

Figure Pr.5.8(b) A counter heat-liquid flow capillary evaporator with a simple conduction heat transfer model in the
region adjacent to surface, i.e., L1 ≤ x ≤ L1 + L2.

OBJECTIVE:
(a) Determine the liquid mass flow rates Ṁl and ṁl = Ṁl/Ak, for the given conditions.
(b) Comment on the practical limit for the reduction of L2.
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SOLUTION:
(a) Since in the simple heat transfer model the heat supplied to the evaporation region is by conduction only, we
have, from Figure Pr.5.8(b),

Qk,2-3 = Ṡlg.

From Tables 2.1, for Ṡlg, and 3.2, for Qk,2-3, we have

Tf,2 − T3

Rk,2-3
=

Tlg − T3

L2/(Ak〈k〉) =
Tlg − T3

L2/(πR2〈k〉)
= −Ṁl∆hlg.

From Table C.27, at T = 373.15 K, we have

∆hlg = 2.257 × 106 J/kg Table C.27.

Then using the numerical values, we have

Ṁl = −Tlg − T3

L2∆hlg

πR2〈k〉
=

πR2〈k〉(Tlg − T3)
L2∆hlg

= −π × (5 × 10−4)2(m2) × 10(W/m-◦C)(100 − 105)(◦C)
1.5 × 10−4(m) × 2.257 × 106(J/kg)

= 1.160 × 10−7 kg/s

ṁl =
Ṁl

Ak
=

Ṁl

πR2 = −〈k〉(Tlg − T3)
L2∆hlg

= 0.1477 kg/s-m2.

(b) Reducing L2 is limited by the fabrication technique. If sintered particles are used to make the wick, L2 is
limited to the diameter of a single particle.

COMMENT:
One advantage of the distributed wick stack region is that it allows for the passage of vapor in the areas

between the stacks. This avoids the passage of both phases through the wick (the counter flow of the liquid
and vapor) and allows for a larger Ṁl (for a given driving capillary pressure). The liquid flow will be ultimately
limited by the formation of a vapor blanket on top of the stacks.
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PROBLEM 5.9.FAM

GIVEN:
In order to protect a substrate from high temperatures resulting from intense irradiation, evaporation tran-

spiration cooling is used. This is shown in Figure Pr.5.9(a). Liquid water is supplied under a porous layer and
this liquid is evaporated by the heat reaching the liquid surface, which is at temperature Tlg = Tf,1. The heat
flow to the liquid surface is only a fraction of the prescribed irradiation, because the water-vapor flow intercepts
and carries away a fraction of this heat by convection.

ρf = 0.596 kg/m3, cp,f = 2,029 J/kg-K, ∆hlg = 2.257× 106 J/kg (water at 100◦C), 〈k〉 = 15 W/m-K, L = 40
cm, w = 15 cm, L = 1.5 cm, Tlg = Tf,1 = 100◦C, αr,2=0.9, qr,i = 105 W/m2, ρl = 958 kg/m3.

Note that from conservation of mass across the liquid surface, ρfuf = ρlul.

SKETCH:
Figure Pr.5.9(a) shows the evaporation transpiration cooling to protect a substrate from high temperatures

resulting from intense irradiation.

k
Make-up

Water
Stream

Porous Layer

Water
Vapor
Stream

Heat Returned
by Convection

Heat Used for
Evaporation

Permeable, Sintered
Metal Particles

Substrate

Q1 = 0

x

Slg = �Mlg �hlg

(1 � αr,2) qr,i Ak,u

Ak,u αr,2 qr,i

qr,i

l

L

w

Tf,2

Tlg = Tf,1

Figure Pr.5.9(a) Evaporation transpiration cooling.

OBJECTIVE:
(a) For the condition given in Figure Pr.5.9(a), draw the thermal circuit diagram.
(b) Determine Ṁlg and Tf,2.

SOLUTIONS:
(a) The thermal circuit diagram is shown in Figure Pr.5.9(b).

(b) Thermal Circuit Model

(Qk,u)2-1

Q (x = 0)

Qu,2-1 = Ak,u (ρcp u)f (Tf,2 � Tf,1)

Slg = �Mlg �hlg

Mlg

Q1 = 0

Tf,2

Tlg = Tf,1

Ak,u αr qr,i

x

Figure Pr.5.9(b) Thermal circuit diagram.
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(b) From Figure Pr.5.9(b), for node Tf,2, we have

Q|A,2 = (Qk,u)2-1 = Ak,uαr,2q1,i,

where from (5.13) and (5.14)

(Qk,u)2-1 =
Ak,u〈k〉

L

PeLePeL

ePeL − 1
(Tf,2 − Tf,1).

and for node Tf,1, we have

Q|A,1 = −Q1 = Ṡlg

= −Ṁlg∆hlg,

where from (5.23),

Q1 =
Ak,u〈k〉

L

PeL

ePeL − 1
(Tf,1 − Tf,2)

PeL =
ufL

〈α〉 , ul =
Ṁlg

Ak,uρl
, 〈α〉 =

〈k〉
(ρcp)f

, Ak,u = lw, ρlul = ρfuf .

We have also used the continuity equation to equate the liquid and vapor from rates at the liquid surface. We
need to solve these two energy equations simultaneously for Tf,2 and uf (or Ṁlg). Since the relation for uf is
nonlinear, a numerical solution is needed and a solver can be used.
Then thermal diffusivity is

〈α〉 =
15(W/m-K)

0.596(kg/m3) × 2029(J/kg-K)
= 1.240 × 10−2 m2/s.

The two energy equations and the definition of PeL give

PeL =
uf (m/s) × 0.015(m)
1.240 × 10−2(m2/s)

0.4(m) × 0.15(m) × 15(W/m-K)
0.015(m)

PeLePeL

ePeL − 1
(Tf,2 − 100)(◦C) = 0.4(m) × 0.15(m) × 0.9 × 105(W/m2)

0.4(m) × 0.15(m) × 15(W/m-K)
0.015(m)

PeL

ePeL − 1
(100 − Tf,2)(◦C) = −0.4(m) × 0.15(m) × 0.596(kg/m3) × uf × 2.257 × 106(J/kg).

The results are

uf = 0.06207 m/s
PeL = 0.07508
Tf,2 = 186.7◦C.

For Ṁlg, we have

Ṁlg = Akuρfuf

= 0.4(m) × 0.15(m) × 0.596(kg/m3) × 0.06207(m/s) = ×10−3 kg/s = 2.220 g/s.

COMMENT:
Note that since PeL is small, nearly all the absorbed irradiation energy reaches the evaporation surface. Due

to the large heat of evaporation, a small velocity is found for qr,i = 105 W/m2. For qr,i = 106 W/m2, we would
have uf = 0.4083 m/s. Also, the Péclet number is small due to the large 〈k〉.
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PROBLEM 5.10.FUN

GIVEN:
Anesthetic drugs are supplied as liquid and are evaporated, mixed with gases (such as oxygen), and heated

in portable vaporizer units for delivery to patients. This is shown in Figure Pr.5.10(a). The drugs, such as
enfluorane, isofluorane, etc., have thermophysical properties similar to that of refrigerant R-134a (Table C.28).
The drug is sprayed into the vaporizer. The heating of the gas mixture (drug and oxygen) is by surface convection
and here it is prescribed by 〈Qku〉L. This heat in turn is provided by Joule heating from a heater wrapped around
the tube. Assume that droplets evaporate completely.

Tf,1 = 15◦C, Ṁl = 2 × 10−5 kg/s, ṀO2 = 2 × 10−4 kg/s, 〈Qku〉L = −6 W.
Use the specific heat capacity of oxygen (at T = 300 K, Table C.22) for the mixture, and use ∆hlg from Table

C.28, at p = 1 atm.

SKETCH:
Figure Pr.5.10(a) shows the vaporizer. The oxygen (gas) and drug (liquid) streams enter and a gas mixture

exits. The mixture is heated by surface convection.

L
Slg , Evaporation

Warm Gas Mixture
Stream, Tf,2

Surface Convection

Droplets

Liquid Nozzle
(Injector)

Oxygen Stream
MO2 , TO2 = Tf,1

Liquid Anesthetic
Drug Stream
Ml , Tl = Tf,1

Control Volume, V
Control Surface, A

To Patient

�  Qku  L

Figure Pr.5.10(a) A liquid anesthetic drug is evaporated, mixed with oxygen, and heated in a vaporizer. The drug is
sprayed into the vaporizer.

OBJECTIVE:
(a) Draw the thermal circuit diagram for the control volume V .
(b) Determine the exit fluid stream temperature Tf,2, for the given conditions.

SOLUTION:
(a) Figure Pr.5.10(b) shows the thermal circuit diagram.

Tf,1 Tf,2

� Qku  L

Qu,1 Qu,2

Mf

Slg

Figure Pr.5.10(b) Thermal circuit diagram.

(b) From continuity, we have

Ṁf = ṀO2 + Ṁl.

From Figure Pr.5.10(b), and from the energy equation, (5.17), we have

Q|A = 〈Qku〉L + Qu,2 − Qu,1 = Ṡlg

= 〈Qku〉L + Ṁfcp,f (Tf,2 − Tf,1) = Ṡlg.

Solving for Tf,2, we have

Tf,2 = Tf,1 +
Ṡlg − 〈Qku〉L

Ṁfcp,f

= Tf,1 +
−Ṁl∆hlg − 〈Qku〉L

(ṀO2 + Ṁl)cp,f

.
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From Table C.28, we have, for p = 1 atm = 0.1013 MPa,

∆hlg = 2.172 × 105 J/kg Table C.28.

From Table C.22, for oxygen at T = 300 K, we have

cp,f = 920 J/kg-K Table C.22.

Using the numerical values, we have

Tf,2 = 15(◦C) +
−2 × 10−5(kg/s) × 2.172 × 105(J/kg) − [−6(W)]

(2 × 10−4 + 2 × 10−5)(kg/s) × 920(J/kg-◦C)
= 15(◦C) + 8.182(◦C)
= 23.18◦C.

COMMENT:
Since the vaporizer unit is portable, the surface convection heating 〈Qku〉L, which is provided by Joule heating

needs to be minimized and for an ideally insulated tube this would give Ṡe,J = 5 W.
Note that we did not addressed the sensible heat required to heat the droplet from Tf,1 to Tlg (Tlg = 249.2

K). This heat is not significant because ṀO2 is much larger than Ṁl. In Problem 8.2, a more complete analysis-
description is made. In Section 6.9, we will discuss the heat and mass transfer resistances Rku and RDu, which
influence the droplet evaporation rate.
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PROBLEM 5.11.FUN

GIVEN:
In surface evaporation from permeable membranes, the heat for evaporation is partly provided by the ambient

gas (by surface convection) and partly by the liquid reservoir (through the conduction-convection heat transfer
through the membrane). This is shown in Figure Pr.5.11. The ambient gas may contain species other than the
vapor produced by the evaporation. These other species are called the inert or noncondensables and provide a
resistance to the vapor mass transfer. This will be discussed in Section 6.9 and here we do not address the mass
transfer resistance and assume that the gas is made of the vapor only. Consider using superheated steam to
evaporate water from a permeable membrane. We assume that the gas is moving and has a far-field temperature
Tf,∞ and that there is a surface-convection heat transfer resistance Rku,2-∞ between the surface and the gas
stream. This is also shown in Figure Pr.5.11.

The surface temperature Tf,2 is equal to the saturation temperature Tlg(pg). Also, since (Rk,u)1-2 depends
on Ṁl, the liquid mass flow is determined such that it simultaneously satisfies (Qk,u)1-2 and Ṡlg.

Tf,1 = 100◦C, Tf,∞ = 110◦C, Tlg = 95◦C, Ak,a = Aku = 1 m2, Rku,2-∞ = 0.25 K/W, 〈k〉 = 1 W/m-K, L = 1
cm.

Determine the water properties at T = 373.15 K, from Table C.27.

SKETCH:
Figure Pr.5.11 shows the permeable membrane with the water flowing through it and evaporating on the

steam-membrane interface.

Ml MlMl Gas Stream
Tf,� , uf,�

Liquid
(Water)

Permeable
Membrane

L

k

Tf,�

Rku,2-�
(Rku)1-2

(Qk,u)1-2 �Qku,2-�

Tlg = Tf,2

Ak,u = Aku

Slg

Tf,1

Figure Pr.5.11 Water supplied through a permeable membrane is evaporated on the gas-side interface. The thermal
circuit diagram is also shown.

OBJECTIVE:
Determine Ṁl for the given conditions.

SOLUTION:
From Figure Pr.5.11, the energy equation is

Q|A = −(Qk,u)1-2 + Qku,2-∞ = Ṡlg

or

−Tf,1 − Tf,2

(Rk,u)1-2
+

Tf,2 − Tf,∞
(Rku)1-2

= −Ṁl∆hlg.

From (5.14), we have

(Rk,u)1-2 =
L

Ak,u〈k〉
ePeL − 1
PeLePeL

,

PeL =
ufL

〈α〉 , 〈α〉 =
〈k〉

(ρcp)f
, uf =

Ṁl

ρfAk,u
.
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From Table C.27, we have

ρf = 958 kg/m3 Table C.27

cp,f = 4,217 J/kg-K Table C.27

∆hlg = 2.257 × 106 J/kg Table C.27.

Then using the numerical values, we have

〈α〉 =
1(W/m-K)

958(kg/m3) × 4,217(J/kg)
= 2.475 × 10−7m2/s

PeL =
Ṁl × 10−2(m)

958(kg/m3) × 1(m2) × 2.475 × 10−7(m2/s)
= 42.17Ṁl(s/kg)

(Rk,u)1-2 =
10−2(m)

1(m2) × 1(W/m-K)
e42.17Ṁl(s/kg) − 1

42.17Ṁl(s/kg) × e42.17Ṁl(s/kg)
.

The energy equation becomes

− (100 − 95)(◦C)
(Rk,u)1-2

+
(95 − 110)(◦C)
0.25(◦C/W)

= −Ṁl(s/kg) × 2.257 × 106(J/kg).

Solving for Ṁl, we have

Ṁl = 0.5476 kg/s.

COMMENT:
This liquid flow rate corresponds to PeL = 23.09 and uf = 0.5716 mm/s, which are relatively large, This

is because nearly all of the heat is arriving from the liquid side. The surface-convection resistance Rku,2-∞
corresponds to a laminar flow parallel to the interface. Means of reducing this resistance will be discussed in
Chapter 6 (i.e., using perpendicular flow or turbulent flow, etc.)
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PROBLEM 5.12.FAM

GIVEN:
Consider an adiabatic methane-air flame in a packed-bed of spherical alumina particles of diameter D = 1 mm

and a bed porosity ε = 0.4. Assume the average temperature of the bed to be T = 1,300 K. The inlet conditions
are Tf,1 = 289 K and p1 = 1 atm and the mixture is stoichiometric.

OBJECTIVE:
(a) Determine the effective thermal conductivity for the bed. Use the radiant conductivity correlation for spheres
given by

〈kr〉 = 4DσSBT 3Fr = 4DσSBT 3

{
a1εrtan−1

[
a2

εr

(
ks

4DσSBT 3

)a3
]

+ a4

}
correlation for radiant conductivity for packed bed of particle with 0.4 ≤ ε ≤ 0.6,

where Fr is the radiant exchange factor, a1 = 0.5756, a2 = 1.5353, a3 = 0.8011, a4 = 0.1843.
(b) Determine the effective radiant conductivity.
(c) Using the sum of these conductivities, at the above average temperature, determine the adiabatic flame speed.

Use the results of Example 5.4, as needed.

SOLUTION:
(a) The effective thermal conductivity for a bed of spherical particles in random arrangement can be estimated
from (3.28),

〈k〉
kf

=
(

ks

kf

)0.280−0.757 log(ε)−0.057 log(ks/kf )

.

For alumina at T = 1300 K, interpolating from Table C.14 gives ks = 6 W/m-K. For air at T = 1300 K,
interpolating from Table C.22 gives kf = 0.0791 W/m-K. For a porosity ε = 0.4, the effective thermal conductivity
is

〈k〉 = 0.0791(W/m-K)
[

6(W/m-K)
0.0791(W/m-K)

]0.280−0.757 log(0.4)−0.057 log[ 6(W/m-K)
0.0791(W/m-K) ]

= 0.6158 W/m-K.

(b) The radiant thermal conductivity using the diffusion approximation can be estimated from the given relation

〈kr〉 = 4DσSBT 3

{
a1εr tan−1

[
a2

εr

(
kf

4DσSBT 3

)a3
]

+ a4

}
.

For D = 1 mm and using εr = 0.78 obtained from Table C.18 (a1, a2, a3, and a4 are constants) we have

〈k〉r = 4 × 0.001(m) × 5.67x10−8(W/m2-K4) × (1300)3(K3)
0.5756 × 0.78 × tan−1


1.5353

0.78
×
[

0.0791(W/m-K)
4 × 0.001(m) × 5.67x10−8(W/m2-K4) × (1300)3(K3)

]0.8011

+ 0.1843




= 0.19 W/m-K.

(c) The flame speed, assuming a zeroth-order reaction, and constant properties is given by (5.55),

uf,1 =

[
2kf

ρf,1ρF,1cp,f
ar exp(

−∆Ea

RgTf,2
)

RgT
2
f,2

∆Ea(Tf,2 − Tf,1)

]1/2

.

The inlet conditions are Tf,1 = 289 K, p = 1 atm, and the mixture is stoichiometric. These are the conditions for
Example 5.4 and the flame speed obtained there is uf,1 = 0.4109 m/s. Using the expression for uf,1 from above,
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and noting from Section 5.4.6 that for a porous medium k = 〈k〉 + 〈kr〉, the ratio of the flame speeds with and
without the porous medium is

(uf,1)packed bed

(uf,1)plain medium

=
( 〈k〉 + 〈k〉r

kf

)1/2

.

Therefore,

(uf,1)packed bed = 0.4109(m/s)
[
0.63(W/m-K) + 0.19(W/m-K)

0.0824(W/m-K)

]1/2

= 1.30 m/s.

COMMENT:
An increase of the flame speed (and burning rate) is achieved by increasing the medium conductivity. The

presence of the high-conductivity solid and the occurrence of the reaction in the gas phase only results in a local
temperature difference between the solid and the gas. This leads to high local gas temperatures (a phenomenon
called the local superadiabatic flame temperature).
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PROBLEM 5.13.FAM

GIVEN:
To achieve the same flame speed that was obtained using the porous medium in Problem Pr.5.12, turbulent

flow may be used. The turbulent intensity affects the flame speed.
The laminar flame speed is uf,1 = 0.4109 m/s and the packed-bed flame speed is 1.30 m/s.

OBJECTIVE:
Using the same adiabatic, stoichiometric methane-air flame, determine the needed turbulent intensity Tu to

achieve the same flame speed.

SOLUTION:
The turbulent intensity is defined by (5.70) as

Tu =
u′

f,1
2

u2
f,1

.

The ratio of the turbulent flame speed uf,1 to the laminar flame speed uf,1 is correlated to the mean square of
the velocity fluctuation u′2

f,1 by (5.71), i.e.,

uf,1

uf,1
= 1 +

u′
f,1

2

u2
f,1

.

Here the laminar flame speed is that obtained in Example 5.4, i.e., uf,1 = 0.4109 m/s and the packed-bed flame
speed of Problem 5.12 is uf,1 = uf,1 = 1.30 m/s.
If a turbulent flame speed equal to the flame speed obtained within the packed bed (from Problem 5.12) is desired,
the required mean square of the velocity fluctuation is

u′
f,1

2 = u2
f,1

(
uf,1

uf,1
− 1

)
= (0.4109)2(m/s)2

[
1.30(m/s)

0.4109(m/s)
− 1

]
= 0.3653 (m/s)2.

For this mean square of the velocity fluctuation, the turbulent intensity is

Tu =
u′

f,1
2

u2
f,1

=
0.3653(m/s)2

(1.30)2(m/s)2
= 0.2162.

COMMENT:
The correlation (5.71) applies to low turbulent intensity and is an approximation.
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PROBLEM 5.14.FUN

GIVEN:
In a premixed fuel-oxidant stream, as the fuel is oxidized, its density ρF decreases and this decrease influences

the combustion and chemical kinetics. Consider a first-order chemical-kinetic model for reaction of methane and
oxygen given by

ṅr,F = −arρFe−∆Ea/RgTf .

Start with the fuel-species conservation equation (B.51). Assume one-dimensional, incompressible flow, and
negligible mass diffusion.

Use a constant, average temperature Tf = (Tf,0 + Tf,L)/2 to represent the average temperature over length
L. The final expression is

ρF,L = ρF,0 e(−arL/uf )e−∆Ea/RgTf
.

OBJECTIVE:
Derive the relation for the fuel density as it undergoes reaction over a length L with a velocity uf , inlet density

ρF,0, and temperature Tf,0.

SOLUTION:
From (B.51), for a steady-state condition, one-dimensional flow, and negligible diffusion, we have the following

species F (fuel) conservation equation,

d

dx
ρFuf = ṅr,F = ṅr,F = −arρFe

− ∆Ea

RgTf .

Assuming an incompressible flow and using (B.50), the above equation becomes

uf
dρF

dx
= −arρFe

− ∆Ea

RgTf .

After re-arranging the above and integrating over the length L, we have,

∫ ρF,L

ρF,0

dρF

ρF
=
∫ L

0

−ar

uf
e
− ∆Ea

RgTf dx

ln
ρF,L

ρF,0
=

−arL

uf
e
− ∆Ea

RgTf .

Solving for ρF,L, the fuel density at location L, we have,

ρF,L = ρF,0 e(−arL/uf )e−∆Ea/RgTf
.

COMMENT:
This chemical-kinetic model can be compared with (2.19), with aF = 1 and aO = 0. This model is used

in combustion in porous media. Note that the gas temperature used is the average over the length L and is
considered constant. The above expression is a useful approximation for well mixed gas.
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PROBLEM 5.15.FAM

GIVEN:
To estimate the flame speed of the atmospheric (p1 = 1 atm) gasoline (assume it is octane) reaction with air

(premixed), assume that the chemical kinetic model for this reaction can be approximated as being zeroth order
and represented by a pre-exponential factor ar and an activation energy ∆Ea given in Table 5.3 for zeroth-order
reaction of methane and air. The reaction is represented by

C8H18 + 12.5O2 + 47.0N2 → 8CO2 + 9H2O + 47.0N2.

Use Figure 5.9 for the adiabatic flame temperature, Table 5.2 for the heat of reaction, and evaluate the proper-
ties of air at the average flame temperature 〈Tf 〉δ = (Tf,1 +Tf,2)/2. Determine the density ρf,1 from the ideal-gas
law using Tf,1 = 16◦C.

OBJECTIVE:
Determine (a) the Zel’dovich number Ze, and (b) the flame speed uf,1, for a premixed gasoline-air flame.

SOLUTION:
(a)The Zel’dovich number is given by (5.53),

Ze =
∆Ea(Tf,2 − Tf,1)

RgT
2
f,2

.

The adiabatic flow temperature Tf,2 is found from Figure 5.9 (for octane),

Tf,2 = 2,310◦C = 2,583.15 K
Tf,1 = 16◦C = 289.15K.

The chemical kinetic constants are assumed to be those given in Table 5.3 for methane oxidization (for a zeroth-
order reaction),

ar = 1.3 × 108 kg/m3-s Table 5.3

∆Ea = 2.1 × 108 J/kmole Table 5.3.

The Zel’dovich number is then

Ze =
2.1 × 108(J/kmole)(2,583.15 − 289.15)(K)

8,314(J/kmole-K)(2,583.15)2(K)2
.

= 8.684.

As Ze> 5, we can use the high activation energy approximation. Equation (5.55) can then be used for uf,1.

(b) The flame speed is given by (5.55),

uf,1 =


 2kfar

ρf,1cp,fρF,1Ze
e
− ∆Ea

RgTf,2




1/2

,

where kf , ρf,1, and cp,f need to be specified.
The average specific heat capacity is given by (5.35),

cp,f =
−∆hr,F(ρF,1/ρf,1)

Tf,2 − Tf,1
.

The heat of reaction for octane is found in Table 5.2,

∆hr,F = −48.37 × 106 J/kg Table 5.2.

For the given chemical reaction,

ρF,1

ρf,1
=

νC8H18MC8H18

νC8H18MC8H18 + νO2MO2 + νN2MN2

= 0.06234.
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The molecular masses are found in Table C.4.
The specific heat capacity is then

cp,f =
−48.37 × 106( J/kg) × 0.06234

(2,310 − 16)(K)
= 1,315 J/kg-K.

The average flame temperature is

〈Tf 〉δ =
Tf,1 + Tf,2

2
= 1,436 K.

From Table C.22, at T = 1,436 K, we have

kf = 0.08447 W/m-K Table C.22.

The gas density at Tf,1 and p1 = 1 atm is found from (3.18), i.e.,

ρf,1 =
p

Rg/M1Tf,1
=

1.013 × 105(Pa) × 30.26(kg/kmole)
8.314 × 103(J/kmole-K) × 289.15(K)

= 1.275 kg/m3,

where

M1 =
νC8H18MC8H18 + νO2MO2 + νN2MN2

νC8H18 + νO2 + νN2

=
[1 × (8 × 12.011 + 18 × 1.006) + 12.5 × 2 × 15.99 × 5.999 + 47 × 2 × 14.007](kg/kmole)

1 + 12.5 + 47
= 30.26 kg/kmole.

The adiabatic flame speed is then

uf,1 =




2 × 0.08447 × 1.3 × 108(kg/m3-s) exp
[
− 2.1 × 108(J/kgmole)

8.314 × 103(J/kg mole-K) × 2,583.15(K)

]
1.275(kg/m3) × 1,315(J/kg-K) × 0.06234 × 1.275(kg/m2) × 8.684




1/2

= 1.037 m/s = 103.7 cm/s.

COMMENT:
The chemical kinetic model used here is not a realistic representation of the gasoline-air reaction. The measured

adiabatic flame speed at one atm pressure is given in table C.21(a) as uf,1 = 0.38 m/s. This is much lower than
the predicted value. The use of a more realistic kinetic model and temperature dependent properties results in
the need for a numerical solution of the energy equation (5.27) and the species conservation equation (5.29). This
is commonly done to predict the flame speed.
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PROBLEM 5.16.FUN

GIVEN:
In order to achieve higher flame temperatures, pure oxygen is used instead of air in burning hydrocarbons.

Consider stoichiometric methane-oxygen premixed combustion.
Tf,1 = 16◦C, cp,f = 3,800 J/kg-K.
Use the chemical kinetic constants for the zeroth-order reaction given in Table 5.3. Use the thermal conduc-

tivity of air at the average gas temperature 〈Tf 〉δ = (Tf,1 + Tf,2)/2 for the mixture.

OBJECTIVE:
(a) Determine the adiabatic flame temperature Tf,2.
(b) Determine the laminar, adiabatic flame speed uf,1.
(c) Compare this flame speed with the laminar, adiabatic flame speed of methane-air in Example 5.4 (i.e.,
uf,1 = 0.4109 m/s)

SOLUTION:
(a) The adiabatic flame temperature is given by (5.35), i.e.,

Tf,2 = Tf,1 − ∆hr,F

cp,f

(
ρF

ρf

)
1

.

We need to determine the fuel mass fraction (ρF/ρf ). This is found from the stoichiometric reaction

CH4 + 2O2 → 2CO2 + 2H2O.

Then

ρF,1

ρf,1
=

νCH4MCH4

νCH4MCH4 + νO2MO2

=
1 × (12.011 + 1.008 × 4)

1 × (12.011 + 1.008 × 4) + 2 × 2 × 15.999

=
16.04
80.04

= 0.2004.

Then from Table 5.2, we have −∆hr,F = 5.553 × 107 J/kg and

Tf,2 = 16(◦C) − −5.553 × 107(J/kg)
3,800(J/kg-K)

× 0.2004

= 16(◦C) + 2,928(◦C)
= 2,944◦C.

(b) The laminar, adiabatic flame speed is given by (5.55), i.e.,

uf,1 =


 2kfar

ρfcp,fρF,1Ze
e
− ∆Ea

RgTf,2




1/2

.

The chemical-kinetic constants are given in Table 5.3. For methane, with a zeroth-order reaction, ar = 1.3× 108

kg/m3 and ∆Ea = 2.10 × 108 J/kmole.
The Zel’dovich number, Ze, is

Ze =
∆Ea(Tf,2 − Tf,1)

RgT
2
f,2

=
2.1 × 108(J/kmole) × 2,928(K)

8.314 × 103(J/kmole-K) × (2,944 + 273.15)2(K2)
= 7.146.
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As Ze> 5, (5.55) can be used to find uf,1. The density ρf,1 is determined from the ideal-gas relation (3.18), i.e.,

ρf,1 =
p1

(Rg/M1)Tf,1
,

where

M1 =
νCH4MCH4 + νO2MO2

νCH4 + νO2

=
[1 × (12.011 + 1.008 × 4) + 2 × 2 × 15.999](kg/kmole)

1 + 2

=
80.04

3
= 26.68 kg/kmole.

Then

ρf,1 =
1.013 × 105(Pa)

8.314 × 103(J/kmole-K)
26.68(kg/kmole)

× (289.15)(K)

= 1.124 kg/m3.

The air thermal conductivity is found from Table C.22 at the average flame temperature

〈Tf 〉δ =
(16 + 2,944)(◦C)

2
+ 273.15(◦C)

= 1,753 K

From Table C.22, for air at T = 1,753 K, we have: kf = 0.09520 W/m-K.
Then

uf,1 =
{

2 × 0.09520(W/m-K) × 1.3 × 108(kg/m3-s)
1.124(kg/m3) × 3,800(J/kg-K) × 1.124 × 0.2004(kg/m3) × 7.146

×

exp
[
− 2.10 × 108(J/kg)

8.314 × 103(J/kg-K) × (2,944 + 273.15)(K)

]}1/2

= [3.600 × 104(m2/s2) × 3.893 × 10−4]1/2 = 3.744 m/s.

(c) Comparing with the results of Example 5.4, with Tf,2 = 1,918◦C, the adiabatic flame temperature is much
higher for the methane burning in pure oxygen. The predicted laminar adiabatic flame speed is also much higher
in pure oxygen, compared to the value of 0.4109 m/s which is predicted in air.

COMMENT:
The measured laminar flame speed is uf,1 = 6.919 m/s. The difference is due to the constant thermal

conductivity used in the predictions, and due to the simplified chemical kinetic model used.
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PROBLEM 5.17.FAM.S

GIVEN:
Surface-radiation drying of wet pulp in paper production uses permeable ceramic foams for both combustion

and surface emission. This is shown Figure Pr.5.17(a). The premixed, gaseous fuel-air flows into the foam, and
after an initial ignition, it undergoes steady combustion. The flue gas heats the foam and leaves while the foam
radiates to the load (wet paper). The steady combustion requires a mixture flow rate that in turn is determined
by the heat transfer. This flow rate, or specifically the velocity uf,1, can be several times the laminar, adiabatic
flame speed given by (5.55). Consider stoichiometric methane-air combustion with the mixture arriving at Tf,1

and at 1 atm pressure.
Assume that F2-p = 1 and both the radiant-burner surface and the wet paper are blackbody surfaces.
uf,1 = 0.2 m/s, Tf,1 = 16◦C, a = 25 cm, w = 60 cm, Tp = 60◦C, cp,f = 1,611 J/kg-K, ρf,1 = 1.164 kg/m3,

(ρF/ρf )1 = 0.05519.

SKETCH:
Figure Pr.5.17(a) shows the permeable ceramic foam with surface radiation to a wet-pulp sheet being dried.

Tf,2 = Ts

Pulp, Tp

Sr,c Occurring at
Top of Heater

Qu,2

Qr,2-p

Qu,1

a

w

Paper Drying System

Premixed
Methane-Air

Stream

Figure Pr.5.17(a) A surface-radiation burner used for drying a wet-pulp sheet.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Assuming local thermal equilibrium between the gas and the permeable solid (i.e., the ceramic foam), deter-
mine the radiant-surface temperature Ts = Tf,2 and the radiation heat transfer rate Qr,2-p.
(c) What is the radiant heat transfer efficiency of this heater?

SOLUTION:
(a) Figure Pr.5.17(b) shows the thermal circuit diagram. In addition to the surface-radiation heat transfer, the
convection heat flow Qu,2 is partly exchanged with the wet-pulp sheet by surface convection Qku(discussed in
Chapter 6).

(b) From Figure Pr.5.17(b), the integral-surface energy equation becomes

Qu,2 + Qr,2 − Qu,1 = Ṡr,c,

where

Qu,2 − Qu,1 = ρf,1cp,fuf,1Au(Tf,2 − Tf,1)

Qr,2 = Qr,2-p =
Eb,2 − Eb,p

1
Ar,2F2-p

= Ar,2σSB(T 4
f,2 − T 4

p ), asεr,2 = εr,p = 1

Au = Ar,2 = aw

Ṡr,c = −ρF,1uf,1Au∆hr,F [from (5.34)].
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Tf,1

Ts = Tf,2

Qr,2 = Qr,2-p Qku

Qu

Qu,2

Control Surface, A2
Q2 = 0

Qu,1

Tp

(Sr,c)1-2

(Rr,�)2-p

Eb,p

Eb,f,2

Figure Pr.5.17(b) Thermal circuit diagram.

Combining these, we will have the equation to solve for Tf,2, i.e.,

ρf,1cp,fuf,1(Tf,2 − Tf,1) + σSB(T 4
f,2 − T 4

p ) = −ρF,1

ρf,1
ρf,1uf,1∆hr,F.

Then we can solve for Qr,2-p. Alternatively, we can solve the above equations simultaneously using a software
(such as SOPHT).
From Table 5.2, we have ∆hr,F = −5.553 × 107 J/kg. Then, using the numerical values , we have

1.164(kg/m3) × 1,611(J/kg-K) × 0.2(m/s) × [Tf,2 − 289.15(K)] + 5.67 × 10−8(W/m2-K4) ×
[T 4

f,2 − 333.154(K4)] = −1.164(kg/m3) × 0.05519 × 0.2(m/s) × (−5.553 × 107)(J/kg)

Qr,2-p = 0.25(m) × 0.6(m) × 5.670 × 10−8(W/m2-K4) × [T 4
f,2 − 333.154(K4)].

The solutions are

Tf,2 = 1,476 K.

Qr,2-p = 40,259 W.

(c) The surface-radiation efficiency η is defined as

η =
Qr,2-p

−ρF,1uf,1Au∆hr,F
= 37.62%.

COMMENT:

Figure Pr.5.17(c) shows the variation of η with respect to uf,1. Note that η decreases as uf,1 decreases. It is
possible to avoid the low efficiency associated with the high velocities. This can be done by using a distributed
fuel supply, instead of the premixed fuel-air considered here, along with an impermeable radiation surface.
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Figure Pr.5.17(c) Variation of surface-radiation efficiency with respect to the flame speed uf,1.
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PROBLEM 5.18.FUN

GIVEN:
In burning gaseous fuel in a tube or in a porous medium, it is possible to locally create gas temperatures

above the adiabatic flame temperature. This is done by conduction of heat through the bounding solid (tube or
solid matrix) from the high temperature region to the lower temperature region. This is called heat recirculation
and the process of combustion with this local increase in the gas temperature is called the superadiabatic com-
bustion. This is rendered for a premixed fuel (methane) and oxidant (air) in Figure Pr.5.18(a). In this idealized
rendering, three different regions are identified, namely the gas-preheat, combustion, and solid-heating regions.
The heat recirculation begins as surface convection from the flue gas to the solid, then it is conducted along
the solid (flowing opposite to the gas flow), and is finally returned to the gas (premixed fuel-oxidant) by surface
convection. The idealized gas temperature distribution (for the three regions) is also shown in the figure and can
be represented by the internodal energy conservation equation and the temperatures labeled Tf,1 to Tf,4. The
surface convection out of the solid-heating region is given per unit gas flow cross-sectional area, i.e., Qku/Au.

Qku/Au = 5 × 104 W/m2, Tf,1 = 20◦C.
Assume negligible heat loss in the combustion region (i.e., an adiabatic combustion region). Use the heat of

combustion of methane ∆hr,F and the stoichiometric mass fraction of the fuel from Table C.21(a), and a constant
specific heat capacity corresponding to air at T = 1,500 K.

SKETCH:
Figure Pr.5.18(a) shows the flow and reaction, and the anticipated gas temperature distribution along the

tube.

Sr,c
Tf,1 Tf,2 Tf,3 Tf,4

�Qku = �Qku,34

Tf,3

Tf,2

Tf,1

x

Tf

�Texcess
Tf,4

Tube
Wall

(i) Local Superadiabatic Combustion Heat Circulation
Through Axial Tube Conduction

(ii) Ideal Axial Temperature Distribution

Premixed
Methane-Air

Stream

Gas
Preheat
Region

Heat Recirculation

Solid-
Heating
Region

Com-
bustion
Region

Au
Qku

(Mcp)f

�Tcombustion

Figure Pr.5.18(a) Heat recirculation and local superadiabatic temperature in combustion in a tube.

OBJECTIVE:
(a) Draw the thermal circuit diagram. Determine (b) Tf,2, (c) Tf,3, (d) Tf,4, and (e) the excess temperature
∆Texcess = Tf,4 − Tf,3 for stoichiometric, premixed methane-air combustion.
(f) Comment on the effect of using temperature-dependent specific heat capacity on the predicted excess temper-
ature.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.5.18(b). The surface-convection heat transfer out of the
solid-heating region control volumes is equal in magnitude and opposite in sign to that entering the preheat region.
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Tf,1 Tf,2

QkuQku
Qk,s

Qu,1

Tf,3 Tf,4

Preheat Region
Control Volume

Solid-Heating Region
Control Volume

Combustion Region
Control Volume

Sr,c

Solid

Fluid Stream

Heat Recirculation

(Mcp)f

Figure Pr.5.18(b) Thermal circuit diagram.

(b) There are three regions and we write the energy equation (5.33) for each of them. The control volumes are
shown in Figure Pr.5.18(b). The energy equations are

−Qu,1 + Qu,2 − Qku = 0 gas-preheat region

−Qu,2 + Qu,3 = Ṡr,c combustion region

−Qu,3 + Qu,4 + Qku = 0 solid-heating region.

Now we use a constant and uniform cp,f , similar to that used in (5.34), and the energy equations then become

(ρcp)f (Tf,2 − Tf,1) − Qku

Au
= 0

(ρcp)f (Tf,3 − Tf,2) =
Ṡr,c

Au

(ρcp)f (Tf,4 − Tf,3) +
Qku

Au
= 0.

Next, from (5.34), we replace Ṡr,c by

Ṡr,c = Au(ρFuf )2∆hr,F.

Then as in (5.38), we have

Tf,3 = Tf,2 − ∆hr,F(ρF/ρf )2
cp,f

.

The density and the specific heat capacity of air at T = 1,500 K is found from Table C.22, i.e.,

ρf = 0.235 kg/m3 Table C.22

cp,f = 1,202 J/kg-K Table C.22.

From Table C.21(a), for the methane-air stoichiometric combustion, we have

∆hr,F = −5.553 × 107 J/kg Table C.21(a)(
ρF

ρf

)
2

= 0.0552 Table C.21(a)

For the gas-preheat region, we have

Tf,2 = Tf,1 +
Qku/Au

(ρcp)f
.

The second term on the right side will appear in all the energy equations, and we therefore calculate its value,

Qku/Au

(ρcp)f
=

5 × 104 W/m2

0.235(kg/m3) × 1,202(J/kg-K)
= 177.0◦C.
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The expression for Tf,2 then becomes

Tf,2 = 20(◦C) + 177.0(◦C) = 197.0◦C.

(c) In the combustion region, we have

Tf,3 = 197.0(◦C) − −5.553 × 107(J/kg) × 0.0552
1,202(J/kg-K)

= 191.0(◦C) + 2,550(◦C) = 2,747◦C.

(d) In the solid-heating region, we have

Tf,4 = Tf,3 − Qku/Au

(ρcp)f

= 2,747(◦C) − 177.0(◦C) = 2,569◦C.

(e) The excess temperature is

Tf,4 − Tf,3 =
Qku/Au

(ρcp)f
= 177.0◦C.

(f) As shown in Example 5.4, the flue-gas specific heat capacity is larger than that of air, because it contains
CO2 and H2O. The specific heat capacity of methane is also strongly temperature dependent [Figure 3.1(b)]. In
principle, we should use a nonuniform mixture specific heat capacity. Using a larger mixture specific heat capacity
results in a smaller excess and adiabatic flame temperatures.

COMMENT:
Note that due to the smaller cp,f , the adiabatic flame temperature is larger than that found in Example 5.4.

In chapter 6, we will determine Qku from the average gas and solid-surface temperatures. Surface-radiation heat
transfer among the various regions can also be significant.
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PROBLEM 5.19.FAM

GIVEN:
Consider nonadiabatic (i.e., lateral heat losses Qloss not being negligible), one-dimensional flow and re-

action of premixed methane-air gaseous mixture. There is a heat loss, per unit flow cross-sectional area,
Qloss/Au = qloss = 105 W/m2. The mixture is stoichiometric and the initial temperature and pressure are
Tf,1 = 298 K and p1 = 1 atm.

Use the Table C.21(a) data for adiabatic, stoichiometric flame (ρF/ρf , ∆hr,F , and uf,1), and for the average
specific heat use cp,f = 1,611 J/kg-K.

OBJECTIVE:
Determine the final temperature Tf,2.

SOLUTION:
The integral-volume energy equation applied to a control volume including the flame, under steady-state

conditions, reduces to

Q|A = Ṡr,c.

The energy generation occurs by conversion from chemical-bond to thermal energy Ṡr,c. The net heat flux leaving
the control surface Q|A has contributions of convection heat transfer in and out of the flame and heat loss. The
energy equation is (5.34), i.e.,

− (ρfcp,fufTf )1 Au + (ρfcp,fufTf )2 Au + Qloss = −ṅr,F∆hr,F.

Dividing the equation by Au and noting that ṅr,F = (ρF uf )1 Au we have

− (ρfcp,fufTf )1 + (ρfcp,fufTf )2 + qloss = − (ρFuf )1 ∆hr,F,

where qloss = Qloss/Au and Au is the flow cross-section area.
From the conservation of mass equation (continuity) for a steady-state, uniform flow, we have

ρfuf = (ρfuf )1 = (ρfuf )2 = constant,

and the energy equation is finally written as

− (cp,fTf )1 + (cp,fTf )2 +
qloss

(ρfuf )1
= −

(
ρF

ρf

)
1

∆hr,F.

For the stoichiometric adiabatic reaction between methane and air, from Table C.21(a) we obtain ∆hr,F = −55.53
MJ/kgF , ρF/ρf = 0.0552, and uf,1 = 0.338 m/s.

The temperature-average specific heat is assumed to be cp,f = 1,611 J/kg-K. The temperature and pressure
at the inlet are Tf,1 = 298 K and p = 1 atm = 101.3 kPa. The density of the gas mixture at the inlet, assuming
ideal-gas behavior and calculating the molecular weight for the gas mixture from the stoichiometric reaction (see
Example 5.2), is given by

ρf,1 =
p

Rg

Mf
Tf,1

=
1.013 × 103(Pa)

8,314(J/kmole-K)
27.63(kmole)

298(K)
= 1.130 kg/m3

.

Solving the energy equation for Tf,2 we have

Tf,2 = Tf,1 −
(

ρF

ρf

)
1

∆hr,F

cp,f
− qloss

(ρfuf )1 cp,f

= 298(K) − 0.0552(kgF /kgf )
−55.53 × 106(J/kgF )

1,611(J/kg-K)
− 105(W/m2)

1.130(kg/m3) × 0.338(m/s) × 1,611(J/kg-K)
= 298(K) + 1,903(K) − 162.5(K) = 2,039 K.

COMMENT:
The increase in the heat loss will eventually cause the extinguishment of the flame. Note that the adiabatic

flame temperature (Qloss = 0) is Tf,2 = 2,187 K and that this heat loss results in a reduction of 162.5 K. The
heat loss also influences the flame speed uf,1.
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PROBLEM 5.20.FAM.S

GIVEN:
The adiabatic flame temperature and speed are referred to the condition of no lateral heat losses (Qloss = 0)

in combustion of a unidirectional premixed fuel-oxidant stream. The presence of such losses or gains decreases
the flame temperature Tf,2, given by (5.35), and also the flame speed given by (5.55). This can continue until
the flame temperature decreases below a threshold temperature required to sustain ignition and combustion.

Tf,1 = 16◦C, ρf,1 = 1.164 kg/m3, (ρF /ρf )1 = 0.05519, cp,f = 1,611 J/kg-K, kf = 0.07939 W/m-K, Au = 10−2

m2, 0 ≤ Qloss ≤ 800 W.
Use Tables 5.2 and 5.3 for ∆hr,F , ar, and ∆Ea.

OBJECTIVE:
(a) Consider a laminar, stoichiometric premixed methane air combustion. For the conditions given above, plot
the flame temperature Tf,2 and the flame uf,1 speed for the given range of Qloss.
(b) Comment on the quenching of the flame as Qloss increases and Tf,2 decreases.

SOLUTION:
(a) The flame temperature Tf,2 is given by (5.35), and ∆hr,F is given in Table 5.2, i.e.,

Tf,2 = Tf,1 − ∆hr,F

cp,f

(
ρF

ρf

)
1

− Qloss

Auρf,1cp,fuf,1

= 16(◦C) − −5.553 × 107(J/kg)
1,611(J/kg-K)

× 0.05519 − Qloss(W)
10−2(m2) × 1.164(kg/m3) × 1,611(J/kg-K) × uf,1(m/s)

= 289.15(K) + 1,902(K) − 5.333 × 10−2(m-K/s-W) × Qloss

uf,1
.

The flame speed is given by (5.55), and ar and ∆Ea are given in Table 5.3, i.e.,

uf,1 =


 2kfar

ρfcp,fρF,1Ze
e
− ∆Ea

RgTf,2




1/2

Ze =
∆Ea(Tf,2 − Tf,1)

RgT
2
f,1

=
2.10 × 108(J/kmole) × (Tf,2 − 289.15(K))

8.314 × 103(J/kmole-K) × T 2
f,2

= 2.526 × 104(K) × (Tf,2 − 289.15(K))
T 2

f,2

uf,1 =


 2 × 0.07939(W/m-K) × 1.3 × 108(kg/m3-s)

1.164(kg/m3) × 1,611(J/kg-K) × 0.05519 × 1.164(kg/m3) × Ze
e
− 2.10 × 108(J/kmole)

8,314(J/kmole-K) × Tf,2




1/2

=


1.713 × 105(m2/s2)

Ze
e
−2.526 × 104(K)

Tf,2




1/2

.

The solution to these three equations is fully defined by the specification of Qloss and Tf,2. Thus, plots of Tf,2

and uf,1 as functions of Qloss can be made. These are shown in Figure Pr.5.20. While the decrease in Tf,2 is
not very noticeable, uf,1 decreases significantly with increase in Qloss. This is because of the Tf,2 proportionality
through Ze and the exponential relation dependence through the activation term.

(b) If we continue to increase Qloss beyond 800 W, the flame may quench.

COMMENT:
If we continue to increase Qloss, at Qloss � 880 W, the flame speed would tend to zero and no solution will

be found. This can be defined as the theoretical quenching limit.
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Figure Pr.5.20 Variation of flame temperature and speed with respect to the heat loss.
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PROBLEM 5.21.FUN

GIVEN:

A surface-radiation burner, which uses distributed, direct fuel supply, is shown in Figure Pr.5.219a). The
radiation is from the impermeable surface having a uniform temperature Ts and facing the radiation-load surface
at temperature TL. The oxidant stream (air) is at mass flow rate ṀO and temperature Tf,1.

The fuel stream (methane) is divided into three smaller streams with each flow rate designated as ṀF,i, i =
1, 2, 3. The product stream ṀP leaves at the exit port at temperature Tf,4. Here we assume that Tf,4 = Tf,3 =
Tf,2 = Ts. This is a design requirement that in practice is obtained by using more than three fuel stream ports
and by taking the pressure drop in the fuel membrane and the combustion chamber into the account.

εr,s = 0.9, εr,L = 1, Fs-L = 1, TL = 700 K, Tf,1 = 300 K, ṀO = 0.013 kg/s, ṀF,1 = 3 × 10−4 kg/s,
ṀF,2 = ṀF,3 = 2 × 10−4 kg/s.

Use an integral-volume energy equation for each of the three segments. Assume a constant specific heat ca-
pacity cp,f = 1,600 J/kg-K.

SKETCH:

Figure Pr.5.21(a) shows the burner, the fuel and oxidant ports, and the heat transfer load surface.

Distributed, Direct Fuel Supply, Tf,1

Radiation Load, Qr,s-L

w

L

MP = MF,4

Tf,3 = Ts

Tf,4 = Ts

TL ,  r,L

Ts ,  r,s

Sr,c Sr,c Sr,c

MF,3

L/3

MF,1

Oxidant Stream
MO , Tf,1

Powder-Filled
Combustion Chamber

Product Stream

Permeable Fuel
Supply Membrane

Impermeable
Radiation Surface

Radiation-Load Surface

MF,2

Tf,2 = Ts
�

�

Figure Pr.5.21(a) A distributed, direct fuel supply surface-radiation burner. The radiation surface is impermeable.

OBJECTIVE:

(a) Draw the thermal circuit diagram.
(b) Determine the surface temperature Ts.
(c) Determine the burner efficiency η = Qr,s-L/Ṡr,c, Ṡr,c = −∆hr,F

∑
i ṀF,i.

SOLUTION:

(a) Figure Pr.5.21(b) shows the thermal circuit diagram. The three segments are connected by having the stream
leaving one segment enter the next segment downstream, after fuel is added. The mass flow rate of the product
ṀP,i increases as more fuel is added.

(Sr,c)3Exit (Sr,c)2 (Sr,c)1

MF,3 MF,2

TF,2TF,3Qu,4 Qu,3'

Qr,3-L Qr,2-L Qr,1-L

Qu,3 Qu,2' Qu,2 Qu,1' Qu,1
TF,1

MF,1

MO

Entrance

Figure Pr.5.21(b) Thermal circuit diagram.
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(b) The energy equations for the three segments are written according to (5.33) as

Qu,2 − Qu,1′ + Qr,1-L = (Ṡr,c)1
Qu,3 − Qu,2′ + Qr,2-L = (Ṡr,c)2
Qu,4 − Qu,3′ + Qr,3-L = (Ṡr,c)3.

Now we note that the temperature for the oxidant and the fuel entering the burner is the same and equals Tf,1.
By adding the three equations, we have

Qu,4 − Qu,1′ − (Qu,2′ − Qu,2) − (Qu,3′ − Qu,3) +
3∑

i=1

Qr,i-L =
3∑

i=1

(Ṡr,c)i

= −∆hr,F

3∑
i=1

ṀF,i.

Now using (5.34) and (4.49), for a two-surface enclosure with Fs-L = 1 and εr,L = 1, we have(
ṀO2 +

3∑
i=1

Ṁf,i

)
cp,fTs −

(
ṀO2 +

3∑
i=1

Ṁf,i

)
cp,fTf,1 + εr,swLσSB(T 4

s − T 4
L) = −∆hr,F

3∑
i=1

Ṁf,i,

where we have used Tf,4 = Ts and for the exit product mass flow rate we have used the sum of the oxidant and
the total fuel mass flow rate.

From Table C.21(a), we have for methane,

∆hr,F = −5.553 × 107 J/kg Table C.21(a).

Using the numerical values, we then have

(1.3 × 10−2 + 7 × 10−4)(kg/s) × 1,600(J/kg-K) × (Ts − 300)(K) + 0.9 × 0.5(m) × 1(m) ×
5.67 × 10−8(W/m2-K4)(T 4

s − 7004)(K4) = −(−5.553 × 107)(J/kg) × 7 × 10−4(kg/s).

Solving for Ts, we get

Ts = 1,040 K.

(c) With the given expression for η,

η =
Qr,s-L
Ṡr,c

=
εr,swLσSB(T 4

s − T 4
L)

−∆hr,F

(
3∑

i=1

ṀF,i

)

=
2.367 × 104(W)
3.887 × 104(W)

= 0.6090 = 60.90%.

COMMENT:
This efficiency is rather low and can be increased by preheating the air and the fuel using heat exchangers.

The burner can be made from ceramics such as zirconia and the thermal stress/strain during the cyclic use should
be addressed. Also, by using pure oxygen instead of air, we can increase the surface temperature and the burner
efficiency.
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PROBLEM 5.22.FAM

GIVEN:
A water-cooled thermal plasma generator, used for spray coating and shown in Figure Pr.5.22(a), is to produce

an argon gas plasma stream with an average exit temperature of Tf,2 = 5,000 K. The Joule heating is by direct
current (dc) and uses Je = 200 A, and ∆ϕ = 150 V provided by a power supply. The heat transfer to the water
coolant is Qku and other heat losses are given by Qloss. Assume Ṡij = 0.

Qku = 5 kW, Qloss = 3 kW, Tf,1 = 300 K.
Use a constant specific heat capacity for the ionized argon and use a value equal to five times that for argon

at T = 1,500 K.

SKETCH:
Figure Pr.5.22(a) shows the plasma torch.

Thermal Plasma 
(Argon Gas)

Particle Coating

Cathode (-)Argon Gas

Spray Coating Using Thermal Plasma
to Melt Entrainned Particles

Coolant
(Water)

Particle
Stream

Anode (+)

Substrate

Mf , Tf,1

Se,J

us

Qloss
Qku

Plasma Stream

Figure Pr.5.22(a) Generation of an argon plasma stream using the Joule heating.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the argon gas flow rate Ṁf .

SOLUTION:
(a) Figure Pr.5.22(b) shows the control volumes and the thermal circuit diagram.

Qloss Qku

Mf , Tf,1 Control Volume, V

Thermal Circuit Diagram: Internodal Energy Conversion

Control
Area, A

Mf , Tf,2

Se,J = Je��

Qloss

Qku

�Qu,1

Tf,1

Tf,2

Qu,2

Se,J = Je��

Figure Pr.5.22(b) Thermal circuit diagram.

(b) From Figure Pr.5.22(b), or from (5.73), we have the energy equation

Q|A = Qu,1 + Qu,2 + Qku + Qloss = Ṡij + Ṡe,J

= −Ṁfcp,f (Tf,1 − Tf,2) + Qku + Qloss = Je∆ϕ.
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The specific heat capacity of argon at T = 1,500 K is given in Table C.22, and we use a value five times this, i.e.,

cp,f = 5 × 520(J/kg-K) = 2,600 J/kg-K Table C.22.

Then solving for Ṁf , we have

Ṁf =
Je∆ϕ − Qku − Qloss

cp,f (Tf,2 − Tf,1)
.

Using the numerical values, we have

Ṁf =
200(A) × 150(V) − 5,000(W) − 3,000(W)

2,600(J/kg-K) × (5,000 − 300)(K)
= 1.800 × 10−3 kg/s = 1.800 g/s.

COMMENT:
The gas specific heat capacity is a strong function of temperature. Upon gas dissociation and ionization at

high temperatures, it increases further.
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PROBLEM 5.23.FAM

GIVEN:
An acetylene-oxygen torch has 70% by weight of its stoichiometric oxygen provided by a pressurized tank and

this is called the primary oxygen. Due to the fast chemical reaction of C2H2 and O2 and the fast diffusion of
O2, the remaining 30% of the oxygen is provided by entraining the ambient air and this is called the secondary
oxygen. These are shown in Figure Pr.5.23(a). Along with the entrained oxygen, nitrogen is also entrained and
this inert gas tends to lower the final temperature Tf,2.

The products of combustion (i.e., the flue gas) flows over a surface to be welded. Then a fraction of the
sensible heat is transferred to the surface by surface-convection heat transfer Qku, and the remainder flows with
the gas as Qu,2.

Tf,1 = 20◦C, p1 = 1 atm, Qku = 0.
Use a constant and uniform specific heat of cp,f = 3,800 J/kg-K.

SKETCH:
An acetylene-oxygen torch, with primary (pure oxygen) and secondary oxygen (mixed with nitrogen) supplies,

is shown in Figure Pr.5.23(a).

Tf,1

Tf,2
Mf

Qu,2

Qu

Qu

MO2 
, MN2

Entrained
(Secondary)
Oxygen

Flame

Acetylene Fuel

Primary Oxygen

Torch

Surface Convection, Qku

Intramedium
Convection

Sr,c

MO2
MC2H2

Plasma
Stream

Figure Pr.5.23(a) An acetylene-oxygen torch used for welding of a surface.
The oxygen is provided by a tank and by entraining air.

OBJECTIVE:
(a) Draw the thermal circuit diagram for this combustion and heat transfer.
(b) For the conditions given above, determine the flue gas temperature Tf,2.

SOLUTION:
(a) Figure Pr.5.23(b) shows the thermal circuit diagram with the internodal energy conversion and surface-
convection heat transfer connected to node Tf,2.

Tf,2Tf,1

Qu,1 Qu,2

Q2

Qku

Mf

MO2
MN2
MC2H2

Sr,c

Figure Pr.5.23(b) Thermal circuit diagram.

(b) We need to determine ρF/ρf,1, in order to solve for Tf,2 from (5.35), i.e.,

Tf,2 = Tf,1 − ∆hr,F

cp,f

ρF,1

ρf,1
,
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where we have assumed a constant cp,f .
To determine ρF,1/ρf,1, we note that the two stoichiometric reactions are,

C2H2 +
5
2
O2 → 2CO2 + H2O

C2H2 +
5
2
O2 + 9.40N2 → 2CO2 + H2O + 9.40N2.

Then, similar to Example 5.4, we have

ρF,1

ρf,1
= 0.70 × νC2H2MC2H2

νC2H2MC2H2 + νO2MO2

+ 0.30 × νC2H2
MC2H2

νC2H2MC2H2 + νO2MO2 + νN2MN2

.

Using the numerical values, we have

ρF,1

ρf,1
= 0.70 × 1 × (12.011 × 2 + 1.008 × 2)

1 × (12.011 × 2 + 1.008 × 2) + 2.5 × 2 × 15.999
+

0.30 × 1 × (12.011 × 2 + 1.008 × 2)
1 × (12.011 × 2 + 1.008 × 2) + 2.5 × 2 × 15.999 + 9.40 × 2 × 14.007

=
18.227
106.03

+
7.8114
369.30

= 0.17190 + 0.021152 = 0.19305.

With ∆hr,F = −4.826 × 107 J/kg from Table 5.2, [also listed in Table C.21(a)], we have

Tf,2 = 20(◦C) − −4.826 × 107(J/kg)
3,800(J/kg-K)

× 0.19305

= 20(◦C) + 2,452(◦C) = 2,472◦C.

COMMENT:
From Figure 5.9, using pure oxygen gives an adiabatic flame temperature of about 3,100◦C. Therefore, the

nitrogen dilution should be avoided in order to achieve a higher adiabatic temperature. Note that high C-atom
content and low H-atom content results in a high (ρF/ρf )1. This makes acetylene a good fuel for achieving high
adiabatic flame temperatures.
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PROBLEM 5.24.FAM

GIVEN:
The acetylene-oxygen, flame-cutting torch is used with low carbon and low alloy irons. A simple mixer that

requires pressurized oxygen and acetylene is shown in Figure Pr.5.24(a). In addition to the heat provided by the
reaction

C2H2 + 2.5O2 → 2CO2 + H2O,

the excess oxygen provided by the torch reacts with the iron and releases heat. One of the reactions is

3Fe + 2O2 → Fe3O4.

This reaction is highly exothermic, i.e., ∆hr,F = −6.692 × 106 J/kg of Fe. Figure Pr.5.24(a) shows this iron
oxidation. The rate of this reaction is controlled by the speed of the torch moving on the cutting surface, and
with other variables.

Assume that this reaction will add an extra energy conversion such that we can approximate the contribution
for this iron oxidation by adding 30% to the heat of reaction of C2H2. We also model the excess oxygen by adding
40%, by weight, to the stoichiometric oxygen needed to burn the acetylene.

Tf,1 = 20◦C, cp,f = 3,800 J/kg-K.

SKETCH:
Figure Pr.5.24(a) shows the torch and the reacting-eroding workpiece.

Tf,1

Tf,2

Qu,1

Qu,2

Q3
T3

O2 , For Acetylene and Iron

Acetylene-Oxygen Cutting Torch
with Extra Heat Generated by
Oxidation of Iron Workpiece

Qku
Qku

(Sr,c)1-2

C2H2 , Acetylene

(Sr,c)3 3Fe + 2O2      Fe3O4

C2H2 +    O2       2CO2 + H2O
5
2

Q3-2

Figure Pr.5.24(a) A cutting torch with reacting workpiece.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the combustion product gas temperature Tf,2.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.5.24(b). The oxidization of Fe is shown as (Ṡr,c)3 and a
fraction of this heat generation rate is transferred to the gas. The gas in turn heats the solid in the regions away
from where (Ṡr,c)3 is generated, thus providing the preheating necessary for the iron oxidation.

(b) The combustion product gas temperature Tf,2 is given by (5.35), i.e.,

Tf,2 = Tf,1 − ∆hr,F

cp,f

ρF,1

ρf,1
,
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Tf,2Tf,1

T3

Q3

Qu,1 Qu,2

Qku

Mf
(Sr,c)1-2

(Sr,c)3

Q3-2

Figure Pr.5.24(b) Thermal circuit diagram.

where ∆hr,F is that given in Table 5.2 for C2H2, times 1.3.
To determine (ρF/ρf )1, we begin from the stoichiometric C2H2 oxidation,

C2H2 + 2.5O2 → 2CO2 + H2O.

Next we use the approximation given for the extra oxygen supplied for the iron oxidation, i.e.,

C2H2 + 1.4 × 2.5O2 → 2CO2 + H2O + 0.4 × 2.5O2.

Then the density ratio (ρF/ρf )1 becomes

ρF,1

ρf,1
=

νC2H2MC2H2

νC2H2MC2H2 + νO2MO2

=
1 × (12.011 × 2 + 1.008 × 2)

1 × (12.011 × 2 + 1.008 × 2) + 1.4 × 2.5 × 2 × 15.999

=
26.04
138.0

= 0.1886.

From Table 5.2, we have

C2H2 : ∆hr,F = −4.826 × 107 J/kg Table 5.2.

Then

Tf,2 = 20(◦C) − 1.3 × (−4.826 × 107)(J/kg)
3,800(J/kg-K)

× 0.1886

= 20(◦C) + 3,114(◦C) = 3,134◦C.

COMMENT:
From Figure 5.9, we note that the adiabatic flame temperature for the stoichiometric acetylene oxidation in

pure oxygen is nearly 3,100◦C. Thus the addition of 30% to the heat of combustion is nearly compensated by the
excess oxygen that must be heated to the final temperature Tf,2.
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PROBLEM 5.25.FUN

GIVEN:
The combustion product gas from a fireplace chamber enters its chimney at a flow rate Ṁf and a temperature

Tf,1. This is shown in Figure Pr.5.25. Assume that the surface-convection heat transfer to the chimney wall is
negligible.

Ts = 120◦C, Tf,1 = 600◦C, Ṁf = 2.5 × 10−3 kg/s, R = 15 cm, L = 5 m, εr,f = 0.1 (for large soot concentra-
tion).

Use cp,f for air at T = 600 K. Use εr,s = αr,s for fireclay brick.

SKETCH:
Figure Pr.5.25 shows the chimney with the combustion product gas stream passing through it.

Chimney

Burning Wood Logs

Mf , Flue-
Gas Stream

Fireplace

Air Stream

Sr,� + Sr,

Ts , �r,s

Tf,1

Tf,2

L

R

�

Figure Pr.5.25 A chimney bounding the combustion
product gas stream exiting a fireplace chamber.

OBJECTIVE:
(a) Show that the surface radiation emitted by the chimney wall is negligible compared to that emitted by the
combustion product gas stream.
(b) Determine the combustion product gas stream exit temperature Tf,2.

SOLUTION:
(a) The condition for neglecting the surface emission is given in (5.81), i.e.,

T 4
s

T 4
f,1


 1.

Here we have

(120 + 273.15)4(K4)
(600 + 273.15)4(K4)

= 0.0410 
 1.

(b) Using (5.81), we have

1
T 3

f,2

=
1

T 3
f,1

+
Arεr,fαr,sσSB

(Ṁcp)f

.

From Table C.22, for air at T = 600 K, we have

cp,f = 1,038 J/kg-K Table C.22.

From Table C.18, we have for fireclay brick

εr,s = αr,s = 0.75 Table C.18.
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Also,

Ar = 2πRL = 2 × π × 0.15(m) × 5(m) = 4.713 m2.

Then

1
T 3

f,2

=
1

(873.15)3(K3)
+

4.713(m3) × 0.1 × 0.75 × 5.67 × 10−8(W/m2-K4)
2.5 × 10−3(kg/s) × 1,038(J/kg-K)

= 1.502 × 10−9(1/K3) + 7.723 × 10−9(1/K3)
Tf,2 = 476.8 K = 203.7◦C.

COMMENT:
Inclusion of the surface-convection heat transfer will further decrease Tf,2 and will be discussed in Chapter 7.

Here the surface emission from the wall was neglected. When included, Tf,2 will increase by a small amount.
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Chapter 6

Convection: Semi-Bounded Fluid
Streams



PROBLEM 6.1.FUN
GIVEN:

Surface-convection heat transfer refers to heat transfer across the boundary separating a fluid stream and a
condensed-phase (generally solid) volume, as rendered in Figure Pr.6.1(a) for a stationary solid.

Assume a uniform solid surface temperature Ts and a far-field temperature Tf,∞ 	= Ts.

SKETCH:
Figure Pr.6.1(a) renders the general surface-convection of a semi-bounded fluid stream.

y,vf

Tf

Ts (Uniform)

Semi-Bounded
Fluid Stream

Ts
Tf,�

y

x,uf

us = 0

uf,� , Tf,�

qk,s

Lsn

Fluid

Solid

Figure Pr.6.1(a) A rendering of a semi-bounded fluid stream passing over a solid surface with Tf,∞ 	= Ts.

OBJECTIVE:
(a) Draw the heat flux vector tracking starting from qk,s and ending with qu away from the surface. At the surface
use qk,f = qku and in the thermal boundary layer show both conduction and convection. Neglect radiation heat
transfer.
(b) Quantitatively draw the fluid temperature distribution Tf (y) at the location shown in Figure Pr.6.1(a).
(c) Show the thermal boundary layer thickness δα on the same graph. Show the viscous boundary layer thickness
for Pr > 1 and Pr < 1.
(d) Draw the thermal circuit diagram for the solid surface and write the expression for the average heat transfer
rate 〈Qku〉L.
(e) What is the average surface-convection resistance 〈Rku〉L, if Ts is the same as Tf,∞, i.e., for the solid surface
temperature to be made equal to the fluid stream far-field temperature?
(f) If Tf,∞ 	= Ts what should 〈Rku〉L be for there to be no surface-convection heat transfer (ideal insulation)

SOLUTION:
(a) Figure Pr.6.1(b) shows the heat flux vector tracking. Note that as in Figures 6.3 and 6.7, at the surface
qk,f = qku, i.e., surface-convection heat transfer is the fluid conduction heat flux, since uf = 0 on the surface.

Ts

Thermal Boundary Layer, ��
�� (Pr > 1)
�� (Pr < 1)

Tf,�
Tf

Ts (Uniform)

y
uf,� , Tf,�

qk,s

qu

qu
quqk

L
sn

qk,f = qku

Rku  LQku  L

Ts

Tf,�

Figure Pr.6.1(b) Various features of the surface-convection heat transfer.

(b) The temperature distribution Tf (y) is also shown in Figure Pr.6.1(b), starting from Tf = Ts at y = 0 and
having Tf = Tf,∞, far away from the surface. Using the concept of the thermal boundary-layer thickness, the
far-field conditions are applied at y = δα.

(c) The thermal boundary layer thickness δα is shown in Figure Pr.6.1(b) and this is where Tf reaches Tf,∞ to
within a small difference given by (6.20).
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For Pr > 1, from (6.48), we have δν > δα, and for Pr < 1 we have δν < δα. These are shown in Figure Pr.6.1(b).

(d) The thermal circuit diagram is shown in Figure Pr.6.1(b). From this figure, or from (6.49), we have

〈Qku〉L =
Ts − Tf,∞
〈Rku〉L .

(e) If Ts = Tf,∞, there will be no surface convection heat transfer, and therefore there will be no thermal
boundary layer. If there is no thermal boundary layer, then 〈Rku〉L = 0. This shows that the surface temperature
approaches the fluid far-field temperature as 〈Rku〉L → 0. This is a method for controlling (maintaining) the
surface temperature.
(f) For an ideally insulated surface, we have

〈Qku〉L = 0 for 〈Rku〉L → ∞

and this would require a large resistance (i.e., vacuum) for a finite difference between Ts and Tf,∞. Similarly
〈Qku〉L = 0 when Ts = Tf,∞.

COMMENT:
Heat transfer between a semi-bounded fluid passing over a solid surface requires heat transfer by fluid conduc-

tion across the interface. This heat transfer is greatly influenced by the fluid motion, and other fluid properties,
which in turn influence the gradient of temperature ∇Tf , and directly depends on the fluid conductivity kf .
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PROBLEM 6.2.FUN

GIVEN:
A surface, treated as a semi-infinite plate and shown in Figure Pr.6.2, is to be heated with a forced, parallel

flow. The fluids of choice are (i) mercury, (ii) ethylene glycol (antifreeze), and (iii) air.
Ts = 10◦C, Tf,∞ = 30◦C, uf,∞ = 0.2 m/s, L = 0.2 m.
Evaluate the properties at T = 300 K, from Tables C.22 and C.23.

SKETCH:
Figure Pr.6.2 shows a forced, parallel flow over a semi-infinite plate. The thermal boundary-layer thickness is

also shown.

uf,� = 0.2 m/s
Tf,� = 30oC

L = 0.2 m

δα(L)Ts = 10oC
quParallel Flow

qku(x)

x

Figure Pr.6.2 A semi-bounded fluid stream exchanging heat with its semi-infinite plate bounding surface.

OBJECTIVE:
For the tailing edge of the plate x = L, do the following:

(a) Determine the local rate of heat transfer per unit area qku(W/m2).
(b) Determine the thermal boundary-layer thickness δα(mm). Use the Nusselt number relation for Pr 	= 0.
(c) For mercury, also use the relation for Nusselt number for a zero viscosity (i.e., Pr = 0) and compare the results
with that obtained from the nonzero viscosity relations.

SOLUTION:
(a) The Reynolds number is given by (6.45), i.e.,

ReL =
uf,∞L

νf
.

For ReL < 5× 105, the flow regime is laminar. The local Nusselt number at x = L for laminar, parallel flow over
a flat plate is given by (6.44), i.e.,

NuL(x = L) = 0.332Re1/2
L Pr1/3.

The local surface-convection heat flux, from (6.44), is

qku =
NuLkf

L
(Ts − Tf,∞).

(b) The thermal boundary-layer thickness for laminar flow at x = L is given by (6.48)

δα(x = L) =
5L

Re1/2
L

1

Pr1/3

Table Pr.6.2 shows the thermophysical properties at T = 300 K for the three fluids and the numerical results
obtained for δα and qku.

(c) With the zero viscosity (or Prandtl number) assumption, the Nusselt number is given by (6.30) and δα is
given by (6.21), i.e.,

NuL(x = L) =
(

PeL

π

)1/2

, δα(x = L) = 3.6
(

αfL

uf,∞

)1/2

, for Pr = 0,
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Table Pr.6.2 Properties (from Tables C.22 and C.23) for the three fluids and the numerical results.
Fluid νf , kf , Pr ReL δα(x = L), NuL(x = L) qku,

m2/s W/m-K mm W/m2

mercury 0.112 × 10−6 8.86 0.0240 3.571 × 105 5.801 57.23 −50,703
ethylene glycol 18.09 × 10−6 0.2515 193 2,211 3.680 90.22 −2,269

air 15.66 × 10−6 0.0267 0.69 2,554 22.39 14.83 -39.59

where from (5.9), the Peclet number is

PeL =
uf,∞L

αf
.

For mercury, from Table C.23 at T = 300 K, αf = 4.70 × 10−6 m2/s. Then

PeL = 8,511
NuL(x = L) = 52.05

qku = −46,115 W/m2

δα = 7.805 mm.

COMMENT:
Liquid metal flow makes for very effective surface-convection heat transfer. Also, liquids are more effective

than gases in surface-convection heat transfer. Finally, treating mercury as a Pr = 0 fluid results in a qku which
is within 10(hydrodynamic) boundary layer formed on the plate does not influence the surface-convection heat
transfer when Pr is very small.
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PROBLEM 6.3.FAM

GIVEN:
The top surface of a microprocessor chip, which is modeled as a semi-infinite plate, is to be cooled by forced,

parallel flow of (i) air, or (ii) liquid Refrigerant-12. The idealized surface is shown in Figure Pr.6.3. The effect of
the surfaces present upstream of the chip can be neglected.

Evaluate the properties at T = 300 K.

SKETCH:
Figure Pr.6.3 shows the surface of a microprocessor chip subjected to parallel flow. The thermal boundary-

layer thickness is also shown.

uf,� = 0.5 m/s
Tf,� = 20 

oC

L = 0.2 m
w = 0.04 m

δα(L)Ts = 50 
oC

Parallel Air or Refrigerant Flow

Qku  L

Figure Pr.6.3 Surface of a microprocessor is cooled by a semi-bounded fluid stream.

OBJECTIVE:
(a) Determine the surface-convection heat transfer rate 〈Qku〉L(W).
(b) Determine the thermal boundary-layer thickness at the tail edge of the chip δα(mm).

SOLUTION:
(a) The Reynolds number is defined in (6.45) as

ReL =
uf,∞L

νf
.

For ReL < 5 × 105, the flow regime is laminar. The averaged Nusselt number (averaged over L) for laminar,
parallel flow over a semi-infinite flat plate is given by (6.51), i.e.,

〈Nu〉L = 0.664Re1/2
L Pr1/3.

For the turbulent regime (ReL > 5 × 105), the averaged Nusselt number (averaged over L) for parallel flow over
a semi-infinite flat plate is given by (6.67), i.e.,

〈Nu〉L = (0.037Re4/5
L − 871)Pr1/3.

(b) The thermal boundary-layer thickness for laminar flow, at x = L, is given by (6.48), i.e.,

δα(x = L) = 5
L

(ReL)1/2

1

Pr1/3

and for turbulent flow δα is given by (6.66), i.e.,

δα(x = L) = 0.37
L

(ReL)1/5

1

Pr1/3
.

From (6.149), the average surface-convection resistance is

〈Rku〉L =
L

Akukf 〈Nu〉L ,

where the surface area is Aku = wL.
The averaged surface-convection heat transfer from the plate is given by (6.49), i.e.,

〈Qku〉L =
(Ts − Tf,∞)

〈Rku〉L .
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The thermophysical properties are evaluated at T = 300 K from Tables C.22 and C.23.
Table Pr.6.3 lists the thermophysical properties for the fluids and the numerical results obtained for 〈Qku〉L and
δα(x = L),

Table Pr.6.3 Thermophysical properties for the fluids and numerical results.
Fluid νf , kf , Pr ReL δα(x = L), 〈Nu〉L 〈Rku〉L, 〈Qku〉L,

m2/s W/m-K mm K/W W

air 15.66 × 10−6 0.0267 0.69 6,386 (laminar) 14.16 46.89 19.97 1.502
R-12 0.195 × 10−6 0.072 3.5 5.128 × 105 (turbulent) 3.515 754.9 0.4599 65.23

COMMENT:
Air has a larger boundary-layer thickness than liquid R-12. The Nusselt number and the heat transfer rate

are larger for liquid R-12.
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PROBLEM 6.4.FUN

GIVEN:
As discussed in Section 6.2.5, the stream function ψ, for a two-dimensional, laminar fluid flow (uf , vf ),

expressed in the Cartesian coordinate (x, y), is defined through

uf ≡ ∂ψ

∂y
, vf ≡ −∂ψ

∂x
.

OBJECTIVE:
Show that this stream function satisfies the continuity equation (6.37).

SOLUTION:
The continuity equation for laminar incompressible flow, in two dimensions, using the Cartesian coordinates,

is given by (6.37), i.e.,
∂uf

∂x
+

∂vf

∂y
= 0.

Substituting the above, we have
∂2ψ

∂x∂y
− ∂2ψ

∂y∂x
= 0.

Thus, the definition of ψ given above automatically satisfies the continuity equation (6.37).

COMMENT:
With no need to include the continuity equation in the analysis, the momentum equation is used to determine

ψ. This is investigated in the next problem.

502



PROBLEM 6.5.FUN

GIVEN:
As discussed in Section 6.2.5, the two-dimensional, (x, y), (uf , vf ) , laminar steady viscous, boundary-layer

momentum equation (6.36) can be reduced to an ordinary differential equation using a dimensionless similarity
variable

η ≡ y

(
uf,∞
νfx

)1/2

and a dimensionless stream function

ψ∗ ≡ ψ

(νfuf,∞x)1/2
, uf ≡ ∂ψ

∂y
, vf ≡ −∂ψ

∂x
.

OBJECTIVE:
(a) Show that the momentum equation (6.36) reduces to

2
d3ψ∗

dη3 + ψ∗ d2ψ∗

dη2 = 0.

This is called the Blasius equation.
(b) Show that energy equation (6.35) reduces to

d2T ∗
f

dη2 +
1
2
Prψ∗ dT ∗

f

dη
= 0, T ∗

f =
Tf − Tf,∞
Ts − Tf,∞

.

SOLUTION:
(a) We start with (6.36), written as

uf
∂uf

∂x
+ vf

∂uf

∂y
− νf

∂2uf

∂y2 = 0.

Using the stream function ψ, the dimensionless stream function ψ∗ and the similarity variable η, we transform
uf and vf into ψ∗, x and η. We start with

uf ≡ ∂ψ

∂y
=

dψ

dη

∂η

∂y
=

dψ∗

dη
(νfuf,∞x)1/2

(
uf,∞
νfx

)1/2

= uf,∞
dψ∗

dη

or

uf

uf,∞
=

dψ∗

dη
.

Also,

vf ≡ −∂ψ

∂x
= − ∂

∂x
[(νfuf,∞x)1/2ψ∗] = −

[
(νfuf,∞x)1/2 ∂ψ∗

∂x
+

1
2
(
νfuf,∞

x
)1/2ψ∗

]

=
1
2

(νfuf,∞
x

)1/2
(

η
dψ∗

dη
− ψ∗

)

or

vf(νfuf,∞
x

)1/2
=

1
2

(
η
dψ∗

dη
− ψ∗

)
.
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Next these velocity components are differentiated with respect to x and y, and we have

∂uf

∂x
= −uf,∞

2x
η
d2ψ∗

dη2

∂uf

∂y
= uf,∞

(
uf,∞
νfx

)1/2
d2ψ∗

dη2

∂2uf

∂y2 =
u2

f,∞
νfx

d3ψ∗

dη3 .

Substituting these into the above momentum equation, we have

−uf,∞
∂ψ∗

∂η

(
uf,∞
2x

η
d2ψ∗

dη2

)
+

1
2

(νfuf,∞
x

)1/2
(

η
dψ∗

dη
− ψ∗

)
uf,∞

(
uf,∞
νfx

)1/2
d2ψ∗

dη2 − νf

u2
f,∞
νfx

d3ψ∗

dη3 = 0

or
uf,∞

x

(
−1

2
ψ∗ d2ψ∗

dη2 − d3ψ∗

dη3

)
= 0

or

2
d3ψ∗

dη3 + ψ∗ d2ψ∗

dη2 = 0.

(b) Starting from (6.35), we have

uf
∂Tf

∂x
+ vf

∂Tf

∂y
− αf

∂2Tf

∂y2 = 0.

We already have the expression for uf and vf from part (a), then

∂Tf

∂x
=

dTf

dη

∂η

∂x
= −y

2

(
uf,∞
νfx3

)1/2
dTf

dη
=

η

2x

dTf

dη

∂Tf

∂y
=

(
uf,∞
νfx

)1/2
dTf

dη

∂2Tf

∂y2 =
uf,∞
νfx

d2Tf

dη2 .

Substituting these into the energy equation, and using T ∗
f , we have

uf,∞
dψ∗

dη

[
−y

2

(
uf,∞
νfx3

)1/2 dT ∗
f

dη

]
+

1
2

(νfuf,∞
x

)1/2
(

η
dψ∗

dη
− ψ∗

)(
uf,∞
νfx

)1/2 dT ∗
f

dη
− αf

uf,∞
νfx

d2T ∗
f

dη2 = 0

−1
2

uf,∞
x

ψ∗ dT ∗
f

dη
− αf

uf,∞
νfx

d2T ∗
f

dη2 = 0

d2T ∗
f

dη2 +
1
2
Prψ∗ dT ∗

f

dη
= 0.

COMMENT:
Also note that outside the boundary layer, i.e., when uf = uf,∞, we have

uf

uf,∞
=

dψ∗

dη
= 1, dψ∗ = dη for uf = uf,∞.

Then outside the boundary layer, we have

vf(νfuf,∞
x

)1/2
=

1
2

(
η
dψ∗

dη
− ψ∗

)

=
1
2
(η − ψ∗)
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This would tend to a constant as η becomes large. This constant is

vf(νfuf,∞
x

)1/2
= 0.86054

Note that the momentum equation written in terms of velocity (u, v) is second order in y, while the use of the
stream function results in a third-order differential equation.
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PROBLEM 6.6.FUN

GIVEN:
The third-order, ordinary Blasius differential equation

2
d3ψ∗

dη3 + ψ∗ d2ψ∗

dη2 = 0,

subject to surface and far-field mechanical conditions

at η = 0 :
dψ∗

dη
= ψ∗ = 0

for η → ∞ :
dψ∗

dη
= 1.

Note that with an initial-value problem solver, such as SOPHT, the second derivative of ψ∗ at η = 0 must be
guessed. This guess is adjusted till dψ∗/dη becomes unity for large η.

Hint: d2ψ∗/dη2(η = 0) is between 0.3 to 0.4.

OBJECTIVE:
Use a solver to integrate the dimensionless transformed boundary-layer momentum equation.
Plot ψ∗, dψ∗/dη = uf/uf,∞, and d2ψ∗/dη2, with respect to η.

SOLUTION:
The solver we choose is an initial-value solver, such as SOPHT, where the initial values (i.e., at η = 0) for ψ∗,

dψ∗/dη, and d2ψ∗/dη2 must be provided for this third-order, ordinary differential equation.
Therefore, in place of the condition for η → ∞, we choose

guess :
d2ψ∗

dη2 = constant at η = 0 such that
dψ∗

dη
= 1 for η → ∞.

Note that we can write the Blausius equation as a set of first-order differential equations, i.e,

g′ = −1
2
fg

z′ = g

f ′ = z,

here g′ = d3ψ∗/dη3, z′ = d2ψ∗/dη2, and f ′ = dψ/dη.
The initial conditions are

f(η = 0) = 0
z(η = 0) = 0
g(η = 0) = 0.332 after iterating to get z(η → ∞) = 1.

The results are plotted in Figure Pr.6.6.

The results show that the streamwise velocity uf/uf,∞ increases and reaches a value of unity at η � 5. The
stream function ψ∗ increase monotonically, while d2ψ∗/dη2 decrease and vanishes at η � 5.

COMMENT:
The results are sensitive to the initial choice for d2ψ∗/dη2 at η = 0. Because of the similarity between the

momentum and energy equations, (6.35) and (6.36), this derivative is the same as the temperature derivative and
therefore 0.332 is also the constant appearing in the solution (6.44) for the surface fluid conduction heat transfer
rate (i.e., surface convection).
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Figure Pr.6.6 Variations of ψ∗, dψ∗/dη, and d2ψ∗/dη2 with respect to η.
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PROBLEM 6.7.FAM

GIVEN:
During part of the year, the automobile windshield window is kept at a temperature significantly different

than that of the ambient air. Assuming that the flow and heat transfer over the windshield can be approximated
as those for parallel flow over a semi-infinite, flat plate, examine the role of the automobile speed on the surface-
convection heat transfer from the window. These are shown in Figure Pr.6.7.

The ambient air is at −10◦C and the window surface is at 10◦C. The window is 1 m long along the flow
direction and is 2.5 m wide.

Use the average temperature between the air and the window surface to evaluate the thermophysical properties
of the air.

SKETCH:
Figures Pr.6.7(i) and (ii) show an automobile windshield window and its idealization as a semi-infinite plate.

Parallel Air Flow
Tf,� = �10oC
(1) uf,� = 2 km/hr
(2) uf,� = 20 km/hr
(3) uf,� = 80 km/hr

Parallel Air Flow

Ts = 10oC

(i) Physical Model

(ii) An Approximation of Heat Transfer from Windshield

Qku  L

uf,�

L = 1 m
w = 2.5 mQku  L

Figure Pr.6.7 (i) Fluid flow and heat transfer over an automobile windshield window.
(ii) Its idealization as parallel flow over a semi-infinite plate.

OBJECTIVE:
(a) To the end of automobile speed on the surface-convection heat transfer from the window, determine the
average Nusselt number 〈Nu〉L.
(b) Determine the average surface-convection thermal resistance Aku〈Rku〉L[◦C/(W-m2)].
(c) Determine the surface-averaged rate of surface-convection heat transfer 〈Qku〉L(W).

Consider automobile speeds of 2, 20, and 80 km/hr. Comment on the effects of the flow-regime transition and
speed on the surface-convection heat transfer.

SOLUTION:
(a) The Reynolds number is given by (6.45), i.e.,

ReL =
uf,∞L

νf
.

For ReL < 5×105 the flow regime is laminar. The average Nusselt number (averaged over L) for laminar, parallel
flow over a flat plate is given by (6.51), i.e.,

〈Nu〉L = 0.664Re1/2
L Pr1/3.
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For ReL > 5 × 105 the flow regime is turbulent and the averaged Nusselt number is given by (6.67), i.e.,

〈Nu〉L = (0.037Re4/5
L − 871)Pr1/3.

(b) The average surface-convection thermal resistance is calculated from (6.49), i.e.,

Aku〈Rku〉L =
L

kf 〈Nu〉L .

(c) The averaged surface-convection heat transfer is then obtained from (6.49) as

〈Qku〉L = Aku
(Ts − Tf,∞)
Aku〈Rku〉L .

The thermophysical properties of air are obtained from Table C.22. For the average temperature Tδ = (Ts +
Tf,∞)/2 = 273.15 K, we have kf = 0.0251 W/m-K, νf = 13.33 × 10−6 m2/s, and Pr = 0.69.
Table Pr.6.7 lists the numerical results obtained for the three vehicle different speeds.

Table Pr.6.7 Numerical results obtained for the three different speeds.
uf,∞, ReL flow regime 〈Nu〉L Aku〈Rku〉L, 〈Qku〉L,
m/s ◦C/(W/m2) W

0.5556 0.4168 × 105 laminar 119.8 0.3326 150.3
5.556 4.168 × 105 laminar 378.8 0.1052 475.4
22.22 16.67 × 105 turbulent 2,335 0.0171 2,930

COMMENT:
As the vehicle speed increases, the flow regime changes from laminar to turbulent. The Nusselt number for

the turbulent regime is larger than that for the laminar regime. This effect, associated with the increase in the
Reynolds number, causes the total heat transfer to increase by more than one order of magnitude, when the
vehicle speed is changed only by a factor of four.
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PROBLEM 6.8.FAM.S

GIVEN:
A square flat surface with side dimension L = 40 cm is at Ts = 120◦C. It is cooled by a parallel air flow with

far-field velocity uf,∞ and far-field temperature Tf,∞ = 20◦C.

OBJECTIVE:
(a) Use a solver (such as SOPHT) to plot the variation of the averaged surface-convection heat transfer rate
〈Qku〉L(W) with respect to uf,∞(m/s) from zero up to the sonic velocity. Use (3.20) to find the sonic velocity.
(b) Determine the air velocity needed to obtain 〈qku〉L = 1,200 W/m2.

SOLUTION:
(a) The average surface-convection heat transfer rate is given by (6.49) as

〈Qku〉L =
Ts − Tf,∞
〈Rku〉L ,

where the average surface-convection resistance is also given by (6.49) as

〈Rku〉L =
L

Akukf 〈Nu〉L .

For ReL < 5 × 105 the flow regime is laminar. The averaged Nusselt number (averaged over L) for laminar,
parallel flow over a flat plate is given by (6.51) and in Table 6.3 as

〈Nu〉L = 0.664Re1/2
L Pr1/3.

For the turbulent regime, the averaged Nusselt number (averaged over L) for parallel flow over a flat plate is
given by (6.67) and in Table 6.3 as

〈Nu〉L = (0.037Re4/5
L − 871)Pr1/3.

The Reynolds number is given by (6.45) as

ReL =
uf,∞L

νf
.

The fluid properties are evaluated at the film temperature, given by (Ts + Tf,∞)/2 = 70◦C. From Table C.22,
interpolation gives νf = 19.66 × 10−6m2/s, kf = 0.0295 W/m-K and Pr = 0.69. For the given conditions, the
transition from laminar to turbulent flow then occurs at uf,∞ = 24.60 m/s.
The speed of sound, assuming that air behaves as an ideal gas, is given by (3.20), i.e.,

as =
(

cp

cv

Ru

Mg
Tf,∞

)1/2

= (kRTf,∞)1/2

Where k for air is 1.4, R = 287J/kg-K and Tf,∞ is in Kelvin. This gives

as = [1.4 × 287(J/kg-K) × 293.15(K)]1/2 = 343 m/s.

A plot of the surface-convection heat transfer rate as a function of the air speed is shown in Figure Pr.6.8.

(b) From the numerical data, for 〈qku〉 = 〈Qku〉L/Aku = 1200 W/m2, we obtain uf,∞ = 3.78 m/s. For an analytic
answer, the plot obtained could be used to identify that the desired heat flux lies in the laminar flow regime, and
then the appropriate equation for 〈Qku〉L could be solved for uf,∞.

COMMENT:
Note the sudden rise in the rate of increase of the surface-convection heat transfer rate as the turbulent regime

is entered. It is important to note that we have neglected any kind of transition region. In a real flow, the
transition from laminar to turbulent flow would take place over a range of the Reynolds number. As the sonic
speed is reached, the compressibility of the gas should be included in the 〈Nu〉l correlation.
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Figure Pr.6.8 Variation of the surface-convection heat transfer rate with respect to the far-field velocity.
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PROBLEM 6.9.FAM

GIVEN:
On a clear night, a water layer formed on a paved road can freeze due to radiation heat losses to the sky. The

water and the pavement are at the freezing temperature T1 = 0◦C. The water surface behaves as a blackbody and
radiates to the deep sky at an apparent temperature of Tsky = 250 K. The ambient air flows parallel and over
the water layer at a speed uf,∞ = 9 m/s and temperature Tf,∞, which is greater than the water temperature.

Assume that the surface convection is modeled using a surface that has a length L = 2 m along the flow and
a width w = 1 m (not shown in the figure) perpendicular to the flow. These are shown in Figure Pr.6.9(a).

Neglect the heat transfer to the pavement and evaluate the air properties at T = 273.15 K (Table C.22).

SKETCH:
Figure Pr.6.9(a) shows the thin water layer exposed to a warm air stream and a cold radiation sink.

Air

  r,1

uf,�

Tf,�

Tsky

T1 = 273.15 K

L

�

Figure Pr.6.9(a) Radiation cooling of a thin water film and its surface-convection heating.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the maximum ambient temperature below which freezing of the water layer occurs.
(c) When a given amount of salt is added to the water or ice, the freezing temperature drops by 10◦C. If the water
surface is now at -10◦C, will freezing occur? Use the property values found for (b), the given uf,∞ and Tsky, and
the freestream air temperature found in (b).

SOLUTION:
(a) To find the maximum Tf,∞ above which melting will occur, we will assume that the water layer is at a uniform,
lumped temperature. The thermal circuit is then shown in Figure Pr.6.9(b).

T1

Tf,�

Tsky

Eb,sky

Eb,1

Rr,Σ

Rku  L

Ar1=Aku,1

Qku  L Qr,1 

Figure Pr.6.9(b) Thermal circuit diagram.
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(b) From Figure Pr.6.9(b), by applying the conservation of energy principle to node T1 for steady-state conditions,
we have

Q |A = 0
〈Qku〉L + Qr,1 = 0.

We then evaluate each of the heat transfer terms as
(i) Heat Transfer By Surface Convection:
From Table C.22 for air at T = 273.15 K, kf = 0.0251 W/m-K, νf = 13.33 × 10−6 m2/s, and Pr = 0.69. For
parallel flow over a flat plate, we have

ReL =
uf,∞L

νf
=

9(m/s) × 2(m)
13.33 × 10−6(m2/s)

= 1.350 × 106, turbulent flow regime.

From Table 6.3, for combined laminar-turbulent flow,

〈Nu〉L = (0.037Re4/5
L − 871)Pr1/3 = [0.037(1.350 × 106)4/5 − 871](0.69)1/3 = 1,854

〈Rku〉L =
L

Aku〈Nu〉Lkf
=

2(m)
2(m) × 1(m) × 1,854 × 0.0251(W/m-K)

= 0.0215◦C/W

〈Qku〉L =
T1 − Tf,∞
〈Rku〉L .

(ii) Heat Transfer By Surface Radiation:
The water surface and the night sky are assumed to behave as black bodies, εr,sky = εr,1 = 1, and the view factor
from the water to the sky is F1-sky = 1. Then

Rr,Σ =
(

1 − εr

εrAr

)
1

+
1

Ar,1F1-sky
+
(

1 − εr

εrAr

)
sky

= 0 +
1

Ar,1F1-sky
+ 0 =

1
2(m2)

= 0.5 1/m2

Qr,1 =
Eb,1 − Eb,sky

Rr,Σ
=

σSB(T 4
1 − T 4

sky)
Rr,Σ

.

Then from Figure Pr.6.9(b), the energy equation for node T1 is (for no net heat transfer or for maximum Tf,∞)

T1 − Tf,∞
〈Rku〉L +

Eb,1 − Eb,sky

Rr,Σ
= 0.

Solving for Tf,∞

Tf,∞ = T1 + 〈Rku〉L
σSB(T 4

1 − T 4
sky)

Rr,Σ

= 273.15 + (0.0215)(◦C/W)
5.67 × 10−8(W/m2-K) × (273.154 − 2504)(K4)

0.5(1/m2)
= 277.20 K = 4.05◦C.

(c) For Tsl = −10◦C = 263.15 K, we repeat the above determinations of 〈Qku〉L and Qr,1.

〈Qku〉L =
(263.15 − 277.20)(K)

0.0215
= −653.5 W,

Qr,1 =
5.67 × 10−8(W/m2-K4) × (263.154 − 2504)(K4)

0.5(1/m2)
= 100.8 W.

Since | 〈Qku〉L |>| Qr,w |, the ice will melt.

COMMENT:
It is possible to cool a body below the ambient temperature using radiation heat transfer.
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PROBLEM 6.10.DES

GIVEN:
A square flat plate, with dimensions a × a, is being heated by a thermal plasma (for a coating process) on

one of its sides. To prevent meltdown and assist in the coating process, the other side is cooled by impinging
air jets. This is shown in Figure Pr.6.10. In the design of the jet cooling, a single, large-diameter nozzle [Figure
Pr.6.10(i)], or nine smaller diameter nozzles [Figure Pr.6.10(ii)] are to be used.

a = 30 cm, Ts = 400◦C, Tf,∞ = 20◦C.
Single nozzle: D = 3 cm, , Ln = 6 cm, L = 15 cm, 〈uf 〉A = 1 m/s.
Multiple nozzles: D = 1 cm, Ln = 2 cm, L = 5 cm, 〈uf 〉A = 1 m/s.
Use the average temperature between the air and the surface to evaluate the properties of the air.

SKETCH:
Figure Pr.6.10 shoes a single and a nine jet arrangement for cooling of a flat surface.

L = 15 cmL = 15 cm
a = 30 cm

a = 30 cm

L = 5 cm

D = 3 cm

Back Surface
Temperture
Ts = 400oC 

Nozzle

(i) Back-Surface Cooling with a
Single Impinging Jet

(ii) Back-Surface Cooling with
Multiple Impinging Jets

Ln = 6 cm

Ln = 2 cm

Exit Conditions

Square
Plate

Thermal Plasma

Square
Plate

Thermal Plasma

Surface
Temperture
Ts = 400oC Exit Conditions

uf  = 1 m/s , Tf,� = 20oCuf  = 1 m/s , Tf,� = 20oC

D = 1 cm

Qku  LQku  L

Aku Aku

Figure Pr.6.10 (i) A single impinging jet used for surface cooling. (ii) Multiple impinging jets.

OBJECTIVE:
For each design, do the following:

(a) Determine the average Nusselt number 〈Nu〉L.
(b) Determine the average surface-convection thermal resistance Aku〈Rku〉L[◦C/(W/m2)].
(c) Determine the rate of surface-convection heat transfer 〈Qku〉L(W).

SOLUTION:
(i) Single Nozzle:
(a) The average Nusselt number for cooling with a single, round nozzle is given by (6.71), i.e.,

〈Nu〉L = 2Re1/2
D Pr0.42(1 + 0.005Re0.55

D )1/2 1 − 1.1D/L

1 + 0.1(Ln/D − 6)D/L
,

where the Reynolds number is based on the nozzle diameter and is given by (6.68), i.e.,

ReD =
〈uf 〉AD

νf
.

Equation (6.71) is valid for L/D > 2.5. For the nozzle given, L/D = 15/3 = 5, thus satisfying this constraint
The properties for air at Tδ = (400 + 20)/2 = 210◦C = 483 K are, from Table C.22, kf = 0.0384 W/m-K,
νf = 35.29 × 10−6 m2/s, and Pr = 0.69. The area for surface convection is Aku = a2.
Then Reynolds number becomes

ReD =
〈uf 〉AD

νf
=

1(m/s) × 0.03(m)
35.29 × 10−6(m2/s)

= 850.1.
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The average Nusselt number, from (6.71) becomes

〈Nu〉L = 46.43.

(b) The average surface-convection thermal resistance is obtained from (6.49), i.e.,

Aku〈Rku〉L =
L

kf 〈Nu〉L =
0.15(m)

0.0384(W/m-K) × 46.43
= 8.413 × 10−2 ◦C/(W/m2).

(c) The averaged surface-convection heat transfer is obtained from (6.49) as

〈Qku〉a = Aku
(Ts − Tf,∞)
Aku〈Rku〉L = (0.3)2(m)2 × 400(◦C) − 20(◦C)

8.413 × 10−2[◦C/(W/m2)]
= 406.5 W.

(ii) Square Array of Multiple Nozzles:
(a) The average Nusselt number for cooling with a square array of round nozzles is given by (6.72), i.e.,

〈Nu〉L = Re2/3
D Pr0.42 2L

D


1 +

[
Ln/D

0.6
(1−ε)1/2

]6



−0.05

(1 − ε)1/2 1 − 2.2(1 − ε)1/2

1 + 0.2(Ln/D − 6)(1 − ε)1/2
.

This is valid for L/D > 1.25. For the nozzles, L/D = 5/1 = 5, thus satisfying this constraint.
The Reynolds number becomes

ReD =
uf,∞D

νf
=

1(m/s)0.01(m)
35.29 × 10−6(m2/s)

= 283.4.

The void fraction defined by (6.73) is

ε = 1 − πD2

16L2
= 0.9921.

The average Nusselt number becomes

〈Nu〉L = 28.35.

(b) The average surface-convection thermal resistance becomes

Aku〈Rku〉L =
L

kf 〈Nu〉L =
0.05(m)

0.0384(W/m-K) × 28.35
= 4.593 × 10−2 ◦C/(W/m2).

(c) The averaged surface-convection heat transfer can then be obtained from

〈Qku〉a = Aku
(Ts − Tf,∞)
Aku〈Rku〉L = (0.3)2(m)2 × 400(◦C) − 20(◦C)

4.593 × 10−2[◦C/(W/m2)]
= 744.6 W.

COMMENT:
Note that under these conditions the single nozzle removes slightly more heat from the surface. However, the

multiple nozzles results in a more uniform surface cooling.
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PROBLEM 6.11.FUN

GIVEN:
Permanent damage occurs to the pulp of a tooth initially at T (t = 0) = 37◦C, when it reaches a temperature

Tp = 41◦C. Therefore, to prevent nerve damage, a water coolant must be constantly applied during many standard
tooth drilling operations. In one such operation, a drill, having a frequency f = 150 Hz, a burr diameter Db = 1.2
mm, a tooth contact area Ac = 1.5 × 10−7 m2, and a coefficient of friction between the drill burr and the tooth
µF = 0.4, is used to remove an unwanted part of the tooth. The contact force between the drill burr and the
tooth is F = 0.05 N. During the contact time, heat is generated by surface friction heating. In order to keep the
nerves below their threshold temperature, the tooth surface must be maintained at Ts = 45◦C by an impinging
jet that removes 80% of the generated heat. The distance between the jet and the surface Ln is adjustable.

Use the dimensions shown in Figure Pr.6.11(a)(ii).
Tf,∞ = 20◦C, 〈uf 〉 = 0.02 m/s, D = 1.5 mm, L = 4 mm, µF = 0.4 Pa-s, f = 150 1/s, ∆ui = 2πfRb,

pc = Fc/Ac, Fc = 0.05 N, Ac = 1.5 × 10−7 m2, Db = 2Rb = 1.2 mm.
Use the same surface area for heat generation and for surface convection (so surface area Aku will not appear

in the final expression used to determine Ln).
Determine the water properties at T = 293 K.

SKETCH:
Figure Pr.6.11(a) shows the water-jet cooling of a tooth during drilling.

L = 4 mm

Tf,� = 20oC
 uf   = 0.02 m/s

D = 1.5 mm

Dentin

(i) Anatomy of a Tooth (ii) Physical Model of Friction Heated
and Jet Cooled Enamel Surface

Enamel (Crown)

Cemento-Enamel Junction

Gingival Crevice
(Gumline)

Gingiva (Gum)

Bone

Root Canal

Ligament

Cementum

Gingival Sulcus
(Space Between
Gum and Tooth)

Blood Vessels and Nerves

Pulp

L = 4 mm

Ln

Dentin and
Enamel

Pulp

Ts = 45oC

Tp

Jet Exit Conditions:

Sm,F

Frictional Heating, Sm,F

.

Figure Pr.6.11(a)(i)Cooling of tooth during drilling. (ii) Physical model of friction heated and jet cooled enamel
surface.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Write the surface energy equation for the tooth surface.
(c) Determine the location Ln of the jet that must be used in order to properly cool the tooth.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.6.11(b).

Qku  L

Rku  L

Tp Tf,�

TsRk,s-p

Qk,s-p
Sm,F

Figure Pr.6.11(b) Thermal circuit diagram.
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(b) From Figure Pr.6.11(b), we have

Q|A = Qku = Akuqku =
∑

i

Ṡi = 0.8Ṡm,F .

(c) The heat generated by surface friction heating, from (2.53), is

Ṡm,F /Aku = µF pc∆ui, ∆ui = 2πfRb = 2πf
Db

2

where

pc =
Fc

Ac
=

0.05(N)
1.5 × 10−7(m2)

= 3.333 × 105 N/m2

∆ui = 2πfRb = 2πf
Db

2
= 2π × 150(1/s) × 1.2 × 10−3

2
(m)

= 0.5655 m/s.

Then,

Ṡm,F /Aku = 0.4 × 3,333 × 106(N/m2) × 0.5655(m/s)
= 75,391 W/m2.

From the energy equation, after dropping Aku, we have

〈qku〉L = 0.8 × Ṡm,F

Aku
= 0.8 × 75,400(W/m2)

= 60,313 W/m2.

Next, we use the Nusselt number for 〈qku〉L using (6.49), i.e.,

〈Qku〉L = Aku〈Nu〉L kf

L
(Ts − Tf,∞)

〈qku〉L = 〈Nu〉L kf

L
(Ts − Tf,∞).

Properties (water, T = 293 K, Table C.23): interpolated values; kf = 0.595 W/m-K, Pr = 7.528, νf = 106.7×10−8

m2/2. Using Ts = 45◦C, Tf,∞ = 20◦C, L = 4 mm, we have

60,313(W/m-K) = 〈Nu〉L × 0.595(W/m-K)
0.004(m)

× (45 − 20)(K)

〈Nu〉L = 16.22.

The Nusselt number relation is found from Table 6.3, i.e.,

NuL = 2Re1/2Pr0.42(1 + 0.005Re0.55)1/2
1 − 1.1

D

L

1 + 0.1
(

Ln

D
− 6

)
D

L

where,

ReD =
〈uf 〉AD

νf
=

0.02(m/s) × 0.0015(m)
106.7 × 10−8(m2/s)

= 28.12.
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Then

NuL = 2 × (28.12)1/2 × (7.528)0.42 × [1 + 0.005 × (28.12)0.55]1/2 ×
1 − 1.1 × 1.5(cm)

4(cm)

1 + 0.1 ×
[

Ln

0.0015(m)
− 6

]
× 0.0015(m)

0.004(m)

= 25.14 × 0.5875
1 + (666.7Ln − 6) × 0.03750)

= 25.14 × 0.5875
25Ln + 0.775

=
14.77

25Ln + 0.775
.

Solving for Ln in the above relation, we have

16.22 =
14.77

25Ln + 0.775
405.5Ln + 12.57 = 14.77

Ln = 0.005425 m = 0.5425 cm.

COMMENT:
The presence of the drill in the impinging jet area is neglected. This is a reasonable nozzle to surface distance.

518



PROBLEM 6.12.FAM

GIVEN:
Heat-activated, dry thermoplastic adhesive films are used for joining surfaces. The adhesive film can be heated

by rollers, hot air, radio-frequency and microwaves, or ultrasonics. Consider a flat fabric substrate to be coated
with a polyester adhesive film with the film, heated by a hot air jet, as shown in Figure Pr.6.12(a). The film is
initially at T1(t = 0). The thermal set temperature is Tsl.

Assume that the surface-convection heat transfer results in the rise in the film temperature with no other heat
transfer.

Ln = 4 cm, L = 10 cm, D = 1 cm, 〈uf 〉 = 1 m/s, l = 0.2 mm, Tf,∞ = 200◦C, Tsl = 120◦C.
Determine the air properties at T = 350 K. For polyester, use Table C.17 and the properties of polystyrene.

SKETCH:
Figure Pr.6.12(a) shows the thin plastic film heated by a hot-air jet.

2L
Ln

2L

Substrate

Thin Adhesive Film,
Thermally Activated

l

Tf,� ,  uf

� Qku,1-�

T1(t)

Hot Air Jet

D = 2 cm

Figure Pr.6.12(a) A heat-activated adhesive film heated by a hot air jet.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the elapsed time needed to reach Tsl, for the conditions given above.

SOLUTION:
(a) Figure Pr.6.12(b) shows the thermal circuit diagram. The only heat transfer is assumed to be Qku,1-∞, i.e.,
no heat losses are allowed.

Qku,1-�

Q1 = 0

� (�cpV)1

T1(t)

dT1

dt

Figure Pr.6.12(b) Thermal circuit diagram.

(b) Assuming a uniform temperature for the film, the transient temperature is given by (6.156), i.e.,

T1(t = 0) = Tf,∞ + [T1(t = 0) − Tf,∞]e−t/τ1 + a1τ1(1 − e−t/τ1),

where

a1 =
Ṡ1 − Q1

(ρcpV )1
= 0, τ1 = (ρcpV )1〈Rku〉L.

The surface-convection resistance is given by (6.49) as

〈Rku〉L =
L

Aku〈Nu〉Lkf

Aku = 2L × 2L
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and 〈Nu〉L is given in Table 6.3 as

〈Nu〉L = 2Re1/2
D Pr0.42(1 + 0.005Re0.55

D )1/2 1 − 1.1D/L

1 + 0.1(Ln/D − 6)D/L
,

ReD =
〈uf 〉D

νf
.

From Table C.22, for air at T = 350 K, we have

νf = 2.030 × 10−5 m2/s Table C.22

kf = 0.0300 W/m-K Table C.22

Pr = 0.69 Table C.22.

Then

ReD =
1(m/s) × 0.02(m)

2.030 × 10−5(m2/s)
= 985.2

〈Nu〉L = 2 × (985.2)1/2 × (0.69)0.42(1 + 0.005 × (985.2)0.55)1/2 ×
1 − 1.1 × 0.02(m)/0.1(m)

1 + 0.1{[0.04(m)/0.02(m)] − 6} × [0.02(m)/0.10(m)]
,

= 2 × 26.86 × 1.105 × 1.006 × 0.78
0.92

= 50.33.

Then

〈Rku〉L =
0.10(m)

(0.20)2(m2) × 50.33 × 0.030(W/m-K)
= 1.656 K/W

V1 = 2L × 2L × l = (2 × 0.10)2 × 2 × 10−4(m3) = 8.0 × 10−6 m3.

For polystyrene, from Table C.17, we have

ρ1 = 1,050 kg/m3 Table C.17

cp = 1,800 J/kg-K Table C.17.

Then

τ1 = 1,050(kg/m3) × 1,800(J/kg-K) × 8 × 10−6(m3) × 1.656(K/W)
= 25.04 s.

We can solve the temperature T1(t) expression for t, since a1 = 0, and we have, with T1(t) = Tsl

t = τ1 ln
[

T1(t) − Tf,∞
T1(t = 0) − Tf,∞

]

= −25.04(s) × ln
[
(120 − 200)(◦C)
(20 − 200)(◦C)

]
= 20.31 s.

COMMENT:
Note that we have neglected the heat losses from the film to the substrate by conduction and to the surround-

ings by surface radiation. Inclusion of these would be increase the elapsed time. Note that we need slightly less
than one time constant (τ1) to reach the desired temperature.
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PROBLEM 6.13.DES

GIVEN:
A pure aluminum plate is to be rapidly cooled from T1(t = 0) = 40◦C to T1(t) = 20◦C. The plate has a length

L = 12 cm and thickness w = 0.2 cm. The plate is to be cooled using water by placing it at a distance Ln = 10
cm from a faucet with diameter D = 2 cm. The water leaves the faucet at a temperature Tf,∞ = 5◦C and velocity
〈u〉A = 1.1 m/s. There are two options for the placement of the plate with respect to the water flow. The plate
can be placed vertically, so the water flows parallel and on both sides of the plate. Then the water layer will
have a thickness l = 2 mm on each side of the plate [shown in Figure Pr.6.13(a)(i)]. Alternately, it can be placed
horizontally with the water flowing as a jet impingement [shown in Figure Pr.6.13(a)(ii)].

Assume that the results for impinging jets can be used here, even though the jet fluid (water) is not the same
as the ambient (air) fluid. Use the water as the only fluid present. Assume a uniform plate temperature.

Estimate the parallel, far-field velocity uf,∞ using the mass flow rate out of the faucet. This approximate flux
is assumed uniform over the rectangular flow cross section (l × 2L) and is assumed to be flowing over a square
surface (2L × 2L).

SKETCH:
Figure Pr.6.13(a) shows the plate to be cooled by the water from a faucet. Two different plate orientations

are considered.

Ln = 10 cm

L = 12 cm

w = 0.2 cm

Water Jet

Horizontally
Placed Plate

Vertically
Placed Plate

Water Layer
Thickness

Water Flow

Faucet
(Nozzle) D = 2 cm

(ii) Perpendicular Configuration

L = 12 cm

w = 0.2 cm

l = 0.2 cm

(i) Parallel Configuration

Tf,� , �uf �A Tf,� , �uf �A

uf,�

D = 2 cm

Figure Pr.6.13(a) Cooling of an aluminum plate under a faucet. (i) Parallel configuration. (ii) Perpendicular
configuration.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine which of the orientations gives the shorter cooling time.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.6.13(b).

Qku  L

Rku  L
� (�cpV)1

T1Q1 Tf,

dT1

dt

Figure Pr.6.13(b) Thermal circuit diagram.
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(b) (i) Parallel Flow:
The mass flow rate of water out of the faucet is

Ṁf = ρf 〈uf 〉Au = ρf 〈uf 〉πD2

4
.

Properties: (water at T = 280 K, Table C.23): kf = 0.5675 W/m-K, cp = 4,204 J/kg-K, νf = 152 × 10−8 m2/s,
Pr = 11.36; (pure aluminum at T = 300 K, Table C.16): ρs = 2,702 kg/m3, cp,s = 903 J/kg-K, ks = 237 W/m-K.
This flow is approximately divided on both side of the plate, i.e.,

Ṁf ≡ ρf2 × (l × 2L) × uf,∞.

Then, equating the two expressions for Ṁf gives,

uf,∞ = 〈uf 〉 πD2/4
2(l × 2L)

= 1.1(m/s) × π(0.02)2(m2)/4
2 × (0.002)(m) × 2 × (0.12)(m)

= 0.36 m/s.

we determine the elapsed time needed to cool the plate, using (6.156), i.e.,

T1(t) − Tf,∞ = [T1(t = 0) − Tf,∞]e−t/τ1 + a1τ1(1 − e−t/τ1)

τ1 = (ρcpV )1〈Rku〉L, a1 =
Ṡ1 − Q1

(ρcpV )1
.

Since there is no energy conversion and all other forms of heat transfer are assumed negligible, both Ṡ1 and Q1

equal to zero. Then a1 = 0, or,

T1(t) = Tf,∞ = [T1(t = 0) − Tf,∞]e−t/τ1 , τ1 = (ρcpV )1〈Rku〉L.

The Reynolds number is

ReL =
uf,∞2L

νf
, 2L = 24 cm = 0.24 m

ReL =
0.36(m/s) × (0.24)(m)

152 × 10−8(m2/s)
= 56,842 < ReL,t = 5 × 105.

The flow remains laminar over the plate.
From (6.49), we have

〈Rku〉L =
2L

Aku〈Nu〉Lkf
,

where

Aku = 2L2 = 2(0.12)2(m2) = 0.0288 m2,

since there are two sides to the plate.
From Table 6.3, we have

〈Nu〉L = 0.664Re1/2
L Pr1/3 = 0.664(56,842)1/2(11.36)1/3 = 355.9.

Then

〈Rku〉L =
0.24(m)

0.0288(m2) × 355.9 × 0.5675(W/m-K)
= 0.04126 K/W.
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Next,

V1 = L2w, w = 0.2 cm = 0.002 m
V1 = (0.12)2(m2) × (0.002)(m) = 2.88 × 10−5 m3

τ1 = (ρcpV )1〈Rku〉L = [2,702(kg/m2) × 903(J/kg-K) × 2.88 × 10−5(m3)] × 0.04126(K/W)
= 2.899 s.

Then

t = −τ1 ln
[

T1(t) − Tf,∞
T1(t = 0) − Tf,∞

]
= −2.899(s) × ln

(
20 − 5
40 − 5

)
= 2.456 s.

(ii) Perpendicular Flow:
Again, we have

T1(t) − Tf,∞ = [T1(t = 0) − Tf,∞]e−t/τ1 , τ1 = (ρcpV )1〈Rku〉L
The nozzle Reynolds number is

ReD =
〈uf 〉D

νf
, D = 2 cm = 0.02 m

=
1.1(m/s) × (0.02)(m)

152 × 10−8(m2/s)
= 14,474.

Also,

L

D
=

12(cm)
2(cm)

= 6

〈Rku〉L =
L

Aku〈Nu〉Lkf

Aku = L2 = (0.12)2(m2) = 0.0144 m2.

From Table 6.3, we have

〈Nu〉L = 2Re1/2
D Pr0.42(1 + 0.005Re0.55

D )1/2
1 − 1.1D

L

1 + 0.1
(

Ln

D
− 6

)
D

L

= 2 × (14,474)1/2 × (11.36)0.42 × [1 + 0.005(14,474)0.55]1/2 ×
1 − 1.1 × 0.02(m)

0.12(m)

1 + 0.1 ×
[

0.1(m)
0.02(m)

− 6
]
× 0.02(m)

0.12(m)

= 667.7 × 1.404 × 0.8167
0.9833

= 778.6.

Then

〈Rku〉L =
L

Aku〈Nu〉kf
=

0.12
0.0144(m2) × (778.6) × 0.5675(W/m-K)

= 0.01189 K/W.

Next

τ1 = (ρcpV )1〈Rku〉L
= (2702(kg/m3) × 903(J/kg-K) × 2.88 × 10−5) × 0.01189(K/W) = 1.325 s.

Then

t = −τ1 ln
[

T1(t) − Tf,∞
T1(t = 0) − Tf,∞

]
= −1.325(s) × ln

(
20 − 5
40 − 5

)
= 1.123 s.
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This cooling time is less than that for the parallel arrangement, therefore the perpendicular orientation should
be used for rapid cooling.

COMMENT:
In order to verify the lumped capacitance assumption, we must show that the Biot number is much less than

one (for both flows). The Biot number is defined by (6.128) as

Biw =
Rk

〈Rku〉L .

For aluminum, from Table C.14, at T = 300 K, we have ks = 237 W/m-K.
(i) Parallel Flow:

Biw =
w/Akks

〈Rku〉L
=

0.002(m)/[0.0144(m2) × 237(W/m-K)]
0.04126(K/W)

= 0.0142.

(ii) Perpendicular Flow: The conduction resistance is the same, and therefore,

Biw =
5.86 × 10−4(K/W)
0.001149(K/W)

= 0.0493.

In both cases, the Biot number is much less than one and the lumped capacitance assumption is therefore valid.
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PROBLEM 6.14.FAM

GIVEN:
A bottle containing a cold beverage is awaiting consumption. During this period, the bottle can be placed

vertically or horizontally, as shown in Figure Pr.6.14. Assume that the bottle can be treated as a cylinder of
diameter D and length L. We wish to compare the surface-convection heat transfer to the bottle when it is (i)
standing vertically or (ii) placed horizontally. For the vertical position, the surface-convection heat transfer is
approximated using the results of the vertical plate, provided that the boundary-layer thickness δα is much less
than the bottle diameter D.

D = 10 cm, L = 25 cm, Ts = 4◦C, Tf,∞ = 25◦C.
Neglect the end areas. Use the average temperature between the air and the surface to evaluate the thermo-

physical properties of the air.

SKETCH:
Figure Pr.6.14 shows two positions of a beverage bottle.

Cola

D = 10 cm

L = 25 cm

Bottle
Ts = 4 

oC < Tf,� 

Surrounding Air
Tf,� = 25 

oC

C
ol

a

g

(i) Vertically
    Arranged

(ii) Horizontally
 Arranged

Figure Pr.6.14 Thermobuoyant flow and heat transfer from beverage bottles. (i) Standing vertically. (ii) Placed
horizontally

OBJECTIVE:
(a) Determine the average Nusselt numbers 〈Nu〉L and 〈Nu〉D.
(b) Determine the average surface-convection thermal resistances Aku〈Rku〉L [◦C/(W/m2)] and Aku〈Rku〉D [◦C/(W/m2)].
(c) Determine the rates of surface-convection heat transfer 〈Qku〉L(W) and 〈Qku〉D(W).

SOLUTION:
(i) Vertical Position:
(a) The Rayleigh number is given by (6.88) as

RaL =
gβ(Ts − Tf,∞)L3

νfαf
.

The properties for air at Tδ = (Ts + Tf,∞)/2 = 288 K are obtained from Table C.22: kf = 0.026 W/m-K,
νf = 14.60 × 10−6 m2/s, Pr = 0.69, and from (6.77) we have βf = 1/Tave = 3.472 × 10−3 1/K.
With νfαf = ν2

f/Pr, the Rayleigh number becomes

RaL =
9.81(m2/s) × 3.472 × 10−3(1/K) × (25 − 4)(K) × (0.25)3(m)3

(14.60 × 10−6)2(m2/s)2/(0.69)
= 3.618 × 107.
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Since RaL < 109, from (6.91) the flow is laminar. For thermobuoyant flow over a vertical flat plate, the average
Nusselt number is obtained from (6.92) as

a1 =
4
3

0.503[
1 + (0.492

Pr )9/16
]4/9

= 0.5131

NuL,l =
2.8

ln
[
1 + 2.8

a1Ra
1/4
L

] = 41.18

NuL,t =
0.13Pr0.22

(1 + 0.61Pr0.81)0.42
Ra1/3

L = 33.88

〈Nu〉D = [(NuL,l)6 + (NuL,t)6]1/6 = 43.08.

(b) The average surface-convection thermal resistance is found from (6.49) as

Aku〈Rku〉L =
L

kf 〈Nu〉L =
0.25(m)

0.026(W/m-K) × 43.08
= 2.232 × 10−1 ◦C/(W/m2).

(c) The surface-averaged surface-convection heat transfer is found from (6.49) as

〈Qku〉L = Aku
Ts − Tf,∞
Aku〈Rku〉L = π × 0.1(m) × 0.25(m) × 4(◦C) − 25(◦C)

2.232 × 10−1[◦C/(W/m2)]
= −7.390 W.

(ii) Horizontal Position:
(a) For the horizontal cylinder, the Rayleigh number is found from Table 6.4, i.e.,

RaL =
gβ(Ts − Tf,∞)D3

νfαf
=

9.81(m2/s) × 3.472 × 10−3(1/K) × [25(◦C) − 4(◦C)](0.1)3(m)3

(14.60 × 10−6)2(m2/s)2/(0.69)
= 2.315 × 106.

A correlation for the average Nusselt number for a horizontal cylinder is given in Table 6.4. Using the values
given

a1 =
4
3

0.503[
1 + (0.492

Pr )9/16
]4/9

= 0.5131

NuD,l =
1.6

ln
[
1 + 1.6

0.772a1Ra
1/4
D

] = 16.24

NuD,t =
0.13Pr0.22

(1 + 0.61Pr0.81)0.42
Ra1/3

D = 13.55

〈Nu〉D = [(NuD,l)3.3 + (NuD,t)3.3]1/3.3 = 18.55.

(b) The average surface-convection thermal resistance is

Aku〈Rku〉D =
D

kf 〈Nu〉D =
0.10(m)

0.026(W/m-K) × 18.55
= 2.073 × 10−1 ◦C/(W/m2).

(c) The averaged surface-convection heat transfer is

〈Qku〉D = Aku
Ts − Tf,∞
Aku〈Rku〉D = π × 0.1(m) × 0.25(m) × 4(◦C) − 25(◦C)

2.073 × 10−1[◦C/(W/m2)]
= −7.956 W.

COMMENT:
For the vertical plate, since RaL < 109, the flow regime is laminar. For the laminar thermobuoyant flow over

a vertical flat plate, the average Nusselt number could also be determined from using the similar relation (6.89),
i.e.,

〈Nu〉L =
4
3

0.503[
1 + (0.492

Pr )9/16
]4/9

Ra1/4
L = 39.79
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and the average surface-convection thermal resistance and heat transfer rate are

Aku〈Rku〉L =
L

kf 〈Nu〉L =
0.25(m)

0.026(W/m-K) × 39.79
= 2.416 × 10−1 ◦C/(W/m2)

〈Qku〉L = Aku
Ts − Tf,∞
Aku〈Rku〉L = π × 0.1(m) × 0.25(m) × 4(◦C) − 25(◦C)

2.42 × 10−1[◦C/(W/m2)]
= −6.826 W.

These are considered close to the values obtained using the combined laminar-turbulent correlation.
Note also that the horizontal position results in a slightly larger heat flow.
Also, note that determining δα(L) from (6.90) we have

δα(L) = 3.93L

(
Pr +

20
21

)1/4

(Gr1/2
L Pr)−1/2

= 0.01574m,

where GrL=RaL/Pr.
Then

δα(L)
D

=
0.01574(m)

0.10(m)
= 0.1574,

which satisfies the needed constraint that δα(L) 
 D.
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PROBLEM 6.15.FAM

GIVEN:
The fireplace can provide heat to the room through surface convection and surface radiation from that portion

of the fireplace wall heated by the combustion products exiting through a chimney behind the wall. This heated
area is marked on the fireplace wall in Figure Pr.6.15(a). Assume this portion of the wall (including the fireplace)
is maintained at a steady, uniform temperature Ts. The surface convection is by a thermobuoyant flow that can
be modeled as the flow adjacent to a heated vertical plate with length L. The surface radiation exchange is
between this heated portion of the wall and the remaining surfaces in the room. Assume that all the remaining
wall surfaces are at a steady uniform temperature Tw.

Ts = 32◦C, Tf,∞ = 20◦C, Tw = 20◦C, εr,s = 0.8, εr,w = 0.8, w = 3 m, L = 4 m, a = 6 m.
Determine the air properties at 300 K (Table C.22).

SKETCH:
Figure Pr.6.15(a) shows the surface convection and radiation from a portion of the fireplace wall to the rest

of the room.

Thermobuoy-
ant Flow

Fireplace

  r,s
Ts

  r,w , Tw

For All Nonshaded AreasTf,�
uf,� = 0

a

w

L

a

a Qku

Qr

g �

�

Figure Pr.6.15(a) Surface convection and radiation from a heated wall.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the surface-convection heat transfer rate.
(c) Determine the surface-radiation heat transfer rate.
(d) Assume the fire provides an energy conversion rate due to combustion of Ṡr,c = 19,500 W. (This would
correspond to a large 5 kg log of wood burning at a constant rate to total consumption in one hour.) Determine
the efficiency of the fireplace as a room-heating system (efficiency is defined as the ratio of the total surface heat
transfer rate to the rate of energy conversion Ṡr,c).

SOLUTION:
The thermal properties for air are evaluated at T = 300 K from Table C.22 and are kf = 0.0267 W/m-K,

νf = 15.66 × 10−6 m2/s, αf = 22.57 × 10−6 m2/s, Pr = 0.69, and βf = 1/T = 1/300 1/K.

(a) The thermal circuit diagram is given in Figure Pr.6.15(b).

(b) The area for surface-convection is Aku = L × w = 4(m) × 3(m) = 12 m2. Then for surface convection from
(6.49), we have

〈Qku〉L =
Ts − T∞
〈Rku〉L

where from (6.49)

〈Rku〉L =
1

Aku〈Nu〉Lkf/L
.
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Figure Pr.6.15(b) Thermal circuit diagram.

The fluid flow for surface-convection is modeled as a thermobuoyant flow over a flat vertical plate. The 〈Nu〉L is
given in Table 6.4 as

〈Nu〉L = [(NuL,l)6 + (NuL,t)6]1/6,

where

NuL,l =
2.8

ln

(
1 +

2.8

a1Ra1/4
L

)

NuL,t =
0.13Pr0.2

(1 + 0.61Pr0.81)0.42
Ra1/3

L .

The RaL and a1 are defined in Table 6.5 as

RaL =
gβf (Ts − T∞)L3

νfαf
=

9.81(m/s2) × 1/300(1/K) × (32 − 20)(K) × (4)3(m)3

15.66 × 10−6(m2/s) × 22.57 × 10−6(m2/s)
= 7.105 × 1010

a1 =
4
3

0.503
[1 + (0.492/Pr)9/16]4/9

= 0.5131.

Then upon substitution, the NuL,l and NuL,t are

NuL,l = 266.31
NuL,t = 424.33,

Then 〈Nu〉L then is

〈Nu〉L = [(266.31)6 + (424.33)6]1/6

= 428.55.

Then 〈Rku〉L is

〈Rku〉L =
1

12(m2) × 428.55 × 0.0267(W/m-◦C)/4(m)
= 0.0291◦C/W.

And finally, 〈Qku〉L is

〈Qku〉L =
(32 − 20)(◦C)
0.0291(◦C/W)

= 411.9 W.
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(c) The heated surface and the rest of the room constitute an enclosure and the surfaces are gray and diffuse.
Then we apply the radiation enclosure analysis.
The wall area is Aw = 5 × a2 = 5 × (62)(m2) = 180 m2. Then for surface radiation exchange in a two-surface
enclosure, we have from (4.47),

Qr,s-w =
Eb,s − Eb,w

(RΣ,r)s-w
=

σ(T 4
s − T 4

w)
(Rr,ε)s + (Rr,F )s-w + (Rr,ε)w

.

Solving for the resistances, we have

(Rr,ε)s =
1 − εr,s

Asεr,s
=

1 − 0.8
12(m2) × 0.8

= 0.0208
1

m2

Fs-w = 1 by inspection

(Rr,F )s-w =
1

AsFs-w
=

1
12(m2) × 1

= 0.0833
1

m2

(Rr,ε)w =
1 − εr,w

Awεr,w
=

1 − 0.8
180(m2) × 0.8

= 0.001389
1

m2

RΣ,r = (Rr,ε)s + (Rr,F )s-w + (Rr,ε)w = (0.0208 + 0.0833 + 0.001389)
1

m2 = 0.1055
1

m2 .

Therefore,

Qr,s-w =
5.67 × 10−8(W/m2-K4) × [305.154 − 293.154](K4)

0.1055(
1

m2 )
= 691.0 W.

(d) The efficiency η is defined as

η =
Q|A
Ṡr,c

=
〈Qku〉L + Qr,s-w

Ṡr,c

=
411.9(W) + 691.0(W)

19,500(W)
=

1,102.9(W)
19,500(W)

= 0.05656 = 5.656%.

COMMENT:
Note that the surface-radiation heat transfer is larger than surface convection. Higher efficiencies are possible

by heating a larger portion of the wall, allowing for convection directly into the room, and forcing an air stream
around the fireplace.
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PROBLEM 6.16.FUN

GIVEN:
As discussed in Section 6.5.1, the two-dimensional (x, y), (uf , vf ), laminar viscous, thermobuoyant boundary

layer (for vertical, uniform surface temperature plate) momentum equation (6.80) can be reduced to an ordinary
differential equation using a dimensionless similarity variable

η =
y

x

(
Grx

4

)1/4

,

and a dimensionless stream function

ψ∗ =
ψ

4νf

(
Grx

4

)1/4
, uf =

∂ψ

∂y
, vf = −∂ψ

∂x
, Grx =

gβf (Ts − Tf,∞)x3

ν2
f

.

OBJECTIVE:
(a) Show that the momentum equation (6.80) reduces to

d3ψ∗

dη3 + 3ψ∗ d2ψ∗

dη2 − 2
(

dψ∗

dη

)2

+ T ∗
f = 0 T ∗

f =
Tf − T∞
Ts − Tf,∞

.

(b) Show that the energy equation (6.79) reduces to

d2T ∗
f

dη2 + 3Prψ∗ dT ∗
f

dη
= 0 Pr =

νf

αf
.

SOLUTION:
We start from (6.80), written as

uf
∂uf

∂x
+ vf

∂uf

∂y
− νf

∂2uf

∂y2 − gβf (Tf − Tf,∞) = 0.

Using the stream function ψ, the dimensionless stream function ψ∗ and the similarity variables η, we transform
uf and vf into ψ∗, x and η. We start with

uf ≡ ∂ψ

∂y
=

dψ

dη

dη

dy
=

dψ∗

dη

1
x

(
Grx

4

)1/2

4νf

(
Grx

4

)1/4

=
4νf

x

(
Grx

4

)1/2
dψ∗

dη

or

uf

4νf

x

(
Grx

4

)1/2
=

dψ∗

dη
.

Also,

vf = −∂ψ

∂x
= − ∂

∂x
4νf

(
Grx

4

)1/4

ψ∗

=
νf

x

(
Grx

4

)1/4(
η
dψ∗

dη
− 3ψ∗

)
.
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Next, these velocity components are differentiated, with respect to x and y, and we have

∂uf

∂x
= 4νf

[
− η

4x2

(
Grx

4

)1/2
d2ψ∗

dη2 +
1

2x2

(
Grx

4

)1/2
dψ∗

dη

]

∂uf

∂y
=

4νf

x2

(
Grx

4

)3/4
d2ψ∗

dη2

∂2uf

∂y2 =
4νf

x2

Grx

4
d3ψ∗

dη3 .

Substituting these in the above momentum equation and using

T ∗
f =

Tf − Tf,∞
Ts − Tf,∞

,

and after re-arranging the terms, we have

d3ψ∗

dη3 + 3ψ∗ d2ψ∗

dη2 − 2
(

dψ∗

dη

)2

+ T ∗
f = 0.

(b) We start from (6.79), rewritten as

uf
∂Tf

∂x
+ vf

∂Tf

∂y
− αf

∂2Tf

∂y2 = 0.

We have

∂Tf

∂x
= (Ts − Tf∞)

∂T ∗
f

∂η

∂η

∂x
= −Ts − Tf,∞

4x
η
dT ∗

f

dη

∂Tf

∂y
= (Ts − Tf∞)

∂T ∗
f

∂η

∂η

∂y
=

Ts − Tf,∞
x

(
Grx

4

)1/4 dT ∗
f

dη

∂2T 2
f

∂y2 = (Ts − Tf∞)
∂

∂y

[
1
x

(
Grx

4

)1/4 dT ∗
f

dη

]
=

Ts − Tf,∞
x2

(
Grx

4

)1/2 d2T ∗
f

dη2 .

Substituting into the above energy equation, using the velocity results from part (a), and after re-arranging, we
have

d2T ∗
f

dη2 + 3Prψ∗ dT ∗
f

dη
= 0.

COMMENT:
Note that for Pr → 0 (liquid metals), the temperature distribution will be linear in η (because the second

derivative in zero).
Also, note that from the above relation for ∂Tf/∂y, we have the surface heat flux as

−k
∂Tf

∂y

∣∣∣∣
y=0

= qku =
1
x

(
Grx

4

)1/4 dT ∗
f

dη

∣∣∣∣
η=0

.
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PROBLEM 6.17.FUN

GIVEN:
The dimensionless, transformed coupled boundary-layer momentum and energy equations for thermobuoyant

flow, are

d3ψ∗

dη3 + 3ψ∗ d2ψ∗

dη2 − 2
(

dψ∗

dη

)2

+ T ∗
f = 0

d2T ∗
f

dη2 + 3Prψ∗ dT ∗
f

dη
= 0,

subject to the surface and far-field thermal and mechanical conditions

at η = 0 :
dψ∗

dη
= ψ∗ = 0, T ∗

f = 1

for η → ∞ :
dψ∗

dη
= 0, T ∗

f = 0.

Use Pr = 0.72 and plot ψ∗, dψ∗/dη, d2ψ∗/dη2, T ∗
f , and dT ∗

f /dη, with respect to η.
Note that with an initial-value problem solver such as SOPHT, the second derivative of ψ∗ and first derivative

of T ∗
f at η = 0 must be guessed. The guesses are adjusted till d2ψ∗/dη2 becomes zero for large η.
Use d2ψ∗/dη2(η = 0) = 0.6760 and dT ∗

f /dη∗(η = 0) = −0.5064.

OBJECTIVE:
Using a solver, integrate these coupled equations

SOLUTION:
The solver we choose is an initial-value-solver, such as SOPHT, where the initial values (i.e., at η = 0) for

ψ∗, dψ ∗ /dη, d2ψ∗/dη2, T ∗
f , and dT ∗

f /dη must be provided for these coupled third-and second-order, ordinary
differential equations.

Note that using a set of arbitrary notations we can write these as five first-order, ordinary differential equations.
These are

g′ = −3fg + 2z2 − h

i′ = −3Prfi

h′ = i

z′ = g

f ′ = z.

The variations of ψ∗, dψ∗/dη, d2ψ∗/dη2, T ∗
f , and dT ∗

f /dη, with respect to η, are plotted in Figure Pr.6.17.
The results show that for η = 5.66, the x-direction velocity represented by dψ∗/dη will have a magnitude

1/100 of its peak (or maximum value). This is designated as the edge of the boundary layer.

COMMENT:
Note that results are a strong function of Pr. In general, the derivatives are guessed until T ∗

f = dψ∗/dη = 0
far from the surface (large η).

Also note that from (6.90) we have

δα

L

(
GrL

4

)1/4

= 3.804 for Pr = 0.72,

while the numerical results for T ∗
f = 0.01 show that this is 4.4176. This is because (6.90) is an approximation to

results over a large range of Pr.
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Figure Pr.6.17 Variation of the dimensionless, velocity and temperature variables with respect to the similarity variable.
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PROBLEM 6.18.FAM

GIVEN:
An aluminum flat sheet, released from hot pressing, is to be cooled by surface convection in an otherwise

quiescent air, as shown in Figure Pr.6.18. The sheet can be placed vertically [Figure Pr.6.18(a)(i)] or horizontally
[Figure Pr.6.18(a)(ii)]. Both sides of the sheet undergo heat transfer and in treating the horizontal arrangement,
treat the lower surface using the Nusselt number relations listed in Table 6.5 for the top surface.

w = L = 0.4 m, Tf,∞ = 25◦C, Ts = 430◦C.
Use air properties at 〈Tf 〉δ = (Ts + Tf,∞)/2.

SKETCH:
Figure Pr.6.18(a) shows the two arrangements.

Ts > Tf,�

(i) Vertical Arrangement (ii) Horizontal Arrangement

L

Lg

w

w

g

Aluminum
Sheet

Quiescent Air
Tf,� , uf,� = 0

Ts > Tf,�

Figure Pr.6.18(a) A sheet of aluminum is cooled in an otherwise quiescent air.
(i) Vertical placement. (ii) Horizontal placement.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the surface-convection heat transfer rate 〈Qku〉L for the two arrangements and for the conditions
given above.

SOLUTION:
(a) Figure Pr.6.18(b) shows the thermal circuit diagram.

Ts Tf,�

Rku  L

Qku  L

Figure Pr.6.18(b) Thermal circuit diagram.

(b) (i) For the vertical placement, from Table 6.5, we have

〈Nu〉L = [(NuL,l)6 + (NuL,t)6]1/6

NuL,l =
2.8

ln
(

1 +
2.8

a1Ra1/4

)

NuL,t =
0.13Pr0.22

(1 + 0.61Pr0.81)0.42
Ra1/3

a1 =
4
3

0.503[
1 +

(
0.492
Pr

)9/16
]4/9

RaL =
gβf (Ts − Tf,∞)L3

νfαf
.
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From Table C.22, for air at

〈Tf 〉δ =
Ts + Tf,∞

2
=

(430 + 25)(◦C)
2

+ 273.15(K)

= 500.7 K,

the properties are

kf = 0.0395 W/m-K Table C.22

νf = 3.730 × 105 m2/s Table C.22

αf = 5.418 × 10−5 m2/s Table C.22

Pr = 0.69 Table C.22,

and treating air as an ideal gas, from (6.77),

βf = 1
Tf

= 1
〈Tf 〉δ = 1.997 × 10−3 1/K

Then,

RaL =
9.81(m2/s) × 1.997 × 10−3(1/K) × (430 − 25)(K) × (0.4)3(m3)

(3.730 × 10−5)(m2/s) × 5.418 × 10−5(m2/s)
= 2.512 × 108

a1 =
4
3

0.503[
1 +

(
0.492
0.69

)9/16
]4/9

= 0.5131

NuL,l =
2.8

ln[1 +
2.8

0.5131 × (2.512 × 108)1/4
]

= 65.99

NuL,t =
0.13 × (0.69)0.22

[1 + 0.61 × (0.69)0.81]0.42 × (2.512 × 108)1/3 = 64.64

〈Nu〉L = [(65.99)6 + (64.64)6]1/6 = 73.33.

From (6.124), and noting that Aku = 2wL, we have

〈Qku〉L = Aku〈Nu〉L kf

L
(Ts − Tf,∞)

= 2 × (0.4)2(m2) × 73.33 × 0.0395(W/m-K)
0.4(m)

× (430 − 25)(K)

= 938.5 W.

(ii) For the horizontal placement, from Table 6.5, we have

〈Nu〉L = [(NuL,l)10 + (NuL,t)10]1/10

NuL,l =
1.4

ln

(
1 +

1.4

0.835a1Ra1/4
L

)

NuL,t = 0.14Ra1/3
L ,

where a1 is the same as in (i) and for the definition given for L in Table 6.5, we have

L =
Aku

Pku
=

Lw

2(L + w)
=

L

4
for each side

=
0.4(m)

4
= 0.1 m.
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Then using the results of (i), we have

RaL = 2.512 × 108 × 1
(4)3

= 3.925 × 106

NuL,l =
1.4

ln
[
1 +

1.4
0.835 × 0.5131 × (3.925 × 106)1/4

]
= 19.76

NuL,t = 0.14 × (3.925 × 106)1/3 = 22.08

〈Nu〉L = [(19.76)10 + (22.08)10]1/10

= 22.72

〈Qku〉L = 2 × (0.4)2(m2) × 22.72 × 0.0395(W/m-K)
0.10(m)

× 405K

= 1,163 W.

COMMENT:
Note that although for the of horizontal placement 〈Nu〉L is smaller, due to the smaller length used in the

scaling of 〈Nu〉L, the heat transfer rate is larger for this arrangement.
The correlations valid for both laminar and turbulent flows trend to add uncertainties, compared to the

correlations valid only for a given range of RaL [16]. For example using (6.89), for the vertical arrangement and
for the RaL < 109, we have

〈Nu〉L =
4
3
a1Ra1/3

L

=
4
3
× 0.5131 × (2.512 × 108)1/4

= 86.13.

This is to be compared to 〈Nu〉L = 64.63 in which we used in (b)(i).
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PROBLEM 6.19.FAM

GIVEN:
Water, initially at T = 12◦C, is boiled in a portable heater at one atm pressure, i.e., it has its temperature

raised from 12◦C to 100◦C. The heater has a circular, nickel surface with D = 5 cm and is placed at the bottom
of the water, as shown in Figure Pr.6.19. The amount of water is 2 kg (which is equivalent to 8 cups) and the
water is to be boiled in 6 min.

The properties for water are given in Table C.23.

SKETCH:
Figure Pr.6.19 shows boiling from the bottom surface of an electrical water heater.

Heater
Surface

Ts

Water
m = 2 kg

Boiler

D = 5 cm

�Qku�D

Se,J

g

Tf,� = Tlg

Figure Pr.6.19 An electric water heater using boiling surface-convection heat transfer.

OBJECTIVE:
(a) Determine the time-averaged (constant with time) electrical power needed Ṡe,J(W) assuming no heat losses.
(b) Determine the critical heat flux qku,CHF (W/m

2) for this fluid and then comment on whether the required
electrical power per unit area is greater or smaller than this critical heat flux. Note that the surface-convection
heat transfer rate (or the electrical power) per unit area should be less than the critical heat flux; otherwise, the
heater will burn out.
(c) Determine the required surface temperature Ts, assuming nucleate boiling. Here, assume that the effect of the
liquid subcooling on the surface-convection heat transfer rate is negligible. When the subcooling is not negligible
(i.e., the water is at a much lower temperature than the saturation temperature Tlg), the larger temperature
gradient between the surface and the liquid and the collapse of the bubbles away from the surface, will increase
the rate of heat transfer.
(d) Determine the average surface-convection thermal resistance Aku〈Rku〉L[◦C/(W/m2)] and the average Nusselt
number 〈Nu〉L.

SOLUTION:
(a) The integral-volume energy equation (2.9) applied to a control volume containing the water, assuming constant
properties and a uniform temperature (i.e., a lumped-capacitance analysis), is

Q|A = −ρcpV
dT

dt
.

The heat losses to the ambient are neglected. One component of these heat losses is the energy leaving the water
surface in the form of vapor. It is assumed that most of the vapor formed at the heater surface re-condenses as
the bubbles rise in the liquid. Then, we have

−〈Qku〉D = −ρcpV
dT

dt
.

Integrating from Ti = 12◦C at t = 0 to Tf = 100◦C at t = 6 min gives

〈Qku〉D = ρcpV
Tf − Ti

t
.
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For water at Tave = (Tf + Ti)/2 = 329 K from Table C.23, cp = 4,183 J/kg-K. Also, ρV = M = 2 kg. Then

〈Qku〉D = 2(kg) × 4,183(J/kg-K)
100(◦C) − 12(◦C)

360(s)
= 2045 W.

The integral-volume energy equation applied to the electrical heater gives

〈Qku〉D = Ṡe,J

or Ṡe,J = 2,045 W.

(b) The critical heat flux for pool boiling from a horizontal surface is given by (6.100)

qku,CHF

ρg∆hlg
×
(

ρ2
g

gσ∆ρlg

)1/4

= 0.13.

The properties for saturated water and steam at a pressure of 1 atm are given in Table C.26, ρl = 958.3 kg/m3,
ρg = 0.596 kg/m3, σ = 0.05891 N/m, ∆hlg = 2.257× 106 J/kg, µl = 277.53× 10−6 m2/s, Prl = 1.73, kl = 0.6790
W/m-K, and cp,l = 4,216 J/kg-K.
Solving for qku,CHF we have

qku,CHF =
0.13ρg∆hlg(

ρ2
g

gσ∆ρlg

)1/4
=

0.13 × 0.596(kg/m3) × 2.257 × 106(J/kg)[
(0.596)2(kg/m3)2

9.81(m2/s)×0.05891(N/m)×957.7(kg/m3)

]1/4
= 1.098 × 106 W/m2

.

The surface-convection heat transfer rate provided by the heater, at the critical heat flux condition, is

Qku,CHF = Akuqku,CHF =
π

4
× (0.05)2(m)2 × 1.098 × 106(W/m2) = 2,156 W.

The critical heat flux is slightly larger than the required heat transfer rate. Therefore, for the desired heating
rate, the electrical heater will operate at low surface temperatures, characteristic of nucleate boiling.

(c) The total surface-convection heat rate is given by (6.98)

〈Qku〉D = Aku
Ts − Tlg

Aku〈Rku〉D .

The average surface-convection resistance for pool nucleate boiling from a horizontal surface is determined from
(6.98), i.e.,

Aku〈Rku〉D = a3
s

∆h2
lg

µlc3
p,l(Ts − Tlg)2

(
σ

g∆ρlg

)1/2

Prn
l =

Aku(Ts − Tlg)
〈Qku〉D .

For a nickel surface, from Table 6.2, we have as = 0.006. For water, from (6.98), we have n = 3.
Solving the above for Ts − Tlg gives

(Ts − Tlg)3 =
a3

s∆h2
lg〈Qku〉DPrn

l

Akuµlc
3
p,l

×
(

σ

g∆ρlg

)1/2

,

and subbing in numerical values gives

Ts − Tlg =
[
6.84 × 10−4(K3-m2/W) × 2,045(W)

π
4 (0.05)2(m)2

]1/3

= 8.93K,

or, for Tlg = 100◦C, we have

Ts = 108.9◦C.

539



Table Pr.6.19 Summary of Nusselt numbers and average surface-convection thermal resistances in order of
decreasing surface-convection thermal resistance.

Fluid Flow Arrangement with 〈Nu〉L or 〈Nu〉D Aku〈Rku〉L or Aku〈Rku〉D,
or without phase change ◦C/(W/m2)

(6.7): laminar, parallel flow over a flat plate:
uf,∞ = 0.5556 m/s 119.8 3.326×10−1

(6.14): laminar, thermobuoyant flow around a ver-
tical cylinder

43.08 2.232×10−1

(6.14): laminar, thermobuoyant flow around a hor-
izontal cylinder

18.55 2.073×10−1

(6.7): laminar, parallel flow over a flat plate:
uf,∞ = 5.556 m/s 378.8 1.052×10−1

(6.10): perpendicular flow with a single, round im-
pinging jet

46.43 8.413×10−2

(6.10): perpendicular flow with an array of 9 round
impinging jets

28.35 4.953×10−2

(6.10): turbulent, parallel flow over a flat plate:
uf,∞ = 22.22 m/s 2,335 1.711×10−2

(6.19): nucleate, pool-boiling on a horizontal flat
surface

8,587 8.575×10−6

(d) Using this Ts, the average surface-convection thermal resistance is

Aku〈Rku〉D = Aku
Ts − Tlg

〈Qku〉D = 8.75 × 10−6 ◦C/(W/m2).

The average Nusselt number is determined from (6.99), i.e.,

〈Nu〉D =
D

klAku〈Rku〉D = 8,587.

COMMENT:
Problems 6.7, 6.10, 6.14 and 6.19 present applications of four different fluid flow arrangements for surface-

convection heat transfer. The choice of a certain process for convection heating or cooling of a surface depends
initially on the desired rate of cooling or heating. Table Pr.6.19 summarizes the results obtained for the Nus-
selt number and average surface-convection thermal resistance in order of decreasing surface-convection thermal
resistance.

The low speed laminar, parallel flow and the thermobuoyant flows have the largest surface-convection thermal
resistances. As a consequence, they provide the lowest surface-convection cooling or heating power. However, the
fluid propelling costs are minimal (or zero) making them attractive in situations where the desired heating/cooling
powers can be achieved by an increase in the available surface-convection area. Residential applications such as
climate control and cooling of the condenser of refrigerators are typical examples.

High-speed, parallel, laminar flows and perpendicular flows provide higher surface-convection heat transfer at
a cost of fluid propelling power. For low conductance substrates, multiple jets provide a more uniform rate of
heat transfer over the surface.

Finally, heat transfer with phase change gives the highest heat transfer rates. Modifications of the surface can
increase the rates of heat transfer in the nucleate boiling regime (i.e., heat transfer enhancement).

The choice of a surface-convection heating/cooling mechanism depends on additional constraints, for example,
available space, cost of fluid propelling power, weight, availability of fluids (e.g, situations were the necessary
amount of a liquid is not available), whether liquids can be used (e.g., when the system has to be kept dry),
continuous versus intermittent operation, reliability of the system (e.g., when the system has to operate by itself
for long periods of time, or in a remote location), and environmental concerns related to chemical or thermal
pollution (e.g., gas-pollutant emissions, hot-gas discharges in the atmosphere, and hot-water discharge into lakes
and rivers).
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PROBLEM 6.20.FAM

GIVEN:
Steam is produced by using the flue gas from a burner to heat a pool of water, as shown in Figure Pr.6.20(a).

The water and the flue gas are separated by a plate. On the flue-gas side (modeled as air), the measurements
show that the flue-gas, far-field temperature is Tf,∞ = 977◦C and flows parallel to the surface at uf,∞ = 2 m/s,
while the flue-gas side surface of the plate is at Ts,2 = 110◦C. The heat flows through the plate (having a length
L = 0.5 m and a width w) into the water (water is at the saturated temperature Tlg = 100◦C and is undergoing
nucleate boiling).

Evaluate the flue-gas properties as those of air at the flue-gas film temperature (i.e., at the average tempera-
ture between the flue-gas side surface temperature of the plate and the flue-gas, far-field temperature). For water,
use the saturation liquid-vapor properties given in Table C.26.

SKETCH:
Figure Pr.6.20(a) shows the surface separating the flow from the boiling water.

Boiler Base Plate

Parallel Flow
Surface-Convection

Heat TransferAir
uf,� = 2 m/s
Tf,� = 977 

oC

Water Pool, Tlg = 100 oC

Nucleate Boiling
Surface-Convection

Heat Transfer
Ts,1

Ts,2 = 110 oC L = 0.5 m

g

Figure Pr.6.20(a) A solid surface separating flue gas and water with a large difference between the far-field
temperatures causing the water to boil and produce steam.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the surface temperature of the plate on the water side Ts,1. For the nucleate boiling Nusselt number
correlation, use as = 0.013.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.6.20(b).

(b) The energy equations for nodes Ts,2 and Ts,1 gives

〈Qku〉L,2 = Qk,2-1 = 〈Qku〉L,1

where 〈Qku〉L,2 is the surface-convection heat transfer rate on the parallel-flow, gas side, Qk,2-1 is the conduction
heat transfer rate through the plate, and 〈Qku〉L,1 is the surface-convection heat transfer rate on the nucleate-
boiling water side. Note that no information is provided about the material or thickness of the base plate.
However, the above equation states that, under steady-state, the two surface-convection heat transfer rates are
the same. We use this to determine Ts,1.

(i) For the parallel flow, the gas side, the surface-convection heat transfer rate is given by (6.49) as

〈Qku〉L,2 =
Tf,∞ − Ts,2

〈Rku〉L,2
.

The average surface-convection thermal resistance can be obtained from the conditions given. The properties for
air at Tδ = (977+110)/2 = 544◦C = 817 K are obtained from Table C.22: kf = 0.0574 W/m-K, νf = 84.16×10−6
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Nucleate Boiling
Surface-Convection

Heat Transfer

Parallel Flow
Surface-Convection

Heat Transfer

Conduction Heat
Transfer Through the

Base Plate
Rk,2-1

Tlg

�Qku�L,1 �Rku�L,1

Qk,2-1

�Rku�L,2�Qku�L,2

Tf,�

Qu,lg

Ts,1

Ts,2

Qu,�

Figure Pr.6.20(b) Thermal circuit diagram.

m2/s, and Pr= 0.70.
The Reynolds number is given by (6.45), i.e.,

ReL =
uf,∞L

νf
=

2(m/s) × 0.5(m)
84.16 × 10−6

= 11,882.

For ReL = 11,882 < ReL,t = 5×105 the flow is in the laminar regime. For the laminar regime the average Nusselt
number is given in Table 6.3 as

〈Nu〉L,2 = 0.664Re1/2
L Pr1/3 = 0.664(11882)1/2(0.70)1/3 = 64.27.

The average surface-convection thermal resistance is given by (6.49), i.e.,

Aku〈Rku〉L,2 =
L

kf 〈Nu〉L,2
=

0.5(m)
0.057(W/m-K) × 64.27

= 0.1355◦C/(W/m2).

(ii) For the nucleate boiling, the liquid side, the surface-convection heat transfer rate is also given by (6.49) as

〈Qku〉L,1 =
Ts,1 − Tlg

〈Rku〉L,1
.

The properties for water at Tlg = 100◦C are found from Table C.26: kl = 0.679 W/m-K, µl = 277.53× 10−6 Pa.s,
ρl = 958.3 kg/m3, ρg = 0.596 kg/m3, cp,l = 4,220 J/kg-K, Prl = 1.73, σ = 0.05891 N/m, and ∆hlg = 2.257× 106

J/kg.
The average Nusselt number is given Table 6.6 as

〈Nu〉L,1 =
L

kl

µlc
3
p,l(Ts,1 − Tlg)2

a3
s∆h2

lg

(
g∆ρlg

σ

)1/2

Pr−n
l ,

where n = 3 for water. The average surface-convection thermal resistance is given by (6.49) as

Aku〈Rku〉L,1 =
L

kl〈Nu〉L,1
=

a3
s∆h2

lg

µlc3
p,l(Ts,1 − Tlg)2

(
σ

g∆ρlg

)1/2

Prn.

Note that Aku〈Rku〉L,1 cannot be determined, because Ts,1 is not known.
All the other properties are known and substituting their values we obtain

Aku〈Rku〉L,1 =
0.006957

(Ts,1 − Tlg)2
K3/(W/m2).
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From the energy equations, we get an algebraic equation in Ts,1,

Tf,∞ − Ts,2

0.1355
=

Ts,1 − Tlg
0.006957

(Ts,1−Tlg)2

.

substituting for Tf,∞ and Ts,2 and rearranging the right-hand side

44.51 = (Ts,1 − Tlg)3.

Solving the equation above for Ts,1,

Ts,1 = Tlg + (44.51)1/3 = 100 + 3.54 = 103.5◦C.

COMMENT:
Note that the difference in the surface and far-field temperatures for the flue gas side is Tf,∞ − Ts,2 = 867◦C,

while for the boiling water side it is Ts,1 − Tlg = 3.5◦C. The temperature difference Ts,1 − Tlg is called the surface
superheat.
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PROBLEM 6.21.FAM

GIVEN:
A glass sheet is vertically suspended above a pan of boiling water and the water condensing over the sheet

and raises its temperature. This is shown in Figure Pr.6.21(a). Filmwise condensation and uniform sheet
temperature Ts are assumed. Note that the condensate is formed on both sides of the sheet. Also assume a
steady-state heat transfer.

l = 1 mm, L = 15 cm, w = 15 cm, Tlg = 100◦C, Ts = 40◦C.
Use the saturated water properties at Tlg.

SKETCH:
Figure Pr.6.21(a) shows the glass sheet and the surrounding water vapor.

w

l

Water Vapor, Tlg

Filmwise Condensation
(Water)

Boiling
Water

Saturated Water Vapor

Suspended Glass Sheet

Uniform Ts

L

Qku  L

qk

Ml
.

Figure Pr.6.21(a) A glass sheet is vertically suspended in a water-vapor ambient and the heat released by condensation
raises the sheet temperature.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the heat transfer rate 〈Qku〉L, for the conditions given above, for each side.
(c) Determine the condensate flow rate Ṁl = −Ṁlg, for each side.
(d) Is this a laminar film condensate flow?

SOLUTION:
(a) Figure Pr.6.21(b) shows the thermal circuit diagram.

Ts

Tlg

Rku  L

Qku  L

Slg = �Mlg �hlg

Figure Pr.6.21(b) Thermal circuit diagram.

(b) From (6.49) and Table 6.6, for filmwise condensation on vertical surfaces, we have

〈Qku〉L = Aku〈Nu〉L kl

L
(Ts − Tlg)

〈Nu〉L = 0.9428
[

g∆ρlg∆hlgL
3

klνl(Tlg − Ts)

]1/4

.
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From Table C.27, we have for saturated water,

ρl = 958 kg/m3

ρg = 0.596 kg/m3

∆hlg = 2.257 × 106 J/kg
kl = 0.680 W/m-K

νl =
µl

ρl
=

279 × 10−6(Pa-s)
958(kg/m3)

= 2.91 × 10−7 m2/s

Then using the numerical values, we have

〈Nu〉L = 0.9428 ×
[
9.81(m/s2) × (958 − 0.596)(kg/m3) × 2.257 × 106(J/kg) × (0.15)3(m3)

0.680(W/m-K) × 2.91 × 10−7(m2-s) × (100 − 40)(K)

]1/4

= 1,480.

Then

〈Qku〉L = 0.15(m) × 0.15(m) × 1,480 × 0.680(W/m-K)
0.15(m)

× (40 − 100)(K)

= -9058 W.

(c) Using the energy equation for the control volume shown in Figure Pr.6.21(b), we have

〈Qku〉L = Ṡlg = −Ṁlg∆hlg

or

Ṁlg = −〈Qku〉L
∆hlg

= − −9,058(W)
2.257 × 106(J/kg)

= 4.005 × 10−3 kg/s
= 4.013 g/s

(d) Using (6.114), we have

4|〈qku〉L|L
µg∆hlg

=
4 × 9,058(W) × 0.15(m)

(0.15)2(m2) × 271 × 10−6(Pa-s) × 2.257 × 106(J/kg)
= 394.9 < 1,800.

The film condensate flow is in the laminar regime, and the choice of 〈Nu〉L was correct.

COMMENT:
Note that we have assumed a steady state heat transfer, where in practice Ts increases and eventually reaches

Tlg.
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PROBLEM 6.22.FAM

GIVEN:
To boil water by electrical resistance heating would require a large electrical power per unit area of the heater

surface. For a heater having a surface area for surface convection Aku, this power from (2.28) is

Ṡe,J =
∆ϕ2

Re
, Aku = πDl,

where ∆ϕ is the applied voltage, Re is the electrical resistance, and D and l are the diameter and length of the
heater surface. Consider the water-boiler shown in Figure Pr.6.22(a). Using Figure 6.20(b), assume a surface
superheat Ts − Tlg = 10◦C is needed for a significant nucleate boiling. Then use the nucleate boiling correlation
of Table 6.6.

as = 0.01, D = 0.5 cm, l = 12 cm, Tlg = 100◦C.
Use saturated water properties at T = Tlg.

SKETCH:
Figure Pr.6.22(a) shows the Joule heater in the water boiler.

Water,
Tl,� = Tlg

Se,J =

Heater Length, l

Electrical
Power Line

D

Heater

+

Aku
��2

Re

��
�

Figure Pr.6.22(a) A Joule heater is used to boil water.

OBJECTIVE:
(a) Draw the thermal circuit diagram for the heater.
(b) Determine the surface-convection heat transfer rate 〈Qku〉D, for the conditions given above.
(c) For an electrical resistance of Re = 20 ohm, what should be the applied voltage ∆ϕ, and the electrical current
Je ?

SOLUTION:
(a) Figure Pr.6.22(b) shows the thermal circuit diagram for the heater. The energy equation is Q|A = 〈Qku〉L =
Ṡe,J.

Ts

Tlg

Rku  L

Qku  L

Se,J =
��2

Re

Figure Pr.6.22(b) Thermal circuit diagram.

(b) From Table 6.6, we have for the nucleate boiling regime and using (6.49),

〈Qku〉L = Aku〈Nu〉L kl

L
(Ts − Tlg)

= Aku
1
a3

s

µlc
3
p,l(Ts − Tlg)3

∆hlg

(
g∆ρlg

σ

)1/2

Pr−3
l ,

where we have used n = 3 for water and L drops out of the relation.
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Table C.26 list the water properties at Tlg = 373.15 K, i.e.,

µl = 277.5 × 10−6 Pa-s
cp,l = 4, 220 J/kg-K

∆hlg = 2,257 × 106 J/kg
σ = 0.05891 N/m

∆ρlg = ρl − ρg = (958.3 − 0.596)(kg/m3) = 957.7 kg/m3

PrL = 1.73(
g∆ρlg

σ

)1/2

=
[
9.81(m/s) × (957.7)(kg/m3)

0.05891(N/m)

]1/2

= 399.3 1/m

〈Qku〉L =
π × 0.005(m) × 0.12(m) × 2.775 × 10−4(Pa-s) × (4,220)3(J/kg)3 × 103(K)3 × 399.3(1/m)

(0.01)3 × (2.257 × 106)2(J/kg)2 × (1.73)3

= 595.1 W.

(c) The required electrical potential is

∆ϕ = (Ṡe,JRe)1/2

= (〈Qku〉LRe)1/2

= [595.1(W) × 20(ohm)]1/2

= 109.1 V.

From (2.32), we have

Je =
∆ϕ

Re
=

109.1 V
20(ohm)

= 5.455 A.

COMMENT:
Boiling water requires a large electric power per unit area. For this reason, stored electric power, such as in

batteries, can not be used. Also, note that from (2.32), we have

Re =
ρel

Ae
,

where Ae is the electrical conductor cross-section area. To produce a large electrical resistance, a small Ae is used
(see Example 2.10).
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PROBLEM 6.23.FAM

GIVEN:
To reduce the air conditioning load, the roof of a commercial building is cooled by a water spray. The roof

is divided into segments with each having a dedicated sprinkler, as shown in Figure Pr.6.23(a). Assume that the
impinging-droplet film evaporation relation of Table 6.6 can be used here.

L = 4 m, Tf,∞ = 30◦C, Ts = 210◦C, 〈D〉 = 100 µm, 〈ud〉 = 2.5 m/s, 〈ṁd〉/ρl,∞ = 10−3 m/s.
Evaluate the water properties at T = 373 K.

SKETCH:
Figure Pr.6.23(a) shows the water sprinkler and the roof panel.

Water Droplet Spray, Tl,�

Roof Panel to
be Cooled, Ts

Water Sprinkler
and Supply Pipe

Remotely
Controlled

Valve

L
L

Figure Pr.6.23(a) Water-spray cooling of a roof panel.

OBJECTIVE:
(a) Draw the thermal circuit diagram for the panel surface.
(b) Using the conditions given above, determine the rate of surface-convection heat transfer 〈Qku〉L from the roof
panel.

SOLUTION:
(a) Figure Pr.6.23(b) shows the thermal circuit diagram

Qku   L

Ts

Tl,�

Rku  L

Figure Pr.6.23(b) Thermal circuit diagram.

(b) The rate of surface-convection heat transfer is given by (6.49) as

〈Qku〉L =
Ts − Tl,∞
〈Rku〉L = Aku(Ts − Tl,∞)〈Nu〉L kl

L
, Aku = L2.

From Table 6.5, we have

〈Qku〉L = Akuρl,∞∆hlg,∞

( 〈ṁd〉
ρl,∞

)
ηd

[
1 − 〈ṁd〉/ρl,∞

(〈ṁd〉/ρl)◦

]
+

Aku × 1,720(Ts − Tl,∞)0.912〈D〉−1.004〈ud〉−0.764 (〈ṁd〉/ρl,∞)2

(〈ṁd〉/ρl)◦
,(

ṁd

ρl,∞

)
o

= 5 × 10−3 m/s

ηd =
3.68 × 104

ρl,∞∆hlg,∞
(Ts − Tl,∞)1.691〈D〉−0.062.
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From Tables C.4, and C.23, we have for water at T = 373 K

∆hlg = 2.256 × 106 J/kg Table C.4

(cp,l)∞ = 4,218 J/kg-K Table C.23

ρl,∞ = 960.2 kg/m3 Table C.23,

Then

∆hlg,∞ = (cp,l)∞(Tlg − Tl,∞) + ∆hlg

= 4,218(J/kg-K) × (100 − 30)(K) + 2.256 × 106(J/kg)
= 2.551 × 106 J/kg

Next,

ηd =
3.68 × 104

960.2(kg/m3) × 2.251 × 106(J/kg)
× (210 − 30)1.691(K)1.691 × (1 × 10−4)−0.062(m)−0.062

= 0.1732.

For 〈Qku〉L, we have

〈Qku〉L = (4)2(m)2 × 960.5(kg/m3) × 2.541 × 106(J/kg) ×

10−3(m/s) × 0.1732 ×
[
1 − 10−3(m/s)

5 × 10−3(m/s)

]
+ (4)2(m)2 × 1,720 × (210 − 30)0.912(K)0.912 ×

(10−4)−1.004(m)−1.004(2.5)−0.746(m/s)−0.746 (10−3)2(m/s)2

5 × 10−3(m/s)
= 5.432 × 106(W) + 3.286 × 106(W)
= 8.718 × 106 W.

COMMENT:
This cooling rate is held only for a short time to reduce the roof panel temperature to a low, safe and desirable

value. Note that water spray cooling is economical and when no high-humidity damage is expected, this cooling
method can be effective.
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PROBLEM 6.24.FAM

GIVEN:
In using water evaporation in surface-convection heat transfer, compare pool boiling by saturated water

(Tl,∞ = Tlg), as shown in Figure 6.20(b), and droplet impingement by subcooled water droplets (Tl,∞ < Tlg) as
shown in Figure 6.26. For pool boiling, the peak in 〈Qku〉L is given by the critical heat flux, i.e., (6.100), and the
minimum is given by (6.101). For impinging droplets, the peak shown in Figure 6.26 is nearly independent of the
droplet mass flux, in the high mass flux regime, and the minimum is approximately correlated by (6.116). The
correlations are also listed in Table 6.6.

Pool boiling: Tlg = 100◦C, Ts = 300◦C.
Impinging droplets: 〈ṁd〉 = 1.43 kg/m2-s, 〈ud〉 = 3.21 m/s, 〈D〉 = 480 µm, Tl,∞ = 20◦C, Tlg = 100◦C,

Ts = 300◦C, evaluate properties at 310 K.
Note that not all these conditions are used in every case considered.

SKETCH:
Figure Pr.6.24 shows the two surface cooling methods using water evaporation.

Substrate

Vapor
Film

Vapor

(i) Pool Boiling: Vapor-Film Regime (ii) Impinging Droplets: Vapor-Film Regime

qku  L

Tlg

Ts

Liquid

Vapor

qku  L

Tl,�

Ts

Droplet

Substrate
Vapor
Film

D

Figure Pr.6.24 Selection of a water evaporation surface cooling method, between (i) pool boiling and (ii) impingement
droplets.

OBJECTIVE:
Select between water pool boiling [Figure Pr.6.24(i)] and droplet impingement [Figure Pr.6.24(ii)], by com-

paring (i) peak, and (ii) minimum, surface-convection heat flux 〈qku〉L.

SOLUTION:
(a) Peak (or critical) heat flux:
(i) For pool boiling, from Table 6.6, we have

〈qku〉L = qku,CHF = 0.13ρg∆hlg

(
σ∆ρlg

ρ2
g

)1/4

.

From Table C.26, for water at T = 373.15 K, we have

ρl = 958.3 kg/m3 Table C.26

ρg = 0.596 kg/m3 Table C.26

∆hlg = 2.257 × 106 J/kg Table C.26

σ = 0.05891 N/m Table C.26.

Then,

〈qku〉L = qku,CHF = 0.13 × 0.596(kg/m3) × 2.257 × 106(J/kg) ×[
0.05891(N/m) × 9.81(m/s2) × (958.3 − 0.596)(kg/m3)

(0.596)2(kg/m3)2

]1/4

= 1.099 × 106 W/m2.

This is close to the value shown in Figure 6.20(b).
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(ii) For impinging droplets, reading from Figure 6.26 for 〈ṁd〉 = 1.43 kg/m2-s, we have

〈qku〉L = qku,peak = 2 × 106 W/m2 Figure 6.26.

Thus the impinging droplets gives a higher 〈qku〉L.

(b) Minimum heat flux:
(i) For pool boiling, from Table 6.6, we have

〈qku〉L = qku,min = 0.09ρg∆hlg

(
σg∆ρlg

ρl + ρg

)1/4

.

= 0.09 × 0.596(kg/m3) × 2.257 × 106(J/kg) ×[
0.0591(N/m) × 9.81(m/s2) × (958.3 − 0.596)(kg/m3)

(958.3 + 0.596)2(kg/m3)2

]1/4

= (1.211 × 105 × 0.1567)(W/m2)
= 1.896 × 104 W/m2.

(ii) For impinging droplets, we have from Table 6.6,

〈qku〉L = ρl,∞∆hlg,∞
ṁd

ρl,∞
ηd

[
1 − 〈ṁd〉/ρl,∞

(〈ṁd〉/ρl)◦

]
+

1,720(Ts − Tl,∞)0.912〈D〉−1.004〈ud〉−0.764 (〈ṁd〉/ρl,∞)2

(〈ṁd〉/ρl)◦
.

From Table C.23, at T = 310 K, we have

ρl,∞ = 995.3 kg/m3 Table C.23

cp,l = 4,178J/kg-K Table C.23.

Then from Table 6.6, we have

∆hlg,∞ = (cp,l)∞(Ts − Tl,∞) + ∆hlg

= 4,178(J/kg-K) × (100 − 20)(K) + 2.257 × 106(J/kg)
= 2.591 × 106 J/kg.

ηd =
3.68 × 104

ρl,∞∆hlg,∞
(Ts − Tl,∞)1.691〈D〉−0.062

=
3.68 × 104

995.3(kg/m3) × 2.591 × 106(J/kg)
(300 − 20)1.691(K)1.691(4.80 × 10−4)−0.062(m)−0.062

= 0.3150.

Then

〈qku〉L = 995.3(kg/m3) × 2.591 × 106(J/kg) ×
1.43(kg/m2-s)
995.3(kg/m3)

× 0.3150 ×
[
1 − 1.43(kg/m2-s)

995.3(kg/m3) × 5 × 10−3(m/s)

]
+ 1,720(300 − 20)0.912(K)0.912 ×

(4.8 × 10−4)−1.004(m)−1.004(3.21)−0.746(m/s)−0.746 (1.43)2(kg/m2-s)2

(995.3)2(kg/m3) × 5 × 10−3(m/s)
= (8.317 × 105 + 1.090 × 105)(W/m2)
= 9.407 × 105 W/m2.

This is much larger than that for the vapor-film pool boiling.

COMMENT:
Here droplet impingement gives higher heat fluxes. Note that the correlation used for vapor-film regime of

impingement droplets uses a temperature dependence that is much stronger than that found in the experimental
results given in Figure 6.26.
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PROBLEM 6.25.FUN

GIVEN:
A person caught in a cold cross wind chooses to curl up (crouching as compared to standing up) to reduce

the surface-convection heat transfer from his clothed body. Figure Pr.6.25(a) shows two idealized geometries for
the person while crouching [Figure Pr.6.25(a)(i)] and while standing up [Figure Pr.6.25(a)(ii)].

Ds = 50 cm, Dc = 35 cm, Lc = 170 cm, T1 = 12◦C, Tf,∞ = −4◦C, uf,∞ = 5 m/s, ki = 0.1 W/m-K.
Use air properties (Table C.22) at T = 300 K.

SKETCH:
Figure Pr.6.25(a) shows the two positions.

Ds

Dc

Lc

T1T1

Tf,�
uf,�

Tf,�
uf,�

(i) Crouching (ii) Standing

Figure Pr.6.25(a) Two positions by a person in a cold cross flow of air.
(i) Crouching position. (ii) Standing position.

OBJECTIVE:
(a) Draw the thermal circuit diagram and determine the heat transfer rate for the idealized spherical geometry.
(b) Draw the thermal circuit diagram and determine the heat transfer rate for the idealized cylindrical geometry.
Neglect the heat transfer from the ends of the cylinder.
(c) Additional insulation (with thermal conductivity ki) is to be worn by the standing position to reduce the
surface-convection heat transfer to that equal to the crouching position. Draw the thermal circuit diagram and
determine the necessary insulation thickness L to make the two surface convection heat transfer rates equal.
Assume that T1 and the surface-convection resistance for the cylinder will remain the same as in part (b).
(d) What is the outside-surface temperature T2 of the added insulation?

SOLUTION:
From Table C.22, the properties of air at T = 300 K are ρf = 1.177 kg/m3, νf = 15.66×10−6 m2/s, Pr= 0.69,

and kf = 0.0267 W/m-K.
(a) Sphere: The thermal circuit diagram is shown in Figure Pr.6.25(b).

Rku  D,s Tf,�T1

Qku  D,s

Figure Pr.6.25(b) Thermal circuit diagram.

The average surface-convection heat transfer rate from the sphere is then

〈Qku〉D,s =
T1 − Tf,∞
〈Rku〉D,s

,

where

〈Rku〉D,s =
Ds

Aku,s〈Nu〉D,skf
.
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The surface area for convection is the area of the sphere, or

Aku,s = πD2
s = π × 0.52(m2) = 0.7854 m2.

The Nusselt number for the sphere, from Table 6.4, is

〈Nu〉D,s = 2 + [0.4Re1/2
D,s + 0.06Re2/3

D,s]Pr0.4.

The Reynolds number is found as

ReD,s =
uf,∞Ds

νf
=

5(m/s) × 0.5(m)
15.66 × 10−6(m2/s)

= 1.596 × 105.

There was no Reynolds number restrictions given for the applicability of the Nusselt number correlation, so we
will assume the correlation is valid.
Then the Nusselt number becomes

〈Nu〉D,s = 2 + (0.4(1.596 × 105)1/2 + 0.06(1.596 × 105)2/3)0.690.4 = 291.9,

and the surface-convection heat transfer resistance becomes

〈Rku〉D,s =
0.5(m)

0.7854(m2) × 291.9 × 0.0267(w/m-K)
= 0.08167◦C/W.

The surface convection heat transfer from the sphere is then

〈Qku〉D,s =
12◦C − (−4◦C)
0.08167◦C/W

= 195.9 W.

(b) Cylinder: The thermal circuit diagram is shown in Figure Pr.6.25(c). The average surface-convection heat

Rku  D,c Tf,�T1

Qku  D,c

Figure Pr.6.25(c) Thermal circuit diagram.

transfer rate from the cylinder (neglecting the heat transfer from the ends) is then

〈Qku〉D,c =
T1 − Tf,∞
〈Rku〉D,c

,

where

〈Rku〉D,c =
Dc

Aku,c〈Nu〉D,ckf
.

The surface area for convection is the area of the cylinder not including the end areas, or

Aku,c = πDcLc = π × 0.35(m) × 1.70(m) = 1.869 m2.

The Nusselt number for a cylinder in cross flow, from Table 6.3, is Reynolds number dependent and has the form

〈Nu〉D,c = a1Rea2
D,cPr1/3.

The Reynolds number is found as

ReD,c =
uf,∞Dc

νf
=

5(m/s) × 0.35(m)
15.66 × 10−6(m2/s)

= 1.1175 × 105.
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For this Reynolds number, the constants are given in Table 6.3 as a1 = 0.027 and a2 = 0.805.
Then the Nusselt number becomes

〈Nu〉D,c = 0.027 × (1.1175 × 105)0.805 × (0.69)1/3 = 276.4,

and the surface-convection heat transfer resistance becomes

〈Rku〉D,c =
0.35(m)

1.869(m2) × 276.4 × 0.0267(w/m-K)
= 0.02538◦C/W.

The surface convection heat transfer from the sphere is then

〈Qku〉D,c =
12◦C − (−4◦C)
0.0254◦C/W

= 630.5 W.

Which is significantly higher than that for the sphere.

(c) Added insulation: The thermal circuit diagram is shown in Figure Pr.6.25(d). Insulation of thermal con-

Rku  D,c Tf,�T2

=  Qku  D,s

Rk,iT1

Qku  D,c

Figure Pr.6.25(d) Thermal circuit diagram.

ductivity ki = 0.1 W/m-K and thickness L (to be determined) is added to the cylinder such that the average
surface-convection heat transfer rate from the cylinder is equal to that from the sphere. The surface-convection
resistance from the cylinder 〈Rku〉D,c and the temperature T1 are assumed the same as in Part (b). Therefore,

〈Qku〉D,c =
T1 − Tf,∞

Rk,i + 〈Rku〉D,c
= 〈Qku〉D,s =

T1 − Tf,∞
〈Rku〉D,s

.

Given that 〈Qku〉D,c = 〈Qku〉D,s, we then have

Rk,i + 〈Rku〉D,c = 〈Rku〉D,s

or

Rk,i = 〈Rku〉D,s − 〈Rku〉D,c

= 0.08167◦C/W − 0.02538◦C/W = 0.05629◦C/W.

For the cylindrical system, the conduction resistance in the radial direction across the insulation thickness L =
R2 − R1 is

Rk,i =
ln(R2/R1)

2πLcki

or

R2/R1 = exp(Rk,i2πLcki)
= exp[0.05629(◦C/W) × 2 × π × 1.7(m) × 0.1(W/m-K)] = 1.062.

The inner radius is the uninsulated radius of the cylinder and is

R1 = Dc/2 = 0.35(m)/2 = 0.175 m,

and then

R2 = R1 × 1.062
= 0.175(m) × 1.062 = 0.1858 m.
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The thickness of insulation is then

L = R2 − R1

= 0.186(m) − 0.175(m)
= 0.0108 m = 1.08 cm.

(d) The outside surface temperature of the insulation can be found by applying the energy equation between node
T2 and T1 in Figure Pr.6.33(d) as

〈Qku〉D,s =
T1 − T2

〈Rk,i〉 .

Then

T2 = T1 − 〈Qku〉D,s × 〈Rk,i〉
= 12(◦C) − 195.9(W) × 0.05629(◦C/W) = 0.97◦C.

COMMENT:
Note that the two Nusselt numbers are nearly the same, but the heat transfer rates are different to the surface

area.
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PROBLEM 6.26.FUN

GIVEN:
A thermocouple is placed in an air stream to measure the stream temperature, as shown in Figure Pr.6.26(a).

The steady-state temperature of the thermocouple bead of diameter D is determined through its surface-convection
(as a sphere in a semi-bounded fluid stream) and surface-radiation heat transfer rates.

uf,∞ = 2 m/s, Tf,∞ = 600◦C, Tw = 400◦C, εr,w = 0.9, εr,s = 0.8, D = 1 mm.
Neglect the heat transfer to and from the wires and treat the surface-convection heat transfer to the thermo-

couple bead as a semi-bounded fluid flow over a sphere.
Assume the tube length L is large (i.e, L → ∞). Evaluate the fluid properties at T = 350 K (Table C.22).
Numerical hint: The thermocouple bead temperature should be much closer to the air stream temperature

than to the tube surface temperature. For iterations, start with a a guess of T = 820 K.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the thermocouple bead temperature Ts.
(c) Comment on the difference between Ts and Tf,∞. How can the difference (measurement error) be reduced?

SKETCH:
Figure Pr.6.26(a) shows the thermocouple placed in a tube to measure the fluid stream temperature at a

location.

Air Flow
uf,�

Tf,�

Thermocouple Wires

Thermocouple Bead

D

Thermocouple bead, T2

T1

Figure Pr.6.26(a) A thermocouple used for measuring a fluid stream temperature.

SOLUTION:
From Table C.22, the properties of air at T = 350 K are νf = 20.30 × 10−6 m2/s, Pr= 0.69, and kf = 0.030

W/m-K.
(a) The thermal circuit diagram is shown in Figure Pr.6.26(b).

(Rr,Σ)
2-1

Qr

RkuTf,�

T1

Qku 

T2

Figure Pr.6.26(b) Thermal circuit diagram.

(b) The conservation of energy applied to the spherical thermocouple bead gives

Qr + Qku = 0
σSB(T 4

2 − T 4
1 )

(Rr,Σ)2-1
+

T2 − Tf,∞
Rku

= 0.
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The radiation resistances are found as

(Rr,Σ)2-1 = (Rr,ε)2 + (Rr,F )2-1 + (Rr,ε)1.

Since L → ∞, then we can assume A1 → ∞. Also, since L is very large compared to the tube diameter, we can
neglect the tube ends on the radiation to the thermocouple bead. The view factor from the bead to the tube can
then be assumed F1-2 ≈ 1. The area of the bead is A2 = πD2 = π × (0.001)2 = 3.142 × 10−6 m2. Thus we have

(Rr,Σ)2-1 =
1 − εr,2

A2εr,2
+

1
A2F2-1

+
1 − εr,1

A1εr,1

=
1 − 0.8

3.142 × 10−6(m2) × 0.8
+

1
3.142 × 10−6(m2) × (1)

+ 0

= 7.957 × 104 m−2 + 3.183 × 105 m−2 = 3.978 × 105 m−2.

For the surface-convection resistance, we have

Rku =
1

A2〈Nu〉Dkf/D
,

where the 〈Nu〉D is found from Table 6.4 as

〈Nu〉D = 2 + (0.4Re1/2
D + 0.06Re2/3

D )Pr0.4.

with the ReD determined as

ReD =
uf,∞D

νf
=

2(m/s) × 0.001(m)
20.30 × 10−6(m2/s)

= 98.52.

The Nusselt number is then

〈Nu〉D = 2 + [0.4(98.52)1/2 + 0.06(98.52)2/3]0.690.4 = 6.526,

and the surface-convection resistance is

Rku =
1

3.142 × 10−6(m2) × 6.526 × 0.030(W/m-K)/0.001(m)
= 1626◦C/W.

The energy balance cannot be solved explicitly for T2, therefore we must use a solver or iterate. We can rearrange
to facilitate iteration as

newT2 = Tf,∞ − Rku

(Rr,Σ)2-1
σSB(oldT 4

2 − T 4
1 )

= 873.15(K) − 1626(◦C/W)
3.978 × 105(m−2)

× 5.67 × 10−8(W/m2-K4) × (oldT 4
2 − 2.053 × 1011)(K4)

= 873.15(K) − 2.3176 × 10−10(K−3) × (oldT 4
2 − 2.053 × 1011)(K4).

To iterate, we guess an initial T2 = oldT2 and calculate newT2. Then the newT2 of the previous iteration becomes
the oldT2 of the next, and so on, until |newT2 − oldT2| < criterion (i.e., the same). Faster convergence can be
achieved averaging the old and new values of the previous iteration to become the old value of the next iteration.
Table Pr.6.26 shows the values at the iteration steps, using averaged guesses and a criterion of 0.1 K. The initial
T2 is taken to be closer to the fluid stream temperature Tf,∞ at oldT2 = 820 K.

Table Pr.6.26 Results of Numerical Iteration.
iteration oldT2, K newT2, K average difference

1 820 815.95 817.97 4.05
2 817.97 816.98 817.43 0.99
3 817.43 817.25 817.34 0.18
4 817.34 817.30 817.32 0.04
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Therefore, the bead temperature is T2 � 817.3 K.

(c) The temperature difference T2−Tf,∞ = 55.8 K is rather large and is due to the heat loss from the thermocouple
bead. The heat loss is by radiation and conduction along the wires. At high temperatures, radiation heat transfer
can become significant compared to the surface-convection heat transfer. To reduce the measurement error, the
radiation losses from the bead must be reduced. This can be accomplished by placing a thin, cylindrical radiation
shield around the bead that would be heated by the fluid stream to a temperature nearer to the thermocouple
bead temperature and that would not greatly disturb the fluid flow around the bead. The shield increases the
net sum radiation resistance between the bead and the tube wall. The measurement error can also be reduced
by decreasing the bead diameter to reduce the area for radiation heat transfer.

COMMENT:
Note that errors due to the bead and wire surface-radiation heat transfer and conduction along the wire (where

placed along a nonuniform temperature field) should be reduced for accurate measurements.
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PROBLEM 6.27.FAM

GIVEN:
In order to prevent the flame from blow-off by a cross wind, a lighter is desired with a flame anchor (i.e.,

flame holder) in the from of a winding wire placed in the air-fuel stream undergoing combustion. This is shown in
Figure Pr.6.27(a)(i). The wire retains (through its heat storage) a high temperature and will maintain the flame
around it, despite a large, intermittent cross flow. Assume that the combustion of the n-butane in air is complete
before the gas stream at temperature Tf,∞ and velocity uf,∞ reach the flame holder. Treat the flame holder as
a long cylinder with steady-state, surface-convection heating and surface-radiation cooling. The simplified heat
transfer model is also shown, in Figure Pr.6.27(a)(ii).

Tf,∞ = 1,300◦C, D = 0.3 mm, Tsurr = 30◦C, εr,s = 0.8.
Use the adiabatic, laminar flame speed, for the stoichiometric n-butane in air, from Table C.21(a), for the

far-field fluid velocity uf,∞.
You do not need to use tables or graphs for the view factors. Assume the properties of the combustion prod-

ucts are those of air at T = 900 K.

SKETCH:
Figure Pr.6.27(a) shows the flame holder and a simplified heat transfer model for the wire.

Wire

Tsurr

Wire Flame Holder
Qr,s-surr

Qku   D,s-�

D

uf,�

Tf,�

(i) Physical Model (ii) Heat Transfer Model

Lighter

Ts ,  r,s

\
\

\\\\\

�

Figure Pr.6.27(a)(i) A winding-wire, flame holder used in a lighter. (ii) A simplified heat transfer model for the wire.

OBJECTIVE:
(a) Draw the thermal circuit for the flame holder.
(b) Determine the flame holder temperature Ts for the given conditions.

SOLUTION:
(a) Figure Pr.6.27(b) shows the thermal circuit diagrams. The heat is added by surface convection to the wire
and is removed by radiation to the surroundings. The surface area for surface radiation and convection are the
same i.e.,

Ar,s = Aku,s = As.

(b) From Figure Pr.6.27(b), the energy equation is

Q|A,s = 〈Qku〉D,s-∞ + Qr,s-surr = 0.

The surface convection is given by (6.124) as

〈Qku〉D,s-∞ =
Ts − Tf,∞
(Rku)D

= Aku〈Nu〉D kf

D
(Ts − Tf,∞),

where 〈Nu〉D is found from Table 6.3 for cross, forced flow over a cylinder, i.e.,

〈Nu〉D = a1Rea2
D Pr1/3, ReD =

uf,∞D

νf
,
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Tsurr

Eb,surr

Eb,s

Ar,s = Aku,s = A

Ts

Tf,�

uf,�

Qr,s-surr
Rr,�

Qku   D,s-�

Rku  D

Figure Pr.6.27(b) Thermal circuit diagram.

and a1 and a2 depend on the magnitude of ReD.
From Table C.21(a), for n-butane-air, we have

uf,∞ = uf,1 = 0.379 m/s Table C.21(a).

From Table C.22, for air at T = 900 K, we have

kf = 0.0625 W/m-K Table C.22

νf = 9.860 × 10−5 m2/s Table C.22

Pr = 0.7 Table C.22.

Then

ReD =
0.379(m/s) × 3 × 10−4(m)

9.860 × 10−5(m2/s)
= 1.153

a1 = 0.683, a2 = 0.466 Table 6.3

〈Nu〉D = 0.683 × (1.153)0.466 × (0.7)1/3 = 0.6481.

The surface radiation for Asurr � As and Fs-surr = 1, is given by (4.49), i.e.,

Qr,s-surr = Ar,sεr,sσSB(T 4
s − T 4

surr).

Then the energy equation becomes

As〈Nu〉D kf

D
(Ts − Tf,∞) + Asεr,sσSB(T 4

s − T 4
surr) = 0

or

〈Nu〉D kf

D
(Ts − Tf,∞) + εr,sσSB(T 4

s − T 4
surr) = 0.

Using the numerical values, we have

0.6481 × 0.0625(W/m-K)
3 × 10−4(m)

× (Ts − 1,573)(m) + 0.8 × 5.67 × 10−8(W/m2-K) × [T 4
s − (303.15)4(K4)] = 0

which gives an algebraic equation in Ts,

1.350 × 102 × [Ts − 1,573(K)] + 4.536 × 10−8 × (T 4
s − 8.446 × 109) = 0.

Solving for Ts, we have

Ts = 1,094 K.

COMMENT:
The wire can be made of tungsten to be resistive to oxidation at such high temperatures. Note that 〈Nu〉D is

less than unity. This is because as ReD → 0, 〈Nu〉D for long cylinders tends to zero (unlike that for spheres for
which 〈Nu〉D → 2 in the conduction limit). This is due to the available conduction area as R2 → ∞ in (3.61), as
compared to (3.64).
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PROBLEM 6.28.FUN

GIVEN:
Consider measuring the temperature Tf,∞ of an air stream using a thermocouple. A thermocouple is a junc-

tion made of two dissimilar materials (generally metals, as discussed in Section 2.3.2), as shown in Figure Pr.6.28.
The wires are electrically (and if needed, thermally) insulated. The wire may not be in thermal equilibrium with
the stream. This can be due to the nonuniformity of temperature along the wire. Then the temperature of the
thermocouple bead (i.e., its tip) Ts,L may not be close enough to Tf,∞, for the required accuracy. Consider an
air stream with a far-field temperature Tf,∞ = 27◦C and a far-field velocity uf,∞ = 5 m/s. Assume that the bare
(not insulated) end of the wire is at temperature Ts,o = 15◦C. Consider one of the thermocouple wires made of
copper, having a diameter D = 0.2 mm and a bare-wire length L = 5 mm.

Evaluate the properties of air at 300 K.

SKETCH:
Figure Pr.6.28 shows the thermocouple junction and the idealized model for heat transfer from one of its

wires.

Tf,� , uf ,�

Tf,� = 27   C
uf ,� = 5 m/s

Probe

Thermocouple Bead

Dissimilar 
Thermocouple Wires

Individual Wire
Insulation Wrapping

Insulation
Wrapping

(i) Idealized Thermocouple Wire Model  (ii) A Thermocouple for Measurement of Tf,�

Ts,0

Ts,L

L = 5 mm Ts,0

Ts,L

D = 0.2 mm

Figure Pr.6.28 A thermocouple junction used for temperature measurement in an air stream. (i) Idealized
thermocouple wire model. (ii) Thermocouple for measurement of Tf,∞.

OBJECTIVE:
Using the extended surface analysis, determine the expected uncertainty Tf,∞ − Ts,L.

SOLUTION:
The properties of air are determined from Table C.22 for T = 300 K and are kf = 0.0267W/m-K, νf =

15.66 × 10−6 m2/s, Pr = 0.69. For pure copper from Table C.14 and T = 300 K, we have ks = 401 W/m-K.
We will use the extended surface (fin) results for the temperature distribution along the wire, i.e., from (6.143)
we have,

Ts(x) − Tf,∞
Ts,o − Tf,∞

=
cosh[m(Lc − x)]

cosh(mLc)
.

We are interested in the end location along the thermocouple wire which is at the end or at x = Lc (i.e., corrected
length). Then we have

Ts(L) − Tf,∞
Ts,0 − Tf,∞

=
cosh[m(Lc − Lc)]

cosh(mLc)
Ts(Lc) − Tf,∞
Ts,0 − Tf,∞

=
cosh(0)

cosh(mLc)

Ts(Lc) − Tf,∞ =
Ts,0 − Tf,∞
cosh(mLc)

.

From (6.141), we have

Lc = L +
D

4

Lc = 0.005(m) +
2 × 10−4(m)

4
= 0.00505 m.
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For m, from (6.144) we have

m =
(

Pku〈Nu〉Dkf

AkksD

)1/2

, Pku = πD, Ak =
πD2

4
.

For 〈Nu〉D, from Table 6.3 we have

〈Nu〉D = a1Rea2
D Pr1/3,

where

ReD =
uf,∞D

νf
=

5(m/s) × (2 × 10−4)(m)
15.66 × 10−6(m2/s)

= 63.86.

Then from Table 6.4, we have

a1 = 0.683, a2 = 0.466
〈Nu〉D = 0.683(63.8)0.466(0.69)1/3

= 4.187

m =


 π × 2 × 10−4(m) × 4.187 × 0.0267(W/m-K)

π(2 × 10−4)2(m2)
4

× 401(W/m-K) × 2 × 10−4




1/2

= (
7.3 × 10−5

2.519 × 10−4 )1/2 1/m = 167.0 1/m.

The expected uncertainty is

Tf,∞ − Ts,L =
27(◦C) − 15(◦C)

cosh[167.0(1/m) × 0.00505(m)]
= 8.71◦C.

COMMENT:
The uncertainty can be large for large Tf,∞−Ts,o and for small L. Here, the error is 8.7◦C. In order to reduce

this error, we can for example, triple the length and the error would be reduced to 1.9 ◦C. With care, Tf,∞ − Ts,o

can also be reduced by placing the thermocouple wire along nearly isothermal paths in the flow field. Also note
that mLc = Bi1/2

D = 0.8434, or BiD = 0.7112. This also shows that there is a significant temperature variation
within the wire.
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PROBLEM 6.29.FUN

GIVEN:
Shape-memory actuation devices are capable of recovering a particular shape upon heating above their trans-

formation temperature. These alloys can be made of nickel and titanium and display two types of material
properties. When at a temperature below their transformation temperature Tt, they display the properties of
martensite and, when above this temperature they display the properties of austenite. The NiTi alloy shown in
Figure Pr.6.29(a) is shaped as a spring and deforms from a compressed state [Figure Pr.6.29(a)(i)] to an extended
state [Figure Pr.6.29(a)(ii)] when heated above its transformation temperature.

This spring is being tested for its suitability for use in the closing of heating ducts within a desired elapsed
time. In order to close the duct, the spring must extend a lightweight-beam induced closing mechanism within 20
s. The air flow within the heating duct has a velocity uf,∞ and temperature Tf,∞, near the spring. The spring
has a length L, an outer diameter D2, an inner diameter D1, and an initial temperature T1(t = 0).

Assume that the entire spring is at a uniform temperature T1(t) and the dominant surface heat transfer is by
surface convection.

Martensite: ρ = 6,450 kg/m3, k = 8.6 W/m-◦C, cp = 837.36 J/kg-◦C, T1(t = 0) = 21◦C, Tt = 50◦C, L = 4 cm,
D2 = 0.5 cm, D1 = 0.4 cm, uf,∞ = 5 m/s, Tf,∞ = 77◦C.

Evaluate the properties of air at 350 K.

SKETCH:
Figure Pr.6.29(a) shows the thermally actuated shape-memory spring.

uf,�

Tf,�

uf,�

Tf,�

D2

D2

D1

D1

L

L

(i) Martensite T1 < Tt

(ii) Austenite T1 > Tt

ρcp , k

T1(t), T1(t = 0)

ρcp , k

T1(t), T1(t = 0)

Figure Pr.6.29(a) Springs made of shape-memory alloy and used for thermal actuation.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Use the properties of the low-temperature form of NiTi listed above and determine if the spring will activate
during the time allowed.

SOLUTION:
Properties (air, T = 350 K, Table C.22): kf = 0.0300 W/m-K, ρf = 1.012 kg/m3, cp,f = 1,007 J/kg-K,

νf = 20.3 × 10−6 m2/s, αf = 29.44 × 10−6 m2/s, Pr = 0.69.

(a) The thermal circuit diagram is shown in Figure Pr.6.29(b).
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Tf,�

uf,�

Qku  D

Rku  D

� (ρcpV)1

Initial Temperature: T1(t = 0)

T1(t)

dT1

dt

Figure Pr.6.29(b) Thermal circuit diagram.

(b) Assuming surface-convection heat transfer with transient, lumped capacitance treatment of the substrate,
from (6.156) we have

T1(t) − Tf,∞ = [T1(t = 0) − Tf,∞]e(−t/τ1) + a1τ1[1 − exp(−t/τ1)]

τ1 = (ρcpV )1(Rku)D a1 =
(Ṡ − Q)
(ρcpV )1

.

Since there is no energy conversion in the spring a1 = 0.
Then, we have

T1(t) − Tf,∞ = [T1(t = 0) − Tf,∞] exp−t/τ1

The volume is

V1 = π × D2
2 − D2

1

4
× L = 2.827 × 10−7 m3.

To determine τ1, the surface-convection resistance 〈Rku〉D is needed. Form (6.124), we have

〈Rku〉D =
D2

AkuNuDkf
,

where

Aku = πD2L

= π × 0.005(m) × 0.04(m) = 6.283 × 10−4 m2.

The Nusselt number is found for a cylinder in cross flow as given in Table 6.4, i.e.,

〈NuD〉 = a1Rea2
D Pr1/3 Table 6.4,

where

ReD =
uf,∞D2

νf

=
5(m/s) × 0.005(m)
20.3 × 10−6(m2/s)

= 1,231.5.

From Table 6.3,

a1 = 0.683
a2 = 0.466.

Then

〈Nu〉D = 0.683 × (1,231.5)0.466 × (0.69)1/3

= 16.63

〈Rku〉D =
0.005(m)

6.28 × 10−4(m2) × 16.63 × 0.0300(W/m-K)
= 15.95 K/W.
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The time constant τ1 is

τ1 = 6,450(kg/m3) × 837.36(J/kg-K) × 2.827 × 10−7(m2) × 15.95(K/W)
= 24.36 s.

From (6.156), we solve for the time needed for the spring to reach T1 = 323 K, i.e.,

(323.15 − 350.15)(K) = (294.15 − 350.15)(K)e(−t/24.36(s))

−27(K) = −56e[−t/24.36(s)]

0.48214 = e[−t/24.26(s)]

ln(0.48214) = −t/24.36(s)
t = 17.77 s.

This is less than 20 s and the device performs as required.

COMMENT:
This problem assumes that the temperature of the spring is uniform. To verify this, the Biot number given

by (6.128) should be less than 0.1, i.e.,

BiD =
Rk

〈Rku〉D < 0.1,

where

Rk =
ln(D2/D1)

2πksL
= 1.032 K/W.

Using this

BiD = 0.06473.

Then the assumption of a uniform spring temperature is valid.
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PROBLEM 6.30.FAM

GIVEN:
A steel cylindrical rod is to be cooled by surface convection using an air stream, as shown in Figure Pr.6.30.

The rod can be placed perpendicular [Figure Pr.6.30(i)] or parallel [Figure Pr.6.30(ii)] to the stream. The Nusselt
number for the parallel flow can be determined by assuming a flat surface. This is justifiable when the viscous
boundary-layer thickness δν is smaller than D.

D = 1.5 cm, L = 40 cm, uf,∞ = 4 m/s, Tf,∞ = 25◦C, Ts = 430◦C.
Determine the air properties at 〈Tf 〉δ = (Ts + Tf,∞)/2.

SKETCH:
Figure Pr.6.30(a) shows the two arrangement.

(i) Cross (Perpendicular) Flow (ii) Parallel Flow
uf,�

Tf,�

uf,�

Tf,�

D

L

L

D

Figure Pr.6.30 A steel rod is cooled in an air stream with the choice of placing it perpendicular or parallel to the
stream. (i) Cross (perpendicular) flow. (ii) Parallel flow.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the heat transfer rates 〈Qku〉D and 〈Qku〉L, for the conditions given above (i.e., δα < D).
(c) Is neglecting the surface curvature and using a flat surface, for the parallel flow, justifiable?

SOLUTION:
(a) Figure Pr.6.30(b) shows the thermal circuit diagram, where for the cross flow the resistance is shown as
〈Qku〉D and for the parallel flow as 〈Qku〉L.

Rku  D  or   Rku  L

Qku  D  or   Qku  L

Ts Tf,�

Figure Pr.6.30(b) Thermal circuit diagram.

(b) The surface-convection heat transfer is given by (6.124), i.e.,

〈Qku〉D or L = Aku〈Nu〉D or L
kf

NuD or L(Ts − Tf,∞)
.

(i) The Nusselt number for the cross flow is given in Table 6.4 as

〈Nu〉D = a1Rea2Pr1/3,

where constants a1 and a2 depend on ReD,

ReD =
uf,∞D

νf
.

From Table C.22, for air at temperature

〈Tf 〉δ =
Ts + Tf,∞

2
=

(430 + 25)(◦C)
2

+ 273.15

= 500.7 K,
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the properties are

kf = 0.0395 W/m-K Table C.22

νf = 3.730 × 105m2/s Table C.22

Pr = 0.69 Table C.22.

Then

ReD =
4(m/s) × 0.015(m)
3.730 × 10−5(m2/s)

= 1,608.6

a1 = 0.683, a2 = 0.466 Table 6.4

NuD = 0.683 × (1608.6)0.466 × (0.69)1/3 = 18.83

〈Qku〉D = π × (0.015)(m) × (0.4)(m) × 18.83 × 0.0395(W/m-K)
0.015(m)

× (430 − 25)(K)

= 378.6 W.

(ii) The Nusselt number for the parallel flow us given in Table 6.3 and depends on the Reynolds number ReL

ReL =
uf,∞L

νf
=

4(m/s) × 0.4(m)
3.730 × 10−5(m2/s)

= 4.290 × 104 < ReL,t = 105, laminar flow regime.

Then from Table 6.3, we have

〈Nu〉L = 0.664Re1/2
L Pr1/3

= 0.664 × (4.290 × 104)1/2 × (0.69)1/3 = 121.5

〈Qku〉L = π × 0.015(m) × 0.4(m) × 121.5 × 0.0395(W/m-K)
0.40(m)

× 405K

= 91.61 W,

which is 24% of the result for cross flow.
(c) For laminar flow, the viscous boundary-layer thickness at the tailing edge is given by (6.48), i.e.,

δν = 5(
νfL

uf,∞
)1/2

= 5 ×
[
3.730 × 10−5(m2/s) × 0.4(m)

4(m/s)

]1/2

= 0.009657 m.

Then

δν

D
=

0.009657(m)
0.015(m)

= 0.6438 < 1.

COMMENT:
The criterion δα/D < 1 is not a rigorously derived condition. However, for the conditions given, the cross

flow results in a large heat transfer rate. The cross flow results in a relatively large qku in the front stagnation
region. Also, at higher Reynolds numbers due to flow separation and flow vortices and turbulence, qku is large in
the rear section of the cylinder.
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PROBLEM 6.31.FUN

GIVEN:
An automobile brake rotor is idealized as a solid disc, as shown in Figure Pr.6.31(a). In a laboratory test the

rotor is friction heated at a rate Ṡm,F, under steady-state heat transfer and its assumed uniform temperature
becomes Ts. Assume that the heat transfer is by surface convection only and that the fluid (air) motion is only
due to the rotation (rotation-induced motion) (Table 6.4).

ω = 130 rad/s, R = 30 cm, Tf,∞ = 20◦C, Ṡm,F = 2 × 104 W.
Determine the air properties at T = 400 K.

SKETCH:
Figure Pr.6.31(a) shows the rotating disc.

Ts

Aku

R

r

�

Rotating Disc

Air, Tf,�
uf,� = 0

(Rotation-Induced 
Motion)

Sm,F

Figure Pr.6.31(a) A rotating disc is heated by friction and cooled by surface convection.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the radial location rtr that the flow regime changes from laminar to turbulent (Rer,tr = 2.4×105).
(c) Integrate the local surface convection over the entire surface area (two sides, neglect the edge).
(d) Determine the rotor temperature Ts.

SOLUTION:
(a) Figure Pr.6.31(b) shows the steady-state thermal circuit diagram. The surface averaged surface convection
〈Qku〉R is used.

Rku  R

Qku  R

TsTf,�

Sm,F

Figure Pr.6.31(b) Thermal circuit diagram.

(b) From Table C.22, for air at T = 400 K, we have

kf = 0.0331 W/m-K
νf = 2.550 × 10−5 m2/s
Pr = 0.69.

From Table 6.4, we have

Rer,tr =
ωr2

tr

νf
= 2.4 × 105

or

rtr =
(

2.4 × 105 × νf

ω

)1/2

=
[
2.4 × 105 × 2.550 × 10−5(m2/s)

130(rad/s)

]1/2

= 2.170 × 10−1 m = 21.70 cm.
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(c) Then the inner portion, 0 ≤ r ≤ 21.70 cm is subject to laminar flow regime, and the outer portion, 21.70 cm ≤
r ≤ 35 cm, is subject to turbulent flow regime. Then from (6.50), (6.49) and Table 6.4, we have

〈Qku〉L
Ts − Tf,∞

=
∫ rtr

0

2πr
Nurkf

r
dr +

∫ R

rtr

2πr
Nurkf

r
dr

= 2πkf

∫ rtr

0

0.585
(

ωr2

νf

)1/2

(
0.6
Pr

+
0.95

Pr1/3

) dr + 2πkf

∫ R

rtr

0.021
(

ωr2

νf

)0.8

Pr1/3dr

=
2πkf × 0.585
0.6
Pr

+
0.95

Pr1/3

(
ω

νf

)1/2 1
2
r2 |rtr

0 + 2πkf × 0.021 ×
(

ω

νf

)0.8

Pr1/3 1
2.6

r2.6 |Rrtr

=
2π × 0.0331(W/m-K) × 0.585

0.6
0.69

+
0.95

(0.69)1/3

[
130(rad/s)

2.55 × 10−5(m2/s)

]1/2

× 1
2
× (0.2170)2(m2) +

2π × 0.0331(W/m-K) × 0.021 ×
[

130(rad/s)
2.550 × 10−5(m2/s)

]0.8

× (0.69)1/3 ×
1

2.6
[(0.35)2.6 − (0.2170)2.6](m)2.6

= (3.33 + 16.00)(W/K)
= 19.33 W/K = 19.33 W/◦C.

(d) From Figure Pr.6.31(b), the energy equation is

Q|A = 〈Qku〉R = Ṡm,F

= 19.33(W/◦C) × (Ts − Tf,∞) = Ṡm,F

or

Ts = Tf,∞ +
Ṡm,F

42.22(W/◦C)

= 20(◦C) +
2 × 104(W)
19.33(W/◦C)

= 1.055◦C.

COMMENT:
The flow regime transition is similar to that occurring for the forced and thermobuoyant parallel flows. The

material used for the disc should be chosen so as to withstand the resulting surface temperature which is very
high.
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PROBLEM 6.32.FAM

GIVEN:
A person remaining in a very cold ambient will eventually experience a drop in body temperature (i.e.,

experience hypothermia). This occurs when the body no longer converts sufficient chemical-bond energy to
thermal energy to balance the heat losses. Consider an initial uniform temperature of T1(t = 0) = 31◦C and
a constant energy conversion of Ṡr,c = 400 W. The body may be treated as a cylinder made of water with a
diameter of 40 cm and a length of 1.7 m, as shown in Figure Pr.6.32(ii). Assume that the lumped-capacitance
analysis is applicable.

Evaluate the properties at the average temperature between the initial temperature and the far-field fluid
temperature.

SKETCH:
Figure Pr.6.32 shows a person undergoing surface-convection heat losses.

(i) Physical Model (ii) An Approximation

D = 40 cm

L = 1.7 m

Water
T1 = 31oC

Tf,�

uf,�

Ambient Air
Tf,� , uf,�

sr,c = 400 W

Q �Qku�D

Figure Pr.6.32 (i) Surface-convection heat transfer from a person. (ii) Its geometric presentation.

OBJECTIVE:
Determine the elapsed time for a drop in the body temperature of ∆T1 = 10◦C.

(a) Consider the ambient to be air with a temperature of Tf,∞ = −10◦C, blowing at uf,∞ = 30 km/hr across the
body (i.e., in cross flow).
(b) Consider the ambient to be water with a temperature of Tf,∞ = 0◦C with a thermobuoyant motion (uf,∞ = 0
km/hr) in the water along the length of the cylinder. For the thermobuoyant motion, use the results for a vertical
plate and assume that the body temperature is the time-averaged body temperature (i.e., an average between
the initial and the final temperature). This results in a constant surface-convection resistance.

SOLUTION:
(a) Air With Forced, Cross Flow:

This is a transient problem in which a lumped-capacitance analysis is to be used. The integral-volume energy
equation (2.9) applied to the body gives

Q|A,1 = −(ρcpV )1
dT1

dt
+ Ṡr,c.

The net heat transfer at the control surface (wrapped around the body) is due only to surface convection. Thus,
we write

Q|A = 〈Qku〉D =
T1 − Tf,∞
〈Rku〉D .

Note that both the resistance and the heat transfer are averaged over D, because the air is in cross flow. The
energy conversion is from chemical bond to thermal energy, Ṡr,c. Substituting this into the energy equation we
have

T1 − Tf,∞
〈Rku〉D = −ρ1cp,1V1

dT1

dt
+ Ṡr,c

The solution to this is given by (6.156), and as in Example 6.15, solving for t we have

t = −τ1 ln
[

T1(t) − Tf,∞ − a1τ1

T1(t = 0) − Tf,∞ − a1τ1

]
,
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where

τs = ρ1cp,1V1〈Rku〉D
a1 =

Ṡr

ρ1cp,1V1
.

The average surface-convection resistance is obtained from the Nusselt number using (6.49).
The properties for air, at Tδ = [(31+21)/2−10]/2 = 8.0◦C = 281.15 K, are found from Table C.22, as kf = 0.0256
W/m-K, νf = 14.01x10−6 m2/s, Pr = 0.69.
The Reynolds number based on diameter is given in Table 6.4 as

ReD =
uf,∞D

νf
=

8.333(m/s) × 0.4(m)
14.01 × 10−6(m2/s)

= 2.379 × 105.

From Table 6.4, the correlation for 〈Nu〉D for cross flow over a circular cylinder is found with a1 = 0.027 and
a2 = 0.805. The Nusselt number is

〈Nu〉D = a1Rea2
D Pr1/3 = 0.027(2.379 × 105)0.805 × (0.69)1/3 = 507.74.

The average surface-convection resistance is given by (6.49), i.e.,

〈Rku〉D =
D

kf 〈Nu〉DAku
=

0.4(m)
0.0256(W/m-K) × 507.74 × π × 0.4(m) × 1.7(m)

= 0.0144◦C/W.

The properties for water at Tδ = (31 + 21)/2 = 26◦C = 299.15 K, are found from Table C.23 as ρl = 997.8 kg/m3

and cp,l = 4,182 J/kg-K.
Thus, τ1 and a1 are

τ1 = 997.8(kg/m3) × 4,182(J/kg-K) × π × (0.4)2(m)2

4
× 1.7(m) × 0.0145(◦C/W) = 12,837 s

a1 =
400(W)

997.8(kg/m3) × 4,182(J/kg-K) × π×(0.4)2(m)2

4 × 1.7(m)
= 4.487 × 10−4 ◦C/s.

Solving for t, we have

t = −12,837(s) × ln
[

21(◦C) − [−10(◦C)] − 4.487 × 10−4(◦C/s) × 12,837(s)
31(◦C) − [−10(◦C)] − 4.487 × 10−4(◦C/s) × 12,837( s)

]
= 4,284 s = 71.41 min.

(b) Water With Thermobuoyant Flow:
The above energy equation and transient analysis remain the same. The average Nusselt number for the

thermobuoyant flow over a vertical flat plate is given in Table 6.5.
The properties for water, at Tδ = [(31 + 21)/2 + 0]/2 = 286.15 K, are obtained from Table C.23 as kf = 0.581
W/m-K, νf = 1.28 × 10−6 m2/s, αf = 0.139 × 10−6 m2/s, Pr = 9.31, and βf = 0.00018 1/K.
The time-averaged body temperature is T 1 = 26◦C.
The Rayleigh number is defined in Table 6.4 as

RaL =
gβf (T 1 − Tf,∞)L3

νfαf
=

9.81(m/s2) × 0.00018(1/K) × [26(◦C) − 0(◦C)] × (1.7)3(m)3

1.28 × 10−6(m2/s) × 0.139 × 10−6(m2/s)
= 1.27 × 1012.

From Table 6.5,

a1 = 0.6205
NuL,l = 659.8
NuL,t = 1,198.2
〈Nu〉L = 1,203.7.

The average surface-convection resistance is

〈Rku〉L =
L

kf 〈Nu〉LAku
=

1.7(m)
0.581(W/m-K) × 1,203.7 × π × 0.4(m) × 1.7(m)

= 0.001137◦C/W.
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The properties for the body remain the same.
Then, τ1 is

τ1 = 997.8(kg/m3) × 4182(J/kg-K) × π × (0.4)2(m)2

4
× 1.7(m) × 0.001137(◦C/W) = 1,013.5 s

and a1 remains the same, i.e.,

a1 = 4.487 × 10−4 ◦C/s.

Solving for t gives

t = −1,013.5(s) × ln
[
21(◦C) − 0(◦C) − 4.487 × 10−4(◦C/s) × 1,013.5(s)
31(◦C) − 0(◦C) − 4.487 × 10−4(◦C/s) × 1,013.5(s)

]
= 401.9 s = 6.7 min.

COMMENT:
Although the motion in the water is due to thermobuoyancy and of a smaller velocity (as compared to the

forced flow), due to the larger thermal conductivity of water, the surface-convection heat transfer is larger (i.e.,
the surface-convection resistance is smaller) for water.
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PROBLEM 6.33.FAM

GIVEN:
A methane-air mixture flows inside a tube where it is completely reacted generating a heating rate of Ṡr,c = 104

W. This heat is removed from the tube by a cross flow of air, as shown in Figure Pr.6.33(a).
Evaluate the properties of air at T = 300 K.

SKETCH:
Figure Pr.6.33(a) shows energy conversion by combustion in a tube and heat removal by surface convection

from the tube.

L = 1 m

D = 15 cm

Ts

Sr,c = 104 W

Methane and
Air Flow

r,s = 0.7

Air in Cross Flow
Tf,� = 20 

oC
uf,� = 5 m/s

Surrounding Surface

Tf,� = 20 
oC

  r = 1

�

�

Figure Pr.6.33(a) Heat removal from a combustion tube.

OBJECTIVE:
(a) Draw the thermal circuit diagram and determine the tube surface temperature with no surface radiation.
(b) Repeat part (a) with surface radiation included.

SOLUTION:
(a) Neglecting radiation, the thermal circuit is shown in Figure Pr.6.33(b).

Tf,�

Ts

Qs

Qku  D Rku  D

Sr,c

.

Figure Pr.6.33(b) Thermal circuit diagram for the case of no surface radiation heat transfer.

Applying the integral-volume energy equation (2.9), with Qs = 0, to the tube we have

Q|A = −(ρcpV )s
dTs

dt
+ Ṡr,c,
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where the lumped capacitance is assumed for into node Ts. As the only heat loss occurs by surface radiation and
the energy conversion is by combustion, for this steady-state problem, the energy equation becomes

Ts − Tf,∞
〈Rku〉D = Ṡr,c.

For air, from Table C.22, at T = 300 K, we have νf = 15.66 × 10−6 m2/s, kf = 0.0267 W/m-K, Pr = 0.69. The
Reynolds number is

ReD =
uf,∞D

νf
=

5(m/s) × 0.15(m)
15.66 × 10−6(m2/s)

= 47,893.

The Nusselt number for cross-flow over a circular cylinder, from Table 6.3, with a1 = 0.027 and a2 = 0.805, is

〈Nu〉D = 0.027Re0.805
D Pr1/3 = 0.027 × (47,893)0.805 × (0.69)1/3 = 139.7.

The average surface-convection resistance is given by (6.124), i.e.,

〈Rku〉D =
D

Aku〈Nu〉Dkf
=

0.15(m)
π × 0.15(m) × 1(m) × 139.7 × 0.0267(W/m-K)

= 0.08532◦C/W.

Then from the energy equation, we have

Ts = Tf,∞ + 〈Rku〉DṠr,c = 20(◦C) + 0.08532(◦C/W) × 104(W) = 873.2◦C = 1,146K.

(b) With the inclusion of surface radiation, the thermal circuit is shown in Figure Pr.6.33(c).

(Rr,F)s-�

(qr,o)�

Eb,�

(Rr,F)
�

Qr,s-�

(Rr,  )s

(qr,o)s

Eb,s

Tf,�

Ts

Rku  DQku  D

Sr,c

.

Qs

�

Figure Pr.6.33(c) Thermal circuit diagram for the case with surface-radiation heat transfer.

The energy equation then becomes
Ts − Tf,∞
〈Rku〉D +

Eb,s − Eb,∞
(RΣ,r)s-∞

= Ṡr,c

The thermal resistance for radiation is given by (4.47), i.e.,

(RΣ,r)s-∞ =
(

1 − εr

εrAr

)
∞

+
1

Ar,sFs-∞
+
(

1 − εr

εrAr

)
s

= 0 +
1

π × 0.15(m) × 0.1(m) × 1
+

1 − 0.7
(0.7) × π × 0.15(m) × 1(m)

= 3.032 1/m2
.
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The surface-convection resistance and the energy conversion term remain the same. Then the energy equation
becomes

Ts(K) − 293.15(K)
0.08532(◦C/W)

+
σSB[T 4

s (K4) − (293.15)4(K4)]
3.032(1/m2)

= 104 W.

Using a solver (such as SOPHT), the results is Ts = 722.6 K

COMMENT:
Note the significant drop in Ts caused by the surface-radiation heat transfer. The assumption of a uniform

tube temperature may not be valid if L/D is very large.
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PROBLEM 6.34.FUN

GIVEN:
Consider surface-convection heat transfer from a sphere of radius R and initial temperature Ts(t = 0) as

rendered in Figure Pr.6.34(a). The time dependence of the uniform sphere temperature, with surface convection,
is given by (6.156) and is valid for BiR < 0.1. Also for BiR > 10 the surface-convection resistance becomes
negligible and then the constant surface temperature, distributed transient temperature given in Figure 3.33(b)(ii)
becomes valid. In the Biot number regime 10 < BiR < 0.1, numerical or series, closed-form solutions are used. In
an existing series solution, when the elapsed time is sufficiently large (i.e., FoR > 0.2) such that the penetration
distance has reached and passed the center of the spheres, a single term from this series solution may be used to
obtain Ts = Ts(r, t). This solution for the center of the sphere, i.e., r = 0, is

T ∗
s (r = 0, t) =

Ts(r = 0, t) − Tf,∞
Ts(t = 0) − Tf,∞

= a1e
−a2

2FoR , FoR =
tαs

R2 > 0.2,

where the constants a1 and a2 depend on BiR and are listed for some values of BiR in Table Pr.6.34. From
(6.128), we have

BiR =
Rk,s

〈Rku〉D =
〈Nu〉Dkf/D

ks/R
.

Table Pr.6.34 The constants in the one-term solution.

BiR a1 a2 (3BiR)1/2

0 1.000 0 0
0.01 1.003 0.1730 0.1732

Lumped 0.10 1.030 0.5423 0.5477
1.0 1.273 1.571 1.414
10 1.943 2.836 4.472

Constant Surface 100 1.999 3.110 14.14
Temperature ∞ 2.000 3.142 = π ∞

OBJECTIVE:
(a) Show that (6.156) can be written as

T ∗
s (t) =

Ts(t) − Tf,∞
Ts(t = 0) − Tf,∞

= e−3FoRBiR , BiR < 0.1.

(b) Plot T ∗
s (t) with respect to FoR, for 0.01 ≤ FoR ≤ 1, and for BiR = 0.01, 0.1, 1, 10, and 100.

(c) On the above graph, mark the center temperature Ts(r = 0, t) for FoR = 0.2 and 1.0, and for the Biot numbers
listed in part (b).
(d) For FoR = 0.2 and 1.0, also mark the results found from Figure 3.33(b)(ii), noting that this corresponds to
BiR → ∞.
(e) Comment on the regime of a significant difference among the results of the lumped-capacitance treatment,
the distributed-capacitance treatment with BiR → ∞, and the single-term solution for distributed capacitance
with finite BiR.

SKETCH:
Figure Pr.6.34(a) shows a sphere placed in a fluid stream with surface convection, and time-dependent tem-

perature.

OBJECTIVE:
(a) Show that (6.156) can be written as

T ∗
s (t) =

Ts(t) − Tf,∞
Ts(t = 0) − Tf,∞

= e−3FoRBiR BiR < 0.1.

(b) Plot T ∗
s (t) with respect to FoR for 0.01 ≤ FoR < 1, and for BiR = 0.01, 0.1, 1, 10 and 100.
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uf,�

Tf,�

r
R

Ts(r, t), or Ts(t = 0)

Figure Pr.6.34(a) A sphere of initial temperature Ts(t = 0) is placed in a fluid stream
with Tf,∞, and uf,∞.

(c) On the above graph, mark the center temperature T ∗
s (r = 0, t) for FoR = 0.2 and 1.0, and for the Biot numbers

listed in part (b).
(d) For FoR = 0.2 and 1.0, also mark the results found from Figure 3.33(b)(ii), noting that this graph corresponds
to BiR → ∞.
(e) Comment on the regime a significant difference among the three solutions.

SOLUTION:
(a) Starting from (6.156), we write for a1 = 0, and charging t to FoR using FoR = tαs/R2, we have

T ∗
s (t) =

Ts(t) − Tf,∞
Ts(t = 0) − Tf,∞

= exp(−FoRR2/αsτ).

Next, using the definition of τ given by (6.157), we have

FoRR2

αsτ
=

FoRR2

αs(ρcp)sV 〈Rku〉D
Noting that 〈Rku〉D = D/(Aku〈Nu〉Dkf ), (αρcp)s = ks, V = πD3/6 and that Aku = 4πR2,

FoRR2

αsτ
= 3FoR × 〈Nu〉D kf

ks
.

From Example 6.15, we have

BiD = 〈Nu〉D kf

4ks
.

As Bix ∝ x2, BiR = 4BiD, so that

BiR = 〈Nu〉D kf

ks
,

and we can then write

FoRR2

αsτ
= 3FoRBiR.

Using this, we have

T ∗
s (t) = e−3FoRBiR .

(b) Figure Pr.6.34(b) shows the variation of T ∗
s (t) with respect to FoR for several values of BiR. For large BiR,

Ts(t) quickly (i.e., small FoR) becomes equal to Tf,∞, i.e., T ∗
s (t = 0) → 0. For very small BiR, the sphere

temperature does not change unless FoR is very large.

(c) The center temperature found from the one-term solution is marked (with closed circles) on Figure Pr.6.34(b).
For BiR < 0.1, the two results are identical. This can be also noticed from Table Pr.6.34, where a2

2 = 3BiR, for
BiR ≤ 0.1. For larger BiR, there is a different between the two, especially at FoR = 0.2. As FoR increases beyond
1, the difference decreases again, regardless of the value of BiR.
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Figure Pr.6.34(b) Variation of dimensionless temperatures with respect to dimensionless time. The dots represent
T ∗

s (r = 0, t).

(d) From Figure 3.33(a)(ii), for FoR = 0.2, we have T ∗
s (r = 0, t) = 1 − 0.72 = 0.28 (the exact value is 0.2779 and

is found by using the single-term solution for BiR → ∞). For FoR = 1, we have T ∗
s (r = 0, t) = 1 − 1 = 0. These

are also marked in Figure Pr.6.34(b).

(e) In the regime marked by

0.2 ≤ FoR ≤ 1, 10 ≤ BiR ≤ 0,

the single-term solution gives more accurate results.

COMMENT:
When this region is encountered, the lumped-capacitance and constant surface-temperature approximations

are not valid. But in practice, most problems fall outside this region and satisfy the requirements for the
approximation lumped capacitance or constant surface-temperature solutions. The graphical Heisler results give
the results for FoR ≥ 0.2 and an arbitrary BiR for spheres, long cylinders, and finite slabs and can be found in
Chapter 6, reference 19.
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PROBLEM 6.35.FAM

GIVEN:
In a rapid solidification-coating process, a liquid metal is atomized and sprayed onto a substrate. The atomiza-

tion is by gas injection into a spray nozzle containing the liquid-metal stream. The injected gas is small compared
to the gas (assume air) entrained by the droplet spray stream. This entrained gas quickly cools the droplets such
that at the time of impingement on the substrate the droplets contain a threshold amount of liquid that allows
for them to adhere to each other and to the substrate surface. This is shown in Figure Pr.6.35(a), where a plastic
balloon is coated with a tin layer and since the droplets are significantly cooled by surface convection, the balloon
is unharmed. Assume that each droplet is independently exposed to a semi-bounded air stream.

T1(t = 0) = 330◦C, Tf,∞ = 40◦C, uf,∞(relative velocity) = 5 m/s, D = 50 µm.
The Nusselt number can be determined (Table 6.4) using the relative velocity and the properties of tin are

given in Tables C.5 and C.16. Determine the air properties at T = 400 K.

SKETCH:
Figure Pr.6.35(a) shows the flight of droplets.

Injection
Gas Stream

Liquid Metal

Entrained Air
Tf,�

Droplet
Stream
Relative
Velocity

uf,�

Deposit Pattern (Balloon)

T1(t = 0)

D

Figure Pr.6.35(a) A plastic balloon is spray coated with tin droplets solidifying on its surface.

OBJECTIVE:
(a) Draw the thermal circuit diagram for a tin droplet cooled from the initial temperature T1(t = 0) to its solidi-
fication temperature Tsl. Assume a uniform temperature T1(t).
(b) By neglecting any motion within the droplet, determine if a uniform droplet temperature can be assumed;
use Rk,s = D/4Akuks.
(c) Determine the time of flight t, for the given conditions.

SOLUTION:
(a) Figure Pr.6.35(b) shows the thermal circuit diagram for the droplet cooling. The sensible heat (and not the
phase change) is included.

Rku  D

Qku  D

T1(t) = 0Tf,�

� (�cpV)1
dT1
dt

Figure Pr.6.35(b) Thermal circuit diagram.

(b) From (6.128) and(6.124), we have

BiD =
Rk,1

〈Rku〉D =
D/4Akuks

D/Aku〈Nu〉Dkf
= 〈NuD〉 kf

4ks
.

From Tables C.16, we have for tin: Tsl = 505 K, ρs = 7,310 kg/m3, cp,s = 227 J/kg-K, ks = 66.6 W/m-K. From
Table C.22, we have for air at T = 400 K: kf = 0.0331 W/m-K, νf = 2.55 × 10−5 m2/s, Pr = 0.69.
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Then from (6.124) we have

ReD =
uf,∞D

νf
=

5(m/s) × 5 × 10−5(m)
2.55 × 10−5(m2/s)

= 9.804.

From Table 6.4, we have

〈NuD〉 = 2 + (0.4Re1/2
D + 0.06Re2/3

D )Pr0.4

= 2 + [0.4(9.804)1/2 + 0.06(9.804)2/3](0.69)0.4 = 3.317.

Then

BiD = 3.317 × 0.0331(W/m-K)
4 × 66.6(W/m-K)

= 4.121 × 10−4 < 0.1

and the variation of temperature within droplet is therefore negligible.

(c) From (6.156), with Q1 = Ṡ1 = 0, a1 = 0, and we have

T1(t) − Tf,∞
T1(t = 0) − Tf,∞

= e−t/τ ,

or

t = −τ1 ln
[

T1(t) − Tf,∞
T1(t = 0) − Tf,∞

]

τ1 = (ρcpV )1〈Rku〉D = (ρcpV )1
D

Aku〈Nu〉Dkf

= (ρcp)1
V D

Aku

1
〈Nu〉Dkf

= (ρcp)1
D2

6
1

〈Nu〉Dkf

= 7,310(kg/m3) × 227(J/kg-K) × (5 × 10−5)2(m2)
6

× 1
3.317 × 0.0331(W/m-K)

= 6.297 × 10−3 s

t = −6.297 × 10−3(s) × ln
505(K) − (273.15 + 40)(K)

(330 − 40)(K)
= 2.602 × 10−3 s
= 2.602 ms.

COMMENT:
Note that we have assumed that each droplet is independently exposed to a semi-infinite air stream. In

practice, the cloud of droplets heat the stream and also reduces NuD through modifying the fluid flow and
temperature distribution around each droplet. This results in a larger resistance and a larger time constant,
requiring larger elapsed times to reach the desired temperature.
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PROBLEM 6.36.FAM

GIVEN:
In order to enhance the surface-convection heat transfer rate, fins (i.e., extended surfaces) are added to a

planar surface. This is shown in Figure Pr.6.36. The surface has a square geometry with dimensions a = 30
cm and w = 30 cm and is at Ts,o = 80◦C. The ambient is air with a far-field velocity of uf,∞ = 1.5 m/s and
a temperature of Tf,∞ = 20◦C flowing parallel to the surface. There are N = 20 rectangular fins made of pure
aluminum and each is l = 2 mm thick and L = 50 mm long.

Assume that the Nusselt number is constant and evaluate the properties at the average temperature between
the plate temperature and the far-field fluid temperature.

SKETCH:
Figure Pr.6.36 shows the fins attached to the heat transfer surface.

w = 30 cm
L = 50 mm

a = 30 cm

l = 2 mm

Rectangular Fin (20)

Base, Ts,o = 80 
oC

Parallel Air Flow
Tf,� = 20 oC
uf,� = 1.5 m/s

Figure Pr.6.36 An extended surface with parallel, forced flow.

OBJECTIVE:
(a) Determine the rate of heat transfer for the plate without the fins.
(b) Determine the rate of heat transfer for the plate with the fins. Treat the flow over the fins as parallel along
the width w, thus neglecting the effect of the base and the neighboring fins on the flow and heat transfer.

SOLUTION:
(a) Without Fins:
The air is in parallel flow over the plate surface (along w).
For the properties for air, at Tδ = (80 + 20)/2◦C= 323.15 K, from Table C.22, we have: kf = 0.0283 W/m-K,
νf = 17.73 × 10−6 m2/s, Pr = 0.69.
The Reynolds number, based on the length w, is given by (6.45) as

Rew =
uf,∞w

νf
=

1.5(m/s) × 0.3(m)
17.73 × 10−6(m2/s)

= 25,381 < Rew,t = 105 laminar flow.

From Table 6.3 for parallel flow with Rew < 105, the Nusselt number is

〈Nu〉w = 0.664Re1/2
w Pr1/3 = 0.664 × (25,295)0.5 × (0.69)1/3 = 93.48.

The average surface-convection resistance is

〈Rku〉w =
w

kf 〈Nu〉wAku
=

0.3(m)
0.0283(W/m-K) × 92.48 × 0.3(m) × 0.3(m)

= 1.26◦C/W.

The surface-convection heat transfer rate is given by (6.49) as

〈Qku〉w =
Ts − Tf,∞
〈Rku〉w =

80(◦C) − 20(◦C)
1.26(◦C/W)

= 47.62 W.
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(b) With Fins:
The air is again in parallel flow over the fins. The fins surface is considered a flat semi-infinite (along the direction
of the flow) surface. Then, the Nusselt number remains the same as the one used above. From Table C.14, for
aluminum, ks = 238 W/m-K.
The geometric parameters used in the fin efficiency, given by (6.147), are

Lc = L + l/2 = 0.05(m) + 0.002(m)/2 = 0.051 m

Pku,f = 2w + 2l = 0.604 m

Ak = wl = 0.3(m) × 0.002(m) = 6.00 × 10−4 m2

Aku,f = PkuLc = 0.604(m) × 0.051(m) = 0.0308 m2

Ab = aw − NfAk = (0.3)2(m)2 − (20)6 × 10−4(m2) = 0.078 m2.

The fin parameter is given by (6.144), i.e.,

m =

(
Pku

〈Nu〉wkf

w

Akks

)1/2

=


0.604(m) × 93.48×0.0283(W/m-K)

0.3(m)

6 × 10−4(m2) × 238(W/m-K)




1/2

= 6.107 1/m.

Then the efficiency is

ηf =
tanh(mLc)

mLc
=

tanh[6.107(m×)0.051(m)]
6.107(m) × 0.051(m)

= 0.9689.

From (6.152) and (6.153), the average surface-convection resistances for the bare surface and fin are

〈Rku〉w,b =
w

kf 〈Nu〉wAb
=

0.3(m)
0.0283(W/m-K) × 93.48 × 0.078(m2)

= 1.454◦C/W

〈Rku〉w,f =
w

kf 〈Nu〉wAku,fηfNf
=

0.3(m)
0.0283(W/m-K) × 93.48 × 0.0308(m2) × 0.97 × 20

= 0.190◦C/W.

From (6.151), the overall thermal resistance is

1
RΣ

=
1

〈Rku〉w,b
+

1
〈Rku〉w,f

RΣ = 0.1680◦C/W.

The surface-convection heat transfer rate is

〈Qku〉w =
Ts − Tf,∞

RΣ
=

80(◦C) − 20(◦C)
0.1680(◦C/W)

= 357.1 W.

COMMENT:
The use of the fins has increased the surface-convection heat transfer from the plate by a factor of 7.5.
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PROBLEM 6.37.FAM

GIVEN:
An automobile disc-brake converts mechanical energy (kinetic energy) to thermal energy. This thermal energy

is stored in the disc and is transferred to the ambient by surface convection and surface radiation and is also
transferred to other mechanical components by conduction (e.g., the wheel, axle, suspension, etc). The rate of
energy conversion decreases with time due to the decrease in the automobile speed. Here, assume that it is
constant and is (Ṡm,F)o = 6 × 104 W. Assume also that the heat loss occurs primarily by surface-convection
heat transfer from the disc surface. The disc is made of carbon steel AISI 4130 (Table C.16) and its initial
temperature is T1(t = 0) = Tf,∞ = 27◦C. The disc surface-convection heat transfer is from the two sides of disc
of diameter D = 35 cm, as shown in Figure Pr.6.37(a), and the disc thickness is l = 1.5 cm. The Nusselt number
is approximated as that for parallel flow over a plate of length D and determined at the initial velocity. The
average automobile velocity is uf,∞ = 40 km/hr and the ambient air is at Tf,∞.

Evaluate the air properties at Tf,∞.

SKETCH:
Figure Pr.6.37(a) shows the physical and an approximation models of the disc brake.

Rotor (Disc)

Caliper

Energy Conversion at
Brake Pad-Rotor Interface

Air Flow
Over Disc
uf,� , Tf,�

(i) Physical Model (ii) An Approximation

(Sm,F)o

T1(t = 0) = Tf,�

D
l

Figure Pr.6.37(a) An automobile brake cooled by parallel flow.
(i) Physical model. (ii) Approximate model.

OBJECTIVE:
(a) Assuming that the lumped-capacitance analysis is applicable, determine the temperature of the disc after 4 s
[T1(t = 4 s)].
(b) Using this temperature [i.e., T1(t = 4 s)] as the initial temperature and setting the heat generation term equal
to zero (i.e., the brake is released), determine the time it takes for the disc temperature to drop to t1 = 320 K.
(c) Evaluate the Biot number and comment on the validity of the lumped-capacitance assumption. For the Biot
number, the conduction resistance is based on the disc thickness l, while the surface convection resistance is based
on the disc diameter D.

SOLUTION:
(a) This is a transient problem, with surface heating due to friction, and cooling by surface convection. The
corresponding thermal circuit is shown in Figure Pr.6.37(b). Using a lumped-capacitance analysis, the integral-
volume energy equation (2.9) becomes

.Q|A = −(ρcpV )1
dT1

dt
+ (Ṡm,F )o.

For surface-convection, heat transfer only, we have

Q|A = 〈Qku〉D =
T1 − Tf,∞
〈Rku〉D = −(ρcpV )1

dT1

dt
+ Ṡm,F

The solution for this equation is given by (6.156), i.e.,

T1(t) − Tf,∞ = [T1(t = 0) − Tf,∞]e−t/τ1 + a1τ1(1 − e−t/τ1),
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Tf,�

Q1

T1

Rku  D

Qku  D
(Sm,F)o

.

Q2

� (ρcpV)1  
dT1

dt

Figure Pr.6.37(b) Thermal circuit diagram.

where

τ1 = (ρcpV )1〈Rku〉D, a1 =
Ṡm,F

(ρcpV )1
To determine the surface-convection resistance, the Nusselt number is needed. The properties for air, from Table
C.22, evaluated at 300 K, are νf = 15.66 × 10−6 m2/s, kf = 0.0267 W/m-K, and Pr = 0.69.
The Reynolds number for parallel flow over a flat plate with length D is given in Table 6.4 as

ReD =
uf,∞D

νf
=

(40/3.6)(m/s) × 0.35(m)
15.66 × 10−6(m2/s)

= 248,333 < ReD,t = 5 × 105

This Reynolds number is still in the laminar regime. The average Nusselt number, from Table 6.4, is given by

〈Nu〉D = 0.664Re1/2
D Pr1/3 = 0.664 × (248,333)1/2 × (0.69)1/3 = 292.4.

Taking into account both sides of the plate, the average surface convection resistance is then given by (6.124) as

〈Rku〉D =
D

〈Nu〉DkfAku
=

0.35(m)

292.4 × 0.0267(W/m-K) × 2 × π×(0.35)2(m2)
4

= 0.233◦C/W.

For carbon steel AISI 4130, from Table C.16, we have ρ = 7,840 kg/m3, cp = 460 J/kg-K, and ks = 43 W/m-K.
Then the parameters τ1 (time constant) and a1 are

τ1 = (ρcpV )1〈Rku〉D = 7,840(kg/m3) × 460(J/kg-K) × π × (0.35)2(m2)
4

× 0.015(m) × 0.233(◦C/W)

= 1212.6s

a1 =
(Ṡm,F )o

(ρcpV )1
=

6 × 104

7,840(kg/m3) × 460(J/kg-K) × π(0.35)2(m2)
4 × 0.015(m)

= 11.53◦C/s

Now the plate temperature after t = 4 s, for T1(t = 0) = Tf,∞ = 300 K, is

T1(t = 4 s) = 300.15(K) + 11.53(◦C/s)] × 1,212.6(s)[1 − e−4(s)/1212.6(s)] = 346.2 K

(b) Once the break is released, the energy conversion due to friction stops. In this case, a1 = 0. The time constant
is still the same, because neither the disc properties nor the surface-convection resistance have changed. Then
the time to cool the disc down to T1(t) = 320 K is

t = −τ1 ln
[

T1(t) − Tf,∞
T1(t = 4 s) − Tf,∞

]
= −1,212.6(s) × ln

[
320(K) − 300.15(K)

346.2(K) − 300.15(K)

]
= 1020 s = 17.0 min

(c) The Biot number is given by the ratio of the conduction thermal resistance (through half the plate thickness)
and the surface-convection resistance, i.e.,

Bil =
AkRk

Aku〈Rku〉D ,

where Ak = Aku = πD2/4. Then we have

Bil =
(l/2)/ks

D/(〈Nu〉Dkf )
=

1.744 × 10−4[◦C/(W/m2)]
4.483 × 10−2[◦C/(W/m2)]

= 3.89 × 10−3.

As Bil 
 1, the lumped capacitance analysis can be used.

COMMENT:
Note that compared to the t = 4 s heat-up period, the cool-down period is very long. In Problem 6.39, the

determination of (Ṡm,F )o is described.
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PROBLEM 6.38.FAM

GIVEN:
In a portable, phase-change hand warmer, titanium bromide (TiBr4, Table C.5) liquid is contained in a plastic

cover (i.e., encapsulated) and upon solidification at the freezing temperature Tsl (Table C.5) releases heat. A
capsule, which has a thin, rectangular shape and has a cross-sectional area Ak = 0.04 m2, as shown in Figure
Pr.6.38(a), is placed inside the pocket of a spectator watching an outdoor sport. The capsule has a planar surface
area of Ak = 0.04 m2.

The pocket has a thick insulation layer on the outside of thickness Lo = 2 cm (toward the ambient air) and
a thinner insulation layer on the inside of thickness Li = 0.4 cm (toward the body). The effective conductivity
for both layers is 〈k〉 = 0.08 W/m-K. The body temperature is Tb = 32◦C. The outside layer is exposed to
surface convection with a wind blowing as a cross flow over the body (diameter D) at a speed uf,∞ = 2 m/s
and temperature Tf,∞ = 2◦C. For the surface-convection heat transfer, use cross flow over a cylinder of diameter
D = 0.4 m. Assume that the heat flow is steady and that the temperatures are constant. Treat the conduction
heat transfer as planar and through a cross-sectional surface area Ak.

Determine the air properties at T = 300 K from Table C.22.
For the surface-convection heat transfer, assume a cross flow over a cylinder of diameter D = 0.4 m. Assume

that the heat flow is steady and that the temperatures are constant. Use planar geometry for the conduction
resistances.
SKETCH:

Figure Pr.6.38(a) shows the phase-change material sandwiched between two insulation layers. The outside
insulation layer is exposed to the surface convection.

Body

Phase-Change Material Capsule

Air

Li

Tb

Tsl , Ssl

Lo

D/2

uf,�

Tf,�

kk

Ak

Figure Pr.6.38(a) Simplified, physical model for heat transfer from a hand warmer.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine all the thermal resistances that the heat flow from the capsule encounters. Use planar geometry
for the conduction resistances.
(c) Determine the heat rate toward the body and toward the ambient air.
(d) Determine the total energy conversion rate Ṡsl(W).

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.6.38(b).

Qk,sl-b

Tb

Rk,sl-b Rk,sl-s

Tf,�

Qk,sl-s

Tsl Ts

Rku  D

Qku  D

Ssl

.

Figure Pr.6.38(b) Thermal circuit diagram.
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(b) The thermal resistances are as follows.
(i) Internal conduction thermal resistance:

Rk,sl-b =
Li

〈k〉ak
=

0.04(m)
0.08(W/m-K) × 0.04(m2)

= 1.25◦C/W.

(ii) External conduction thermal resistance

Rk,sl-s =
Lo

〈k〉ak
=

0.02(m)
0.08(W/m-K) × 0.04(m2)

= 6.25◦C/W.

(iii) Surface convection thermal resistance
The properties for air at T = 300 K, from Table C.22: kf = 0.0267 W/m-K, νf = 15.66× 10−6 m2/s, Pr = 0.69.
For air in cross flow, the Reynolds number is given by (6.124) as

ReD =
uf,∞D

νf
=

2(m/s) × 0.4(m)
15.66 × 10−6(m2/s)

= 51,086.

From Table 6.4, with a1 = 0.027 and a2 = 0.805, the Nusselt Number is

〈Nu〉D = 0.027Re0.805
D Pr1/3 = 0.027 × (51,086)0.805 × (0.69)1/3 = 147.2.

The area for convection relevant to the problem is the area over the pocket heater, or Aku = Ak. Therefore, the
surface convection thermal resistance is

〈Rku〉D =
D

Aku〈Nu〉Dkf
=

0.4(m)
(0.04)(m2) × 147.2 × 0.0267(W/m-K)

= 2.54◦C/W.

(c) The fraction of heat flowing toward the body is (from Table C.5, for TiBr4, Tsl = 312.2 K = 39.2◦C)

Qk,sl-b =
Tsl − Tb

Rk,sl-b
=

(39.2 − 32)(◦C)
1.25(◦C/W)

= 5.76 W.

(d) The fraction of heat flowing toward the ambient air is

RΣ,sl-∞ = Rk,sl-s + 〈Rku〉D = (6.25 + 2.54)(◦C/w) = 8.79◦C/W.

Qk,sl-∞ =
Tsl − Tf,∞
RΣ,sl-∞

=
(39.2 − 2)(◦C)
8.79(◦C/W)

= 4.23 W.

(e) The energy conversion rate is then found from applying the integral-volume energy equation of energy to the
Tsl node, i.e.,

Ṡsl = Qk,sl-b + Qk,sl-∞ = (5.76 + 4.23)(W) = 9.99 W.

COMMENT:
Note that although a thicker insulation layer was allowed on the outside, due to the low ambient air temperature

a significant portion of the heat generated is still lost to the ambient air.
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PROBLEM 6.39.FAM.S

GIVEN:
To analyze the heat transfer aspects of the automobile rear-window defroster, the window and the very thin

resistive heating wires can be divided into identical segments. Each segment consists of an individual wire and
an a×L× l volume of glass affected by this individual wire/heater. Each segment has a uniform, transient tem-
perature T1(t). This is shown in Figure Pr.6.41. In the absence of any surface phase change (such as ice or snow
melting, or water mist evaporating), the Joule heating results in a temperature rise from the initial temperature
T1(t = 0), and in a surface heat loss to the surroundings. The surface heat loss to the surroundings is represented
by a resistance Rt. The surrounding far-field temperature is T∞.

T1(t = 0) = −15◦C, T∞ = −15◦C, l = 3 mm, a = 2 cm, L = 1.5 m, Ṡe,J = 15 W, Rt = 2◦C/W.
Determine the glass plate properties from Table C.17.

SKETCH:
Figure Pr.6.39(a) shows a disc brake and its air flow and heat transfer characteristics.

Rotor (Disc)
Tr(t),   r,r

Air Flow
into Disc

Air Flow
over Disc
uf,� , Tf,�

Rotor Angular
Velocity, ω

Caliper

Energy Conversion
at Brake Pad-Rotor

Interface

Opposite Side of Rotor

To Wheel

Brake Fluid

Axle

Brake Pad

Aku

Aku

Qk,r-w    0

Qk,r-a    0

Automobile Disc-Brake: Physical Model

r

∆ui

u = 0Sm,F

Ts,�

Surrounding
Surface

Rotor Angular
Velocity, ω

�

Figure Pr.6.39(a) An automobile disc brake showing the air flow around it.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Show that the lumped capacitance approximation is valid using l for the conduction resistance.
(c) Assuming no surface phase change occurs, determine the steady-state temperature of the glass.
(d) Still assuming no surface phase change occurs, determine the glass temperature after an elapsed time t = 5 min.

SOLUTION:
(a) The circuit diagram is shown in Figure Pr.6.39(b). The heat loss to the pad is negligible because of the small
conductivity of the pad material (〈k〉 ≡ 0.6 W/m-K) which can be used as organic compound. The heat transfer
to wheel and axle is also neglected.
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Tp

Tf,�

Qku,r

Rρck(t)

Qr,r

(Rr,Σ)k

(Rr,Σ)w

Rk,r-w

Rku,r

Tf,�

Rku,w

Rotor, Tr

Semi-Bounded
Air Flow

Surrounding
Solid Surface

Wheel, Tw

Negligible Heat Loss
to Axle (Thermal
Circuit Not Shown)

Negligible Heat
Loss to Pad
Qρck(t) = 0

Ts,�

Surrounding
Solid Surface

Ts,�

Qk,r-a    0
Qk,r-w    0

(b) Thermal Circuit Model for Automobile Disc Brake

� (ρcpV)w
dTw

dt

� (ρcpV)r + Sm,F
dTr

dt

Semi-Bounded
Air Flow

Figure Pr.6.39(b) Thermal circuit diagram.

(b) The integral-volume energy equation (6.155) is applicable, i.e.,

Qku,r + Qr,r = −(ρcpV )t
dTr

dt
+ Ṡm,F (t).

Here Ṡm,F (t) is given and is zero for t > τ .
The surface convection is given by (6.124) as

Qku,r =
Tr − Tf,∞
〈Rku〉D , 〈Rku〉D =

D

Aku,r〈Nu〉Dkf
.

For 〈Nu〉D, we use parallel flow with L = D, i.e., we use Table 6.3, and we need to determine the magnitude of
ReD.

ReD =
uf,∞D

νf
.

From Table C.22, for air we have,

νf = 1.566 × 10−5 m2/s Table C.2

kf = 0.0267 W/m-K Table C.22

Pr = 0.69 Table C.22.

Then

ReD =
22.22(m/s) × 0.35(m)
1.566 × 10−5(m2/s)

= 4.966 × 105 ≤ ReD,t = 5 × 105.

From Table 6.3, we use the laminar-regime correlation, i.e.,

〈Nu〉D = 0.664Re1/2
D Pr1/3

= 0.664 × (4.966 × 105)1/2 × (0.69)1/3

= 413.5.

The surface areas for the surface-convection and surface-radiation heat transfer are the two sides of the disc, i.e.,

Aku,r = Ar,r = 2(πD2/4)
= 0.1924 m2
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Friction Energy Conversion and Energy Storage

Tr(t = 0) = 293.15, Initial Temperature

Surface Convection-Radiation Cooling
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(c) Rotor Temperature

Figure Pr.6.39(c) Time variation of the disc (rotor) temperature during and after brake.

The surface-radiation heat transfer for Ar,∞ � Ar,r and εr,0 = 1.0, is given by (4.49), i.e.,

Qr,r = Av,rεr,rσSB(T 4
r − T 4

s,∞)

= 0.1923(m2) × 0.4 × 5.67 × 10−8(W/m2-K4) × [T 4
r (t) − (293.15)(K)].

From Table C.16 for carbon steel AISI 1010, we have,

ρr = 7830 kg/m2

cp,r = 434 J/kg-K
kr = 64 W/m-K .

Also

Vr = πD2l/4 = 1.443 × 10−3 m3.

Then

Ṡm,F =
0.65
2

× 1500(kg) × (22.22)2(m/s)2

4(s)

[
1 − t(s)

4s

]

= 6.017 × 104(W)
[
1 − t(s)

4(s)

]
.

(c) Using a software (such as SOPHT), Figure Pr.6.15(c) shows the time variation of Tr for 0 < t < 100 s.
Note that during the friction heating, there is a very rapid increase in Tr and during this period, the surface
convection-radiation heat transfer is not significant. Using this assumption (〈Qku〉D � Qr,r � 0) the energy
equation can be integrated to find

Tr(t) = Tr(t = 0) +
0.65
2

(ρcpV )tMa
u2

a

τ

(
t − t2

2τ

)
(for t � τ).

which increases monotonically for t ≤ τ . From Figure Pr.6.15(c), note that even after 96 s of elapse time, Tr is
still high.

COMMENT:
In order to examine the validity of the lumped-capacitance approximation for the rotor we need to show that

the Biot Number is very small (i.e., less than 0.1). From (6.130), we have

BiD =
Rk,l

〈Rku〉D = 〈Nu〉D l

D

kf

ks
= 413.5 × 0.015(m)

0.35(m)
× 0.0267(W/m-K)

64(W/m-K)
= 7.393 × 10−3 < 0.1.

Note that we have used the thickness of the disk as the length for conduction.
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PROBLEM 6.40.FAM

GIVEN:
A microprocessor chip generates Joule heating and needs to be cooled below a damage threshold temperature

of 90◦C. The heat transfer is by surface convection from its top surface and by conduction through the printed-
circuit-board substrate from its bottom surface. The surface convection from the top surface is due to air flow
from a fan that provides a parallel flow with a velocity of uf,∞. The conduction from the bottom surface is due
to a temperature drop across the substrate of Tp − Ts.

The substrate is fabricated from a phenolic composite and has a thermal conductivity of ks.
Neglect the contact resistance between the processor and the substrate.
Assume that the energy conversion occurs uniformly within the microprocessor chip.
Neglect the edge heat losses. Assume the processor is at a uniform temperature Tp.
Ṡe,J = 35 W, Tf,∞ = 25◦C, uf,∞ = 0.5 m/s, w = 7 cm, as = 1.5 mm, ks = 0.3 W/m2-K, L = 3.5 cm, l = 1

mm, Nf = 16.
Evaluate the properties of aluminum at T = 300 K. Evaluate the properties of air at T = 300 K.

SKETCH:
Figures Pr.6.40(a) and (b) show the microprocessor cooled by surface convection.

(a) Pentium Pro Microprocessor

(b) Two Different Surface-Convection Designs

(i) No Fins (ii) With Fins

Microprocessor

Microprocessor, Tp

Aluminum Fins

Microprocessor at
Uniform Tem-
perature, Tp

Substrate (Printed
Circuit Board)

No Contact
Resistance

Microprocessor

Substrate, ks

ixxx

Ts

w

qu

qk

qk

qku

qu

Tp

Ts

Ts

Tf,�
uf,�

Tf,�
uf,�

l

w
w

as

L
Se,J

qku
qk

Se,J

Figure Pr.6.40 Surface-convection cooling of a microprocessor. (a) Physical Model. (b) Two different
surface-convection designs (i) without, and (ii) with back fins.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
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(b) Determine Tp for the case with no fins and with Tp − Ts = 10◦C.
(c) Determine Tp for the case with aluminum fins and with Tp − Ts = 1◦C.
(d) Comment on the difference between the two cases with respect to the damage threshold temperature.

SOLUTION:
(a) The thermal circuit diagram for both cases is shown in Figure Pr.6.40(b).

Qk,p-s

Ts

Rk,p-s

Tf,�Tp

Rku  w

Qku  w

Se,J

.

Figure Pr.6.40(b) Thermal circuit diagram.

Here Tp and Ṡe,J are uniform within the volume of the processor chip. Therefore, we will consider the processor
as lumped and model it with a single node Tp. From this node, we have surface-convection heat transfer from
the top to the air, and conduction heat transfer from the bottom through a substrate. The conduction causes a
temperature drop across the substrate of Tp − Ts, which is given.
For node Tp, for steady state conditions, we have from Figure Pr.6.40(b).

Q |A= Qk,p-s + 〈Qku〉w = Ṡe,J

Tp − Ts

Rk,p-s
+

Tp − Tf,∞
〈Rku〉w = Ṡe,J,

where

Rk,p-s =
as

ksA
=

as

ks(w × w)
=

0.0015(m)
0.3(W/m-K) × (0.07)2(m)2

= 1.02◦C/W

〈Rku〉w =
w

Aku〈Nu〉wkf
.

For the case with the fins, the fluid flow between the fins is assumed to be a parallel flow over a flat plate. Then,
since w and uf,∞ are the same for both cases, we can use the same 〈Nu〉w in parts (b) and (c).
From Table C.22 for air, at T = 300 K, we have νf = 15.66 × 10−6 m2/s, kf = 0.0267 W/m-K and Pr = 0.69.
Then Rew is

Rew =
uf,∞w

νf
=

0.5(m/s) × 0.07(m)
15.66 × 10−6(m2/s)

= 2235 < 5 × 105, laminar flow.

From Table 6.3, for parallel laminar flow over a flat plate, we have

〈Nu〉w = 0.664Re1/2
w Pr1/3

〈Nu〉w = 0.664 × (2235)1/2 × (0.69)1/3 = 27.74.

Then

〈Nu〉w kf

w
= 27.74 × 0.0267(W/m-K)

0.07(m)
= 10.58 W/m2-K.

The integral-volume of energy equation (2.9) for node Tp, then becomes

Tp − Ts

Rk,p-s
+

Tp − T∞
Rku,p-∞

= Ṡe,J

Tp − Ts

1.02(◦C/W)
+

Tp − 25◦C
1/[Aku × 10.58(W/m2-◦C)]

= 35 W.
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(b) Case With No Fins, Tp − Ts = 10◦C
For this case, Aku is the top surface of the plate, i.e., Aku = w × w = 0.0049 m2. The energy equation then
becomes

10(◦C)
1.02(◦C/W)

+
Tp − 25(◦C)

1/[0.0049(m2) × 10.58(W/m2-K)]
= 35 W.

Solving for Tp, we have

Tp = 511◦C.

(c) Case With Fins, Tp − Ts = 1◦C
For this case, Aku is the effective area of the fins and the base area (over which surface convection occurs). Then

Aku = (Ab + NfAku,fηf ),

where

Ab = A − NfAk = w × w − Nf × (w × l)
= 0.0049(m2) − 16 × [0.07(m) × 0.001(m)]
= 0.0049(m2) − 16 × [7 × 10−5(m2)] = 0.00378 m2

and

Aku,f = Pku,f × Lc = 2(w + l) × (L + l/2)
= {2 × [0.07(m) + 0.001(m)]} × [0.035(m) + 0.001(m)/2]
= 0.142(m) × 0.0355(m) = 0.005041 m2.

To find ηf we must first find the fin parameter m. The fins are fabricated from aluminum. From Table C.16, at
T = 300 K, ksl = 237 W/m-K. Then,

m =

(
Pku,f 〈Nu〉w kf

w

kslAk

)1/2

=
[

0.142(m) × 10.58(W/m2-K)
237(W/m-K) × 7 × 10−5(m2)

]1/2

= 9.516 m−1.

Then, from (6.147) and (6.149), we have

ηf =
tanh(mLc)

mLc
=

tanh[9.516(m−1) × 0.0355(m)]
9.516(m−1) × 0.0355(m)

=
tanh(0.3378)

0.3378
= 0.964.

Aku = Ab + Afηf = Ab + NfAku,fηf

= [0.00378(m2) + 16 × 0.005041(m2) × 0.964] = 0.0815 m2.

The energy equation becomes

Tp − Ts

1.02(◦C/W)
+

Tp − 25(◦C)
1/[Aku × 10.58(W/m2-K)]

= 35 W

1(◦C)
1.02(◦C/W)

+
Tp − 25(◦C)

1/[0.0815(m2) × 10.58(W/m2-K)]
= 35 W.

Solving for Tp, we obtain

Tp = 64.5◦C.

(d) For the case with the fins, the calculated temperature is well above the damage threshold of Tp,max = 90◦C.
With the fins, there is a dramatic drop in the temperature to below this damage threshold temperature. This
is due to the increased surface area, allowing for a much increased amount of surface-convection heat transfer to
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the fluid. Fins, or some equivalent heat transfer enhancement mechanism, are required for safe operation of this
processor chip.

COMMENT:
Note that the fin effectiveness is

Γf =
Ab + Afηf

A
=

0.00378 + 0.08066
0.0049

= 17.23.

This shows a very effective fin attachment.
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PROBLEM 6.41.FAM

GIVEN:
To analyze the heat transfer aspects of the automobile rear-window defroster, the window and the very thin

resistive heating wires can be divided into identical segments. Each segment consists of an individual wire and an
a × L × l volume of glass affected by this individual heater. Each segment has a uniform, transient temperature
T1(t). This is shown in Figure Pr.6.41(a). In the absence of any surface phase change, the Joule heating results in
a temperature rise, from the initial temperature T1(t = 0) = −15◦C, and a surface heat loss to the surroundings.
The surface heat loss to the surroundings is represented by a resistance Rt.

The surrounding far-field temperature is T∞. T1(t = 0) = −15◦C, T∞ = −15◦C, l = 3 mm, a = 2 cm, L = 1.5
m, Ṡe,J = 15 W, Rt = 2◦C/W.

Determine the glass plate properties from Table C.17.

SKETCH:
Figure Pr.6.41(a) shows a unit cell on a glass window, where a thin resistive heater heats the glass volume

around it.

a

L

Very Thin
Resistive Heater

Glass

l

Se,J
T1 (t)
One Segment

Surroundings
T
�

 , Rt

Qt

Figure Pr.6.41(a) Thin-film electric heaters on a glass surface.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Show that the lumped-capacitance approximation using l for the conduction resistance.

Assuming no surface phase change occurs, determine (c) the steady-state temperature of the glass, and (d)
the glass temperature after an elapsed time t = 5 min.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.6.41(b).

Q1 = 0
T
�T1(t)

Rt

Qt,1-�

Se,J

.

Figure Pr.6.41(b) Thermal circuit diagram.

(b) To show validity of the lumped capacitance assumption, we must show Bi 
 1, or Bi < 0.1. For glass from
Table C.17, at T = 293 K, we have ρ = 2710 kg/m3, cp = 837 J/kg-K, k = 0.76 W/m-K, α = 0.34 × 10−6 m2/s,
and V = a × l × L = 9 × 10−5 m3.
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Then,

Bil =
Rk,l

Rk

Rk =
l

kAk
=

l

kaL
=

0.003(m)
(0.76)(W/m-K) × (0.02)(m) × (1.5)(m)

= 0.1316◦C/W

Bil =
0.1316

2
= 0.0658 
 1 lumped assumption is valid.

(c) The lumped-capacitance analysis, with a single external resistance heat transfer, results in (6.156), i.e.,

T1(t) = T∞ + [T1(t = 0) − T∞]e−t/τ1 + a1τ1(1 − e−t/τ1),

where

τ1 = (ρcpV )Rt = [(2710)(kg/m3)(837)(J/kg-K)(9 × 10−5)(m3)] × (2)(◦C/W) = 408.29 s

a1 =
Ṡ1 − Q1

(ρcpV )
=

(15 − 0)(W)
(2710)(kg/m3)(837)(J/kg-K)(9 × 10−5)(m3)

= 0.0735◦C/s.

Then

T1(t) = −15(◦C) + [(−15(◦C) + 15(◦C)] × e−t/408.29(s) + 0.0735(◦C/s) × 408.29(s)) × [1 − e−t/408.29(s)]
T1(t) = −15(◦C) + 0.0 + 30(◦C)[1 − e−t/408.29(s)].

As t → ∞, then e−t/τ1 → 0 and

T1(t → ∞) = −15(◦C) + 30(◦C)(1 − 0) = 15◦C = 288.15K.

(d) At t = 5 min = 300 s, we have

T1(t = 300 s) = −15(◦C) + 30(◦C)[1 − e−300(s)/408.29(s)] = 0.61◦C = 273.76K.

COMMENT:
Note that this heating rate is able to raise the glass temperature above 0◦C in 5 min. For faster response a

higher heating rate is needed.
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PROBLEM 6.42.FAM

GIVEN:
In particle spray surface coating using impinging-melting particles, prior to impingement the particles are

mixed with a high temperature gas as they flow through a nozzle. The time of flight t (or similarly the nozzle-to-
surface distance) is chosen such that upon arrival at the surface the particles are heated (i.e., their temperature
is raised) close to their melting temperature. This is shown in Figure Pr.6.42(a). The relative velocity of the
particle-gas, which is used in the determination of the Nusselt number, is ∆up. Consider lead particles of diameter
D flown in an air stream of Tf,∞. Assume that the particles are heated from the initial temperature of T1(t = 0)
to the melting temperature Tsl with surface-convection heat transfer only (neglect radiation heat transfer).

T1(t = 0) = 20◦C, Tf,∞ = 1,500 K, D = 200 µm, ∆up = 50 m/s.
Determine the air properties at T = 1,500 K (Table C.22), and the lead properties at T = 300 K (Table C.16).

SKETCH:
Figure Pr.6.42(a) shows the solid particles entrained in hot gas then after surface-convection heating arriving

at the substrate for deposition.

Tf,�

uf,�= ∆up
T1(t) = Tsl

T1(t = 0) = 20oC

Gas

Particles Spray Used for Coating

Moving Surface

Figure Pr.6.42(a) A particle spray coating surface-coating process using
impinging-melting particles.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the Biot number BiD, based on the particle diameter D. Can the particles be treated as lumped
capacitance?
(c) Determine the time of flight t needed to reach the melting temperature Tsl.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.6.42(b).

�Rku�D

T1

− (ρcV)1 dt
dT1

Tf,�

�Qku�D

Figure Pr.6.42(b) Thermal circuit diagram.

(b) From Table C.16 for lead at 300 K, we have ρs = 11,340 kg/m3, cp,s = 129 J/kg-K, ks = 35.3 W/m-K,
αs = 24.1 × 10−6 m2/s, and Tsl = 601 K.
From Table C.22 for air at 1500 K, we have ρf = 0.235 kg/m3, cp,f = 1202 J/kg-K, kf = 0.0870 W/m-K,
νf = 229 × 10−6 m2/s, and Pr = 0.7.
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The Biot number based on D is defined as

BiD =
Rk,s

Rk,u

=
(

D

4ks

)(
NuD

kf

D

)
= NuD

kf

4ks
.

To determine the NuD, we first must determine the ReD, given as

ReD =
∆upD

νf
=

50(m/s) × (200 × 10−6)(m)
229 × 10−6(m2/s)

= 43.67.

Then from Table 6.4 for a sphere we have

〈Nu〉D = 2 + (0.4Re1/2
D + 0.06Re2/3

D )Pr0.4

= 2 + [0.4(43.67)1/2 + 0.06(43.67)2/3](0.7)0.4 = 4.937.

Then substituting in to the above, the Biot number is

BiD = 〈Nu〉D kf

4ks

= (4.937)
0.0870(W/m-K)

4 × 35.3(W/m-K)
= 3.042 × 10−3.

(c) Since the BiD 
 1, we can analyze the lead droplets as lumped capacitance systems. Applying conservation
of energy around the droplet gives

Qku =
Tf,∞ − T1

〈Rku〉D = −(ρcpV )1
dT1

dt
.

The droplet is a lumped system with a single resistive heat transfer. The solution to this is given by (6.156) as

T1(t) = Tf,∞ + [T1(t = 0) − Tf,∞]e−t/τ1 + a1τ1(1 − e−t/τ1)

where

τ1 = (ρcpV )1〈Rku〉D, a1 =
Ṡ1 − Q1

(ρcpV )1
.

For this case, Ṡ1 = 0 and Q1 = 0, therefore a1 = 0. Then

τ1 = (ρcpV )1〈Rku〉D
= (ρcpV )1

D

Aku〈Nu〉Dkf

=
(ρcp)1D
〈Nu〉Dkf

(
V1

Aku

)
=

(ρcp)1
〈Nu〉Dkf

(
D2

6

)

=
11,340(kg/m3) × 129(J/kg-K) × (200 × 10−6)2(m2)

4.937 × 0.0870(W/m-K) × 6
= 0.02270 s.

Now, solving for t, for T1 = Tsl = 601 K, we have

Tsl = Tf,∞ + [T1(t = 0) − Tf,∞]e−t/τ1

Tsl − Tf,∞
T1(t = 0) − Tf,∞

= e−t/τ1

t = −τ1 ln
[

Tsl − Tf,∞
T1(t = 0) − Tf,∞

]

= −0.02270(s) × ln
[

(601 − 1,500)(K)
(293.15 − 1,500)(K)

]
= 6.685 × 10−3 s.

COMMENT:
Note that here about one-third of a time constant is needed to reach the desired particle temperature.
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PROBLEM 6.43.FAM

GIVEN:
A rectangular (square cross section) metal workpiece undergoing grinding, shown in Figure Pr.6.43(a), heats

up and it is determined that a surface-convection cooling is needed. The fraction of the energy converted by
friction heating Ṡm,F, that results in this heating of the workpiece, is a1. This energy is then removed from the
top of the workpiece by surface convection. A single, round impinging air jet is used. Assume steady-state heat
transfer and a uniform workpiece temperature Ts.

Ṡm,F = 3,000 W, a1 = 0.7, Tf,∞ = 35◦C, 〈uf 〉 = 30 m/s, D = 1.5 cm, L = 15 cm, Ln = 5 cm.
Evaluate properties of air at T = 300 K.

SKETCH:
Figure Pr.6.43(a) shows the workpiece and surface convection cooling.

Aku = 2L x 2L

Grinding Belt

Workpiece, Ts

l

L
Ln

DTf,� , uf

Jet Exit Conditions:

Sm,F

Figure Pr.6.43(a) Grinding of a metal workpiece.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the workpiece temperature Ts.
(c) What should the ratio of the workpiece thickness l to its conductivity ks be for the uniform temperature
assumption to be valid?

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.6.43(b).

�Rku�L

Ts Tf,�

�Qku�L

Sm,F

.

Qs

Figure Pr.6.43(b) Thermal circuit diagram.

(b) Applying the conservation of energy equation to the boundary node Ts at the interface of the workpiece and
the grinder belt, and noting steady-state, we have

Q|A = 〈Qku〉L + Qs = Ṡm,F .

It is given that the fraction of energy conversion by friction heating Ṡm,F that results in heating of the workpiece
is a1. This is the same energy that must be removed for steady-state conditions to exist. So we then have

〈Qku〉L = a1Ṡm,F

Ts − Tf,∞
〈Rku〉L = a1Ṡm,F ,
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where

〈Rku〉L =
1

Aku〈Nu〉L kf

L

.

Solving for 〈Nu〉L, we note that we have a single, round nozzle, impinging jet. Therefore, from Table 6.3,

〈Nu〉L = 2Re1/2
D Pr0.42(1 + 0.005Re0.55

D )1/2
1 − 1.1

D

L

1 + 0.1
(

Ln

D
− 6

)
D

L

.

From Table C.22 at T = 300 K, νf = 15.66 × 10−6 m2/s, kf = 0.0267 W/m-K, and Pr = 0.69. Then

ReD =
〈uf 〉D

νf
=

30(m/s) × 0.015(m)
15.66 × 10−6(m2/s)

= 2.874 × 104

〈Nu〉L = 2 × (2.874 × 104)1/2 × (0.69)0.42 × [1 + 0.005(2.874 × 104)0.55]1/2

×




1 − 1.1 ×
[
0.015(m)
0.15(m)

]

1 + 0.1
[

0.05(m)
0.015(m)

− 6
] [

0.015(m)
0.15(m)

]



= 412.3.

Then solving for 〈Rku〉L, we have

Aku = 2L × 2L = 4L2 = 4 × (0.15)2(m)2

= 0.09 m2

〈Rku〉L =
1

0.09(m2) × 412.3 × 0.0267(W/m-K)
0.15(m)

= 0.1514◦C/W.

From the conservation of energy equation, Ts is

Ts = Tf,∞ + a1〈Rku〉LṠm,F

= 35(◦C) + (0.7)[0.1514(◦C/W)][3000(W)]
= 352.9◦C = 626.1 K.

(c) The lumped assumption is valid when Bi < 0.1. From (6.130) and noting for conduction across the thickness
of the workpiece that Ak = Aku, we have

BiL =
Rk,s

〈Rku〉L =
RkAk

〈Rku〉LAku
=
(

l

ks

)(
1

〈Nu〉Lkf/L

)−1

< 0.1.

Solving for l/ks we have

l

ks
< 0.1

L

〈Nu〉Lkf
= 0.1 × 0.15(m)

412.3 × 0.0267(W/m-K)
,

or

l

ks
< 1.36 × 10−3 ◦C/(W/m2).

COMMENT:
This l/ks can be easily achieved for metals (ks > 10 W/m-K).
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PROBLEM 6.44.FUN

GIVEN:
A microprocessor with the Joule heating Ṡe,J is cooled by surface convection for one of its surfaces. An

off-the-shelf surface attachment is added to this surface and has a total of Nf square-cross-sectional aluminum
pin fins attached to it, as shown in Figure Pr.6.44. Air is blown over the fins and we assume that the Nusselt
number can be approximated using the far-field air velocity uf,∞ and a cross flow over each square-cross-sectional
cylinder fin (i.e., the Nusselt number is not affected by the presence of the neighboring fins). This is only a rough
approximation.

Tf,∞ = 35◦C, uf,∞ = 2 m/s, Ṡe,J = 50 W,D = 2 mm, a = 5 cm, Nf = 121, L = 2 cm.
Evaluate the air and aluminum properties at T = 300 K. Assume that the 〈Nu〉D correlation of Table 6.3 is

varied.

SKETCH:
Figure Pr.6.44(a) shows the extended surface.

aa
Se,J

Ts

D

D

Tf,�

uf,�

Microprocessor

Fastener

Fins (Square
Cross Section)

L

Figure Pr.6.44(a) A microprocessor with the Joule heating and a surface-convection cooling. There is an attached
extended surface for reduction of the microprocessor temperature.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the fin efficiency.
(c) Determine the steady-state surface temperature Ts.
(d) Determine the fin effectiveness.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.6.44(b). The steady-state, uniform surface temperature is
Ts.

Rku,s-�

Tf,�

uf,�

Qs = 0

Qku,s-�

Se,J Ts

Figure Pr.6.44(b) Thermal circuit model.

(b) The fin efficiency is given by (6.147) as

ηf =
tanh(mLc)

mLc

m =
(

Pku,f 〈Nu〉Dkf

AkksD

)1/2

.

600



We use Table 6.3 for 〈Nu〉D, where D is the side length for the square cross section cylinder. Here

Pku,f = 4D, Lc = L +
D

4
, Ak = D2,

where we used (6.141) and a similarity to circular pin fins. From Table C.14, for aluminum, ks = 237 W/m-K.
From Table C.22, for air at T = 300 K, we have

air: νf = 1.566 × 10−5 m2/s Table C.22

kf = 0.0267 W/m-K Table C.22

Pr = 0.69 Table C.22.

Then

ReD =
uf,∞D

νf
=

2(m/s) × 2 × 10−3(m)
1.566 × 10−5(m2/s)

= 255.4

This is outside the range of ReD given in Table C.6.3, however, for lack of an alternative we will use the available
results, i.e.,

〈Nu〉D = a1Rea2Pr1/3

= 0.102Re0.675
D Pr1/3

= 0.102 × (255.4)0.675 × (0.69)1/3

= 3.800.

Then

m =
(

4〈Nu〉D
D2

kf

ks

)1/2

=
[

4 × 3.800
(2 × 10−3)2(m2)

0.0267(W/m-K)
237(W/m-K)

]1/2

= 20.69 1/m

Lc = 0.02(m) + 0.002/4(m) = 0.0205 m
mLc = 20.69(1/m) × 0.0205(m) = 0.4241.

Next, interpolating from Table 6.6, we have

ηf =
tanh(mLc)

mLc
=

tanh(0.4241)
0.4241

=
0.3998
0.4241

= 0.9426.

(c) The energy equation for the microprocessor volume is written, using Figure Pr.6.28(b), as

Qku,s-∞ = Ṡe,J.

From (6.149), we have

Qku,s-∞ = (Ab + Afηf )〈Nu〉D kf

D
(Ts − Tf,∞),

where we have used 〈Nu〉D for the base and the fin surfaces.
Here

Ab = a2 − NfD2

= (0.05)2(m2) − 121 × (0.002)2(m2) = 2.016 × 10−3 m2

Af = Nf × 4DLc

= 4 × 121 × 0.002(m) × (0.0205)(m) = 1.984 × 10−2 m2.

Then

Ṡe,J = Qku,s-∞ = (2.016 × 10−3 + 1.984 × 10−2 × 0.9426)(m2)×

3.800 × 0.0267(W/m-K)
0.002(m)

× (Ts − Tf,∞)

50(W) = 1.051(W/◦C)[Ts − 35(◦C)]
Ts = 82.57◦C
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(d) The fin effectiveness is defined in Section 6.8.2 as

Γf =
Ab + Afηf

A

=
(2.016 × 10−3 + 1.984 × 10−2 × 0.9426)(m2)

(0.05)2(m2)
= 8.287.

COMMENT:
A fin effectiveness of Γf = 8.287 is high enough to allow for maintaining the microprocessor at a temperature

below the damage threshold (which is around 100◦C). Also note that we have used a 〈Nu〉D correlation that is a
only an approximation for the collection of the fins used here. A more accurate value of tanh(0.4241) = 0.4004
can be obtained from most pocket calculators.
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PROBLEM 6.45.FUN

GIVEN:
Desiccants (such as silica gel) are porous solids that adsorb moisture (water vapor) on their large interstitial

surface areas. The adsorption of vapor on the surface results in formation of an adsorbed water layer. This
is similar to condensation and results in liberation of energy. The heat of adsorption, similar to the heat of
condensation, is negative and is substantial. Therefore, during adsorption the desiccant heats up. The heat of
adsorption for some porous solids is given in Table C.5(b). Consider a desiccant in the form of pellets and as
an idealization consider a spherical pellet of diameter D in a mist-air stream with far-field conditions Tf,∞ and
uf,∞. Assume that the released energy is constant.

Ṡ1 = Ṡad = ∆hadρadV/to, D = 5 mm, ρad = 200 kg/m3, T1(t = 0) = 10◦C, Tf,∞ = 10◦C, (ρcp)1 = 106

J/m3-K, uf,∞ = 3 cm/s, ∆had = 3.2 × 106 J/kg, to = 1 hr.
Evaluate properties of air at T = 300 K.

SKETCH:
Figure Pr.6.45(a) shows the desiccant pellet (porous zeolite) in cross, moist-air flow.

Sad

T1(t)

Tf,�

uf,�

Heat Release Due to
Water-Vapor Adsorption

Water-
Vapor

Desiccant
(Porous Zeolite)

Air

�ad

D

T(t = 0)

Figure Pr.6.45(a) A desiccant pellet in a cross, moist air flow.

OBJECTIVE:
(a) Draw the thermal circuit diagram for the pellet.
(b) Determine the pellet temperature after an elapsed time to.

SOLUTION:
(a) Figure Pr.6.45(b) shows the thermal circuit diagram.

Rku  D Tf,�

S1 = Sad

T1(t)

� (�cpV )1
dT1

dt

Qku  D

..

Figure Pr.6.45(b) Thermal circuit diagram.

(b)The temperature of the pellet is given by (6.156), i.e.,

T1(t) = Tf,∞ + [T1(t = 0) − Tf,∞]e−t/τ1 + a1τ1(1 − et/τ1)

τ1 = (ρcpV )1〈Rku〉D, a1 =
Ṡ1 − Q1

(ρcpV )1
, V1 =

πD3

6
.

The average surface-convection resistance 〈Rku〉D is found from (6.124), i.e.,

〈Rku〉D =
D

Aku〈Nu〉Dkf
, Aku = πD2.
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The Nusselt number is found from Table 6.4, i.e.,

〈Nu〉D = 2 + (0.4Re1/2
D + 0.06Re2/3

D )Pr0.4,ReD =
uf,∞D

νf
.

From Table C.22, at T = 300K, we have for air

kf = 0.0267 W/m-K Table C.22

νf = 1.566 × 10−5 m2/s Table C.22

Pr = 0.69.

Then

ReD =
0.03(m/s) × 5 × 10−3(m)

1.566 × 10−5(m2/s)
= 9.5785

〈Nu〉D = 2 + [0.4(9.5785)1/2 + 0.06(9.5785)2/3](0.69)0.4 = 3.300

〈Rku〉D =
5 × 10−3(m)

π × (5 × 10−3)2(m2) × 3.300 × 0.0267(W/m-K)
= 722.4◦C/W

τ1 = 106(J/m3-K) × π

6
(5 × 10−3)3(m3) × 722.4(◦C/W) = 47.28 s

Ṡ1 = Ṡad =
3.2 × 106(J/kg) × 200(kg/m3) × π × (5 × 10−3)3/6(m3)

3,600(s)
= 1.164 × 10−2 W

a1 =
1.164 × 10−2(W)

106(J/m3-K) × π × (5 × 10−3)3/6(m3)
= 0.1778 × 10−2◦C/s

T1(t = to = 1 hr) = 10(◦C) + 0.1778(◦C/s) × 47.28(s) × [1 − e−3,600(s)/47.28(s)]
= 18.41◦C.

COMMENT:
Since the vapor is slow in diffusing into the porous pellet, the energy release rate is rather low. Also since

the time constant τ1, is much less than the elapsed time of interest, the above T1 is the steady-state temperature
during the heat release period to.

604



PROBLEM 6.46.FUN.S

GIVEN:
Consider the concept of the critical radius discussed in Example 6.13. An electrical-current conducting wire

is electrically insulated using a Teflon layer wrapping, as shown in Figure Pr.6.46(a). Air flows over the wire
insulation and removes the Joule heating. The thermal circuit diagram is also shown.

L = 1 m, R1 = 3 mm, uf,∞ = 0.5 m/s.
Evaluate the air properties at T = 300 K. Thermal conductivity of Teflon is given in Table C.17.

SKETCH:
Figure Pr.6.46(a) shows the insulated wire and the thermal circuit diagram.

(i) Physical Model

L

R1

Tw

T2

Electrical Insulator (Teflon)

R2

Se,J
Electrical Conductor

(ii) Thermal Circuit Model

Qu

Qk,1-2

Rk,1-2 T2Tw
Tf,�Rku  D,2

Qku  D,2

Se,J

uf,�

Tf,�

Figure Pr.6.46(a)(i) An electrical-current carrying wire is electrically insulated with a
Teflon layer wrapping. (ii) Thermal circuit diagram.

OBJECTIVE:
(a) Plot the variation of RΣ = Rk,1-2 + 〈Rku〉D,2 with respect to R2, for R1 ≤ R2 ≤ 3R1.
(b) Determine R2 = Rc (where RΣ is minimum).
(c) Show the contributions due to Rk,1-2 and 〈Rku〉D,2 at R2 = Rc.
(d) Also determine Rc from the expression given in Example 6.13, i.e.,

Rc =
(

a2ks

2a2−1aR

)1/a2

.

SOLUTION:
(a) The total resistance to the heat flow is given in Example 6.13 as

RΣ =
ln(R2/R1)

2πLks
+

1
πL〈Nu〉D,2kf

.

From Table C.17, we have for Teflon

ks = 0.26 W/m-K Table C.17.

From Table C.22 for air, at T = 300 K, we have

kf = 0.0267 W/m-K Table C.22

νf = 1.566 × 10−5 m2/s Table C.22

Pr = 0.69 Table C.22.

605



The Reynolds number ReD,2 and 〈Nu〉D,2 are given in Table 6.3 as

ReD,2 =
uf,∞2R2

νf

=
0.5(m/s) × 2

1.566 × 10−5(m2/s)
× R2

= 6.386 × 104(1/m) × R2

〈Nu〉D,2 = a1Rea2
D,2Pr1/3.

Since R2 ≥ R1, we begin from R2 = R1. Then

ReD,2 = 6.386 × 104(1/m) × 3 × 10−3(m)
= 191.6.

For R2 = 3R1, ReD,2 = 574.7. From Table 6.3, we have for 191.6 < ReD,2 < 574.7,

a1 = 0.683 a2 = 0.466 Table 6.3.

Figure Pr.6.46(b) shows the variation of RΣ with respect to R2 for R1 ≤ R2 ≤ 3R1. The numerical values are
obtained and plotted using a solver (such as SOPHT).

(b) Minimum in Total Resistance 

R2 , mm

R
Σ 

, K
/W

1.75

4

1.71

1.65

1.67

1.69

3

1.73

5 6 87 9

R1

Rc = 5.259 mm

Figure Pr.6.46(b) Variation of RΣ with respect to R2 for R1 ≤ R2 ≤ 3R1.

(b) The minimum in RΣ occurs at R2 = Rc = 5.259 mm.

(c) The value of the two resistances at R2 = Rc are

Rk,1-2 = 0.3436◦C/W
〈Rku〉D,2 = 1.314◦C/W.

Here the surface-convection resistance is much larger.
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(d) The result of Example 6.13 for Rc for the above values for a1, a2, etc, is

Rc =
(

a2ks

2a2−1aR

) 1
a2

aR = kfa1

ua2
f,∞
νa2

f

Pr1/3

= 0.0267(W/m-K) × 0.683 × (0.5)0.466(m/s)0.466

(1.566 × 10−5)0.466(m2/s)0.466 × (0.69)1/3

= 2.024(W/m-K)/m0.466

Rc =
[

0.466 × 0.26(W/m-K)
20.466−1 × 2.027(W/m-K)/m0.466

] 1
0.466

= (0.08655)2.146(m)
= 0.005259 m
= 5.259 mm.

As expected, this is equal to the numerical/graphical result of (b).

COMMENT:
From Figure Pr.6.46(b), note that RΣ is rather independent of R2 near Rc (nearly flat). Therefore a range of

R2 can be used with a nearly equal RΣ.

607



PROBLEM 6.47.FUN

GIVEN:
In designing fins, from (6.149) we note that a combination of high fin surface area Af and high fin efficiency

ηf are desirable. Therefore, while high ηf (ηf → 1) is desirable, ηf decreases as Af increases. From (6.149) the
case of ηf → 1 corresponds to Biw → 0.

Note that

tanh(z) =
sinh(z)
cosh(z)

, sinh(z) =
ez − e−z

2
, cosh(z) =

ez + e−z

2
, ex = 1 + z +

z2

2
+ ... .

OBJECTIVE:
Show that in the limit of mLc → 0, the fin efficiency tends to unity.

SOLUTION:
We begin with

tanh(z) =
sinh(z)
cosh(z)

,

sinh(z) =
ez − e−z

2
, cosh(z) =

ez + e−z

2
.

Then

tanh(z) =
ez − e−z

ez + e−z .

Next we expand ez using a Taylor series as

ez = 1 + z +
z2

2!
+

z3

3!
+ ....

e−z = 1 − z +
z2

2!
− z3

3!
.....

Using these, we have

tanh(z) =
1 + z +

z2

2!
+

z3

3!
.. − 1 + z − z2

2!
+

z3

3!
− ...

1 + z +
z2

2!
+

z3

3!
.. + 1 − z +

z2

2!
− z3

3!
+ ...

=
2z +

2z3

3!
+ ....

2 +
2z2

2!
+ ....

.

We are interested in the fin efficiency, given by (6.147),

ηf =
tanh(z)

z
, z = mLc = Bi1/2

w .

and the limit of z = Bi1/2
w → 0. Then with tanh(z) from above,

lim
z→0

(ηf ) = lim
z→0

[
tanh(z)

z

]

= lim
z→0


2 +

2z2

3!
+ ...

2 +
2z2

2!
+ ...




= 1.
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COMMENT:
When mLc is small, i.e., from (6.147),

mLc =
Rk,s

〈Rku〉w = Bi1/2
w → 0

then the temperature nonuniformity within the fin is not significant.
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PROBLEM 6.48.FUN

GIVEN:
The body of the desert tortoise (like those of other cold-blooded animals) tends to have the same temperature

as its ambient air. During daily variations of the ambient temperature, this body temperature also varies, but
due to the sensible heat storage, thermal equilibrium (i.e., the condition of being at the same temperature) does
not exist at all times. Consider the approximate model temperature variation given in Figure Pr.6.48(a)(i), which
is based on the ambient temperature measured in early August, 1992, near Las Vegas, Nevada. Assume that a
desert tortoise with a uniform temperature is initially at T1(t = 0) = 55◦C. It is suddenly exposed to an ambient
temperature Tf,∞ = 35◦C for 6 hours, after which the ambient temperature suddenly changes to Tf,∞ = 55◦C
for another 12 hours before suddenly dropping back to the initial temperature. The heat transfer is by surface
convection only (for accurate analysis, surface radiation, including solar radiation, should be included). The
geometric model is given in Figure Pr.6.48(a)(ii), with surface convection through the upper (hemisphere) surface
and no heat transfer from the bottom surface. For the Nusselt number, use that for forced flow over a sphere.

ρ1 = 1, 000 kg/m3, cp,1 = 900 J/kg-K, uf,∞ = 2 m/s.
Evaluate the air properties at T = 320 K.

SKETCH:
Figure Pr.6.48(a) shows the measured and model temperature variations and the geometric model for surface

convection.

25

35

45

55

65

0 4 8 12 16 20 24

T
f,�

 , 
o C

t, hr

(ii) Geometric Model

(i) Ambient Air Temperature

Start
T1(t = 0) = 55oC

T1(t)
Surface Convection

Aku

R1

End

Measured

Model

No Heat Transfer

uf,�

Tf,�

Figure Pr.6.48(a)(i) A measured daily ambient air temperature variation over 24 hr and an approximation (model) to
the temperature variation. (ii) A geometric model for a tortoise in forced cross flow.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the body temperature after an elapsed time of 12 hours, i.e., T1(t = 12 hr) for R1 = 20 cm.
(c) Repeat for R1 = 80 cm.
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SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.6.48(b).

(b) From (6.156), for Q1 = Ṡ1 = 0, we have

T1(t) = Tf,∞ + [T1(t = 0) − Tf,∞]e−t/τ1 , τ1 = (ρcpV )1〈Rku〉D.

Qku   D

T1(t)Tf,�(t)
Rku  D

− (ρcpV)1
dT1

dt

Figure Pr.6.48(b) Thermal circuit diagram.

From (6.124), we have

〈Rku〉D =
D

Aku〈Nu〉Dkf
, ReD =

uf,∞D

νf
.

From Table C.22, we have for air at T = 300 K,

kf = 0.0281 W/m-K
νf = 17.44 × 10−6 m2/s
Pr = 0.69

ReD =
2(m/s) × 2 × R1

17.44 × 10−6(m2/s)
= 2.294 × 105(m−1)R1

(i) ReD = 4.588 × 104

(ii) ReD = 1.835 × 105.

From Table 6.4, we have

〈Nu〉D = 2 + (0.4Re1/2
D + 0.06Re2/3

D )Pr0.4

(i) 〈Nu〉D = 2 + [0.4(4.588 × 104)1/2 + 0.06(4.588 × 104)2/3] × (0.69)0.4

= 142.15

(ii) 〈Nu〉D = 2 + [0.4(1.835 × 105)1/2 + 0.06(1.835 × 105)2/3] × (0.69)0.4

= 316.74.

Then

τ1 = (ρcp)1
1
2
× 4

3
πR3

1 ×
2R1

1
2
× 4πR2

1〈Nu〉Dkf

=
2(ρcp)1R2

1

3〈Nu〉Dkf

(i) τ1 =
2 × 1,000(kg/m3) × 900(J/kg-K) × (0.2)2(m2)

3 × 142.15 × 0.028(W/m-K)
= 6,030 s = 1.675 hr

(ii) τ1 =
2 × 1,000(kg/m3) × 900(J/kg-K) × (0.8)2(m2)

3 × 316.74 × 0.028(W/m-K)
= 4.330 × 104s = 12.03 hr.
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We need to first determine T1(t = 6 hr) and then use this to determine T1(t = 12 hr), i.e.,

T1(t = 6 hr) = 35(◦C) + (55 − 35)(◦C)e(−6/1.675)

= 35.56◦C.

Using this, we have

T1(t = 12 hr) = 55(◦C) + (35.56 − 55)(◦C)e(−6/1.675)

= 54.46◦C.

(c) For the larger tortoise, we have

T1(t = 6 hr) = 35(◦C) + (55 − 35)(◦C)e(−6/12.03)

= 47.15◦C
T1(t = 12 hr) = 55(◦C) + (47.15 − 55)(◦C)e(−6/12.03)

= 50.23◦C.

COMMENT:
Due to its smaller thermal mass, the body of the smaller tortoise follows the ambient temperature more closely

than that of the larger tortoise. Using numerical integration, the measured ambient air temperature can be used
to predict the body temperature. Due to the blood circulation, the internal conduction resistance Rk,1 cannot
be readily evaluated to examine the validity of the uniform-temperature (lumped-capacitance) treatment. Note
that this circulation assists in creating a uniform body temperature.
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PROBLEM 6.49.FUN

GIVEN:
When humans experience hypothermia (exposure to extreme low temperatures resulting in lower temperature

over part or the entire body), the body provides intensified metabolic reactions to supply more heat. Glucose
(C6H12O6) is the primary body fuel and its heat of oxidation ∆hr,c is rather large; therefore, the body prepares a
less energetic fuel called ATP (a combination of adenine, ribose, and three phosphate radicals). Here for simplicity
we assume that glucose oxidation results in thermal energy release as given by

C6H12O6 + 6O2 → 6CO2 + 6H2O.

During hypothermia, more energy conversion requires a larger oxygen consumption rate (in direct of energy volt-
age Ṡr,c.

Consider a human fallen into a cold water pond as shown in Figure Pr.6.49(a). Assume steady-state heat
transfer with surface convection due to the thermobuoyant motion (neglect end heat losses).

D = 0.45 m, L = 1.70 m, Ts = 15◦C, Tf,∞ = 15◦C, Tf,∞ = 4◦C, ∆hr,c = −1.6 × 107 J/kg.
Evaluate the water properties at T = 290 K.

SKETCH:
Figure Pr.6.49(a) shows the geometric model of the human body submerged in a cold water body.

Sr,c

Aku , TsTf,� < Ts
uf,� = 0

L

D

Water
(Pond)

g
Geometric Model
of Human Body

Neglect End
Heat Losses

Figure Pr.6.49(a) Hypothermia resulting from excessive heat loss, as experienced during submergence in very cold
water.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine Ṡr,c.
(c) Determine the oxygen consumption rate ṀO2 .
(d) Compare the rate calculated in part (c) with that associated with the rest condition Ṡr,c = 45 W [Figure
Ex.1.3(d)].

SOLUTION:
(a) Figure Pr.6.49(b) shows the thermal circuit diagram.

Rku  L

Qku  L

TsTf,�

Sr,c

Figure Pr.6.49(b) Thermal circuit diagram.

(b) From Figure Pr.6.49(b), the energy equation is

Q|A = 〈Qku〉L = Ṡr,c

=
Ts − Tf,∞
〈Rku〉L .
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From (6.124), we have

〈Rku〉L =
L

Aku〈Nu〉Lkf
, Aku = πDL.

The Nusselt number is found from Table 6.5, and for vertical cylinders, we use the results for the vertical plates
(subject to satisfying the stated criterion). Then

NuL = [(NuL,l)6 + (NuL,t)6]1/6

NuL,l =
2.8

ln

(
1 +

2.8

a1Ra1/4
L

)

NuL,t =
0.13Pr0.22

(1 + 0.61Pr0.8)0.42
Ra1/3

L

a1 =
4
3

0.503[
1 +

(
0.492
Pr

)9/16
]4/9

RaL =
gβf (Tc − Tf,∞)L3

νfαf
.

From Table C.23, we have for water at T = 290 K,

kf = 0.590 W/m-K
νf = 1.13 × 10−6 m2/s
αf = 1.41 × 10−7 m2/s
Pr = 8.02
βf = 0.000203 1/K.

Then

a1 =
4
3

0.503[
1 +

(
0.492
8.02

)9/16
]4/9

= 0.6166

RaL =
9.81(m/s2) × 0.000203(1/K) × (15 − 4)(K) × (1.7)3(m)3

1.13 × 10−6(m2/s) × 1.41 × 10−7(m2/s)
= 6.755 × 1011

NuL,l =
2.8

ln
[
1 +

2.8
0.6166 × (6.755 × 1011)1/4

] = 560.4

NuL,t =
0.13(8.02)0.22

[1 + 0.61(8.02)0.8]0.42 (6.755 × 1011)1/3 = 984.4

NuL = [(560.4)6 + (984.4)6]1/6 = 989.9

From the energy equation

Ṡr,c = Aku〈Nu〉L kf

L
(Ts − Tf,∞)

= π × 0.45(m) × 1.7(m) × 989.9 × 0.590(W/m-K)
1.7(m)

× (15 − 4)(K)

= 9,082 W.

(c) From (2.18), we have

Ṡr,c = −∆hr,cṀF

= −∆hr,cṀO2

νO2MO2

νF MF
,
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where from the chemical reaction formula and from Table C.2, we have

νF = 1, νO2 = 6, MF = (6 × 12.011 + 12 × 1.008 + 6 × 15.999)(kg/kmole) = 180.16 kg/kmole,
MO2 = 2 × 15.999(kg/kmole) = 31.998 kg/kmole.

Then

ṀO2 = − Ṡr,c

∆hr,c

νF MF

νO2MO2

= − 9,082(W)
−1.6 × 107(J/kg)

× 1 × 180.16(kg/kmole)
6 × 31.998(kg/kmole)

= 5.327 × 10−4 kg/s
= 0.5327 g/s.

(d) For Ṡr,c = 45 W, we have

ṀO2 = 0.002639 g/s.

COMMENT:
The body is not capable of producing 9,082 W. From Figure Ex.1.3(c), we note that Ṡr,c close to 400 W is

possible. Instead, the sensible heat of the body is used and the body temperature begins to drop. This creates
the dangerous condition of hypothermia. Also note that body temperature drop results in decrease in 〈Qku〉L
and Ṡr,c.
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PROBLEM 6.50.FUN.S

GIVEN:
In surface-convection evaporation cooling by water seepage of the evaporating liquid through a permeable

wall, the heat required for evaporation is provided by the ambient gas and the liquid reservoir. This is shown in
Figure Pr.6.50, which is similar to Figure 5.5, except here the gas surface convection is included.

Aku〈Rku〉L = 5 × 10−4 ◦C/(W/m2), (ρf,w)∞ = 0.0005 kg/m3, Tf,∞ = 300 K, L = 20 cm, w = 20 cm, Lw = 6
mm, 〈k〉 = 0.8 W/m-K, T1 = 293 K.

Evaluate all properties at T = 300 K [except for Ts and (ρf,w)s], and assume ρf,s = ρf,∞.

SKETCH:
Figure Pr.6.50(a) shows the porous layer through which water permeates and evaporates on the surface. The

heat for this evaporation is provided by the liquid reservoir and by ambient air.

�Ak,u ρl ul = Ml

Slg = �Mlg �hlg

Water Reservoir Air

Water
Vapor

Far-Field
Conditions

Porous Wall
(Solid-Liquid)

Control Surface

w

x

L

Lw

Mg uf,� , Tf,�

Water-Vapor
Density (ρf,w)

�

AkuAku

Mlg

k

qu

�  Qku  L

� Qk,u

Figure Pr.6.50(a) Evaporation cooling of a surface. The heat is provided by the liquid reservoir and the ambient air.

OBJECTIVE:
(a) Sketch the qualitative temperature and water vapor density distributions, and draw the thermal and mass
circuit diagrams.
(b) Write the energy equation for the evaporation surface, along with the relations for Qk,u (from Section 5.3),
Qku, Ṡlg, and (ρf,w)s = (ρf,w)s(Ts).
(c) Write the water-vapor species mass conservation equation for the evaporation surface.
(d) Determine the surface temperature Ts for the conditions given below. Note that ul = ṁlg/ρl is unknown.
(e) Determine the rate of heat flowing to the evaporating surface from the gas stream Qku and from the liquid
reservoir Qk,u.

SOLUTION:
(a) The qualitative plot of the distribution of the temperature in the porous wall and in the gas stream, is shown
in Figure Pr.6.50(b). The evaporation surface will have a temperature Ts which is lower than the gas stream
temperature Tf,∞. Under the proper seepage velocity and ambient conditions, Ts will also be lower than the
liquid reservoir temperature T1. This is the condition considered here and shown in Figure Pr.6.50(b).
The qualitative plot of distribution of the water-vapor density is also shown in this figure. The gas stream has
a lower water vapor density, and therefore, water vapor is transferred from the surface to the ambient gas by
surface-convection mass transfer.
The thermal and mass circuit diagram are shown in Figure Pr.6.50(c). The surface evaporation is shown as an
energy conversion term Ṡlg and there are two surface heat transfer terms, Qk,u (from the reservoir) and Qku (to
the gas stream). The mass transfer is shown with liquid supply to the surface Ṁl and surface-convection mass
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transfer Ṁlg.

(b) Temperature and Water Vapor Density Dist-
ribution Adjacent to Evaporation Surface

T1

T

Ts

� Lw 0

Thermal
Boundary

Layer

Heat Supply From
Liquid Reservoir

Porous Wall Air

Heat Supply
From Air

Tf,�

x

δα  L

ρ

(ρf,w)
�

� Lw 0

Water-Vapor Concentration
Boundary Layer

(ρf,w)s (Ts)

x

δD

Figure Pr.6.50(b) Qualitative distributions of temperature and water-vapor density near the evaporation surface.

Rku  L

(c) Thermal and Mass Circuit Models for Control Surface

Rk,u

Qk,u

Tf,�

Slg = �Mlg �hlg

T1 Ts

RD  L ρf,w  �
ρf,w  s

Qku  L

Ml = �Ak,u ρl ul

Mlg

Figure Pr.6.50(c) Thermal and mass circuit diagrams.

(b) We denote the fluid properties with the subscript l, the vapour properties with the subscript f, w and the air
stream properties with the subscript f, a. The energy equation for the evaporation surface is written from the
thermal circuit diagram, Figure Pr.6.50(c), and is

Qk,u + 〈Qku〉L = Ṡlg

Ṡlg = −Ṁlg∆hlg,

where,

〈Qku〉L =
Ts − Tf,∞
〈Rku〉L ,
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where, Aku〈Rku〉L is given and Aku = wL = 0.04 m2 so that 〈Rku〉 = 0.0125 K/W. The conduction-convection
heat transfer rate (for the permeable wall) is given by (5.19) as

Qk,u =
Ts − T1

Rk,u

=
Ak,u〈k〉ul

〈αl〉
ePeLw

ePeLw − 1
(Ts − T1),

where

Ak,u = Aku

PeLw
=

ulLw

〈αl〉
〈αl〉 =

〈k〉
(ρcp)l

,

so that

Qk,u = Ak,u(ρcp)lul
ePeLw

ePeLw − 1
(Ts − T1),

Finally we write the Clausius-Clapeyron relation (A.14) as

(ρf,w)s =
(ρf,w)oTlg,o

Ts
e
−Mw∆hlg

Rg

(
1
Ts

− 1
Tlg,o

)
,

where Tlg,o = 300 K.

(c) Noting that there is no storage of water at the surface s, the water-vapor species mass conservation (6.181) is
written at this surface as

Ṁw|A = Ṁl + Ṁlg

0 = −ρlulAk,u + Ṁlg

where from (6.179) we have

Ṁlg = 〈ṀDu〉L =
(ρf,w/ρf )s − (ρf,w/ρf )∞

〈RDu〉L
and from (6.180),

〈RDu〉L = 〈Rku〉Lcp,f,aLe−2/3

Le =
Dm,w

αf,a
.

As indicated, we assume that ρf,s = ρf,∞. Furthermore, as the water vapor density will be much less than the
air density, we take ρf,s = ρf,∞ = ρf,a.

(d) From Table C.22, for air at T = 300 K, we have

ρf,a = 1.177 kg/m3
Table C.22

cp,f,a = 1,005 J/kg-K Table C.22

αf,a = 2.257 × 10−5 m2/s Table C.22.

From Table C.20(a), for water vapor diffusing in air at 293 K, we have for the Lewis number

Dm,w = 2.20 × 10−5 m2/s

Le =
Dm,w

〈αf 〉 = 0.9747.
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At the reference temperature To = 300 K, we also have from the Table C.27 for water

∆hlg = 2.438 × 106 J/kg Table C.27

(ρf,w)o = 0.0256 kg/m3 Table C.27

ρl = 997 kg/m3 Table C.27

cp,l = 4,179 J/kg-K Table C.27,

so that,

〈αl〉 =
0.8(W/m-K)

997(kg/m3) × 4,179(J/kg-K)
= 1.920 × 10−7 m2/s.

When the above equations (the two conservation equations and the Clausius-Clapeyron equation) are solved using
a solver (such as a SOPHT) for Ts, (ρf,w)s, and ul, we have

Ts = 282.9 K
(ρf,w)s = 0.009365 kg/m3

ul = 1.478 × 10−5 m/s (PeLw
= 0.4618).

(e) The rate of heat flowing to the surface from the liquid reservoir and from the gas stream are

Qk,u = −67.39 W
〈Qku〉L = −1,369.30 W.

COMMENT:
For most problems dealing with combined heat and mass transfer, numerical solutions are required as many

of the relevant equations are non-linear.
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PROBLEM 6.51.FAM.S

GIVEN:
A water droplet of initial diameter D(t = 0) is in an air stream with a far-field velocity uf,∞, while the droplet

is moving in the same direction with a velocity ud. The air stream has a far-field temperature Tf,∞ and water
vapor density (ρf,w)∞. This is shown in Figure Pr.6.519a). The droplet has a uniform temperature Ts(t) at any
time, which is determined from the spontaneous heat transfer and evaporation rates. Neglect the sensible heat
storage/release in the droplet as Ts varies with time.

D(t = 0) = 4 mm, Tf,∞ = 350◦C, uf,∞ = 0.5 m/s, ud = 0.1 m/s, (ρf,w)∞ = 0, ρf,∞ = ρf,s.
Evaluate the air properties at T = 500 K and water properties at T = 300 K.

SKETCH:
Figure Pr.6.51(a) shows the water-droplet with surface-convection heat and mass transfer.

uf,�

Tf,�

(ρf,w)
�

Tf,s

(ρf,w)s

MDu(t)

Evaporating Droplet

D(t) ud

Figure Pr.6.51(a) An evaporating droplet with surface convection heat and mass transfer.

OBJECTIVE:
(a) Draw the thermal and mass circuit diagrams.
(b) For the conditions given above, plot the variation of the droplet diameter and volume as a function of time, up
to the time the droplet vanishes. (c) Using the droplet velocity, determine the length of flight before the droplet
vanishes.

SOLUTIONS:
(a) The thermal and mass circuit diagrams are shown in Figure Pr.6.51(b).

Mlg

D(t)
Rku D(t)

Ts(t)

Tf,�

RDu D(t)

Qku D(t)

(ρf,w)s

(ρf,w)
�

(b) Thermal Circuit Model

Figure Pr.6.51(b) Thermal and mass circuit diagrams.

(b) The energy equation (2.71) for the thermal node Ts is

Q|A = 〈Qku〉D(t) = −ρcp
d

dt
[V (t)Ts(t)] + Ṡlg(t),

620



where

Ṡlg(t) = −Ṁlg(t)∆hlg

Ṁlg(t) =
(ρf,w/ρf )s(t) − (ρf,w/ρf )∞

〈RDu〉D(t)

〈RDu〉D(t) = 〈Rku〉D(t)cp,fLe−2/3

〈Qku〉D(t) =
Ts(t) − Tf,∞
〈Rku〉D(t)

.

The integral-volume mass conservation equation, (6.181), becomes

Ṁ |A = Ṁlg =
dMw

dt
= −ρl

dV (t)
dt

.

The Clausius-Clapeyron relation (A.14) is

(ρf,w)s(t) =
(ρf,∞)oTlg,o

Ts(t)
exp

{−Mw∆hlg

Rg

[
1

Tlg(t)
− 1

Tlg,o

]}
Tlg,o = 300 K.

The surface convection resistance 〈Rku〉D is found from (6.124) and Table C.4 and is

〈Nu〉D = 2 + (0.4Re1/2
D + 0.06Re2/3

D )Pr0.4,

where

ReD(t) =
(uf,∞ − ud)D(t)

µf

〈Rku〉D(t) =
D(t)

Aku〈Nu〉D(t)kf

Aku(t) = πD2(t),

and we have used the relative velocity uf,∞ − ud.
The thermophysical properties for air at T = 500 K are found for Table C.22 and C.20(a), and for water at
T = 300K from Table C.27, i.e.,

νf = 3.73 × 10−5 m2/s Table C.22

cp,f = 1017 J/kg-K Table C.22

kf = 0.0395 W/m-K Table C.22

αf = 5.418 × 10−5 m2/s Table C.22

Pr = 0.69 Table C.22

ρf = 0.706 kg/m3 Table C.22

Dm,w = 2.20 × 10−5 m2/s Table C.20(a)

∆hlg = 2.438 × 106 J/Kg Table C.27

(ρf,w)o = 0.0256 kg/m3 Table C.27

ρl = 997 kg/m3 Table C.27

Cp,l = 4,179 J/kg-K Table C.27

Le =
Dm,w

αf
=

2.20 × 10−5(m2/s)
5.418 × 10−5(m2/s)

= 0.4061

We now need to simultaneously solve the energy and mass conservation equations and the Clausius-Clapeyron
relation for Ts(t), D(t) and (ρf,w)s(t).

(c)The variation of D and V with respect to t is plotted in Figures Pr.6.51(c) and (d). At t = 382 s, the droplet
vanishes.
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(d) The distance the droplet travels is found as

L = udt = 0.1(m/s) × 382(s) = 38.2 m.

This is rather a long distance for the droplet to travel before complete evaporation.
The length can be shortened by increasing Tf,∞ and or uf,∞.

COMMENT:
Note that Ts is independent of t, as shown in Figure 6.51(e). This is because it is determined from the energy

equation and the Clausius-Clapeyron relation, where in the energy equation D cancels out.
Also note that Aku/V = 6πD2/πD3 = 6/D increases as D decreases, therefore, the rate of decrease in D

increases with the elapsed time.
Also, note that as D(t = 0) decreases, the evaporation time decrease substantially. For D(t = 0) = 2 mm,

t = 110 s, for D(t = 0) = 0.2 mm = 200 µm, t = 1.46 s, for D(t = 0) = 20 µm, t = 0.0165 s = 16.5 ms, and
for D(t = 0) = 2 µm, t = 0.170 ms = 170 µs. Therefore, for rapid evaporation, very small droplets should be used.
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Figure Pr.6.51(c),(d) and(e) Time variation of droplet diameter, volume, and temperature.
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PROBLEM 6.52.FAM.S

GIVEN:
Electric hand dryers provide hot air flow for the evaporation of thin water layers over human skin. The rate

of evaporation, and hence the elapsed time for drying, depends on the air temperature and velocity and the
water-layer thickness. This is shown in Figure Pr.6.52(a)(i). The hands can be modeled as a cylinder with the
air flowing across it, as shown in Figure Pr.6.52(a)(ii).

uf,∞ = 0.8 m/s, Tf,∞ = 35◦C, (ρf,w)∞ = 0, l = 0.06 mm, D = 6 cm, L = 16 cm.
Determine all properties at T = 300 K. Assume ρf,s = ρf,∞ and that all the heat for evaporation is provided

by the air stream. Neglect the end surfaces of the cylinder.

SKETCH:
Figure Pr.6.52(a) shows the drying of wet hands by a hot, dry air stream and the simple geometric model for

the hand, represented by a cylinder in cross flow.

Wet Hands

Hot Air Flow

(i) Electric Air Heater for Hand Drying (ii) Model

Thin Water

Layer

Ts = Tlg

D

l

L

Tf,� , uf,�

(�f,w)
�

Tf,� , uf,�

(�f,w)
�

= 0

Figure Pr.6.52(a) Drying of wet hands by a hot air stream and its simple geometric model.

OBJECTIVE:
(a) Draw the thermal and mass circuit diagrams.
(b) Determine the evaporation rate Ṁlg and the water-surface temperature Ts = Tlg, for the conditions given
above.
(c) Assuming that the mass transfer rate is constant, determine the elapsed time for the evaporation of a water
layer with thickness l.

SOLUTION:
(a) Figure Pr.6.52(b) shows the thermal and mass circuit diagrams. The heat flow rate for the evaporation is
assumed to be from the hot air stream only.

�f,w
�f s

(ii)(i)

Tf,�

Qs = 0 �f,w
�f �

Rku  D

Qku  D
Ts = Tlg Ms = 0

RDu  D

MDu  D = Mlg

Figure Pr.6.52(b) (i)Thermal and (ii) mass circuit diagrams.

(b) The energy equation for the assumed uniform temperature surface Ts is given by (2.72) and here we have

Qs + 〈Qku〉D = Ṡlg

Ts − Tf,∞
〈Rku〉D = −Ṁlg∆hlg,
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where we have used Table 2.1 for Ṡlg.
The water-species conservation equation is (6.182), for the case of mass loss by surface convection only. Here we
have

Ṁlg = Ṁw|A = − d

dt
Mw|A(

ρf,w

ρf

)
s

−
(

ρf,w

ρf

)
∞

〈RDu〉D = − d

dt
(ρwlπDL)

= −ρwπDL
dl

dt
,

where we have assumed that l 
 D, then set the volume of water as πDLl.
The heat and mass transfer surface-convection resistances are found from (6.180) and from Table 6.3, i.e.,

〈RDu〉D = 〈Rku〉Dcp,fLe−2/3, Le =
Dm,w

αf

〈Rku〉D =
D

Aku〈Nu〉Dkf

〈Nu〉D = a1Rea2
D Pr1/3, ReD =

uf,∞D

νf
.

We also need the Clausius-Clapeyron relation (A.14) to relate Ts = Tlg and (ρf,w)s, i.e., as shown in Example
6.18, we have

(ρf,w)s =
(ρf,w)oTlg,o

Ts
e
−Mw∆hlg

Rg

(
1

Tlg
− 1

Tlg,o

)
,

where for the reference state we will use Tlg,o = 300 K.
We now proceed with the numerical results starting from the evaluation of the properties.
For air and water we have, at T = 300 K,

air : kf = 0.0267 W/m-K Table C.22

ρf = 1.177 kg/m3 Table C.22

cp,f = 1,005 J/kg-K Table C.22

νf = 1.566 × 10−5 m2/s Table C.22

αf = 2.257 × 10−5 m2/s Table C.22

Pr = 0.69 Table C.22

water : Dm,w = 2.20 × 10−5m2/s Table C.20(a)

(ρf,w)o = 0.0256 kg/m3 Table C.27

ρw = 997 kg/m3 Table C.27

∆hlg = 2.438 × 106 J/kg Table C.27

M = 18 kg/kmole
Rg = 8,314 J/kmole-K Table C.22

Le =
Dm,w

αf
=

2.20 × 10−5(m2/s)
2.257 × 10−5(m2/s)

= 0.9747.

Then

ReD =
0.8(m/s) × 0.06(m)
1.566 × 10−5(m2/s)

= 3,065.
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For this value of the Reynolds number, from Table 6.3, we have

a1 = 0.683, a2 = 0.466
〈NuD〉 = 0.683(3,065)0.466 × (0.69)1/3

= 25.43

〈Rku〉D =
D

πDLNuDkf
=

1
πL〈Nu〉Dkf

=
1

π × 0.16(m) × 25.43 × 0.0267(W/m-K)
= 2.930◦C/W,

where we have assumed l 
 D.
Then

〈RDu〉D = 2.930(◦C/W) × 1,005(J/kg-◦C) × (0.9747)−2/3

= 2,995 s/kg.

Combining the energy and water-species conservation equations, we have

Ts − 308.15(K)
2.930(K/W)

= − [(ρf,w)s/1.177(kg/m2)] − 0
2,995(s/kg)

× 2.438 × 106(J/kg).

Then along with the Clausius-Clapeyron relation, we simultaneously solve for Ts = Tlg and (ρf,w)s.
Using a solver, we have

Ts = Tlg = 285.64 K = 12.49◦C
(ρf,w)s = 0.01110 kg/m3.

Then

Ṁlg =
(0.01110/1.177) − 0

2,995(s/kg)
= 3.120 × 10−6 kg/s
= 3.120 × 10−3 g/s.

(c) The evaporation time is found for

Ṁlg = −ρwπDL
dl

dt

or upon integration, for a constant Ṁlg, we have

∆t =
ρwπDLl

Ṁlg

=
997(kg/m3) × π × 0.06(m) × 0.16(m) × 6 × 10−5(m)

3.120 × 10−6(kg/s)
= 578.2 s
= 9.637 min.

COMMENT:
Note that the water surface cools down to 12.49◦C. Under this condition, heat also flows from the body to the

liquid surface. Also, as shown in Figure Pr.6.52(c), the mass flow rate increases nearly linearly with Tf,∞ − Ts.
Then using a higher Tf,∞, will allows for a shorter drying time.

625



Tf,�, K

M
lg

, m
g/

s
2.5

2.9

3.3

3.7

4.1

4.5

300 304 308 312 316 320

Figure Pr.6.52(c) Variation of mass flow rate with respect to Tf,∞.
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PROBLEM 6.53.FAM

GIVEN:
A well-insulated hot-beverage cup filled with hot water has its cap removed, thus allowing for evaporation and

heat transfer from its top surface. This is shown in Figure Pr.6.53(a), where this evaporation and heat transfer
result in a change in the water-cup temperature Tc, which is assumed to be uniform. Consider the instantaneous
heat transfer at an elapsed time, when Tc = Ts is known.

R = 3.5 cm, Vc = 350 cm3, (ρcp)c = 2 × 106 J/m3-K, Tc = Ts = 80◦C, Tf,∞ = 20◦C, (ρf,w)∞ = 0.001 kg/m2.
Determine the properties of air at T = 325 K. Determine the water vapor properties at T = 80◦C from Table

C.27.

SKETCH:
Figure Pr.6.53(a) shows the water-cup systems and the surface evaporation, surface-convection heat transfer,

and change in the sensible heat of the system.

Removed Cap

Mug Filled with
Hot Water

Surface Water
Evaporation

Air
Tf,� , (�f,w)

�
,

uf,�= 0

Uniform Cup
Temperature, Tc

� (�cfV)c

Ts = Tc > Tf,�

R

Slg

g

dTc

dt

Qc = 0, Ideally
Insulated From

Sides and Bottom

Qku  L

Figure Pr.6.53(a) A well-insulated, hot-water cup has its cap removed allowing for evaporation and heat transfer from
its top surface. This heat transfer and evaporation result in a change in the water-cup temperature Tc.

OBJECTIVE:
(a) Draw the thermal and mass circuit diagrams for the water-cup volume.
(b) Determine the rate of surface-convection heat transfer 〈Qku〉L by thermobuoyant motion, for the given con-
ditions.
(c) Determine the rate of water evaporation Ṁlg and the rate of phase-change energy conversion Ṡlg.
(d) Determine the rate of change in the water-cup temperature dTc/dt.

SOLUTION:
(a) The thermal and mass circuit diagrams are shown in Figure Pr.6.53(b) The integral-volume energy equation
(2.73) becomes

Q|A,c = 〈Qku〉L + Qc = −(ρcpV )c
dT

dt
+ Ṡlg,

where from (6.124), we have

〈Qku〉L =
Ts − Tf,∞
〈Rku〉L =

Tc − Tf,∞
〈Rku〉L = Aku〈Nu〉L kf

L
(Tc − Tf,∞)

and from (6.181), we have

Ṁw|A,c =
(ρf,w/ρf )s − (ρf,w/ρf )∞

〈RDu〉L = − d

dt
Mw|V .

627



Qc = 0

Tc

Tf,�

Rku  L

RDu  L
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Figure Pr.6.53(b) Thermal and mass circuit diagrams.

(b) The Nusselt number is found from Table 6.5, i.e.,

NuL = [(NuL,l)10 + (NuL,t)10]1/10

NuL,l =
1.4

ln
(

1 +
1.4

0.835a1Ra1/4

)

NuL,t = 0.14Ra1/3
L

a1 =
4
3

0.503[
1 +

(
0.492
Pr

)9/16
]4/9

RaL =
gβf (Tc − Tf,∞)L3

νfαf

L =
Aku

Pku
=

πR2

2πR
=

R

2
.

The properties of air at T = 325 K are found from Table C.22, i.e.,

kf = 0.0284 W/m-K Table C.22

ρf = 1.090 kg/m3 Table C.22

cp,f = 1,006 J/kg-K Table C.22

νf = 1.790 × 10−5 m2/s Table C.22

αf = 2.592 × 10−5 m2/s Table C.22

Pr = 0.69 Table C.22

βf =
1
Tf

=
1

325(K)
= 3.077 × 10−3 1/K (6.77).

Then

L = 0.0175 m

RaL =
9.81(m/s2) × 3.077 × 10−3(1/K) × (80 − 20)(K) × (0.0175)3(m3)

1.790 × 10−5(m2/s) × 2.592 × 10−5(m2/s)
= 2.092 × 104
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a1 =
4
3

0.503[
1 +

(
0.492
0.69

)9/16
]4/9

= 0.5131

NuL,l =
1.4

ln
[
1 +

1.4
0.835 × 0.5131 × (2.092 × 104)1/4

] = 5.8246

NuL,t = 0.14(2.092 × 104)1/3 = 3.8576

NuL = [(5.8246)10 + (3.8576)10]1/10 = 5.834

〈Qku〉L = π(0.035)2(m2) × 5.834 × 0.0284(W/m-K)(80 − 20)(K)
0.0175(m)

= 2.186 W.

(c) From (6.180), we have

〈RDu〉L = 〈Rku〉Lcp,fLe−2/3, Le =
Dm,w

αf
.

From Table C.20(a), we have

Dm,w = 2.20 × 10−5 m2/s Table C.20(a)

Le =
2.20 × 10−5(m2/s)
2.592 × 10−5(m2/s)

= 0.8488.

Also from Table C.27, at Ts = Tc = Tlg = (80 + 273.15)(K) = 353.15 K we have

(ρf,w)s = 0.03057 kg/m3

∆hlg = 2.309 × 106 J/kg.

Then from (6.180), we have

Ṁlg = Aku〈Nu〉L kf

L

1

cp,fLe−2/3
[(ρf,w)s − (ρf,w)∞]

= π × (0.035)2(m2) × 5.834 × 0.0284(W/m-K)
0.0175(m)

× 1
1,006(J/kg-K) × (0.8488)−2/3

× 0.03057 − 0.001
1.090

= 8.808 × 10−7 kg/s.
Ṡlg = −Ṁlg∆hlg = −8.808 × 10−7(kg/s) × 2.309 × 106(J/kg)

= −2.034 W.

(d) From the energy equation, we have

dTc

dt
= −〈Qku〉L − Ṡlg

(ρcp)cVc

= − 2.186(W) − (−2.034)(W)
2 × 106(J/m3-K) × 3.5 × 10−4(m3)

= −6.029 × 10−3◦C/s.

COMMENT:
Note that the surface evaporation causes a similar cooling as that due to surface convection heat transfer.

Therefore, preventing evaporation is as important as preventing heat transfer through the side walls and the top
surface.
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PROBLEM 6.54.FUN

GIVEN:
Equation (6.65) gives an empirical correlation for the local Nusselt number, NuL, for turbulent flow over a

semi-infinite flat plate maintained at a constant temperature Ts. A prediction for NuL can also be obtained by
using a mixing length turbulence model and available empirical results. This problem and the one that follows
outline the analysis procedure. In this problem, the conservation equations are derived and the velocity profile
in the boundary layer is determined. In the following problem, the temperature profile in the boundary layer is
determined and an expression for NuL is found.

OBJECTIVE:
(a) Derive the time averaged forms of the continuity, momentum and energy equations under the boundary layer
approximation.
(b) By assuming that uf = uf (y) and T f = T f (y), and using a no slip boundary condition at the fluid-solid
interface, use the continuity equation to simplify the momentum and energy equations.
(c) Introduce the mixing length model and nondimensionalize the momentum equation to find a first order dif-
ferential equation for the velocity profile in the boundary layer.
(d) Integrate the result of part (c) to find the velocity profile in the boundary layer.

SOLUTION:
(a) Before deriving the appropriate forms of the conservation equations, note the following properties of the time
averaging operation, defined by (2.69),

a ≡ 1
τ

∫ τ

0

adt, a = a, a′ = 0, ab′ = 0, a + b = a + b,
∂a

∂x
=

∂a

∂x
.

The continuity equation for steady, incompressible two-dimensional flow is given by (6.37) as

∂uf

∂x
+

∂vf

∂y
= 0.

From (6.54), we have uf = uf + u′
f , so that the velocity components uf and vf are

uf = uf + u′
f

vf = vf + v′
f .

Substituting these into the continuity equation and time averaging term by term gives

∂uf

∂x
+

∂u′
f

∂y
+

∂vf

∂x
+

∂v′
f

∂y
= 0.

By noting the properties of the time averaging operation, the second and fourth terms both equal zero, and the
equation can be simplified to the required form of

∂uf

∂x
+

∂vf

∂y
= 0.

For the momentum equation, start from (6.36), and noting that µf/ρf = νf ,

uf
∂uf

∂x
+ vf

∂uf

∂y
= νf

∂2uf

∂y2 .

Using the expression for uf and vf from above, expanding, taking the time average and eliminating those terms
which are the time average of a mean component and a fluctuating component leads to

uf
∂uf

∂x
+ vf

∂uf

∂y
+ u′

f

∂u′
f

∂x
+ v′

f

∂u′
f

∂y
= νf

∂2uf

∂y2 .

Consider the third and fourth terms on the left hand side:

u′
f

∂u′
f

∂x
+ v′

f

∂u′
f

∂y
=

∂

∂x
(u′2

f ) − u′
f

∂u′
f

∂x
+

∂

∂y
(u′

fv′
f ) − u′

f

∂v′
f

∂x
.
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With the assumption that ∂(u′2
f )/∂x 
 ∂(u′

fv′
f )/∂y and noting that from the continuity equation, it can be

shown that

∂u′
f

∂x
+

∂v′
f

∂y
= 0,

this term simplifies to

∂

∂y
(u′

fv′
f ),

which is modeled as

∂

∂y
(u′

fv′
f ) = − ∂

∂y
(νt

∂uf

∂y
).

Substituting this back into the momentum equation gives the required form of

uf
∂uf

∂x
+ vf

∂uf

∂y
=

∂

∂y
[(νf + νt)

∂uf

∂y
].

For the energy equation, we start from (6.35),

uf
∂Tf

∂x
+ vf

∂Tf

∂y
=

kf

(ρcp)f

∂2Tf

∂y2 .

Using the expressions for uf and vf from above, and noting that from (6.55), Tf = T f +T ′
f , expanding, time aver-

aging and eliminating those terms which are the time average of a mean component and a fluctuating component
leads to

uf
∂T f

∂x
+ vf

∂T f

∂y
+ u′

f

∂T ′
f

∂x
+ v′

f

∂T ′
f

∂y
=

kf

(ρcp)f

∂2T f

∂y2 .

Consider the third and fourth terms on the left hand side:

u′
f

∂T ′
f

∂x
+ v′

f

∂T ′
f

∂y
=

∂

∂x
(u′

fT ′
f ) − T ′

f

∂u′
f

∂x
+

∂

∂y
(v′

fT ′
f ) − T ′

f

∂v′
f

∂x
.

With the assumption that ∂(u′
fT ′

f )/∂x 
 ∂(v′
fT ′

f )/∂y and using the continuity equation, this term simplifies to

∂

∂y
(v′

fT ′
f ),

which is modeled as

∂

∂y
(v′

fT ′
f ) = − 1

(ρcp)f

∂

∂y
(kt

∂T f

∂y
).

Substituting this back into the energy equation gives the required form of

uf
∂T f

∂x
+ vf

∂T f

∂y
=

1
(ρcp)f

∂

∂y
[(kf + kt)

∂T f

∂y
].

(b) If uf = uf (y), then uf = uf (y) and vf = vf (y), and then ∂uf/∂x = 0 and ∂vf/∂x = 0, and the continuity
equation becomes

∂vf

∂y
= 0

vf = constant.

With a no slip boundary condition at the fluid-solid interface, vf = 0. The left side of the momentum equation
is then equal to zero, giving

∂

∂y
[(νf + νt)

∂uf

∂y
] = 0.
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Similarly, if T f = T f (y), then ∂T f/∂x = 0. With vf = 0, the left side of the energy equation is zero, giving

1
(ρcp)f

∂

∂y
[(kf + kt)

∂T f

∂y
] = 0.

(c) Integrating the momentum equation and replacing ∂/∂y with d/dy (as it has been assumed none of the
dependent variables are x dependent) gives

(νf + νt)
duf

dy
= a1,

where a1 is a constant. At the wall, where y = 0, νt = 0, and therefore

νf
duf

dy
|y=0 = a1.

However, it is given that (duf/dy)|y=0 = τs/µf so that

a1 =
νfτ s

µf
=

τs

ρf
,

and the equation for the velocity becomes

(νf + νt)
duf

dy
=

τ s

ρf
.

Now introduce the dimensionless parameters y+ and u+
f , so that the equation for the velocity becomes

(νf + νt)
du+

f

dy+

(τ s/ρf )1/2

νf/(τ s/ρf )1/2
=

τs

ρf

(
νf + νt

νf
)
du+

f

dy+ = 1.

In the sublayer, νt = 0, and this equation becomes

du+
f

dy+ = 1.

In the turbulent part of the boundary layer, it is assumed that νt � νf , which gives

du+
f

dy+ =
νf

νt
.

To find an expression for νt, start with the expression for kt given in part (b) of the problem statement. With
λt = κy from (6.63) and the nondimensionalization used previously,

kt = Pr−1
t (ρcp)fλ2

t

duf

dy

αt =
αt

νt
κ2y2 duf

dy

νt = κ2y+2 ν2
f

τs/ρf

du+
f

dy+

(τ s/ρf )1/2

νf/(τ s/ρf )1/2

νt

νf
= κ2y+2 du+

f

dy+ .

Substituting this into the equation for the velocity gives

du+
f

dy+ =
1

κ2y+2 du+
f

dy+

du+
f

dy+ =
1

κy+ .
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(d) With a no slip boundary condition at the wall, u+
f (y+ = 0) = 0. Separating the equation for the velocity in

the sublayer and integrating leads to

∫ u +
f

0

du+
f =

∫ y+

0

dy+

u+
f |u

+
f

0 = y+|y+

0

u+
f = y+.

This equation is valid for 0 ≤ y+ ≤ y+
ν,crit = 10.8.

At the boundary between the sublayer and the turbulent portion of the boundary layer, u+
f = y+ = 10.8. Using

this as the lower boundary condition for the turbulent portion, the equation for the velocity in that region can
be separated and integrated to give

∫ u +
f

10.8

du+
f =

1
κ

∫ y+

10.8

dy+

y+

u+
f |u

+
f

10.8 =
1
κ

ln y+|y+

10.8

u+
f =

1
κ

ln
y+

10.8
+ 10.8.

With κ = 0.41,

u+
f = 2.44 ln y+ + 5.00.

This equation is known as the Law of the Wall, and is valid for y+ ≥ 10.8. A plot of the velocity profile in the
boundary layer is shown in Figure Pr.6.54.
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Figure Pr.6.54 Velocity profile in the turbulent boundary layer.

COMMENT:
The sublayer thickness used is an effective thickness, chosen that so experimental data fit the Law of the Wall.

It has no physical significance. Molecular viscosity is found to play a significant role up to around y+ = 40. While
good agreement is thus found for the Law of the Wall and close to the wall, where turbulent fluctuations are
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negligible, in the transition between these two regions the agreement is poor. Other models for the mixing length
can be chosen so as to get better agreement. For example, Van Driest assumes a continuous profile of the form

λt = κy[1 − exp(−y+/A+)],

where A+ is an effective sublayer thickness and is found to be 25.0. Use of this model requires a numerical solution
to the momentum equation, but gives a good fit to the experimental data in the sublayer and the Law of the Wall
region. The Van Driest model is also in qualitative agreement with observations of the boundary layer structure.
Turbulent transport from the wall is realized through fast, localized bursts of fluid from the sublayer into the
turbulent portion of the boundary layer. While there are no turbulent fluctuations in the sublayer when it is
undisturbed, these bursts are turbulent, and a statistical average of the behavior at any location in the sublayer
would then yield a small but finite mixing length.
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PROBLEM 6.55.FUN

GIVEN:
This problem is a continuation of the previous one. The next step is to find the temperature profile.

OBJECTIVE:
(a) Introduce the mixing length model to the energy equation, simplify, and nondimensionalize.
(b) Integrate the result of part (a) to find the temperature profile in the boundary layer.
(c) Evaluate the temperature profile using empirical data.
(d) Develop a relationship between the free stream velocity and temperature.
(e) Develop an expression for the Stanton number in terms of the friction coefficient and the Prandtl number.
(f) Develop an expression for the Nusselt number.

SOLUTION:
(a) Integrating the energy equation from part (b) of the previous problem, and noting that ∂/∂y can be replaced
by d/dy, gives

(αf + αt)
dT f

dy
= constant = − qs

(ρcp)f
,

where αf = kf/(ρcp)f , αt = kt/(ρcp)f and the definition of qs has been used. Solving for dT f ,

dT f = − qs

(ρcp)f

dy

αf + αt
.

From the definitions of y+ and T
+

f ,

dy =
νf

(τs/ρf )1/2
dy and dT f = − qs/(ρcp)f

(τ s/ρf )1/2
dT

+

f .

Substituting these into the equation for dT f and dividing through by qs/(ρcp)f

(τ s/ρf )1/2 gives

dT
+

f =
dy+

αf

νf
+

αt

νf

.

Noting that νf/αf = Pr, and that T
+

f (y+ = 0) = 0, integration of the expression for dT
+

f gives

T
+

f =
∫ y+

0

dy+

1
Pr

+
αt

νf

.

(b) In the laminar thermal sublayer (0 ≤ y+ ≤ y+
α,crit), αt = 0, and the temperature profile becomes

T
+

f = Pr y+.

If it assumed that αt � αf in the turbulent portion of the boundary layer, then in that region, αt/νf � 1/Pr. For
y+

α,crit = 13.2 the profile in the sublayer gives T
+

f = 13.2Pr, and integration of dT
+

f over the turbulent portion
of the boundary layer leads to

∫ y+

13.2Pr

dT
+

f =
∫ y+

13.2

dy+

αt

νf

T
+

f = 13.2Pr +
∫ y+

13.2

νfdy+

αt
.
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(c) From the given expression for kt, an expression for αt/νf can be found.

kt = Pr−1
t (ρcp)fλ2

t

∂uf

∂y

αt =
λ2

t

Prt

∂uf

∂y
.

From (6.63), λt = κy. Substituting in, and dividing through by νf gives

αt

νf
=

κ2y2

νfPrt

∂uf

∂y
.

Nondimensionalizing with the given forms of y+ and u+
f ,

αt

νf
=

κ2
y+2

ν2
f

(τ s/ρf )
Prtνf

∂u+
f

∂y+

(τ s/ρf )1/2

νf/(τ s/ρf )1/2

=
κ2y+2

Prt

∂u+
f

∂y+ .

From the result of part (c) of the previous problem, ∂u+
f /∂y+ = 1/κy+, so that

αt

νt
=

κy+

Prt
,

and the expression for the temperature profile becomes

T
+

f = 13.2Pr +
Prt

κ

∫ y+

13.2

dy+

y+

= 13.2Pr +
Prt

κ
ln y+|y+

13.2

= 13.2Pr +
Prt

κ
ln

y+

13.2
.

For κ = 0.41 and Prt = 0.9, the above expression evaluates to

T
+

f = 13.2Pr +
0.9
0.41

ln
y+

13.2
= 13.2Pr + 2.20 ln y+ − 5.66.

A plot of the temperature profile for Pr = 0.7 (typical for air over a wide range of temperatures) is shown in
Figure Pr.6.55. Also plotted is the profile for Pr = 5.9 (water at room temperature). For this case, an effective
thermal sublayer thickness of 7.55 is used. In general, this parameter is a functions of the Prandtl number. Note
the difference in the magnitude of the temperature increase which occurs in the thermal sublayer for the two
different fluids. Unlike the Law of the Wall, there is no universal temperature profile, and it therefore difficult
to develop general heat transfer correlations. Similar comments to those discussed for the velocity profile can be
made with respect to the agreement between these profiles and experimental data.

(d) From the results of part (d) of the previous problem and part (c) of the current problem, isolating for the
ln y+ term leads to

ln y+ =
u+

f − 5.00
2.44

ln y+ =
T

+

f − 13.2Pr + 5.66
2.20

.

Eliminating ln y+ and evaluating the velocity and temperature at the edge of the boundary layer gives

u+
f,∞ − 5.00

2.44
=

T +
f,∞ − 13.2Pr + 5.66

2.20
.

636



0

10

20

30

40

50

60

70

1 10 100 1000 10000

T
f +

y+

Pr = 5.9 (water)

Pr = 0.7 (air)

Figure Pr.6.55 Temperature profile in the turbulent boundary layer.

Where the overbar has been dropped as the far field conditions are independent of time. In order to equate the two
expressions for ln y+, it has been assumed that the viscous and thermal boundary-layers have the same thickness.
While in a laminar boundary-layer the relative magnitude of the two thicknesses is dependent on the Prandtl
number, in a turbulent boundary layer, where the turbulent viscosity is the primary transport mechanism, it is
not possible for the thermal boundary layer to have a significantly different thickness than the viscous boundary
layer. Solving for T +

f,∞ leads to

T +
f,∞ = 0.9u+

f,∞ + 13.2Pr − 10.2.

(e) The expression for the mean Stanton number, St, can be rearranged as

St =
qs

(Ts − Tf,∞)(ρcp)f (τ s/ρf )1/2

(τ s/ρf )1/2

uf,∞

=
1

T +
f,∞

(
0.5τ s

0.5ρfu2
f,∞

)1/2

=
(cf/2)1/2

T +
f,∞

.

From the definition of cf , uf,∞ = (τ s/0.5ρf cf )1/2, and thus

u+
f,∞ =

uf,∞
(τs/ρf )1/2

=
(τs/ρf )1/2(1/0.5cf )1/2

(τ s/ρf )1/2
=

1
(0.5cf )1/2

.

The expression for T +
f,∞ can then be written as

T +
f,∞ = 0.9

1
(0.5cf )1/2

+ 13.2Pr − 10.2.

Substituting this into the expression for the Stanton number and multiplying through by (cf/2)1/2 gives

St =
(cf/2)1/2

T +
f,∞

=
cf/2

0.9 + (cf/2)1/2(13.2Pr − 10.2)
.
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(f) With cf/2 = 0.0287Re−0.2
L and 0.9 + (cf/2)1/2(13.2Pr − 10.16) � Pr0.4,

St =
0.0287Re−0.2

L

Pr0.4 .

The Nusselt number is given by NuL = StReLPr so that

NuL =
0.0287Re−0.2

L

Pr0.4 ReLPr

= 0.0287Re4/5
L Pr3/5.

COMMENT:
The assumption of αt = 0 in the thermal sublayer, which, in light of the structure of the sublayer discussed in

the previous solution, is better defined as assuming that αt 
 αf , will not be valid for fluids with high Prandtl
numbers, such as thick oils. The assumption of αt � αf in the turbulent portion of the boundary layer will not
be valid for low Prandtl number fluids, such as liquid metals.

While the Nusselt number relation is similar to (6.65), it is limited to 0.5 ≤ Pr ≤ 1.0 and 5 × 105 ≤ ReL ≤
5 × 106. This range of the Prandtl number corresponds to gases. The fully empirical correlation covers a wider
range of flow conditions (0.6 ≤ Pr ≤ 60 and 5 × 105 ≤ ReL ≤ 108).

The mixing length model is an example of an algebraic (or zeroth-order) closure in turbulence modeling. It
has advantages in that simple analytic predictions can be made, but it restricted by its simplicity. More involved
methods include one- and two-equation models. The k-ε model is a well known two equation closure. Numerical
solutions are generally required. For a more detailed discussion of turbulent transport, consult Kays, W.M., and
Crawford, M.T., Convective Heat and Mass Transfer, Third Edition, McGraw-Hill, New York, 1993.
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PROBLEM 6.56.FUN

GIVEN:
In the boundary-layer flow and heat transfer over a smooth, semi-infinite flat plate, the flow is initially laminar,

but will transition to turbulence when the Reynolds number based on the location from the leading edge reaches
a critical value, ReL,t. In order to use (6.50) to evaluate the average Nusselt number, 〈Nu〉L, over the plate, the
laminar and turbulent regions must be considered separately.

OBJECTIVE:
(a) Using the expressions for the local Nusselt number, NuL, in the laminar and turbulent regions, given by (6.44)
and (6.65) respectively, develop an expression for the average Nusselt number for a plate with length L > Lt.
(b) For a transition Reynolds number ReL,t = 5 × 105, show that this expression reduces to (6.67).

SOLUTION:
(a) From (6.50), we have

〈Nu〉L =
∫ L

0

Nux

x
dx,

which can be divided into a laminar and a turbulent region, i.e.,

〈Nu〉L =
∫ Lt

0

(Nux)lam

x
dx +

∫ L

Lt

(Nux)turb

x
dx.

Using (6.44) and (6.65), we have

〈Nu〉L =
∫ Lt

0

0.322Re1/2
x Pr1/3

x
dx +

∫ L

Lt

0.0296Re4/5
x Pr1/3

x
dx.

From (6.46) and using a variable location x, the Reynolds number is

Rex =
uf,∞x

νf
.

Using this we have

〈Nu〉L = 0.332Pr1/3(
uf,∞
νf

)1/2

∫ Lt

0

x−1/2dx + 0.0296Pr1/3(
uf,∞
νf

)4/5

∫ L

Lt

x−1/5dx

= 0.332Pr1/3(
uf,∞
νf

)1/2(2)L1/2
t + 0.0296Pr1/3(

uf,∞
νf

)4/5(
5
4
)(L4/5 − L

4/5
t )

= [0.664Re1/2
L,t + 0.037(Re4/5

L − Re4/5
L,t )]Pr1/3.

(b) For ReL,t = 5 × 105, we have

〈Nu〉L = [(0.664)(5 × 105)1/2 + 0.037(Re4/5
L − (5 × 105)4/5)]Pr1/3

= [0.037Re4/5
L − 871]Pr1/3,

which is the same as (6.67).

COMMENT:
The above results are only valid when L ≥ Lt. When L < Lt, the flow is fully laminar, and (6.51) can be used

to determine the average Nusselt number. It has also been assumed that there is no significant transition region
(i.e., the flow switches from laminar to turbulent at Lt). In a real flow, there is a finite transition-region length
that would need to be separately modeled and included.
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Chapter 7

Convection: Bounded Fluid Streams



PROBLEM 7.1.FAM

GIVEN:
Air is heated while flowing in a tube. The tube has a diameter D = 10 cm and a length L = 4 m. The inlet

air temperature is 〈Tf 〉0 = 20◦C and the tube surface is at Ts = 130◦C. The cross-sectional averaged air velocity
is 〈uf 〉 = 2 m/s. These are shown in Figure Pr.7.1(a).

Evaluate the properties of air at T = 300 K.

SKETCH:
Figure Pr.7.1(a) shows a uniform surface temperature tube with a bounded air stream flowing through it and

being heated.

L = 4 m

D = 10 cmuf   = 2 m/s

ufqu
qu

qku

Aku 

 Tf   0 = 20oC

 Ts = 130oC

 Tf   L

Figure Pr.7.1(a) Constant surface temperature tube heating bounded air stream.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the Nusselt number 〈Nu〉D.
(c) Determine the number of thermal units NTU .
(d) Determine the heat transfer effectiveness εhe.
(e) Determine the average convection resistance 〈Ru〉L(◦C/W).
(f) Determine the convection heat transfer rate 〈Qu〉L−0(W).
(g) Determine the air exit temperature 〈Tf 〉L(◦C).

SOLUTION:
(a) Figure Pr.7.1(b) shows the thermal circuit for a bounded air stream exchanging heat with its bounding tube
wall. The fluid exchanges heat at a rate 〈Qu〉L-0(W) with the wall which is at Ts. As a consequence its temper-
ature is raised from 〈Tf 〉0 to 〈Tf 〉L. The average convection resistance for this heat transfer is 〈Ru〉L(◦C/W).

Mf 

.

Ru  LQu  L-0

Tf  LTf  0

Ts

Qu  0 Qu  L

Figure Pr.7.1(b) Thermal circuit diagram.

(b) From Table C.22, the properties for air at T = 300 K are kf = 0.0267 W/m-K, ρf = 1.177 kg/m3, cp,f = 1,005
J/kg-K, νf = 15.66 × 10−6 m2/s, and Pr = 0.69.
The Reynolds number based on diameter is given by (7.36) and is

ReD =
〈uf 〉D

νf
=

2(m/s) × 0.10(m)
15.66 × 10−6(m2/s)

= 12,772.

642



Since ReD > ReD,t = 2,300, the flow regime is turbulent. For the turbulent regime the Nusselt number is obtained
from Table 7.3. For Ts > 〈Tf 〉 (i.e., the fluid is being heated), we have n = 0.4 and the Nusselt number is given
by

〈Nu〉D = 0.023Re4/5
D Pr0.4 = 0.023 × (12772)4/5 × (0.69)0.4 = 38.22.

(c) For a circular tube, Au = πD2/4 and Aku = πDL The number of transfer units is given by (7.20) and is

NTU =
Aku〈Nu〉D kf

D Ṁf cp,f

.

The mass flow rate Ṁf is given by (7.3), i.e.,

Ṁf = Auρf 〈uf 〉 =
πD2

4
ρf 〈uf 〉 =

π × (0.1)2(m)2

4
× 1.177(kg/m3) × 2(m/s) = 1.849 × 10−2 kg/s.

The number of transfer units NTU is then

NTU =
πDL〈Nu〉D kf

D Ṁf cp,f

=
π × 4(m) × 38.22 × 0.0267(W/m-K)
1.849 × 10−2(kg/m3) × 1,005(J/kg-K)

= 0.6901.

(d) The heat transfer effectiveness εhe is given by (7.22) and is

εhe = 1 − e−NTU = 1 − e−0.6901 = 0.4985.

(e) The average convection resistance is given by (7.27), i.e.,

〈Ru〉L =
1

εhe Ṁf cp,f

=
1

0.4985 × 1.849 × 10−2(kg/m3) × 1,005(J/kg-K)
= 0.10795 ◦C/W.

(f) From (7.25), the convection heat transfer rate is given by (7.25) as

〈Qu〉L-0 =
Ts − 〈Tf 〉0
〈Ru〉L =

130(◦C) − 20(◦C)
0.10795(◦C/W)

= 1,019 W.

(g) The average fluid temperature at x = L (exit) is determined from (7.22) and the result is

〈Tf 〉L = 〈Tf 〉0 + εhe (Ts − 〈Tf 〉0−) = 20(◦C) + 0.4985 [130(◦C) − 20(◦C)] = 74.84◦C.

COMMENT:
Note that 〈Qu〉L-0 is positive, because the net convection heat flow rate of the air has increased (there is more

exiting compared to entering).
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PROBLEM 7.2.FAM.S

GIVEN:
A thermoelectric cooler maintains the surface temperature of a metallic block at Ts = 2◦C. The block is

internally carved to form a connected, circular channel with diameter D = 0.8 cm and length L = 40 cm. This
is shown in Figure Pr.7.2. Through this channel, a water stream flows and is cooled. The inlet temperature for
the water is 〈Tf 〉0 = 37◦C.

Evaluate the properties at the inlet temperature.

SKETCH:
Figure Pr.7.2 shows a metallic block with a water stream flowing through an internal channel.

Channel Length, L

w

Tf  0

Ts

uf

Tf  L

D

Figure Pr.7.2 A water-stream cooling block with internal channels.

OBJECTIVE:
(a) Determine and plot (i) the number of transfer units NTU , (ii) the thermal effectiveness εhe, (iii) the water
exit temperature 〈Tf 〉L(◦C), and (iv) the convection heat transfer rate 〈Qu〉L−0(W), as a function of the water
velocity for 0 < 〈uf 〉 < 2 m/s.
(b) At what water velocity is the exit temperature 〈Tf 〉L, 28◦C above Ts?

SOLUTION:
(a) From Table C.32, for water at 27◦C= 310K,

νf = 7.11 × 10−7 m2/s
ρf = 995.3 kg/m3

Pr = 4.74
kf = 0.023 W/m-K

cp,f = 4,178 J/kg-K

For a circular tube, we have

Au =
πD2

4
=

π × (0.008)2(m)2

4
= 5.0625 × 10−5 m2

Aku = πDL = π × 0.008(m) × 0.40(m) = 0.1005 m2.

The required quantities are calculated as follows:
(i) From (7.20),

NTU =
Aku〈Nu〉Dkf/D

(Ṁcp)f

.
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Figure Pr.7.2(b) SOPHT computer code and the resulting plots.

To specify 〈Nu〉D, the Reynolds number must be specified. It is given by (7.31) as

ReD =
〈uf 〉D

νf
.

For ReD < 2300, from Table 7.2 for constant wall temperature, 〈Nu〉D = 3.66.
Assuming that the transition to the turbulent regime takes place at a Reynolds number of 2300, for ReD > 2300,
from Table 7.3, for 〈Tf 〉0 > Ts, 〈Nu〉D = 0.023Re0.8

D Pr0.3.
(ii) From (7.22),

εhe = 1 − e−NTU .

(iii) From (7.21),

〈Tf 〉L = Ts + (〈Tf 〉0 − Ts)εhe.

(iv) From (7.24),

〈Qu〉L-0 = (Ṁcp)f (〈Tf 〉L − 〈Tf 〉0).
The required plots are shown in Figure Pr.7.2(b). Since 〈Nu〉D correlations for transition regimes are complex
and not very accurate, the text suggests the use of the turbulent regime correlation for Re> 2,300.

(b) From the plot for 〈Tf 〉L and the resulting tabulated data (not shown), we have 〈Tf 〉L = 30◦C = 303.15 K at
velocities of 0.061 m/s for the laminar regime and 1.42 m/s for the turbulent. Had the transition regime been
separately modeled, there would be a third velocity at which 〈Tf 〉L = 30◦C. Transition flows are unsteady, and
for this reason, should be avoided when specifying operating conditions.

COMMENT:
Note that the large increase in 〈Nu〉D for the turbulent flow regime can allow for the cooling of a larger mass

flow rate (i.e., higher velocity stream).
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PROBLEM 7.3.FUN

GIVEN:
A fluid enters a tube of uniform surface temperature Tswith temperature 〈Tf 〉0 and exits at 〈Tf 〉L. The tube

has a length L, a cross-sectional area Au, a surface-convection area Aku, a surface temperature Ts, and a mass
flow rate Ṁf .

OBJECTIVE:
(a) Show that for NTU → 0, 〈Tf 〉L becomes a linear function of NTU .
(b) For a tube with a circular cross section, obtain an expression for NTU as a function of the tube diameter D
and length L.
(c) How can the length L and the diameter D be changed such that NTU → 0?

SOLUTION:
(a) The temperature at the end of a tube of uniform surface temperature Ts, with a inlet temperature 〈Tf 〉0 is
given by (7.21), i.e.,

〈Tf 〉L = Ts + (〈Tf 〉0 − Ts)e−NTU .

The exponential function can be expanded using the Taylor series expansion, as a power series in NTU , i.e.,

e−NTU = 1 − NTU +
1
2
NTU2 − 1

6
NTU3 +

1
24

NTU4 − . . .

In the limit for NTU → 0, the terms with the exponents larger than unity tend to zero much faster than the first
two terms. Therefore, for a small NTU , the exponential function can be approximated as

e−NTU � 1 − NTU, NTU → 0.

Then

lim
NTU→0

〈Tf 〉L = Ts + (〈Tf 〉0 − Ts) lim
NTU→0

e−NTU

= Ts + (〈Tf 〉0 − Ts) (1 − NTU)
= 〈Tf 〉0 − NTU(〈Tf 〉0 − Ts),

which is a linear relation between 〈Tf 〉L and NTU .

(b) The NTU is defined by (7.20), i.e.,

NTU =
1

〈Rku〉D(Ṁcp)f

,

where from (7.19)

〈Rku〉D =
D

〈Nu〉DAkukf
,

and
Ṁf = Auṁf .

Then

NTU =
Aku

DAu

〈Nu〉Dkf

ṁfcp,f
.

For a circular tube we have
Aku = πDL, Au = πD2/4.

Then

NTU =
4L

D

〈Nu〉Dkf

ṁfcp,f
.

(c) NTU decreases as L decreases or D increases.
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COMMENT:
The linear relation between 〈Tf 〉L and NTU is the solution of the energy equation

Ṁfcp,f
d〈Tf 〉
dx

=
Pku〈Nu〉Dkf

D
(Ts − 〈Tf 〉0) ,

in which the heat transfer by surface convection is written as a function of the temperature difference Ts −〈Tf 〉0.
This becomes a valid approximation only in the limit of a very short tube (NTU → 0), as shown above.
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PROBLEM 7.4.FUN

GIVEN:
The blood flow through human tissues is by very small arteries called the arterioles, which have diameters in

the range of 5 to 50 µm and a length of a few centimeter. These are fed by small arteries, which in turn are fed
by the aorta. Each arteriole empties into 10 to 100 capillaries, which have porous walls and are the sites of the
exchange between the blood and interstitial tissue fluid. These are shown in Figure Pr.7.4. There are about 1010

capillaries in peripheral tissue. This cascading of blood vessels results in a large increase in the total flow cross
section Au, as listed in Table Pr.7.4 along with the cross-sectional area and the time-area averaged blood velocity
〈uf 〉.

Table Pr.7.4 Cross-sectional area (total) and time-area averaged blood velocity through various segments of blood
pathways.

Au, cm2 〈uf 〉, cm/s

aorta 2.5 33
small arteries 20 4.1

arterioles 40 2.1
capillaries 2,500 0.033

venues 250 0.33
small veins 80 1.0
venue cavao 8 10

As the total flow cross-sectional area Au increases, 〈uf 〉 decreases (because the mass flow rate is conserved).
In Example 7.4, we showed that for a very large specific surface area, i.e., Aku/V → ∞, we have NTU → ∞

and that any fluid entering a porous solid with an inlet temperature 〈Tf 〉0 will leave with its exit temperature
reaching the local solid temperature, i.e., 〈Tf 〉L = Ts.

La = 2 mm, Da = 50 µm, Lc = 30 µm, Dc = 3 µm, ρf = 1,000 kg/m3, cp,f = 3,000 J/kg-K, µf = 10−3 Pa-s,
kf = 0.6 W/m-K.

SKETCH:
Figure Pr.7.4 shows the blood flowing through the capillaries for exchange with the interstitial tissue fluid.

(i) Arteriole

Procapillary Sphincter

(ii) Capillary 

(i) Arteriole

La

Lc

Da

Dc

(ii) Capillary 

Thoroughfare Channel

Venule

Muscle Fiber (Cell)

Blood Arterioles and Capillaries

Metarteriole

From Small
Arteries

Mf

Figure Pr.7.4 Blood supply to tissue by arterioles feeding the capillaries.

OBJECTIVE:
(a) For the conditions given above and in Table Pr.7.4, determine NTU for (i) an arteriole, and (ii) a capillary.
Address the entrance effect [note that from Table 7.2, for (L/D)/PeD > 0.06, the entrance effect is negligible].
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(b) Using (7.21), (7.22), and (7.24), comment on the ability of these blood streams to control the local tissue
temperature Ts.

SOLUTION:
The number of transfer units is defined by (7.20) as

NTU =
Aku〈Nu〉Dkf/D

(Ṁcp)f

,

where from (7.3), we have

Ṁf = ρfAu〈uf 〉, Au = πD2/4.

The Nusselt number for straight tubes with constant surface temperature is given in Table 7.2 for laminar flow
and in Table 7.3 for turbulent flow. The flow regime is determined by calculating the Reynolds number (7.36),
i.e.,

ReD =
〈uf 〉D

νf
=

ρf 〈uf 〉D
µf

.

(i) Arteriole

ReD =
103(kg/m3) × 2.1 × 10−2(m/s) × 50 × 10−6(m)

10−3(Pa-s)
= 1.050,

and the flow is therefore laminar. Noting from Table 7.2 that ReDPr = PeD, the Peclet number, and that
Pr= νf/αf = µfcp,f/kf , we have

PeD = ReDPr = ReD
µfcp,f

kf

= 1,050 × 10−3(Pa-s) × 3 × 103(J/kg-K)
0.6(W/m-K)

= 5.250

Then, the criteria for checking the length of the entrance region for laminar flow becomes

L/D

PeD
=

2 × 10−3(m)/50 × 10−6(m)
5.250

= 7.619 > 0.6 entrance effect is negligible.

Assuming that the wall is at a constant temperature, the Nusselt number is found in Table 7.2 to be

〈Nu〉D = 3.66
Aku = πDL

NTU =
πDL〈Nu〉Dkf/D

πD2

4
ρf 〈uf 〉cp,f

=
L〈Nu〉Dkf

D2ρfcp,f 〈uf 〉

= 4 × 〈Nu〉D kf

ρfcp,f

L

D2

1
〈uf 〉

= 4 × 3.66 × 0.6(W/m-K)
103(kg/m3) × 3 × 103(J/kg-K)

× 2 × 10−3(m)
(50 × 10−6)2(m2)

× 1
2.1 × 10−2(m/s)

= 115.5.
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(ii) Capillary

ReD =
3.3 × 10−4(m/s) × 3 × 10−6(m) × 103(kg/m3)

10−3(Pa-s)
= 9.9 × 10−4

PeD = 9.9 × 10−4 × 10−3 × 3 × 103(J/kg-K)
0.6(W/m-K)

= 4.950 × 10−3

L/D

PeD
=

30 × 10−6(m)/3 × 10−6(m)
4.950 × 10−3 = 2,020 > 0.6 entrance effect is negligible.

Then,

NTU = 4 × 3.66 × 0.6(W/m-K)
103(kg/m3) × 3 × 103(J/kg-K)

× 30 × 10−6(m)
(3 × 10−6)2(m2)

× 1
3.34 × 10−4(m/s)

= 2.957 × 104.

(b) The large NTU , used in (7.21), (7.22) and (7.24), gives

〈Tf 〉L = Ts, εhe = 1,

〈Qu〉L-0 = (Ṁcp)f (Ts − 〈Tf 〉0).

This ensures that any difference Ts − 〈Tf 〉0, will results in the maximum heat transfer rate (since εhe = 1) which
tends to bring Ts close to 〈Tf 〉0. Here 〈Tf 〉0 is the deep-body temperature 〈Tf 〉0 = 37◦C.

COMMENT:
The mass flow rate per unit volume for the anteriors can be estimated using a volume fraction for these very

small vessels. Assuming this fraction to be εa = 0.001, we have

ṅf =
(Ṁf )a

Va/εa
=

εaρfAu〈uf 〉
πD2

4
L

=
εaρf 〈uf 〉

L

=
0.001 × 103(kg/m3) × 2.1 × 10−2(m/s)

2 × 10−3(m)
= 10.50 kg/m3-s.

This is on the high side for the typical magnitudes of ṅf listed in Example 7.4.
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PROBLEM 7.5.FAM.S

GIVEN:
The thermally fully developed regime is defined in terms of dimensionless temperature T ∗ as ∂T ∗/∂x ≡

∂[(Ts − Tf )/(Ts − 〈Tf 〉)]/∂x = 0, where x is along the tube and Tf = Tf (r, x), 〈Tf 〉 = 〈Tf 〉(x), and Ts(x) all
change with x. For laminar, fully-developed temperature and velocity fields in a tube flow, the differential energy
equation for the cylindrical coordinate system is the simplified form of (B.62). Due to the assumed angular
symmetry, the φ dependence is omitted and because of the fully developed fields, the axial conduction and radial
convection are omitted. Then for a steady-state heat transfer, we have (using the coordinates of Figure 7.1) from
(B.62)

−kf
1
r

∂

∂r

(
r
∂Tf

∂r

)
+

∂

∂x
(ρcp)fuf (r)Tf = 0,

where

uf (r) = 2〈uf 〉
[
1 −

(
2r

D

)2
]

.

These are used to determine the fluid temperature Tf (r, x), along with the condition of uniform heat flux qs on
the tube wall, which results in the combined integral-differential length energy equation (7.12), i.e.,

−Pkuqs + Au
d

dx
(ρcp)f 〈uf 〉〈Tf 〉 = 0.

Here qs is taken to be positive when it flows into the fluid.
Then the Nusselt number is given by (7.19), i.e.,

NuD = 〈Nu〉D =
qsD

[Ts(x) − 〈Tf 〉(x)]kf
.

OBJECTIVE:
(a) Show that ∂Tf/∂x = d〈Tf 〉/dx is uniform along the tube.
(b) Derive the expression for Tf = Tf (r, x), i.e.,

Tf (r, x) = Ts(x) − 2qsD

kf

[
13
6

+
1
16

(
2r

D

)4

− 1
4

(
2r

D

)2
]

.

(c) Derive the expression for Ts(x) − 〈Tf 〉(x).
(d) Using (7.9) show that 〈Nu〉D = 48/11 = 4.36, for uniform qs.

SOLUTION:
(a) We start with the definition of a fully-developed temperature field, in flow and heat transfer in a tube, i.e.,

∂

∂x

(
Ts − Tf

Ts − 〈Tf 〉
)

= 0, Tf = Tf (r, x), Ts = Ts(x), 〈Tf 〉 = 〈Tf 〉(x),

We expand this to arrive at

(Ts − 〈Tf 〉)
(

dTs

dx
− ∂Tf

∂x

)
− (Ts − Tf )

(
dTs

dx
− d〈Tf 〉

dx

)
(Ts − 〈Tf 〉)2

= 0

1
Ts − 〈Tf 〉

dTs

dx
− 1

Ts − 〈Tf 〉
∂Tf

∂x
− Ts − Tf

(Ts − 〈Tf 〉)2
dTs

dx
+

Ts − Tf

(Ts − 〈Tf 〉)2
d〈Tf 〉
dx

= 0.

Under the condition of uniform qs and 〈Nu〉D, from the definition of the Nusselt number, we get

Ts − 〈Tf 〉 =
qsD

〈Nu〉Dkf
= constant,

so that

dTs

dx
=

d〈Tf 〉
dx

.
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Substituting this into the expansion above leads to

1
Ts − 〈Tf 〉

dTs

dx
− 1

Ts − 〈Tf 〉
∂Tf

∂x
= 0

dTs

dx
=

∂Tf

∂x
.

Then comparing to the equality found from the Nusselt number expression gives

∂Tf

∂x
=

d〈Tf 〉
dx

.

This allows us to replace ∂Tf/∂x in the energy equation by d〈Tf 〉/dx

(b) The differential-volume energy equation becomes

−kf
1
r

∂

∂r

(
r
∂Tf

∂r

)
+ (ρcp)fuf (r)

d〈Tf 〉
dx

= 0.

Now replacing uf (r) with the given profile, we have

1
r

∂

∂r

(
r
∂Tf

∂r

)
− 2(ρcp)f 〈uf 〉

kf

[
1 −

(
2r

D

)2
]

d〈Tf 〉
dx

= 0.

We now replace d〈Tf 〉/dx from integral-differential length energy equation, i.e.,

d〈Tf 〉
dx

=
Pkuqs

Au(ρcp)f 〈uf 〉
1
r

∂

∂r

(
r
∂Tf

∂r

)
− 2Pkuqs

Aukf

[
1 −

(
2r

D

)2
]

= 0.

Upon two integrations, we get

Tf (r, x) =
2Pkuqs

Aukf

(
r2

4
− r4

4D2

)
+ a1 ln r + a2.

Using the continuity of temperature at the tube-wall surface, we have Tf (r, x) = Ts(x) at r = D/2. Also since at
r = 0 the fluid temperature has to be finite, we have a1 = 0. Then solving for a2, we have

a2 = Ts(x) − 2Pkuqs

Aukf

3D2

64
, Pku = πD, Au = πD2/4

= Ts(x) − 3
8

qsD

kf
.

Then

Tf (r, x) = Ts(x) − 2qsD

kf

[
13
6

+
1
16

(
2r

D

)4

− 1
4

(
2r

D

)2
]

.

(c) The velocity-area average fluid temperature 〈Tf 〉 is defined by (7.6), and upon using Tf (r, x) and uf (r), we
have

〈Tf 〉(x) =
1

Au〈uf 〉
∫ r

o

Tf (r, x)uf (r)2πrdr

= Ts(x) − 11
48

qsD

kf

or
Ts(x) − 〈Tf 〉(x) =

11
48

qsD

kf
.
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(d) From the definition of the Nusselt number, given by (7.9), and restated as

〈Nu〉D =
qsD

[Ts(x) − 〈Tf 〉(x)]kf
,

we have
〈Nu〉D =

48
11

= 4.36 for uniform qs.

as listed in Table 7.2.

COMMENT:
Note that although Tf (r, x), 〈Tf 〉(x) and Ts(x) all change with respect to x, the dimensionless temperature

T ∗ ≡ (Ts − Tf )/(Ts − 〈Tf 〉) is independent of x for a fully-developed thermal boundary layer.
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PROBLEM 7.6.FAM

GIVEN:
A rectangular channel used for heating a nitrogen stream, as shown in Figure Pr.7.6(a), is internally finned to

decrease the average convection resistance 〈Ru〉L. The channel wall is at temperature Ts and nitrogen gas enters
at a velocity 〈uf 〉 and temperature 〈Tf 〉0. The flow is turbulent (so the general hydraulic-diameter based Nusselt
number of Table 7.3 can be used). The channel wall and the six fins are made of pure aluminum. Assume the
same 〈Nu〉D,h for channel wall and fin surfaces and assume a fin efficiency ηf = 1.

〈uf 〉 = 25 m/s, 〈Tf 〉0 = −90◦C, Ts = 4◦C, a = 20 mm, w = 8 mm, L = 20 cm, Lf = 4 mm, l = 1 mm.
Determine the nitrogen properties at T = 250 K.

SKETCH:
Figure Pr.7.6(a) shows the finned channel that heats a cold nitrogen stream.

No Contact
Resistance

Fins

Channel Wall

Lf

Af

Ts

Ab

l

w

Air Flow
Tf  0 ,  uf

Tf  L

L

a

Figure Pr.7.6(a) Heat transfer between a bounded fluid stream and channel wall
with extended surface.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) For the conditions given below, determine the exit temperature 〈Tf 〉L.
(c) Determine the heat flow rate 〈Qu〉L-0 for the same conditions.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.7.6(b). The surface-convection surface area Aku is the sum
of the bare surface area Ab and the product of the fin surface area Af and the fin efficiency ηf .

Ru  LQu  L-0

Tf  LTf  0

Aku = Ab + Af ηf

Qu  LQu  0

Ts

Figure Pr.7.6(b) Thermal circuit diagram.

(b) The fluid exit temperature is determined from (7.22), i.e.,

〈Tf 〉0 − 〈Tf 〉L
〈Tf 〉0 − Ts

= 1 − e−NTU ,
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where from (7.20) and using (7.50), we have

NTU =
1

(Ṁcp)f 〈Rku〉D
=

Aku〈Nu〉D,hkf

(Ṁcp)fDh

Aku = Ab + Afηf .

The hydraulic diameter Dh is defined by (7.40), i.e.,

Dh =
4Au

Pku
,

where Pku is the perimeter for the surface convection. Here

Ab = [2(w + a) − 6l]L
Af = [6(2Lf + l)]L
Au = wa − 6lLf

Pku = 2(w + a) + 6 × 2Lf

Dh =
4(wa − 6lLf )

2w + 2a + 6 × 2Lf
.

We now determine the Nusselt Number. From Table 7.3 for turbulent flow, we have

〈Nu〉D,h = 0.023Re4/5
D,h Pr0.4,

where we have used the condition Ts < 〈Tf 〉, and the Reynolds number is

ReD,h =
〈uf 〉Dh

νf
.

From Table C.22 for nitrogen, at T = 250 K, we have for nitrogen

νf = 1.13 × 10−5 m2/s Table C.22

kf = 0.0234 W/m-K Table C.22

cp,f = 1044 J/kg-K Table C.22

ρf = 1.366 kg/m3 Table C.22.

Using the numerical values, we have

Dh =
4 × (0.008 × 0.02 − 6 × 0.001 × 0.004)(m2)
2 × (0.008 + 0.02)(m) + 6 × 2 × 0.004(m)

=
5.440 × 10−4(m2)

0.1040(m)
= 5.231 × 10−3 m

ReD,h =
25(m/s) × 5.231 × 10−3(m)

1.13 × 10−5(m2/s)
= 1.157 × 104 > ReD,t = 2,300 turbulent regime flow.

Then correlation given above for 〈Nu〉D,h is applicable, and

〈Nu〉D,h = 0.023 × (1.157 × 104)4/5 × (0.69)0.4 = 35.32.
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Then

Au = (0.008 × 0.02)(m2) − 6 × 0.001 × 0.004(m2)
= 1.360 × 10−4 m2

Ṁf = ρf 〈uf 〉Au = 1.366(kg/m3) × 25(m/s) × 1.360 × 10−4(m2)
= 4.644 × 10−3 kg/s

Ab = 2[0.008 + 0.02 − 3 × 0.001](m) × 0.2(m) = 0.01 m2

Af = 6[2 × (4 × 10−3) + 0.001](m) × 0.2(m) = 0.0108 m2

Aku = Ab + Afηf = 0.01(m2) + 0.0108(m2) × 1.0
= 0.02080 m2

NTU =
0.0208(m2) × 35.32 × 0.0234(W/m-K)

4.644 × 10−3(kg/m3) × 1,044(J/kg-K) × 5.231 × 10−3(m)
= 0.6778.

The exit temperature is

〈Tf 〉L = 〈Tf 〉0 + (Ts − 〈Tf 〉0)(1 − e−NTU )
= −90(◦C) + [4 − (−90)](◦C) × (1 − e−0.6778) = −43.73◦C.

(c) The heat flow rate is given by (7.24), i.e.,

〈Qu〉L-0 = (Ṁcp)f (〈Tf 〉L − 〈Tf 〉0)
= 4.644 × 10−3(kg/s) × 1,044(J/kg-K) × [−43.73 − (−90)](K) = 224.4 W.

COMMENT:
This is a small NTU (much less than 4), indicating that the nitrogen flow rate is possibly too high for this

finned channel and that more fins should be used to increase Aku and decrease Dh.
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PROBLEM 7.7.FUN

GIVEN:
Many small devices, such as computer components, can malfunction when exposed to high temperatures. Fans

and other such devices are used to cool these components constantly. To aid in the cooling process, extremely
small heat exchangers are integrated with the parts being cooled. These heat exchangers are microfabricated
through a co-extrusion process such that complex cross-sectional geometries can be formed using densely packed
arrays. An example is shown in Figure Pr.7.7(a). A compressor is used to force air at temperature 〈Tf 〉0 = 20◦C
and velocity 〈uf 〉 = 5 m/s through a pure copper channel having a surface temperature Ts = 90◦C, and the
dimensions are as shown in Figure Pr.7.7.

Evaluate the air properties at T = 300 K.

SKETCH:
Figure Pr.7.7(a) shows the small cross section channel, with internal fins, used for heat removal from high

heat flux surfaces.

(i) Physical Model for Microchannel
with Large Internal Extended Surface

(ii) Idealized Extended Surface Geometry 
(One of Four Rows)

L = 0.3 mm

a2 = 0.5 mm
L1 = 8 mm

w = 2.9 mm
w = 2.9 mm

a1 = 2.9 mm

l3 = 0.25 mm l2 = 0.1 mm l1 = 0.2 mmFour Rows

Mf ,  Tf  0

Figure Pr.7.7(a) (i) A small heat exchanger. (ii) Cross section of each of the four rows.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Assuming the flow can be approximated as flow through parallel plates, in which Dh = 2l1 and l1 = 0.2 mm,
determine the heat transfer 〈Qu〉L-0 from the copper heat exchanger to the passing fluid.
(c) Now treating the flow as flow through a packed bed of particles, determine the heat transfer 〈Qu〉L-0 from
the copper surface to the passing fluid. Comment on how the predicted Nusselt numbers obtained from the two
treatments differ.

SOLUTION:
(a) The thermal circuit diagram for this channel flow is shown in Figure Pr.7.7(b).

Ts

Ru  LQu  L-0

Tf  0 Tf  L

(Mcp)f

Qu  LQu  0

Figure Pr.7.7(b) Thermal circuit diagram.

(b) Properties (air, T = 300 K, Table C.22): ρf = 1.177 kg/m3, cp,f = 1,005 J/kg-K, kf = 0.0267 W/m-K,
Pr = 0.69, νf = 15.66 × 10−6 m2/s; (pure copper, Table C.16) ks = 401 W/m-K.
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The surface-convection heat transfer 〈Qu〉L-0 (W) is given by (7.32), i.e.,

〈Qu〉L-0 =
Ts − 〈Tf 〉0
〈Ru〉L ,

where 〈Ru〉L is given by (7.27) as

〈Ru〉L =
1

Ṁf × cp,f (1 − e−NTU )
,

where

Ṁf = Au × ρf × 〈uf 〉
Au|row = 2Au,1 + 15Au,2 + 14Au,3

= 2(l2 × a2) + 15 × {l1 × [L − 1(mm)]} + 14 × {0.05 × [L − 2(mm)]}
= 2(0.1 × 0.5)(mm2) + 15 × (0.2 × 0.2)(m2) + 14 × (0.05 × 0.1)(mm2)
= 7.7 × 10−1 mm2 = 7.7 × 10−7 m2

Au = 7.7 × 10−7(m2) × 4(rows) = 3.08 × 10−6 m2

Ṁf = 3.08 × 10−6(m2) × 1.177(kg/m3) × 5(m/s) = 1.813 × 10−5 kg/s

NTU =
Aku〈Nu〉Dh

kf

Dh

Ṁf × cp,f

The areas Au,1, Au,2 and Au,3 are shown in Figure Pr.7.7(c).

L 

a2 

w 

l3 l2 l1
Au,1Au,2

Au,3

Figure Pr.7.7(c) Divisions of Au.

From Table 7.2, for laminar flow (it will be shown that ReD,h < 2,300), we have

〈Nu〉Dh
= 7.54, for parallel plate flow, a/b → ∞

Dh = 2l1 = 0.4 mm.

Determining Aku from Figure Pr.7.7(a), we have

Aku = Ab + Afηf

Ab|row = 2(a2 × L1) + 15(l1 × L1) + 2(l2 × L1)
= 2 × [0.5(mm) × 8(mm)] + 15 × [0.2(mm) × 8(mm)] + 2 × [0.1(mm) × 8(mm)]
= 8(mm2) + 24(mm2) + 1.6(mm2) = 33.6 mm2 = 3.36 × 10−5 m2

Ab = 3.36 × m2 × 4(rows) = 1.344 × 10−4 m2.

From (6.140), the corrected length Lc and the extended area are

Lc = L +
l2
2

= 0.3(mm) +
0.1
2

(mm) = 0.35 mm = 3.5 × 10−4 m

Af |row = 15(2LcL1) + 30(l2 × Lc)
= 84(mm2) + 1.05(mm2) = 85.05 mm2 = 8.505 × 10−5 m2

Af = 8.505 × 10−5(m2) × 4(rows) = 3.402 × 10−4 mm2.
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The fin efficiency is given by (6.147), i.e.,

ηf =
tanh(mhc)

mLc

m =
[
Pku〈Nu〉Dh

× kf

Ak × ks × L1

]1/2

L1 = 0.008 m
Pku = 2(l2 + L1) = 2 × (0.1 + 8)(mm) = 0.162 m

Ak = l2L1 = 0.1 × 8(mm)2 = 8 × 10−7 m2

m =
[

0.0162(m) × 7.54 × 0.0267(W/m-K)
8 × 10−7(m) × 401(W/m-K) × 0.004

]1/2

= 50.414 1/m

ηf =
tanh[50.414(1/m) × 3.5 × 10−4(m)]

50.414(1/m) × 3.5 × 10−4(m)
= 0.9999 � 1.

Then, with ηf = 1,

Aku = Ab + Af

= 1.344 × 10−4(m2) + 3.402 × 10−4(m2) = 4.746 × 10−4 m2

NTU =
4.75 × 10−4(m2) × 7.54 × 0.0267(W/m-K)

4 × 10−4(m)
1.813 × 10−5(kg/s) × 1,005(J/kg-K)

= 13.12

〈Ru〉L =
1

(1.813 × 10−5(kg/s) × 1,005(J/kg-K)) × (1 − e−13.12)
= 54.88 K/W

〈Qu〉L-0 =
Ts − 〈Tf 〉0
〈Ru〉L =

(90 − 20)(K)
54.88(K/W)

= 1.276 W.

(c) Now, treating the bounded solid as a packed bed of particle, from Table 7.5, we have

Dp =
6Vs

Aku
, ReD,p =

〈uf 〉Dp

νf (1 − ε)
, 〈Nu〉D,p = 2 + (0.4Re1/2

D,p + 0.2Re2/3
D,p)Pr0.4 Table 7.5

where

V = a1wL1 = 2.9(mm) × 2.9(mm) × 8(mm) = 67.28(mm)3

Vs = V − AuL1

= a1wL1 − AuL1

= 2.9(mm) × 2.9(mm) × 8(mm) − [3.08(mm2) × 8(mm)]
= 42.64 mm3

Dp =
6Vs

Aku
=

6 × 42.64(mm3)
474.6(mm2)

= 0.5391 mm

ε =
Vf

V
=

V − Vs

V
=

(67.28 − 42.64)(mm2)
67.28(mm3)

= 0.3662

ReD,p =
〈uf 〉Dp

νf (1 − ε)
=

5(m/s) × 5.391 × 10−4(m)
15.66 × 10−6(m2/s) × (1 − 0.3662)

= 271.6

〈Nu〉D,p = (2 + 0.4 × (271.6)1/2 + 0.2 × (271.6)2/3) × (0.69)0.4 = 14.64

NTU =
Aku〈Nu〉D,p

kf

Dp

(Ṁcp)f

=
4.746 × 10−4(m2) × 14.64 × 0.0267(W/m-K)

5.391 × 10−4(m)
1.813 × 10−5(kg/s) × 1,005(J/kg-K)

= 18.89

〈Ru〉L =
1

(Ṁcp)f (1 − e−NTU )
=

1
1.813 × 10−5(kg/s) × 1,005(J/kg-K) × 1

= 54.88 K/W

〈Qu〉L-0 =
Ts − 〈Tf 〉0
〈Ru〉L =

(90 − 20)(K)
54.88(K/W)

= 1.276 W.
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COMMENT:
In order to use the laminar, parallel-plate Nusselt number correlation, it must be shown that the Reynolds

number is less than 2,300. Here we have

ReD,h =
〈uf 〉Dh

ν
=

5(m/s) × 2 × 10−4(m)
15.66 × 10−6(m2/s)

= 63.86.

Note that the two different Nusselt numbers have lead to the same heat flow rate, because of the large NTU
obtained for both cases.
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PROBLEM 7.8.FAM

GIVEN:
In a research nuclear (fission) reactor, a 17 channel element core, with each element being a rectangular

cylinder of cross-sectional area a × w and length L, is used. This is shown in Figure Pr.7.8(a).
The nuclear fission energy conversion rate Ṡr,fi occurs in the channel walls. The coolant flow rate Ṁf per

channel is designed for a desired channel wall temperature Ts. When for some reason, this flow rate is reduced,
Ts can raise to hazardous levels.

L = 100 cm, a = 2.921 cm, w = 7.5 cm, Ṡr,fi = 4.5 kW, Ṁf = 0.15 kg/s, 〈Tf 〉0 = 45◦C.
Determine the water properties at T = 310 K.

SKETCH:
Figure Pr.7.8(a) shows the cross section of the channels with energy conversion (nuclear fission) in the channel

wall.

Nc Mf ,  Tf  0

L

Fuel

Coolant

Standard Fuel Element in Fission
Reactor Cooled by a Water Stream

g

Bail (for Removal/Placement)

Nc Mf ,  Tf  L

Coolant Exit Channel

w

Sr,fi

Nuclear Fission

Channel Wall
Temperature, Ts

a

Figure Pr.7.8(a) A nuclear (fission) reactor cooled by a bounded water stream.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the fluid exit temperature 〈Tf 〉L and the channel surface temperature Ts for the conditions given
below.
(c) If the mass flow rate is reduced by one half, what will 〈Tf 〉L and Ts be? Since 〈Tf 〉0 is below Tlg, for Ts > Tlg

any bubble formed will collapse as it departs from the surface (this is called subcooled boiling). Comment on
how bubble nucleation affects Ts.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.7.8(b).

(b) From Figure Pr.7.8(b), the energy equation (2.9) for the Ts node becomes

Q|A,s = 〈Qu〉L-0 = Ṡr,fi,

where from (7.25), we have

〈Qu〉L-0 =
Ts − 〈Tf 〉0
〈Ru〉L .

Solving for Ts, we have

Ts = 〈Tf 〉0 + Ṡr,fi〈Ru〉L.
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Tf  0

Mf Sr,fi

Ts

Ru  L

Qu  L-0

Tf  L

Qu  L

Qu  0

Figure Pr.7.8(b) Thermal circuit diagram.

The average convection resistance 〈Ru〉L is given by (7.27), i.e.,

〈Ru〉L =
1

(Ṁcp)f (1 − e−NTU )
,

where from (7.20) we have

NTU =
Aku〈Nu〉D,hkf/Dh

(Ṁcp)f

.

From the geometry,

Aku = 2(a + w) = 2 × (0.02921 + 0.075)(m) = 0.2084 m.

The Nusselt number is found from Table 7.2 or 7.3 and depends on the magnitude of the Reynolds number ReD,h,
where Dh is the hydraulic diameter. From (7.40), we have

Dh =
4Au

Pku
=

4aw

4(a + w)
=

2 × 0.02921(m) × 0.075(m)
(0.02921 + 0.075)m

= 0.04204 m

From Table C.23, we have for water at T = 310 K

kf = 0.623 W/m-K Table C.23

ρf = 995.3 kg/m3 Table C.23

cp,f = 4,178 J/kg-K Table C.23

νf = 7.11 × 10−7 m2/s Table C.23

Pr = 4.74 Table C.23.

Using Ṁf = Auρf 〈uf 〉, we write for ReD,h,

ReD,h =
ρf 〈uf 〉Dh

µf
=

ṀfDh

Auµf
=

ṀfDh

Auρfνf
.

Then using the numerical values, we have

ReD,h =
0.15(kg/s) × 0.04204(m)

0.02921 × 0.075(m2) × 995.3(kg/s) × 7.11 × 10−7(m2/s)
= 4,608 > (ReD,h)t = 2,300 assume fully turbulent flow regime.

For the fully turbulent flow regime, we have from Table 7.3, we have

〈Nu〉D,h = 0.023Re0.8Pr0.4 Table 7.3,
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where for Ts > 〈Tf 〉0, we use n = 0.4. Then

〈Nu〉D,h = 0.023 × (4,068)0.8 × (4.74)0.4 = 33.08.

Next using Aku = 2 × (a + w)L = 0.2084 m2, we have

NTU =
0.2084(m2) × 33.08 × 0.623(W/m-K)

0.15(kg/s) × 4,178(J/kg-K) × 0.04204(m)
= 0.1630.

Next,

〈Ru〉L =
1

(Ṁcp)f (1 − e−NTU )

=
1

0.15(kg/s) × 4,178(J/kg-K) × (1 − e−0.1630)
= 1.061 × 10−2◦C/W.

Now for 〈Tf 〉L we use (7.24), i.e.,

〈Qu〉L-0 = (Ṁcp)f (〈Tf 〉L − 〈Tf 〉0) = Ṡr,fi

or

〈Tf 〉L = 〈Tf 〉0 +
Ṡr,f,i

(Ṁcp)f

= 45(◦C) +
4.5 × 103(W)

0.15(kg/s) × 4,178(J/kg-K)
= 45(◦C) + 7.180(◦C) = 52.18◦C.

Solving for Ts, we have

Ts = 45(◦C) + 4.5 × 103(W) × 1.061 × 10−2(◦C/W)
= 45(◦C) + 47.74(◦C)
= 92.74◦C < Tlg = 100◦C Table C.27.

(c) For Ṁf = 0.5 × 0.15(kg/s) = 0.075 kg/s, we repeat the calculations, starting from

ReD,h = 2,034 < 2,300 laminar flow regime.

From Table 7.2, for w/a = 2.58, we have

〈Nu〉D,h = 4.202.

Then

NTU =
0.2084(m2) × 4.202 × 0.623(W/m-K)

0.075(kg/s) × 4,178(J/kg-K) × 0.04204(m)
= 0.04141

〈Ru〉L =
1

0.075(kg/s) × 4,178(J/kg-K) × (1 − e−0.04141)
= 7.867 × 10−2◦C/W.

Finally

〈Tf 〉L = 45(◦C) +
4.5 × 103(W)

0.075(kg/s) × 4,178(J/kg-K)
= 45(◦C) + 14.36(◦C) = 59.36(◦C)

Ts = 45(◦C) + 4.5 × 103(W) × 7.867 × 10−2(◦C/W)
= 45(◦C) + 354.0(◦C) = 399.0◦C > Tlg = 100◦C Table C.27

COMMENT:
The lower flow rate results in laminar flow, which has a much lower Nusselt number. The small Ṁf and

〈Nu〉D,h result in a resistance which is several time larger. In this case, then the water will boil. The boiling in
turn will increase 〈Nu〉D,h and decrease Ts. As long as 〈Tf 〉L < Tlg, it is possible to collapse the bubbles in this
subcooled liquid. However, if special care is not taken, the vapor can block the water flow and cause a very large
Ts resulting in a meltdown.
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PROBLEM 7.9.FAM

GIVEN:
The surface-convection heat transfer from an automobile brake is by the flow induced by the rotor rotation.

There is surface-convection heat transfer from the outside surfaces of the rotor and also from the vane between
the two rotor surfaces (called the ventilation area or vent), as shown in Figure Pr.7.9(a).

The air flow rate through the vent is given by an empirical relation for the average velocity 〈uf 〉1 as

〈uf 〉(m/s) = rpm × 0.0316(R2
2 − R2

1)
1/2,

where R2(m) and R1(m) are outer and inner radii shown in Figure Pr.7.9(a). The air enters the vent at temper-
ature 〈Tf 〉0 and the rotor is at a uniform temperature Ts. Assume a uniform flow cross-sectional area (although
in practice it is tapered) Au = Nca × w and a total vent surface-convection area Aku. Here a and w are for the
rectangular cross section of each channel in the Nc vents.

a = 0.5 cm, w = 1.5 cm, Aku = 700 cm2, rpm = 750, Nc = 36, R2 = 10 cm, R1 = 15 cm, 〈Tf 〉0 = 20◦C,
Ts = 400◦C.

Evaluate air properties at T = 300 K.

SKETCH:
Figure Pr.7.9(a) shows the ventilated automobile brake with the rotation-induced vent air flow. The vent

geometry is also shown.

Rotor (Disc), Ts

Rotor Angular
Velocity, ω

Caliper

Energy Conversion
at Brake Pad-Rotor

Interface

Opposite Side of Rotor

36 Channels

Flow Through Vanes
(Pumped by Rotation

of Disc)

Brake Fluid

R1

R2

a

w

Qk,r-w    0

(i) Automobile Disc-Brake: Physical Model

(ii) Rotation-Induced Flow Through Vanes (Ventilated Disc)

r

∆ui

u = 0

Sm,F

Rotor Angular
Velocity, ω

Brake Pad

Aku

�uf �

Tf,�

Surface Fluid
Flow

Figure Pr.7.9(a) A ventilated automobile brake with rotation induced vent air flow. (i) Physical model. (ii)
Rotation-induced flow.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
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(b) Determine the vent surface heat transfer rate 〈Qu〉L-0.
(c) Determine the air exit temperature 〈Tf 〉L.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.7.9(b). All other heat transfer mechanisms from the rotor
are shown as Qs.

�Qu�L-0

Ts

Ru  L

Tf  0 Tf  L

(Mcp)f

�Qu�0 �Qu�L

Figure Pr.7.9(b) Thermal circuit diagram.

(b) The rate of heat transfer is given by (7.25), (7.27), and (7.20), i.e.,

〈Qu〉L-0 =
Ts − 〈Tf 〉0
〈Ru〉L

〈Ru〉L =
1

(Ṁcp)f (1 − e−NTU )

Ṁf = ρfAu〈uf 〉
NTU =

1
〈Ru〉D(Ṁcp)f

.

The surface convection resistance 〈Rku〉D is determined for a rectangular cross-section channel from Table 7.2 or
Table 7.3, depending on the Reynolds number ReD,h, where Dh is the hydraulic diameter. The Reynolds number
and the hydraulic diameter are defined by (7.36) and (7.40), i.e,

ReD,h =
〈uf 〉Dh

νf

Dh =
4Au

Pku
=

4 × a × w

2(a + w)
=

2aw

a + w

=
2 × (0.005 × 0.015)(m2)

(0.005 + 0.015)(m)
= 0.00750 m.

From Table C.22, for air at T = 300 K, we have

kf = 0.0267 W/m-K Table C.22

ρf = 1.177 kg/m3 Table C.22

νf = 1.566 × 10−5 m2/s Table C.22

cp,f = 1,005 J/kg-K Table C.22

Pr = 0.69 Table C.22

Then, from the given correlation,

〈uf 〉 = 750 × 0.0316(0.152 − 0.102)1/2(m/s)
= 2.650 m/s

ReD,h =
2.650(m/s) × 0.00750(m)

1.566 × 10−5(m2/s)
= 1,269 < (ReD,L)t = 2,300 laminar flow regime.
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We now to check to see if the flow is fully developed and choose an appropriate Nusselt number correlation. From
Table 7.2, we have

L/Dh

PeD,h
=

L/Dh

PeD,hPr

=
(R2 − R1)/Dh

ReD,hPr

=
(0.15 − 0.10)(m)/0.00750(m)

1,269 × 0.69
= 7.614 × 10−3 � 0.03.

Then from Table 7.2, we have

〈NuD,h〉 = 2.409
(

L/Dh

PeD,h

)−1/3

− 0.7

= 2.409 × (7.614 × 10−3)−1/3 − 0.7
= 11.54.

The mass flow rate is

Ṁf = ρfAu〈uf 〉 = ρf × 36aw × 〈uf 〉
= 1.177(kg/m3) × 36 × 0.005(m) × 0.015(m) × 2.650(m/s)
= 8.421 × 10−3 kg/s.

Then

〈Rku〉D =
Dh

Aku〈Nu〉D,hkf

=
0.00750(m)

700 × 10−4(m2) × 11.54 × 0.0267(W/m-K)
= 0.3477 K/W

NTU =
1

〈Rku〉D(Ṁcp)f

=
1

0.3477(K/W) × 8.421 × 10−3(kg/s) × 1,005(J/kg-K)
= 0.3398

〈Ru〉L =
1

8.421 × 10−3(kg/s) × 1,005(J/kg-K)(1 − e−0.3398)
= 0.4102 K/W

〈Qu〉L-0 =
(400 − 20)(K)
0.4102(K/W)

= 926.5 W.

(c) The exit temperature is found from (7.24), i.e.,

〈Tf 〉L = 〈Tf 〉0 +
〈Qu〉L-0
(Ṁcp)f

= 20(◦C) +
926.5(W)

8.421 × 10−3(kg/s) × 1,005(J/kg-K)
= 20(◦C) + 109.48(◦C)
= 129.48◦C.

COMMENT:
Due to the small mass flow rate, here NTU is large enough to cause a significant increase in the air temperature,

i.e., a large 〈Tf 〉L − 〈Tf 〉0 is found.
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PROBLEM 7.10.FAM

GIVEN:
A refrigerant R-134a liquid-vapor stream is condensed, while passing thorough a compact condenser tube, as

shown in Figure Pr.7.10(a). The stream enters at a mass flow rate Ṁf , thermodynamic quality x0, and a tem-
perature 〈Tf 〉0(pg,0) and here for simplicity assume that the exit conditions are the same as the inlet conditions.
The condenser wall is at temperature Ts. Assume that the liquid (condensate) flow regime is annular and use the
applicable correlation given in Table 7.6.

Nc = 10, a = 1.5 mm, L = 15 cm, pg,0 = 1.681 MPa, x0 = 0.5, Ts = 58◦C, Ṁf = 10−3 kg/s.
Use the saturation properties of Table C.28 at pg,0.

SKETCH:
Figure Pr.7.10(a) shows the compact condenser tube and its channels.

a

L

Temperature,   Tf   0   = Tlg (pg,0)
Inlet Quality, x 0

Mass Flow Rate, Mf

Ts

Refrigerant R-134a:

Connected or
Separated

Channels, Nc

Solid

Vapor

Annular Liquid Film

Square
Cross

Section

Aluminum Compact Condensor Tube

Aku

Tlg

Ts

Qku  D,h

Sgl

Qku  D,h

Figure Pr.7.10(a) A compact condenser tube is used to condense a refrigerant stream. The tube
is a multichannel, extruded aluminum tube. There are Nc square

cross-sectional channels in the tube.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Based on the constant x and 〈Tf 〉 assumptions, determine the heat transfer rate, 〈Qku〉D,L, for the conditions
given below.
(c) From the results of (b), determine the condensation rate Ṁgl and estimate the exit quality xL.
(d) Comment on how an iteration may be used to improve on the accuracy of these predictions.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.7.10(b).

Mf

Ts

Tf  o , xo

Rku  D,h
Qku  D,h

Sgl

Figure Pr.7.10(b) Thermal circuit diagram.

Here we have assumed that 〈Tf 〉 is constant and from (7.9), and using the hydraulic diameter Dh defined by
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(7.40), we have

〈Qku〉D,h = Aku〈Nu〉D,h
kl

Dh
(Ts − 〈Tf 〉0).

Also, from Figure Pr.7.10(b), we have the energy equation

Q|A = −〈Qku〉D,h = Ṡgl = −Ṁgl∆hgl

= Ṁgl∆hlg

(b) The Nusselt number is given in Table 7.6 as

〈Nu〉D,h = a1Rea2
l,eqPr1/3,

Rel,eq =

ṁf

[
(1 − x) + x

(
ρl

ρg

)1/2
]

Dh

µl
,

and a1 and a2 depend on the magnitude of Rel,eq.
The saturation properties of R-134a from Table C.28 at pg,0 = 1.681 MPa, are

ρl = 1,052 kg/m3 Table C.28

ρg = 87.26 kg/m3 Table C.28

∆hlg = 1.386 × 105 J/kg Table C.28

µl = 1.386 × 10−4 Pa-s Table C.28

kl = 0.0658 W/m-K Table C.28

cp,l = 1,653 J/kg-K Table C.28

Tlg = 333.2 K = 60◦C Table C.28

Pr = Prl =
(µcp

k

)
l
=

1.386 × 10−4(Pa-s) × 1,663(J/kg-K)
0.0658(W/m-K)

= 3.503

νl =
µl

ρl
=

1.386 × 10−4(Pa-s)
1,052(kg/m3)

= 1.317 × 10−7 m2/s.

Then from (7.40), we have

Dh =
4Aku

Pku
=

4a2

4a
= a.

Since Ṁf is divided between Nc channels, we have

ṁf =
Ṁf

Nca
2 =

10−3(kg/s)
10 × (1.5 × 10−3)2(m2)

= 44.44 kg/m2-s

Rel,eq =

44.44(kg/m2-s)

{
(1 − 0.5) + 0.5 ×

[
1,052(kg/m3)
87.26(kg/m3)

]1/2
}

× (1.5 × 10−3)(m)

1.386 × 10−4(Pa-s)
= 1,075.4.

Then from Table 7.6, we then have

〈Nu〉D,h = 5.03Re1/3
l,eqPr1/3

= 5.03 × (1,075.4)1/3 × (3.503)1/3 = 78.27
Aku = Nc × 4aL = 10 × 4 × 1.5 × 10−3(m) × 0.15(m) = 9.0 × 10−3m2

〈Qku〉D,h = 9.0 × 10−3(m2) × 78.27 × 0.0658(W/m-K)(58 − 60)(K)
1.5 × 10−3(m)

= −61.80 W.
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(c) For the energy equation, we have

Ṁgl = −〈Qku〉D,h

∆hlg
= − −61.80(W)

1.386 × 105(J/kg)
= 4.458 × 10−4 kg/s

xL =
Ṁg,L

Ṁf

=
Ṁg,0 − Ṁgl

Ṁf

=
x0Ṁf − Ṁgl

Ṁf

= x0 − Ṁgl

Ṁf

= 0.5 − 4.459 × 10−4(kg/s)
10−3(kg/s)

= 0.5 − 0.4458 = 0.0541.

(d) Since x has changed significantly (and is nearly vanished at the end of the tube), we need to use an average
x in the determination of Rel,eq. We can repeat the calculations using x = (xo + xL)/2 and continue this until
the predicted xL no longer changes.

COMMENT:
The correlations used have some uncertainties and as the pressure drops along the tube, the liquid-vapor

mixture temperature also drops. Also the liquid and vapor many not be in local thermal equilibrium.
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PROBLEM 7.11.FAM

GIVEN:
A compact evaporation tube, made of Nc circular channels and placed vertically, is used for the evaporation

of a stream mixture of liquid and vapor of refrigerant R-134a. This is shown in Figure Pr.7.11(a), where the
inlet quality is x0 and the inlet temperature 〈Tf 〉0 is determined from the inlet pressure pg,0. The liquid-vapor
mass flow rate is Ṁf . For simplicity assume that along the evaporator 〈Tf 〉 and x remain constant and use the
correlation given in Table 7.6.

Nc = 8, D = 2 mm, L = 15 cm, pg,0 = 0.4144 MPa, x0 = 0.4, Ts = 12◦C, Ṁf = 10−3 kg/s.

SKETCH:
Figure Pr.7.11(a) shows the tube, the channels and the inlet conditions.

D

L

Temperature,   Tf   0   = Tlg (pg,0)
Inlet Quality, x 0

Mass Flow Rate, Mf

Ts

AkuRefrigerant R-134a

Aluminum, Compact Evaporator Tube

Nc Channels

g

Qku  D

Exit Quality xL

Figure Pr.7.11(a) A compact evaporation tube, having Nc circular channel, and placed vertically, is used to evaporate
a refrigerant R-134a stream.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Based on contact x and 〈Tf 〉 assumptions, determine the heat transfer rate, 〈Qku〉D.
(c) From the results of (b), determine the evaporation rate Ṁlg and the exit quality xL.
(d) Comment on how an iteration may be used to improve on the accuracy of predictions.

SOLUTION:
(a) Figure Pr.7.11(b) shows the thermal circuit diagram. Here a constant fluid stream temperature 〈Tf 〉 is used
and from (7.9) we have

〈Qu〉L-0 = 〈Qku〉D = Aku〈Nu〉D kl

D
(Ts − 〈Tf 〉0).

The energy equation for the stream is found from Figure Pr.7.11(b), i.e.,

Q|A = −〈Qku〉D = Ṡlg = −Ṁlg∆hlg.

Qku  D Rku  D

Ts

Slg Tf  0

x0, Mf xL

Figure Pr.7.11(b) Thermal circuit diagram.
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(b) The Nusselt number for boiling in vertical tubes is given in Table 7.6 as

〈Nu〉D = 〈Nu〉D,l

[
1 + 3,000Ku0.86 + 1.12

(
x

1 − x

)0.75(
ρl

ρg

)0.41
]

Ku =
〈qku〉D
ṁf∆hlg

,

where 〈Nu〉D,l is found based on the magnitude of ReD,l.

ReD,l =
ṁfD

µl
, ṁf =

Ṁf

NcπD2/4
.

From Table C.28, for saturated refrigerant R-134a at pg,0 = 0.4144 Mpa, we have

ρl = 1,260 kg/m3 Table C.28

ρg = 20.21 kg/m3 Table C.28

∆hlg = 1.895 × 105 J/kg Table C.28

µl = 2.543 × 10−4 Pa-s Table C.28

kl = 0.0888 W/m-K Table C.28

cp,l = 1,367 J/kg-K Table C.28

Tlg = 283.15 K = 10◦C Table C.28

Pr = Prl =
(µcp

k

)
l
=

2.543 × 10−4(Pa-s) × 1,367(J/kg-K)
0.0888( W/m-K)

= 3.915

νl =
µl

ρl
=

2.543 × 10−4(Pa-s)
1,260(kg/m3)

= 2.018 × 10−7 m2/s.

Then

ṁf =
4 × 10−3(kg/s)

8 × π × (2 × 10−3)2(m2)
= 39.79 kg/m2-s

ReD,l =
4Ṁf

NcπDµl
=

4 × 10−3(kg/s)
8 × π × 2 × 10−3(m) × 2.543 × 10−4(Pa-s)

= 312.9 < ReD,t = 2,300 laminar flow regime.

Assuming fully-developed temperature and velocity fields, and a constant heat flux, the Nusselt number from
Table 7.2 is

〈Nu〉D,l = 4.36

Ku =
〈qku〉D
ṁf∆hlg

=
〈qku〉D

39.79(kg/m2-s) × 1.895 × 105(J/kg)
= 1.326 × 10−7(m2/W)〈qku〉D
= 1.326 × 10−7(1/W)

〈Qku〉D
Aku

= 1.326 × 10−7(1/W)
〈Qku〉D
8πDL

= 1.326 × 10−7(1/W)
〈Qku〉D

8 × π × 2 × 10−3(m) × 0.15(m)
= 1.759 × 10−5(1/W)〈Qku〉D.

〈Nu〉D = 4.36

{
1 + 3,000 × (1.759 × 10−5(1/W)〈Qku〉D)0.86 + 1.12 ×

(
0.4

1 − 0.4

)0.75 [1,260(kg/m3)
20.21(kg/m3)

]0.41
}

= 4.36 + 1.065(〈Qku〉D(1/W))0.86 + 19.61

〈Qku〉D = 8π × 2 × 10−3(m) × 0.15(m) × (23.97 + 1.065(〈Qku〉D(1/W))0.86) × 0.0888(W/m-K)
2 × 10−3(m)

× (12 − 10)(K)

= 16.05 + 0.71305(〈Qku〉D(1/W))0.86.
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Solving this for 〈Qku〉D, using a solver, we have

〈Qku〉D = 28.93 W.

(c) From the energy equation, we have

Ṁlg =
〈Qku〉D
∆hlg

=
28.93(W)

1.395 × 105(J/kg)
= 2.074 × 10−4 kg/s

xL =
Ṁg,L

Ṁf

=
Ṁg,0 + Ṁlg

Ṁf

=
x0Ṁf + Ṁlg

Ṁf

= x0 +
Ṁlg

Ṁf

= 0.4 + 0.2074 = 0.6074.

(d) Since x has increased noticeably (from 0.4 to 0.6074), we should use an average quality(xo + xL)/2 in the
determination of 〈Nu〉D. This is iterated until 〈Nu〉D and xL no larger change.

COMMENT:
The pressure pg also decrease along the tube, resulting in a decrease in Tlg along the tube. Also, the liquid

and vapor may not be in local thermal equilibrium.
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PROBLEM 7.12.FAM

GIVEN:
A convection air heater is designed using forced flow through a square channel that has electrically heated

wires running across it, as shown in Figure Pr.7.129a).
Evaluate the properties of air at 300 K.

SKETCH:
Figure Pr.7.12 shows the convection air heater with forced flow through a square channel and electrically

heated wires.

Air

uf   = 1 m/s
Tf  0 = 20oC

L = 50 cm

w = 30 cm

w = 30 cm

Se,J = 1,500 W

Heated Wire, Ts

D = 3 mm

Total Number of
Wires: Nt = 100

Figure Pr.7.12(a) An electric, air-stream heater.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the average wire temperature for a heating rate (i.e., Joule energy conversion) Ṡe,J = 1,500 W.
Model the wires as a bank of tubes.

SOLUTION:
(a) The thermal circuit is shown in Figure Pr.7.12(b). All the wires are lumped into a single node Ts.

Ts

Qu  L-0
Ru  L

Tf   0 Tf   L

Se,J

.

Qu  0 Qu  L

Figure Pr.7.12(b) Thermal circuit diagram.
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(b) The integral-volume energy equation (2.9) applied to the Ts node is

Q|A = − (ρcpV )s

dTs

dt
+ Ṡs.

The only heat loss from the wires occurs by surface convection to the bounded flow. The energy generation occurs
by Joule heating. Therefore, for a steady-state condition the energy equation becomes

Ts − 〈Tf 〉o
〈Ru〉L = Ṡe,J.

The geometric parameters for the tube bundle are given by (7.44) and (7.41), i.e.,

Dp =
6Vs

Aku
= 6

(πD2/4)w
πDw

=
3
2
D =

3
2
× 0.003(m) = 0.0045 m

ε =
Vf

Vs + Vf
=

w2L − Nt(πD2/4)w
w2L

= 1 − Nt(πD2/4)
wL

= 1 − 100 × π × (0.003)2(m2)
4 × 0.5(m) × 0.3(m)

= 0.9953.

For air, from Table C.22, at 300 K, we have νf = 15.66× 10−6 m2/s, kf = 0.0267 W/m-K, Pr= 0.69, ρf = 1.177
kg/m3, cp = 1,005 J/kg-K.
From (7.45), the Reynolds number is

ReD,p =
〈uf 〉Dp

νf (1 − ε)
=

1(m/s) × 0.0045(m)
15.66 × 10−6(m2/s)(1 − 0.9953)

= 61,140.

The Nusselt number, From Table 7.5, is

〈Nu〉D,P = 2 + (0.4Re1/2 + 0.2Re2/3)Pr0.4

= 2 + [0.4 × (61,140)1/2 + 0.2 × (61,140)2/3] × (0.69)0.4

= 354.84.

The mass flow rate is given by (7.47), i.e.,

Ṁf = ρf 〈uf 〉w2 = 1.177(kg/m3) × 1(m/s) × 0.3(m) × 0.3(m) = 0.10593 kg/s.

The surface-convection surface area is

Aku = NtπDw = 100 × 0.003(m) × 0.3(m) = 0.2827 m2.

The number of transfer units is given by (7.46), i.e.,

NTU =
Aku〈Nu〉D,pkf

(Ṁcp)fDp

1 − ε

ε
=

0.2827(m2) × 354.84 × 0.0267(W/m-K)
0.10593(kg/s) × 1,005(J/kg-K) × 0.0045(m)

1 − 0.9953
0.9953

= 0.0264.

The heat transfer effectiveness is given by (7.22), i.e.,

εhe = 1 − e−NTU = 1 − e−0.0264 = 0.02606.

Finally, the convection resistance is given by (7.27), i.e.,

〈Ru〉L =
1

(Ṁcp)f εhe

=
1

0.10593(kg/s) × 1,005(J/kg-K) × 0.02606
= 0.3605◦C/W.

Then, the wires surface temperature is found from the energy equation as

Ts = 〈Tf 〉0 + 〈Ru〉LṠe,J = 20(◦C) + 0.3605(◦C/W) × 1,500(W) = 560.8◦C.

COMMENT:
Note that the wire temperature Ts depends on the surface-convection resistance and on (Ṁcp)f . To decrease

Ts (the lowest possible value is 〈Tf 〉0) a very large flow rate can be used (while keeping εhe large).
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PROBLEM 7.13.FAM

GIVEN:
The monolith automobile catalytic converter is designated by the number of channels (square geometry) per

square inch. Current designs are between 400 and 600 channels per square inch (62 and 93 channels per square
centimeter). Each channel has dimensions a × a and the channel wall thickness is l. Assume that the converter
has a square cross section of w × w and a length L. This is shown in Figure Pr.7.13(a).

The exhaust gas mass flow rate Ṁf (kg/s) is related to the rpm by

Ṁf =
1
2

rpm

60
ρf,oVdηV ,

where the density ρf,o is that of air at the intake condition, Vd is the total displacement volume, and ηV is the
volumetric efficiency.

For simplicity, during the start-up, assume a uniform channel wall temperature Ts.
〈Tf 〉0 = 500◦C, Ts = 30◦C, w = 10 cm, L = 25 cm, l = 0.25 mm, Vd = 2.2 × 10−3 m3, rpm = 2,500, ηV = 0.9,

ρf,o = 1 kg/m3.
Evaluate the exhaust gas properties using air at T = 700 K.

SKETCH:
Figure Pr.7.13(a) shows the cross section of a monolith automobile catalytic converter with the geometric

parameters for each channel (or cell).

TsL

w

w

a

l

a

Mf ,  Tf  0 Mf ,  Tf  0

Figure Pr.7.13(a) Cross section of a monolith automobile catalytic converter.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the exit temperature of the exhaust gas for both the 400 and 600 channels per square inch designs.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.3(b).

Ts

Ru  LQu  L-0

Tf  0 Tf  L

(Mcp)f

Qu  0 Qu  L

Figure Pr.7.13(b) Thermal circuit diagram.

(b) From Table C.22 for air at 700 K, we have ρf = 0.507 kg/m3, cp,f = 1065 J/kg-K, kf = 0.0513 W/m-K,
αf = 93.1 × 10−6 m2/s, νf = 65.15 × 10−6 m2/s, and Pr = 0.7.
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From the relation for Ṁf , we have

Ṁf =
1
2

rpm
60

ρf,oVdηV

=
1
2
× 2500

60
× 1(kg/m3) × 2.2 × 10−3(m3) × 0.9

= 0.04125 kg/s.

Now let us define Ṁf,1 as the mass flow rate through a single channel of dimension a, and N as the number of
channels per square inch. Then we have

Ṁf,1 =
Ṁf

NA

Ṁf,1 =
Ṁf

N × [1(in)/2.54(cm)]2 × w × w

Ṁf,1 =
0.04125(kg/s)

N(channels/in2) × 0.155(in/cm)2 × 102(cm2)

=
2.661 × 10−3(kg/s-in2)

N(channels/in2)
= 6.653 × 10−6 kg/s (for N = 400)
= 4.435 × 10−6 kg/s (for N = 600).

The hydraulic diameter, defined by (7.40), for a square channel is

Dh =
4Au

Pku
=

4a2

4a
= a.

The width/height of a channel a are found from the geometry:

N(a + l)2 = 1in2

a = N−1/2 − l

= N−1/2(in/channels) × 0.0254(m/in) − 0.00025(m)
= 1.02 × 10−3 m (for N = 400)
= 7.87 × 10−4 m (for N = 600).

Then noting that Ṁf,1 = ρf 〈uf 〉a2, and ReD,h = Rea is defined by (7.36) we have

Rea =
〈uf 〉a

νf
=

Ṁf,1

νfρfa

=

(
2.661 × 10−3

N

)
(kg/s)

(0.507)(kg/m3) × [0.0254N−1/2 − 0.00025](m) × (65.15 × 10−6)(m2/s)

=
80.56

N(0.0254N−1/2 − 0.00025)
= 197.4 (for N = 400)

Rea = 170.6 (for N = 600).

For both cases, Rea is laminar. The corresponding 〈Nu〉D,h = 〈Nu〉a is found from Table 7.2, i.e., 〈Nu〉a = 2.98
from Table 7.2. The thermal convection resistance is then

〈Rku〉a =
a

Aku〈Nu〉akf
=

a

(4aL)〈Nu〉akf

=
1

4L〈Nu〉akf

=
1

4 × 0.25(m) × 2.98 × 0.0513(W/m-K)
= 6.541 K/W.
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The NTU is defined by (7.20) and becomes

NTU =
1

〈Rku〉Ṁf,1cp,f

=
1

6.541(◦C/W) ×
(

2.661 × 10−3

N

)
(kg/s) × 1,065(J/kg-K)

=
N

18.54
= 21.57 (for N = 400)

NTU = 32.36 (for N = 600).

This is a very high NTU and for both cases, exp(−NTU) → 0. Therefore, for both cases, the heat exchanger
effectiveness is

εhe = 1 − e−NTU = 1

εhe = 1 =
〈Tf 〉L − 〈Tf 〉0

Ts − 〈Tf 〉0 ,

and solving for 〈Tf 〉L we have

〈Tf 〉L = (Ts − 〈Tf 〉0) + 〈Tf 〉0 = Ts

= 30◦C (for both N = 400 and 600).

COMMENT:
The catalytic converter is designed for both heat and mass transfer. The mass transfer (and surface-mediated

chemical reactions) is influenced by the deteriorating effect of poisoning compounds such as sulfur. Then the
converter is overdesigned to allow for an extended life, after some portion (the entrance portion) of it becomes
ineffective.
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PROBLEM 7.14.DES

GIVEN:
In many cutting operations it is imperative that the cutting tool be maintained at an operating temperature

Ts, well below the tool melting point. The cutting tool is shown in Figure Pr.7.14(a). Two designs for the
cooling of the cutting tool are considered. The coolant is liquid nitrogen and the objective is to maintain the tool
temperature at Ts = 500◦C. The nitrogen stream is a saturated liquid at one atm pressure and flows with a mass
flow rate of ṀN2 = 1.6 × 10−3 kg/s. These designs are also shown in Figure 7.14(a). The first design uses direct
liquid nitrogen droplet impingement. The liquid nitrogen is at temperature Tlg,∞ = 77.3 K. The average droplet
diameter is 〈D〉 = 200 × 10−6 m, and the average droplet velocity is 〈ud〉 = 3 m/s. The second design uses the
mixing of liquid nitrogen and air, where, after mixing, the nitrogen becomes superheated. Then the mixture is
flown internally through the cutting tool. The air enters the mixer at a temperature of Ta = 20◦C and flows with
a mass flow rate of Ṁa = 3.2 × 10−3 kg/s. The mixture enters the permeable tool with a temperature 〈Tf 〉0 and
flows through the cutting tool where a sintered-particle region forms a permeable-heat transfer medium. The
average particle diameter is Dp = 1 mm and the porosity is ε = 0.35, as depicted in Figure Pr.7.14(b).

Take the mixture conductivity to be kf = 0.023 W/m-K, and evaluate the mixture specific heat using the
average of the air specific heat at T = 300 K and the superheated nitrogen specific heat from Table C.26.

SKETCH:
Figures Pr.7.14(a) and (b) show the two designs considered. The permeable cutting tool has a large interstitial

area formed by sintered spherical particles.

Workpiece
Motion

Cutting Tool

(i) Impinging Droplet
Cooling

(ii) Single-Phase Bounded-
Fluid Stream Cooling

(a) Cutting-Tool Energy Conversion Sm,F  and Two Cooling Methods

Tool Holder

Sm,F

.

L

w

.

Ts , Aku

Ts , Aku

MN2 ,Tl,�

.

Figure Pr.7.14(a) Cooling of a cutting tool by semi-bounded and bounded coolant streams.

OBJECTIVE:
(a) Draw the thermal circuit diagram for the two designs.
(b) Assuming that both designs have the same liquid nitrogen mass flow rate and that (6.116) is valid, determine
the amount of surface-convection cooling for surface droplet impingement cooling. Use the properties of air at
T = 300 K.
(c) Making the same assumptions, determine the internal transpiration cooling. Use 〈Tf 〉0, determined from the
energy equation for the adiabatic mixture, to determine the properties of air for the mixture.

SOLUTION:
(a) The physical model and the thermal circuit diagrams for the two cooling methods are shown in Figure
Pr.7.14(c).
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(i) Mixer

(ii) Bounded-Fluid Stream Through
Porous Cutting Tool

Qloss = 0

Ma

Ta

TN2

Tf  0

Tf  0

Ts
Tf  L

Air

Saturated Liquid
Nitrogen

Air and
Nitrogen
Mixture

Air and Nitrogen
(Superheated)

MN2

L = 20 mm

l = 2 mm

  = 0.35

w = 20 mm

a = 10 mm

Dp = 1 mm

(b) Physical Model of Cooling in Second Methods

�

Figure Pr.7.14(b) The mixer and permeable cutting tool.

(b) (i) Surface Droplet Impingement Cooling:
From Table 6.6 and (6.124), for droplet impingement cooling, we have

〈qku〉L
Ts − Tl,∞

= (Aku〈Rku〉L)−1 = ρl,∞∆hlg,∞
〈ṁd〉
ρl,∞

ηd

[
1 − 〈ṁd〉/ρl,∞

(〈ṁd〉/ρl,∞)0

]
1

Ts − Tl,∞
+

1,720(Ts − Tl,∞)−0.088〈D〉−1.004〈ud〉−0.764 (〈ṁd〉/ρl,∞)2

(〈ṁ〉d/ρl,∞)0
,

where

ηd =
3.68 × 104

ρl,∞∆hl,g,∞
(Ts − Tl,∞)1.691〈D〉−0.062

∆hlg,∞ = cp,l(Tlg − Tl,∞) + ∆hlg( 〈ṁd〉
ρl,∞

)
o

= 5 × 10−3 m/s.

For air at T = 300 K, from Table C.22, we have cp,f = 1,005 J/kg-K, νf = 15.66×10−6 m2/s, Pr = 0.69, ρf = 1.177
kg/m3. For nitrogen from Table C.26, we have Tlg = 77.35 K, ρl,∞ = 807.1 kg/m3, ∆hlg = 1.976 × 105 J/kg,
cp,g = 1,123 J/kg-K.
Using the numerical values, we have

∆hlg,∞ = (cp,l)∞(Tlg − Tl,∞) + ∆hlg

Tlg = Tl,∞
∆hlg,∞ = ∆hlg = 197.6 × 103 J/kg

ηd =
3.68 × 104

807.1 × 197.6 × 103 (773 − 77.3)1.691(200 × 10−6)−0.062

= 25.06

〈ṁd〉 =
Ṁ

Aku
, Aku = L × w = (0.02)2(m2) = 4 × 10−4 m2

〈ṁd〉 =
1.6 × 10−3(kg/s)

4 × 10−4(m2)
= 4.0 kg/m2-s.
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Tl,�

Ts

Mf

Air

Liquid
Nitrogen

Rku  L
Qku  L

(i) Surface Droplet Impingement Cooling

(ii) Internal, Transpiration Cooling

Tf  0 Tf  L

Ts

Ru  L

Qu  L-0

Ta

TN2

Figure Pr.7.14(c) Thermal circuit diagrams.

Then

〈qku〉L
(773 − 77.3)(K)

= 807.1(kg/m3) × 197.6 × 103(J/kg) × 4.0 kg/m2-s
807.1(kg/m3)

× 25.06 ×[
1 − 4 kg/m2-s/807.1(kg/m3)

5 × 10−3(m/s)

]
1

(773 − 77.3)
+ 1720 × (773 − 77.3)−0.088(K)−0.088

×(200 × 10−6)−1.004(m)−1.004 × (3)−0.764(m/s)−0.764 (4 kg/m2-s/807.1(kg/m3))2

5 × 10−3(m/s)
〈qku〉L

695.7(K)
= [1.987 × 107 × 1.265 × 10−5 + (966.9 × 5,173 × 0.432 × 0.00491)](W/m2-K)

= (250.56 + 1.061 × 104)(W/m2-K) = 10,861 W/m2-K
〈qku〉L = 7.556 × 106 W/m2.

Using the surface area Aku, we have

〈Qku〉L = qkuAku = 3,022 W.

(ii) Internal, Transpiration Cooling:
To determine the temperature of the nitrogen mixture entering the permeable cutting tool, we use an integral-
volume energy equation similar to (5.17). This gives, for the control volume shown in Figure Pr.7.14(b)(i),

Ṁacp,a(〈Tf 〉0 − Ta) + ṀN2 [cp,N2(〈Tf 〉0 − TN2) + ∆hlg,N2 ] = 0.

Solving for 〈Tf 〉0, we have

3.2 × 10−3(kg/s) × 1,005(J/kg-K) × (〈Tf 〉0 − 293.15(K)) + 1.6 × 10−3(kg/s)
×[1,123(J/kg-K) × (〈Tf 〉0 − 77.3(K)) + 1.976 × 105(J/kg)] = 0

3.216〈Tf 〉0 − 942.3(K) + 1,797〈Tf 〉0 − 138.9(K) + 316.16(K) = 0
5.0128〈Tf 〉0 − 765.04 = 0

〈Tf 〉0 = 152.6 K.

For the bounded fluid stream, we begin from (7.25), i.e.,

〈Qu〉L-0 =
Ts − 〈Tf 〉0
〈Ru〉L ,
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where from (7.27), we have

〈Ru〉L =
1

(Ṁcp)f (1 − e−NTU )
.

The mass flow rate Ṁf is

Ṁf = Ṁa + ṀN2 = (3.2 × 10−3 + 1.6 × 10−3)(kg/s) = 4.8 × 10−3 kg/s.

As indicated, the mixture cp,f is determined as a simple average

cp,f =
cp,a + cp,N2

2
=

(1,005 + 1,123)(J/kg-K)
2

= 1,064 J/kg-K.

The number of transfer units is given by (7.46), i.e.,

NTU =
Aku〈Nu〉D,p

kf

Dp

ε

1 − ε

(Ṁcp)f

.

To determine the interstitial surface area Aku, we begin from (7.41), i.e.,

1 − ε =
Vs

V
.

The volume is

V = L(w − 2l)(a − 2l) = 0.02(m) × 0.016(m) × 0.006(m) = 1.92 × 10−6 m3.

Then

Vs = V (1 − ε)
= 1.92 × 10−6(m3) × (1 − 0.35)

Vs = 1.248 × 10−6 m3

Aku =
6Vs

Dp
=

6 × 1.248 × 10−6(m3)
10−3(m)

= 7.488 × 10−3 m2.

The Nusselt number is determined from Table 7.5, i.e.,

〈Nu〉D,p = 2 + (0.4Re1/2
D,p + 0.2Re2/3

D,p)Pr0.4,

ReD,p =
〈uf 〉Dp

νf (1 − ε)
.

The fluid velocity 〈uf 〉 is determined from (7.3), noting that ρf is evaluated at T = 153 K � 150 K, i.e.,

Ṁf = ρf 〈uf 〉Au

Au = (w − 2l)(a − 2l) = 0.016(m) × 0.006(m) = 9.6 × 10−5 m2

ρf = 2.355 kg/m3

νf = 4.52 × 10−6 m2/s
kf = 0.023 W/m-K

〈uf 〉 =
Ṁf

ρfAu
=

4.8 × 10−3(kg/s)
2.355(kg/m3) × 9.6 × 10−5(m2)

= 21.23 m/s.

Then,

ReD,p =
21.23(m/s) × 0.001(m)

4.52 × 10−6(m2/s)(1 − 0.35)
= 7,226.5

〈Nu〉D,p = 2 + [0.4 × (7,226.5)1/2 + 0.2 × (7,226.5)2/3] × (0.69)0.4

= 95.76.
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Using these, we have

NTU =
7.048 × 10−3(m2) × 95.76 × 0.023(W/m-K)

0.001(m)
× 1 − 0.35

0.35
4.8 × 10−3(kg/s) × 1,064(J/kg-K)

= 5.997

〈Ru〉L =
1

(4.8 × 10−3 × 1,064)(1 − e−5.997)
=

1
5.065

(K/W) = 0.1963 K/W

〈Qu〉L-0 =
(773 − 153)(K)
0.1963(K/W)

= 3,158 W.

COMMENT:
The two methods give similar cooling power (about 3 kW). The internal transpiration cooling can be improve

by increasing Aku using a smaller particle diameter.
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PROBLEM 7.15.FAM

GIVEN:
An electrical (Joule) heater is used for heating a stream of air Ṁf from temperature 〈Tf 〉0 to 〈Tf 〉L. The

heater is made of a coiled resistance wire placed inside a tube of diameter D. The heater temperature is assumed
uniform and at Ts. This is shown in Figure Pr.7.159a). The coiled wires can be represented as a porous medium
of porosity ε with an equivalent particle diameter Dp.

Ṡe,J = 500 W, Ṁf = 10−3 kg/s, 〈Tf 〉0 = 20◦C, Dp = 1 mm, ε = 0.95, D = 1.9 cm, L = 30 cm.
Evaluate air properties at T = 500 K.

SKETCH:
Figure Pr.7.15(a) shows an air heater using the Joule heating with the resistive wires forming a porous medium

through which the air flows.

Ideal InsulationPhysical Model Large Specific
Surface Area

Tf  0

Se,J

D

Mf

L

Ts

Tf  L(+)

(�)

Figure Pr.7.15(a) An electric air-stream heater.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the particle Nusselt number 〈Nu〉D,p.
(c) Determine the number of transfer units, NTU .
(d) Determine the wire surface temperature Ts, as a function of Ṡe,J (W).
(e) Determine the air exit temperature as a function of Ṡe,J (W).
(f) Comment on the safety features that must be included to avoid heater meltdown.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.7.15(b). The Joule heating is transferred to the bounded
fluid by surface convection and changes the fluid temperature.

(b) The particle Nusselt number is found form the correlation given in Table 7.5, i.e.,

〈Nu〉D,p = 2 + (0.4Re1/2
D,p + 0.2Re2/3

D,p)Pr0.4,

where from (7.45), we have

ReD,p =
ρf 〈uf 〉Dp

µf (1 − ε)

and for (7.47) we have

〈uf 〉 =
Ṁf

Auρf
, Au = πD2/4
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Ts

Qu  0-L
Ru  L

Tf   0 Tf   L

Se,J

.

Qu  0 Qu  L

Figure Pr.7.15(b) Thermal circuit diagram.

or

ReD,p =
4ṀfDp

µf (1 − ε)πD2 .

From Table C.22, for air at T = 500 K, we have

ρf = 0.706 kg/m3 Table C.22

cp,f = 1017 J/kg-K Table C.22

νf = 3.7330 × 10−5 m2/s Table C.22

kf = 0.0395 W/m-K Table C.22

Pr = 0.69 Table C.22.

Then (recalling that νf = µf/ρf )

ReD,p =
4 × [10−3(kg/s)] × [10−3(m)]

3.730 × 10−5(m2/s) × 0.706(kg/m3) × (1 − 0.95) × π × (1.9 × 10−2)2(m2)
= 2,679.

Using this, we have

〈Nu〉D,p = 2 + [0.4 × (2,679)1/2 + 0.2 × (2,679)2/3] × 0.690.4

= 53.10.

(c) The number of transfer unit NTU is defined by (7.46), i.e.,

NTU =
1

(Ṁcp)f 〈Rku〉D
=

Aku

(Ṁcp)f

〈Nu〉D,pkf

Dp

1 − ε

ε
,

where from (7.42) we have

Aku =
6(1 − ε)V

Dp
=

6(1 − ε)πD2L

4Dp
.

Then

Aku =
6 × (1 − 0.95) × π × (1.9 × 10−2)2(m2) × 0.3m

4 × 10−3(m)
= 0.02552 m2

NTU =
0.02550m2

10−3kg/s × 1017(J/kg-K)
53.10 × 0.0395(W/m-K)

10−3(m)
(1 − 0.95)

0.95
= 2.770.

(d) The energy equation written from node Ts in Figure Pr.7.15(b) gives

〈Qku〉L-0 = Ṡe,J,
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where from (7.25) and (7.27), we have

〈Qku〉L-0 =
Ts − 〈Tf 〉0
〈Ru〉L

〈Ru〉L =
1

(Ṁcp)f εhe

=
1

(Ṁcp)f (1 − e−NTU )

or

(Ts − 〈Tf 〉0)(Ṁcp)f (1 − e−NTU ) = Ṡe,J.

Then

Ts = 〈Tf 〉0 +
Ṡe,J

(Ṁcp)f (1 − e−NTU )
.

Ts = 20◦C +
Ṡe,J

10−3(kg/s) × 1017(J/kg-K)(1 − e−2.770)

= 20(◦C) + 1.049Ṡe,J(◦C/W).

(e) The air exit temperature is given by (7.21), i.e.,

〈Tf 〉L = Ts + (〈Tf 〉0 − Ts)e−NTU

= Ts + 0.06266[20◦C − Ts]
= 0.9373Ts + 1.309◦C
= 0.9373[20(◦C) + 1.049Ṡe,J(◦C/W)] + 1.2532(◦!C)

= 20(◦C) + 0.9832Ṡe,J(◦C/W).

(f) As Ṡe,J increases, Ts increases linearly. If a failure temperature is defined as Ts,max, then from the above
equation for the maximum Ṡe,J causing this threshold temperature, we have

Ts,max = 20(◦C) + 1.049(Ṡe,J)max(◦C/W)

or

(Ṡe,J)max = 0.9533(Ts,max − 20◦C)(W/◦C).

For example, for Ts,max = 1,200 K, (= 927◦C), we have

(Ṡe,J)max = 0.9533(927 − 20)(◦C)(W/◦C) = 864.6 W.

For this the exit air temperature is

〈Tf 〉L = 0.9832(◦C/W) × 864(W) + 20◦C = 870.3◦C.

COMMENT:
If care is not taken, and enough air does not flow through the tube, the failure temperature is reached very

rapidly.
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PROBLEM 7.16.FUN.S

GIVEN:
Sensible heat storage in packed beds is made by flow of a hot fluid stream through the bed and heat transfer

by surface convection. A heat-storage bed of carbon-steel AISI spherical particles is shown in Figure Pr.7.16(a).
Hot air is flowing through the bed with an inlet temperature 〈Tf 〉0 and a mass flow rate Ṁf . The initial bed
temperature is Ts(t = 0). When the assumption of BiL < 0.1 is valid, then (6.156) can be used to predict the
uniform, time-dependent bed temperature.

Ts(t = 0) = 30◦C, 〈Tf 〉0 = 190◦C, Ṁf = 4 kg/s, L = 2 m,Dp = 8 cm, ε = 0.40.
Evaluate air properties at T = 400 K.

SKETCH:
Figure Pr.7.16(a) shows the storage medium, i.e., a packed bed of spherical particles, with a hot stream of air

flowing through it.

� (�cpV)s

Porosity 

dTs
dt

L

L

L

Initial Temper-
ature, Ts (t = 0)

Packed Bed of
Spherical Particles

Carbon Steel, ks

Uniform Solid
Temperature, Ts 

(t)

Heat Storage Bed

�Tf �0

�Tf �L

(Mcp)f

(Mcp)f

Dp

�

Figure Pr.7.16(a) Sensible heat storage/release in a packed bed of spherical particles.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the bed effective thermal conductivity 〈k〉.
(c) Determine 〈Nu〉D,p, 〈Rku〉L, and NTU .
(d) Show that the Biot number BiL = Rk,s/〈Rku〉L is not less than 0.1 (where Rk,s = L/Akk = 1/L〈k〉), and
therefore, that assuming a uniform bed temperature is not justifiable (although that assumption makes the anal-
ysis here much simpler).
(e) Assume a uniform bed temperature and use (6.156) to plot Ts(t) and 〈Tf 〉L(t) for up to four time constants
τs.
(f) Determine the amount of heat stored during this period.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.7.16(b).

(b) The effective thermal conductivity is given by (3.28), i.e.,

〈k〉
kf

=
(

ks

kf

)0.280−0.757 log(ε)−0.057 log(ks/kf )

.

686



Ts(t) � (�cpV )s
dTs

dt

Qu  L-0(t)
Ru  L

Tf  0 Tf  L

(Mcp)f

Qu  0 Qu  L

Figure Pr.7.16(b) Thermal circuit model.

The properties of air at T = 400 K, from Table C.22, are

ρf = 0.883 kg/m3 Table C.22

kf = 0.0331 W/m-K Table C.22

cp,f = 1,009 J/kg-K Table C.22

νf = 2.55 × 10−5 m2/s Table C.22

Pr = 0.69 Table C.22.

The properties of carbon steel AISI 1010, from Table C.16, are

ρs = 7,830 kg/m3 Table C.16

cp,s = 434 J/kg-K Table C.16

ks = 64 W/m-K Table C.16.

Then, with ks/kf = 1933.5,

〈k〉 = 0.0331(W/m-K) × (1,933.5)0.280−0.757 log(0.40)−0.057 log(1,933.5)

= 0.0331(W/m-K) × (1,934)0.3939

= 0.6521W/m-K.

(c) The Nusselt number is determine from the correlation in Table 7.5, i.e.,

〈Nu〉D,p = 2 + (0.4Re1/2
D,p + 0.2Re2/3

D,p)Pr0.4

ReD,p =
〈uf 〉DP

νf
=

ṀfDp

ρfAuνf
=

ṀfDP

L2νfρf

=
4(kg/s) × 0.08(m)

(2)2(m2) × 2.55 × 10−5(m2/s) × 0.883(kg/m3)
= 3,553

〈Nu〉D,p = 2 + [0.4(3,553)1/2 + 0.2(3,553)2/3] × (0.69)0.4 = 62.70.

The surface-convection resistance 〈Rku〉L is determined from (7.46), and Aku is given by (7.42), i.e.,

〈Rku〉L =
Dp

Aku〈Nu〉D,pkf

ε

1 − ε

Aku = V
6(1 − ε)

Dp
= L3 6(1 − ε)

Dp
,

so that

〈Rku〉L =
D2

pε

6L3(1 − ε)2〈Nu〉D,pkf

=
(0.08)2(m2) × 0.4

6 × (2)3(m3) × (1 − 0.4)2 × 62.70 × 0.0331(W/m-K)
= 7.138 × 10−5 ◦C/W.
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The number of transfer units is given by (7.20), i.e.,

NTU =
1

〈Rku〉LṀcp

=
1

7.140 × 10−4(◦C/W) × 4(kg/s) × 1,009(J/kg-K)
= 3.471

(d) The Biot number is defined by (6.128) as

BiL =
Rk,s

〈Rku〉L
=

L/(L2〈k〉)
〈Rku〉L =

1
7.138 × 10−5(◦C/W) × 2(m) × 0.6522(W/m-K)

= 1.075 × 104

This shows that temperature nonuniformity within the bed (along the flow direction) cannot be justifiably ne-
glected. However, the inclusion of axial conduction, which can be readily done by dividing the bed length into
small, uniform-temperature volumes (i.e., small-finite volumes), will add to the length of analysis.

(e) Using (6.156) for the uniform solid temperature, along with the average convection resistance 〈Ru〉L, for
Figure Pr.7.16(b), we have

Ts(t) = 〈Tf 〉0 + [Ts(t = 0) − 〈Tf 〉0]e−t/τs

τs = (ρcpV )s〈Ru〉L,

where Qs = Ṡs = as = 0.
From (7.27), we have

〈Ru〉L =
1

(Ṁcp)f (1 − e−NTU )

=
1

4(kg/s) × 1,009(J/kg-K) × (1 − e−3.471)
= 2.5572 × 10−4 ◦C/W.

Then

τs = (ρcp)sV (1 − ε)〈Ru〉L
= 7,830(kg/m3) × 434(J/kg-K) × (2)3(m3) × (1 − 0.4) × 2.5572 × 10−4(K/W)
= 4,171 s = 1.159 hr.

The instantaneous air stream exit temperature 〈Tf 〉L is found from (7.21), i.e.,

〈Tf 〉L(t) = Ts(t) + [〈Tf 〉0 − Ts(t)]e−NTU .

The results for Ts(t) and 〈Tf 〉L(t) are plotted in Figure Pr.7.16(c), for 0 ≤ t ≤ 4τs. The results show that 〈Tf 〉L(t)
is only slightly larger than Ts(t). After four time constants, Ts(t) and 〈Tf 〉(t) approach 〈Tf 〉0 = 190◦C.

(f) The amount of heat stored in the bed is found from integrating the energy equation, i.e.,∫ 4τs

0

Qkudt = (ρcpV )s[Ts(t = 4τs) − Ts(t = 0)]

= 7,830(kg/m3) × 434(J/kg-◦C) × 23(m3) × (1 − 0.4) × (187.06 − 30)(◦C)
= 2.562 × 109 J.

COMMENT:
The assumption of uniform bed temperature can be relaxed by dividing the bed into small, finite volumes.

Also we have used the instantaneous value of Ts(t) to determine the exits temperature, i.e., no allowance is made
for the residence time of the fluid particles. Note that since (Ṁcp)f is much smaller than (Mcp)s, a large elapsed
time is needed to heat the solid.

Note that we could have used BiL = Rk,s/〈Ru〉L and this would have given BiL = 2,998, which is still very high.
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Figure Pr.7.16(c) Variation of the bed temperature and the fluid exit temperature with respect to time.
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PROBLEM 7.17.FAM.S

GIVEN:
To improve the surface-radiation heat transfer from a fireplace, metallic chains are suspended above the flame,

as shown in Figure Pr.7.17(a). The hot, thermobuoyant flue gas flows through and around the chains. The mass
flow rate through the chains can be estimated from the fluid flow friction and the available thermobuoyant force
and is assumed known here. In steady-state, this surface-convection heat transfer is balanced by the surface-
radiation exchange with the surroundings, which is at T∞. The radiating surface can be modeled as the surface
area of a solid rectangle of dimension w ×w ×L [as shown in Figure Pr.7.17(a)] scaled by the solid fraction term
(1− ε), where ε is the porosity. Only the surface radiation from the surface facing the surrounding is considered.
The entire chain is assumed to have a uniform temperature Ts.

Ṁf = 0.007 kg/s, 〈Tf 〉0 = 600◦C, ε = 0.7, Aku = 3 m3, Dp = 4 mm, εr,s = 1, w = 30 cm, L = 50 cm,
T∞ = 20◦C.

Treat the flue gas as air and evaluate the properties at T = 500 K.

SKETCH:
Figure Pr.7.17(a) shows the suspended chains.

L

w w

Metallic Chain Volume
  , Dp , Aku

Flame

Wood Log

Ts  ,   r,s

(Mcp)f ,  Tf   0

T
�

  r,�

Flue Gas

Radiation Surface
�

�

�

Figure Pr.7.17(a) Chains suspended above flame for enhanced surface radiation to the surroundings.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the chain temperature Ts.
(c) Determine the surface-radiation heat transfer rate Qr,s-∞.

SOLUTION:
(a) Figure Pr.7.17(b) shows the thermal circuit diagram.

(b) From the thermal circuit diagram, the energy equation is

Q|A = 〈Qu〉L-0 + Qr,s-∞ = 0

=
Eb,s − Eb,∞

Rr,Σ
+

Ts − 〈Tf 〉0
〈Ru〉L .
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Rr,�T
�

Eb,�
Eb,s

Control Surface

Ts

Qr,s-� Qku =  Qu  L-0

Ru  L

Tf   L

Tf   0

Mf

Figure Pr.7.17(b) Thermal circuit diagram.

The surface-radiation resistance Rr,Σ is given by (4.48) as

Rr,Σ =
1 − εr,s

εr,sAr,s
+

1
Ar,sFs-∞

+
1 − εr,∞
εr,∞A∞

=
1

εr,sAr,s
, for A∞ � Ar,s and Fs-∞ = 1.

The surface area used for radiation is
Ar,s = wL(1 − ε).

The average-convection resistance 〈Ru〉L is defined in Table 7.1, i.e.,

〈Ru〉L =
1

Ṁcp(1 − e−NTU )

NTU =
1

〈Rku〉D,p(Ṁcp)f

.

The surface-convection resistance 〈Rku〉D,p is given in Table 7.5, for the porous medium, through

〈Nu〉D,p =
Dp

Aku〈Rku〉D,pkf

ε

1 − ε

= 2 + (0.4Re1/2
D,p + 0.2Re2/3

D,p)Pr0.4.

The Reynolds number is defined by (7.45) as

ReD =
ρf 〈uf 〉Dp

µf (1 − ε)
=

ṀDp

Auρfνf (1 − ε)
, Au = w2.

We now use the numerical values to determine 〈Ru〉L. From Table C.22, at T = 500 K, we have

ρf = 0.706 kg/m3 Table C.22

kf = 0.0395 W/m-K Table C.22

cp,f = 1,017 J/kg-K Table C.22

νf = 3.730 × 10−5 m2/s Table C.22

Pr = 0.69 Table C.22

Then

ReD,p =
0.007(kg/s) × (4 × 10−3)(m)

(0.30)2(m2) × 0.706(kg/m3) × 3.730 × 10−5(m2/s) × (1 − 0.7)
= 39.38

〈Nu〉D,p = 2 + [0.4(39.38)1/2 + 0.2(39.38)2/3](0.69)0.4 = 6.160

〈Rku〉D,p =
Dp

Aku〈Nu〉D,pkf

ε

1 − ε

=
4 × 10−3(m)

3(m2) × 6.160 × 0.0395(W/m-K)
0.7

1 − 0.7
= 0.01279◦C/W

NTU =
1

0.01279(◦C/W) × 0.007(kg/s) × 1,017(J/kg-◦C)
= 10.99

〈Ru〉L =
1

0.007(kg/s) × 1,017(J/kg-◦C) × (1 − e−10.99)
= 0.1405◦C/W.
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Returning to the energy equation, we have

Ar,sεr,sσSB(T 4
s − T 4

∞) + Ts − 〈Tf 〉0
〈Ru〉L = 0

0.3(m) × 0.5(m) × (1 − 0.7) × 1 × 5.67 × 10−8(W/m2-K4) × (T 4
s − 293.154)(K4) + (Ts − 873.15)(K)

0.1405(K/W) = 0.

Solving for Ts using a solver (or by iteration), we have

Ts = 757.7 K = 484.6◦C.

(c) The surface-radiation heat transfer is

Qr,s-∞ = 0.3(m) × 0.5(m) × 0.3 × 5.67 × 10−8(W/m-K4)(757.74 − 293.154) = 822.0 W.

COMMENT:
The mass flow rate through the chains was estimated and perhaps is large. Lower Ṁf would still lead to a

sufficiently large NTU for a significant surface-convection heating of the chains. But, Qr,s-∞ will be lower. Note
that Ṁcp(〈Tf 〉0 − T∞) = 4,129 W, which indicates that the heating effectiveness is still rather low.
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PROBLEM 7.18.FAM

GIVEN:
Two printed circuit boards containing Joule heating components are placed vertically and adjacent to each

other for a surface-convection cooling by the thermobuoyant motion of an otherwise quiescent air. This is shown
in Figure Pr.7.18(a). Consider surface-convection from both sides of each board.

w = 10 cm, L = 15 cm, l = 4 cm, Ts = 65◦C, Tf,∞ = 30◦C.
Determine the air properties at 〈Tf 〉δ = (Ts + Tf,∞)/2.

SKETCH:
Figure Pr.7.18(a) shows the boards and the thermobuoyant motion.

g

Thermobuoyant Motion

Printed Circuit Board

Se,J

w

l

L

Se,J

ufTs

Tf,�
uf,� = 0

Figure Pr.7.18(a) Two printed circuit boards are placed vertically and adjacent to each other for a surface-convection
cooling by the thermobuoyant air motion.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the Joule heating rate Ṡe,J, per board, for the following conditions.

SOLUTION:
(a) Figure Pr.7.18(b) shows the thermal circuit diagram for each of the boards. The energy equation for each
board is

Q|A = 2〈Qku〉l = Ṡe,J .

Qu
Tf,�

Qku  L

Se,JSe,J

Qku  L

Rku  L Rku  L

Figure Pr.7.18(b) Thermal circuit diagram.

(b) From (7.9), we have

〈Qku〉l = Aku〈Nu〉l kf

l
(Ts − Tf,∞),
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where 〈Nu〉l is given in Table 7.4, i.e.,

Nul =

[(
Ral

24

)−1.9

+ (a1Ra1/4
l )−1.9

]−1/1.9

a1 =
4
3

0.503[
1 +

(
0.492
Pr

)9/16
]4/9

Ral =
gβf (Ts − Tf,∞)l3

νfαf

l

L
.

From Table C.22, for air at

〈Tf 〉δ =
Ts + Tf,∞

2
=
(

65 + 30
2

+ 273.15
)

(K)

= 320.65 K,

We have

kf = 0.0281 W/m-K Table C.22

νf = 1.744 × 10−5 m2/s Table C.22

αf = 2.526 × 10−5 m2-s Table C.22

Pr = 0.69 Table C.22

βf =
1
Tf

=
1

320.65(K)
= 3.119 × 10−3 1/K (6.77).

Then

Ral =
9.81(m/s2) × 3.119 × 10−3(1/K) × (65 − 30)(K) × (0.04)3(m3)

1.744 × 10−5(m2/s) × 2.526 × 10−5(m2/s)
(0.04)(m)
0.15(m)

= 4.149 × 104

a1 =
4
3

0.503[
1 +

(
0.492
0.69

)9/6
]4/9

= 0.5131

〈Nul〉 =

{(
4.149 × 104

24

)−1.9

+
[
0.5131 × (

4.149 × 104
)1/4

]−1.9
}−1/1.9

= (7.052 × 10−7 + 2.276 × 10−2)−
1

1.9

= 7.323.

For each surface, the surface-convection surface is Aku = 2wL, then

〈Qku〉l = 2 × 0.1(m) × 0.15(m) × 7.323 × 0.0281(W/m-K)
0.04(m)

× (65 − 30)(K)

= 5.402 W.

From the energy equation

Ṡe,J = 2〈Qku〉l = 10.80 W.

COMMENT:
Note that the laminar channel flow contribution is small and in this case negligible.
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PROBLEM 7.19.FAM

GIVEN:
A solar collector is placed horizontally, and in order to reduce the heat losses to ambient air, a glass sheet

is placed on top of it with the gap occupied by air. This is shown in Figure Pr.7.19(a). The energy absorbed
by the collector surface Ṡe,α is used to heat a water stream flowing underneath it, Qc, or lost to air above it
through 〈Qku〉L. Assume a unit surface area of Ac = 1 m2 and otherwise treat the collector surface as being
infinity large in both directions. The heat transfer between the collector surface and the glass surface is by cellular
thermobuoyant motion of the enclosed air. The Nusselt number correlation for this motion is given in Table 7.4
with the gap distance designated as L.

Ṡe,α/Ac = αr,c(qr,i)s = 400 W/m2, L = 2 cm, Ts,1 = 60◦C, Ts,2 = 35◦C.
Determine the air properties at 〈Tf 〉 = (Ts,1 + Ts,2)/2.

SKETCH:
Figure Pr.7.19(a) shows the collector, the glass cover, and a water (coolant) stream removing the heat for the

collector at a rate per unit area Qc/Ac.

Air

Air

g

Solar Irradiation
Solar Collector Surface,

Unit Surface Area Ac = 1 m2

Ac = Ar,� = Aku

Qc

LTs,1

Ts,2

Glass Sheet Cover

Cellular Thermo-
buoyant Motion

Se,� /Ac

Absorbed Irradiation

Water Stream
(Coolant)

Qku  L

(qr,i)s

Figure Pr.7.19(a) A glass cover is used to reduce heat loss from a solar collector surface to ambient air. There is a
cellular motion in the air gap between the two surfaces.

OBJECTIVE:
(a) Draw the thermal circuit diagram for the collector.
(b) Determine the rate of heat transfer per unit collector surface to the coolant (water) stream Qc/Ac.

SOLUTION:
(a) Figure Pr.7.19(b) shows the thermal circuit diagram for the collector. The heat absorbed is lost to the air
through the gap cellular motion, 〈Qku〉l, and to the water stream, Qc. Then

Q|A,c = Qc + 〈Qku〉L = Ṡe,α

or

Qc

Ac
+

〈Qku〉L
Ac

=
Ṡe,α

Ac
,

here Ac = Aku = Ar,α.
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Qku  L

Qc

Ts,2

Ts,1

Ac

Sl,�

Figure Pr.7.19(b) Thermal circuit diagram.

(b) From Table 7.4, we have

〈Qku〉L = Aku〈Nu〉L kf

L
(Ts,1 − Ts,2)

〈Nu〉L = 1 +
[
1 − 1,708

RaL

]∗ a1 + 2

(
Ra1/3

L

a2

)1 − ln
(
Ra1/3

L /a2

)
+

[(
RaL

5,830

)1/3

− 1

]∗

a1 =
1.44

1 +
0.018
Pr

+
0.00136

Pr2

a2 = 75e1.5Pr−1/2

RaL =
gβf (Ts,1 − Ts,2)L3

νfαf
.

From Table C.22, for air at

〈Tf 〉δ =
(

60 + 35
2

+ 273.15
)

(K)

= 320.65 K,

we have

kf = 0.0281 W/m-K Table C.22

νf = 1.750 × 10−5 m2/s Table C.22

αf = 2.535 × 10−5m2-s Table C.22

Pr = 0.69 Table C.22

βf =
1

〈Tf 〉 =
1

320.65(K)
= 3.119 × 10−3 1/K (6.77).

Then

RaL =
9.81(m/s2) × 3.119 × 10−3(1/K) × (60 − 35)(K) × (0.02)3(m3)

1.750 × 10−5(m2/s) × 2.535 × 10−5(m2/s)
= 1.373 × 104

a1 =
1.44

1 +
0.018
0.69

+
0.00136
(0.69)2

= 1.3995

a2 = 75e1.5(0.69)−1/2
= 456.36,
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and so,

〈Nu〉L = 1 +
[
1 − 1,708

1.373 × 104

]∗
×




1.3995 + 2 ×
[

(1.373 × 104)1/3

456.36

]1 − ln
(1.373 × 104)1/3

456.36




+

[(
1.373 × 104

5,830

)1/3

− 1

]∗

= 1 + 0.8752 × [
1.401 + 2 × (5.243 × 10−2)1+2.9483

]
+ [1.330 − 1]∗

= 1 + 1.2262 + 0.3305 = 2.557.

Note that all terms inside [ ]* are positive and are therefore included.
Then,

〈Qku〉L = 1(m2) × 2.557 × 0.0281(W/m-K)(60 − 35)(K)
0.02(m)

= 89.81 W.

Using the energy equation,

Qc

Ac
=

Ṡe,α

Ac
− 〈Qku〉L

Ac

= 400(W/m2) − 89.81(W/m2)
= 310.2 W/m2.

COMMENT:
Note that about 25% of the heat absorbed is lost to the ambient. By reducing the width of the air gap this

heat loss can be reduced.
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PROBLEM 7.20.FUN

GIVEN:
In order to melt the winter ice formed on a concrete surface, hot-water carrying tubes are embedded in the

concrete, near its surface. This is shown in Figure Pr.7.20(a). Assume a steady-state heat transfer. The heat
flows from the hot-water stream, through the tube wall and through the concrete to the surface (at temperature
Tc). There it melts the ice with the phase change energy conversion rate designated with Ṡsl.

D = 3 cm, l = 5 cm, w = 10 cm, 〈Tf 〉0 = 25◦C, Tc = 0◦C, kc(concrete) = 1.0 W/m-K, 〈uf 〉 = 0.5 m/s,
a = L = 5 m.

Assume that the tubes have a negligible thickness. Determine the water properties at T = 290 K. The heat
of melting for water is given in Table C.4. Note that for a uniform melting, a small NTU is used.

SKETCH:
Figure Pr.7.20(a) shows the buried pipes and its geometrical parameters.

D

L
a

w

l

Hot Water
Mf (Per Tube),   Tf   0

Concrete, kc
Hot Water Tube, Ts

Ice-Covered Surface, Tc

Tf  L

Melting Ice, Sm,F

Figure Pr.7.20(a) Hot-water carrying tubes are placed near a concrete surface to melt the winter ice formed on the
surface.

OBJECTIVE:
(a) Draw the thermal circuit diagram for the heat transfer between the hot-water stream and the concrete surface.
(b) Determine the Nusselt number 〈Nu〉D.
(c) Determine the surface-convection resistance 〈Rku〉D.
(d) Determine the concrete conduction resistance between the tube surface and concrete surface Rk,s-1, using
Table 3.3(a). Divide the per-tube resistance by the number of tubes Nt = a/w to obtain the total resistance.
(e) Determine the rate of heat transfer 〈Qu〉L-0 and the rate of ice melting Ṁsl.

SOLUTION:
(a) Figure Pr.7.20(b) shows the thermal circuit diagram. The heat transfer from the hot-water stream to the
tube surface, which is the same as that flowing through concrete, is labeled as −〈Qku〉L-0. The energy equation
for concrete surface, from Figure Pr.7.20(b), is

Q|A = 〈Qu〉L-0 = Ṡsl

= −Ṁsl∆hsl,

where we have used Table 2.1 for Ṡlg. The heat transfer rate is from, Figure Pr.7.20(b),

〈Qu〉L−0 =
Tc − 〈Tf 〉o
〈Ru〉L .

Note that the top temperature node is Tc. The tube surface temperature Ts will be a function of the axial location
in the tube. The resistance 〈Ru〉L must then take into account both convection and conduction effects. This
will be seen in the form of RΣ used in the calculation of NTU , and is a prelude to the heat exchanger problems
discussed later in the chapter. Figure 7.12 illustrates the different resistances that exist in tube flow when the
substrate is included. It is up to the heat transfer analyst to determine which of these resistances are important.
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�Qu�L-0

�Tf �0 �Tf �L

Ssl

�Ru� L

Hot Water Stream, Mf

Tc

�Qu�0 �Qu�L

Figure Pr.7.20(b) Thermal circuit diagram.

(b) The Nusselt number is found from Tables 7.2 or 7.3, depending on the magnitude of ReD. From (7.36), we
have

ReD =
〈uf 〉D

νf
.

From Table C.23, at T = 290 K, for water we have

kf = 0.590 W/m-K Table C.23

ρf = 1,000 kg/m3 Table C.23

cp,f = 4,186 J/kg-K Table C.23

νf = 1.13 × 10−6m2-s Table C.23

Pr = 8.02 Table C.23

ReD =
0.5(m/s) × 0.03(m)
1.13 × 10−6(m2/s)

= 13,274 > ReD,t = 2,300 turbulent-flow regime.

From Table 7.3, we have

〈Nu〉D = 0.023Re4/5Pr0.3, Ts < 〈Tf 〉0
= 0.023 × (13,274)4/5 × (8.02)0.3

= 85.39.

(c) The surface-convection resistance 〈Rku〉D is defined in (7.19), i.e.,

〈Rku〉D =
D

Aku〈Nu〉Dkf

=
D

NtπDL〈Nu〉Dkf

=
w

aπL〈Nu〉Dkf

=
0.10(m)

5(m) × π × 5(m) × 85.39 × 0.590(W/m-K)
= 2.527 × 10−5 K/W.
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(d) The resistance per tube is given in Table 3.3(a), and for Nt tubes we have

Rk,s-c = =
1
Nt

ln
[

2w

πD
sinh

(
2πl

w

)]
2πkcL

=
w ln

[
2w

πD
sinh

(
2πl

w

)]
a2πkcL

=
0.10(m) × ln

{
2 × 0.10
π × 0.03

× sinh
[
2 × π × 0.05(m)

0.10(m)

]}
5(m) × 2π × 1(W/m-K) × 5(m)

= 6.366 × 10−4(K/W) × ln[2.122 sinh(3.142)]
= 6.366 × 10−4(K/W) × ln(2.122 × 11.55)
= 2.036 × 10−3 K/W.

(e) The average convection resistance is given by (7.27), i.e.,

〈Ru〉L =
1

(Ṁcp)f (1 − e−NTU )

where from (7.74), we have

NTU =
1

RΣ(Ṁcp)f

,

and here we use RΣ = 〈Rku〉D + Rk,s-c so that

NTU =
1

(〈Rku〉D + Rk,s-c(Ṁcp)f

Ṁf = Ntρf
πD2

4
〈uf 〉

=
a

w
ρf

πD2

4
〈uf 〉

=
5(m)

0.1(m)
× 1,000(kg/m3) × π × (0.03)2(m2)

4
× 0.5(m/s)

= 17.67 kg/s

NTU =
1

(2.527 × 10−5 + 2.036 × 10−3)(K/W) × 17.67(kg/s) × 4,186(J/kg-K)
= 0.006559

〈Ru〉L =
1

17.67(kg/s) × 4,186(J/kg-K) × [1 − exp(−0.006559)]
= 2.068 × 10−3 K/W

〈Qu〉L-0 =
(0 − 25)(K)

2.068 × 10−3(K/W)
= −1.209 × 104 W.

From Table C.4, for water

∆hsl = 3.336 × 105 J/kg Table C.4.

Then

Ṁsl = −〈Qu〉L-0
∆hsl

= − −1.209 × 104(W)
3.336 × 105(J/kg)

= 0.03621 kg/s
= 36.24 g/s.
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COMMENT:
Note that 〈Rku〉D 
 Rk,sc, i.e., the surface-convection resistance is small such that Ts is very close to 〈Tf 〉

Also note that 〈Tf 〉 changes only slightly along the tube. The hot-water exit temperature is found from (7.24),
i.e.,

〈Tf 〉L = 〈Tf 〉0 +
〈Qu〉L-0
(Ṁcp)f

= 25(◦C) +
−1.209 × 104(W)

17.67(kg/s) × 4,186(J/kg-K)
= 24.84◦C.

A lower mass flow rate may be used although it will not result in a uniform melting rate.
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PROBLEM 7.21.FUN

GIVEN:
In an internal combustion engine, for the analysis of the surface-convection heat transfer on the inner surface

of the cylinder, 〈Nu〉D must be determined for the cylinder conditions. Figure Pr.7.21 gives a rendering of the
problem considered. The Woschni correlation for this Nusselt number uses the averaged cylinder velocity and
cylinder pressure and is

〈Nu〉D = 0.035Rem
D , ReD =

ρfD〈uf 〉
µf

,

where the averaged fluid velocity in the cylinder 〈uf 〉 is given by

〈uf 〉 = a1(u2
p)

1/2 + a2
Vf (pf − po)
Mf (Rg/M)

, (u2
p)

1/2 = 2Ld(rpm)
2π

60(s/min)
, po =

Mf

Vf
RgTo.

Here po is motored pressure used as a reference pressure, which is determined with the intake manifold air tem-
perature To. In the second term in the averaged velocity 〈uf 〉 expression, the pressure rise pf − po is caused by
combustion (and is used only during the combustion period).

m = 0.8, D = 0.125 m, Ld = 0.14 m, rpm = 1,600 rpm, To = 329 K, Ts = 800 K, Rg/M = 290.7 J/kg-K.
Note that the pressure and temperature given above are selected for a diesel engine.

SKETCH:
Figure Pr.7.21 shows the cylinder of the internal combustion engine.

Piston up

Connecting Rod

Cylinder

D

Ld

Crank
Shaft

Crank Angle, θ

Ts

Vd

Cast Iron
Cylinder Block

Cylinder Head
Tf

Figure Pr.7.21 Geometric parameters of the cylinder in a diesel internal combustion engine.

OBJECTIVE:
(a) Determine 〈NuD〉 and 〈qku〉D, for (i) the combustion period and (ii) the intake period.
(b) Comment on the magnitude of 〈Nu〉D (i) during the combustion period (a1 = 2.28, a2 = 3.24 × 10−3 m/s,
Mf = 0.006494 kg, 〈Tf 〉 = 1,700 K, pf = 23 MPa, Vf = 0.00013966 m3) and (ii) during the intake period (a2 = 0,
pf = 0.2 MPa, 〈Tf 〉 = 400 K). Evaluate the properties of air for (i) at T = 〈Tf 〉 = 1,700 K, and for (ii) at
T = 〈Tf 〉 = 400 K, using Table C.22. Use the ideal gas law and given pressure and temperature to evaluate the
density of the gas (air).
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SOLUTION:
In the internal combustion engine, the averaged Nusselt number 〈Nu〉D for the surface-convection heat transfer

is determined from the Woschni correlation using the average cylinder velocity and the cylinder pressure. This
correlation for the 〈Nu〉D is given as

〈Nu〉D = 0.035Rem
D , ReD =

ρfD〈uf 〉
µf

.

The average fluid velocity in the cylinder 〈uf 〉 is given by

〈uf 〉 = a1(u2
p)

1/2 + a2
Vf (pf − po)
Mf (Rg/M)

,

where

(u2
p)

1/2 = 2Ld(rpm)
2π

60(s/min)
, pm =

Mf

Vf

Rg

M
To.

and during the combustion period, a1 = 2.28, a2 = 3.24 × 10−3 m/s, (ii) during the intake period, a2 = 0.
From Table C.22, we have for air at 1,700 K:

νf = 284.6 × 10−6 m2/s

ρf = 0.2114 kg/m3

µf = ρfνf = 60.16 × 10−6

kf = 0.09348 W/m-K.

And then, as indicated, we recalculate the density using the ideal gas law:

ρf =
pf

(Rg/M)〈Tf 〉 =
23 × 106(Pa)

290.7(J/kg-K) × 1,700(K)
= 46.54 kg/m3.

For air at 400 K,

νf = 25.50 × 10−6 m2/s

ρf = 0.883 kg/m3

µf = ρfνf = 22.52 × 10−6

kf = 0.0331 W/m-K.

And then, as indicated, we recalculate the density using the ideal gas law:

ρf =
pf

(Rg/M)〈Tf 〉 =
0.2 × 106(Pa)

290.7(J/kg-K) × 400(K)
= 1.720 kg/m3.

(a) (i) Combustion Period:
The averaged piston velocity (u2

p)
1/2 is determined by

(u2
p)

1/2 = 2Ld(m)(rpm)(1/min)
2π

60(s/min)

= 2 × 0.14(m) × 1,600(1/min) × 2π

60(s/min)
= 46.91 m/s.

and the motored pressure is determined as

po =
Mf

Vf
RgTo

=
0.006494(kg)

0.00013966(m3)
× 290.7(J/kg-K) × 329(K)

= 4.447 MPa.
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Therefore, the effective fluid velocity 〈u〉f is

〈uf 〉 = a1(u2
p)

1/2 + a2
Vf (pf − po)
Mf (Rg/M)

= 2.28 × 46.91(m/s) + 3.24 × 10−3(m/s) × 0.00013966(m3) × (23 − 4.447) × 106(Pa)
0.006494(kg) × 290.7(J/kg-K)

= 106.96(m/s) + 4.45(m/s)
= 111.4 m/s.

The Reynolds number ReD is

ReD =
ρfD〈uf 〉

µf

=
46.5(kg/m3) × 0.125(m) × 111.4(m/s)

60.16 × 10−6(kg/m-s)
= 10.763 × 106.

Finally, the average Nusselt number 〈Nu〉D is

〈Nu〉D = 0.035Re0.8
D

= 14,778.

The surface-convection heat flux 〈qku〉D is given by

〈qku〉D =
〈Qku〉D

Aku
=

〈Nu〉Dkf

D
(〈Tf 〉 − Ts)

=
14,778 × 0.09348(W/m-K)

0.125(m)
× (1,700 − 800)(K)

= 9,946.5 kW/m2.

(ii) Intake Period:
During the intake period, the pressure and temperature in the cylinder are pf = 0.2 MPa, and 〈Tf 〉 = 400 K
respectively.
Similarly to the above, the average fluid velocity 〈uf 〉 is

〈uf 〉 = 2.28 × 46.91(m/s)
= 106.96 m/s.

The Reynolds number ReD is

ReD =
1.720(kg/m3) × 0.125(m) × 106.96(m/s)

22.52 × 10−6(m2-s)
= 1.022 × 106.

Finally, the average Nusselt number 〈Nu〉D is

〈Nu〉D = 0.035Re0.8
D

= 2,246.

The surface-convection heat flux 〈qku〉D is given by

〈qku〉D =
〈Qku〉D

Aku
=

〈Nu〉Dkf

D
(〈Tf 〉 − Ts)

=
2,246 × 0.0331(W/m-K)

0.125(m)
× (400 − 800)(K)

= −237.9 kW/m2.
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(b) The Reynolds number for the combustion period is much higher than that for the intake period, and therefore,
〈Nu〉D is much higher.

COMMENT:
Note that for the combustion period, the heat flux is positive, i.e., there is a heat loss through cylinder wall.

For the intake, the heat flux is negative, i.e., the hot cylinder wall heats the cold intake air inside the cylinder,
and this surface-convection heat transfer affects the volume efficiency during the intake period.
Note that the coefficients (a1 and a2) in the Woschni relation are determined by a calibration against engine test
results. The coefficients also have different magnitudes for the other engine cycle periods, such as the intake,
exhaust and compression periods.
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PROBLEM 7.22.FAM.S

GIVEN:
Placing an air gap between brick walls can reduce the heat transfer across the composite, when the ther-

mobuoyant motion in the air gap is not significant. Consider the one-dimensional heat flow through a composite
of two brick walls and an air gap between them, as shown in Figure Pr.7.22(a).

T1 = 40◦C, T2 = 15◦C, l1 = l2 = 10 cm, w = 6 m, L = 3 m, 〈k1〉 = 〈k2〉 = 0.70 W/m-K.
Evaluate the air properties at T = 300 K and use βf = 2/[(T1 + T2)(K)]. Since Ts,1 and Ts,2 depend on Q1-2,

and in turn the overall resistance RΣ,1-2 depends on Ts,1 and Ts,2, a solver should be used.

SKETCH:
Figure Pr.7.22(a) shows the composite and the thermobuoyant motion in the air gap.

la

L

l1

w

l2

Air Gap

g

Recirculating
Thermobuoyant

Flow

Brick Wall

qa qk
qk

Ak

T1 T2
Ts,1 Ts,2

T1 > T2

k2
k1

Figure Pr.7.22(a) An air gap placed between two brick walls to reduce heat transfer. The thermobuoyant flow in the
air gap enclosure is also shown.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the steady-state heat flow rate Q1-2 for the case of la equal to (i) 1 cm, (ii) 2 cm, and (iii) 4 cm.
(c) Comment on the minimum Q1-2 and its corresponding air gap size la.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.7.22(b). The air gap is treated as a cavity and the surface-
convection heat transfer across the cavity is shown by Qku,s1-s2 and the resistance as Rku,s1-s2.

Qk,1-s1

Rk,1-s1

Qk,s2-2

Qk,s2-2Ts,2Ts,1

Q1-2Q1-2

T1

Control
Surface A T2

�Qku�s1-s2

�Rku�s1-s2

Figure Pr.7.22(b) Thermal circuit diagram.

(b) We note that Ts,1 and Ts,2 cannot be prescribed and are determined along with Q1-2. We also note that
〈Rku〉s1-s2 depends on Ts,1 − Ts,2 and is also determined along with Ts,1 and Ts,2. By examining Figure 7.22(b),
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we write the surface energy equation for nodes T1, Ts,1, Ts,2 and T2 as

node T1 : −Q1-2 + Qk,1-s1 = 0
node Ts,1 : −Qk,1-s1 + 〈Qku〉s1-s2 = 0
node Ts,2 : −〈Qku〉s1-s2 + Qk,s1-2 = 0
node T2 : −Qk,s2-2 + Q1-2 = 0,

where

Qk,1-s1 =
T1 − Ts,1

Rk,1-s1

〈Qku〉s1-s2 =
Ts,1 − Ts,2

〈Rku〉s1-s2
Qk,s2-2 =

Ts,2 − T2

Rk,s2-2

Rk,1-s1 = Rk,s2-2 =
l1

Ak〈k〉 , Ak = Lw

〈Rku〉s1-s2 =
la

Aku〈Nu〉lakf
, Aku = Lw.

From Table 7.5, we have for air (Pr = 0.7)

〈Nu〉la = (Nula,k-t,Nula,l,Nula,t)max

Nula,k-t =


1 +

[
0.104Ra0.293

la

1 + (6,310/Rala)1.36

]3



1/3

Nula,l = 0.242
(

Rala

la
L

)0.273

Nula,t = 0.0605Ra1/3
la

Ral =
gβf (Ts,1 − Ts,2)l3a

νfαf
.

For the air properties, at T = 300 K, from Table C.22 we have

νf = 1.566 × 10−5 m2/s Table C.22

αf = 2.257 × 10−5 m2/s Table C.22

kf = 0.0267 W/m-K Table C.22.

From (6.77) βf = 1/Tf , Tf = (T1 + T2)/2, i.e.,

Tf =
[(273.15 + 40) + (273.15 + 15)](K)

2
= 300.65 K

βf = 3.326 × 10−3 1/K.

Then

Ral =
9.81(m/s2) × 3.326 × 10−3(1/K) × (Ts,1 − Ts,2) × l3a(m3)

1.566 × 10−5(m2/s) × 2.257 × 10−5(m2/s)
.

We can combine the four energy equation giving us the unknowns

Q1-2 = Qk,1-s1 = Qku,s1-s2 = Qk,s2-2,
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and Ts,1 and Ts,2.
Using a solver, such as SOPHT, we have

(i) la = 1 cm : Ts,1 = 34.59◦C, Ts,2 = 20.41◦C, Q1-2 = 681.7 W
(ii) la = 2 cm : Ts,1 = 35.67◦C, Ts,2 = 19.33◦C, Q1-2 = 545.2 W
(iii) la = 4 cm : Ts,1 = 35.50◦C, Ts,2 = 19.50◦C, Q1-2 = 567.1 W.

(c) The minimum in Q1-2 occurs here for la = 2 cm. With this air gap size, the gap is large enough to cause a signif-
icant resistance, but not large enough to have a large thermobuoyant motion that tends to decrease this resistance.

COMMENT:
Also note that for case (ii), we have

Rk,1-s1 = 7.937 × 10−3 K/W, Ral = 1.207 × 104, 〈Nu〉l = 1.388, Rku,s1-s2 = 0.02998 K/W.

Here the Nusselt number corresponds to the third term in the 〈Nu〉l expression (i.e., it gives the maximum Nusselt
number). For la values of 0.01 m and 0.04 m, it is the first expression that gives the maximum Nusselt number

708



PROBLEM 7.23.FUN

GIVEN:
In arriving at the axial temperature distribution of a bounded fluid stream (entering at a temperature of 〈Tf 〉0
and at a surface temperature of Ts), i.e., (7.22), the axial fluid conduction was neglected. This is valid for high
Péclet number (PeL = 〈uf 〉L/αf ) streams where L is the length along the flow. For low PeL, i.e., for low velocities
or high αf , this axial conduction may become significant.

The axial conduction can be added to the energy equation (7.11) for flow through a tube of diameter D, and
this gives

−Pkuqku + Aku
d

dx
qu + Aku

d

dx
qk = 0

or

−Pkuqku + Aku(ρcp)f 〈uf 〉d〈Tf 〉
dx

− Akuk′
f

d2〈Tf 〉
dx

= 0,

where k′
f is the sum of fluid conduction and a contribution due to averaging of the nonuniform fluid temperature

and velocity over tube cross-sectional area. This contribution is called the dispersion (or Taylor dispersion).
Here constant thermophysical properties are assumed. This axial conduction-convection and lateral surface-

convection heat transfer in a bounded fluid stream is shown in Figure Pr.7.23.
Using the surface-convection resistance Rku and the Nusselt number, we can write this energy equation as

−d2〈Tf 〉
dx2 +

〈uf 〉
αf

d〈Tf 〉
dx

+
Pku〈Nu〉Dkf

AkuDkf
(〈Tf 〉 − Ts) = 0 αf =

k′
f

(ρcp)f
,

where Ts is assumed constant.
The fluid thermal conditions at x = 0 and x = L are

〈Tf 〉(x = 0) = 〈Tf 〉0
〈Tf 〉(x = L) = 〈Tf 〉L.

SKETCH:
Figure Pr.7.23 shows the axial conduction-convection in a fluid stream flowing through a tube with surface

convection.

Aku , Ts

Tf  L

Tf  0

L

qku

qku
qk

qu
qu

qk

Figure Pr.7.23 Axial conduction-convection and lateral surface-convection heat transfer in a bound fluid stream.

OBJECTIVE:
(a) Using the length L and the temperature difference Ts − 〈Tf 〉0, show that the energy equation becomes

d2〈T ∗
f 〉

dx∗2 − PeL
d〈T ∗

f 〉
dx∗ − PeLNTU D

4L 〈T ∗
f 〉 = 0,

x∗ = x
L, 〈T ∗

f 〉 = 〈Tf 〉 − Ts

〈Tf 〉0 − Ts
, PeL = 〈uf 〉L

αf
,

NTU = Aku〈Nu〉Dkf

(Ṁcp)fD
, (Ṁcp)f = Auρf 〈uf 〉cp,f ,

Aku = PkuL, 〈T ∗
f 〉(x∗ = 0) = 1, 〈T ∗

f 〉(x∗ = 1) = 〈T ∗
f 〉L.
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(b) Show that the solution to this ordinary second-order differential equation gives the fluid axial temperature
distribution as

〈T ∗
f 〉(x∗) =

〈Tf 〉 − Ts

〈Tf 〉0 − Ts
=

〈T ∗
f 〉L(em2x∗ − em1x∗

) + em2em1x∗ − em1em2x∗

em2 − em1
.

Note that the solution to

d2〈T ∗
f 〉

dx∗2 − b
d〈T ∗

f 〉
dx∗ − c〈T ∗

f 〉 = 0

is

〈T ∗
f 〉(x∗) = a1e

m1x∗ + a2e
m2x∗, m1,2 =

b ± (b2 + 4c)1/2

2
.

SOLUTION:
(a) We start with the first term and write

d2〈Tf 〉
dx2 =

〈Tf 〉0 − Ts

L2

d2〈T ∗
f 〉

dx∗2 ,

where we have used the given Ts = constant. Following this for the remaining terms, we have

〈Tf 〉0 − Ts

L2

d2〈T ∗
f 〉

dx∗2 − 〈uf 〉(〈Tf 〉0 − Ts)
αfL

d〈Tf 〉
dx∗ − Pku〈Nu〉Dkf (〈Tf 〉0 − Ts)

Ak,uDk
′
f

〈T ∗
f 〉 = 0.

or

d2〈T ∗
f 〉

dx∗2 − 〈uf 〉L
αf

d〈T ∗
f 〉

dx∗ − PkuL2〈Nu〉Dkf

AkuDk
′
f

〈T ∗
f 〉 = 0.

From (7.20), NTU is defined as

NTU =
Aku〈Nu〉Dkf

(Ṁcp)fD
, (Ṁcp)f = ρfAu〈uf 〉cp,f , αf =

k
′
f

(ρcp)f
,

then

PkuL〈Nu〉DkfL

AkuDk
′
f

=
Aku〈Nu〉Dkf 〈uf 〉(ρcp)fL

Aku〈uf 〉(ρcp)fDk
′
f

= PeLNTU
D

4L
.

Finally, we have

d2〈T ∗
f 〉

dx∗2 − PeL

d〈T ∗
f 〉

dx∗ − PeLNTU
D

4L
〈T ∗

f 〉 = 0.

(b) From the roots given in the problem statement and by comparing the above with the coefficients b and c, we
have

m1 =
1
2

[
PeL + (PeL + PeLNTU

D

L
)1/2

]

m2 =
1
2

[
PeL − (PeL + PeLNTU

D

L
)1/2

]
〈Tf 〉∗ = a1e

m1x∗
+ a2e

m2x∗
.

Then using

〈Tf 〉∗(x∗ = 0) = 1, and 〈T ∗
f 〉(x∗ = 1) =

〈Tf 〉L − Ts

〈Tf 〉0 − Ts
= 〈T ∗

f 〉L,
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we have

1 = a1 + a2 or a1 = 1 − a2

〈T ∗
f 〉L = a1e

m1 + a2e
m2 or a2 =

〈T ∗
f 〉L − a1e

m1

em2
.

Then

a1 = 1 − 〈T ∗
f 〉L − a1e

m1

em2
or a1 =

em2 − 〈T ∗
f 〉

em2 − em1

and

a2 =
〈T ∗

f 〉L − em2 − 〈T ∗
f 〉L

em2 − em1
em1

em2
= 〈T ∗

f 〉Le−m2 − em2 − 〈T ∗
f 〉L

em2 − em1
em1−m2 .

Using these for a1 and a2, we have

〈T ∗
f 〉 =

em2 − 〈T ∗
f 〉L

em2 − em1
em1x∗

+ 〈T ∗
f 〉Le−m2em2x∗ − em2 − 〈T ∗

f 〉L
em2 − em1

em1−m2em2x∗

〈T ∗
f 〉 =

(em2 − 〈T ∗
f 〉L)em1x∗

+ 〈Tf 〉Le−m2(em2 − em1)em2x∗ − (em2 − 〈T ∗
f 〉L)em1−m2em2x∗

em2 − em1

〈T ∗
f 〉(x∗) =

〈T ∗
f 〉L(em2x∗ − em1x∗

) + em2em1x∗ − em1em2x∗

em2 − em1
.

COMMENT:
Note that for NTU = 0, we have m1 = PeL, m2 = 0 and for a prescribed 〈T ∗

f 〉L = 0, we have the result of
(5.12), i.e.,

〈T ∗
f 〉(x∗) =

ePeLx∗ − ePeL

1 − ePeL
= 1 − ePeLx∗ − 1

ePeL − 1
, for NTU = 0.

For PeL → ∞, we drop the second derivative term and will have the temperature 〈T ∗
f 〉L given by (7.21).

The contribution due to dispersion is proportional to Pe2
D and becomes significant for high PeD = 〈uf 〉D/αf .
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PROBLEM 7.24.FAM

GIVEN:
Plate-type heat exchangers are corrugated thin metallic plates held together in a frame, as shown in Figure

Pr.7.24(a). Gasket or welding is used for sealing. The flow arrangement is counterflow with the periodic alterna-
tion shown in the figure.

Consider an assembly of N plates, each having a surface area w ×L (making a total surface area NwL). The
heat exchanger transfers heat between a combustion flue-gas stream with an inlet temperature 〈Tf,h〉0 and a room
temperature air stream with 〈Tf,c〉L and a mass flow rate Ṁf,c = Ṁf,h. The rate of heat transfer is 〈Qu〉L-0 and
the overall resistance is RΣ.

〈Tf,h〉0 = 900◦C, 〈Tf,c〉L = 20◦C, Ṁf,c = Ṁf,h = 70 g/s, 〈Qu〉L-0 = 45 kW, RΣ = (10−3/NwL)◦C/W, w = 0.08
m, L = 0.35 m.

Evaluate the thermophysical properties using air at T = 700 K.

SKETCH:
Figure Pr.7.24(a) shows the plate-type heat exchanger. The required number of plates are added, as needed.

Head

Follower
Cold Stream

Plate Pack

Clamping
Bolt

Hot Stream

View Showing
Alternating
Stream Passes

Cold Stream

(ii) A Single Plate

w
L

(i) Plate-Type Heat Exchanger

Hot Stream

Figure Pr.7.24(a)(i) A plate-type heat exchanger. (ii) A single plate in a

plate-type heat transfer.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the cold fluid exit temperature.
(c) Determine the number of plates N required.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.7.24(b).

(b) For air at T = 700 K, from Table C.22, we have

cp = 1,065 J/kg-K Table C.22.

Then from (7.70), we have

〈Qu〉L-0 = (Ṁcp)c(〈Tf,c〉0 − 〈Tf,c〉L)
45,000(W) = 7 × 10−2(kg/s) × 1,065(J/kg-◦C) × [〈Tf,c〉0 − 20(◦C)]

〈Tf,c〉0 = 623.6◦C.
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Hot Stream

Cold Stream

(Mcp)h

(Mcp)c

Qu  L-0

Tf,h  L

Ru  L

Tf,h  0

Tf,c  LTf,c  0

�Qu,h�0

�Qu,c�0

�Qu,h�L

�Qu,c�L

Figure Pr.7.24(b) Thermal circuit diagram.

(c) The effectiveness εh,e is given by (7.72), and since (Ṁcp)min = (Ṁcp)c, we have

εh,c =
∆Tc

〈Tf,h〉0 − 〈Tf,h〉L =
〈Tf,c〉0 − 〈Tf,c〉L
〈Tf,h〉0 − 〈Tf,c〉L

=
(623.6 − 20)(◦C)
(900 − 20)(◦C)

= 0.6859.

The εhe − NTU relations for the counter-flow heat exchangers are given in Table 7.7. As (Ṁcp)c = (Ṁcp)h,
Cr = 1. Then from Table 7.7, we have

εhe =
NTU

1 + NTU

so that

NTU =
εhe

1 − εhe
= 2.184.

From (7.74), we have

NTU =
1

RΣ(Ṁcp)min

or

RΣ =
1

NTU(Ṁcp)min

=
1

2.184 × 0.070(kg/s) × 1,065(J/kg-K)
= 6.142 × 10−3 ◦C/W.

Then

6.142 × 10−3(◦C/W) =
10−3

Nwl
(◦C/(W/m2)) =

10−3[◦C/(W/m2)]
N × 0.08(m) × 0.35(m)

or

N = 5.81 � 6.

Note that by using 6 plates, the operating conditions will be different than the given values.

COMMENT:
Note that AkuRΣ = NwlRΣ = 10−3[◦C/(W/m2)] is rather a very small resistance. This is achieved using high

gas-stream speeds and roughness (corrugated) plates surfaces.
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PROBLEM 7.25.FAM

GIVEN:
An auxiliary, fuel-fired automobile heater uses diesel fuel and heats the water circulating through the radiator

or the water circulating through the heater core (i.e., the heat exchanger for heating the air flowing through the
passenger compartment). This heat exchanger is shown in Figure Pr.7.25(a) along with the heat flux vector track
showing the direction of heat transfer.

The flue gas (products of the combustion of the diesel-air mixture) flows through a counterflow heat exchanger
with the flue gas flowing through the inner annulus and the water flowing through the outer annulus. The overall
thermal resistance is RΣ = 0.5◦C/W and the heat exchanger is L = 25 cm long. The mass flow rates of the
fuel, air, and water are ṀF = 0.03 g/s, Ṁa = 0.75 g/s and Ṁw = Ṁc = 5 g/s. The water inlet temperature
is 〈Tf,c〉0 = 15◦C and the fuel and air combustion chamber inlet temperature is Tf,∞ = 20◦C. Assume complete
combustion. The heat of combustion is found in Table 5.2.

This is a counterflow heat exchanger. Use (5.34) to determine 〈Tf,h〉L. Use 〈Tf,c〉0, and 〈Tf,h〉L as the inlet
temperatures. For the gas, use the properties of air at 1,000 K and for the water, evaluate the properties at
T = 310 K.

SKETCH:
Figure Pr.7.25(a) shows a combustible auxiliary fuel-fired water heater.

(i) Physical Model (ii) Heat Flux Tracking

Fuel-Fired Auxiliary Automobile Heater

Fuel, MF

Air, Ma

Air
Fuel

Igniter

Fuel Safety
Temperature

Sensor

Exhaust

Cold
Water

Mc ,�Tf,c�0

Flue Gas

Water

Water

Mh ,�Tf,h�0

Mh

Hot Water

Electronic
Control
Circuitry

Mc ,�Tf, c�L

Combustion
Chamber

For Heating Engine or
Passenger Compartment

�Tf,h�L

Sr,c

qu

qu

qu

qkuqku

qu

qu

qu

qku

qu

qu

qu

Ideally Insulated Outside Surface

Figure Pr.7.25(a) An combustible auxiliary fuel-fired water heater.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the flue gas temperature leaving the combustion chamber 〈Tf,h〉L.
(c) Determine the exit temperatures for the flue gas 〈Tf,h〉0 and water 〈Tf,c〉L
(d) Determine the amount of heat exchanged between the two streams and the heater efficiency, defined as
〈Qu〉L-0/Ṡr,c.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.7.25(b).
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(b) The flue-gas temperature is found by writing the energy equation for the internodal energy conservation, i.e.,
(5.33)

〈Qu〉h,∞ + 〈Qu〉h,L + Qloss = Ṡr,c.

(i) Physical Model (ii) Thermal Circuit Model
Fuel, MF

Air, Ma

Water

Two-Stream
Heat Exchange

Internodal Energy Conversion
(Combustion Chamber)

Flue Gas

Aluminum

Combustion
Chamber

Tf,�

Tf,�

Mc ,  Tf,c o

Mh Mc

x

Ru  L-o

Qu  L-o

Tf,h  o Tf,c  o

Tf,h  L Tf,c  L

Water
Mc ,  Tf,c  L

Tf,h  L

Flue Gas
Mh ,  Tf,h o

Sr,c

�Tf,h�L

�Qu,h��

�Qu,h�L

�Qu,h�0

�Qu,c�L

�Qu,c�0

Figure Pr.7.25(b) A simplified physical model and the corresponding thermal circuit diagram.

Here, for the combustion chamber we assume Qloss = 0, and from (5.34) we have

〈Qu〉h,∞ + 〈Qu〉h,L = (Ṁcp)h(〈Tf,h〉L − Tf,∞),

where for the flue-gas mass flow rate we have

Ṁh = ṀF + Ṁa = 3 × 10−5(kg/s) + 7.5 × 10−4(kg/s) = 7.8 × 10−4 kg/s.

From Table 5.2, we have for the diesel fuel, ∆hr,F = −43.31 × 106 J/kg. Then from (5.34), we have

Ṡr,c = −ṀF ∆hr,F

= −3 × 10−5(kg/s) × (−43.31 × 106)(J/kg)
= 1,299 W.

The specific heat capacity of air is found from Table C.22, at T = 1,000 K, as

cp = 1,130 J/kg-K, at T = 1,000 K Table C.22.

The the flue gas temperature leaving the combustion chamber is found from above as

〈Tf,h〉L = Tf,∞ +
Ṡr,c

(Ṁcp)h

= 293.15(K) +
1,299(W)

7.8 × 10−4(kg/s) × 1,130(J/kg-K)
= 1,767 K.

(c) To determine the exit temperatures, we use (i) the εhe-NTU relation from Table 7.7, (ii) the εhe-∆T relation
(7.82), and (iii)the heat transfer rates from (7.83) and (7.84).

(i) The εhe-NTU relation for counter-flow, coaxial heat exchanger from Table 7.7 is

εhe =
1 − e−NTU(1−Cr)

1 − Cre−NTU(1−Cr)
.
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The specific heat capacity of water is found from Table C.23, at T = 310 K, as

cp = 4,178 J/kg-K, at T = 310 K Table C.23.

The (Ṁcp)f are

flue gas: (Ṁcp)h = 7.8 × 10−4(kg/s) × 1,130(J/kg-K) = 0.8814 W/◦C

water: (Ṁcp)c = 5.0 × 10−3(kg/s) × 4,178(J/kg-K) = 20.89 W/◦C.

Then from (7.75), we have

(Ṁcp)min = (Ṁcp)h

Cr =
(Ṁcp)h

(Ṁcp)c

=
0.8814 W/◦C
20.89 W/◦C

= 0.04219.

The NTU relationship (7.75) is

NTU =
1

RΣ(Ṁcp)min

=
1

0.5(W/◦C) × 0.8814(◦C/W)
= 2.269.

Then we determine εhe-NTU as

εhe =
1 − e−2.269(1−0.04219)

1 − 0.04219e−2.269(1−0.04219)
= 0.8905.

(ii) The εhe-∆〈Tf 〉 relation is given by (7.82), i.e.,

εhe ≡
∆〈Tf 〉 |(Ṁcp)min

∆Tmax

=
〈Tf,h〉L − 〈Tf,h〉0
〈Tf,h〉L − 〈Tf,c〉0

εhe = 0.8905 =
1,767(K) − 〈Tf,h〉0

1,767(K) − 288.15(K)
.

Solving for 〈Tf,h〉0, we have

〈Tf,h〉0 = 1,767(K) − 1,317(K) = 450 K.

(iii) From division of (7.83) by (7.84), after modification for counterflow arrangement, we have

〈Tf,c〉L − 〈Tf,c〉0
〈Tf,h〉L − 〈Tf,h〉0 =

(Ṁcp)h

(Ṁcp)c

= Cr.

Solving for 〈Tf,c〉L, we have

〈Tf,c〉L = 〈Tf,c〉0 + Cr(〈Tf,h〉L − 〈Tf,h〉0)
= 288.15(K) + 0.04219 × 1,317(K)
= 343.6 K.

(d) The heat exchange rate is

〈Qu〉L-0 = (Ṁcp)c(〈Tf,c〉L − 〈Tf,c〉0)
= 20.89(W/◦C) × 55.6(◦C)
= 1,161 W.

The efficiency is defined as

η =
〈Qu〉L-0

Ṡr,c

=
1,161(W)
1,299(W)

= 0.8936 = 89.36%.

COMMENT:
The rather large overall resistance RΣ is due to the small surface-convection area available for such a compact

heater. However, due to the large NTU , the effectiveness is noticeably large. This is considered a fairly good
efficiency for such a heater.
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PROBLEM 7.26.FAM

GIVEN:
During cardiopulmonary bypass, in open-heart surgery, the blood is cooled by an external heat exchanger to

lower the body temperature. This lowering of the body temperature (called whole-body hypothermia) reduces
metabolic demand and protects the vital organs during the operation. The heat exchanger is part of the extracor-
poreal circulation circuit shown in Figure Pr.7.26(a)(i). Special pumps (e.g., roller pumps, which use compression
of elastic tubes to move the liquid) are used to protect the blood cells from mechanical damage. A shell and tube
heat exchanger (with one shell pass) is used to cool (and later heat) the bloodstream, using a water stream, as
shown in Figure Pr.7.26(a)(ii), to the hypothermic temperature 〈Tf,h〉L.

〈Tf,h〉0 = 37◦C, 〈Tf,c〉0 = 15◦C, (Ṁf/ρf )h = 250 ml/min, (Ṁf/ρf )c = 200 ml/min, RΣ = 5 × 10−2 ◦C/W.
Use properties of water at T = 300 K, for both blood and water.

SKETCH:
Figure Pr.7.26(a) shows the extracorporeal circulation circuit and the tube and shell blood heat exchanger.

Vent
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A

B

T

P
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Pump

CPG
Pump

20 mm
Arterial
Filter

Aorta
Ascendons

Right Atrium

Cardiotomy
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CPG Heat
Exchanger
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Solution

(i) Extracorporeal Circulation Circuit Used in Open-Heart Surgery

(ii) Oxygenator and Blood Heat Exchanger
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Figure Pr.7.26(a)(i) An extracorporeal circulation circuit used in open-heart surgery. (ii) A tube and shell heat
exchanger used for cooling (and heating) the blood stream.
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OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the bloodstream exit temperature 〈Tf,h〉L.
(c) Determine 〈Qu〉L-0.

SOLUTION:
(a) Figure Pr.7.26(b) shows the thermal circuit diagram.

Tf,c  L

Ru  L

Tf,c  0

Qu,h  0

Qu,c  0 Qu,c  L

Qu,h  L

Qu  L-0

Tf,h  LTf,h   0

Mh

Mc

Cold Stream

Hot Stream

Figure Pr.7.26(b) Thermal circuit diagram.

(b) To determine the blood stream exit temperature 〈Tf,h〉L, we note that from (Ṁcp)min and RΣ, we can
determine NTU and then from Table 7.7 we can determine εhe, and finally 〈Tf,h〉L. The Ṁcp for the two streams
are determined first by evaluating ρf and cp,f from Table C.23.

From Table C.23, at T = 300 K, we have

cp,f = 4,182 J/kg-K Table C.23

ρf = 997.7 kg/m3 Table C.23.

Then

(Ṁcp)h =
250(ml/min) × 10−6(m3/ml) × 997.7(kg/m3)

60(s/min)
× 4,182(J/kg-K)

= 17.38 W/K

(Ṁcp)c =
200(ml/min) × 10−6(m3/ml) × 997.7(kg/m3)

60(s/min)
× 4,182(J/kg-K)

= 13.91 W/K.

Then using (7.75), we have

(Ṁcp)min = (Ṁcp)c = 13.91 W/K

Cr =
13.91(W/K)
17.38(W/K)

= 0.8.

Now using (7.74), we have

NTU =
1

RΣ(Ṁcp)min

=
1

5 × 10−2(K/W) × 13.91(W/K)
= 1.438.

718



From Table 7.7, we have for the shell and tube heat exchanger, with one shell pass,

εhe = 2

[
1 + Cr + (1 + C2

r )1/2 1 + e−NTU(1+C2
r )1/2

1 − e−NTU(1+C2
r )1/2

]−1

= 2

{
1 + 0.8 + [1 + (0.8)2]1/2 × 1 + e−1.438(1+0.82)1/2

1 − e−1.438(1+0.82)1/2

}−1

= 2
(

1.8 + 1.281 × 1 + 0.1585
1 − 0.1585

)−1

= 0.5612.

Now noting that (7.82) becomes

εhe =
〈Tf,c〉L − 〈Tf,c〉0
〈Tf,h〉0 − 〈Tf,c〉0 ,

we solve for 〈Tf,c〉L, i.e.,

〈Tf,c〉L = 〈Tf,c〉o + εhe(〈Tf,h〉o − 〈Tf,c〉c)
= 15(◦C) + 0.5612(37 − 15)(◦C)
= 27.35◦C.

Next we use (7.83) and (7.84) to find that

〈Tf,h〉L − 〈Tf,h〉0
〈Tf,c〉L − 〈Tf,c〉0 =

(Ṁcp)c

(Ṁcp)h

= Cr

and solving for 〈Tf,h〉L, we have

〈Tf,h〉L = 〈Tf,h〉0 − Cr(〈Tf,c〉L − 〈Tf,c〉0)
= 37(◦C) − 0.8(27.35 − 15)(◦C)
= 27.12◦C.

(c) The heat transfer rate is

〈Qu〉L-0 = (Ṁcp)h(〈Tf,h〉0 − 〈Tf,h〉L)
= 17.38(W/K) × (37 − 27.12)(K)
= 171.7 W.

COMMENT:
The heat exchanger is generally made with metallic tubes (stainless steel) with a polymeric (PVC) shell.
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PROBLEM 7.27.FAM

GIVEN:
Gray whales have counterflow heat exchange in their tongues to preserve heat. The tip of the tongue is cooled

with the cold sea water. The heat exchange is between the incoming warm bloodstream (entering with the deep-
body temperature) flowing through the arteries and the outgoing cold bloodstream (leaving the tongue surface
region) flowing through the veins. This is shown in Figure Pr.7.27(a). In each heat exchanger unit, nine veins of
diameter Dc completely encircle (no heat loss to the surroundings) the central artery of diameter Dh. The length
of the heat exchange region is L.

〈Tf,c〉0 = 2◦C, 〈Tf,h〉L = 36◦C, L = 55 cm, Dh = 3 mm, Dc = 1 mm, Rk,h-c = 5◦C/W, 〈uf,h〉 = 1 mm/s,
〈uf,c〉 = 1 mm/s.

Use water properties at T = 290 K for blood. Note that for Cr = 1, (7.78) should be used for the counterflow
heat exchanger. Also use uniform qs results for the Nusselt numbers.

SKETCH:
Figure Pr.7.27(a) shows the counter-flow heat exchanger within the gray whale tongue.

(i)

Artery,

Veins,

Cold
Water

Heat Loss Surface

Jugular Vein

Carotid Artery

Lingual Rete

Individual Counterflow
Heat Exchanger

L
Dh

Dc

Tf,c   LTf,h   L ,

Mc
.

Mh
.

Tf,c   0Tf,h   0 ,

Tongue

L

1 5432 cm

VeinArtery(ii)

Figure Pr.7.27(a)(i) A schematic of the vascular heat exchanger in the gray whale tongue. (ii) The cross section of the
lingual rete showing several vascular heat exchangers.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine Rku,c and Rku,h.
(c) Determine the exit temperature of the cold bloodstream 〈Tf,c〉L.
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SOLUTION:
(a) Figure Pr.7.27(b) shows the thermal circuit diagram. Note that due to the counter-flow arrangement, 〈Tf,h〉L
is the inlet temperature of the hot stream.

Tf,c  L

Ru  L

Tf,c  o

Qu,c  o

Qu,h  o Qu,h  L

Qu,c  L

Qu  L-o

Tf,h  LTf,h  o

Mh

Mc

Figure Pr.7.27(b) Thermal circuit diagram.

(b) To determine Rku,c and Rku,h we use (7.88), i.e.,

R−1
ku,c = Aku,c〈Nu〉D,c

kf

DL

R−1
ku,h = Aku,h〈Nu〉D,h

kf

DL
,

where since there are no extended surfaces, we have used ηf = 1.
Here

Aku,c = 9πDcL, Aku,L = πDhL.

To determine the Nusselt numbers, we first evaluate the Reynolds numbers, i.e.,

ReD,c =
〈uf,c〉Dc

νf
, ReD,h =

〈uf,h〉Dh

νf
.

From Table C.23, for water T = 290 K, we have

ρf = 1,000 kg/cm3 Table C.23

kf = 0.590 W/m-K Table C.23

νf = 1.13 × 10−6 m2/s Table C.23

cp,f = 4,186 J/kg-K Table C.23.

Then

ReD,c =
10−3(m/s) × 10−3(m)

1.13 × 10−7(m2/s)
= 0.885 < ReD,t = 2,300

ReD,h =
10−3(m/s) × 3 × 10−3(m)

1.13 × 10−7(m2/s)
= 2.655 < ReD,t = 2,300.

Both of these fluid streams are smaller than the transition Reynolds number given in (7.37).
Then from Table 7.2, we have (for a constant qs which represents the counter-flow heat exchanger more

accurately).

〈Nu〉D,c = 〈Nu〉D,h = 4.36.

Next

R−1
ku,c = 9π × (10−3)(m) × 0.55(m) × 4.36 × 0.590(W/m-K)

10−3(m)
Rkuc

= 0.0250 K/W,

R−1
ku,h = π × 3 × 10−3(m) × 0.55(m) × 4.36 × 0.590(W/m-K)

3 × 10−3(m)
Rku,h = 0.2250 K/W.
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Then

RΣ = (0.02499 + 5 + 0.2250)(K/W) = 5.250 K/W.

(c) The exit temperature of the cold stream is found from (7.82), where we note the counter-flow arrangement
and write

εhe =
∆T |min

〈Tf,h〉L − 〈Tf,c〉0 .

From (7.3), for each stream, we have

Ṁc = 9ρf
πD2

c

4
〈uf,c〉

Ṁc = ρf
πD2

h

4
〈uf,h〉

Ṁc = 9 × 103(kg/m3) × π × (10−3)2(m)2

4
× 10−3(m/s)

= 7.070 × 10−6 kg/s

Ṁc = 103(kg/m3)
π × (3 × 103)2(m2)

4
× 10−3(m/s)

= 7.070 × 10−6 kg/s

(Ṁcp)c = (Ṁcp)h = 7.070 × 10−6(kg/s) × 4,186(J/kg-K)
= 2.959 × 10−2 W/K.

Then from (7.75), we have

Cr =
(Ṁcp)min

(Ṁcp)max

= 1.

From Table 7.7, we have

εhe =
NTU

1 + NTU
Table 7.7.

From (7.74), we have

NTU =
1

RΣ(Ṁcp)min

=
1

RΣ(Ṁcp)c

=
1

5.25(K/W) × 2.959 × 10−2(W/K)
= 6.437.

Then

εhe =
6.437

1 + 6.437
= 0.8656.

Since Cr = 1, we have

εhe =
〈Tf,c〉L − 〈Tf,c〉0
〈Tf,h〉L − 〈Tf,c〉0

or

〈Tf,c〉L = 〈Tf,c〉0 + εhe(〈Tf,h〉L − 〈Tf,c〉0)
= 2(◦C) + 0.8656 × (36 − 2)(◦C)
= (2 + 29.43)(◦C)
= 31.43◦C.

COMMENT:
Note that for Cr = 1, even for a large NTU , εhe is less than unity (unless NTU → ∞, which gives εhe → 1).
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PROBLEM 7.28.FAM

GIVEN:
The fan-coil furnace used in domestic air heaters uses a crossflow heat exchange (both fluids unmixed) between

a stream of products of combustion and a stream of air, as shown in Figure Pr.7.28(a). The thermal resistance
on the air side is Rku,c, that on the combustion products side is Rku,h, and the conduction resistance of the
separating wall is negligible.

〈Tf,c〉0 = 15◦C, 〈Tf,h〉0 = 800◦C, Ṁc = 0.1 kg/s, Ṁh = 0.01 kg/s, Rku,c = 2 × 10−2 ◦C/W,
Rku,h = 3 × 10−2 ◦C/W, Ṡr,c = 7,300 W.

Treat the combustion products as air and determine the air properties at T = 300 K (Table C.22).
The εhe-NTU relation for this heat exchanger is given in Table 7.7.

SKETCH:
Figure Pr.7.28(a) shows a cross-flow heat exchanger used in a furnace.

Air

Filter

Combustion Chamber
(Hot Fluid Stream Preheater)

Products of
Combustion

Cross-Flow Heat Exchanger,
Both Fluids Unmixed (Internal
and External Extended Surfaces)

Tf,c  L

Tf,h  0

Sr,c

Mc

Tf,h  L

Tf,h  0

Mh

Figure Pr.7.28(a) A gas-gas, crossflow heat exchanger in a fan-coil furnace.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the rate of heat exchange between the two streams.
(c) Determine the efficiency of this air heater (defined as the ratio of the rate of heat exchange through the heat
exchanger 〈Qu〉L−0 to the rate of energy conversion by combustion in the hot fluid stream preheater Ṡr,c).

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.7.28(b).

(b) From Table c.22 for air, cp,c = cph
= 1,005. To find the heat exchange between the two fluid streams 〈Qu〉L-0,

we must determine NTU and εhe. From (7.75) and (7.52), determining Cr and RΣ, we have, as Ṁh < Ṁ ,
(Ṁcp)min = (Ṁcp)h,

Cr =
(Ṁcp)min

(Ṁcp)max

=
0.01(kg/s) × 1,005(J/kg-K)
0.1(kg/s) × 1,005(J/kg-K)

= 0.1

RΣ = Rku,c + Rk,h-c + Rku,h

= 2 × 10−2(◦C/W) + 0 + 3 × 10−2(◦C/W) = 5 × 10−2 ◦C/W.
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Cold Stream

Hot Stream

(Mcp)c

(Mcp)h

Qu  L-0   Energy Conversion
(Combustion Chamber)

Tf,c  L

Ru  L

Tf,c  0

Tf,h  LTf,h  0
Sr,c

Qu,c  0 Qu,c  L

Qu,h  0

Qu,h  L

Figure Pr.7.28(b) Thermal circuit diagram.

Then, from (7.74) and from Table 7.6 (εhe-NTU relations), we have

NTU =
1

RΣ(Ṁcp)min

=
1

5 × 10−2(◦C/W) × 0.01(kg/s) × 1,005(J/kg-K)
= 1.990

εhe = 1 − exp
{

NTU0.22

Cr
exp

[(−CrNTU0.78
)− 1

]}

= 1 − exp
{

(1.990)0.22

0.1
× exp

[(−0.1 × 5 × (1.990)0.78
)− 1

]}
= 0.8395.

The effectiveness is given by (7.82) i.e.,

εhe =
∆〈Tf 〉 |(Ṁcp)min

∆Tmax

=
〈Tf,h〉0 − 〈Tf,h〉L
〈Tf,h〉0 − 〈Tf,c〉0

=
800◦C − 〈Tf,h〉L
800◦C − 15◦C

= 0.8395.

Solving for the hot fluid stream exit temperature 〈Tf,h〉L gives

〈Tf,h〉L = 141.0◦C.

The heat exchange rate is given by (7.84) and is

〈Qu〉L-0 = (Ṁcp)h(〈Tf,h〉0 − 〈Tf,h〉L)
= [0.01(kg/s) × 1,005(J/kg-K)] × [800◦C − 141.0◦C] = 6,623 W.

(c) The efficiency is defined as the achieved heat exchange rate divided by the required energy consumption rate.
Then, the efficiency is

η =
〈Qu〉L-0

Ṡr,c

=
6,623(W)
7,300(W)

= 0.9073 = 90.73%.

COMMENT:
Note that the heat exchanger effectiveness is εhe = 0.8395. A further increase in the NTU will give a higher

effectiveness. This can be achieved by a higher surface area or a larger Nusselt number.
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PROBLEM 7.29.FAM

GIVEN:
The automobile passenger compartment heater uses a crossflow heat exchanger (called the heater core), as

shown in Figure Pr.7.29(a). Due to the presence of fins, the air (cold stream) is unmixed as it flows through the
heater exchanger. The water (hot stream) flowing through flat tubes is also unmixed.

Ṁc = 0.03 kg/s, Ṁh = 0.10 kg/s,〈Tf,c〉0 = 4◦C, 〈Tf,h〉0 = 50◦C, RΣ = 3 × 10−2 ◦C/W.
Evaluate the properties at T = 300 K.

SKETCH:
Figure Pr.7.29(a) shows a cross-flow heat exchanger.

Hot Stream
(Water)

Cold Stream (Air)

Flat Tubes for Water Flow

Fins

Tf,h  0

Tf,c  0

Tf,h  L

Tf,c  L

(Mcp)h

(Mcp)c

Figure Pr.7.29(a) A cross-flow heat exchanger.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the number of thermal units NTU .
(c) Determine the ratio of thermal capacitance Cr.
(d) Determine the effectiveness εhe.
(e) Determine the exit temperature of the cold stream (air) 〈Tf,c〉L.
(f) Determine the exit temperature of the hot stream (water) 〈Tf,h〉L.
(g) Determine the amount of heat exchanged 〈Qu〉L-0.

SOLUTION:
(a) The thermal circuit diagram, using the average convection resistance 〈Ru〉L, is shown in Figure Pr.7.29(b).

(b) The number of thermal units is given by (7.74), i.e.,

NTU =
1

RΣ(Ṁcp)min

.

From Tables C.22 and C.23, and at T = 300 K and T = 310 K, we have

air: T = 300 K, cp = 1,005 J/kg-K Table C.22

water: T = 300 K, cp = 4,182 J/kg-K Table C.23.

Then

(Ṁcp)c = 0.03(kg/s) × 1,005(J/kg-K)
= 30.15 W/K

(Ṁcp)h = 0.10(kg/s) × 4,182(J/kg-K)
= 418.2 W/K.
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Cold Stream (Air)

Hot Stream (Water)

(Mcp)c

(Mcp)h

Qu  L-0

Tf,c  L

Ru  L

Tf,c  0

Tf,h  LTf,h  0

Qu,c  0 Qu,c  L

Qu,h  0 Qu,h  L

Figure Pr.7.29(b) Thermal circuit diagram.

And therefore, we have

(Ṁcp)min = (Ṁcp)c = 30.15 W/K.

Then

NTU =
1

0.03(K/W) × 30.15(W/K)
= 1.106.

(c) The ratio Cr is defined by (7.75) as

Cr =
(Ṁcp)min

(Ṁcp)max

=
(Ṁcp)h

(Ṁcp)c

=
30.15(W/K)
418.2(W/K)

= 0.0721.

(d) The εhe-NTU reaction is given in Table 7.7. For cross-flow heat exchanger with both fluids unmixed, we have

εhe = 1 − exp
{

NTU0.22

Cr
[exp(−CrNTU0.78) − 1]

}

= 1 − exp
{

(1.106)0.22

0.0721
[exp(−0.0721 × 1.1060.78) − 1]

}
= 1 − exp[14.17 × (−0.075)] = 1 − exp(−1.064) = 0.6549.

(e) The cold stream is the stream with (Ṁcp)min, from the definition of εhe given by (7.82), we have

εhe =
∆〈Tf 〉|(Ṁcp)min

∆Tmax

=
〈Tf,c〉L − 〈Tf,c〉0
〈Tf,h〉0 − 〈Tf,c〉0

0.6549 =
〈Tf,c〉L − 4(◦C)
50(◦C) − 4(◦C)

〈Tf,c〉L = 34.13◦C.

(f) The hot water exit temperature is found from division of (7.83) by (7.84), i.e.,

〈Tf,c〉L − 〈Tf,c〉0
〈Tf,h〉0 − 〈Tf,h〉L =

(Ṁcp)h

(Ṁcp)c

=
1
Cr

or

〈Tf,h〉L = 〈Tf,h〉0 − Cr(〈Tf,c〉L − 〈Tf,c〉0)
= 50◦C − 0.0721 × (34.13 − 4)(◦C) = 47.83◦C.
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(g) The heat exchange rate is given by (7.83) as,

〈Qu〉L-0 = (Ṁcp)c∆Tc

= 30.15(W/◦C) × (34.13 − 4)(◦C) = 908.4 W.

COMMENT:
Note that the hot stream, having a much larger (Ṁcp)f , undergoes a smaller change in temperature, 〈Tf,h〉0−

〈Tf,h〉L = 2.17◦C.
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PROBLEM 7.30.FAM

GIVEN:
In a shell and tube heat exchanger, two fluid streams exchange heat. This is shown in Figure Pr.7.30. The hot

stream is a saturated steam at 〈Tf,h〉0 = 400 K (pg = 0.2455 MPa, Table C.27) and it loses heat and condenses.
The cold stream is the subcooled liquid Refrigerant R-134a.

Ṁc = 3 kg/s, 〈Tf,h〉0 = 〈Tf,h〉L = 400 K, 〈Tf,c〉0 = 300 K, RΣ = 3 × 10−3 ◦C/W.
Evaluate the refrigerant R-134a saturation properties at T = 303.2 K (Table C.28).

SKETCH:
Figure Pr.7.30(a) shows the shell and tube heat exchanger.

Tf,h  L =  Tf,h  0

Tf,h  0

Mcp  h

Tf,c  L

Hot Stream
(Saturated Stream)

Hot Stream

Tf,c  0

Cold Stream
(Liquid Refrigerant 134a)

Shell

Mcp  c

Tube

Cold Stream

(b) Thermal Circuit Model

(a) Physical Model

Cold Stream
(Liquid Refrigerant 134a)

Tf,c  LTf,c  0

Tf,h  0Sgl

.

Ru  L

Qu,c  0

(Mcp)f,c

Qu,c  L

Qu,c  L-0

Figure Pr.7.30 A tube and shell heat exchanger.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the number of thermal units NTU .
(c) Determine the effectiveness εhe.
(d) Determine the exit temperature of the cold stream 〈Tf,c〉L.
(e) Determine the heat exchange rate 〈Qu〉L-0.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.7.30(b). The hot stream does not undergo any temperature
change as there is phase change occurring and no pressure drop is assumed.

(b) The number of thermal units NTU is defined by (7.74), i.e.,

NTU =
1

RΣ(Ṁcp)min

.

Here the hot fluid will undergo a zero temperature change, and therefore, has a apparent thermal capacitance of
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infinity, i.e.,

(Ṁcp)h → ∞.

Then

(Ṁcp)c = (Ṁcp)min

Cr =
(Ṁcp)c

(Ṁcp)h

= 0.

From Table C.28, and at T = 303.2 K, we have

liquid R-134a: cp,c = 1,447 J/kg-K Table C.28.

Then

(Ṁcp)min = (Ṁcp)c = 3(kg/s) × 1,447(J/kg-K)
= 4341 W/K.

NTU =
1

3 × 10−3(K/W) × 4,341(W/K)
= 0.07679.

(c) The effectiveness for all heat exchangers with Cr = 0, is given by (7.79), and also listed in Table 7.7, i.e.,

εhe = 1 − e−NTU = 1 − e−0.7679 = 0.07391.

(d) The exit temperature of the cold fluid is found from the definition of εhe, given by (7.84), i.e.,

εhe =
∆Tf |(Ṁcp)min

∆Tmax
=

〈Tf,c〉L − 〈Tf,c〉0
〈Tf,h〉0 − 〈Tf,c〉0

0.07391 =
〈Tf,c〉L − 300(K)
400(K) − 300(K)

or

〈Tf,c〉L = 307.4 K.

(e) The rate of heat exchange is given by (7.83), i.e.,

〈Qu〉L-0 = (Ṁcp)c(〈Tf,c〉L − 〈Tf,c〉0)
= 4341(W/K) × (307.4 − 300)(K) = 32,086 W = 32.09 kW.

COMMENT:
Note that this heat exchanger is not designed to give a cold stream exit temperature close to the uniform hot

stream temperature. This occurs in applications where the available hot stream has a higher temperature than
needed for the cold stream, and therefore, a smaller heat exchanger, i.e., smaller NTU , is used. Also, note that
from the εhe-NTU relation of Table 7.7, we have for Cr = 0

εhe = 2
(

1 +
1 + e−NTU

1 − e−NTU

)−1

= 2
(

2
1 − e−NTU

)−1

= 1 − e−NTU ,

as expected.
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PROBLEM 7.31.FAM

GIVEN:
Many hot-water heaters consist of a large reservoir used to store the hot water. This may have a batch-type

processing that results in a low efficiency, because the hot water must be constantly heated to make up for heat
losses. Alternatively, no-storage, on-demand, high-efficiency crossflow heat exchangers can provide the hot water
needed. One such design, along with its dimensions, is shown in Figure Pr.7.31(a). In this design a mixture of air
and propane, initially at a temperature Tf,∞ = 25◦C and with a fuel mass fraction of (ρF/ρf )1 = 0.015, undergoes
combustion with no heat loss (i.e., Qloss = 0) with a generation of Ṡr,c = 12,900 W. The flue gas then flows over
a tube of diameter D = 1.3 cm that is curved as shown in Figure Pr.7.31(a), such that the total length is 5w.
The tube contains water with an inlet temperature of 〈Tf,c〉0 = 20◦C and a volumetric flow rate of 1(gal/min)
= 6.3× 10−5(m3/s). In order to increase the heat transfer, the tube is surrounded by fins with a density of 8 fins
per cm and a fin efficiency ηf = 1.

Use the properties of water at T = 310 K and treat the combustion products as air with the properties
evaluated at T = 300 K.

SKETCH:
Figure Pr.7.31(a) shows the exchanger and its physical features and dimensions.

Heat Exchanger

Overheat Limiting Device

(i) Hot Water Heater

Piezo Igniter
Temperature Adjusting Spindle

Water Regulator
Gas Pressure
Regulator

Cold Water In

Propane and Air

Thermocouple
Magnetic Pilot
Safety Device

Stainless Steel
Burner

Temperature
Limiting Device

Gas Intake
Valve

Hot Water Out

Heat Exchanger

Front View Bottom View

(iii) Heat Exchanger Dimensions

(ii) Adiabatic Flame Temperature

(iv) Fin Dimensions

Fin

Fin

Linear Fin Density = 8 fins/cm

Fin Thickness lf =  0.5 mm
Water Tube

Water
Tube

w = 24 cm w = 24 cm

L =
50 cm

a = 15.24 cm l = 7 cm

D = 1.3 cm

(Propane and Air)o

(Propane and Air)o

Qu,2 = Au(ρf cp,f uf)o  Tf,h o
Sr,c

Qu,1 = -Au(ρf cp,f uf)�Tf,�

Figure Pr.7.31(a) (i)A wall-mounted, on-demand, hot-water heater. (ii) Adiabatic flame temperature. (iii) Heat
exchanger dimensions. (iv) Fin dimensions.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the overall efficiency of the heat exchanger, defined as η = 〈Qu〉L-0/Ṡr,c.
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SOLUTION:
(a) Figure Pr.7.31(b) shows the thermal circuit diagram. The flue gas temperature is determined from the energy
equation applied to the internodal energy conversion.

(Mcp)h (Mcp)c

Tf,c  0

Tf,c  L

Tf,h  0

Tf,�

Tf,h  L

Ru  L

Qu  L-0

Sr,c

Qu,h  L

Qu,h  0

Qu,c  L

Qu,c  0

Qu,h  �

Figure Pr.7.31(b) Thermal circuit diagram.

(b) The process efficiency is defined as

η =
〈Qu〉L-0

Ṡr,c

, Ṡr,c = 12,900 W.

We need to determine 〈Qu〉L-0. From (7.83), we have

〈Qu〉L-0 = (Ṁcp)c(〈Tf,c〉L − 〈Tf,c〉0).
In order to determine 〈Tf,c〉L we use (7.82), i.e.,

εhe =
∆〈Tf 〉|(Ṁcp)min

〈Tf,h〉0 − 〈Tf,c〉0 .

To determine εhe, we need to evaluate NTU , given by (7.74), i.e.,

NTU =
1

RΣ(Ṁcp)min

,

and from Table 7.7, we choose the εhe − NTU relation for the cross-flow heat exchanger (both fluids unmixed),
i.e.,

εhe = 1 − e
NT U0.22

Cr

[
e−CrNT U0.78−1

]
Table 7.6.

The inlet temperature of flue gas, 〈Tf,L〉0 is found from (5.35) with Qloss i.e.,

cp,fTf,1 − ∆hr,F

(
ρF

ρf

)
1

= cp,fTf,2,

where we are given (
ρF

ρf

)
1

= 0.015.

For air from Table C.22 at T = 300 K, we have cp,f = 1,005 J/kg-K and for propane from Table C.21(a), we have
∆hr,F = −50.4 × 106 J/kg. Then

1,005(J/kg-K) × 298.15(K) − [−50.4 × 106(J/kg) × 0.015] = 1,005(J/kg-K)Tf,2

1,055,640(K) = 1,005 × Tf,2

Tf,2 = 〈Tf,h〉0 = 1,050 K = 777◦C.
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The overall resistance RΣ is given by (7.88), i.e.,

RΣ = Rku,c + Rk + Rku,h, Rk = 0.

For Rku,c, we begin from (7.19), i.e.,

Rku,c = 〈Rku〉D =
D

Aku〈Nu〉Dkf
.

From Table C.23, for T = 310 K, for water, we have kf = 0.623 W/m-K, νf = 711 × 10−9 m2/s and Pr = 4.74.
The surface area is

Aku = πD × 5w = π × 0.013 × 1.2 = 0.049 m2.

From (7.36), we have

ReD =
〈uf 〉D

νf
.

The average water velocity is found from

Ṁc

ρf,c
= 〈uf 〉Au

6.3 × 10−5(m3/s) = 〈uf 〉πD2

4
= 〈uf 〉 times

π × (0.013)2(m)2

4
〈uf 〉 = 0.4746 m/s.

Then

ReD =
0.4746(m/s) × 0.013(m/s)

711 × 10−9(m2/s)
= 8,678 > ReD,t = 2,300 turbulent flow regime.

From Table 7.3, we have

〈Nu〉D = 0.023Re4/5
D Prn, n = 0.4 for fluid cooling

= 0.023 × (8,681)4/5 × (4.24)0.4 = 60.60.

Then

Rku,c =
0.013

0.44 × 60.65 × 0.623
= 0.007 K/W.

For the external (semi-bounded) flow over the fins, from (6.151), (6.152) and (6.153), we have

1
Rku,h

=
1

Rku,b
+

1
Rku,f

1
Rku,b

= Ab〈Nu〉D kw

D
, kf = 0.0267 W/m-K

Ab = A − NfAk

Nf = 8(fins/cm) × 120(cm) = 960 fins
Ak = πDlf = π(0.013)(m) × (5 × 10−4)(m) = 2.042 × 10−5 m2

A = πD(5w) = π(0.013)(m)(1.2)(m) = 0.04901 m2

Ab = 0.049(m2) − (2.042 × 10−5 × 960)(m2) = 0.02941 m2.

From Table C.22, for air at T = 300 K, we have νf = 15.66 × 10−6 m2/s and Pr= 0.69. Also, l = 0.07 m.
To determine, uf,∞ we have from (5.34)

Ṡr,c = ṀF∆hr,F

12,900(W) = ṀF × 50.4 × 106(J/kg)
ṀF = 2.560 × 10−4 kg/s fuel mass flow rate

Ṁf =
ṀF

(ρF/ρf )1
=

2.56 × 104

0.015
= 0.01706 kg/s total flow rate.
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Also,

Ṁf = Auuf,∞ρf,∞,

where from Table C.22, for air at T = 300 K, we have

ρf,∞ = 1.177 kg/m3

Using Figure 7.14(a), we have

Au = wa = 0.24(m) × 0.1524(m) = 0.03658 m2.

Then

0.01706(kg/s) = 0.03658(m)2 × 1.177(kg/m) × uf,∞
uf,∞ = 0.3963 m/s.

The flow over the base area will be modeled as flow over a cylinder with a characteristic length of the diameter
D (the wall thickness is ignored). Then, from (6.45), the Reynolds number is

ReD =
uf,∞D

νf
=

0.3963(m/s) × 0.013(m)
15.66 × (m2/s)

= 329.0

The Nusselt number correlation is obtained from Table 6.4, where for the given Reynolds number,

〈Nu〉D = 0.683Re0.466
D Pr1/3

= 0.683 × (329.0)0.466 × (0.69)1/3

= 8.990.

And so,

1
Rku,b

= 0.02941(m)2 × 8.990 × 0.0267(W/m-K)
0.013(m)

) = 0.5869 W/K.

The flow over the fins is modeled as that over a flat plate of length l. The Reynolds number is

Rel =
0.3963(m/s) × 0.07(m)

15.66 × 10−6(m2/s)
= 1,781 < Rel,t = 5 × 105, laminar flow regime.

From Table 6.3, we have

〈Nu〉l = 0.664RelPr1/3

〈Nu〉l = 0.664 × (1,781)1/2 × (0.69)1/3 = 24.70

From (6.153), we have

1
Rku,f

= NfAkuηf 〈Nu〉l kf

l
,

where ηf = 1, kf = 0.0267 W/m-K, and l = 0.07 m.
Then,

Aku,fin = 2(l2 − πD2/4) + 4llf
= 2[(0.07)2(m)2 − π × (0.013)2/4(m)2] + 4 × 0.07(m) × 0.0005(m)

= 9.6745 × 10−3(m)2

Aku = NfAku,fin = 960 × 9.6745 × 10−3(m)2

= 9.2876 m2

1
Rku,f

= 9.2876 × 24.70 × 0.0267(W/m-K)
0.07(m)

) = 87.50W/K

1
Rku,h

= (87.50 + 0.5869)(W/K)

Rku,h =
1

88.09(W/K)
= 0.01135 K/W.
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From Table C.23, for water at T = 300 K, we have ρf,c = 995.3 kg/m3 and cp,c =4,178 J/kg-K. Then,

Ṁc =

(
Ṁ

ρf

)
c

ρf,c = 6.3 × 10−5(m3/s) × 995.3(kg/m3) = 0.06270 kg/s

(Ṁcp)c = 0.0627 × 4178 = 262.0 W/K

Ṁf,h = 0.01076 kg/s

(Ṁcp)h = (Ṁcp)min = 0.01706(kg/s) × 1,005(J/kg-K) = 17.145 W/K.

Also

RΣ = Rku,h + Rku,c = (0.01135 + 0.007342)(K/W) = 0.018695 K/W.

Next

NTU =
1

RΣ(Ṁcp)min

=
1

0.018695 K/W × 17.145 K/W
= 3.120

εhe = 1 − e
NTU0.22

cr

[
e−crNT U0.78−1

]

cr =
(Ṁcp)min

(Ṁcp)max

=
17.145
262

= 0.06544

εhe = 1 − e19.628×(−0.1470) = 0.9442.

Then

εhe =
〈Tf,h〉0 − 〈Tf,h〉L
〈Tf,h〉0 − 〈Tf,c〉0

0.9442 =
(777.24 − 〈Tf,h〉L)(◦C)

(777.24 − 20)(◦C)
714.96 = 777.24 − 〈Tf,h〉L
〈Tf,h〉L = 62.28◦C.

Finally

〈Qu〉L-0 = (Ṁcp)h∆Th = 17.145(W/K) × 714.96(K) = 12,258 W

η =
〈Qu〉L-0

Ṡr,c

=
12,258
12,900

= 95.0%.

COMMENT:
It should be noted that in order to have a large NTU , the overall resistance RΣ must be low. This can

be achieved with a large surface area for surface-convection heat transfer. This is accomplished here using the
fins. If the gas-side (with low kf ) was not finned, the heat transfer would have been minimal and the efficiency
would have dropped significantly. For more accuracy, the properties of the flue gas should be determined at a
higher average temperature. The Nusselt number correlations used are approximations. The real flow will be
very complex due to the geometry of the tube and the fins. Neither the flat plate flow or cylinder crossflow will
be a representation of the real flow, but are the most appropriate correlations available. Experiments would need
to be run on the apparatus or a scale model to accurately determine a Nusselt number correlation.
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PROBLEM 7.32.FAM

GIVEN:
Water is heated in a heat exchanger where the hot stream is a pressurized fluid undergoing phase change

(condensing). The pressure of the hot stream is regulated such that ∆Tmax = 〈Tf,h〉0 − 〈Tf,c〉0 remains constant.
The parallel-flow heat exchanger is shown in Figure Pr.7.32(a). The heat exchanger is used for the two cases
where the average cold stream temperature (i) 〈Tf,c〉 = 290 K, and (ii) 〈Tf,c〉 = 350 K. These influence the
thermophysical properties.

〈Tf,h〉0 = 〈Tf,h〉L = 100◦C, ∆Tmax = 20◦C, Ṁf,c = 0.5 kg/s, L = 5 m, Di = 2 cm, ∆hlg = 2.2 × 106 J/kg.
Evaluate the water properties (Table C.23), for the cold stream, at the cold stream average temperature for

each case. Neglect the effect of coiling (bending) of the tube on the Nusselt number. Neglect the wall and hot
stream thermal resistances.

SKETCH:
Figure Pr.7.32(a) shows the coaxial heat exchanger.

Mf,c 

.

Mf,h 
.

Di

�Tf,h�L

�Tf,c�L

Figure Pr.7.32(a) A coaxial heat exchanger.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the NTU for cases (i) and (ii) and briefly comment on the effect of cold stream average temperature
on the capability of the heat exchanger.
(c) Determine the heat transfer rates (W) for cases (i) and (ii).
(d) Determine the rates of condensation [i.e., mass flow rates of condensed fluid in the hot stream (kg/s)] for
cases (i) and (ii) assuming ∆hlg remains constant.

SOLUTION:
(a) The thermal circuit is shown in Figure Pr.7.32(b).

Tf,c  LTf,c  0

Tf,h  0Sgl

.

Ru  L

Qu,c  0

(Mcp)f,c

Qu,c  L

Qu,c  L-0

Figure Pr.7.32(b) Thermal circuit diagram.
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(b) From Table C.23, the water properties are listed in Table Pr.7.32.

Table Pr.7.32 Properties of water

〈Tf,c〉 = 290 K 〈Tf,c〉 = 350 K

ρf , kg/m3 1,000 975.7
νf , m2/s 113 × 10−8 381 × 10−9

kf , W/m-K 0.59 0.665
cp,f , J/kg-K 4,186 4,194

Pr 8.02 2.34

Case (i) 〈Tf,c〉 = 290 K:
The NTU is defined from (7.74) as

NTU =
1

(Ṁfcp)minRΣ

.

Since the hot stream experiences phase change, the Rku,h is negligible and (Ṁfcp)h → ∞ = (Ṁfcp)max. Also
neglecting the conduction resistance in the separating wall, we then have RΣ = Rku,h + Rk + Rku,c = Rku,c, or

RΣ = Rku,c =
1

Aku〈Nu〉D,ikf/Di
,

where Aku = πDiL = π × 0.02(m) × 5(m) = 0.3142 m2. The Nusselt number for the cold stream depends on
ReD,i, which is

ReD,i =
〈uf 〉cDi

νc,i
=

Ṁf,cDi

Auµc
=

Ṁf,cDi

πD2
i

4
µf

=
4 ˙Mf,c

πDiµc

=
4 × 0.5(kg/s)

113 × 10−8(m2/s) × 1,000(kg/m3) × π × 0.02(m)
= 28,169.

The Nusselt number is then (assuming turbulent fluid flow and for ReD,i ≥ 104) found from Table 7.3 as

〈Nu〉D,i = 0.023Re4/5
D,iPr0.4

= 0.023 × (28,169)4/5 × (8.02)0.4 = 191.96,

and the thermal resistance is

RΣ =
1

0.3142(m2) × 191.96 × 0.59(W/m-K)/0.02(m)
= 5.620 × 10−4 ◦C/W.

The NTU is then

NTU =
1

0.5(kg/s) × 4186(J/kg-K) × 5.620 × 10−4(◦C/W)
= 0.8501

Case (ii) 〈Tf,c〉 = 350 K:
The ReD,i is

ReD,i =
4 ˙Mf,c

πDiµc

=
4 × 0.5(kg/s)

381 × 10−9(m2/s) × 975.7(kg/m3) × π × 0.02(m)
= 85,627.

The Nusselt number is then (assuming turbulent fluid flow and for ReD,i ≥ 104)

〈Nu〉D,i = 0.023Re4/5
D,iPr0.4

= 0.023 × (85,627)4/5 × (2.34)0.4 = 285.43,
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and the thermal resistance is

RΣ =
1

0.3142(m2) × 285.43 × 0.665(W/m-K)/0.02(m)
= 3.354 × 10−4 ◦C/W.

The NTU is then

NTU =
1

0.5(kg/s) × 4194(J/kg-K) × 3.354 × 10−4(◦C/W)
= 1.422

The lower cold stream inlet temperature of Case (i) results in an NTU nearly 60% of that of Case (ii). Thus at
higher temperatures, the effect of temperature on the properties allows for an increased effectiveness of the heat
exchanger.

(c) Case (i):
The heat exchanger effectiveness for this heat exchanger (Cr = 1) is found from Table 7.7 as

εhe = 1 − e−NTU = 1 − e−0.8501 = 0.5726.

The heat transfer rate is then found from

〈Qu〉L-0 = (Ṁcp)f,c(〈Tf,c〉L − 〈Tf,c〉0)
= (Ṁcp)f,cεhe(〈Tf,h〉0 − 〈Tf,c〉0)
= 0.5(kg/s) × 4186(J/kg-K) × 0.5726 × 20(K) = 23,970 W

Case (ii):
The heat exchanger effectiveness is

εhe = 1 − e−NTU = 1 − e−1.422 = 0.7588.

The heat transfer rate is then

〈Qu〉L-0 = (Ṁcp)f,cεhe(〈Tf,h〉0 − 〈Tf,c〉0)
= 0.5(kg/s) × 4194(J/kg-K) × 0.7588 × 20(K) = 31,823 W.

(d) Case (i):
The rate of condensation is found from the heat transfer rate as

〈Qu〉L-0 = Ṁlg∆hlg,

or

Ṁlg =
〈Qu〉L-0
∆hlg

=
23,970(W)

2.2 × 106(J/kg)
= 0.01090 kg/s.

Case (ii):
The rate of condensation is

Ṁlg =
〈Qu〉L-0
∆hlg

=
31,823(W)

2.2 × 106(J/kg)
= 0.01446 kg/s.

COMMENT:
The bending of the tube results in an increase of the Nusselt number. Note that the NTU is significantly

different between the two cases indicating the sensitivity of the predictions to the fluid temperature used to
evaluate the assumed constant thermophysical properties.
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PROBLEM 7.33.FAM.S

GIVEN:
A water boiler using natural gas combustion is shown in Figure Pr.7.33. Consider the evaporator section,

where the water temperature is assumed constant and at Tlg(pg). The conduction through the walls separating
the combustion flue gas and the water stream is assumed negligible. Also, assume that that water-side surface
convection resistance Rku,c is negligibly small.

Ṁf,h = 0.02 kg/s, Ṡr,c = 30 kW,D = 15 cm, 〈Tf,h〉0 = 1,200◦C, 〈Tf,c〉 = Tlg = 100◦C.
Evaluate flue gas properties using air at T = 1,000 K.

SKETCH:
Figure Pr.7.33 shows the boiler with the water stream flowing through a coil wrapped around the combustor.

Combustion
Products

Liquid + Vapor
Vapor

Porous Foam

Flame, Sr,c

Natural
Gas

Air

Combustion Vapor
Heater

Liquid
HeaterEvaporator0

Liquid Water

Qu,h

Qu,h

Qu,c

x

Tf,c  0
Tf,c  L

Tf,c  0

L

D

L

Tf ,c  L

Qu,cQu,c

Qu,h

Qu,c

Flue Gas
(Hot Stream)

Water (Cold Stream Coil)

Figure Pr.7.33 A water boiler using the flue gas from the combustion of natural gas.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the length L needed to transfer 70% of Ṡr,c to the water.

SOLUTION:
(a) Figure Pr.7.33(b) shows the thermal circuit diagram.

Tf,c  L

Ru  L
0.7 Sr,c =  Qu  L-0

Tf,c  0

Tf,h  LTf,h  0

Sr,c

Qu,c  0 Qu,c  L

Qu,h  0

Qu,h  L

Figure Pr.7.33(b) Thermal circuit diagram.
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(b) From (7.85), we have

〈Qu〉L-0 =
〈Tf,h〉0 − 〈Tf,c〉0

〈Ru〉L = 0.7Ṡr,c,

where from (7.86), we have

〈Ru〉L =
1

(Ṁcp)hεhe

.

From Table 7.7, for a constant 〈Tf,c〉 (i.e., Cr = 0), we have

εhe = 1 − e−NTU .

From (7.74), we have

NTU =
1

RΣ(Ṁcp)h

.

From (7.87), based on given simplifications, we have

RΣ = Rku,h.

To determine Rku,h from Table 7.2 or 7.3, we begin with the Reynolds number, i.e.,

ReD =
〈uf 〉D

νf
=

Ṁf,hD

Auµf
=

Ṁf,hD

πD2

4
µf

=
4Ṁf

πDµf
.

From Table C.22, for air at To = 1,000K, We have

air : cp = 1,130 J/kg-◦C Table C.22

ρf = 0.354 kg/m3 Table C.22

kf = 0.0672 W/m-K Table C.22

νf = 1.173 × 10−4 m2/s Table C.22

Pr = 0.70 Table C.22.

Then

ReD =
4 × 0.02(kg/s)

π × 0.15(m) × 0.3554(kg/m3) × 1.173 × 10−4(m2/s)
= 4,088 > Ret = 2,300 turbulent flow regime

From Table 7.3, we have, assuming fully-developed turbulent flow,

〈Nu〉D = 0.023Re0.8
D Pr0.3

= 0.023 × (4,088)0.8 × (0.7)0.3 = 16.01.

From (7.88), we have

R−1
ku,h =

Aku〈Nu〉Dkf

D
, Aku = πDL

= πL〈Nu〉Dkf

= π × 16.01 × 0.0672(W/m-K) × L

= 3.381L(W/m◦C).

Now combining the relations, we have

0.7Ṡr,c = (〈Tf,h〉0 − Tlg)(Ṁcp)h(1 − e−NTU ),

where

NTU =
1

Rku,h(Ṁcp)L

=
3.381L(W/m◦C)

0.02(kg/s) × 1,130(J/kg-◦C)
= 0.1496(1/m) × L.
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Then

0.7 × 3 × 104(W) = (1,200 − 100)(◦C) × 0.02(kg/s) ×
1,130(J/kg-◦C) × (1 − e−0.1496L)

2.1 × 104(W) = 2.486 × 104(W)(1 − e−0.1496L)

or
L = 12.45 m.

COMMENT:
Since no fins (extended surface)are used, the length of the heat exchanger is rather large. By adding fins

which can have a fin effectiveness near 10, the length can be significantly reduced.
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PROBLEM 7.34.FAM

GIVEN:
Air and nitrogen (gas) stream exchange heat in a parallel-flow, coaxial tube heat exchanger. The inner diam-

eter is Di = 3 cm and the outer diameter is Do = 5 cm. This is shown in Figure Pr.7.34. Nitrogen flows through
the inside tube at an average velocity of 〈uf 〉c = 1 m/s and enters at 〈Tf,c〉0 = 4◦C. Air flows in the outside tube
at an average velocity of 〈uf 〉h = 2 m/s and enters at 〈Tf,h〉0 = 95◦C. Neglect the tube wall thickness and assume
heat exchange only between these streams.

For simplicity, evaluate the air and nitrogen properties at their inlet temperatures. Use the constant surface
temperature condition to determine the Nusselt number.

SKETCH:
Figure Pr.7.34 shows a coaxial, parallel-flow heat exchanger.

L

D1 = 3 cm
D2 = 5 cm

Tf,h  L

Tf,c  L = 40oC
Tf,c   0 = 4oC

Tf,h   0 = 95oC

uf  h = 2 m/s

qu,1

qu,2

qu,2

uf  c = 1 m/s

Air

Nitrogen

Ideally Insulated Outside Surface

Figure Pr.7.34 A parallel-flow heat exchanger.

OBJECTIVE:
(a) For a nitrogen exit temperature of 40◦C, determine the amount of heat transferred 〈Qu〉L-0.
(b) Also, determine the length of heat exchanger L needed.
(c) Assuming that the average velocities and inlet temperatures remain the same, what would be the maximum
increase in the nitrogen stream temperature ∆〈Tf,c〉max that could be achieved?

SOLUTION:
(a) The inlet and outlet temperatures for the nitrogen, which is the cold stream, are known. Then the heat
transferred between the two fluids can be calculated from the difference in the convection heat flow for the
nitrogen between the inlet and exit. Using (7.85) we have

〈Qu〉L-0 = (Ṁcp)c(〈Tf,c〉L − 〈Tf,c〉0).

The properties for nitrogen at T = 4◦C= 277.15 K, from Table C.22, are kf = 0.0252 W/m-K, ρf = 1.243 kg/m3,
cp,f = 1043.5 J/kg-K, νf = 13.57 × 10−6 m2/s, and Pr = 0.69.
The mass flow rate is

Ṁc = (Auρf 〈uf 〉)c =
πD2

1

4
(ρf 〈uf 〉)c =

π(0.03)2(m)2

4
× 1.243(kg/m3) × 1(m/s) = 8.786 × 10−4 kg/s.

Then the heat transfer rate is

〈Qu〉L-0 = 8.786 × 10−4(kg/m3) × 1043.5(J/kg-K) × [40(◦C) − 4(◦C)] = 33.01 W.

(b) To calculate the required length of the heat exchanger needed, we note that the internal surface-convection
areas Aku,h and Aku,c depend on L. The surface-convection area for the cold fluid Aku,c is

Aku,c = πD1L
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and, for the hot fluid, as the thickness of the pipe wall for the internal pipe is very thin, the surface-convection
area is

Aku,h = Aku,c = πD1L.

These influence the the overall heat exchanger thermal resistance (7.88), i.e.,

RΣ = 〈Rku,c〉Dh,h + Rk,c-h + 〈Rku,h〉Dh,h

Using (7.88) for the surface-convection resistances Rku,h, and neglecting the conduction resistance through the
pipe wall, we have

RΣ =
Dh,c

Aku,c 〈Nu〉Dh,c kf,c
+

Dh,h

Aku,h 〈Nu〉Dh,h kf,h
.

The Nusselt numbers are obtained from the correlations in Tables 7.2 and 7.3. The overall thermal resistance RΣ

is related to the number of transfer units NTU through (7.74), i.e.,

NTU =
1

RΣ(Ṁcp)min

,

where (Ṁcp)min is the Ṁcp for the fluid with the smallest Ṁcp. For a parallel-flow heat exchanger, the number
of transfer units is related to the heat exchanger effectiveness εhe as given in Table 7.7, i.e.,

εhe =
1 − e−NTU(1+Cr)

1 + Cr
.

The heat exchanger effectiveness εhe can be obtained from the temperatures through (7.72), i.e.,

εhe =
∆〈Tf 〉(Ṁcp)min

〈Tf,h〉0 − 〈Tf,c〉0 .

Solving the equations above will lead to the determination of L.
First, the properties for air are needed. From Table C.22, at T = 95◦C= 368.15 K, we have kf = 0.0312 W/m-K,
ρf = 0.961 kg/m3, cp,f = 1,008 J/kg-K, νf = 22.13 × 10−6 m2/s, and Pr = 0.69.
The mass flow rate of air is

Ṁh = (Auρf 〈uf 〉)h =
π(D2

o − D2
i )

4
(ρf 〈uf 〉)h

=
π × (0.052 − 0.032)(m)2

4
× 0.961(kg/m3) × 2(m/s) = 2.415 × 10−3 kg/s.

The streams thermal capacities are

(Ṁcp)c = 8.786 × 10−4(kg/s) × 1,043.5(J/kg-K) = 0.9168 W/◦C

(Ṁcp)h = 2.415 × 10−3(kg/s) × 1,008(J/kg-K) = 2.434 W/◦C.

Then (Ṁcp)min = (Ṁcp)c. The heat exchanger effectiveness εhe becomes

εhe =
〈Tf,c〉L − 〈Tf,c〉0
〈Tf,h〉0 − 〈Tf,c〉0 =

40(◦C) − 4(◦C)
95(◦C) − 4(◦C)

= 0.3956.

The ratio of the thermal capacitances is

Cr =
(Ṁcp)min

(Ṁcp)max

=
0.917(W/◦C)
2.449(W/◦C)

= 0.3767.

Solving (7.74) for NTU , we have

NTU =
− ln [1 − εhe (1 + Cr)]

1 + Cr
=

− ln [1 − 0.3956 (1 + 0.3767)]
1 + 0.3767

= 0.5714.
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The overall thermal resistance is

RΣ =
1

NTU
(
Ṁcp

)
min

=
1

0.572 × 0.9168(W/◦C)
= 1.909◦C/W

We now need to determine the average Nusselt numbers.
For the nitrogen, the Reynolds number is

ReD,h =
〈uf 〉Dh,c

νf
=

1(m/s) × 0.03(m)
13.57 × 10−6(m2/s)

= 2,211.

Since ReD,h < ReD,t = 2300, the flow regime is laminar. For the laminar regime the Nusselt number is obtained
from Table 7.2. Assuming that Ts is constant, the Nusselt number is

〈Nu〉Dh,c = 3.66.

For the air, the Reynolds number is

ReD,h =
〈uf 〉cDh,h

νf
=

2(m/s) × (0.05 − 0.03)(m)
22.13 × 10−6(m2/s)

= 1,808,

where the hydraulic diameter Dh, from Table 7.2, is Dh,h = D2 − D1.
Since ReD,h < ReD,t = 2300, the flow regime is laminar. For the laminar regime the Nusselt number is obtained
from Table 7.2. For D1/D2 = 0.6, the Nusselt number is

〈Nu〉Dh,h = 5.912.

The surface-convection area for hot and cold streams is the same (zero wall thickness) and equal to πD1L.
Solving for L from the expression for RΣ gives

L =
1

RΣπD1

(
Dh,c

〈Nu〉Dh,ckf,c
+

Dh,h

〈Nu〉Dh,h kf,h

)

=
1

π × 1.909(◦C/W) × 0.03(m)

[
0.03(m)

3.66 × 0.0252(W/m-K)
+

0.02(m)
5.912 × 0.0312(W/m-K)

]
.

= 2.4 m.

(c) The maximum increase in the nitrogen temperature is achieved when RΣ → 0. From (7.74), this gives
NTU → ∞. For counter-flow heat exchangers, from Table 7.7, we have

(εhe)max = lim
NTU→∞

εhe = lim
NTU→∞

[
1 − e−NTU(1+Cr)

1 + Cr
] =

1
1 + Cr

.

For Cr = 0.3767, we have

(εhe)max =
1

1 + Cr
=

1
1 + 0.3767

= 0.7264.

Now using (7.72) and solving for 〈Tf,c〉L− 〈Tf,c〉0 from (7.72), we have

∆〈Tf,c〉max = (εhe)max(〈Tf,h〉0 − 〈Tf,c〉0) = 0.7264 × [95(◦C) − 4(◦C)] = 66.10◦C.

COMMENT:
Using 〈Qu〉L-0 = 33.01 W in (7.84), the outlet temperature of the air is 〈Tf,h〉L = 81.44◦C. Note that here the

mass flow rates for both fluids is low enough to result in a laminar flow in both streams.
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PROBLEM 7.35.FUN

GIVEN:
The flow is said to be thermally fully-developed, when

∂

∂x

(
Ts − T f

Ts − 〈T f 〉

)
= 0,

and the energy equation for turbulent flow in a tube becomes

uf
∂T f

∂x
=

1
r

∂

∂r

[
r(αf + αt)

∂T f

∂r

]
.

OBJECTIVE:
(a) Show that for the thermally fully-developed turbulent flow with uniform wall temperature Ts, we have

∂T f

∂x
=

Ts − T f

Ts − 〈T f 〉
d〈T f 〉

dx
.

(b) Show that the mean fluid temperature distribution can be expressed as

1 − T ∗ =
T f − T f (r = 0)
Ts − T f (r = 0)

=
R2〈uf 〉(d〈T f 〉/dx)

Ts − 〈T f 〉
∫ r∗

0

φ(r∗)
r∗(αf + αt)

dr∗,

where

φ(r∗) =
∫ r∗

0

uf

〈uf 〉T
∗r∗dr∗, T ∗ =

Ts − T f

Ts − T f (r = 0)
and r∗ =

r

R
.

Hint: For part (b), integrate the energy equation over r = 0 to r = r, using the result from part (a) to eliminate
∂T f/∂x.

SOLUTION:
(a) By differentiating the expression for thermally fully-developed flow, we have

1
Ts − 〈T f 〉

∂Ts

∂x
− 1

Ts − 〈T f 〉
∂T f

∂x
+

Ts

(Ts − 〈T f 〉)2
∂〈T f 〉

∂x
− Ts

(Ts − 〈T f 〉)2
∂Ts

∂x
+

+
T f

(Ts − 〈T f 〉)2
∂Ts

∂x
− Ts

(Ts − 〈T f 〉)2
∂〈T f 〉

∂x
= 0

or

1
Ts − 〈T f 〉

∂Ts

∂x
− 1

Ts − 〈T f 〉
∂T f

∂x
+

T f − Ts

(Ts − 〈T f 〉)2
[
∂Ts

∂x
− ∂〈T f 〉

∂x

]
= 0.

Since ∂Ts/∂x = 0, we have

− 1
Ts − 〈T f 〉

∂T f

∂x
+

T f − Ts

(Ts − 〈T f 〉)2
[
−∂〈T f 〉

∂x

]
= 0 , which gives

∂T f

∂x
=

Ts − T f

Ts − 〈T f 〉
d〈T f 〉

dx
.

(b) Substituting the above equation into the energy equation and integrating from r = 0 to r = r, we have

d〈T f 〉
dx

∫ r

0

u

(
Ts − T f

Ts − 〈T f 〉

)
rdr =

∫ r

0

d

[
r(αf + αt)

∂T f

∂r

]
.

Multiplying the left-hand side by

1 =
Ts − T f (r = 0)
Ts − T f (r = 0)

〈uf 〉
〈uf 〉

R2

R2
,
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we have

R2〈uf 〉(d〈T f 〉/dx)
Ts − 〈T f 〉

[Ts − T f (r = 0)]
∫ r∗

0

uf

〈uf 〉T
∗r∗dr∗ = r∗(αf + αt)

∂T f

∂r∗
.

Now, expressing the integral as a function of φ(r∗), we have

R2〈uf 〉(d〈T f 〉/dx)
Ts − 〈T f 〉

[Ts − T f (r = 0)]
φ(r∗)

r∗(αf + αt)
=

∂T f

∂r∗
.

Upon integration, we have

R2〈uf 〉(d〈T f 〉/dx)
Ts − 〈T f 〉

[Ts − T f (r = 0)]
∫ r∗

0

φ(r∗)
r∗(αf + αt)

dr∗ =
∫ T f

T f (r=0)

dT

or

T f − T f (r = 0) =
R2〈uf 〉(d〈T f 〉/dx)

Ts − 〈T f 〉
[Ts − T f (r = 0)]

∫ r∗

0

φ(r∗)
r∗(αf + αt)

dr∗.

or

1 − T ∗ =
T f − T f (r = 0)
Ts − T f (r = 0)

=
R2〈uf 〉(d〈T f 〉/dx)

Ts − 〈T f 〉
∫ r∗

0

φ(r∗)
r∗(αf + αt)

dr∗,

COMMENT:
The evaluation of φ(r∗) requires the prescription of the dimensionless fluid temperature distribution T ∗. There-

fore, an iterative procedure must be employed, in which experimental results may be used as a first approximation
for T ∗. This is done in the following problem.

745



PROBLEM 7.36.FUN

GIVEN:
Assume that the turbulent Prandtl number Prt = νt/αt is equal to unity, and obtain the radial variation of

the turbulent thermal diffusivity, using the measured velocity distributions. The turbulent momentum diffusivity
is related to the shear stress and the mean velocity gradient as

τ

ρf
= −(νf + νt)

∂uf

∂r
.

OBJECTIVE:
Derive expressions for the radial distribution of turbulent kinematic viscosity νt for (a) the region very close

to the wall (laminar sublayer), (b) the region far away from the wall (turbulent buffer zone), and (c) the turbulent
core region, using the measured mean axial velocity distributions

u+ = y+ 0 ≤ y+ ≤ 5, laminar sublayer
u+ = −3.05 + 5.0 ln y+ 5 ≤ y+ ≤ 30, turbulent buffer zone
u+ = 5.5 + 2.5 ln y+ y+ > 30, turbulent core,

where the dimensionless variables are

y+ =
y(τ s/ρf )1/2

νf
, u+ =

uf

(τ s/ρf )1/2
.

Note that the shear stress varies linearly with the radius as τ = τsr/R (τ s is the wall shear stress), and that
r = R − y, where y is the distance from the wall.
(d) Plot the velocity distribution in the forms (u+ vs y+) and (uf vs r∗), and the turbulent kinematic viscosity
distribution (νt/νf vs r∗), for Re = 10,000 and Pr = 0.01. Comment on the results.

SOLUTION:
Since r = R − y, the shear stress is expressed as

τ = τ s

(
1 − y

R

)
.

Using this in the shear stress expression, with dr = −dy, we have

τs

(
1 − y

R

)
= ρ(νf + νt)

∂uf

∂y
.

Solving for νt(y), we have

νt =
τs/ρf (1 − y/R)

∂uf/∂y
− νf .

(a) In the laminar sublayer, there are no turbulent fluctuations and

νt = 0 laminar sublayer region.

(b) Far away from the wall, both molecular and turbulent shear stresses are important, and from the velocity
distribution we have

∂u+

∂y+
=

5
y+

or
∂uf

∂y
=

5(τ s/ρf )1/2

y
.

Substituting this into the expression for the turbulent kinematic viscosity and using y = R − r, we have

νt =
R(τs/ρf )1/2

5.0
(1 − r∗)r∗ − νf turbulent buffer region.

(c) In the turbulent core region, the molecular viscous stress can be neglected, i.e., νf = 0, and the velocity
distribution becomes

∂u+

∂y+
=

2.5
y+

or
∂uf

∂y
=

2.5(τ s/ρf )1/2

y
.
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Substituting this result into the expression for the turbulent kinematic viscosity and applying y = R − r, we
obtain

νt =
R(τs/ρf )1/2

2.5
(1 − r∗)r∗ turbulent core region.

(d) The fluid velocity and fluid kinematic viscosity distributions are presented in Figure Pr.7.36. Plot (i) was
obtained from the measured velocity distributions

u+ = y+ 0 ≤ y+ ≤ 5, laminar sublayer
u+ = −3.05 + 5.0 ln y+ 5 ≤ y+ ≤ 30, turbulent buffer zone
u+ = 5.5 + 2.5 ln y+ y+ > 30, turbulent core.

Plot (ii) was obtained by replacing the dimensionless variable

y+ =
y(τs/ρf )1/2

νf
,

into the above equations. The mean fluid velocity distribution is then expressed as

u+ =
R(1 − r∗)(τ s/ρf )1/2

νf
0 ≤ y+ ≤ 5,

u+ = −3.05 + 5.0 ln
[
R(1 − r∗)(τ s/ρf )1/2

νf

]
5 ≤ y+ ≤ 30,

u+ = 5.5 + 2.5 ln
[
R(1 − r∗)(τ s/ρf )1/2

νf

]
y+ > 30,

where

r∗ = 1 − y+νf

R(τs/ρf )1/2

The wall shear stress is given by

τ s =
R

2
∆p

L
, where ∆P =

cfρfL〈uf 〉2
4R

.

Therefore

τs =
cfρf 〈uf 〉2

8
, where 〈uf 〉 =

νfRe
2R

.

From Table C.24, Hg was selected as the fluid with Pr approximately 0.01. The properties used are ρf = 13270
kg/m3, νf = 85.8 × 10−9 m2/s, αf = 6.31 × 10−6 m2/s, and Pr = 0.0136. The friction coefficient cf is obtained
from the equation given in Table 7.3,

1

c
1/2
f

= −2.0 log

(
〈δ2〉1/2

3.7D
+

2.51

ReD,hc
1/2
f

)

where for a smooth tube, the surface roughness δ is equal to zero. Using SOPHT to solve the above equation, we
obtain cf = 0.0301.
Plot (iii) was obtained form the equations derived in (a), (b) and (c).

It can be seen that in the buffer region, νt and νf are of the same order of magnitude, and that νt is much
larger than νf in the turbulent core. The discontinuity in νt at the edge of the buffer layer results from the
discontinuity in the slope of the velocity profiles at that point, as observed in plots (i) and (ii). It is not true
that νt is zero at the center of the tube, as shown in plot (iii). The zero value of νt at r = 0 results from the fact
that the shear stress becomes zero at the center of the tube, but the slope of the empirical logarithmic velocity
distribution does not approach zero at the center, as indicated in plot (ii). Actually, the velocity gradient is zero
at the center and the actual turbulent kinematic viscosity is not zero. This inconsistency is due to the erroneous
approximation of the velocity distribution in the core region.

COMMENT:
In the next problem, the turbulent thermal diffusivity αt(r) = νt(r), for Prt = 1, is used to determine the

radial mean fluid temperature distribution from the energy equation derived in the previous problem.
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Figure Pr.7.36 Fluid velocity and turbulent kinematic viscosity distributions. (i) Dimensionless velocity distribution
u+ as a function of y+; (ii) Dimensionless velocity distribution u+ as a function of r∗ for Re = 10,000 and Pr = 0.01; (iii)

Dimensionless kinematic viscosity distribution νt as a function of r∗ for Re = 10,000 and Pr = 0.01.
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PROBLEM 7.37.FUN

GIVEN:
The expression derived for the radial distribution of the fluid mean temperature is simplified as

T f − T f (r = 0)
Ts − T f (r = 0)

=
R2〈uf 〉(d〈T f 〉/dx)

Ts − 〈T f 〉
ψ(r∗)

νf
.

The dimensionless temperature is defined as

T ∗ =
Ts − T f

Ts − T f (r = 0)
= 1 − T f − T f (r = 0)

Ts − T f (r = 0)
.

OBJECTIVE:
(a) Show that, after the first iteration, the dimensionless temperature distribution is given by

T ∗ = 1 − ψ(r∗)
ψ(1)

.

(b) Show that the Nusselt number is given by

NuD =
νf

αf

1
ψ(1)

.

Begin by writing the combined integral-differential length energy equation for the fluid control volume.
(c) The Nusselt numbers predicted by the expression derived in (b), is curve fitted with an accuracy of ±6 %, as

NuD =
qkuD

(Ts − 〈T f 〉)kf

= 5.0 + 0.025Re0.8Pr0.8.

for Prandtl number less than 0.1 (liquid metals).
Compare this correlation with the Nusselt number correlation obtained experimentally by Dittus and Boelter

(correlation presented in Table 7.3 for uniform Ts and 0.7 < Pr < 160), and the correlation suggested by Sleicher
and Rouse (correlation presented in Table 7.3 for uniform Ts and Pr < 0.1). Comment on the results.

SOLUTION:
(a) At r = R, ψ(r∗) = ψ(1) and T f = Ts. Substituting this boundary condition into the expression for the radial
distribution of fluid temperature, we have

R2〈uf 〉(d〈T f 〉/dx)
Ts − 〈T f 〉

1
νf

=
1

ψ(1)
.

Substituting this relation back into the expression for the radial distribution of the fluid temperature, we have

ψ(r∗)
ψ(1)

=
T f − T f (r = 0)
Ts − T f (r = 0)

or, 1 − T f − T f (r = 0)
Ts − T f (r = 0)

= 1 − ψ(r∗)
ψ(1)

or,
Ts − T f

Ts − T f (r = 0)
= 1 − ψ(r∗)

ψ(1)
.

This is the dimensionless radial temperature distribution T ∗.

(b) The axial variation of the cross-sectional averaged fluid temperature, is caused by the surface convection heat
transfer between the tube wall and the fluid stream. This can be expressed by (7.12), i.e.,

−Pkuqku + Au
d

dx
qu = 0

−πDqku + (πD2/4)
d

dx
(ρcp)f 〈uf 〉d〈T f 〉 = 0.

Then

〈uf 〉(d〈T f 〉/dx)
Ts − 〈T f 〉

=
4qku

D(ρcp)f (Ts − 〈T f 〉)
.
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Substituting the previous relation into the radial temperature distribution derived as a function of ψ(r∗), we
obtain

Dqku

νf (ρcp)f (Ts − 〈T f 〉)
=

T f − T f (r = 0)
Ts − T f (r = 0)

1
ψ(r∗)

.

Noting that (ρcp)f = kf/αf , and substituting the dimensionless temperature distribution derived as a function
of ψ(r∗) and ψ(1) into the previous relation, we obtain

NuD = 〈Nu〉D =
qkuD

(Ts − 〈T f 〉)kf

=
νf

αf

1
ψ(1)

.

This is the expression for the Nusselt number as a function of ψ(1).

(c) Figure Pr.7.37(a) shows the predicted and measured Nusselt number correlations, as functions of the Reynolds
and Prandtl numbers, over 103 ≤ ReD ≤ 106 and for Pr = 0.01, 0.1, 1 and 10. The results obtained by Seban
and Shimazaki, and the correlation suggested by Sleicher, are in agreement for all the cases presented. Both
correlations are said to be accurate for Pr < 0.1.

The correlation proposed by Dittus and Boelter is reasonably accurate for 0.7 < Pr < 120. The predictions
of Seban and Shimazaki are not as close for Pr > 1.

We also can observe that for very low Prandtl number, as shown in Figure Pr.7.37(a)(i), the dependence of
the Nusselt number on the Reynolds number is rather weak as the Reynolds number decreases (compared with
the other cases for higher Prandtl numbers). This behavior is expected, since for low Pr, αf >> νf , there is a
masking the viscous effect from the heat transfer within the fluid.

Note that the Dittus and Boelter correlation does not reproduce this effect for low Pr numbers, which shows
that this correlation should not be used for fluids with high thermal diffusivity and low kinematic viscosity, such
as liquid metals.

COMMENT:
The iterative method described in the last three problems was employed to obtain the Nusselt number of a

turbulent flow through a circular tube with walls at uniform temperature. MAPLE was used as the mathematical
tool. The equations and boundary conditions are presented next.

Initially, φ(r∗) was calculated for the laminar sublayer (r1−inf ≤ r∗ ≤ r1−sup), turbulent buffer (r2−inf ≤
r∗ ≤ r2−sup) and core (r3−inf ≤ r∗ ≤ r3−sup) regions as a function of the temperature and velocity distributions
in those regions.

φ(r∗) =
∫ r∗

0

uf

〈uf 〉T
∗r∗dr∗ =

∫ r∗

0

f(r∗)dr∗,

or,

φ3(r∗) =
∫ r∗

r3−inf

f3(r∗)dr∗ , (r3−inf ≤ r∗ ≤ r3−sup),

φ2(r∗) =
∫ r3−sup

r3−inf

f3(r∗)dr∗ +
∫ r∗

r2−inf

f2(r∗)dr∗ , (r2−inf ≤ r∗ ≤ r2−sup),

φ1(r∗) =
∫ r3−sup

r3−inf

f3(r∗)dr∗ +
∫ r2−inf

r2−inf

f2(r∗)dr∗ +
∫ r∗

r1−inf

f1(r∗)dr∗ , (r1−inf ≤ r∗ ≤ r1−sup),

The integral named ψ(r∗) was then calculated as a function of φ(r∗) and αt(r∗).

ψ(r∗) =
∫ r∗

0

φ(r∗)
r∗(αf + αt)/νf

dr∗ =
∫ r∗

0

g(r∗)dr∗
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Figure Pr.7.37(a) Variations of Nusselt number 〈Nu〉D for turbulent flow inside circular tubes, with respect to
Reynolds number ReD. (i) Pr = 0.01; (ii) Pr = 0.1; (iii) Pr = 1; (iv) Pr = 10.

or,

ψ3(r∗) =
∫ r∗

r3−inf

g3(r∗)dr∗ , (r3−inf ≤ r∗ ≤ r3−sup),

ψ2(r∗) =
∫ r3−sup

r3−inf

g3(r∗)dr∗ +
∫ r∗

r2−inf

g2(r∗)dr∗ , (r2−inf ≤ r∗ ≤ r2−sup),

ψ1(r∗) =
∫ r3−sup

r3−inf

g3(r∗)dr∗ +
∫ r2−inf

r2−inf

g2(r∗)dr∗ +
∫ r∗

r1−inf

g1(r∗)dr∗ , (r1−inf ≤ r∗ ≤ r1−sup).

Since at this point, ψ(r∗) was a known function, we could calculate

ψ(1) = ψ(r∗ = r1−sup),

i.e.,

ψ(1) =
∫ r3−sup

r3−inf

g3(r∗)dr∗ +
∫ r2−inf

r2−inf

g2(r∗)dr∗ +
∫ r1−inf

r1−inf

g1(r∗)dr∗.
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The temperature distribution was then calculated as

T ∗
3 = 1 − ψ3(r∗)

ψ(1)
, (r3−inf ≤ r∗ ≤ r3−sup),

T ∗
2 = 1 − ψ2(r∗)

ψ(1)
, (r2−inf ≤ r∗ ≤ r2−sup),

T ∗
1 = 1 − ψ1(r∗)

ψ(1)
, (r1−inf ≤ r∗ ≤ r1−sup).

These temperature distributions were used as the next approximation in the expression for φ(r∗). The Nusselt
number was calculated in each of the iterations as a function of ψ(1) as shown previously. The iterations ended
when the temperature profile converged.

Mercury (Pr = 0.0135) was used as the working fluid and the Nusselt number, for Reynolds number 104 and
105, was calculated and compared with the results presented by Seban and Shimazaki.

The temperature distributions, starting from the temperature profile from constant heat flux case and used as
the first approximation, up to the temperature profile approaching convergence, are shown in Figure Pr.7.37(b) (i)
and (ii). We can note that, after the second iteration, the temperature distributions are very close to each other
and Nusselt number changes less than 5%. Comparing the converged temperature distributions in graphs (i) and
(ii), we observe that for higher Reynolds number, the laminar sublayer and turbulent buffer region decrease, since
the increase of the fluid velocity causes the turbulent eddies to start closer to the wall. As the Reynolds number
decreases, the temperature distribution approaches the parabolic profile obtained in laminar flows.

A comparison between the results obtained in the present analysis using MAPLE and the results obtained
(also analytically) by Seban and Shimazaki is presented in Figure Pr.7.37(b)(iii). The agreement between the
results comproves the applicability of the iterative method and correlation proposed by the referenced authors.
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Chapter 8

Heat Transfer in Thermal Systems



PROBLEM 8.1.DES.S

GIVEN:

To harvest the automobile exhaust-gas heat, a shell of bismuth-telluride thermoelectric elements is placed
around the tailpipe. This is shown in Figure Pr.8.1(a). In principle, placement of the elements closer to the
exhaust manifold, where higher gas temperatures are available, is more beneficial. However, high temperature
thermoelectric materials are needed.

The local tailpipe wall temperature is 〈Tf,h〉 = Th and the elements are placed between the pipe and an
outer-ceramic shell. The contact resistance between the thermoelectric elements and the pipe is (Rk,c)h and that
with the ceramic is (Rk,c)c. The ceramic is cooled with surface convection using a crossflow air stream with
a far-field temperature Tf,∞. The ceramic surface is also cooled by surface radiation to the surrounding solid
surfaces (all surfaces are diffuse, gray opaque) with the surrounding solid surfaces at Ts,∞. The emissivity of the
ceramic surface is εr,c and that of surrounding surfaces is εr,∞.

The electrical power generated is maximized with respect to the external electrical resistance Re,o, by choosing
Re,o = Re.

NT E = 1,000, aT E = 2 mm, LT E = 3 mm, L = 30 cm, D = 4 cm, Th = 300◦C, Tf,∞ = 20◦C, Ts,∞ = 20◦C,
uf,∞ = 50 km/hr, εr,c = 0.90, εr,∞ = 0.85, (Rk,c)c = (Rk,c)h = 0.

Determine the thermophysical properties of air at T = 350 K.

SKETCH:
Figure Pr.8.1(a) shows the harvesting of the exhaust-gas heat by a thermoelectric power generator.
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Lining
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Je

Re,o
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Figure Pr.8.1(a) A thermoelectric power generator using the automobile exhaust gas heat content.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) For the conditions above, determine the power output J2

e Re,o.
(c) Plot the variation of the electrical power generation with respect to the surface convection resistance Rku.
Comment on how this resistance can be reduced.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.8.1(b).
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Figure Pr.8.1(b) Thermal circuit diagram.

(b) The electrical power generation is given by (2.40) and when written for NT E pairs, we have

J2
e Re,o =

N2
T Eα2

S(Th − Tc)2Re,o

(Re,o + Re)2
.

For optimal performance,

Re,o = Re

or

J2
e Re,o =

N2
T Eα2

S(Th − Tc)2

4Re,o
.

Here we need to determine Tc and Re.
For bismuth telluride, the electrical properties are given in Table C.9(a). These are

αS,p = 230 × 10−6 V/◦C Table C.9(a)

αS,n = −210 × 10−6 V/◦C Table C.9(a)

kp = 1.70 W/m-K Table C.9(a)

kn = 1.45 W/m-K Table C.9(a)

ρe = 1.0 × 10−5 ohm-m Table C.9(a)

αS = αS,p + αS,n = (2.3 + 2.1) × 10−4(V/◦C) = 4.4 × 10−4 V/◦C.

The electrical resistance for each pair is given by (3.116), i.e.,

Re|each =
(

ρeLT E

Ak

)
p

+
(

ρeLT E

Ak

)
n

=
2ρeLT E

Ak

Ak = aT E
2.

Using the numerical values, we have

Re|each =
2 × 10−5(ohm-m) × 3 × 10−3(m)

(2 × 10−3)2(m)2

= 0.015 ohm
Re,o = Re = NT ERe|each = 15 ohm.

The temperature of the ceramic is determined from the energy conservation equation. From Figure Pr.8.1(b), we
have

Q|A,C = Qk,c-h + 〈Qku〉D + Qr,c = Ṡe,J + Ṡe,P.
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Now we use the two-surface enclosure radiations and note that heat is released at the cold junction and that as
given by (3.111) the Joule heating is equally split between the two ends. Then, we have,

Tc − Th

Rk,c-h
+

Tc − Tf,∞
〈Rku〉D +

σSB(T 4
c − T 4

s,∞)
Rr,Σ

=
1
2
Re,oJ

2
e + NT EαSJ2

e Tc.

The conduction resistance is given by (3.116), i.e.,

R−1
k,c-h = NT E

[(
Akk

LT E

)
p

+
(

Akk

LT E

)
n

]

= NT E

Ak

LT E

(kp + kn)

= NT E

a2
T E

LT E

(kp + kn)

= 1,000 × (2 × 10−3)2(m2)
(3 × 10−3)(m)

× (1.70 + 1.45)(W/m-K) = 4.20 W/K.

or

Rk,c-h = 0.238 K/W.

The surface-convection resistance is determined using the Nusselt number correlation of Table 6.4, i.e.,

〈Nu〉D = a1Rea2
D Pr1/3

ReD =
uf,∞D

νf

〈Rku〉D =
D

Aku〈Nu〉Dkf

Aku = πDL.

The thermophysical properties of air, at T = 350K, are found from table C.22, i.e.,

kf = 0.0300 W/m-K Table C.22

vf = 2.030 × 10−5 m2/s Table C.22

Pr = 0.69 Table C.22.

Then

ReD =
uf,∞D

νf
=

13.89(m/s) × 4 × 10−2(m)
2.030 × 10−5(m2/s)

= 2.737 × 104.

From Table 6.4, we have

a1 = 0.193 , a2 = 0.618.

Then

〈Nu〉D = 0.193 × (2.737 × 104)0.618 × (0.69)1/3 = 94.22

〈Rku〉D =
4 × 10−2(m)

π × 4 × 10−2(m) × 0.3(m) × 94.22 × 0.0300(W/m-K)
= 0.3756 K/W.

The radiation resistances are determined from (4.49), for the case of Ar,∞ � Ar,c, i.e.,

Rr,Σ =
1

Ar,cεr,c

Ar,c = Aku = πDL
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or

Rr,Σ =
1

πDLεr,c
=

1
π × 4 × 10−2(m) × 0.3(m) × 0.90

= 29.49 m−2.

We now solve the electrical power relation and the Tc node energy equation for Je and Tc. This is done using a
solver (e.g., SOPHT). The results are

Tc = 490.2 K
Je = 1.216 A

J2
e Re,o = 22.18 W.

(c) The variation of the electrical power produced, with respect to 〈Rku〉D is shown in Figure Pr.8.1(c). The
results show that by reducing 〈Rku〉D to less than 0.1 K/W, a significant increase in the power generation is
found. This is due to the corresponding decrease in the ceramic surface temperature Tc.
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Figure Pr.8.1(c) Variation of electrical power generated and the ceramic temperature with respect to the
surface-convection resistance.

COMMENT:
Note that by decreasing 〈Rku〉D and Rr,Σ, the ceramic temperature Tc can be further reduced, thus increasing

the electrical power generated. By increasing the air flow speed uf,∞ and the emissivities εr,c and εr,∞ the ceramic
temperature will be reduced.
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PROBLEM 8.2.DES

GIVEN:
Anesthetic drugs are available in liquid form and are evaporated, heated, and mixed with other gases (e.g.,

oxygen) in a vaporizer tube. This is shown in Figure Pr.8.2(a). The heat is supplied through the Joule heating
and the tube is ideally insulated on the outside. The primary and secondary air mix with the evaporated drug,
and initially the temperature of the gas mixture drops from Ti (inlet condition) to 〈Tf 〉0 (after the assumed
complete evaporation).

D = 2.3 cm, L = 18 cm, Ti = 20◦C, ṀO2 = Ṁp + Ṁs = 2.17 × 10−4 kg/s, Ṁl = 1.66 × 10−5 kg/s.
Evaluate the thermophysical properties of the drug (assume that they are the same as those for Refrigerant

134a) at T = 253.2 K, and the properties of oxygen at T = 300 K. Use the properties of oxygen for the evaluation
of the Nusselt number and (Ṁcp)f .

SKETCH:
Figure Pr.8.2(a) shows the evaporation and heating of anesthetic liquid in a vaporizer tube.
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Sevofluorane; Properties
Similar to Refrigerant 134a) Stream

Ml , Ti

Tf  L

Qku  L

Ts

Slg

Tf  0

Figure Pr.8.2(a) An anesthetic liquid evaporator and vapor heater.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Determine the gas mixture temperature after the assumed complete evaporation and before the surface con-
vection begins.
(c) Determine the required Joule heating rate Ṡe,J for an exit temperature 〈Tf 〉L = 30◦C.
(d) Determine the tube surface temperature Ts needed to have an exit temperature 〈Tf 〉L = 30◦C.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure.Pr.8.2(b). The combined primary and secondary oxygen gas
stream ṀO2 = Ṁp + Ṁs mixes with the liquid droplets and complete evaporation is assumed leading to a gas
mixture stream temperature 〈Tf 〉0. Then this stream is heated by surface convection, with a uniform tube surface
temperature Ts, leading to an exit temperature 〈Tf 〉0.

(b) The energy equation for the phase change energy conversion Ṡlg, from Figure 8.2(b), and given similarly by
(5.17), is

(ṀO2cp,O2 + Ṁlcp,d)(〈Tf 〉0 − Ti) = −Ṁl∆hlg

ṀO2 = Ṁp + Ṁs.

Here we have represented the sensible heat change for the liquid (from Ti to Tlg) and vapor (from Tlg to 〈Tf 〉0),
with a simple expression Ṁlcp,d (〈Tf 〉0 − Ti) and we will use the specific heat capacity of the vapor for cp,d. This
approximation is expected to be valid considering that the liquid and gas specific heat capacities for R-134a, are
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Figure Pr.8.2(b) Thermal circuit diagram.

not greatly different.
The anesthetic drugs have thermophysical properties similar to that of Refrigerant 134a (Table C.28). Then from
Tables C.22 and C.28, we have:
oxygen at T = 300 K:

kf = 0.0274 W/m-K Table C.22

ρf = 1.299 kg/m3 Table C.22

cp,O2 = 920 J/kg-K Table C.22

νf = 2.61 × 10−5 m2/s Table C.22

Pr = 0.69 Table C.22

R-134a at T = 253.2 K:

∆hlg = 2.110 × 105 J/kg Table C.28

cp,d = 805 J/kg-K Table C.28.

Then

〈Tf 〉0 = Ti − Ṁl∆hlg

(Ṁp + Ṁs)cp,O2 + Ṁlcp,d

= 20(◦C) − 1.66 × 10−5(kg/s) × 2.110 × 105(J/kg)
2.17 × 10−4(kg/s) × 920(J/kg-K) + 1.66 × 10−5(kg/s) × 805(J/kg-K)

= 20(◦C) − 3.502(W)
0.2130(W/K)

= 20(◦C) − 16.44(◦C) = 3.559◦C.

(c) The energy equation for the convection stream, between 〈Tf 〉0 and 〈Tf 〉c, gives, as shown in Figure Pr.8.2(b),

〈Qu〉L-0(Ṁcp)f (〈Tf 〉L − 〈Tf 〉0) = Ṡe,J

Ṁf = Ṁp + Ṁs + Ṁl

cp,f = cp,O2 .

Then

Ṡe,J = (2.17 × 10−4 + 1.66 × 10−5)(kg/s) × 920(J/kg-K) × (30 − 3.559)(K) = 5.683 W.

(d) To determine the tube wall temperature Ts, we use (7.22), i.e.,

〈Tf 〉L − 〈Tf 〉0
Ts − 〈Tf 〉0 = 1 − e−NTU

or

Ts = 〈Tf 〉0 +
〈Tf 〉L − 〈Tf 〉0
1 − e−NTU

,
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where NTU is given by (7.20) as

NTU =
Aku〈NuD〉kf

(Ṁcp)fD

Aku = πDL.

Then Nusselt number is determined knowing the range of the Reynolds number.From (7.36) and (7.3), we have

ReD =
〈uf 〉D

νf

〈uf 〉 =
Ṁf

ρfAu
=

4Ṁf

ρfπD2

or

ReD =
4Ṁf

ρfπD2 =
4 × (2.17 × 10−4 + 1.66 × 10−5)(kg/s)

1.299(kg/m3) × 2.61 × 10−5(m2/s) × π × 2.3 × 10−2(m)
= 381.6 < ReD,t = 2,300, laminar flow.

For laminar flow, from Table 7.2, we use the developing field correlations for 〈Nu〉D. We need to determine the
Graetz number (note that PeD = ReDPr).

L/D

ReDPr
=

0.18(m)/0.023(m)
381.6 × 0.69

= 0.02972 < 0.03.

Then from Table 7.2, we have

〈Nu〉D = 2.409(
L/D

ReDPr
)−1/3 − 0.7 = 7.077

Then

NTU =
πL〈Nu〉Dkf

(Ṁcp)f

=
π × 0.18(m) × 7.077 × 0.0274(W/m-K)

(2.17 × 10−4 + 1.66 × 10−5)(kg/s) × 920(J/kg-K)
= 0.5099.

Using this, we have for Ts

Ts = 3.559(◦C) +
(30 − 3.559)(◦C)

1 − e−0.5099

= 3.559(◦C) + 66.19(◦C) = 69.75◦C.

COMMENT:
This heater surface temperature is rather high. One method of reducing this is to increase Aku (e.g., by using

fins or increasing L).
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PROBLEM 8.3.DES

GIVEN:
A condenser-chemical analyzer uses a stream of cold water, where the temperature of the stream entering the

condenser is controlled to within a small deviation.
An off-the-shelf thermoelectric cooler-heat exchange unit is used to provide this cold water stream. This is

shown in Figure Pr.8.3(a). The heat exchange surface is assumed to be at a uniform temperature Ts with the
water entering at 〈Tf 〉0 and exiting at 〈Tf 〉L. The heat exchange surface is the cold side of a thermoelectric
module (i.e., Ts = Tc), where there are NT E pairs of bismuth-telluride thermoelectric elements with the specifi-
cations given below. The hot side of the thermoelectric module is connected to an extended surface (fins or heat
sink) cooled by air blown over its surfaces with far-field conditions Tf,∞ and uf,∞. The fins have an efficiency
of unity. The dominant resistances between Tf,∞ and 〈Tf 〉0 are due to the surface convection, conduction in
thermoelectric materials, and the average convection resistance.

〈Tf 〉0 = 20◦C, Ṁf,w = 0.01 kg/s, l = 5 mm, L = 35 cm, aT E = 1.5 mm, LT E = 3.5 mm, NTE = 400,
Aku = 0.05 m2, uf,∞ = 1 m/s, Tf,∞ = 25◦C, w = 9 cm.

Use properties of air at T = 300 K and water at T = 290 K, and determine 〈Nu〉w using w, the fin width.

SKETCH:
The thermoelectric unit with surface-convection heat removal from the hot surface and convection heat removal

from the cold surface, is shown in Figure Pr.8.3(a).

Air Flow

Air Flow
(�)

(+)

l

l

Water Flow Channel
with Length, L

Water
w

uf,� , Tf,�

Tf  0

Ts

aTE aTE

LTE

Tf  L

Mf

Physical Model

Channel Length, L

Aku

Figure Pr.8.3(a) A thermoelectric cool-unit used to cool a bounded water stream.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) Plot the heat removal rate from the water stream 〈Qu〉L-0, as function of the current for 0.2 ≤ Je ≤ 1.4 A.
(c) Comment on the optimum current.
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SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.8.3(b). The three major resistances, 〈Rku〉w, Rk,h-c, and
〈Ru〉L are shown. In accordance with the developments of Section 3.3.7, and as shown in Figure 3.28(d), the
Peltier cooling/heating and Joule heating are shown at the cold and hot junctions.

Mf

Tc = Ts Se,P + Se,J

Th

Tf,�uf,�

Rk,h-cQk,h-c

Ru  L

Rku  wQku  w

Qu  L-0

Tf  L
Tf  0

Se,P + Se,J

Figure Pr.8.3(b) Thermal circuit diagram.

(b) As shown in Figure Pr.8.3(b), the energy equations for nodes Th and Tc = Ts are

Th node : 〈Qku〉w + Qk,h-c = (Ṡe,P)h + (Ṡe,J)h

Tc = Ts node : −Qk,h-c + 〈Qu〉L-0 = (Ṡe,P)c + (Ṡe,J)c,

where

〈Qku〉w =
Th − Tf,∞
〈Rku〉w

〈Rku〉−1
w = Aku〈Nu〉w kf,a

w
from (6.149)

Qk,h-c =
Th − Tc

Rk,h-c

R−1
k,h-c =

(
Akk

LT E

)
p

+
(

Akk

LT E

)
n

from (3.116)

= NT E

a2
T E

LT E

(kp + kn)

〈Qu〉L-0 =
Tc − 〈Tf 〉0
〈Ru〉L

= (Ṁcp)f,w(〈Tf 〉L − 〈Tf 〉0)
〈Ru〉−1

L = (Ṁcp)f,w(1 − e−NTU ) from (7.27)

NTU =
4L〈Nu〉D,hkf,w

(Ṁcp)f

from (7.20).

The air-side Nusselt number is found from Table 6.3. The Reynolds number is

Rew =
uf,∞w

νf,a
.
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The thermophysical problems for air at T = 300 K from Table C.22, and for water at T = 290 K from Table
C.23, are

air : kf,a = 0.0267 W/m-K Table C.22

νf,a = 1.566 × 10−5 m2/s Table C.22

Pra = 0.69 Table C.22

water : kf,w = 0.590 W/m-K Table C.23

ρf,w = 1,000 kg/m3 Table C.23

cp,w = 4.186 J/kg-K Table C.23

νf,w = 1.13 × 10−6 m2/s Table C.23

Prw = 8.02. Table C.23.

Then

Rew =
1(m/s) × 0.09(m)

1.566 × 10−5(m2/s)
= 5,747 < Rew,t = 5 × 105 laminar flow regime.

Then from Table 6.3, we have

〈Nu〉w = 0.664Re1/2
D Pr1/3 = 0.664 × (5,747)1/2 × (0.69)1/3 = 44.49.

The water side Nusselt number is found from Table 7.2 or Table 7.3, depending on ReD,h. The hydraulic diameter
is

Dh =
4Au

Pku
=

4 × l2

4l
= l

ReD,h =
〈uf 〉l
νf,w

〈uf 〉 =
Ṁf,w

ρf,wAu
=

Ṁf,w

ρf,wl2

ReD,h =
Ṁf,w

ρf,wνf,wl
=

0.01(kg/s)
1,000(kg/m3) × 1.13 × 10−6(m2/s) × 5 × 10−3(m)

= 1,770 < ReD,t = 2,300 laminar flow regime.

Next, from Table 7.2, we have

NuD,h = 2.98 for square channels with Ts uniform.

The energy conversion terms are

(Ṡe,J)c = (Ṡe,J)h =
1
2
NT EJ2

e Re from (3.115)

Re = (
ρeLT E

Ak
)p + (

ρeLT E

Ak
)n from (3.116)

=
LT E

a2
T E

(ρe,p + ρe,n)

(Ṡe,P)h = NT EαSJeTh from (3.112)

(Ṡe,P)c = −NT EαSJeTc from (3.112)
αS = αS,p − αS,n from (3.112).

From Table C.9(a), we have for bismuth telluride

αS,p = 2.30 × 10−4 V/◦C
αS,n = 2.10 × 10−4 V/◦C
ρe,p = ρe,n = 10−5 ohm-m
kp = 1.70 W/m-K
ku = 1.45 W/m-K.
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We need to determine Th, Tc = Ts, and 〈Tf 〉L and the three needed equations are the Th-node and Tc-node energy
equations and the expression for 〈Qu〉L-0 (which is used for 〈Tf 〉L).
The variation of 〈Qu〉L-0 with respect to the current is shown in Figure Pr.8.3(c).

(c) The largest heat removal rate, 〈Qu〉L−0 = −6.47 W, occurs at a current of Je = 0.8 A. At this current, we
have

Tc = Ts = 290.5 K
Th = 333.3 K

〈Tf 〉L = 293.0 K.

The three resistances are

〈Rku〉w = 1.515 K/W, Rk,h-c = 1.235 K/W, and 〈Ru〉L = 0.4183 K/W.

At this optimum current, we also have

Qk,h-c = 36.65 W, (Ṡe,P)c = −46.02 W, and (Ṡe,J)c = 5.04 W.

As the current increases, Th increases and Qk,h-c and (Ṡe,J)c increase faster than (Ṡe,P)c, and 〈Qu〉L-0 begins to
drop.

0 0.44 0.68 0.92 1.16 1.40

Je , A

-7.2

-5.6

-4.0

-2.4

-0.8

0.8

Q
u 

 L
-0

 , 
W

Figure Pr.8.3(c) Variation of the water stream convection heat transfer rate as a function of the electrical current.

COMMENT:
Here NTU = 0.05880 and is rather small. The water stream Nusselt number 〈Nu〉D,h can be increased by

adding an extending surface.
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PROBLEM 8.4.DES

GIVEN:
The automobile exhaust pollutants (NO, CO, and unburned hydrocarbons) escape conversion in the catalytic

converter during converter warm-up (when the automobile first starts). This accounts for a significantly large
fraction of the automobile pollution produced. In order to remedy this, a two-segment converter is used, where
the first segment (or stage) has a smaller mass (and surface area) and heats up faster. This is shown in Figure
Pr.8.4(a).

Assume that each segment is at a uniform, but time-dependent, temperature and each is heated by surface
convection. The fluid enters the first segment at temperature 〈Tf 〉0 and exits at temperature 〈Tf 〉1, and arrives
at the second segment and then exits that at temperature 〈Tf 〉2. Initially we have temperatures Ts,1(t = 0) and
Ts,2(t = 0) for the two segments.

〈Tf 〉0 = 400◦C, Ts,1(t = 0) = Ts,2(t = 0) = 20◦C, Dp,1 = 3 mm, Aku,1 = 8 m2, ε1 = 0.9, (ρcpV )1 = 50
J/K, Dp,2 = 2 mm, Aku,2 = 10 m2, ε2 = 0.65, (ρcpV )2 = 500 J/K, cp,f = 1,100 J/kg-K, 〈Nu〉D,p,1 = 150,
〈Nu〉D,p,2 = 150, kf = 0.03 W/m-K.

The exhaust gas mass flow rate for Ṁf is estimated closely using

Ṁf =
1
2

rpm

60
ρf,oVd,

where rpm is the engine rpm, Vd is the total displacement volume (assuming ideal volumetric efficiency, ηV = 1),
and ρf,o is the cylinder inlet gas density (for a nonturbocharged engine, it will be air at ambient temperature and
nearly one atm pressure). Here an ideal volume efficiency is assumed allowing complete filling of the displacement
volume with fresh air. Then for a typical 2.2 liter engine, Ṁf = 0.03667 kg/s.

SKETCH:
Figure Pr.8.4(a) shows the two-segment automobile catalytic converter. The segment with smaller mass is

encountered first.

Two-Segment Catalytic Converter

Physical Model

Exhaust Gas

Smaller Mass, Faster Response Segment

Larger Mass, Slower
Response SegmentTf   0

Mf

Tf  2
Tf  1

Ts,1(t)
(Assumed Uniform)

(ρcpV)1 ,  1 , Dp,1

(ρcpV)2 ,  2 , Dp,2

Ts,2(t)
(Assumed Uniform)

�

�

Figure Pr.8.4(a) A two-segment, automobile catalytic converter.

OBJECTIVE:
(a) Draw the thermal circuit diagram.
(b) For the conditions given above, plot the temperatures 〈Tf 〉1, 〈Tf 〉2, Ts,1(t), and Ts,2(t) up to t = 100 s.

SOLUTION:
(a) The thermal circuit diagram is shown in Figure Pr.8.4(b). The fluid stream temperatures 〈Tf 〉1(t) and
〈Tf 〉2(t) are assumed to be quasi-steady when they are treated as bounded fluid streams with surface convection
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heat transfer.

Tf  0 Tf  1(t)

Ts,1(t) Ts,2(t)

�  Qu  1-0 �  Qu  2-1

Ru  2Ru  1

Tf  2(t)
 Qu  0  Qu  1

 Qu  2

� (ρcpV)2
dTs,2

dt
� (ρcpV)1

dTs,1

dt

Figure Pr.8.4(b) Thermal circuit diagram.

(b) The energy equations for nodes Ts,1, and Ts,2 [from Figure 8.4(b)], the convection heat transfer, the surface-
convection heat transfer, and the associated resistances are from Section 7.4.3, i.e.,

〈Qu〉1-0 = −(ρcpV )1
dTs,1

dt

〈Qu〉2-1 = −(ρcpV )2
dTs,2

dt

〈Qu〉1-0 = (Ṁcp)f (〈Tf 〉1 − 〈Tf 〉0) =
Ts,1 − 〈Tf 〉0

〈Ru〉1
〈Qu〉2-1 = (Ṁcp)f (〈Tf 〉2 − 〈Tf 〉1) =

Ts,2 − 〈Tf 〉1
〈Ru〉2

〈Ru〉−1
1 = (Ṁcp)f (1 − e−NTU1), 〈Ru〉−1

2 = (Ṁcp)f (1 − e−NTU2)

NTU1 =
1

(Ṁcp)f 〈Rku〉1
, NTU2 =

1
(Ṁcp)f 〈Rku〉2

〈Rku〉−1
1 = Aku,1〈Nu〉D,p1

kf

Dp,1

1 − ε1
ε1

〈Rku〉−1
2 = Aku,2〈Nu〉D,p2

kf

Dp,2

1 − ε2
ε2

.

Using the numerical values, a solver such as SOPHT is used to determine the unknowns.
The results are plotted in Figure Pr.8.4(c). The first segment (Ts,1(t)) heats up to the maximum temperature 〈Tf 〉0
in about 3 s. The second segment, having a much larger mass, (ρcpV )1, takes much longer to heat up. The fluid
stream temperature 〈Tf 〉1(t) is very close to Ts,1(t). Also, 〈Tf 〉2 is close to Ts,2(t). This is due to the large values of
NTU (NTU2 = 4.131, NTU1 = 100.1). Other values are: 〈Ru〉1 = 0.02520 K/W and 〈Ru〉2 = 2.2476×10−4 K/W.

COMMENT:
Here we have assumed that the at any time a temperature distribution given by (7.21) exists for the fluid.

This, along with a uniform solid temperature allow us to represent each segment with only one thermal node.
For accurate results, each segment can be divided into many nodes.

For yet a faster response, the mass of the first segment can be decreased, along with its surface-convection
resistance.
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