GALGOTIAS UNIVERSITY

Email: admissions@galgotiasuniversity.edu.in
Website: www.galgotiasuniversity.edu.in

COURSE BOOK

School of Electrical, Electronics & Communication Engineering -2020

Curriculum and syllabus for School of Electrical, Electronics & Communication Engineering

CONTENTS

2	1. B. Tech ECE	1.
45	2. B. Tech EE	2.
107	3. B. Tech EEE	3.

Program: B. Tech ECE

Scheme: 2020-2021

Vision:

To be recognized globally as a premier department of Electronics and Communication Engineering for value based education, interdisciplinary research and innovation.

Mission:

- To produce skilled professional in the field of Electronics and Communication Engineering to meet the requirement of Industry 4.0.
- To setup Center-of-Excellence for design simulation and product development.
- To provide opportunities for students to work on real world problems and develop sustainable solutions.
- To collaborate with industry and professional bodies to design up-to-date curriculum as per the industry need.

Program Educational Objectives: Graduate shall

PEO1: The graduates shall exhibit their professional knowledge in the field of Electronics and S/W areas.

PEO2: The graduates shall demonstrate their research skills in multidisciplinary environment and in higher studies

PEO3: The graduates shall emerge as a potential entrepreneur and contribute to the development of the society.

Program Specific Outcomes:

PSO1: Electronic System Development: Develop real time applications using Printed Circuit Board and Integrated Circuits.

PSO2: Communication System Development: Develop Communication Systems and applications using IoT, Artificial Intelligence and Machine Learning algorithms.

Program Outcomes

- Engineering Knowledge: Apply the knowledge of Mathematics, Science, and Engineering fundamentals, and an engineering specialization to solution of complex engineering problems
- Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences
- Design/development of solutions: Design of solutions for complex engineering problems and design of system components or processes that meet the specified needs with appropriate considerations of public health and safety, and cultural, societal, and environmental considerations
- Conduct investigations of complex problems: Use research based methods including design of experiments, analysis and interpretation of data and synthesis of information leading to logical conclusions
- Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling complex engineering activities with an understanding of limitations
- The engineer and society: Apply reasoning within the contextual knowledge to access societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- Environment and sustainability: Understand the impact of the professional engineering solutions in the societal and environmental contexts, and demonstrate the knowledge of, and the need for sustainable developments
- Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice
- Individual and team work: Function effectively as an individual independently and as a member or leader in diverse teams, and in multidisciplinary settings
- Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large such give and receive clear instructions
- Project management and finance: Demonstrate knowledge and understanding of engineering management principles and apply those to one's own work as a member and leader of a team to manage projects in multidisciplinary environments
- Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

Curriculum

		Semester 1							
Sl.	Course Code	Name of the Course						sment Pa	
No			L	T	P	C	IA	MTE	ETE
1	BEE01T1001	Energy Sources and Audit	1	0	0	1	20	30	50
2	BCS01T1001	Data Analytics (Excel and Tableu)	1	0	0	1	50	-	50
3	BCS01T1002	AI Fundamentals	2	0	0	2	20	30	50
4	BBS01T1001	Multivariable Calculus and Vector calculus	3	0	0	3	20	30	50
5	BCS01T1003	Programing for Problem Solving (C)	1	0	4	3	20	30	50
6	BLL01T1001	Communication Skill	3	0	0	3	20	30	50
7	BBS01T1002	Engineering Physics	2	0	0	2	20	30	50
8	BBS01P1002	Engineering Physics Lab	0	0	2	1	50	-	50
9	BEE01T1002	Bio Systems in Engineering	2	0	0	2	20	30	50
10	BEE01T1003	AC DC Circuits	2	0	2	3	20	30	50
11									
		Total	17		8	21			
		Semester II	ı						
Sl No	Course Code	Name of the Course	T	T	n			sment Pa	
NO		Linear Algebra and Differential	<u>L</u> 2	T 0	P 0	<u>C</u>	1A 20	MTE 30	ETE 50
1	BBS01T1003	Equations Equations	1	0	0	1	50	-	50
2	BEE01T1004	Embedded Technology and IoT	1	0	2	2	50	_	50
3	BCE01P1001	Waste Management	0	0	2	1	20	30	50
4	BCE01P1002	Environmental Science	0	0	1	0.5	50	-	50
5	BLE01P1001	Liberal and Creative Arts	0	0	1	0.5	50	_	50
6	BSB01T1001	Creativity, Innovation and Entrepreneurship	1	0	2	2	50	-	50
7	BCS01P1004	Application of Python Programming	0	0	2	1	50	-	50
8	BEE01T1005	Introduction to Digital System	2	0	2	3	20	30	50
9	BCS01T1005	Data Structure Using C	2	0	2	3	50	_	50
10	BME01P1001	Digital Fabrication	0	0	2	1	50	-	50
11	BXX01T10XX	Electrical- AC/DC Machine Civil - Engineering Mechanics, Mechanical - Engineering Graphics, Electronics - Analog Circuits	2	0	2	3	20	30	50
			4						
		Total Samuetar III	11		18	20			
Sl	Course Code	Semester III Name of the Course					Asses	sment Pa	attern
No			L	Т	P	C	IA	MTE	ETE
1	BECE2015	Electronic Devices and Circuits	3	0	0	3	20	30	50

	NICATION LIV							,	
2	MATH2001	Functions of Complex Variables and Transforms	3	0	0	3	20	30	50
3	BTEE2002	Network Analysis and Synthesis	3	0	0	3	20	30	50
4	BEE01T2001	Sensors and Transducers	2	0	0	1	20	30	50
5	BEE01T2002	Design and Engineering	2	0	0	2	20	30	50
6	BECE2010	Digital Electronics	3	0	0	3	20	30	50
7	BECE2012	Electromagnetic Field Theory	3	0	0	3	20	30	50
8	BECE2011	Digital Electronics Lab	0	0	2	1	50	-	50
9	BEE01P2003	Engineering Clinic-I	0	0	2	2	50	-	50
1.0		English Proficiency and Aptitude					5 0		7 0
10	SLBT2021	Building - 3	0	0	2	1	50	-	50
11	BEE01P2004	IoT Lab	0	0	2	2	50	-	50
		Total	19	0	8	24			
		Total				24			
		Semester IV	ı						
Sl	Course Code	Name of the Course	T	/ID	n			sment Pa	
No	MATH2004	Drobability and Stochastic Process	L 3	T 0	P 0	C	IA	MTE	ETE
2	BECE2008	Probability and Stochastic Process Integrated Circuits	3	0	0	3	20	30	50
3	BECE2006 BECE2016	Signals and Systems	3	0	0	3	20	30	50
3	BECE2010	Analog and Digital	3	U	U	3	20	30	30
4	ECE417	Communication	3	0	0	3	20	30	50
5	BEE01T2005	Database Management System	3	0	0	3	20	30	50
3	DEE0112003	Microcontrollers and Embedded	3	U	U	3	20	30	30
6	BEE01T2006	System System	3	0	0	2	20	30	50
7	BEE01P2007	Engineering Clinic-2	0	0	2	2	50	_	50
8	BECE2009	Integrated Circuits Lab	0	0	2	1	50	_	50
9	BLL451	Logical and Critical reasoning	0	0	2	1	50	_	50
		Microprocessor and Micro							
10	BECE3005	Controller Lab	0	0	2	1	50	-	50
		Total	18		8	22			
		Semester V	•			•			
Sl	Course Code	Name of the Course		1		T	1	sment Pa	
No			L	T	P	C	IA	MTE	ETE
1	BEEE3002	Control System	3	0	0	3	20	30	50
2	BEE01T3001	EM Waves	3	0	0	3	20	30	50
3	BEE01P3002	Python and Data Structures	0	0	2	1	50	-	50
4	BECE3020	Digital Signal Processing	3	0	0	3	20	30	50
5	*****	Program Elective-I	3	0	0	3	20	30	50
6	******	Program Elective-II	3	0	0	3	20	30	50
7	BEE01P3003	Engineering Clinic-3(Industrial Internship)	0	0	2	2	50	-	50
8	BLL551	Effective Leadership and Decision Making Skills	0	0	2	1	50	-	50
9	BECE3021	Digital Signal Processing Lab	0	0	2	1	50	-	50
10	BLE601/BLE60 2/BLE603	Foreign Language - 1 (German, Japanese, French) *Optional	0	0	2	0	50	-	50

	JUICATION LIV								
11	BEE01P3004	Communication Engineering Lab	0	0	2	1	50	-	50
		Total				21			
	T	Semester VI	1						
Sl	Course Code	Name of the Course						sment Pa	
No			L	T	P	C	IA	MTE	ETE
1	BLL601	Campus to Corporate program	3	0	0	3	50	-	50
		Advanced Communication				i	20	30	50
2	BEE01T3005	Systems	3	0	0	3	20	30	30
3	BECE3013	VLSI Design	3	0	0	3	20	30	50
		Image Processing and Pattern				i	20	30	50
4	BEE01T3006	Recognition	3	0	0	3	20	30	30
5	******	Program Elective-III	3	0	0	3	20	30	50
6	******	Program Elective-IV	3	0	0	3	20	30	50
		Design and Innovation					50		50
8	BEE01P3007	Project(Communication Based)	0	0	2	1	50	-	50
		Professional Ethics and Human					~ 0		70
9	BEE01T3008	Values	2	0	0	1	50	-	50
10	BEE01P3009	VLSI and Embedded Systems Lab	0	0	2	1	50	-	50
		Total	20		4	21			
		Semester VII							
Sl	Course Code	Name of the Course						sment Pa	
No			L	T	P	C	IA	MTE	ETE
1	BEE01T4001	Communication Networks	3	0	0	3	20	30	50
2	******	Open Elective -1	3	0	0	3	20	30	50
3	******	Program Elective-V	3	0	0	3	20	30	50
4	******	Program Elective-VI	3	0	0	3	20	30	50
5	******	Open Elective-2	3	0	0	3	20	30	50
6	BEE01P4002	Communication Networks Lab	0	0	2	1	50	-	50
7	BECE9998	Capstone Design - I	0	0	4	2	50	-	50
		Total							
		Semester VII	[
Sl								essment	
No	Course Code	Name of the Course	T			Pattern			
	BECE9999	Capstone Design - I	L 0	T 0	P 4	<u>C</u>	IA	MTE	ETE
	KHI HUUUU	I I SINCIANA LIACIAN - I	ı U	l U	. 4		50	1 -	50
1	BECE9999	Total		 	-				30

List of Electives

Elective-1

Sl	Course	Name of the Electives					Assess	sment Pa	ttern		
No	Code	Name of the Electives	L	T	P	C	IA	MTE	ETE		
	ІоТ										
	BECE4	Introduction to IoT and its	3	0	0	3	20	30	50		
1	501	Applications	3	U	0	٦	20	30	30		

	BECE3	Automation and Robotics	3	0	0	3	20	30	50
2	102	rationation and resources	3	Ü	Ü)	20	30	30
	BEE01	Doop Looming Algorithms	3	0	0	3	20	20	50
3	T4022	Deep Learning Algorithms	3	U	U	3	20	30	50
	BEE01	Object Oriental December 2	2	0	0	2	20	20	50
4	T3021	Object Oriented Programming	3	0	0	3	20	30	50
	BEE01	Water 1 Dec 114-	2	0	0	2	20	20	70
5	T5021	Virtual Reality	3	0	0	3	20	30	50
	BEE01	Deanhaum Di and its applications	3	0	0	3	20	20	70
6	T5022	Raspberry Pi and its applications	3	U	U	3	20	30	50
	BEE01	Introduction to Arduino programming	3	0	0	2	20	20	70
7	T2021	and its applications	3	U	0	3	20	30	50
	BEE01	Cloud Computing	3	0	0	3	20	20	70
8	T4022	Cloud Computing	3	U	U	3	20	30	50
	BEE01	Duthon Decreaming	3	0	0	3	20	20	70
9	T2022	Python Programming	3	U	U	3	20	30	50

Elective-2

Sl	Course	Name of the Electives					Assess	sment Pa	attern			
No	Code	Name of the Electives	L	T	P	C	IA	MTE	ETE			
	Biomedical Engineering and Healthcare											
1	BEE01 T2022	Medical Imaging	3	0	0	3	20	30	50			
2	BEE01 T2024	Biosignal processing	3	0	0	3	20	30	50			
3	BEE01 T3022	Medical Image Processing	3	0	0	3	20	30	50			
4	BEE01 T3023	Biomedical Sensors and Measurement Devices	3	0	0	3	20	30	50			
5	BEE01 T3024	Biomaterials and Artificial Organs	3	0	0	3	20	30	50			
6	BEE01 T4023	Assist Devices	3	0	0	3	20	30	50			
7	BECE4 401	Soft Computing Techniques	3	0	0	3	20	30	50			
8	BEE01 T5023	Hospital Engineering and Informatics Systems	3	0	0	3	20	30	50			
9	BEE01 T2025	BioChemistry	3	0	0	3	20	30	50			

Elective -3

Sl	Course	Name of the Electives		Assessment Pattern						
No	Code	Name of the Electives	L	T	P	C	IA	MTE	ETE	

		VLSI							
	BEE01		3	0	0	3	20	30	50
1	T3025	ASIC Design	3	U	U	3	20	30	30
	BEE01	CAD Algorithms for VLSI Physical	3	0	0	3	20	30	50
2	T3026	Design	,	U	Ü	J	20	30	30
	BEE01		3	0	0	3	20	30	50
3	T2026	Digital VLSI Design	,	U	Ü	J	20	30	30
	BECE3		3	0	0	3	20	30	50
4	104	Digital System Design using VHDL		U	Ü	3	20	30	30
	BEE01		3	0	0	3	20	30	50
5	T4024	SoC Design		U	Ü	3	20	30	30
	BEE01		3	0	0	3	20	30	50
6	T4025	System Verilog		Ü	Ü	3	20	30	50
	BEE01		3	0	0	3	20	30	50
7	T4026	Low Power VLSI Design			Ŭ		20	30	50
8		VLSI Technology	3	0	0	3	20	30	50
	BEE01		3	0	0	3	20	30	50
9	T5024	VLSI Testing		U	Ü	3	20	30	30
	BEE01	MEMS	3	0	0	3	20	30	50
10	T5025	WILIVIS	3	U	U	3	20	30	30
	BEE01		3	0	0	3	20	30	50
11	T5026	Memory Design and Testing	,	U	U	,	20	30	30
	BEE01		3	0	0	3	20	30	50
12	T5027	MOS Transistor Theory	,	U	U	,	20	30	30

Elective – 4

Sl	Course	Name of the Electives	Assessmen						ent Pattern			
No	Code	Name of the Electives	L	T	P	C	IA	MTE	ETE			
	Communication and Networking											
1	BECE3 103	Satellite Communication	3	0	0	3	20	30	50			
2	BEE01 T3027	Principles of Secure Communication	3	0	0	3	20	30	50			
3	BEE01 T3028	Microwave Theory and Techniques	3	0	0	3	20	30	50			
4	BECE3 204	Mobile Ad Hoc Networks	3	0	0	3	20	30	50			
5	BECE4 402	Mobile Computing	3	0	0	3	20	30	50			
6	BECE3 006	Microwave Engineering	3	0	0	3	20	30	50			
7		Information Theory and Coding	3	0	0	3	20	30	50			

	BEE01	Dodon Cuidonos and Navigation	2	0	0	3	20	20	50
8	T4027	Radar Guidance and Navigation	3	0	0	3	20	30	50
	BECE3	Optical Communication	2	0	0	3	20	20	50
9	016	Optical Communication	3	U	U	3	20	30	50
	BECE3	Wireless Sensor Networks	2	0	0	3	20	20	50
10	203	Wheless Selisor Networks	3	U	U	3	20	30	50
	BEE01		2	0	0	3	20	20	50
11	T4028	Opto Electronics	3	0	U	3	20	30	50

Elective – 5

Sl	Course	Ni					Assessment Pattern				
No	Code	Name of the Electives	L	T	P	C	IA	MTE	ETE		
		Signal Processin	ıg								
1	BEE01 T4021	Image and Video Signal Processing	3	0	0	3	20	30	50		
2	BEE01 T5028	Multimedia Signal Processing and Networking	3	0	0	3	20	30	50		
3	BEE01 T3029	Speech and Audio Processing	3	0	0	3	20	30	50		
4	BEE01 T2027	Machine learning	3	0	0	3	20	30	50		
5	BEE01 T2028	Image Processing using MATLab	3	0	0	3	20	30	50		
6	BEE01 T2029	Introduction to Scilab and its applications	3	0	0	3	20	30	50		
7	BEE01 T5029	Human Computer Interface	3	0	0	3	20	30	50		
8	BEE01 T5030	Advanced Digital Signal Processing	3	0	0	3	20	30	50		
9	BECE4 401	Soft Computing	3	0	0	3	20	30	50		
10	BEE01 T5031	Mixed Signal Circuit Design	3	0	0	3	20	30	50		
11	BECE3 304	Neural Networks and Fuzzy Control	3	0	0	3	20	30	50		
12	BEEC3 305	Neural Networks and Deep Learning	3	0	0	3	20	30	50		

Detailed Syllabus

Name of The	AC & DC Ci	rcuit	ts		
Course					
Course Code	BEEL101, B	EEP	101.		
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		1	-	2	2

Course Objectives

- 1. To study Different types of Circuit Elements
- 2. To study Basic Circuits Laws.
- 3. To study Basic Concepts of A.C. Circuits

Course Outcomes

Students will be able to

CO1	Understand relationship between different
COI	electrical parameters.
	Students will develop an ability to
CO2	analyze D.C Circuits of different
	configurations.
CO3	Understand magnetic aspects of electric
COS	current.
	Students will develop an ability to
CO4	analyze A.C. Circuits of different
	configurations
COF	Students will develop an ability to
CO5	analyze Resonance Circuits.

Continuous Assessment Pattern

Evalu	ation S	cheme		
	The	ory	Practical	Total
				Marks
TAE	CAE	ESE	Cont	
10	15	25	25	75

Course Content:

Unit I: D.C. Circuits: 8 Hours	CO
	Mapping
Circuits Elements(R, L, C),	
Kirchhoff's Laws, Superposition	
Principle and theorem, Norton's	CO1&CO2
theorem, Thevenin's Theorem,	
Voltage source, (definition,	
characteristics of practical source,	

equivalent current source) Star- Delta transformation	
Unit II:Magnetic circuits 7	
Hours	
Flux, mmf, reluctance, analogous electric circuits, simple calculations for composite magnetic circuits.	CO3
Unit III: A. C. Circuits	
10 Hours	
Periodic functions, average & rms values, Steady state behaviours with sinusoidal excitation, phasor representation, reactance and impedance, Series and Parallel A.C. circuits, resonance, power in A. C. circuits, power factor, Principle of generation of single phase & Three phase voltages. Power in balanced three phase A.C. systems.	CO4& CO5

Suggested Reading

- 1. Textbook of Electrical Engineering, B.L. Theraja, Vol. I & II, Twenty, S. Chand & Co 1997 Second.
- 2. Basic Electrical Engineering, D C.Kulkshreshtha, McGraw,2012 , First.
- 3.Introduction to Electrical Engineering, Naidu, Kamakshaia, Tata McGraw Hill, 2000, Third
- 4. Basic Electrical Engineering, H. Cotton, CBC, 2005, Seventh
- 5.Laboratory courses in Electrical Engg, S G Tarnekar, P K Kharbanda, S B Bodkhe, S D Naik, S. Chand & Co, 2010, Second.

List of Experiment

	1
1.	To Verify KVL & KCL.
2.	To plot B-H Curve Of Magnetic Material.
3.	Verification Of Line Voltage and Phase
	Voltage In Three Phase Star Connected
	Balanced Load.
4.	Study of phase relationship in R-L-C
	network by computer simulation using P-
	SIM Software.
5.	Open Ended
	1) To Study 11 KV distribution Substation
	(Overview).
	2) To Study Ferranti Effect.
	3) To Study different types of FACT
	Controller.
	4)To Study Comparison between DC Motor
	& Induction Motor.

Name of The	AC & DC M	achir	nes		
Course					
Course Code	BEEL102				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		2	-	-	2

Course Objectives

- 1. To prepare the students to understand basic fundamentals of Electrical Circuits
- 2. To make the students aware about basic principle of operation of Electrical machines under the Influence of magnetic field.

Course Outcomes

Student will be able to

CO1	Understand Concepts of energy transfer
CO1	through magnetic coupling.
CO2	Understand working principle of
CO2	transformer.
CO3	Understand Concepts of D.C machines.
CO4	Understand Operation of A.C machines.

Continuous Assessment Pattern

Evalu	ation S	cheme		
Theory		Practical	Total Marks	
TAE	CAE	ESE	Cont	112012115
10	15	25		50

Course Content:

Unit I:Single Phase Transformers	CO
Hours 10	Mapping
Introduction, Basic principle,	CO1
construction of phasor diagram for	&CO2
transformer under no load condition,	
Transformer on load, EMF equation	
Phasor diagrams, Equivalent circuit,	
Losses, Efficiency, Regulation,	
Open-circuit & short-circuit test.	
Unit II:D. C. Machines Hours 10	
Introduction, construction, EMF and	
Torque equation, classification, self-	CO3
excitation of D.C. shunt generators,	
EMF, voltage, current relations in	

generator and motor, Characteristics, starting and speed control of d. c. motors.	
Unit III: Introduction to AC	
Motors.Hours10	
Three phase Induction motor Construction, and principle of rotating field, synchronous speed,	CO4
Rotor current, torque and slip, Principle of Single phaseCapacitor Start motor.	

Suggested Reading

1.Basic Electrical Engineering, D C.

Kulkshreshtha, McGraw, 2012, First

- 2.Textbook of Electrical Engineering, B. L. Theraja, Vol. I & II, Twenty, S. Chand & Co., 1997, Second.
- 3.Introduction to Electrical Engineering, Naidu, Kamakshaia, Tata McGraw Hill, 2000, Third
- 4. Basic Electrical Engineering, H. Cotton , CBS, 2005, Seventh.
- 5.Laboratory courses in Electrical Engg. S. Chand &Co., 2010 ,Second.
- 6. Electric Machines, Kothari, Nagrath, Tata McGraw Hill, 2006, ThirdEdition.

Name of The	Energy Sources & Audit				
Course					
Course Code	BEEL103				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		1	-	-	1

Course Objectives

- 1. To study the various types of Electrical Sources.
- 2. To study the comparison of various sources.
- 3. To study the Non-conventional electrical sources.

Course Outcomes

Student will be able to

CO1	To understand present scenario of energy & its importance.
CO2	To Learn Conventional energy sources &Non conventional Energy sources.
CO3	To Understand concept of Energy Management

CO4	To apply knowledge of energy audit to industry.
CO5	To understand importance of safety
	components.

Continuous Assessment Pattern

Evalu	Evaluation Scheme						
	The	eory	Practical	Total Marks			
TAE	CAE	ESE	Cont	112412			
10	15			25			

Course Content:

Unit I:Current Energy Scenario	CO	
Hours 4	Mapping	
Conventional Energy Sources, Types of conventional energy sources, importance & drawbacks of Conventional Energy Sources, Alternatives to conventional energy sources. Non Conventional Energy Sources, Types of non-conventional energy sources, importance& drawbacks of Non-Conventional Energy Sources, Comparison with conventional energy sources & its application.	CO1 & CO2	
Unit II: Energy Management		
&Audit Hours 4 Definition, need and types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.	CO3 & CO4	
Unit III:Electrical Installations 6		
Hours Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, types of Earthing systems, power factor improvement.	CO5	

Suggested Reading

- 1.Non-Conventional Energy Resources, B H Khan, Tata McGraw-Hill Education, 01-Jan-2006, Second Edition
- 2. Energy Management Audit and Conservation, Barun Kumar De, Vrinda Publications, 2007, Third Edition.
- 3. Handbook of Energy Audit, Sonal Desai
- 4. Energy Management, Audit & Conservation by, Barun Kumar De.

Name of The	Introduction to Digital				
Course	Systems.				
Course Code	BECL101				
	BECP101				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		1	1	2	3

Course Objectives

- 1. To familiarize with various Digital IC
- 2. To understand basic fundamentals of Digital circuits.
- 3. To prepare for various engineering applications.

Course Outcomes

Student will be able to

CO1	Solve the problems on Number system
COI	codes and their conversions.
CO2	Identify Digital IC and implement in the
CO2	circuits.
CO3	Create, design and simulate canonical
CO3	logic forms.
	Demonstrate the application of
CO4	combinational and sequential logic
	circuits

Continuous Assessment Pattern

Evaluation Scheme					
Theory Practical T				Total	
TAE	CAE	ESE	Cont	Marks	
10	15	25	25	75	

Course Content:

UnitI:Number Systems & Boolean	CO
Algebra	Mapping
Hours 8	
Decimal, binary, octal, hexadecimal	
number system and conversion, binary	
weighted & non-weighted codes &	
code conversion, signed numbers, 1s	
and 2s complement codes, Binary	CO1

arithmetic, Binary logic functions,	
Boolean laws, truth tables, associative	
and distributive properties, De-	
Morgan's theorems, realization of	
switching functions using logic gates.	
Logic families: TTL, ECL, CMOS.	
Unit II: Combinational Logic:	
Hours 8	
Switching equations(Mathematical	
operations), canonical logic forms,	
sum of product & product of sums,	CO2
Karnaugh maps, two, three and four	
variable Karnaugh maps,	
simplification of expressions, mixed	
logic combinational circuits, multiple	
output functions, Quine Mcluskey	
Methods for 5 variables.	
Introduction to combinational circuits,	
code conversions, decoder, encoder,	
priority encoder, multiplexers & De-	
multiplexer, binary adder, Subtractor,	
BCD adder, carry look ahead adder,	
Binary comparator, Arithmetic Logic	
Units.	
Unit III:Sequential Logic &	
Circuits:	
Hours 8	
Latch, flip-flops, clocked and edge	
triggered flip-flops, timing	
specifications, asynchronous and	
synchronous counters counter design,	CO3,
Registers, types of registers. Analysis	CO4
of simple synchronous sequential	
circuits, Introduction to Mealy and	
Moore Circuits.	

Suggested Reading

- 1.Digital Electronics, R P Jain , McGraw Hill, 2017, Second edition.
- 2.Digital Electronic Principles, Malvino , PHI, 2011-13, Seventh Publication.
- 3. Digital Logic and Computer Design, Morris Mano,PHI, 2017review, second edition.

List of Experiment

Sr. No	List of Experiment
1.	To study the basic logic gates
	Verify their truth table.
	Verification of De Morgan's Theorem.

	** '' ' O O O O O O O O O O O O O O O O						
2.	Verification Of SOP & POS Given						
	Algebraic Expression Using Universal						
	Gates.						
3.	Designing of HALF and Full adder						
	using basic logic gates.						
4.	Design of 4:1 MULTIPLEXER USING						
	GATES.						
5.	Design and Implementation of 1-bit						
	Magnitude Comparator using basic						
	logic gates.						
6.	Design and Verification of S-R Flip-						
	Flop Circuits.						
7.	Realization of 3-bit synchronous						
	counter design For Various Application.						
	Frequency counters						
	Digital clock						
	Time measurement.						
8.	Project based learning: Building of LED						
	Series / Seven Segment LED / Display						
	unit.						
	Students Will Select a project and						
	1 0						
	Four.						
	Realization of 3-bit synchronous counter design For Various Application						

Name of The	Analog Circu	its			
Course					
Course Code	BECL102				
	BECP102				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		1	1	2	3

Course Objectives

- 1. To familiarize with various electronic components and understand their properties.
- 2. To understand basic fundamentals of analog circuits.
- 3. To prepare for various engineering applications.

Course OutcomesStudent will be able to

CO1	Understand the electronics devices.			
CO2	Understand electronics circuits and			
COZ	measure their performance parameters			
Create, design and simulateanalog				
COS	circuits by using diode and transistor			

Continuous Assessment Pattern

Evaluation Scheme		
Theory	Practical	

TAE	CAE	ESE	Cont	Total Marks
10	15	25	25	75

Course Content:

Course Content:	
Unit I: PN Junction Diode Hours	CO
8	Mapping
Review of PN junction, forward and	
reverse bias, VI Characteristics,	
Dynamic Resistance, Equivalent	
Circuit of diode, Temperature	
dependence. Diode numerical.	CO1
Varactor Diode, Tunnel Diodes, LED,	
LCD	
Unit II:Applications of	
Diodes&Linear Circuits:	
Hours 8	
Rectifier with C Filter, Numerical on	
Rectifiers, Clippers, Clampers,	CO2
Limiters, Low pass filter, High pass	
filter with characteristics.	
Unit III: Bipolar Junction	
Transistor and its application.	
Hours 8	
Transistor Doping, Transistor action,	
Current Components, BJT	
configurations: CE, CC, CB	
characteristics, Base Width	CO3,
Modulation. Punch Through Effect.	
DC load line, Fixed Bias Method.	
Single stage CE transistor as amplifier,	
BJT as a switch.	

Suggested Reading

Text Books:

- 1. Basic Electronics &Linear circuits: N.N. Bhargava, Tata Mcgraw-Hill, 2013, Second edition.
- 2. Electronic Devices & Circuits, Sanjiv Gupta Sanjay Gupta, Dhampat Rai

Publication,2012

Reference Books:

- Electronic Devices & Circuits Theory, Robert L. Boylestad, Louis Nashelsky, Pearson India, 2009, Tenth Edition.
- 2. Integrated Electronics, Jacob Millman, Tata Mcgraw-Hill, 2009, second edition.
- 3. Microelectronics Circuits, A.S. Sedra& K.C. Smith, Oxford University Press, 2013, seventh edition.

List of Experiments:

s.no	List of Experiment	CO Mapping
1.	To design clipper & clamper circuits by using basic components.	CO1 & CO2
2.	To design low pass filter by using basic components.	CO1 & CO2
3.	To design high pass filter by using basic components	CO1 & CO2
4.	To verify input characteristics and output characteristics of transistor in common base mode, to find out current gain, voltage gain, power gain.	CO3
5.	To design CE transistor as an attenuator switch	CO3
6.	To design CE transistor as an attenuator/using microcap simulation	CO3
7.	To design fixed bias for transistor.	CO3

Name of The Course	Embedded Programming				
Course Code	BECP103				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		-	-	2	1

Course Objectives

- 1. To give the awareness of major embedded devices
- 2. To give the knowledge about interfacing devices

Course Outcomes

Student will be able to					
CO1	Recogniz	e and ana	alyze given	en	nbedded
COI	system de	system design and its performance.			
	Demonstrate application based				
CO2	competencies in Embedded				
	Programm	ning.			
	Ev	aluation	Scheme		
	Theory	Practical		Total	
TAE	CAE	ESE	Cont		Marks
-	-	-	25		25
S.No	List of I	Experim	ents	C	O
					Tapping
1.	Introduct	ion to En	nbedded		CO1,CO2
1.	systems			•	01,002
2.	Getting st			•	CO1,CO2
4.	Arduino l		in the	·	.01,002
	Serial Co		ntion		
			board and		
	PC:-chara				
	received,				
	voltage.	ixcad and	a dispiay		
3.	Experime	nte neine	r cinala	_	CO1,CO2
J.	and multi			·	.01,002
	Experime	_			
	input and		_		
	Arduino l	•	•		
	using LE				
4.	Interfacin			$\overline{\mathbf{C}}$	CO1,CO2
1	potentiometer.		Ĭ	01,001	
5	Introduct		<u> </u>	C	CO1,CO2
	arithmetic operators, loops		Ū	01,001	
6.	Hands on	•	•	CO1,CO2	
0.		•		•	01,002
		Interfacing of the LDR,LCD			
	Experiment on LCD				
	display:-I	Print num	ibers,		
	Name, Ti				
7.	Experime		Seven	C	CO1,CO2
	Segment				
8.	Experiments using CO1,CO2				CO1,CO2
	Temperature , IR, Finger				
	print sensors.				
9.	Introduct		Γ and	C	CO1,CO2
	Raspberr				,
10.	Experime		•	C	CO1,CO2
	Raspberr		g LED.	_) = 2 =
11.	Interfacin			(CO1,CO2
	sensors.	o -1 mo	,	-	-, -,
12.	Experime	ents on th	ne	•	CO1,CO2
14.	Laperinic	ano on u		•	01,002

applications of Buzzer,

potentiometer.

13.	Introduction to cloud	CO1,CO2
	Programming.	
14.	Experiments on Interfacing	CO1,CO2
	with Bluetooth devices.	

Name of The	Internet of Th	ings	5		
Course					
Course Code					
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		-	-	2	1

Course Objectives

- 1. To understand key technologies in Internet of Things.
- 2. Analyze, design or develop parts of an Internet of Things solution
- 3. Students will understand the concepts of Internet of Things and can build IoT applications.

Course Outcomes

Student will be able to

Diadelli	will be uble to
CO1	Identify and adopt knowledge of the terminology, requirements and constraints for IoT system development.
CO2	Demonstrate IoT system for smaller applications.

Continuous Assessment Pattern

Evaluation Scheme					
Theory Practical Total					
TAE	TAE CAE ESE		Cont	Marks	
			25	25	

S.No	List of Experiments	CO
		Mapping
1.	Design and development of	CO1,CO2
	Arduino/Raspberry Pi	
	based system for defined	
	application/ projects.	
2.	Introduction to Embedded	CO1,CO2
	systems and its Scope.	

		I
3.	Getting started with the	CO1,CO2
	Arduino IDE	
	Serial Communication	
	between Arduino board and	
	PC:-character send and	
	received, Read and display	
4.	voltage. Experiments using single	CO1,CO2
٦.	and multiple LEDs.	CO1,CO2
	Experiments on digital	
	input and digital output on	
	Arduino Uno board and	
	using LED and Buzzer.	
5	-	CO1,CO2
]	Interfacing of the switches, potentiometer.	001,002
6.	Introduction to the	CO1,CO2
0.		CO1,CO2
7	arithmetic operators, loops.	CO1 CO2
7.	Hands on experiments on Interfacing of the	CO1,CO2
	LDR,LCD	
	Experiment on LCD	
	display:-Print numbers,	
	Name, Time etc.	
8.	Experiments using Seven	CO1,CO2
0.	Segment display.	CO1,CO2
9.	Experiments using	CO1,CO2
	Temperature, IR, Finger	,
	print sensors.	
10.	Introduction to IoT and	CO1,CO2
	Raspberry Pi architecture.	,
11.	Experiments with	CO1,CO2
	Raspberry Pi using LED.	,
12.	Interfacing of the LDR, IR	CO1,CO2
	sensors.	,
13.	Experiments on the	CO1,CO2
	applications of Buzzer,	ĺ
	potentiometer.	
14.	Introduction to cloud	CO1,CO2
	Programming.	<u> </u>
15.	Experiments on Interfacing	CO1,CO2
	with Bluetooth devices.	
16.	Design and development of	CO1,CO2
	Arduino/Raspberry Pi	
	based system for defined	
	application/ projects.	
		L

Semester III

Name of The	Electronic Devices and				
Course	Circuits				
Course Code	BECE2015				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

Course Objectives

To acquaint the students with the construction, theory and operation of the basic electronic devices such as PN junction diode, Bipolar and Field effect Transistors, Power control devices, LED, LCD and other Opto-electronic devices

Course Outcomes

CO1	Realize the transistor biasing methods and
COI	e
	Design analog electronic circuits using
	discrete components
CO2	Design common amplifier circuits and
	analyze the amplitude and frequency
	responses
CO3	Design various analog circuits to analyze
	their responses
CO4	Understand the principle of operation of
	different Oscillator circuits.
CO5	Understand the principle of operation of
	various amplifier circuits
CO6	Understand the recent trends and practical
	applicationsof electronic devices

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit-1 Introduction
8 hours
BJT and BJT Biasing .Hybrid models of CE, CB,
CC, configurations – Study of the effect of emitter
by- pass condenser at low frequencies - Hybrid -
π common emitter transistor model – hybrid π

conductance and capacitance – CE short circuit current gain – current gain with resistive load – gain bandwidth product – Study of the effect of un bypassed emitter resister on amplifier performance, Cascode amplifier. HF & LF compensation of RC coupled amplifier. Multistage Amplifiers.

Unit-2FET and FET Biasing8 hours

FET and FET Biasing. FET Amplifiers: Common source, Common gate and Common drain Amplifiers – problems. Small signal analysis of FET Amplifiers. High Frequency analysis of FET Amplifiers, VMOS & CMOS Concepts.

Unit-3Feedback amplifiers 8 hours

The feedback concept – Transfer gain with feedback – general characteristics and advantages of negative feedback – analysis of voltage series, Voltage shunt, current series and current shunt feedback amplifiers – Study of the effect of Negative feedback on Gain, Bandwidth, Noise, Distortion, Input and Output impedances with the help of Block Schematic and Mathematical Expressions

Unit-4Oscillators

8 hours

Sinusoidal oscillators –phase shift oscillator – Wien bridge oscillator – Hartley oscillator – Colpits oscillator – frequency stability, inclusive of design, Crystal oscillators.

Unit-5Tuned amplifiers 8 hours

Characteristics of Tuned amplifiers – Analysis of Single tuned, Doubled tuned and stagger tuned amplifiers, Gain – bandwidth product – High frequency effect – neutralization. Power Amplifiers: Classification of amplifiers – class A large signal amplifiers – second harmonic distortion – higher order harmonic generations – computation of Harmonic distortion – Transformer coupled audio power amplifier – efficiency – push - pull amplifier – class B amplifier – class AB operation – Push-Pull circuit with Transistors of Complimentary Symmetry.

Unit-6 Recent trends and Application 8 hours

Trend of Energy Saving in Electronic Devices, Application of oscillators- springs and damping, shock absorber in cars, Pendulum

Suggested Reading

 1. Jacob. Millman, Christos C.Halkias, 'Electronic Devices and Circuits', Tata McGraw Hill Publishing Limited, New

- Delhi, 2008, ISBN 0070634556, 9780070634558.
- 2. Jacob Millman and C. Halkias, 'Integrated Electronics Analog and Digital Circuits and Systems', Tata Mc Graw Hill, 2001, ISBN 0074622455, 9780074622452
- Electronic Devices & Circuits Theory Robert Boylestad and Louis Nashelsky, 10th EditionPrentice Hall, 2009, ISBN 0135026490, 9780135026496

Name of The	Network Anal	lysis	and	Į.	
Course	Synthesis				
Course Code	BTEE2002				
Prerequisite	Basic Electrical and				
	Electronics Er	ngin	eerii	ng	
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

Course Objectives

- 1. To learn the concepts of network analysis in electrical and electronics engineering.
- 2. To learn linear circuit analysis, graph theory and network theorems.
- 3. Analyze two port networks using Z, Y, ABCD and h parameters.

Course Outcomes

CO1	Apply the knowledge of graph theory with
	basic circuital laws and simplify the
	network using reduction techniques
CO2	Analyze the circuit using Kirchhoff's law
	and Network simplification theorems
CO3	Infer and evaluate transient response,
	Steady state response, network functions
CO4	Evaluate two-port network parameters and
	explain the inter-relationship among
	parameters for network analysis.
CO5	Synthesize one port network using Foster
	and Cauer Forms and
CO6	Examine active filter configurations for
	possible applications in network theory.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit-1GraphTheory	6
hours	

Graph of a Network, definitions, tree, co tree, link, basic loop and basic cut set, Incidence matrix, cut set matrix, Tie set matrix Duality, Loop and Nodal methods of analysis.

Unit-2Network Theorems (Applications to ac networks) 9 hours

Super-position theorem, Thevenin's theorem, Norton's theorem, maximum power transfer theorem, Reciprocity theorem.

Millman'stheorem, compensation theorem, Tellegen's theorem.

Unit-3Network Functions and Transient analysis 11 hours

Transform Impedances Network functions of one port and two port networks, concept of poles and zeros, properties of driving point and transfer functions, time response and stability from pole zero plot, transient analysis of ac & dc systems.

Unit-4Two Port Networks 10 hours

Characterization of LTI two port networks ZY, ABCD and h parameters, reciprocity and symmetry. Inter-relationships between the parameters, inter-connections of two port networks, T & Π Representation.

Unit-5Network Synthesis & Filters 9 hours

Positive real function; definition and properties; properties of LC, RC and RL driving point functions, synthesis of LC, RC and RL driving point immittance functions using Foster and Cauer first and second forms. Image parameters and characteristics impedance,

Unit-6 Filters

Passive and active filter fundamentals, low pass, high pass, (constant K type) filters, and introduction to active filters.

Suggested Reading

- 1. M. E. Van Valkenburg, "Network Analysis", Prentice Hall, 2006.
- 2. D. Roy Choudhury, "Networks and Systems", New Age International Publications, 1998.
- 3. W. H. Hayt and J. E. Kemmerly, "Engineering

School of Electrical, Electronics and Communication Engineering

Circuit Analysis", McGraw Hill Education, 2013. 4. C. K. Alexander and M. N. O. Sadiku, "Electric Circuits", McGraw Hill Education, 2004. 5. K. V. V. Murthy and M. S. Kamath, "Basic Circuit Analysis", Jaico Publishers, 1999.A.Chakrabarti, "Circuit Theory" DhanpatRai& Co

Name of The	Sensors and Transducers				
Course					
Course Code	BEE01T2001				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

Course Objectives

- 1. To make students familiar with the constructions and working principle of different types of sensors and transducers.
- 2. To gain an in-depth understanding of the operation of microcontrollers, machine language programming & interfacing techniques with peripheral devices
- 3. To gain an understanding of applications of microcontroller in designing processor-based automated electronics system.

Course Outcomes

CO1	Apply network theorems for the analysis
	of electrical circuits
CO2	Obtain the transient response of electrical
	circuits
CO3	Obtain the steady-state response of
	electrical circuits
CO4	Analyze circuits in the sinusoidal steady-
	state (single-phase and three-phase).
CO5	Analyze two port circuit behavior.
CO6	Analyze the sensors used in IoT
	applications

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

UNIT-I: TRANSDUCERS 8-HOURS

Introduction to transducer, classification and characteristics of transducers, Resistive Transducers: principle of resistive strain gauge, signal conditioning circuit, Displacement Transducers: L.V.D.T, applications. Temperature Transducers: resistance temperature detectors (RTD), thermocouple. pressure transducers: diaphragm pressure transducer.

UNIT-II: SENSORS 8-HOURS

Introduction to sensors , classification, difference between transducer and sensors, Radiation Sensors: LDR, photodiodes - construction and response. Capacitive Sensor : stretched diaphragm type – microphone - construction and characteristics, ultrasonic sensor, optical sensor, magnetic sensor, sensor interface: signal processing ,introduction to smart sensor .

UNIT-III: MICROCONTROLLER

8-HOURS

Introduction to single chip microcontrollers, 8051-architecture —instruction sets , addressing modes, memory organizations, assembly language programming, programming interrupts, timers and serial communication .

UNIT-IV: IOT & EMBEDDED SYSTEM 8-HOURS

Introduction to IoT, physical design of IoT, logical design of IoT- functional blocks of IoT, challenges in IoT. introduction to embedded system ,difference between CISC and RISC Architecture, embedded system design methodologies, embedded controller design for communication, digital control.

UNIT-V: INTERFACING

8-HOURS

Sensors interfacing with embedded controller, ADC, DAC ,LCD, weather monitoring system, water monitoring system, line follower robot ,distance sensor interface .

UNIT-VI Sensor used in industry for IoT Application Development 6 hrs

Temperature Sensor, Proximity sensos, Water Quality sensors, Gas Sensors, Smoke sensors, IR sensors, Motion Detection sensors

Suggested Reading

- 1. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation' Dhanpat Rai and Co 2004.
- 2. D.V.S.Murty ,Transducers and instrumentations , 2nd edition, Prentice Hall of India,2012.
- 3. Mohammad Ali Mazidi and Janice Gillispie Maszidi "The 8051 Microcontroller and Embedded Systems" Pearson education, 2003, ISBN-9788131710265, 2ndEdition
- 4. D. Patranabis, Sensors and Transducers, 2nd edition, Prentice Hall of India, 2010, E.A.
- Microcontrollers: Architecture, Programming, Interfacing and System Design", Raj Kamal, "Pearson Education, 2005.
- 6. "The 8051 Microcontroller Architecture, Programming & Applications", 2e Kenneth .Ayala ;, Penram International, 1996 / Thomson Learning 2005.

Name of The	Design and E				
	Design and E	ngm	eem	ng	
Course					
Course Code	BEE01T2002	,			
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

Course Objectives

- 1. To excite the student on creative design and its significance;
- 2. To make the student aware of the processes involved in design;
- 3. To make the student understand the interesting interaction of various segments of humanities, sciences and engineering in the evolution of a design;
- 4. To get an exposure as to how to engineer a design.

Course Outcomes

	Realize the different elements involved in
CO1	good engineering designs and apply them
	in practice when called for.

SCHOOL OF ELECTRICAL, ELECTRONICS AND School of Electrical Electronics and Communication

	Engineering
	Explain the product oriented and user
CO2	oriented aspects that make the design a
	success.
	Implement innovative designs
CO3	incorporating different segments of
	knowledge gained.
CO4	Analyse the existing resources and select
C04	the apt resources and modern design tools.
	Illustrate the perspective of design
CO5	covering function, cost, environmental
COS	sensitivity, safety and other factors other
	than engineering analysis.
CO6	Explain the Engineering Design created
CO6	proficiently to the society.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit-1 Introduction	1
O house	

Design and its objectives; Design constraints, Design functions, Design means and Design from; Role of Science, Engineering and Technology in design; Engineering as a business proposition; Functional and Strength Designs. Design form, function and strength;

Unit-2Design process 8 hours

Design process- Different stages in design and their significance; Defining the design space; Analogies and "thinking outside of the box"; Quality function deployment-meeting what the customer wants; Evaluation and choosing of a design.

Unit-3Prototyping8 hours

Prototyping- rapid prototyping; testing and evaluation of design; Design modifications; Freezing the design; Cost analysis. Engineering the Design – from prototype to product; Planning, Scheduling, Supply chains, Inventory, handling, manufacturing/ construction operations; storage, packaging, shipping, marketing, feedback on design.

Unit-4	Design	Attributes
8 hours	-	

Product Centered and User Centered design, Product centered attributes and user centered attributes; Value engineering, concurrent engineering and reverse engineering in design; Culture based Design.

TT '. 7		1 1	ъ.
Unit-5	Mo	dular	Design
8 hours			
Modular 1	Design, design	optimizati	on, Intelligent
and auto	onomous pro	ducts, Use	er interfaces,
communi	cation betwee	n products	; autonomous
products,	internet of th	ings; huma	n psychology
and the ac	dvanced produ	cts. IPR, pro	oduct liability.
Unit-6	Technology	Trends in	Engineering
Design		8	Hours
Introducti	on: Digita	l Twins	, Artificial
Intelligen	ce, Robotics,	3D Printin	g, Generative
Design			

Suggested Reading

- Balmer, R. T., Keat, W. D., Wise, G., and Kosky, P., Exploring Engineering, Third Edition: An Introduction to Engineering and Design - [Part 3 - Chapters 17 to 27], ISBN-13: 978-0124158917 ISBN-10: 0124158919
- Dym, C. L., Little, P. and Orwin, E. J., Engineering Design - A Project based introduction- Wiley, ISBN-978-1-118-32458-5
- 3. Eastman, C. M. (Ed.), Design for X Concurrent engineering imperatives, 1996, ISBN 978-94-011-3985-4 Springer

Name of The	Digital Electr	Digital Electronics				
Course						
Course Code	BECE2010					
Prerequisite						
Co-requisite						
Anti-requisite						
		L	T	P	C	
		3	0	0	3	

Course Objectives

- **1.** To present the Digital fundamentals, Boolean algebra and its applications in digital systems
- **2.** To familiarize with the design of various combinational digital circuits using logic gates
- **3.** To introduce the analysis and design procedures for synchronous and asynchronous sequential circuits
- **4.** To explain the various semiconductor memories and related technology
- **5.** To introduce the electronic circuits involved in the making of logic gates

Engineering Course Outcomes

Course	o dicomes
CO1	Design and analyze combinational logic
COI	circuits
	Design & analyze modular combinational
CO2	circuits with MUX/DEMUX, Decoder,
	Encoder
CO3	Understand Logic Families and Design
CO3	memories
CO4	Design & analyze synchronous sequential
CO4	logic circuits
CO5	Use HDL & appropriate EDA tools for
CO3	digital logic design and simulation
CO6	Design application specific simple digital
C06	circuits.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit-1 Introduction 8 hours

Logic Simplification and Combinational Logic Design: Review of Boolean Algebra and De Morgan's Theorem, SOP & POS forms, Canonical forms, Karnaugh maps up to 6 variables, Binary codes, Code Conversion.

Unit-2MSI devices 8 hours

MSI devices like Comparators, Multiplexers, Encoder, Decoder, Driver & Multiplexed Display, Half and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder, Barrel shifter and ALU.

Unit-3Sequential Logic Design 8 hours

Sequential Logic Design: Building blocks like S-R, JK and Master-Slave JK FF, Edge triggered FF, Ripple and Synchronous counters, Shift registers, Finite state machines, Design of synchronous FSM, Algorithmic State Machines charts. Designing synchronous circuits like Pulse train generator, Pseudo Random Binary Sequence generator, Clock generation.

Unit-4Logic Families and Semiconductor Memories 8 hours

Logic Families and Semiconductor Memories: TTL NAND gate, Specifications, Noise margin, Propagation delay, fan-in, fan-out, Tristate TTL, ECL, CMOS families and their interfacing, Memory elements, Concept of Programmable logic devices like FPGA. Logic implementation using Programmable Devices.

Unit-5 VLSI Design flow 8 hours

VLSI Design flow: Design entry: Schematic, FSM & HDL, different modeling styles in VHDL, Data types and objects, Dataflow, Behavioral and Structural Modeling, Synthesis and Simulation VHDL constructs and codes for combinational and sequential circuits.

Unit 6

Design and Implementation of Application specific digital circuits. Introduction of Microprocessors.

Suggested Reading

- 1. R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009.
- 2. Douglas Perry, "VHDL", Tata McGraw Hill, 4th edition, 2002.
- 3. W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd edition ,2006.
- 4. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989
- 5. Charles Roth, "Digital System Design using VHDL", Tata McGraw Hill 2nd edition 2012.

Name of The	Electromagnetic Field Theory				
Course					
Course Code	BECE2012				
Prerequisite	Physics				
Corequisite	Physics				
Antirequisite					
		L	T	P	C
		3	0	0	3

Course Objectives:

- 1. To gain conceptual and basic mathematical understanding of electric and magnetic fields in free space and in materials
- 2. To understand the coupling between electric and magnetic fields through Faraday's law, displacement current and Maxwell's equations
- 3. To understand wave propagation in lossless and in lossy media
- 4. To be able to solve problems based on the above concepts

Course Outcomes

CO1	Apply coordinate systems and
	transformation techniques to solve
	problems on Electromagnetic Field Theory
CO2	Apply the concept of static electric field
	and solve problems on boundary value
	problems.
CO3	Analyze the concept of static magnetic
	field and solve problems using Biot -
	Savart's Law, Ampere's circuit law,
	Maxwell's equation.
CO4	Understands magnetic forces, magnetic
	dipole and magnetic boundary conditions.
CO5	Understands the time-varying
	Electromagnetic Field and derivation of
	Maxwell's equations.
CO6	Understand the applications of
	Electromagnetism in Daily Life.

Unit-1 Coordinate Systems and Transformation **8 hours**

Coordinate Systems and Transformation: Basics of Vectors: Addition, subtraction and multiplications; Cartesian, Cylindrical, Spherical transformation. Vector calculus: Differential length, area and volume, line surface and volume integrals, Del operator, Gradient, Divergence of a vector, Divergence theorem, Curl of a vector, Stokes's theorem, Laplacian of a scalar.

Unit-2	Electrostatic	fields
8 hours		

Electrostatic fields: Coulombs law and field intensity, Electric field due to charge distribution, Electric flux density, Gausses' Law- Maxwell's equation, Electric dipole and flux line, Energy density in electrostatic fields, Electric field in material space: Properties of materials, convection

and conduction currents, conductors, polarization in dielectrics, Dielectric-constants, Continuity equation and relaxation time, boundary conditions, Electrostatic boundary value problems: Poisson's and Laplace's equations., Methods of Images.

Unit-3Magneto statics 8 hours

Magneto statics: Magneto-static fields, Biot - Savart's Law, Ampere's circuit law, Maxwell's equation, Application of ampere's law, Magnetic flux density- Maxwell's equation, Maxwell's equation for static fields, magnetic scalar and vector potential.

Unit-4Magnetic	forces
8 hours	

Magnetic forces: Materials and devices, Forces due to magnetic field, Magnetic torque and moment, a magnetic dipole. Magnetization in materials, Magnetic boundary conditions, Inductors and inductances, Magnetic energy.

Unit-5Time-varying Fields8 hours

Time-varying Fields: Maxwell's equation, Faraday's Law, transformer and motional electromotive forces, Displacement current, Maxwell's equation in final form, Power and the pointing vector. Basics of Transmission lines.

Unit-6 Applications of Electromagnetism 6 hrs

Household Application, Industrial Application, Magnetic Levitation Trains, Communication System, medical Systems

Continuous Assessment Pattern

Internal	Mid	End	Total		
Assessment	Term	Term	Marks		
(IA)	Test	Test			
	(MTE)	(ETE)			
20	30	50	100		

Suggested Reading

- Principles of Electromagnetics N. O. Sadiku, Oxford University Press Inc
- 2. Engineering Electromagnetics W H Hayt, J A Buck, McGraw Hill Education
- 3. Electromagnetic Waves, R.K. Shevgaonkar, Tata McGraw Hill India, 2005
- 4. Electromagnetics with Applications, Kraus and Fleish, Edition McGraw Hill International Editions, Fifth Edition, 1999

Name of The	Digital Electronics Lab
Course	

Course Code	BECE2011				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		0	0	2	1

Course Objectives

Students will learn and understand the Basics of digital electronics and able to design basic logic circuits, combinational and sequential circuits.

Course Outcomes

	<u> </u>
CO1	Understanding of Digital Binary System
COI	and implementation of Gates
	Design the Sequential circuits with the
CO2	help of combinational circuits and
	feedback element
CO3	Design data selector circuits with the help
COS	of universal Gates
CO4	Design the flip –flop and counters.
CO5	Design the counters with the help of
COS	sequential circuit and basic Gates.
CO6	Implement the projects using the digital
CO0	ICs and electronics components

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

- 1. Introduction to digital electronics labnomenclature of digital ICs, specifications, study of the data sheet, Concept of Vcc and ground, verification of the truth tables of logic gates using TTL ICs.
- 2. Implementation of the given Boolean function using logic gates in both SOP and POS forms.
- 3. Verification of state tables of RS, JK, T and D flip-flops using NAND & NOR gates.
- 4. Implementation and verification of Decoder using logic gates.
- 5. Implementation and verification of Encoder using logic gates.
- 6. Implementation of 4:1 multiplexer using logic gates.

- 7. Implementation of 1:4 demultiplexer using logic gates.
- 8. Implementation of 4-bit parallel adder using 7483 IC
- 9. Design, and verify the 4-bit synchronous counter.
- 10. Design, and verify the 4-bit asynchronous counter
- 11. Implementation of Mini Project using digital integrated circuits and other components.

Name of The	Engineering (Clini	c-I		
Course					
Course Code	BEE01P2003				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
	_	0	0	4	2

Course Objectives

- 1. To study basic electronic components
- 2. To observe characteristics of electronic devices

Course Outcomes

	Plot the characteristics of semiconductor
CO1	diodes and transistors to understand their
	behaviour.
CO ₂	Design, construct and test amplifier
COZ	circuits and interpret the results
	Operate electronic test equipment and
CO3	hardware tools to characterize the
	behaviour of devices and circuits
	Operate electronic test equipment and
CO4	software tools to characterize the
	behaviour of devices and circuits
CO5	Design and test the Diode clippers,
COS	clampers and rectifiers.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

- 1. Study of Instruments and components
- 2. V-I Characteristics of Si and Ge Diodes

- 3. Zener Diode Characteristics and Zener Diode as Voltage Regulator
- 4. Clippers and clampers
- 5. Half Wave and Full Wave Rectifiers
- 6. BJT Characteristics
- 7. FET Characteristics
- 8. BJT Biasing
- 9. FET Biasing
- 10. BJT as an Amplifier
- 11. UJT characteristics

Name of The	IoT Lab				
Course					
Course Code	BEE01P2004				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		0	0	2	2

Course Objectives

- 1.To create an environment for research, design, development and testing of IoT solutions, in the field of energy management, communication systems, distributed sensor devices and advanced user interfaces
- 2.To provide a large-scale IoT system for the collection of information from the environment and its transfer to a server, as well as the skills necessary for the development of control logics, processing and display of data
- 3.To this end, IoT Laboratory is equipped with devices for the monitoring of energy consumption of electrical appliances, sensors for the monitoring of environmental parameters such as temperature and humidity and the communication infrastructure necessary to deliver the acquired information to a server

Course Outcomes

	Investigate a variety of emerging devices and technologies such as smart sensing,
CO1	pervasive connectivity, virtual interfaces
COI	& ubiquitous computing and their
	potential applications in consumer, retail,
	healthcare and industrial contexts
	Collaborate on research with industry
CO2	partners to address significant and
CO2	complex challenges surrounding IoT
	technologies and applications
CO3	This may be used as a platform for
CO3	conducting consultancy work required by

	government/Private organizations in around NCR
CO4	Enable faculty learning, research and hands-on experimentation to discover and demonstrate the promise of the Internet of Things
CO5	Provide students unique interdisciplinary learning and innovation experiences with IoT technologies

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

- 1. Exercise on Eclipse IoT Project.
- 2. Experiments on few Eclipse IoT Projects.
- 3. Any Experiment on architecture of Iot Toolkit.
- 4. Exercise on smart object API Gateway service reference implementation in IoT Toolkit.
- 5. Experiment on HTTP-to-CoAP semantic mapping Proxy in IoT Toolkit.
- 6. Experiment on Gate way as a service deployment in IoT Toolkit.
- 7. Experiment on application framework and embedded software agents for IoT Toolkit.
- 8. Exercise on working principle of Rasberry Pi.
- 9. Experiment on connectivity of Rasberry Pi with existing system components.

Semester IV

Name of The	Integrated Circuits				
Course					
Course Code	BECE2008	BECE2008			
Prerequisite	Analog electronics				
Corequisite	Analog electronics				
Antirequisite					
		L	T	P	C
	3 0 0 3				

Course Objectives:

- 1. To introduce the basic building blocks of linear integrated circuits
- 2. To learn the linear and non-linear applications of operational amplifiers
- 3. To introduce the theory and applications of analog multipliers and PLL

- 4. To learn the theory of ADC and DAC
- 5. To introduce the concepts of waveform generation and introduce some special function ICs

Course Outcomes

CO1	Illustrate the AC, DC characteristics and
	compensation techniques of Operational
	Amplifier
CO2	Realize the applications of Operational
	Amplifiers
CO3	Clarify and Analyze the working of
	Analog Multipliers and PLL
CO4	Classify and realize the working principle
	of various converter circuits using Op-
	Amps
CO5	Demonstrate the function of various
	signal generators and Waveform Shaping
	Circuits
CO6	Analyse the performance of Operational
	Amplifier Circuits.

Course Content:

Unit-1	Introduction
0.1	_

Analysis of difference amplifiers, Monolithic IC operational amplifiers, specifications, frequency response of op-amp,, slew rate and methods of improving slew rate, Linear and Nonlinear Circuits using operational amplifiers and their analysis, Inverting and Non inverting Amplifiers.

Unit-2

Differentiator, Integrator, Voltage to Current convertor, Low pass, high pass, band pass filters, comparator, Multi-vibrator and Schmitt trigger, Triangle wave generator, Precision rectifier, Log and Antilog amplifiers, Non-linear function generator, Sine wave Oscillators.

Unit-3

Analysis of four quadrant and variable transconductance multipliers, Voltage controlled Oscillator, Closed loop analysis of PLL, Frequency synthesizers, Compander ICs.

Unit-4

Analog switches, High speed sample and hold circuits and sample and hold IC's, Types of D/A converter- Current driven DAC, Switches for DAC, A/D converter, Flash, Single slope, Dual slope, Successive approximation, Voltage to Time and Voltage to frequency converters.

Unit-5

Wave shaping circuits, Multivibrator-Monostable&Bistable, Schmitt Trigger circuits, IC 555 Timer, Application of IC 555, Switched capacitor filter, Frequency to Voltage converters. Unit 6

Voltage to Frequency converters, Audio Power amplifier, Video Amplifier, Isolation Amplifier, Optocouplers and fibre optic IC.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Suggested Reading

- Sergio Franco, "Design with operational amplifiers and analog integrated circuits", McGraw Hill, 2002, ISBN 0070530440, 9780070530447
- Ramakant A. Gayakwad, "OP AMP and Linear IC's ", 4th Edition, Prentice Hall, 2000, ISBN 0132808684, 9780132808682
- 3. Botkar K.R., "Integrated Circuits", Khanna Publishers, 1996. Taub and Schilling, " Digital Integrated Electronics ", Tata McGraw-Hill Education, 2004, ISBN 0070265089, 9780070265080
- 4. Millman J. and Halkias C.C., "Integrated Electronics", McGraw Hill, 2001, ISBN 0074622455, 9780074622452

Name of The	Signals and Systems				
Course					
Course Code	BECE2016				
Prerequisite	Engineering Mathematics				
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

Course Objectives: To understand the basic properties of signal & systems • To know the methods of characterization of LTI systems in time domain • To analyze continuous time signals and system in the Fourier and Laplace domain • To analyze discrete time signals and system in the Fourier and Z transform domain

Course Outcomes

CO1	Understand various types of signals,		
	classify, analyze and perform various		
	operations on them.		
CO2	Classify the systems and realize their		
	responses		
CO3	Analyze the response of continuous time		
	systems using Fourier transforms		
CO4	Use Laplace and Z transform techniques as		
	tool for System analysis		
CO5	Analyze the continuous and discrete time		
	system functions		
CO6	Understand the application of Sampling		
	Theorem, Multirate Signal Processing and		
	their applications in real-world problems		

Course Content:

Unit-1	Introduction
8 hours	

Signals and systems as seen in everydaylife, and in various branches of engineering and science. Types of signals and their representations: continuous-time/discrete-time, periodic/non-periodic, even/odd, energy/power, deterministic/random, one dimensional/multidimensional; Basic Signals: unit impulse, unit step, unit ramp, exponential, rectangular pulse, sinusoidal; operations on continuous-time and discrete-time signals (including transformations of independent variables)

Unit-2 Classification of Systems 8 hours

Classification, linearity, time-invariance and causality, impulse response, characterization of linear time-invariant (LTI) systems, unit sample response, convolution summation, step response of discrete time systems, stability, convolution integral, co-relations, signal energy and energy spectral density, signal power and power spectral density, properties of power spectral density.

Unit-3 Fourier Series and Transforms 8 hours

Continuous-time Fourier series: Periodic signals and their properties, exponential and trigonometric FS representation of periodic signals, convergence, FS of standard periodic signals, salient properties of Fourier series, Definition, conditions of existence of FT, properties, magnitude and phase spectra, Parseval's theorem, Inverse FT, Discrete time Fourier transform (DTFT), inverse DTFT,

convergence, properties and theorems, Comparison between continuous time FT and DTFT.

Unit-4 Laplace Transforms and Z Transforms 8 hours

One-sided LT of some common signals, important theorems and properties of LT, inverse LT, solutions of differential equations using LT, Bilateral LT, Regions of convergence (ROC), One sided and Bilateral Z-transforms, ZT of some common signals, ROC, Properties and theorems, solution of difference equations using one-sided ZT, s- to z-plane mapping

Unit-5 Analysis of LTI systems 8 hours

Analysis of first order and second order systems, continuous-time (CT) system analysis using LT, system functions of CT systems, poles and zeros, block diagram representations; discrete-time system functions, block diagram representation, illustration of the concepts of system bandwidth and rise time through the analysis of a first order CT low pass filter

Unit VI: **Multirate Signal Processing** 8 hours Sampling and data reconstruction process, Multirate Signal Processing, Sampling, Sampling rate conversion, introduction to compressive sensing.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Suggested Reading

- 1. Signals and Systems, Robert, TMH
- 2. Signals and Systems by Oppenheim &Wilsky
- 3. P. Ramakrishna Rao, 'Signal and Systems' 2008 Ed., Tata McGraw Hill, New Delhi
- 4. Linear Signals and Systems by B. P. Lathi

Name of The	Analog and Digital			
Course	Communication			
Course Code	ECE417			
Prerequisite	Signals and Systems, Digital			
	System Design			
Corequisite				
Antirequisite				

	L	T	P	C
	3	0	0	3

Course Outcomes

CO1	Analyze and compare different analog		
	modulation schemes for their efficiency		
	and		
	bandwidth		
CO2	Analyze the behavior of a communication		
	system in presence of noise		
CO3	Investigate pulsed modulation system and		
	analyze their system performance		
CO4	Analyze different digital modulation		
	schemes and can compute the bit error		
	performance		
CO5	Analyze Source and Error control coding.		
CO6	Utilize multi-user radio communication		
Unit-	Unit-1 Introduction Review of signals and		
systen	ne 8 hours		

Review of signals and systems, Frequency domain representation of signals, Principles of Amplitude Modulation Systems- DSB, SSB and VSB modulations. Angle Modulation, Representation of FM and PM signals, Spectral characteristics of angle modulated signals.

Unit-2 Probability and random process 8 hours

Review of probability and random process. Gaussian and white noise characteristics, Noise in amplitude modulation systems, Noise in Frequency modulation systems. Pre-emphasis and Deemphasis, Threshold effect in angle modulation.

Unit-3Pulse modulation 8 hours

Pulse modulation. Sampling process. Pulse Amplitude and Pulse code modulation (PCM),Differential pulse code modulation. Delta modulation, Noise considerations in PCM, Time Division multiplexing, Digital Multiplexers.

Unit-4Elements of Detection Theory 8 hours

Elements of Detection Theory, Optimum detection of signals in noise, Coherent communication with waveforms- Probability of Error evaluations. Baseband Pulse Transmission-Inter symbol

Interference and Nyquist criterion.

Unit-5Pass band Digital Modulation schemes **8 hours**

Pass band Digital Modulation schemes- Phase Shift Keying, Frequency Shift Keying, Quadrature Amplitude Modulation, Continuous Phase Modulation and Minimum Shift Keying.

Digital Modulation tradeoffs. Optimum demodulation of digital signals over band-limited channels.

UNIT 6 MULTI-USER RADIO COMMUNICATION 8 hrs

Advanced Mobile Phone System (AMPS) – Global System for Mobile Communications (GSM) – Code division multiple access (CDMA) – Cellular Concept and Frequency Reuse – Channel Assignment and Hand – Overview of Multiple Access Schemes – Satellite Communication – Bluetooth.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Suggested Reading

- 1. Haykin S., "Communications Systems", John Wiley and Sons, 2001.
- 2. Proakis J. G. and Salehi M., "Communication Systems Engineering", Pearson Education, 2002.
- 3. Taub H. and Schilling D.L., "Principles of Communication Systems", Tata McGraw Hill, 2001.
- 4. Wozencraft J. M. and Jacobs I. M., "Principles of Communication Engineering", John Wiley. 1965.
- 5. Barry J. R., Lee E. A. and Messerschmitt D. G., "Digital Communication", Kluwer Academic Publishers, 2004.
- 6. Proakis J.G., "Digital Communications", 4th Edition, McGraw Hill, 2000

Name of The	DataBase Man	agei	nen	t	
Course	System				
Course Code	BEE01T3003				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C

Course Objectives:

The scope of the course is Database System concepts and major application areas. The objective is to understand various data models and to develop the relational model of database including the rigorous practice of query language, SQL. The emphasis is to apply the concepts to wide range of applications.

Course Outcomes

CO1	Understand the relational database theory, application of database system in real life.
CO2	Describe DBMS architecture, physical and logical database designs, database modeling, relational, hierarchical and network models.
CO3	Learn and apply Structured query language (SQL) for database definition and database manipulation.
CO4	Illustrate relational database theory, and be able to write relational algebra expressions for queries.
CO5	Demonstrate an understanding of normalization theory and apply such knowledge to the normalization of a database.
CO6	Illustrate the Concept of stored procedures and functions.

Course Content:

Unit I	Introduction:	10
		Hrs

Introduction: An overview of database management system, database system Vs file system, Database system concept and architecture, data model schema and instances, data independence and database language and interfaces, data definitions language, DML.

Unit	Data Model and ER	8 Hrs
II	Diagram	

Data Modeling using the Entity Relationship Model:

ER model concepts, notation for ER diagram, mapping constraints, keys, Concepts of Super Key, candidate key, primary key, Generalization, aggregation, reduction of an ER diagrams to tables, extended ER model.

Unit	Relational data Model	7 Hrs
III		

Relational data model concepts, integrity constraints, entity integrity, referential integrity, Keys constraints, Domain constraints, relational

•		calculus, tuple and dom	iain
calculus.			
TT 4:	T		0.77

Unit	Database Language	8 Hrs
IV		

Introduction on SQL: Characteristics of SQL, advantage of SQL. SQL data type and literals. Types of SQL commands. SQL operators and their procedure. Tables, views and indexes. Queries and sub queries. Aggregate functions. Insert, update and delete operations, Joins, Unions, Intersection, Minus.

Unit VData Base Normalization7 HrsFunctional dependencies, normal forms, first, second, third normal forms, BCNF

Unit VI Database modifications using SQL. 6 hrs

Database modifications using SQL. . PL/SQL: Basic Concepts-SQL within PL/SQL- Cursors - Concept of stored procedures and functions-packages-Triggers.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Suggested Reading

- 1. Korth, Silbertz, Sudarshan," Database Concepts", McGraw Hill
- 2. Date C J, "An Introduction to Database Systems", Addision Wesley
- 3. Elmasri, Navathe, "Fudamentals of Database Systems", Addision Wesley
- 4. O'Neil, Databases, Elsevier Pub.
- 5. Leon & Leon,"Database Management Systems", Vikas Publishing House
- 6. Bipin C. Desai, "An Introduction to Database Systems", Galgotia Publications
- 7. Majumdar & Bhattacharya, "Database Management System", TMH (14)

Name of The	Integrated Cir	cuit	s La	b	
Course					
Course Code	BECE2009				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		0	0	2	

Course Objectives

The student should be able to:

- 1. To acquire the basic knowledge of special function IC. At the end of the course,
- 2. Design oscillators and amplifiers using operational amplifiers.
- 3. Design filters using Opamp and perform experiment on frequency response.

Course Outcomes

CO1	To design various types of amplifier using Op-amp.
CO2	To design waveform generation circuits.
CO3	To design basic timer and analog and digital circuits.
CO4	To design simple logic circuits using digital ICs
CO5	To design various types of Analog Integated Circuits.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	1	50	100

List of Experiments:

- 1. Operational Amplifiers (IC741)-Characteristics and Application.
- 2. Waveform Generation using Op-Amp (IC741).
- 3. Applications of Timer IC555.
- 4. Design of Active filters.
- 5. Study and application of PLL IC's
- 6. Design of binary adder and subtractor.
- 7. Design of counters.
- 8. Study of multiplexer and demultiplexer /decoders.
- 9. Implementation of combinational logic circuits.
- 10. Study of DAC and ADC
- 11. Op-Amp voltage Regulator- IC 723.

Name of The Course	Microproces Controller L		and	l M	licro
Course Code	BECE3005				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		0	0	2	1

Course Objectives

- 1. To expose students to the operation of typical microprocessor (8085) trainer kit.
- 2. To prepare the students to be able to solve different problems by developing different programs.
- 3. To develop the quality of assessing and analyzing the obtained data.

Course Outcomes

CO1	Write assembly language, C and C++ programs for arithmetic operations using Pentium processor based system	
CO2	Write 8051 assembly language programs to control inbuilt timer and communication modules. CO3 Interface ADC and DAC modules with microprocessor based system.	
CO3	Implement DSP functions using ARM processor.	
CO4	To work on modules like stepper motor.	
CO5	To verify and understand interfacing units.	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	1	50	100

List of Experiments:

- 1. Write a simple program for arithmetic operations addition, subtraction, multiplication and division of 16 bit number. (8086 Program)
- 2. Write a simple program for string operations like string concatenation, swapping. Write a program for interfacing LCD with 8086 and display a message.
- 3. Write a program for performing simple arithmetic operations. (8051 Programming)
- 4. Write a simple program for flashing LEDs using software delays, timers and interrupts. Write a program for interfacing Seven Segment Display and LCD with 8051 and display messages.
- 5. Write a program for interfacing Keypad with 8051 and display keypad input on LCD.
- 6. Write a program for square waveform generation, with different frequencies and duty cycles.

- 7. Write a program for serial communication through UART using polling and interrupt methods.
- 8. Write a program for interfacing ADC 0804 with 8051.
- 9. Write a program for Pulse Width Modulation using on-chip PWM and analog I/O modules.
- 10. Write a program for interfacing Seven Segment Display and LCD to ARM processor.
- 11. Write a program to interface ARM processor with PC using Tera Term.
- 12. Write a program to generate various waveforms
- 13. Write a program for flashing LEDs using timers and interrupts.

Semester V

Name of The	Control Systems				
Course					
Course Code	BEEE3002				
Prerequisite	Signals and Systems				
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

Course Objectives:

- To introduce the components and their representation of control systems
- To learn various methods for analyzing the time response, frequency response and stability of the systems.
- To learn the various approach for the state variable analysis.

Course Outcomes

Course	Outcomes
CO1	Identify the various control system
	components and their representations.
CO2	Analyze the various time domain
	parameters
CO3	Analysis the various frequency response
	plots and its system.
CO4	Apply the concepts of various system
	stability criterions.
CO5	Design various transfer functions of
	digital control system using state variable
	models.
CO6	To perform stability analysis of non linear
	control systems.

Course Content:

Unit-1 Introduction 8 hours

Control System: Terminology and Basic Structure-Feed forward and Feedback control theoryElectrical and Mechanical Transfer Function Models-Block diagram Models-Signal flow graphs models-DC and AC servo Systems-Synchronous -Multivariable control system

Unit-2 Transient response8 hours

Transient response-steady state response-Measures of performance of the standard first order and second order system-effect on an additional zero and an additional pole-steady error constant and system- type number-PID control-Analytical design for PD, PI,PID control systems

Unit-3Closed loop frequency response 8 hours

Closed loop frequency response-Performance specification in frequency domain-Frequency response of standard second order system- Bode Plot - Polar Plot- Nyquist plots-Design of compensators using Bode plots-Cascade lead compensation-Cascade lag compensation-Cascade lag-lead compensation

Unit-4	Concept of stability	8
hours		

Concept of stability-Bounded - Input Bounded - Output stability-Routh stability criterion-Relative stability-Root locus concept-Guidelines for sketching root locus-Nyquist stability criterion.

Unit-5 State variable representation 8 hours

State variable representation-Conversion of state variable models to transfer functions-Conversion of transfer functions to state variable models-Solution of state equations-Concepts of Controllability and Observability-Stability of linear systems-Equivalence between transfer function and state variable representations-State variable analysis of digital control system-Digital control design using state feedback.

Unit-6 Non linear Systems	8 hours
Effects of zeros, minimum a	and non-minimum
phase systems. Linearization	on of nonlinear
systems. Application of basic	c filter design to
Navigation and Movement. Sta	ability Analysis of
non linear control systems.	

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Text Book (s)

- 1. M.Gopal, —Control System Principles and Design, Tata McGraw Hill, 4th Edition, 2012. Reference Book (s)
- 1. K. Ogata, _Modern Control Engineering', 5th edition, PHI, 2012. 3. S.K.Bhattacharya, Control System Engineering, 3rd Edition, Pearson, 2013.
- 2. Benjamin.C.Kuo, —Automatic control systems, Prentice Hall of India, 7th Edition,1995.

Name of The	EM Waves				
Course					
Course Code	BEE01T3001				
Prerequisite	Electromagnetic Fields				
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

Course Objectives

- 1. To introduce the basic mathematical concepts related to electromagnetic vector fields.
- 2. To impart knowledge on the concepts of electrostatics, electric potential, energy density and their applications.
- 3. To impart knowledge on the concepts of magnetostatics, magnetic flux density, scalar and vector potential and its applications.
- 4. To impart knowledge on the concepts of Faraday's law, induced emf and Maxwell's equations.
- 5. To impart knowledge on the concepts of Concepts of electromagnetic waves and Transmission lines.

Course Outcomes

	Analyze transmission lines and estimate
CO1	voltage and current at any point on
COI	transmission line for
	different load conditions.
CO2	Provide solution to real life plane wave
CO2	problems for various boundary conditions.
CO3 Analyze the field equations for the w	
COS	propagation in special cases such as lossy

	and low loss
	dielectric media.
	Visualize TE and TM mode patterns of
CO4	field distributions in a rectangular wave-
	guide.
CO5	Understand and analyze radiation by
	antennas.
CO6	Explicate the recent advances in theory
	and applications of EM waves

Course Content

Unit-1 Transmission Lines 8 hours

Introduction, Concept of distributed elements, Equations of voltage and current, Standing waves and impedance transformation, Lossless and low-loss transmission lines, Power transfer on a transmission line, Analysis of transmission line in terms of admittances, Transmission line calculations with the help of Smith chart, Applications of transmission line, Impedance matching using transmission lines.

Unit-2 Maxwell's Equations

Basic quantities of Electromagnetics, Basic laws of Electromagnetics: Gauss's law, Ampere's Circuital law, Faraday's law of Electromagnetic induction. Maxwell's equations, Surface charge and surface current, Boundary conditions at media interface.

Unit-3 Uniform Plane

8 hours

WaveHomogeneous unbound medium, Wave equation for time harmonic fields, Solution of the wave equation, Uniform plane wave, Wave polarization, Wave propagation in conducting medium, Phase velocity of a wave, Power flow and Poynting vector.

Unit-4 Plane Waves at Media Interface **8 hours**

Plane wave in arbitrary direction, Plane wave at dielectric interface, Reflection and refraction of waves at dielectric interface, Total internal reflection, Wave polarization at media interface, Brewster angle, Fields and power flow at media interface, Lossy media interface, Reflection from conducting boundary.

Unit-5 Waveguides 8 hours

Parallel plane waveguide: Transverse Electric (TE) mode, transverse Magnetic(TM) mode, Cutoff

frequency, Phase velocity and dispersion.

Transverse Electromagnetic	(TEM) mode,
Analysis of waveguide-ge	eneral approach,
Rectangular waveguides.	
TT 1: 4 D	7 1
Unit 6 Recent Trends	5 hours
Novel Waveguide technologi	

Text Book / Reference:

1. R. K. Shevgaonkar, "Electromagnetic Waves", Tata McGraw Hill, 2005.

2. D. K. Cheng, "Field and Wave Electromagnetics", Addison-Wesley, 1989.

3. M. N.O. Sadiku, "Elements of Electromagnetics", Oxford University Press, 2007.

4. C. A. Balanis, "Advanced Engineering Electromagnetics", John Wiley & Sons, 2012.

5. C. A. Balanis, "Antenna Theory: Analysis and Design", John Wiley & Sons, 2005.

Name of The	Digital Signal Processing				
Course					
Course Code	BECE3020				
Prerequisite	Signals and systems				
Corequisite	Signals and systems				
Antirequisite					
·		L	T	P	С
		3	0	0	3

Course Objectives

- 1. To learn discrete fourier transform, properties of DFT and its application to linear filtering
- 2. To understand the characteristics of digital filters, design digital IIR and FIR filters and apply these filters to filter undesirable signals in various frequency bands
- 3. To understand the effects of finite precision representation on digital filters
- 4. To understand the fundamental concepts of multi-rate signal processing and its applications
- 5. To introduce the concepts of adaptive filters and its application to communication engineering

Course Outcomes

CO1	Apply	digital	signal	processing
	fundam	entals and A	Acquire th	e knowledge
	of repre	esentation of	of discrete-	time signals
	in the fr	equency do	main, using	g z-transform
	and disc	crete Fourie	r transforn	1.

CO2	Design and Analyze FIR filters with
	desired frequency responses.
CO3	Design and Analyze IIR filters with
	desired frequency responses.
CO4	Realize FIR/IIR Filter structure and
	analyze the effects quantization errors in
	analog to digital conversion of signals
CO5	Understand architecture of DSP
	Processors, Compressive sensing,
	Multirate Signal Processing and their
	applications in real-world problems
CO6	Apply signal processing techniques to
	solve real time problems

Text Book (s)

1. John G. Proakis& Dimitris G.Manolakis,
—Digital Signal Processing – Principles,
Algorithms & Applications||, Fourth Edition,
Pearson Education / Prentice Hall, 2007. (UNIT I – V)

Reference Book (s)

- 1. Emmanuel C. Ifeachor& Barrie. W. Jervis, —Digital Signal Processing, Second Edition, Pearson Education / Prentice Hall, 2002.
- 2. A. V. Oppenheim, R.W. Schafer and J.R. Buck, —Discrete-Time Signal Processing, 8th Indian Reprint, Pearson, 2004.
- 3. Sanjit K. Mitra, —Digital Signal Processing A Computer Based Approachl, Tata Mc Graw Hill, 2007.
- 4. Andreas Antoniou, —Digital Signal Processing, Tata Mc Graw Hill, 2006.

Course Content:

Unit-1 Introduction

8 hours				
Discrete	and	Fast	Fourier	Transforms:
Introduct	ion to D	SP, DTI	T, Relatio	nship between
DFT and	dother	transfo	ms DFT,	Properties of
DFT, Ci	rcular (Convolu	tion, DFT	as a Linear
Transform	nation,	Fast	Fourier	Transform,
Computin	ng an Ii	nverse	DFT by d	oing a Direct
DFT. Re	eview o	f z tra	ansform a	nd inverse Z
transform	1.			

Unit-2Finite Impulse Response Filters 8 hours

Finite Impulse Response Filters:- Magnitude and phase response of a digital filters, Frequency response of linear phase FIR filters, Design Techniques for FIR filters.

Unit-3Infinite Impulse Response Filters 8 hours

Infinite Impulse Response Filters:-IIR filter Design by Approximation of Derivatives, Impulse Invariant Method, Bilinear Transformation, Butterworth filters, Chebyshev Filters and Frequency Transformation.

Unit-4Realization of Digital Filters 8 hours

Realization of Digital Filters: Basic Structures for IIR Systems, Basic Structures for FIR system. Effects of Finite Word Length in Digital Filters: Introduction, Rounding and Truncation Errors, Quantization effects in analog to digital conversion of signals

Unit-5 Multi Rate Signal Processing 8 hours

Introduction to wavelets, Multirate Signal Processing, Sampling, Sampling rate conversion, introduction to compressive sensing.

Unit 6 DSP Processors 5 hours

Architecture of DSP Processors & applications: Harward architecture, pipelining, Multiplier-accumulator (MAC) hardware, architectures of fixed and floating point (TMSC6000) DSP processors. Applications

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Communication Engineering Lab				
Course Code	BEE01P3004	1			
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		0	0	2	

Course Objectives

- 1. To practice the basic theories of Analog communication system and experiments as it is a key analysis tool of engineering design.
- 2. To give a specific design problem to the students, which after completion they will verify.

Course Outcomes

CO1	Generate AM and FM signals and
001	evaluate their performance.
	Perform signal sampling by determining
CO ₂	the sampling rates for baseband signals
	and reconstruct the signals.
	Generate digital modulation signals for
CO ₃	ASK, PSK and FSK and perform their
	detection.
CO4	Simulate MSK, DPSK, QPSK and
CO4	DEPSK schemes and estimate their BER.
CO5	Study and analyse about communication.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

- 1. Fourier Synthesis
- 2. AM Transmitter & Receiver
- 3. FM Transmitter & Receiver
- 4. AM/FM Radio Receiver
- 5. Analog signal sampling & Reconstruction
- 6. Generation & Detection of PAM/PWM/PPM
- 7. Generation & Detection of PCM
- 8. Generation & Detection of DM/SIGMA DELTA/ADM
- 9. Baseband digital data transmission
- 10. Data conditioning & Reconditioning
- 11. Generation & Detection of

BPSK/DPSK/DEPSK

12. Simulation of digital modulation schemes.

Semester VI

Name of The	Advanced Communication				
Course	Systems				
Course Code	BEE01T3005				
Prerequisite	Analog and D	igita	1		
_	Communication	on			
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

Course Objectives:

The student will learn and understand

- 1. Analog and digital communication systems, and their design parameters
- 2. Role of Digital Modulation and encoding techniques in different application.
- 3. the concept of Spread Spectrum techniques and Multiple Access Techniques.
- 4. The features and architectures used in 4G and 5G communication

Course Outcomes

CO1	To analyze the design parameters of
	analog and Digital communication
	systems
CO2	To apply the different modulation and
	encoding techniques to according to the
	need of application.
CO3	To apply spread spectrum techniques to
	secure communication in network.
CO4	To analyse the noise in coherent receiver
	and understand diversity techniques.
CO5	To understand the Emerging Trends in
	Communication including 4G, WiMax,
	and 5G
CO6	Explain and address the challenges in
	communication networks.

Course Content:
Unit-1 Introduction
8 hours
Introduction to different communications systems
and their applications, Mathematical Models of
Communication Channel, Designing parameters
of analog and digital communication systems.
Unit-2 Digital Modulation Techniques
8 hours
Digital Modulation Techniques, BPSK, QPSK,
Temporal waveform encoders, Multi carrier
modulation schemes, OFDM, Wavelet based
OFDM, QAM
Unit-3 Multiple Access techniques
8 hours
Introduction, Generation of PN
Sequences, Properties of PN Sequences DS and
FH spread spectrum, CDMA system based on FH
and DS spread spectrum signals, Applications,
Introduction to Multiple Access Techniques
Unit-4Coherent Systems and Diversity
Techniques: 8 hours
Coherent receiver, Homodyne and heterodyne
detection, noise in coherent receiver, Fading,
Diversity Techniques, Quality of service (QoS)
Unit-5 Introduction to 4G:
8 hours

Status and Key Technologies,4G WIR	ELE	ESS				
SYSTEM FEATURES, 4G Network Structure,						
protocol stack architecture, WIMAX	Syst	tem				
Architecture, Limitation of 4G.						
Unit-6 Evolution towards 5G		8				
hours						
Evolution towards 5G. Challenges	in	5G				
Networks Emerging Trends in 5G Network	·ke					

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Suggested Reading

- 1. Andrew J Viterbi, "CDMA Principles of spread spectrum communications", Addition Wesley, (1995).
- 2. J S Lee and L E Miller, "CDMA systems engineering handbook", Artech House, (1998).
- 3. Marvin K Simon, Jim K Omura, Robert A Scholtz, Klevit. "Spread Bary Spectrum Communications", (1995).
- 4. Sergio Verdu, "Multiuser Detection", Cambridge University Press,
- 5. Andrew S Tanenbaum, "Computer Networks", Prentice Hall of India.
- 6. J.G.Proakis," Digital Communication (4/e)", McGraw-Hill, 2001
- 7. S. Haykin, "Communication systems (4/e)", John Wiley, 2001
- 8. B.P. Lathi, Zhi Ding, "Modern Digital and Analog Communication Systems (4/e)",Oxford university Press, 2010

Name of	V	LSI Des	ign		
The Course					
Course	В	ECE301	3		
Code					
Pre-	Semiconductor Devices, Integrated				
requisite	Circuits, Digital Design				
Co-					
requisite					
Anti-					
requisite					
		L	T	P	C
		3	0	0	3

Course Objectives:

- 1. To bring both Circuits and System views on design together.
- Study the fundamental concepts and structures of designing digital VLSI systems include CMOS devices and circuits.
- Understand standard CMOS fabrication processes, CMOS design rules, static and dynamic logic structures, interconnect analysis.
- It offers a profound understanding of the design of complex digital VLSI circuits, computer aided simulation and synthesis tool for hardware design.

Course Outcomes

CO1 Specifying the technological problems for evolving cellular technology. Be able to use mathematical methods and circuit analysis models in analysis of CMOS digital electronics circuits, including logic components and their interconnect. Have an understanding of the characteristics of CMOS circuit construction and the comparison between different state-of-the-art CMOS technologies and processes. CO4 Be able to design and solve complex problems. Be able to complete a significant VLSI design project having a set of objective criteria and design constraints. CO6 Design and analyse architectures and functional blocks.		3 444 5 444 5
evolving cellular technology. Be able to use mathematical methods and circuit analysis models in analysis of CMOS digital electronics circuits, including logic components and their interconnect. Have an understanding of the characteristics of CMOS circuit construction and the comparison between different state-of-the-art CMOS technologies and processes. CO4 Be able to design and solve complex problems. Be able to complete a significant VLSI design project having a set of objective criteria and design constraints. CO6 Design and analyse architectures and		Utilize the subject knowledge in
Be able to use mathematical methods and circuit analysis models in analysis of CMOS digital electronics circuits, including logic components and their interconnect. Have an understanding of the characteristics of CMOS circuit construction and the comparison between different state-of-the-art CMOS technologies and processes. CO4 Be able to design and solve complex problems. Be able to complete a significant VLSI design project having a set of objective criteria and design constraints. CO6 Design and analyse architectures and	CO1	specifying the technological problems for
circuit analysis models in analysis of CMOS digital electronics circuits, including logic components and their interconnect. Have an understanding of the characteristics of CMOS circuit construction and the comparison between different state-of-the-art CMOS technologies and processes. CO4 Be able to design and solve complex problems. Be able to complete a significant VLSI design project having a set of objective criteria and design constraints. CO6 Design and analyse architectures and		evolving cellular technology.
CO2 CMOS digital electronics circuits, including logic components and their interconnect. Have an understanding of the characteristics of CMOS circuit construction and the comparison between different state-of-the-art CMOS technologies and processes. CO4 Be able to design and solve complex problems. Be able to complete a significant VLSI design project having a set of objective criteria and design constraints. CO6 Design and analyse architectures and		Be able to use mathematical methods and
including logic components and their interconnect. Have an understanding of the characteristics of CMOS circuit construction and the comparison between different state-of-the-art CMOS technologies and processes. CO4 Be able to design and solve complex problems. Be able to complete a significant VLSI design project having a set of objective criteria and design constraints. CO6 Design and analyse architectures and		circuit analysis models in analysis of
interconnect. Have an understanding of the characteristics of CMOS circuit construction and the comparison between different state-of-the-art CMOS technologies and processes. CO4 Be able to design and solve complex problems. Be able to complete a significant VLSI design project having a set of objective criteria and design constraints. CO6 Design and analyse architectures and	CO2	CMOS digital electronics circuits,
Have an understanding of the characteristics of CMOS circuit construction and the comparison between different state-of-the-art CMOS technologies and processes. CO4 Be able to design and solve complex problems. Be able to complete a significant VLSI design project having a set of objective criteria and design constraints. CO6 Design and analyse architectures and		including logic components and their
characteristics of CMOS circuit construction and the comparison between different state-of-the-art CMOS technologies and processes. CO4 Be able to design and solve complex problems. Be able to complete a significant VLSI design project having a set of objective criteria and design constraints. CO6 Design and analyse architectures and		interconnect.
CO3 construction and the comparison between different state-of-the-art CMOS technologies and processes. CO4 Be able to design and solve complex problems. Be able to complete a significant VLSI design project having a set of objective criteria and design constraints. CO6 Design and analyse architectures and		Have an understanding of the
different state-of-the-art CMOS technologies and processes. CO4 Be able to design and solve complex problems. Be able to complete a significant VLSI design project having a set of objective criteria and design constraints. CO6 Design and analyse architectures and		characteristics of CMOS circuit
technologies and processes. CO4 Be able to design and solve complex problems. Be able to complete a significant VLSI design project having a set of objective criteria and design constraints. CO6 Design and analyse architectures and	CO3	construction and the comparison between
CO4 Be able to design and solve complex problems. Be able to complete a significant VLSI design project having a set of objective criteria and design constraints. CO6 Design and analyse architectures and		different state-of-the-art CMOS
CO4 problems. Be able to complete a significant VLSI design project having a set of objective criteria and design constraints. CO6 Design and analyse architectures and		technologies and processes.
Be able to complete a significant VLSI design project having a set of objective criteria and design constraints. CO6 Design and analyse architectures and	CO4	Be able to design and solve complex
CO5 design project having a set of objective criteria and design constraints. CO6 Design and analyse architectures and	CO4	problems.
criteria and design constraints. Design and analyse architectures and		Be able to complete a significant VLSI
CO6 Design and analyse architectures and	CO5	design project having a set of objective
1 (106)		criteria and design constraints.
functional blocks.	CO6	Design and analyse architectures and
	CO6	functional blocks.

Unit-1 Integrated Circuit: Fabrication And Characteristics 7 hours

Integrated circuit technology, basic monolithic integrated circuits, epitaxial growth, Masking and etching, diffusion of impurities, transistors for monolithic circuits, monolithic diodes, Integrated resistors, Integrated capacitors and inductors, monolithic circuit layout, additional isolation methods, LSI and MSI, the metal semiconductor contacts.

Unit-2 Introduction to MOS Transistor 8 Hours

The Metal Oxide Semiconductor (MOS) Structure, The MOS System under External Bias, Structure and Operation of MOS, Transistor (MOSFET), MOSFET Current-Voltage Characteristics, MOSFET Scaling and Small-Geometry Effects, MOSFET Capacitances, Numerical and spice simulations.

Unit-3 MOS Inverters: Static and Switching Characteristic, Interconnect Effects 10 Hours

Introduction, Resistive-Load Inverter, Inverters with n-Type MOSFET Load, CMOS Inverter, Delay-Time Definitions, Calculation of Delay Times, Inverter Design with Delay Constraints, Estimation of Interconnect Parasitics, Calculation of Interconnect Delay, Switching Power Dissipation of CMOS Inverters, Numerical and spice simulations

Unit-4 Combinational and Sequential MOS Logic Circuits 7 Hours

Introduction, Basic Principles of Pass Transistor Circuits, Voltage Bootstrapping, Synchronous Dynamic Circuit Techniques, High-Performance Dynamic CMOS Circuits, Introduction, MOS Logic Circuits with Depletion nMOS Loads, CMOS Logic Circuits, Complex Logic Circuits, CMOS Transmission Gates (Pass Gates), Introduction, Behavior of Bistable Elements, The SR Latch Circuit, Clocked Latch and Flip-Flop Circuits, CMOS D-Latch and Edge-Triggered Flip-Flop

Unit-5 Memories and VLSI Design Methodologies 7 Hours

Introduction, Read-Only Memory (ROM) Circuits, Static Read-Write Memory (SRAM) Circuits, Dynamic Read-Write Memory (DRAM) Circuits Introduction, VLSI Design Flow, Design Hierarchy, Concepts of Regularity, Modularity and Locality, VLSI Design Styles, Design Quality, Packaging Technology, Computer-Aided Design Technology

UNIT 6 IMPLEMENTATION STRATEGIES 6

Full custom and Semi custom design, Standard cell design and cell libraries, FPGA building block architectures, FPGA interconnect routing procedures.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Suggested Reading

- S.M.Sze, "VLSI technology", 2nd Edition, Tata McGraw Hill Education, 2003, ISBN 9780070582910
- 2. Sung-Mo Kang & Yusuf Leblebici, "CMOS Digital
- 3. Integrated Circuits Analysis and Design", 3rd Edition, Tata McGraw-Hill, New Delhi, 2003.
- 4. N. Weste and K. Eshranghian, "Principles of CMOS VLSI Design", Addison Wesley, 1998.
- Jacob Backer, Harry W. Li and David E. Boyce,
 " CMOS Circuit Design, Layout and Simulation", Prentice Hall of India, 1998.
- L.Glaser and D. Dobberpuhl, "The Design and Analysis of VLSI, Circuits", Addison Wesley 1993.
- Randel& Geiger, "VLSI Analog and Digital Circuit Design Techniques" McGraw-Hill,1990.
- 8. John P. Uyemura, "Introduction to VLSI Circuits and Systems," John Wiley & Sons, ,Inc, 2002.

Name of The Course	VLSI and Embedded Systems Lab				
Course Code	BEE01P3009)			
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		0	0	2	

Part-A: VLSI Lab Course Objective:

- 1. To design and draw the internal structure of the various digital integrated circuits
- 2. To develop VHDL/Verilog HDL source code, perform simulation using relevant simulator and analyze the obtained simulation results using necessary synthesizer.
- 3. To verify the logical operations of the digital ICs (Hardware) in the laboratory.

CO1	Design and draw the internal structure of the various digital integrated circuits
CO2	Develop VHDL/Verilog HDL source code, perform simulation using relevant simulator andanalyze the obtained simulation results using necessary synthesizer. Understand serial communication, port RTOS on microcontroller.
CO4	Use embedded C for reading data from port pins.
CO5	Understand the interfacing of data I/O devices with microcontroller.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

VHDL/ Verilog HDL

- 1. Realization of Logic Gates.
- 2. 3- to 8Decoder- 74138.
- 3. 8 x 1 Multiplexer-74151 and 2 x 4 Demultiplexer-74155.
- 4. 4-Bit Comparator-7485.
- 5. D Flip-Flop-7474.
- 6. Decade counter-7490.
- 7. Shift registers-7495.
- 8. ALU Design.

Part-B: Embedded Systems Lab

- 1.Write a program to toggle all the led to port and with some time delay using ARM7 PO1, PO2 PSO1
- 2 .Write a program to interface LCD with ARM7 PO1, PO2 PSO1
- 3 .Write a program to interface 4*4 matrix keypad with ARM7
- 4 .Write a program for interfacing LED and PWM and to verify the output in the ARM7
- 5 .Write a program to interface Stepper motor with ARM7
- 6 .Write a program for interfacing of DC motor with ARM7 PO1, PO2, PO3 PSO1 7 Write a program to study and characteristics of the programmable gain amplifier (PGA)

Course Outcomes

- 8 .Write a Program realization of low pass, high pass and band pass filters and their characteristics
- 9 .Write a program to interface ADC and DAC with
- 10. Digital function implementation using digital blocks A. Counter for blinking LED B. PWW C. Digital buffer and digital inverter
- 11 .Write a program to verify Timer operation in different modes
- 12 .Write a Program to interface stepper motor with PSOC

Semester VII

Name of The	Data Communication and				
Course	Networking				
Course Code	BEE01T4002				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	С
		3	0	0	3

Course Outcomes

CO1	Understand and explain the concept of		
	Data Communication and networks,		
	layered architectureand theirapplications.		
CO2	Differentiate between Analog and Digital		
	Signals, Guided and Unguided Media		
CO3	Understand the data communication link		
	considering elementary concepts of data		
	link layer protocols for error detection and		
	correction.		
CO4	Understand the data flow in network layer		
	and differentiate between unicast and		
	multicast routing protocols.		
CO5	Estimate the congestion control		
	mechanism to improve quality of services		
	in networking applications		
CO6	Understand and analyzes the security		
	issues in network		

Course Content:

Unit-1 Introduction
8 hours
Introduction to Data Communication, Network
Criteria, Physical Structures, Network Models,
Categories of Networks, Protocols and Standards,
The OSI Model, TCP/IP Protocol suit, Addressing

Unit-2 Physical Layer and Media
8 hours
Analog and Digital Signals, Transmission
Impairments, Multiplexing, Guided and Unguided
Media, Circuit-Switched Networks, Datagram
Networks, Virtual-Circuit Networks, Structure of
Switch.
Unit-3: Data Link Layer 8 hours

Introduction, Types of Errors, Detection Versus Corrections, Block Coding, Framing, Flow and Control. Multiple Access, CSMA/CD, CSMA/CA, IEEE Standards, Data Link Layer, Physical Layer, MAC Sublayer, IEEE 802.11, Blue Tooth, Passive Hubs, Repeaters, Active Hubs, Bridges, Routers, Two Layer Switches, Three Layer Switches

Unit-4 Network Layer

8 hours

IPv4 Addressing, IPv6 Addressing, Address Mapping, Delivering, Forwarding, Unicast Routing Protocols, Multicast Routing Protocols

Unit-5 Transport Layer 8 hours

Process-to-Process Delivery, User Datagram Protocol (UDP), TCP, Data Traffic, Congestion, Congestion Control, QoS in Switched Networks

Unit-6 Security hours

Symmetric-Key Cryptography, Asymmetric-Key Cryptography, Security Services

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Suggested Reading

Name of The	Communicat	ion	Net	worl	ks
Course	Lab				
Course Code	BEE01P4002	,			
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		0	0	2	1

Course Objectives

- 1. To understand the working principle of various communication protocols.
- 2. To analyze the various routing algorithms.
- 3. To know the concept of data transfer between nodes.

Course Outcomes

CO1	Understand fundamental underlying
COI	principles of computer networking
CO2	Understand details and functionality of
CO2	layered network architecture.
	Apply mathematical foundations to solve
CO3	computational problems in computer
	networking
CO4	Analyze performance of various
CO4	communication protocols.
CO5	Compare routing algorithms and Practice
COS	packet /file transmission between nodes.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam	Total Marks
		(ETE)	100
50	-	50	100

List of Experiments:

- 1. PC to PC Communication Parallel Communication using 8 bit parallel cable Serial communication using RS 232C
- 2. Ethernet LAN protocol: To create scenario and study the performance of CSMA/CD protocol through simulation
- 3. Token bus and token ring protocols: To create scenario and study the performance of token bus and token ring protocols through simulation
- 4. Wireless LAN protocols: To create scenario and study the performance of network with CSMA / CA protocol and compare with CSMA/CD protocols.
- 5. Implementation and study of stop and wait protocol
- 6. Implementation and study of Goback-N and selective repeat protocols
- 7. Implementation of distance vector routing algorithm
- 8. Implementation of Link state routing algorithm
- 9. Implementation of Data encryption and decryption
- 10. Transfer of files from PC to PC using Windows / Unix socket processing

Elective Baskets

1. Communication and Networking

Name of The	Satellite Communication				
Course					
Course Code	BECE3103				
Prerequisite	Analog and D	igita	al		
_	Communication				
Co-requisite					
Anti-requisite					
		L	T	P	C
3 0 0 3		3			

Course Objectives

Satellite Communication Systems provide vital and economical fixed and mobile communication services over very large coverage areas of land, sea and air. In this course, you will learn the fundamentals and the techniques for the design and analysis of satellite communication systems.

Course Outcomes

CO1	Explain the fundamentals of satellite communication systems
CO2	Design a satellite communication link under specified characteristics.
CO3	Explain the modulation and multiplexing techniques in satellite communication.
CO4	Describe propagation effects and their impact on satellite-earth links
CO5	Demonstrate the working of satellite based systems.
CO6	To conduct a simulation-based design project requiring some independent reading, programming

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Course Content:

Unit I:Basic Knowledge:.	6 Hours
--------------------------	---------

Elements of Satellite Communication Orbital mechanics look angle and orbit determination, launches & launch vehicle, orbital effects, Geostationary Orbit

Unit II: Satellite subsystems

10 Hours

Sub Systems: Satellite subsystems, attitude and orbit control systems, TTC&M, communication subsystem, satellite antenna satellite link design: basic transmission theory, system noise temperature and G/T ratio, downlink design, uplink design, satellite systems using small earth station, design for specified C/N.

Unit III:Different modulation schemes:

Modulation and multiplexing techniques for satellite links: FM, pre-emphasis and deemphasis, S/N ratios for FM video transmission, digital transmission, digital modulation and demodulation, TDM. Multiple access techniques.

Unit IV: Error control for digital satellite links: 8 Hours

Error control for digital satellite links: error detection and correction, channel capacity, error control coding schemes. Propagation effects and their impact on satellite-earth links: attenuation and depolarization, atmospheric absorption, rain, cloud and ice effects etc.

Unit V: Introduction of various satellite systems 8 Hours

Introduction of various satellite systems: VSAT, low earth orbit and non-geostationary, direct broadcast satellite television and radio, satellite navigation and the global positioning systems.

Unit VI Satellite Applications

6 hours

Satellite Applications: Satellite mobile services, VSAT, GPS, Radarsat, Direct broadcast satellites (DBS)- Direct to home Broadcast (DTH)

Suggested Reading

- Satellite Communications / Dennis Roddy / McGraw-Hill (T)
- 2. Satellite Communications / Pratt, Bostian, Allnutt / John Wiley & Sons. (T)
- Digital Satellite Communications/ Tri T. Ha./ McGraw-Hill. (R)

Name of The	Principles of Secure
Course	Communication
Course Code	EEC505

Prerequisite	Digital communication					
	system	system				
Corequisite	Digital comm	Digital communication				
	system					
Antirequisite						
		L	T	P	С	
	3 0 0 3				3	

Course Objectives:

- 1. To understand the communication systems and various methods of communication system.
- 2. To understand the ways to provide security to communication systems.

Course Outcomes

CO1	Understanding of the various types of
	spread spectrum techniques for secure
	communication.
CO2	Slow and fast frequency hopping,
	performance of FHSS in AWGN Channel.
CO3	Analyze the various cryptographic
	techniques and Apply the Encryption
	standards like DES, AES.
CO4	Understanding the principle of Block
	Cipher and Encryption Standards.
CO5	Knowing current network authentication
	applications, PKI, Web security and their
	vulnerabilities that are exploited by
	intentional and unintentional attacks.
CO6	Understand password management

Course Content

Unit-1 Introduction	8
hours	

Model of Spread Spectrum digital communication system, direct sequence spread spectrum signal, error rate, performance of the decoder, processing gain and jamming margin, uncoded DSSS signals, applications of DSSS signals in anti-jamming, Code division multiple access and multipath channels, effect of pulsed interference on DSSS systems, Generation of PN sequences using m sequence and Gold sequences, narrowband interference in DSSS systems, acquisition and tracking of DSSS system.

Unit-2

CO1	Illustrate the basic concepts of microwave
	transmission lines.
CO2	Identify and use microwave guides and
	components.
CO3	Apply the conceptual knowledge of
	microwave solid state technology and
	traveling wave tube techniques
CO4	Distinguish between microwave solid state
	and technology and traveling wave tube
	techniques
CO5	Demonstrate and evaluate the microwave
	measurement techniques.
CO6	Analyze the application of Microwaves in
	various fields
	various fields

Basic concepts of Frequency Hopping, slow and fast frequency hopping, performance of FHSS in AWGN Channel, FHSS in CDMA system, Time hopping and hybrid Spread spectrum system, acquisition and tracking of FH SS systems.

Unit-3

Classical encryption techniques, Symmetric cipher model, cryptography and cryptanalysts, Substitution techniques, transposition techniques.

Unit-4

Block cipher principle, data encryption standard (DES), strength of DES, differential and linear cryptanalysts, block cipher design principles, Finite fields, simplified advanced encryption standard (S-AES), multiple encryption and triple DES, Block cipher modes of operation, stream ciphers and RC4 algorithm.

Unit-5

Prime numbers, Fermat and Euler's theorem, Chinese remainder theorem, discrete algorithms, principles of public key cryptosystems, RSA algorithm, key management Diffie-Hellman key exchange, message authentication requirements and functions.

Unit-6

Intruders: Intrusion techniques, Intrusion detection, Statistical anomaly detection, Rule

based intrusion detection, Distributed intrusion detection, Honey pot, Intrusion detection exchange format. password management: Password protection, password selection strategies.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Suggested Reading

- 1. Digital Communication by Simon Haykin, Wiley.1 st edition ISBN 978-1-1185-4405-1,
- 2. Cryptography and Network Security by W. Stallings 5th Ed., PHI ISBN-10: 0136097049 ISBN-13: 978-0136097044.
- 3. Cryptography and secure Communications by M.Y. Rhee, Mc Graw Hill, ISBN-10: 0071125027; ISBN-13: 978-0071125024.
- 4. Communication System Security by LidongChen,Guang Gong, ISBN 9781439840368-CAT# K11870.

Name of The						
Course	Microwave Engine	ering	3			
Course Code	BECE3006					
Prerequisite	Electromagnetic field theory					
Corequisite						
Antirequisite						
		L	T	P	С	
		3	0	0	3	

Course Objectives:

- 1. Concept of scattering parameters used to characterize devices and system behavior.
- The high frequency behavior of circuit and network elements as well as the analysis and the design of active and passive microwave devices.

Course Content:

Unit-1 Introduction		8 hours	
Microwave	frequency,	Applications	of
Microwave,	microwave	wave transmission	
Introduction	to Micro strip	Transmission	line

(TL), Coupled TL, Strip TL, Coupled Strip Line, Coplanar TL.

Unit-2Microwave waveguides and components 8 hours

Rectangular Wave Guide: Field Components, TE, TM Modes, Dominant (TE10) mode, Power Transmission, Power losses, Excitation of modes, Circular Waveguides:

TE, TM modes, Microwave cavities (Resonators), Scattering matrix- The transmission matrix, Passive microwave devices: Microwave Hybrid Circuits, E Plane Tee, H plane Tee and Magic Tee, Terminations, Attenuators, Phase Shifters, Directional Couplers: Two Hole directional couplers, S Matrix of a Directional coupler, Hybrid Couplers, Isolators, Circulators.

Unit-3Microwave waveguides and components 8 hours

Rectangular Wave Guide: Field Components, TE, TM Modes, Dominant (TE10) mode, Power Transmission, Power losses, Excitation of modes, Circular Waveguides:

TE, TM modes, Microwave cavities (Resonators), Scattering matrix- The transmission matrix, Passive microwave devices: Microwave Hybrid Circuits, E Plane Tee, H plane Tee and Magic Tee, Terminations, Attenuators, Phase Shifters, Directional Couplers: Two Hole directional couplers, S Matrix of a Directional coupler, Hybrid Couplers, Isolators, Circulators.

Unit-4Microwave linear-beam tubes (O TYPE) and microwave crossed-field tubes 8 hours

Klystrons, Reentrant Cavities, Velocity-Modulation Process, Bunching Process, Output Power and Beam Loading, Multicavity Klystron Amplifiers, Beam-Current Density, Output Current Output Power of Two-Cavity Klystron, Reflex Klystrons, Velocity Modulation, Power Output and Efficiency, Helix Traveling-Wave Tubes Slow-Wave (TWTs), structures. Amplification Process, Convection Current, Axial Electric Field, Wave Modes, Gain Consideration, Microwave Crossed-Field Tubes, Magnetron Oscillators, Cylindrical Magnetron, Coaxial Magnetron, Tunable Magnetron, Backward wave Oscillators

Unit-5Microwave Measurements 8 hours

Introduction, Microwave Measurements devices: Slotted line carriage, Tunable detectors, VSWR Meter, microwave power measurements techniques, frequency measurement, wavelength measurements, Impedance and Refection coefficient measurements, VSWR, Insertion and attenuation measurements: Power ratio method, RF substitution method, VSWR measurements (Low and High)

<u>Unit-6 Applications of Microwave 6 hours</u> Introduction to the applications of Microwave in communication, Remote Sensing, Spectroscopy.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Suggested Reading

- 1.D.M.Pozar, "Microwave engineering", John Wiley, 3/e, 2005
- 2.Samuel Y.Liao, "Microwave Devices and Circuits", 3/e, PHI, New Delhi, 1987.
- 3.ober.E.Collin, "Foundations of Microwave Engineering", John Wiley, 3/e, 2001
- 4.Annapurna Dasand S,.K.Das, "Microwave Engineering", Tata Mc Graw-Hill, New Delhi, 2000
- 5. R.Chatterjee, "Microwave Engineering", Affiliated East west Press PVT Ltd, 2001
- 6. O.P.Gandhi, "Microwave Engineering", Pergamon Press, NY, 1983

Name of The					
Course	Mobile Computing				
Course Code					
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	С
		3	0	0	3

Course Objectives:

This course introduces the fundamental concepts and principles in mobile computing technology. This course includes wireless networking, GSM & GPRS technology, data management, routing algorithm and

security issues in mobile computing. The course provides opportunities for the students to understand and analyze the functions of various components associated with the above technologies,

the major techniques involved, and networks & systems issues for the design and implementation of mobile computing systems and applications. This course also provides an opportunity for students to understand the key components and technologies involved and to gain hands-on experiences in building mobile applications.

Course Outcomes

CO1	Apply the knowledge of wireless and mobile communications systems	
CO2	Examine the MAC issues and demonstrate wireless networking principles, for various applications	
CO3	Describe GSM architecture, operation and services offered by GSM networks	
CO4	Understand GPRS architecture, operation and services offered by GPRS networks	
CO5	Analyze the performance of various routing protocols and security issues associated with mobile computing	
CO6	Security Issues and Recent Trends	

Reference Books:

- 1. Jochen Schiller, *Mobile Communications*, Second Edition, Pearson Education, 2003.
- Asoke K Talukder and Roopa R. Yavagal, *Mobile Computing – Technology, Applications and Service Creation*; TMH Pub., New Delhi, 2006
- 3. C D M Cordeiro, D. P. Agarwal, *Adhoc and Sensor Networks: Theory and applications*, World Scientific, 2006.

Course Content:

Unit-1 Introduction
8 hours
Introduction of mobile computing, overview of
wireless telephony: cellular concept, location
management: HLR-VLR, hierarchical, handoffs,
channel allocation in cellular systems, Multiple
access techniques like Frequency division
multiple access (FDMA), Time division multiple
access (TDMA), Code division multiple access
(CDMA), Space division multiple access
(SDMA).
Unit-2 Wireless Networking
9 hours

Wireless Networking, Wireless LAN Overview: MAC issues, IEEE 802.11, Blue Tooth, Wireless multiple access protocols, TCP over wireless, Wireless applications, data broadcasting, Mobile IP, WAP: Architecture, protocol stack, application environment, applications.

Unit-3 GSM

8 hours

GSM Architecture, GSM Entities ,Call Routing in GSM, GSM Addresses and Identifiers, Network Aspects in GSM , GSM Frequency Allocation, Authentication and Security, Mobile Computing over SMS, Short Message (SMS) , Value Added Services through SMS, Accessing the SMS Bearer

Unit-4 GPRS

8 hours

GPRS andpacket Architecture GPRS Network Architecture, GPRS Network Operations, Data Services in GPRS, Application for GPRS, Limitation of GPRS, Billing and Charging in GPRS, MMS, GPRS. Applications, Spread – Spectrum Technology, Data management and various issues in mobile computing environment.

Unit-5 Routing Protocols

8 hours

Routing Protocols: Adhoc Network Routing Protocols, Destination Sequenced Distance Vector Algorithm, Cluster Based Gateway Switch Routing, Dynamic Source Routing, Adhoc ondemand Routing, Location Aided Routing, Zonal Routing Algorithm.

Unit 6- Security Issues and Recent Trends

Mobile Computing Security Issues, Authentication, Encryption, Cryptographic Tools: Hash, Message Authentication Code (MAC), Digital Signature, Certificate. Secure Socket Layer (SSL).Recent trends on mobile computing and future networks

Name of The	Mobile Ad Hoc Networks			
Course				
Course Code	BECE3204			
Pre-requisite	Wireless Communication			
Co-requisite				
Anti-requisite				
	L T P C			
	3 0 0 3			3

Course Objectives:

1. To gain an in-depth understanding the concepts of wireless ad-hoc networks.

- 2. To learn and understand the current and emerging trends in Wireless Networks.
- 3. Design ad-hoc network for the heterogeneous environment
- "Hands-on experience in designing and implementing ad hoc network functionality using network simulation tools and Pocket PCs"

Course Outcomes

CO1	Explain the architecture, organization and
	operation of ad-hoc networks
CO2	Construct ad-hoc network anywhere on
	temporary basis
CO3	Design ad-hoc network for the
	heterogeneous environment
CO4	Have an understanding of the principles
	of mobile ad hoc networks (MANETs)
CO5	Distinguish between infrastructure-based
	networks
CO6	Explain 5G technologies

Text Book (s)

- "C. Siva Ram Murthy and B. S. Manoj, "Ad Hoc Wireless Networks: Architectures and Protocols", 1st Edition, Prentice Hall, PTR, 2006, ISBN 9788131706886"
- C. K. Toh, "Ad Hoc Mobile Wireless Networks: Protocols and Systems", 1st Edition, Pearson, 2007, ISBN 9788131715109
- Mobile Ad Hoc Networking by Stefano Basagni ,Marco Conti , Silvia Giordano , Ivan Stojmenovic
- Mobile and Wireless Communication Networks by Guy Pujolle IFIP 19th World Computer Congress

Reference Book (s)

- "Charles E. Perkins, "Ad Hoc Networking", 1st Edition, Pearson, 2008, ISBN 9788131720967"
- 2. Mohammed Ilyas, "The Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems", 1st Edition, CRC press, 2004, ISBN 9780849319686.
- 3. "Mobile Ad-hoc and Sensor Networks: Second International Conference, MSN

- 2006, Hong Kong, China, December 13-15, 2006, Proceedings"
- 4. Mobile Agents in Networking and Distributed Computing by Jiannong Cao, Sajal Kumar

Unit-1 Introduction to Wireless Ad Hoc Networks 9 hours

Introduction to cellular and ad hoc wireless networks, applications of ad hoc networks, issues in ad hoc wireless networks – medium access scheme, routing, multicasting, transport layer protocols, pricing scheme, quality of service provisioning, self organization, security, address and security discovery, energy management, scalability, deployment considerations, ad hoc wireless Internet.

Unit-2Medium Access Control Protocol 9 Hours

Issues in Designing a MAC Protocol for ad hoc wireless networks, design goals of a MAC Protocol for Ad Hoc Wireless Networks, Classification of MAC Protocols, Contention based Protocols, Contention based Protocols with Reservation mechanism, Contention Based MAC Protocols with Scheduling Mechanisms, Other MAC protocols.

Unit-3 Routing Protocol
Hours

Design issues and classification, Table-driven, On-demand and Hybrid routing protocols, Routing protocols with efficient flooding mechanisms, Hierarchical and power-aware routing protocols.

Unit-4Multicasting Protocol 8 Hours

"Design issues and operation, Architecture Reference Model, classification, Tree-based and Mesh-Based Protocols, Energy-Efficient Multicasting, Multicasting with Quality of Service Guarantee.Quality of Service: Issues and challenges in providing QoS, Classification of QoSsolutions."

Unit-5Energy Management 6 Hours

Need, classification of battery management schemes, Transmission power management schemes, System power management schemes.

Unit 6 Recent Trends and Technologies

New Generation Technology for Best QOS and 5G Technology.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Information Theory and				
Course	Coding				
Course Code					
Pre-requisite	Analog and Digital				
	Communication				
Co-requisite					
Anti-requisite					
	L T P C				
	3 0 0 3			3	

Course Objectives:

The student will be able

- To understand the fundamental concept of entropy and information as they are used in communications.
- 2. To identify the implications and consequences of fundamental theories and laws of information theory and coding with reference to the application in modern communication and computer systems.
- 3. To design different encoders using the different coding schemes like Huffman Coding, Shannaon Fano Coding, Cyclic codes, etc.,

Course Outcomes

CO1	Understand the concept of information	
	and entropy	
CO2	To design different encoders using the	
	different coding schemes	
CO3	Apply error control techniques	
CO4	To calculate syndrome using cylic code	
CO5	To apply compression techniques to text	
	and images.	
CO6	Model the Entropy, Joint Entropy and	
	Conditional Entropy, Relative Entropy	
	and Mutual Information, Relationship	

Between Entropy and Mutual
Information

Text Book (s)

- 5. "C. Siva Ram Murthy and B. S. Manoj, "Ad Hoc Wireless Networks: Architectures and Protocols", 1st Edition, Prentice Hall, PTR, 2006, ISBN 9788131706886"
- 6. C. K. Toh, "Ad Hoc Mobile Wireless Networks: Protocols and Systems", 1st Edition, Pearson, 2007, ISBN 9788131715109
- Mobile Ad Hoc Networking by Stefano Basagni ,Marco Conti , Silvia Giordano , Ivan Stojmenovic
- 8. Mobile and Wireless Communication Networks by Guy Pujolle IFIP 19th World Computer Congress

Reference Book (s)

- "Charles E. Perkins, "Ad Hoc Networking",
 1st Edition, Pearson, 2008, ISBN 9788131720967"
- Mohammed Ilyas, "The Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems", 1st Edition, CRC press, 2004, ISBN 9780849319686.
- 7. "Mobile Ad-hoc and Sensor Networks: Second International Conference, MSN 2006, Hong Kong, China, December 13-15, 2006, Proceedings"
- 8. Mobile Agents in Networking and Distributed Computing by Jiannong Cao, Sajal Kumar

Unit-1 Basics of information theory 9
hours
Basics of information theory:
Information, Entropy, Information rate, Joint and
conditional entropies, Mutual information -
Discrete memoryless channels ,BSC, BEC,
Channel capacity, Shannon limit.
Unit-2 Techniques of coding 9
Hours

Techniques of coding: classification of codes, Kraft McMillan inequality, Source coding theorem, Shannon-Fano coding, Huffman coding, Extended Huffman coding, Line coding.

Unit-3	Error control coding	9
Hours		

Error control coding: block and cyclic codes: Definitions and Principles: Hamming weight, Hamming distance, Minimum distance decoding - Single parity codes, Hamming codes, Repetition codes - Linear block codes

Unit-4Cyclic codes	8 Hours
Cyclic codes - Syndrome calculation	Encoder and

Cyclic codes - Syndrome calculation, Encoder and decoder, CRC, Convolutional codes: Introduction, code tree, trellis, state diagram, Encoding ,Decoding

Unit-5Compression Techniques 6 Hour	`S
Principles, Text compression, Static Huffr	nan
Coding, Dynamic Huffman coding, Arithme	etic
coding, Image Compression, Graph	nics
Interchange format, Tagged Image File Form	nat,
Introduction to JPEG standards.	

Unit 6

Application of coding techniques in data compression, audio and Video Coding.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Wireless Sensor Networks				
Course					
Course Code	BECE3203				
Pre-requisite	quisite Computer Networks				
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

Course Objectives:

- 1. To identify communication protocols employed in WSNs
- 2. To explain usefulness of OSI model for Communication System Design

- 3. To select the appropriate technology to implement a WSN.
- 4. To design a WSN

Course Outcomes

CO1	Know Basics challenges and technologies in Wireless Sensors Network.
CO2	Understand Various Architectures and Protocols of Wireless network.
~~~	
CO3	Know Various Topology and Tools of
	Wireless Network.
CO4	Analyze the problems related to sensor
	networks.
CO5	Different communication protocols and
	their usefulness in different applications
CO6	Perform case studies

#### Text Book (s)

- Holger Karl & Andreas Willig, "" Protocols And Architectures for Wireless Sensor Networks"", John Wiley, 2005"
- "Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach"", Elsevier, 2007"
- 3. Yang, Shuang-Hua , "Wireless Sensor Networks"
- 4. Fahmy, Hossam Mahmoud Ahmad, "Wireless Sensor Networks"

#### Reference Book (s)

- "KazemSohraby, Daniel Minoli, &TaiebZnati, "Wireless Sensor Networks- Technology, Protocols, And Applications", John Wiley, 2007"
- 2. Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003
- 3. "Wireless Sensor Networks:
  Technology, Protocols and
  Applications" by KazemSohrab
- "Fundamentals of Wireless Sensor Networks: Theory and Practice (WSE)" by WaltenegusDargie and Christian Poellabauer"

# **Unit-1** Overview Of Wireless Sensor Networks **4 hours**

Overview of Wireless Sensor Networks, Challenges for Wireless Sensor Networks, Enabling Technologies For Wireless Sensor

Architectures

Unit-2

Hours		
"Single-Node Architecture	-	Hardware
Components, Energy Consum	nption	of Sensor
Nodes , Operating Systems	s and	Execution
Environments, Network Arch	itecture	e - Sensor
Network Scenarios, Optimiz	ation (	Goals and
Figures of Merit, Gateway Con	cepts."	

Unit-3	Networking Sensors	9
hours		

"Physical Layer and Transceiver Design Considerations, MAC Protocols for Wireless Sensor Networks, Low Duty Cycle Protocols And Wakeup Concepts - S-MAC , The Mediation Device Protocol, Wakeup Radio Concepts, Address and Name Management, Assignment of MAC Addresses, Routing Protocols- Energy-Efficient Routing, Geographic Routing."

# Unit-4 Infrastructure Establishment 9 hours

"Topology Control, Clustering, Time Synchronization, Localization and Positioning, Sensor Tasking and Control."

# Unit-5 Sensor Network Platforms And Tools9 Hours

"Sensor Node Hardware – Berkeley Motes, Programming Challenges, Node-level software platforms, Node-level Simulators, State-centric programming."

Unit 6 Applications of WSN 8 hours Applications of WSN: WSN Applications - Home Control - Building Automation - Industrial Automation Medical **Applications** Reconfigurable Sensor Networks - Highway Monitoring - Military Applications - Civil and Environmental Engineering **Applications** Wildfire Instrumentation - Habitat Monitoring -Nanoscopic Sensor Applications – Case Study: IEEE 802.15.4 LR-WPANs Standard - Target detection and tracking - Contour/edge detection -Field sampling.

#### **Continuous Assessment Pattern**

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Optical Comm	unic	atio	1	
Course					
Course Code	BECE3016				
Pre-requisite	Optoelectronics,				
	Electromagnet	ic Fi	eld '	Γheo	ry
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

### **Course Objectives:**

- 1. Discuss the technology developments in Optical Communication with major emphasis on related theory/analysis of technical characteristics of Optical Fibre/Components, Systems and Network nodes to enable the design and selection of proper Functional modules/Building blocks intended for practical network application
- Impart practical network knowledge based on Optical Communication Network Evolution viz. SONET in terms of Network Elements/Architecture, Network Management, Protection (Reliability), Synchr onization
- 3. Introduce all- optical signal processing based on Optical components and related network functions based on Multi wavelength Optical layers, with Assignment& Routing algorithms along with associated Network architecture. Introduce advanced topics on Photonic switching, Optical **Transport** packet Network(OTN).

### **Course Outcomes**

	Recall basic laws of optical physics.
	Distinguish between the various modes of
CO1	operation of Optical fibers. Identify the
COI	various causes for signal degradation.
	Calculate the various types of losses
	occurring in transmission of energy.
	Categorize the types of sources of light
CO2	on basis of physical construction and
COZ	principle of operation and describe the
	various phenomenon involved in the

	conversion of electrical energy into light
	energy.
	Explain the operation of optical receiver.
	Identify the various effects introducing
CO3	noise in the system and evaluate the
	performance of digital receiver by
	calculating the probability of error.
	Define and apply the Wavelength
CO4	Division Multiplexing. (WDM) principles
	and concepts.
	Discuss the basic applications of optical
CO5	amplifiers like Erbium Doped Fiber
COS	Amplifier (EDFA). Look into the widely
	used networks like SONET/SDH.
CO6	Understand the practically used optical
100	networks

#### Text Book (s)

- Gerd Keiser, "Optical Fiber Communication" McGraw -Hill International, Singapore, 3rd edition, 2000
- Rajiv Ramaswami, Kumar N. Sivaranjan, "Optical Networks A practical perspective", 2nd edition, Elsevier, 2004

#### Reference Book (s)

- Djafar K. Mynbaev, Lowell L. Scheiner, "Fiber-Optic Communications Technology", 1st edition, Pearson Education, 2001
- John Powers, "An Introduction to Fiber optic Systems", 2nd edition, IrwinMcGraw Hill, 1999
- 3. J.Gowar, "Optical Communication System", 2nd edition, Prentice Hall of India, 2001

# Unit-1 Introduction to Optical Fiber Communication 9 hours

Introduction, Historical development, general system, advantages, disadvantages, and applications of optical fiber communication. Fiber materials, Photonic Crystal Fibers. Spectral characteristics. Optical Fiber wave guide: Structure, Single and Multimode operation; Attenuation, Material and wave guide dispersion

Unit-2 Optical Sources and TransmissionCharacteristics of Optical Fibers 9 Hours

Light Emitting Diode; principle, structures, power and efficiency, coupling to fibers. Laser diodes; principle, double hetero structure, gain and index guiding, distributed lasers. Attenuation, absorption, scattering losses, bending loss, dispersion, Intra model dispersion, Inter model dispersion

# Unit-3 Optical Detectors and Optical Receiver7 Hours

Photo detectors, Photo detector noise, Response time, double hetero junction structure, Photo diodes, comparison of photo detectors. Optical Receiver Operation, eye diagrams, signal to noise ratio

# **Unit-4** Point-to-point link and Wavelength Division Multiplexing **7 hours**

Building blocks; Multiplexing; Intensity Modulation/Direct Detection system; Principle of Regeneration; WDM link, Optical amplifiers; EDFA, SOA, Raman amplifier, Fabry-Perot filters. Dispersion compensation and management, Link analysis and Bit-Error-Rate calculation.

# **Unit-5** WDM Concepts and Optical Network **8 Hours**

LAN, MAN, WAN; Topologies: bus, star, ring; WDM concepts, overview of WDM operation principles, WDM standards, Ethernet; FDDI; Telecom networking: SDH/SONET. Different forms of access networks: Telephony; ISDN; Cable TV; Broadcast and Switched Networks; HFC networks; FTTC and FTTH networks; All optical networks

#### Unit 6 Practical Optical Networks 6hours

Intelligent Optical Network (ION), FDDI, FTTH, Business -Drivers for Next Generation Optical Networks.

#### **Continuous Assessment Pattern**

Internal Assessment (IA)	Mid	End			
	Term	Term	Total		
	Test	Test	Marks		
	(MTE)	(ETE)			
20	30	50	100		

#### 2. VLSI Basket

Name of The	Digital System design using				
Course	VHDL	VHDL			
<b>Course Code</b>	<b>BECE3104</b>				
Prerequisite	Digital Design				
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

#### **Course Objectives**

- 1.To gain an in-depth understanding of VHDL and to realize different circuits using it both sequential and combinational
- 2.To learn the concept of memories and how they are designed using VHDL.
- 3. To gain an understanding of applications of VHDL in PLDs and Field Programmable Logic Arrays (FPGAs).

#### **Course Outcomes**

CO1	Explain VHDL as a programming language.
CO2	Design the combinational and sequential logic circuits using VHDL.
СОЗ	Design Programmable logic devices(PLDs) and Networks of Arithmetic operations.
CO4	Gain proficiency with VHDL software package and utilize software package to solve problems on a wide range of digital logic circuits.
CO5	Explain VHDL as a programming language.
CO6	Illustrate the latest trends adapted in Digital System Design

#### **Continuous Assessment Pattern:**

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

#### **Course Content:**

Introduction to Hardware Description Languages (HDL) And HDL Based Design, VHDL-Variables, Signals And Constants, Arrays, VHDL Operators, VHDL Functions, VHDL Procedures, Packages And Libraries, VHDL Description Of Combinational Networks, Modeling Flip-Flops Using VHDL, VHDL Models For A Multiplexer, Compilation And Simulation Of VHDL Code, Modeling A Sequential Machine, VHDL Model For A Counter.

#### **Unit II:VHDL Synthesis and Models** 8 Hours

Attributes, Transport and Inertial delays, Operator overloading, Multivalued logic and signal resolution, IEEE-1164 standard logic, Generics, Generate statements, Synthesis of VHDL code, Synthesis examples, Files and TEXTIO. Introduction to data path and control path synthesis.

# Unit III:Digital Design with State Machine Charts 7 Hours

State machine charts, Derivation of SM charts, Realization of SM charts. Implementation of the dice game, Alternative realization for SM charts using microprogramming, Linked state machines, Asynchronous state machine based design.

# **Unit IV: Programmable Logic devices (PLDs):** 9Hours

Designing with programmable logic devices: Read-only memories (ROM, EPROM, EEPROM/FLASH), Programmable logic arrays (PLAs), Programmable array logic (PLAs), Other sequential programmable logic devices (PLDs), Design of a keypad scanner. Design of networks for arithmetic operations: Design of a serial adder with accumulator, State graphs for control networks, Design of a binary multiplier, Multiplication of signed binary numbers, and Design of a binary divider.

# Unit V:Field Programmable Gate Arrays (FPGA) 8 Hours

"Xilinx 3000 series FPGAs, Designing with FPGAs, Xilinx 4000 series FPGAs, using a one-hot state assignment, Altera complexprogrammable logic devices (CPLDs), Altera FELX 10K series COLDs. Representation of floating-point numbers, Floating-point multiplication, Other floating-point operations."

# **Unit-6** Latest Trends in Digital System **Design 7 Hours**

Deep Learning with INT8 optimization on Xilinx Devices, Xilinx ISE Design Suite - FPGA, Complex programmable logic devices (CPLDs), Altera FELX 10K series CPLDs. Representation of floating-point numbers, Floating-point multiplication, Other floating-point operations"

#### 3. IoT Basket

Name of The Course	Introduction to IoT and its Applications				
<b>Course Code</b>	BECE4501				
Prerequisite	Microprocessor and Microcontrollers				
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

### **Course Objectives:**

Students will understand the concepts of Internet of Things and develop IoT based systems for various applications.

#### Course Outcomes

CO1	Understand the concepts of Internet of Things
CO2	Analyze basic protocols in wireless sensor network
CO3	Realize various domain specific IoT applications and be able to analyse their performance
CO4	Implement basic IoT applications using embedded platform
CO5	Recognise the various data acquisition units and Actuators and their effective utilization in developing IoT Architectrures.
CO6	Recognize the latest trends in IoT based system development

#### Text Books & Reference Books:

- 1. RajkumarBuyya, Amir VahidDastjerdi, "Internet of Things Principles and Paradigms" Copyright © 2016 Elsevier Inc.
- ArshdeepBahga, Vijay Madisetti, "Internet of Things A hands-on approach", Universities Press, 2015.
   Manoel Carlos Ramon, "Intel® Galileo and Intel® Galileo Gen
- 3. API Features and Arduino Projects for Linux Programmers", Apress, 2014.
- 4. Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014.

Introduction to IoT

#### Course Content:

Unit-1

7 hours
The Internet of Things Today, Time for Convergence, Towards the IoT Universe, Internet of Things Vision, IoT Strategic Research and Innovation Directions, IoT Applications, Future Internet Technologies, Infrastructure, Networks and Communication, Processes, Data Management, Security, Privacy & Trust, Device Level Energy Issues, IoT Related, Standardization, Recommendations on Research Topics.
Unit-2 Network & Communication aspects 7 hours
Background/Related Work – OpenIoT Architecture for IoT/Cloud Convergence - Scheduling Process and IoT Services Lifecycle - Scheduling and Resource Management - Validating Applications and Use Cases - Future Research Directions
Unit-3 Challenges in IoT 7 hours
Introduction - Background and Related Work - Device/Cloud Collaboration Framework - Powerful Smart Mobile Devices - Runtime Adaptation Engine - Privacy-Protection Solution - Applications of Device/Cloud Collaboration - Context - Aware Proactive Suggestion -

Semantic QA Cache - Image and Speech Recognition.- Future Work

Unit-4 Domain specific applications of IoT 7 hours

Principles, Architectures, and Applications: Introduction - Motivating Scenario - Definitions and Characteristics. - Reference Architecture -Applications - Research Directions and Enablers.- Commercial Products - Case Study

Unit-5 Developing IoT based Systems 7 hours

Introduction - Scenario - Architecture Overview-Sensors - The Gateway - Data Transmission

Unit 6 Recent Trends in IoT 7 Hours

Introduction of Blockchain, Big data, SaaS(Software- As-a-Service), IoT based Smart Homes, Smart Cities, IoT based Healthcare systems.

#### **Continuous Assessment Pattern**

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Automation and Robotics				
Course					
Course Code	EEC501				
Pre-requisite	IoT, Electronic Sys	tem	Des	sign	
Co-requisite					
Anti-					
requisite					
		L	T	P	С
		3	0	0	3

#### Course Objectives:

- 1. To provide the student with basic knowledge and skills associated with robot control.
- 2. Demonstrate an ability to apply spatial transformation to obtain forward kinematics equation of robot manipulators.

- 3. Demonstrate an ability to perform kinematics and inverse kinematics analysis of robot systems.
- 4. Demonstrate knowledge of robot controllers.
- 5. To develop the student's knowledge in various robot structures and their workspace.

#### Course Outcomes

CO1	Explain Basic Robotic model & its applications.
CO2	Differentiate types of control and the standardization for some robotic system. K4
CO3	Critically evaluate robots for particular applications.
CO4	Analyze particular industrial applications and evaluate possible solutions in terms of automated dedicated/flexible) or mixed manual/automated systems.
CO5	Realize the design problem and preliminary consideration of Industrial automation.

#### Text Book (s)

- 1. Mikell P Grover et. al. "Industrial Robots: Technology, Programming and Applications", 2nd Edition, Tata McGraw Hill, 1980, ISBN 9781259006210.
- Robert J. Schilling, "Fundamentals of Robotics-Analysis and Control", PHI Learning, 2009, ISBN 9788120310476 ( Unit-II and Unit-III)

#### Reference Book (s)

 K.S. Fu, Ralph Gonzalez, C.S.G. Lee, "Robotics: control, sensing, vision and Intelligence", 1st Edition, TataMcgraw-Hill, 2008, ISBN 9780070265103

Unit-1INTRODUCTION ROBOTICS	9
hours	

Robotics – Basic components – Classification – Performance characteristics – Actuators- Electric actuator- DC motor horse power calculation, magneto-astrictive hydraulic and pneumatic actuators. Sensors and vision systems: Different types of robot transducers and sensors – Tactile sensors – Proximity and range sensors – ultrasonic sensor-touch sensors-sensor calibration- vision systems.

# Unit-2ROBOT CONTROL Hours

Control of robot manipulators- state equations-constant solutions-linear feedback systems-single axis PID control- PD gravity control- computed torque control- variable structure control-Impedance control.

#### Unit-3END EFFECTORS 8 Hours

End effectors and tools— types — Mechanical grippers — Vacuum cups — Magnetic grippers — Robot end effectors interface, work space analysis work envelope-workspace fixtures-pick and place operation- continuous path motion-interpolated motion-straight line motion.

#### Unit-4ROBOT MOTION ANALYSIS 7 Hours

Robot motion analysis and control: Manipulator kinematics –forward and inverse kinematics- arm equation-link coordinates-Homogeneous transformations and rotations and Robot dynamics

#### Unit-5ROBOT APPLICATIONS 6 Hours

Industrial and Non industrial robots, Robots for welding, painting and assembly – Remote Controlled robots – Robots for nuclear, thermal and chemical plants – Industrial automation – Typical examples of automated industries

#### Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

#### 4. Signal Processing Basket

Name of The	Neural Networ	ks a	and	Fuz	zzy
Course	Control				
Course Code	EEC506				
Pre-requisite	Control Systems				
Co-requisite					
Anti-requisite					
		L	T	P	С
		3	0	0	3

### **Course Objectives:**

- 1. Get the exposure to Artificial Neural Networks & Fuzzy Logic.
- 2. Understand the importance of tolerance of imprecision and uncertainty for design of robust &low cost intelligent machines
- 3. Explore the functional components of neural network classifiers or controllers, and the functional components of fuzzy logic classifiers or controllers
- 4. Develop and implement a basic trainable neural network or a fuzzy logic system for a typical control, computing application or biomedical application

#### **Course Outcomes**

CO1	Identify and describe Fuzzy Logic and Artificial Neural Network techniques in building intelligent machines.
CO2	Apply Artificial Neural Network & Samp; Fuzzy Logic models to handle uncertainty and solve engineering problems.
CO3	Understanding of fuzzy relation rule and aggregations
CO4	Understand concept of classical and fuzzy sets, fuzzification and defuzzification

CO5	Recognize the feasibility of applying a Neuro-Fuzzy model for a particular problem
CO6	Effectively use modern software tools to solve real life problems using a soft computing approach and evaluate various soft computing approaches for a given problem.

Unit-1Introduction to Artificial Neural Network9 hours

Artificial neural networks and their biological motivation – Terminology – Models of neuron – Topology – characteristics of artificial neural networks – types of activation functions – learning methods – error correction learning – Hebbian learning – Perceptron – XOR Problem – Perceptron learning rule convergence theorem – Adaline.

Unit-2Feed-forward and Recurrent Neural Networks12 Hours

"Architecture: perceptron model, solution, single layer artificial neural network, multilayer perceptron model; back propogation learning methods, effect of learning rule co-efficient; back propagation algorithm, factors affecting backpropagation training, applications; Recurrent neural networks: Linear auto associator — Bidirectional associative memory — Hopfield neural network."

Unit-3Fuzzy Logic & Fuzzy Sets 9 Hours

Introduction to Fuzzy Logic, Classical and Fuzzy Sets, Membership Function ,Membership Grade, Universe of Discourse, Linguistic Variables, Operations on Fuzzy Sets: Intersections, Unions, Negation, Product, Difference, Properties of Classical set and Fuzzy sets, Fuzzy vs Probability, Fuzzy Arithmetic, Fuzzy Numbers.

Unit-4Fuzzy Relations & Aggregations 9 Hours

Essential Elements of Fuzzy Systems, Classical Inference Rule, Classical Implications and Fuzzy Implications, Crisp Relation and Fuzzy Relations, Composition of fuzzy relations, Cylindrical Extension and Projection. Fuzzy IF-THEN rules, Inference: Scaling and Clipping Method,

Aggregation, Fuzzy rule based Model: Mamdani Model, TSK model, Fuzzy Propositions, Defuzzification: MOM, COA

Unit-5Fuzzy Optimization and Neuro Fuzzy Systems 6 Hours

Fuzzy optimization —one-dimensional optimization. Introduction of Neuro-Fuzzy Systems, Architecture of Neuro Fuzzy Networks.

Unit VI:Recent trends and Applications 5 hours Recent trends in Soft computing, Neuro-Fuzzy Systems, SVM, Application of Fuzzy Logic in Medicine, Economics, Industry etc.

#### Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

#### Suggested reading

Text Book (s)

- 1. Ross, Timothy J. Fuzzy logic with engineering applications. John Wiley & Sons, 2009
- 2. Yegnanarayana, B. Artificial neural networks. PHI Learning Pvt. Ltd., 2004
- Stamatios V. Kartalopoulos, Understanding Neural Networks and Fuzzy Logic: Basic Concepts and Applications 1st Edition
- 4. S. Rajasekaran, Neural Networks, Fuzzy Systems and Evolutionary Algorithms: Synthesis and Applications.
- Aaron M. Tenenbaum, YedidyahLangsam and Moshe J. Augenstein "Data Structures Using C and C++", PHI, 1996."
- 6. Jean Paul Trembley and Paul G. Sorenson, "An Introduction to Data Structures with applications", McGraw Hill, 2007.

- "Kosko, B, "Neural Networks and Fuzzy Systems: A Dynamical Approach to Machine Intelligence", PrenticeHall, NewDelhi, 2004"
- 8. "Timothy J Ross, "Fuzzy Logic with Engineering Applications", John Willey and Sons, West Sussex, England, 2005."

Name of The	Soft Computing				
Course					
Course Code	BECE4401				
Pre-requisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

#### **Course Outcomes**

CO1	Identify and describe soft computing					
COI	techniques and their roles in building					
	intelligent machines					
	To understand the fundamental theory and					
	concepts of neural networks, Identify					
CO2	different neural network architectures,					
	algorithms, applications and their					
	limitations					
CO3	Understand appropriate learning rules for each of the architectures and learn several					
COS	neural network paradigms and its					
	applications					
	**					
	Comprehend the fuzzy logic and reasoning					
	to handle uncertainty and solve					
CO4	engineering problems, genetic algorithms					
	to combinatorial optimization problems					
	and neural networks to pattern					
	classification and regression problems					
	Understand the concepts of fuzzy sets,					
CO5	knowledge representation using fuzzy					
	rules, approximate reasoning, fuzzy					
	inference systems, and fuzzy logic					
	Effectively use modern software tools to					
	solve real life problems using a soft					
CO6	computing approach and evaluate various					
	soft computing approaches for a given					
	problem.					
l .	I I					

Course Overview & Objectives

This course will cover fundamental concepts used in Soft computing. The concepts of Fuzzy logic (FL) will be covered first, followed by Artificial Neural Networks (ANNs) and optimization techniques

using Genetic Algorithm (GA). Applications of Soft Computing techniques to solve a number of real life problems will be covered to have hands on practices.

#### Course Content

Unit I: Introduction to	Artificial Neural Network
9 hours	

Introduction Soft computing, Soft vs Hard computing, Techniques in Soft Computing, overview of biological Neuro-system, Artificial neural networks, characteristics and terminology of ANN, Models of neuron, Topology, types of activation functions; Perceptron: XOR Problem, Perception learning rule convergence theorem; Adaline.

Unit II: Feedforward and Recurrent Neural Networks 9 hours

Architecture of neural network: single layer artificial neural network, multilayer ANN, Learning, Types of Learning: Supervised, Unsupervised and Reinforcement Learning, Perceptron learning Algorithm, back propagation learning methods, back propagation algorithm, factors affecting backpropagation training, applications; Recurrent neural networks: Linear auto associator, Bi-directional associative memory – Hopfield neural network, K mean Clustering Algorithm

Unit III: Fuzzy Logic & Fuzzy Sets 8 hours

Introduction to Fuzzy Logic, Classical and Fuzzy Sets, Membership Function, Membership Grade, Universe of Discourse, Linguistic Variables, Operations on Fuzzy Sets: Intersections, Unions, Negation, Product, Difference, Properties of Classical set and Fuzzy sets, Fuzzy vs Probability, Fuzzy Arithmetic, Fuzzy Numbers.

Unit IV: Fuzzy Relations & Aggregations 9 hours
Essential Elements of Fuzzy Systems, Classical
Inference Rule, Classical Implications and Fuzzy
Implications, Crisp Relation and Fuzzy Relations,
Composition of fuzzy relations, Cylindrical
Extension and Projection. Fuzzy IF-THEN rules,
Inference: Scaling and Clipping Method,
Aggregation, Fuzzy rule-based Model: Mamdani
Model, TSK mode, Defuzzification: MOM, COA

Unit V: Genetic algorithm: 9 hours

Genetic Algorithm: An Overview. Implementation of GAfundamentals, basic genetic concepts, working principle, Population initialization, Fitness function, encoding, Operators of GA: Selection, Crossover/Recombination, Mutations, Mutation Operators, Applications Areas of GA

Unit VI:Recent trends and Applications 5 hours
Recent trends in Soft computing, Neuro-Fuzzy
Systems, SVM, Application of Fuzzy Logic in
Medicine, Economics, Industry etc.

### **Text Books**

- 1. Ross, Timothy J. Fuzzy logic with engineering applications. John Wiley & Sons, 2009.
- 2. Yegnanarayana, B. *Artificial neural networks*. PHI Learning Pvt. Ltd., 2004.
- 3. Goldberg, David E., and John H. Holland. Genetic algorithms in Search, Optimization & Machine Learning. Pearson Education ,2009

#### Reference Books

- 1. Zurada, Jacek M. *Introduction to artificial neural systems*, West St. Paul, 1992.
- 2. Hagan, Martin T., Howard B. Demuth, and Mark H. Beale. *Neural network design*. Boston: Pws Pub., 1996.
- 3. Haykin, Simon. *Neural networks: a comprehensive foundation*. Prentice Hall PTR, 1994.
- 4. Passino, Kevin M., and Stephen Yurkovich. *Fuzzy control*. Vol. 42. Menlo Park, CA: Addison-Wesley, 1998.



**Program: B.Tech. Electrical Engineering** 

Scheme: 2020-2021

#### Vision

To be known globally as a premier Department offering value-based education in Electrical Engineering through interdisciplinary research and innovation.

#### Mission

- To provide high quality education in the field of *Electrical Engineering*.
- Establish state-of-the-art facilities for design and simulation.
- To provide effective solution to the industries in Energy and allied areas through research and consultancy.
- Immunize the students with knowledge and experience in their field of specialization to contribute in the making of professional leaders.

#### **Program Educational Objectives**

#### Graduate shall

**PEO1:** Develop skills and proficiency in core areas of Electrical and related multidisciplinary Engineering fundamentals.

**PEO2:** Demonstrate technical competence to tackle problems in the field of industry using emerging technologies, innovation and entrepreneur skill.

**PEO3:** Pursue higher education, research and development in electrical engineering and allied areas of science and technology.

#### **Program Specific Outcome**

**PSO1:** Demonstrate their knowledge in analysis and design of industrial drives for utilizing renewable energy sources.

**PSO1:** Develop sustainable solutions for electrical engineering problems using Machine Learning, Artificial Intelligence and IoT.

#### **Program Outcomes**

- Engineering Knowledge: Apply the knowledge of Mathematics, Science, and Engineering fundamentals, and an engineering specialization to solution of complex engineering problems
- Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences
- Design/development of solutions: Design of solutions for complex engineering problems and design of system components or processes that meet the specified needs with appropriate considerations of public health and safety, and cultural, societal, and environmental considerations
- Conduct investigations of complex problems: Use research based methods including design of experiments, analysis and interpretation of data and synthesis of information leading to logical conclusions
- Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling complex engineering activities with an understanding of limitations
- The engineer and society: Apply reasoning within the contextual knowledge to access societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- Environment and sustainability: Understand the impact of the professional engineering solutions in the societal and environmental contexts, and demonstrate the knowledge of, and the need for sustainable developments
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice
- Individual and team work: Function effectively as an individual independently and as a member or leader in diverse teams, and in multidisciplinary settings

- Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large such give and receive clear instructions
- Project management and finance: Demonstrate knowledge and understanding of engineering management principles and apply those to one's own work as a member and leader of a team to manage projects in multidisciplinary environments
- Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

# Curriculum

No			Semester 1							
No	Sl.	Course Code						Assess	sment Pa	attern
BCS01T1001   Data Analytics (Excel and Tableu)   1   0   0   1   50   -   50	No	Course Code	Name of the Course	L	T	P	C	IA	MTE	ETE
BCS01T1002			Energy Sources and Audit	1	0	0	1	20	30	50
Multivariable Calculus and Vector calculus   Section   Color					0		_	50	-	50
BBS01T1001   Calculus	3	BCS01T1002	AI Fundamentals	2	0	0	2	20	30	50
BBS01T1001   Calculus								20	30	50
Signature   Sign	4	BBS01T1001		3	0	0	3	20	30	30
Secont   Communication Skill   3   0   0   3   20   30   50								20	30	50
Total   BBS01T1002   Engineering Physics   2   0   0   2   20   30   50							_	20		
BBS01P1002   Engineering Physics Lab   0   0   2   1   50   50	_						_	20	30	50
Second   S							2	20	30	50
Total   BEE01T1003				0	0	2		50	-	50
No					0	0		20	30	50
Name of the Course   Name of the Course   Name of the Course   Lambda   Table   Name of the Course   Name of the Course   Lambda   Name of the Course   Name of the Course   Lambda   Name of the Course   Name of	11	BEE01T1003		2	0	2	3	20	30	50
No										
No   Course Code   Name of the Course   L   T   P   C   IA   MTE   ETE	CI		Semester II					<b>A</b> agas	ann and Da	44 0
BBS01T1003   Linear Algebra and Differential   2   0   0   2   20   30   50		Course Codee	Name of the Course	Τ.	Т	P	С			
BEE01T1004   Equations   1   0   0   1   50   -   50		BBS01T1003	Linear Algebra and Differential	_					1	
BCE01P1001   Embedded Technology and IoT   1   0   2   2   50   -   50									-	
4         BCE01P1002         Waste Management         0         0         2         1         20         30         50           5         BLE01P1001         Environmental Science         0         0         1         0.5         50         -         50           6         BSB01T1001         Liberal and Creative Arts         0         0         1         0.5         50         -         50           7         BCS01P1004         Entrepreneurship         1         0         2         2         50         -         50           8         BEE01T1005         Programming         0         0         2         1         50         -         50           9         BCS01T1005         Introduction to Digital System         2         0         2         3         20         30         50           10         BME01P1001         Data Structure Using C         2         0         2         3         50         -         50           11         BXX01T10XX         Digital Fabrication         0         0         2         1         50         -         50           Electrical- AC/DC Machine, Civil - Engineering Graphics,         Cereativity, Innovation and p			^	1	0	2	2	1	_	
5         BLE01P1001         Environmental Science         0         0         1         0.5         50         -         50           6         BSB01T1001         Liberal and Creative Arts         0         0         1         0.5         50         -         50           7         BCS01P1004         Entrepreneurship         1         0         2         2         50         -         50           8         BEE01T1005         Programming         0         0         2         1         50         -         50           9         BCS01T1005         Introduction to Digital System         2         0         2         3         20         30         50           10         BME01P1001         Data Structure Using C         2         0         2         3         50         -         50           11         BXX01T10XX         Digital Fabrication         0         0         2         1         50         -         50           Electrical- AC/DC Machine, Civil - Engineering Mechanical - Engineering Graphics,         Creativity, Innovation and Depthon         0         0         2         1         50         -         50					1			1	30	
6         BSB01T1001         Liberal and Creative Arts         0         0         1         0.5         50         -         50           7         BCS01P1004         Creativity, Innovation and Entrepreneurship         1         0         2         2         50         -         50           8         BEE01T1005         Application of Python Programming         0         0         2         1         50         -         50           9         BCS01T1005         Introduction to Digital System         2         0         2         3         20         30         50           10         BME01P1001         Data Structure Using C         2         0         2         3         50         -         50           11         BXX01T10XX         Digital Fabrication         0         0         2         1         50         -         50           Electrical- AC/DC Machine, Civil - Engineering Mechanics, Mechanical - Engineering Graphics,         20         30         50	5	BLE01P1001	-	0	0	1	0.5	1		
The following display   The	6	BSB01T1001	Liberal and Creative Arts	0	0	1	0.5	<b>_</b>	_	
7         BCS01P1004         Entrepreneurship         1         0         2         2         50         -         50           8         BEE01T1005         Application of Python Programming         0         0         2         1         50         -         50           9         BCS01T1005         Introduction to Digital System         2         0         2         3         20         30         50           10         BME01P1001         Data Structure Using C         2         0         2         3         50         -         50           11         BXX01T10XX         Digital Fabrication         0         0         2         1         50         -         50           Electrical- AC/DC Machine, Civil - Engineering Mechanics, Mechanical - Engineering Graphics,         Mechanical - Engineering Graphics,         20         30         50			Creativity, Innovation and							
8         BEE01T1005         Application of Python Programming         0         0         2         1         50         -         50           9         BCS01T1005         Introduction to Digital System         2         0         2         3         20         30         50           10         BME01P1001         Data Structure Using C         2         0         2         3         50         -         50           11         BXX01T10XX         Digital Fabrication         0         0         2         1         50         -         50           Electrical- AC/DC Machine, Civil - Engineering Mechanics, Mechanical - Engineering Graphics,         Mechanical - Engineering         20         30         50	7	BCS01P1004	I	1	0	2	2	50	-	50
8         BEE01T1005         Programming         0         0         2         1         50         -         50           9         BCS01T1005         Introduction to Digital System         2         0         2         3         20         30         50           10         BME01P1001         Data Structure Using C         2         0         2         3         50         -         50           11         BXX01T10XX         Digital Fabrication         0         0         2         1         50         -         50           Electrical- AC/DC Machine, Civil - Engineering Mechanics, Mechanical - Engineering Graphics,         20         30         50										<b>~</b> 0
10         BME01P1001         Data Structure Using C         2         0         2         3         50         -         50           11         BXX01T10XX         Digital Fabrication         0         0         2         1         50         -         50           Electrical- AC/DC Machine, Civil - Engineering Mechanics, Mechanical - Engineering Graphics,         20         30         50	8	BEE01T1005		0	0	2	1	50	-	50
11 BXX01T10XX Digital Fabrication 0 0 2 1 50 - 50  Electrical- AC/DC Machine, Civil - Engineering Mechanics, Mechanical - Engineering Graphics,  20 30 50	9	BCS01T1005	Introduction to Digital System	2	0	2	3	20	30	50
Electrical- AC/DC Machine, Civil - Engineering Mechanics, Mechanical – Engineering Graphics,  20 30 50	10	BME01P1001	Data Structure Using C	2	0	2	3	50	-	50
Civil - Engineering Mechanics, Mechanical – Engineering Graphics,  20 30 50	11	BXX01T10XX	Digital Fabrication	0	0	2	1	50	-	50
Mechanical – Engineering Graphics,  20 30 50			Electrical- AC/DC Machine,							
Graphics,			Civil - Engineering Mechanics,							
			Mechanical – Engineering					20	30	50
			Graphics,							
12 BBS01T1003 Electronics - Analog Circuits 2 0 2 3	12	BBS01T1003	Electronics - Analog Circuits	2	0	2	3			
Total										
Semester III	CI		Semester III					<b>A</b>	~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	44 0
Sl No   Course Code   Name of the Course   L T P C IA MTE ETE		Course Code	Name of the Course	T	Т	P	$\Gamma$			1
1 BEE02T2001 Data structures using Python 3 0 0 3 20 30 50		BEE02T2001	Data structures using Python							
Functions of Complex Variables 3 0 0 3 20 30 50										
2 MATH2001 and Transforms	2	MATH2001	_							
3 BECE2012 Electromagnetic Field Theory 3 0 0 3 20 30 50	3			3	0	0	3	20	30	50
4 BECE2015 Electronic Devices and Circuits 3 0 0 3 20 30 50	+		<u> </u>			0		-		

5	BTEE2002	Network Analysis and Synthesis	3	0	0	3	20	30	50
6	BECE2016	Signals and Systems	3	0	0	3	20	30	50
	2222010	Design and Engineering/	2	0	0	1	20	30	50
7	BEE02T2003	Transducer and IOT				1			
		Network Analysis and Synthesis	0	0	2	1			
8	BTEE2003	Lab					50		50
9	BEE02P2003	Engineering Clinic-1	0	0	2	1	50		50
10		English Proficiency and Aptitude					50		50
10	SLBT2021	Building - 3	0	0	2	1	30	_	30
		Electronic Devices and Digital	0	0	2	1	50		50
	BEE02P2010	Circuits Lab							
		Environmental Science and	2	0	0	0	20	30	50
11	ENVS1004	Engineering (Mandatory							
		Audit Course)				20			
		Total Semester IV	<u> </u>	1		23	<u> </u>		
Sl							Assess	sment Pa	ttern
No	Course Code	Name of the Course	L	T	P	С	IA	MTE	ETE
1	MATH2004	Probability and Stochastic	3	0	0	3	20	30	50
		Processes		U			20	30	30
2	BEEE3002	Control Systems	3	0	0	3	20	30	50
3	BTEE2006	Electrical Machine-1	3	0	0	3	20	30	50
4	BTEE2008	Fundamentals of Power Systems	3	0	0	3	20	30	50
5	BTEE3015	Power Plant Engineering	3	0	0	3	20	30	50
6	BEEE2001	Electrical Measurement and	3	0	0	3	20	30	50
	5222	Instrumentation							
7	BEE02P2007	Engineering Clinic-2 ( IOT based	0	0	2	1	50		50
8	BTEE2007	Tinker CAD) Electrical Machine Lab-1	0	0	2	1	50		50
0	DIEEZUU/	Measurement and Control Systems	U	0		1	50		30
9	BEE02P2009	Lab	0	0	2	1	50		50
10	BEE02P2008	Logical and Critical Reasoning	0	0	2	1	50		50
10	DLL021 2000	Total				22	30		30
		Semester V	1	1	1		I	I .	I
Sl	Course Code	Name of the Course		1		ı		sment Pa	
No	Course Coue		L	T	P	С	IA	MTE	ETE
1	BECE3004	Microcontroller and Embedded	3	0	0	3	20	30	50
		system							
2	BTEE3004	Electrical Machine-2	3	0	0	3	20	30	50
3	BTEE3009	Power System Analysis	3	0	0	3	20	30	50
4	BTEE3011 ******	Power Electronics	3	0	0	3	20	30	50
5		Program Elective-I	3	0	0	3	20	30	50
6	******	Program Elective-II	2	0	0	2	20	30	50
7	BEE02P3001	Engineering Clinic-3(Industrial	0	0	2	1	50		50
		Internship)	-	-					
8	BEE02P3002	Effective Leadership and	0	0	2	1	50		50
		Decission Making Skills				<u> </u>			

			1	1			1	1	1
9	BECE3005	Microcontroller and Embedded Systems Lab	0	0	2	1	50		50
10	BEE01T3003	Database Management System	0	0	2	1	50		50
11	BEE02T3004	Finance for Electrical Engineers		0	0	1	20	30	50
12	BTEE3005	Electrical Machine Lab-2	0	0	2	1	50		50
		Total				23			
	Semester VI								
Sl	Course Code	Name of the Course	_	-	ъ	-		sment Pa	
No 1	SLBT3002		L 0	T 0	P 4	<u>C</u>	IA 50	MTE	50 ETE
2	BEE02T3005	Campus to Corporate program  High Voltage Engineering	3	0	0	3		20	50
3	BEE02T3005 BEE02T3006	Power System protection	3	0	0	3	20	30	50
4	BTEE4005	Professional Ethics and Values	2	0	0	0	20		
5	******	Program Elective-III	3	0	0	3	20	30	50
6	*****	Program Elective-IV	3	0	0	3	20	30	50
7	BTEE4013	Electrical Machine Design	3	0	0	3	20	30	50
8	BEE02P3008	5	0	0	2	1	20	30	50
9	BEE02P3008 BEE02P3007	Design and Innovation Project	0	0	2	1	50		50
9	GERN1001/JAP	Power System protection Lab Forign Language - 1 (German,	U	U	2	1	50		50
10	A1001/FREN10	Japneese, French) *any one	0	0	2	0	50		50
	01								
11	BEE02P3008	Machine Learning Using Python	0	0	2	1	50		50
11	DEEU2F3006	Programming	U	U	2	1	50		50
Total 20									
						20			
		Semester VII	<u> </u>			20	I .		
Sl No	Course Code		L	Т	P	C	Assess	sment Pa	ttern ETE
	Course Code BEEE4001	Semester VII  Name of the Course  Smart Grid and Energy	L 3	T 0	P 0				
No 1	BEEE4001	Semester VII  Name of the Course  Smart Grid and Energy management	3	0	0	C 3	IA	MTE	ETE
No 1 2	BEEE4001	Semester VII  Name of the Course  Smart Grid and Energy management  Program Elective-V	3	0	0	C 3	IA	MTE	ETE
No 1 2 3	BEEE4001  ******  *******	Semester VII  Name of the Course  Smart Grid and Energy management  Program Elective-V  Program Elective-VI	3 3 3	0 0 0	0 0 0	C 3 3 3	IA 20	MTE 30	50
No 1 2 3 4	BEEE4001  ******  *******  *******	Semester VII  Name of the Course  Smart Grid and Energy management  Program Elective-V  Program Elective-VI  Open Elective-1	3 3 3	0 0 0	0 0 0	C 3 3 3 3 3	1A 20 20	30 30	50 50
No 1 2 3	BEEE4001  ******  *******	Semester VII  Name of the Course  Smart Grid and Energy management  Program Elective-V  Program Elective-VI  Open Elective-1  Open Elective-2	3 3 3	0 0 0	0 0 0	C 3 3 3	IA 20	MTE 30	50
No 1 2 3 4	BEEE4001  ******  *******  *******	Semester VII  Name of the Course  Smart Grid and Energy management  Program Elective-V  Program Elective-VI  Open Elective-1  Open Elective-2  Electrical Design, Estimation and	3 3 3	0 0 0	0 0 0	C 3 3 3 3 3	1A 20 20	30 30	50 50
No 1 2 3 4 5	BEEE4001  *******  *******  *******	Semester VII  Name of the Course  Smart Grid and Energy management  Program Elective-V  Program Elective-VI  Open Elective-1  Open Elective-2	3 3 3 3	0 0 0 0	0 0 0 0	C 3 3 3 3 3 3	20 20 20 20	30 30 30 30	50 50 50 50
No 1 2 3 4 5	BEEE4001  ******  ******  ******  BEE02T4001	Semester VII  Name of the Course  Smart Grid and Energy management  Program Elective-V  Program Elective-VI  Open Elective-1  Open Elective-2  Electrical Design, Estimation and Energy Audit  PLC/SCADA Lab	3 3 3 3 3	0 0 0 0 0	0 0 0 0 0	C 3 3 3 3 3 3 3	20 20 20 20	30 30 30 30	50 50 50 50 50
No 1 2 3 4 5 6 7	BEEE4001  ******  ******  ******  BEE02T4001  BTEE3008  BEE03P4003	Semester VII  Name of the Course  Smart Grid and Energy management  Program Elective-V  Program Elective-VI  Open Elective-1  Open Elective-2  Electrical Design, Estimation and Energy Audit	3 3 3 3 3 0	0 0 0 0 0	0 0 0 0 0	C 3 3 3 3 3 3 1	20 20 20 20 50 50	30 30 30 30	50 50 50 50 50 50
No 1 2 3 4 5 6 7 8	BEEE4001  ******  ******  ******  BEE02T4001  BTEE3008	Semester VII  Name of the Course  Smart Grid and Energy management  Program Elective-V  Program Elective-VI  Open Elective-1  Open Elective-2  Electrical Design, Estimation and Energy Audit  PLC/SCADA Lab  Industrial Internship  Technical Seminar	3 3 3 3 3 0 0	0 0 0 0 0	0 0 0 0 0 0	C 3 3 3 3 3 1 0	20 20 20 20 50 50	30 30 30 30	50 50 50 50 50 50 50
No 1 2 3 4 5 6 7 8 9	BEEE4001  ******  ******  ******  BEE02T4001  BTEE3008  BEE03P4003  BEE02P4005	Semester VII  Name of the Course  Smart Grid and Energy management  Program Elective-V  Program Elective-VI  Open Elective-1  Open Elective-2  Electrical Design, Estimation and Energy Audit  PLC/SCADA Lab  Industrial Internship	3 3 3 3 3 0 0	0 0 0 0 0 0	0 0 0 0 0 0 2	C 3 3 3 3 1 0 0	20 20 20 20 50 50 50	30 30 30 30	50 50 50 50 50 50 50 50
No 1 2 3 4 5 6 7 8 9	BEEE4001  ******  ******  ******  BEE02T4001  BTEE3008  BEE03P4003  BEE02P4005  BEE02P4005	Semester VII  Name of the Course  Smart Grid and Energy management  Program Elective-V  Program Elective-VI  Open Elective-1  Open Elective-2  Electrical Design, Estimation and Energy Audit  PLC/SCADA Lab  Industrial Internship  Technical Seminar  Capstone Design Phase-I	3 3 3 3 3 0 0	0 0 0 0 0 0	0 0 0 0 0 0 2	C 3 3 3 3 1 0 0	20 20 20 20 50 50	30 30 30 30	50 50 50 50 50 50 50
No 1 2 3 4 5 6 7 8 9 10	BEEE4001  ******  ******  ******  BEE02T4001  BTEE3008  BEE03P4003  BEE02P4005  BEE02P4005  BEE02P4002  GERN/JAPA/F	Semester VII  Name of the Course  Smart Grid and Energy management  Program Elective-V  Program Elective-VI  Open Elective-1  Open Elective-2  Electrical Design, Estimation and Energy Audit  PLC/SCADA Lab  Industrial Internship  Technical Seminar  Capstone Design Phase-I  Forign Language - 2 (German,	3 3 3 3 3 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 2 0 2	C 3 3 3 3 3 1 0 0 2	20 20 20 20 50 50 50	30 30 30 30	50 50 50 50 50 50 50 50
No 1 2 3 4 5 6 7 8 9 10	BEEE4001  ******  ******  ******  BEE02T4001  BTEE3008  BEE03P4003  BEE02P4005  BEE02P4005  BEE02P4002  GERN/JAPA/F	Semester VII  Name of the Course  Smart Grid and Energy management  Program Elective-V  Program Elective-VI  Open Elective-1  Open Elective-2  Electrical Design, Estimation and Energy Audit  PLC/SCADA Lab  Industrial Internship  Technical Seminar  Capstone Design Phase-I  Forign Language - 2 (German, Japneese, French) *Optional	3 3 3 3 3 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 2 0 2	C 3 3 3 3 3 1 0 0 2	20 20 20 20 50 50 50 50	30 30 30 30	50 50 50 50 50 50 50 50
No 1 2 3 4 5 6 7 8 9 10 11	BEEE4001  ******  ******  ******  BEE02T4001  BTEE3008  BEE03P4003  BEE02P4005  BEE02P4005  BEE02P4002  GERN/JAPA/F	Semester VII  Name of the Course  Smart Grid and Energy management  Program Elective-V  Program Elective-VI  Open Elective-1  Open Elective-2  Electrical Design, Estimation and Energy Audit  PLC/SCADA Lab  Industrial Internship  Technical Seminar  Capstone Design Phase-I  Forign Language - 2 (German, Japneese, French) *Optional  Total	3 3 3 3 3 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 2 0 2 10	C 3 3 3 3 3 1 0 0 2 0 21	20 20 20 20 50 50 50 50	30 30 30 30	50 50 50 50 50 50 50 50
No 1 2 3 4 5 6 7 8 9 10	BEEE4001  ******  ******  ******  BEE02T4001  BTEE3008  BEE03P4003  BEE02P4005  BEE02P4002  GERN/JAPA/F  REN 1002	Semester VII  Name of the Course  Smart Grid and Energy management  Program Elective-V  Program Elective-VI  Open Elective-1  Open Elective-2  Electrical Design, Estimation and Energy Audit  PLC/SCADA Lab  Industrial Internship  Technical Seminar  Capstone Design Phase-I  Forign Language - 2 (German, Japneese, French) *Optional  Total  Semester VIII	3 3 3 3 3 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 2 0 2	C 3 3 3 3 3 1 0 0 2	20 20 20 20 50 50 50 50	30 30 30 30	50 50 50 50 50 50 50 50
No 1 2 3 4 5 6 7 8 9 10 11 SI No	BEEE4001  ******  ******  ******  BEE02T4001  BTEE3008  BEE03P4003  BEE02P4005  BEE02P4005  GERN/JAPA/F  REN 1002  Course Code	Semester VII  Name of the Course  Smart Grid and Energy management  Program Elective-V  Program Elective-VI  Open Elective-1  Open Elective-2  Electrical Design, Estimation and Energy Audit  PLC/SCADA Lab  Industrial Internship  Technical Seminar  Capstone Design Phase-I  Forign Language - 2 (German, Japneese, French) *Optional  Total  Semester VIII  Name of the Course	3 3 3 3 3 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 2 0 2 10	C 3 3 3 3 3 1 0 0 2 0 21	20 20 20 20 50 50 50 50 50	30 30 30 30	50 50 50 50 50 50 50 50 50 Eattern ETE

_						
- 1						
		T-4-1		10		
		i iolai		1/		
		i Totai		12		

## **List of Program Electives**

## **Control Engineering**

Sl	Course Code	Name of the Electives					Assessment Pattern			
No	Course Code	Name of the Electives	L T P C	C	IA	MTE	ETE			
1	BTEE3019	Advanced Control System	3	0	0	3	20	30	50	
2	BTEE3020	Industrial Automation and Control	3	0	0	3	20	30	50	
3	BEE02T5001	Industrial Instrumentation and	3	0	0	3	20	30	50	
3	DEE0213001	Automation	3	U	O	3				
4	BEEE5005	Power System Operation and Control	3	0	0	3	20	30	50	
5	BEEE5004	Digital Control	3	0	0	3	20	30	50	
6	BEE03T5002	Automation and Robotics	3	0	0	3	20	30	50	

# **Power Engineering**

Sl	Course Code	Name of the Elective					Assessment Pattern			
No	Course Code	name of the Elective	L	Т	P	С	IA	MTE	ETE	
1	BEE03T5011	Power System Equipments	3	0	0	3	20	30	50	
2	BTEE3023	Power Quality	3	0	0	3	20	30	50	
3	BTEE4001	Electric Drives	3	0	0	3	20	30	50	
4	BTEE4010	FACTS and HVDC	3	0	0	3	20	30	50	
5	BEE02T5003	Electrical and Hybrid Vehicle	3	0	0	3	20	30	50	
6	BTEE4009	Power System Deregulation	3	0	0	3	20	30	50	

# **Energy Engineering**

Sl	Course Code	Name of the Elective					Assessment Pattern		
No			L	T	P	С	IA	MTE	ETE
1	BEEE2018	Non-conventional Energy Resources	3	0	0	3	20	30	50
2	BTEE4011	Energy Assessment and Audit	3	0	0	3	20	30	50
3	BTEE5102	Utilization of Electrical Energy and Traction System	3	0	0	3	20	30	50
4	BEE03T5010	Power Electronics applications in Renewable Energy	3	0	0	3	20	30	50
5	BTEE5202	Special Electrical Machine	3	0	0	3	20	30	50
6	BEE02T5004	Energy Modelling Simulation Using MATLab	3	0	0	3	20	30	50

# **Processing and Computing Techniques**

S1 No	Course Code	Name of the Elective			Assessment Pattern				
NO			L	T	P	С	IA	MTE	ETE
1	BTEE4012	Machine learning	3	0	0	3	20	30	50
2	BEE02T5005	Image Processing using MATLab	3	0	0	3	20	30	50

3	BEE02T5006	Introduction to Scilab and its	2	0	0	2	20	30	50
3	BEE0213000	applications	י	U	O	3	20	30	30
4	BEE02T5008	Human Computer Interface	3	0	0	3	20	30	50
5	BECE3020	Digital Signal Processing	3	0	0	3	20	30	50
6	BECE4401	Soft Computing	3	0	0	3	20	30	50
7	BTEE4015	Neural Networks and Fuzzy Control	3	0	0	3	20	30	50
8 BEE02T5007	Neural Networks and Deep Learning	3	0	0	3	20	30	50	
	DEE0213007	Algorithms	3		U	3	20	30	30

	List of Open elective (Engineering courses) Proposed								
	Basket 1								
Sl. No.	Course Code	Course Title					Ass	Pattern	
		Basket 1	L	T	P	С	IA	MTE	ETE
1	BOE601	Human Computer Interface	3	0	0	3	20	50	100
2	BOE602	Introduction to cyber Physical Systems	3	0	0	3	20	50	100
3	BOE603	Selected Topics in Signal Processing	3	0	0	3	20	50	100
4	BOE604	Selected Topics in Communication Engineering	3	0	0	3	20	50	100
5	BOE605	Autonomous Vehicles	3	0	0	3	20	50	100
6	BOE606	Data Science	3	0	0	3	20	50	100
7	BOE607	Computer Vision	3	0	0	3	20	50	100
8	BOE608	Artificial Intelligence	3	0	0	3	20	50	100
9	BOE609	Cyber Security	3	0	0	3	20	50	100
10	BOE610	Energy Management	3	0	0	3	20	50	100
11	BOE611	Estimation and Costing	3	0	0	3	20	50	100
12	BOE612	Data Envelopment Analysis	3	0	0	3	20	50	100
13	BOE613	Operation Management	3	0	0	3	20	50	100
14	BOE614	Construction Engineering	3	0	0	3	20	50	100
16	BOE615	Disaster Management	3	0	0	3	20	50	100
16	BOE616	Bioinformatics	3	0	0	3	20	50	100
		Basket-2							
1	BOE701	Remote Sensing and GIS	3	0	0	3	20	50	100
2	BOE702	Automotive Electronics	3	0	0	3	20	50	100
3	BOE703	Sensors & Actuators	3	0	0	3	20	50	100
4	BOE704	IoT and Smart Cities	3	0	0	3	20	50	100

5	BOE705	Web Design and Management	3	0	0	3	20	50	100
6	BOE706	Principles of Telemedicine	3	0	0	3	20	50	100
7	BOE707	Mobile Application Development	3	0	0	3	20	50	100
8	BOE708	Business Analytics	3	0	0	3	20	50	100
9	BOE709	Cloud Computing	3	0	0	3	20	50	100
10	BOE710	Block Chain	3	0	0	3	20	50	100
11	BOE711	Augmented / Virtual Reality	3	0	0	3	20	50	100
12	BOE712	Digital Forensics	3	0	0	3	20	50	100
13	BOE713	Operations Research	3	0	0	3	20	50	100
14	BOE714	Renewable Energy	3	0	0	3	20	50	100
15	BOE715	Interior Design	3	0	0	3	20	50	100
16	BOE716	Landscaping	3	0	0	3	20	50	100
17	BOE717	Biology for Engineers	3	0	0	3	20	50	100

### **Detailed Syllabus**

Name of The Course	AC & DC Circuits					
Course Code	BEEL10	1, B	EEP	101.		
Prerequisite						
Co-requisite						
Anti-requisite						
		L	T	P	C	
		1	-	2	2	

### **Course Objectives**

- 1. To study Different types of Circuit Elements
- 2. To study Basic Circuits Laws.
- 3. To study Basic Concepts of A.C. Circuits

#### **Course Outcomes**

#### Students will be able to

CO1	Understand relationship between different electrical parameters.
CO2	Students will develop an ability to analyze D.C Circuits of different configurations.
CO3	Understand magnetic aspects of electric current.
CO4	Students will develop an ability to analyze A.C. Circuits of different configurations
CO5	Students will develop an ability to analyze Resonance Circuits.

#### **Continuous Assessment Pattern**

	<b>Evaluation Scheme</b>								
ı	Theory		Practical	Total					
TAE	CAE	ESE	Cont	Marks					
10	15	25	25	75					

### **Course Content:**

Unit I: D.C. Circuits: 8 Hours	CO
	Mapping
Circuits Elements(R, L, C),	
Kirchhoff's Laws, Superposition	
Principle and theorem, Norton's	CO1&CO2
theorem, Thevenin's Theorem,	
Voltage source, (definition,	
characteristics of practical source,	
equivalent current source) Star-	
Delta transformation	

Unit II:Magnetic circuits 7 Hours	
Flux, mmf, reluctance, analogous electric circuits, simple calculations for composite magnetic circuits.	CO3
Unit III: A. C. Circuits 10	
Hours	
Periodic functions, average &rms values, Steady state behaviours with sinusoidal excitation, phasor representation, reactance and impedance, Series and Parallel A.C. circuits, resonance, power in A. C. circuits, power factor, Principle of generation of single phase & Three phase voltages. Power in balanced three phase A.C. systems.	CO4& CO5

### **Suggested Reading**

- Textbook of Electrical Engineering, B.L. Theraja, Vol. I & II, Twenty, S. Chand & Co 1997 Second.
- 2. Basic Electrical Engineering, D C.Kulkshreshtha, McGraw, 2012, First.
- 3. Introduction to Electrical Engineering, Naidu, Kamakshaia, Tata McGraw Hill, 2000, Third
- 4. Basic Electrical Engineering, H. Cotton, CBC, 2005, Seventh.
- 5. Laboratory courses in Electrical Engg, S G Tarnekar, P K Kharbanda, S B Bodkhe, S D Naik, S. Chand & Co, 2010, second.

#### **List of Experiment**

1.	To Verify KVL & KCL.
2.	To plot B-H Curve Of Magnetic Material.
	Verification Of Line Voltage and Phase
3.	Voltage In Three Phase Star Connected
	Balanced Load.
	Study of phase relationship in R-L-C
4.	network by computer simulation using P-
	SIM Software.
	Open Ended
	1) To Study 11 KV distribution Substation
	(Overview).
5.	2) To Study Ferranti Effect.
3.	3) To Study different types of FACT
	Controller.
	4)To Study Comparison between DC Motor
	& Induction Motor.

Name of The Course	AC & DC Machines				
<b>Course Code</b>	BEEL102				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		2	-	ı	2

### **Course Objectives**

- 1. To prepare the students to understand basic fundamentals of Electrical Circuits
- 2. To make the students aware about basic principle of operation of Electrical machines under the Influence of magnetic field.

#### **Course Outcomes**

Student will be able to

CO1	Understand Concepts of energy transfer through magnetic coupling.
COI	through magnetic coupling.
CO2	Understand working principle of
COZ	transformer.
CO3	Understand Concepts of D.C machines.
CO4	Understand Operation of A.C machines.

#### **Continuous Assessment Pattern**

Evaluation Scheme						
Theory			Practical	Total		
TAE	CAE	ESE	Cont	Marks		
10	15	25		50		

#### **Course Content:**

Unit I:Single Phase Transformers	CO
Hours 10	Mapping
Introduction, Basic principle, construction of phasor diagram for transformer under no load condition, Transformer on load, EMF equation Phasor diagrams, Equivalent circuit, Losses, Efficiency, Regulation, Open-circuit & short-circuit test.	CO1 &CO2
Unit II:D. C. Machines Hours 10	
Introduction, construction, EMF and Torque equation, classification, self-excitation of D.C. shunt generators, EMF, voltage, current relations in generator and motor, Characteristics,	CO3

starting and speed control of d. c. motors.	
Unit III: Introduction to AC	
Motors. Hours10	
Three phase Induction motor	
Construction, and principle of	
rotating field, synchronous speed,	
Rotor current, torque and slip,	CO4
Principle of Single phaseCapacitor	
Start motor.	

### **Suggested Reading**

- 1. Basic Electrical Engineering, D C. Kulkshreshtha, McGraw, 2012, First
- 2. Textbook of Electrical Engineering, B. L. Theraja, Vol. I & II, Twenty, S. Chand & Co., 1997, Second.
- 3. Introduction to Electrical Engineering, Naidu, Kamakshaia, Tata McGraw Hill, 2000, Third
- 4. Basic Electrical Engineering, H. Cotton , CBS, 2005, Seventh.
- 5. Laboratory courses in Electrical Engg. S. Chand &Co, 2010, Second.
- 6. Electric Machines, Kothari, Nagrath, Tata McGraw Hill, 2006, ThirdEdition.

Name of The Course	Energy Sources & Audit				
Course Code	BEEL103				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
	_	1	-	_	1

#### **Course Objectives**

- 4. To study the various types of Electrical Sources.
- 5. To study the comparison of various sources.
- 6. To study the Non-conventional electrical sources.

#### **Course Outcomes**

Student will be able to

CO1	To understand present scenario of energy & its importance.
COI	& its importance.

CO2	To learn Conventional energy sources &Non conventional Energy sources.
CO3	To understand concept of Energy Management
CO4	To apply knowledge of energy audit to industry.
CO5	To understand importance of safety components.

#### **Continuous Assessment Pattern**

Evaluation Scheme						
Theory			Practical	Total		
TAE	CAE	ESE	Cont	Marks		
10	15			25		

#### **Course Content:**

Unit I:Current Energy Scenario	CO
Hours 4	Mapping
Conventional Energy Sources, Types of conventional energy sources, importance &drawbacks of Conventional Energy Sources, Alternatives to conventional energy sources. Non Conventional Energy Sources, Types of non-conventional energy sources, importance & drawbacks of Non-Conventional Energy Sources, Comparison with conventional energy sources & its	CO1 & CO2
application.	
Unit II:Energy Management & Audit	
4 Hours	
Definition need and types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance,	
matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.	CO3 & CO4
matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.  Unit III: Electrical Installations 6	
matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.	

Cables, types of Earthing	systems,	
power factor improvement.		

### **Suggested Reading**

- 1.Non-Conventional Energy Resources, B H Khan, Tata McGraw-Hill Education, 01-Jan-2006, Second Edition
- 2. Energy Management Audit and Conservation, Barun Kumar De, Vrinda Publications, 2007, Third Edition.
- 3. Handbook of Energy Audit, Sonal Desai
- 4. Energy Management, Audit & Conservation by, Barun Kumar De.

Name of The	Introduction to Digital				
Course	Systems.				
Course Code	BECL101	BECL101			
	BECP101				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		1	1	2	3

### **Course Objectives**

- 1. To familiarize with various Digital IC
- 2. To understand basic fundamentals of Digital circuits
- 3. To prepare for various engineering applications.

#### **Course Outcomes**

Student will be able to

CO1	Solve the problems on Number system
	codes and their conversions.
CO2	Identify Digital IC and implement in the
COZ	circuits.
CO3	Create, design and simulate canonical
COS	logic forms.
	Demonstrate the application of
CO4	combinational and sequential logic
	circuits

### **Continuous Assessment Pattern**

Evaluation Scheme					
Theory Practic				Total	
TAE	CAE	ESE	Cont	Marks	
10	15	25	25	75	

#### **Course Content:**

UnitI:Number Systems & Boolean	CO
Algebra	Mapping
Hours 8	11 0
Decimal, binary, octal, hexadecimal number system and conversion, binary weighted & non-weighted codes & code conversion, signed numbers, 1s and 2s complement codes, Binary arithmetic, Binary logic functions, Boolean laws, truth tables, associative and distributive properties, De-Morgan's theorems, realization of switching functions using logic gates. Logic families: TTL, ECL, CMOS.	CO1
Unit II: Combinational Logic: Hours 8	
Switching equations(Mathematical operations), canonical logic forms, sum of product & product of sums, Karnaugh maps, two, three and four variable Karnaugh maps, simplification of expressions, mixed logic combinational circuits, multiple output functions, Quine Mcluskey Methods for 5 variables.  Introduction to combinational circuits, code conversions, decoder, encoder, priority encoder, multiplexers & Demultiplexer, binary adder, Subtractor, BCD adder, carry look ahead adder, Binary comparator, Arithmetic Logic Units.	CO2
Unit III:Sequential Logic & Circuits: Hours 8	
Latch, flip-flops, clocked and edge triggered flip-flops, timing specifications, asynchronous and synchronous counters counter design, Registers, types of registers. Analysis of simple synchronous sequential circuits, Introduction to Mealy and Moore Circuits.	CO3, CO4

### **Suggested Reading**

- 1.Digital Electronics, R P Jain , McGraw Hill, 2017, Second edition.
- 2.Digital Electronic Principles, Malvino , PHI, 2011-13, Seventh Publication.

3. Digital Logic and Computer Design, Morris Mano, PHI, 2017 review, second edition.

## **List of Experiment**

Sr. No	List of Experiment					
1.	To study the basic logic gates					
	Verify their truth table.					
	Verification of De Morgan's Theorem.					
2.	Verification Of SOP & POS Given					
	Algebraic Expression Using Universal					
	Gates.					
3.	Designing of HALF and Full adder					
	using basic logic gates.					
4.	Design of 4:1 MULTIPLEXER USING					
	GATES.					
5.	Design and Implementation of 1-bit					
	Magnitude Comparator using basic					
	logic gates.					
6.	Design and Verification of S-R Flip-					
	Flop Circuits.					
7.	Realization of 3-bit synchronous					
	counter design For Various Application.					
	Frequency counters					
	Digital clock					
	• Time measurement.					
8.	Project based learning: Building of LED					
	Series / Seven Segment LED / Display					
	unit.					
	Students Will Select a project and					
	perform on breadboard in a group of					
	Four.					

Name of The	Analog Circu	its			
Course					
<b>Course Code</b>	BECL102				
	BECP102				
Prerequisite					
Co-requisite					
Anti-requisite					
_		L	T	P	C
		1	1	2	3

### **Course Objectives**

- 1. To familiarize with various electronic components and understand their properties.
- 2. To understand basic fundamentals of analog circuits.

3. To prepare for various engineering applications.

### Course Outcomes Student will be able to

CO1	Understand the electronics devices.		
CO2 Understand electronics circuits and			
CO2	measure their performance parameters		
CO3 Create, design and simulateanalog			
COS	circuits by using diode and transistor		

#### **Continuous Assessment Pattern**

	Evaluation Scheme					
Theory Practical				Total		
TAE	CAE	ESE	Cont	Marks		
10	15	25	25	75		

#### **Course Content:**

<b>UnitI: PN Junction DiodeHours 8</b>	CO
	Mapping
Review of PN junction, forward and	
reverse bias, VI Characteristics,	
Dynamic Resistance, Equivalent	
Circuit of diode, Temperature	
dependence. Diode numerical.	CO1
Varactor Diode, Tunnel Diodes, LED,	
LCD	
Unit II:Applications of	
Diodes&Linear Circuits:Hours 8	
Rectifier with C Filter, Numerical on	
Rectifiers, Clippers, Clampers,	CO2
Limiters, Low pass filter, High pass	
filter with characteristics.	
Unit III:Bipolar Junction	
Transistor and its application.	
Hours 8	
Transistor Doping, Transistor action,	
Current Components, BJT	
configurations: CE, CC, CB	
characteristics, Base Width	CO3,
Modulation. Punch Through Effect.	
DC load line, Fixed Bias Method.	
Single stage CE transistor as amplifier,	
BJT as a switch.	

### **Suggested Reading**

#### **Text Books:**

- 1. Basic Electronics & Linear circuits: N.N. Bhargava, Tata Mcgraw-Hill, 2013, Second edition.
- 2. Electronic Devices & Circuits, Sanjiv Gupta

Sanjay Gupta, Dhampat Rai Publication,2012

#### **Reference Books:**

- 1. Electronic Devices & Circuits Theory, Robert L. Boylestad, Louis Nashelsky, Pearson India, 2009, Tenth Edition.
- 2. Integrated Electronics, Jacob Millman, Tata Mcgraw-Hill, 2009, second edition.
- 3. Microelectronics Circuits, A.S. Sedra& K.C. Smith, Oxford University Press, 2013, seventh edition.

### List of Experiments:

s.no	List of Experiment	CO Mapping
1.	To design clipper & clamper circuits by using basic components.	CO1 & CO2
2.	To design low pass filter by using basic components.	CO1 & CO2
3.	To design high pass filter by using basic components	CO1 & CO2
4.	To verify input characteristics and output characteristics of transistor in common base mode, to find out current gain, voltage gain, power gain.	CO3
5.	To design CE transistor as an attenuator switch	CO3
6.	To design CE transistor as an attenuator/using microcap simulation	CO3
7.	To design fixed bias for transistor.	CO3

Name of The	Embedded Programming
Course	
Course Code	BECP103

Prerequisite				
Co-requisite				
Anti-requisite				
	L	T	P	C
	-	-	2	1

### **Course Objectives**

- 1. To give the awareness of major embedded devices
- 2. To give the knowledge about interfacing devices

#### **Course Outcomes**

Student will be able to

CO1	Recognize and analyze given embedded					
COI	system design and its performance.					
	Demonstrate application based					
CO2	competencies in Embedded					
	Programming.					
	Ev	aluation	Scheme			
	Theory	,	Practical	Total		
TAE	CAE	ESE	Cont		Marks	
-	-	-	25		25	
S.No	List of 1	Experim	ents	C	O	
				N	<b>Iapping</b>	
1.	Introduct	ion to En	nbedded	C	CO1,CO2	
	systems	and its S	cope			
2.	Getting started with the			C	CO1,CO2	
	Arduino l	IDE				
	Serial Communication					
	between Arduino board and					
	PC:-character send and					
	received, Read and display					
	voltage .					
3.	Experime			C	CO1,CO2	
	and multiple LEDs.					
	Experiments on digital					
	input and digital output on					
	Arduino Uno board and					
	using LED and Buzzer.					
4.	- I			C	CO1,CO2	
	potentiometer.					
5	Introduct			C	CO1,CO2	
	arithmetic	_	_			
6.	Hands on	•	ents on	C	CO1,CO2	
	Interfacin	_				
	LDR,LCI	)				

	Experiment on LCD	
	display:-Print numbers,	
	Name, Time etc.	
7.	Experiments using Seven	CO1,CO2
	Segment display.	
8.	Experiments using	CO1,CO2
	Temperature, IR, Finger	
	print sensors.	
9.	Introduction to IoT and	CO1,CO2
	Raspberry Pi architecture.	
10.	Experiments with	CO1,CO2
	Raspberry Pi using LED.	
11.	Interfacing of the LDR, IR	CO1,CO2
	sensors.	
12.	Experiments on the	CO1,CO2
	applications of Buzzer,	
	potentiometer.	
13.	Introduction to cloud	CO1,CO2
	Programming.	
14.	Experiments on Interfacing	CO1,CO2
	with Bluetooth devices.	

Name of The	Internet of Th	ings	5		
Course					
<b>Course Code</b>					
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		-	-	2	1

## **Course Objectives**

- 1. To understand key technologies in Internet of Things.
- 2. Analyze, design or develop parts of an Internet of Things solution
- 3. Students will understand the concepts of Internet of Things and can build IoT applications.

### **Course Outcomes**

Student will be able to

CO1	Identify and adopt knowledge of the terminology, requirements and constraints for IoT system development.
CO2	Demonstrate IoT system for smaller applications.

### **Continuous Assessment Pattern**

Evaluation Scheme				
Theory			Practical	Total
TAE	CAE	ESE	Cont	Marks
			25	25

S.No	List of Experiments	CO
54210		Mapping
1.	Design and development of	CO1,CO2
1.	Arduino/Raspberry Pi	201,202
	based system for defined	
	application/ projects.	
2.	Introduction to Embedded	CO1,CO2
	systems and its Scope.	001,002
3.	Getting started with the	CO1,CO2
	Arduino IDE	201,002
	Serial Communication	
	between Arduino board and	
	PC:-character send and	
	received, Read and display	
	voltage.	
4.	Experiments using single	CO1,CO2
	and multiple LEDs.	
	Experiments on digital	
	input and digital output on	
	Arduino Uno board and	
	using LED and Buzzer.	
5	Interfacing of the switches,	CO1,CO2
	potentiometer.	
6.	Introduction to the	CO1,CO2
	arithmetic operators, loops.	
7.	Hands on experiments on	CO1,CO2
	Interfacing of the	
	LDR,LCD	
	Experiment on LCD	
	display:-Print numbers,	
	Name, Time etc.	~~
8.	Experiments using Seven	CO1,CO2
0	Segment display.	CO1 CO2
9.	Experiments using	CO1,CO2
	Temperature, IR, Finger	
10	print sensors.	GO1 GO2
10.	Introduction to IoT and	CO1,CO2
11	Raspberry Pi architecture.	G01 G04
11.	Experiments with	CO1,CO2
	Raspberry Pi using LED.	
12.	Interfacing of the LDR, IR	CO1,CO2
	sensors.	

13.	Experiments on the applications of Buzzer, potentiometer.	CO1,CO2
14.	Introduction to cloud	CO1,CO2
	Programming.	
15.	Experiments on Interfacing	CO1,CO2
	with Bluetooth devices.	
16.	Design and development of	CO1,CO2
	Arduino/Raspberry Pi	
	based system for defined	
	application/ projects.	

#### Semester 3

Name of The Course	Electromagnetic Field Theory				
Course Code	BECE2012				
Pre-requisite	Engineering Mathematics				
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

### Course Objectives:

- 1. To gain conceptual and basic mathematical understanding of electric and magnetic fields in free space and in materials
- 2. To understand the coupling between electric and magnetic fields through Faraday's law, displacement current and Maxwell's equations
- 3. To understand wave propagation in lossless and in lossy media
- 4. To be able to solve problems based on the above concepts

#### Course Outcomes:

	Apply coordinate systems and transformation
CO1	techniques to solve problems on
	Electromagnetic Field Theory
CO2	Apply the concept of static electric field and
CO2	solve problems on boundary value problems.
	Analyze the concept of static magnetic field
CO3	and solve problems using Biot - Savart's Law,
	Ampere's circuit law, Maxwell's equation.
CO4	Understands magnetic forces, magnetic
	dipole and magnetic boundary conditions.
CO5	Understands the time-varying
	Electromagnetic Field and derivation of
	Maxwell's equations.

CO6	Understand	the	application	of	
CO6	Understand the application Electromagnetism in Daily Life				

#### Reference Books

- 1. Principles of Electromagnetics N. O. Sadiku, Oxford University Press Inc
- 2. Engineering Electromagnetics W H Hayt, J A Buck, McGraw Hill Education
- 3. Electromagnetic Waves, R.K. Shevgaonkar, Tata McGraw Hill India, 2005
- 4. Electromagnetics with Applications, Kraus and Fleish, Edition McGraw Hill International Editions, Fifth Edition, 1999Syllabus

#### Course Content:

**Applications** 

# UNIT I STATIC ELECTRIC FIELDS 9 Hours

Introduction Coto ordinate System - Rectangular -Cylindrical and Spherical Co-ordinate System – Introduction to line, Surface and Volume Integrals Definition of Curl, Divergence and Gradient – Meaning of Stokes theorem and Divergence theorem Coulomb's Law in Vector Form -Definition of Electric Field Intensity – Principle of Superposition – Electric Field due to discrete charges - Electric field due to continuous charge distribution - Electric Field due to charges distributed uniformly on an infinite and finite line - Electric Field on the axis of a uniformly charged circular disc - Electric Field due to an infinite uniformly charged sheet. Electric Scalar Potential - Relationship between potential and electric field - Potential due to infinite uniformly charged line - Potential due to electrical dipole - Electric Flux Density - Gauss Law - Proof of Gauss Law -

# UNIT II: STATIC MAGNETIC FIELDS 8Hours

The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential.

UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours

Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials-Definition of Capacitance – Capacitance of various geometries using Laplace's equation—Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields – Nature of magnetic materials – magnetization and permeability – magnetic boundary conditions

# UNT IV: TIME VARYING ELECTRIC AND MAGNETIC FIELDS 8 Hours

Faraday's law - Maxwell's Second Equation in integral form from Faraday's Law - Equation expressed in point form.Displacement current -Ampere's circuital law in integral form -Modified form of Ampere's circuital law as Maxwell's first equation in integral form -Equation expressed in point form. Maxwell's four equations in integral form and differential form.Poynting Vector and the flow of power flow in a co-axial cable Instantaneous Average and Complex Poynting Vector.

# UNIT V: ELECTRO MAGNETIC WAVES 9 Hours

Derivation of Wave Equation – Uniform Plane Waves – Maxwell's equation in Phasor form – Wave equation in Phasor form – Plane waves in free space and in a homogenous material. Wave equation for a conducting medium – Plane waves in lossy dielectrics – Propagation in good conductors – Skin effect. Linear, Elliptical and circular polarization – Reflection of Plane Wave from a conductor – normal incidence – Reflection of Plane Waves by a perfect dielectric – normal and oblique incidence. Dependence on Polarization, Brewster angle.

UNIT VIApplications of Electromagnetism

Household Application, Industrial Application, Magnetic Levitation Trains, Communication System, medical Systems

#### Continuous Assessment Pattern

Internal Assessment (IA) Mid Term End	
---------------------------------------	--

	Test (MTE)	Test (ETE)	
20	30	50	100

Name of The	Network A	naly	sis	8	and
Course	Synthesis				
Course Code	BTEE2002				
Prerequisite	Basic Electrical and			ınd	
	Electronics Eng	ginee	ering	3	
Corequisite	Signals and sys	tem	s		
Antirequisite					
_		L	T	P	С
		3	0	0	3

# Course Objectives:

- 1. To learn the concepts of network analysis in electrical and electronics engineering.
- 2. To learn linear circuit analysis, graph theory and network theorems.
- 3. Analyze two port networks using Z, Y, ABCD and h parameters

#### Course Outcomes

Course	Outcomes
CO1	Apply the knowledge of graph theory with
	basic circuital laws and simplify the
	network using reduction techniques
CO2	Analyze the circuit using Kirchhoff's law
	and Network simplification theorems
CO3	Infer and evaluate transient response,
	Steady state response, network functions
CO4	Evaluate two-port network parameters and
	explain the inter-relationship among
	parameters for network analysis.
CO5	Synthesize one port network using Foster
	and Cauer Forms and
CO6	Examine active filter configurations for
	possible applications in network theory.

#### Text Book (s)

- 1. M.E. Van Valkenburg, "Network Analysis", Prentice Hall of India
- 2. A C.L Wadhwa, "Network Analysis and Synthesis" New Age International Publishers, 2007,
- 3. D.RoyChoudhary, "Networks and Systems" Wiley Eastern Ltd.
- 4. A.Chakrabarti, "Circuit Theory" DhanpatRai& Co

5. M.E. Van Valkenburg, "An Introduction to Modern Network Synthesis", Wiley Eastern Ltd.

# Reference Book (s)

- 1. Hayt, W., Engineering Circuit Analysis, Tata McGraw ☐ Hill (2006)
- 2. Hussain, A., Networks and Systems, CBS Publications (2004).
- 3. Sudhakar, A., Circuits and Networks, Tata McGraw Hill (2006).
- 4. Suresh Kumar, K.S. Electrical circuits and Networks, Pearson Education, (2009).

## Course Content:

point immittance functions using Foster and Cauer

first and second forms. Image parameters and

characteristics impedance,

Unit-6 Filters

Passive and active filter fundamentals, low pass, high pass, (constant K type) filters, and introduction to active filters.

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Test	Term	Marks
(IA)	(MTE)	Test	
		(ETE)	
20	30	50	100

Name of The	Network A	naly	sis	8	and
Course	Synthesis Lab				
Course Code	BTEE2003				
Prerequisite	Basic Electrical Engineering				
	lab		_		
Corequisite					
Antirequisite					
		L	T	P	С
		0	0	2	1

# Course Objectives:

After the completion of course the students will

- 1. To introduce the concept of circuit elements lumped circuits, circuit laws and reduction.
- 2. To study the transient response of series and parallel A.C. circuits.
- 3. To study the concept of coupled circuits and two port networks.
- 4. To study the two port networks.

### Course Outcomes

CO1	To introduce the concept of circuit elements
	lumped circuits, circuit laws and reduction.
CO2	To study the transient response of series and
	parallel A.C. circuits.
CO3	To study the concept of coupled circuits and
	two port networks.
CO4	To study the two port networks.
CO5	To introduce the concept of short circuit and
	open circuit.

# Network Analysis and Synthesis Lab

1	To verify Thevenin's theorem in a.c.			
2	To verify Norton's theorem in a.c.			
3	To verify Superposition theorem in a.c.			
4	To verify the Maximum Power Transfer			
	Theorem.			
5	Determination of Z-parameters of a two-port			
	network.			

6	To verify and determination of y-parameters of a parallel connected two-port network.
7	Determination of h-parameters of a two-port network.
8	To verify and determination of ABCD-parameters of a cascade interconnected two-port network.
9	Determination of characteristics impedance of a symmetrical T-network using S/C and O/C test.

#### Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam (ETE)	Marks
(IA) (MTE)			
50	-	50	100

Name of The	Signals and Systems				
Course					
Course Code	BECE2016				
Pre-requisite	Engineering Mathematics				
Co-requisite					
Anti-requisite					
L T P C					C
		3	0	0	3

# Course Objectives:

This subject is about the mathematical representation of signals and systems. The most important representations we introduce involve the *frequency domain* – a different way of looking at signals and systems, and a complement to the time-domain viewpoint. Indeed engineers and scientists often think of signals in terms of frequency content, and systems in terms of their effect on the frequency content of the input signal. Some of the associated mathematical concepts and manipulations involved are challenging, but the mathematics leads to a new way of looking at the world.

# Course Outcomes:

CO1	Understand various types of signals, classify,					
	analyze and perform various operations on					
	them.					
CO2	Classify the systems and realize their responses					
CO3	Analyze the response of continuous time					
	systems using Fourier transforms					
CO4	Use Laplace and Z transform techniques as tool					
	for System analysis					
CO5	Analyze the continuous and discrete time					
	system functions					

CO6	Understand	the	application	of	Sampling
	Theorem, Mu	ıltirat	e Signal Proc	essin	g and their
	applications	in rea	l-world probl	ems	

#### Text Book:

- 1. P. Ramakrishna Rao, 'Signal and Systems' 2008 Ed., Tata McGraw Hill, New Delhi, ISBN 1259083349, 9781259083341
- 2. Signals and Systems by Oppenheim &WilskyMillman

#### Course Content:

# Unit-1 Introduction 8 hours

Signals and systems as seen in everyday life, and in various branches of engineering and science. Types of signals and their representations: continuous-time/discrete-time, periodic/non-periodic, even/odd, energy/power, deterministic/random, one dimensional/ multidimensional; Basic Signals: unit impulse, unit step, unit ramp, exponential, rectangular pulse, sinusoidal; operations on continuous-time and discrete-time signals (including transformations of independent variables)

# Unit-2 Classification of Systems 8 hours

Classification, linearity, time-invariance and causality, impulse response, characterization of linear time-invariant (LTI) systems, unit sample response, convolution summation, step response of discrete time systems, stability, convolution integral, co-relations, signal energy and energy spectral density, signal power and power spectral density, properties of power spectral density.

# **Unit-3** Fourier Series and Transforms 8 hours

Continuous-time Fourier series: Periodic signals their properties, exponential trigonometric FS representation of periodic signals, convergence, FS of standard periodic signals, salient properties of Fourier series, Definition, conditions of existence of FT, properties, magnitude and phase spectra. Parseval's theorem, Inverse FT, Discrete time Fourier transform (DTFT), inverse DTFT, convergence, properties and theorems, Comparison between continuous time FT and

# **Unit-4 Laplace Transforms and Z Transforms 8 hours**

One-sided LT of some common signals, important theorems and properties of LT, inverse LT, solutions of differential equations using LT, Bilateral LT, Regions of convergence (ROC), One sided and Bilateral Z-transforms, ZT of some common signals, ROC, Properties and theorems, solution of difference equations using one-sided ZT, s- to z-plane mapping

# Unit-5 Analysis of LTI systems 8 hours

Analysis of first order and second order systems, continuous-time (CT) system analysis using LT, system functions of CT systems, poles and zeros, block diagram representations; discrete-time system functions, block diagram representation, illustration of the concepts of system bandwidth and rise time through the analysis of a first order CT low pass filter

Unit -6: **Multirate Signal Processing** 8 hours

Sampling and data reconstruction process,

Multirate Signal Processing, Sampling, Sampling
rate conversion, introduction to compressive sensing.

#### Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Electronics	Dev	ices	8	and
Course	Circuits				
Course Code	BECE2015				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	С
		3	0	0	3

#### Course Objectives:

- 1. Apply concepts of semiconductor devices to design and analyze circuits.
- 2. To prepare students to know the characteristics of different semiconductor devices.

## Course Outcomes

CO1	Realize the transistor biasing methods and
	Design analog electronic circuits using
	discrete components

CO2	Design common amplifier circuits and analyze the amplitude and frequency
	responses
CO3	Design various analog circuits to analyze
	their responses
CO4	Understand the principle of operation of
	different Oscillator circuits.
CO5	Understand the principle of operation of
	various amplifier circuits
CO6	Understand the recent trends and practical
	applications of electronic devices

### Text Book (s)

- 1. Jacob. Millman, Christos C.Halkias, 'Electronic Devices and Circuits', 2nd Edition, Tata McGraw Hill Publishing Limited, New Delhi, 2008, ISBN 0070634637, 9780070634633
- 2. David A.Bell, 'Electronic Devices and Circuits', Prentice Hall of India Private Limited, New Delhi, 2003, ISBN 013253147X, 9780132531474

# Reference Book (s)

- 1.Theodre F. Boghert, 'Electronic Devices & Circuits',6th Edition, Pearson Education 2004 ISBN 8177588877, 9788177588873.
- 2. Ben G. Streetman and Sanjay Banerjee, 'Solid State Electronic Devices', 6th Edition, PHI 2009, ISBN 0132454793, 9780132454797

#### **Course Content:**

# Unit-1 Introduction 8 hours

BJT and BJT Biasing . Hybrid models of CE, CB, CC, configurations – Study of the effect of emitter by- pass condenser at low frequencies - Hybrid - $\pi$  common emitter transistor model – hybrid  $\pi$ conductance and capacitance - CE short circuit current gain - current gain with resistive load gain bandwidth product – Study of the effect of un bypassed emitter resister amplifier performance, Cascode amplifier. HF & LF compensation of RC coupled amplifier. Multistage Amplifiers.

# Unit-2FET and FET Biasing8 hours

FET and FET Biasing. FET Amplifiers: Common source, Common gate and Common drain Amplifiers – problems. Small signal analysis of FET Amplifiers. High Frequency analysis of FET Amplifiers, VMOS & CMOS Concepts.

Unit-3Feedback amplifiers 8 hours

The feedback concept – Transfer gain with feedback – general characteristics and advantages of negative feedback – analysis of voltage series, Voltage shunt, current series and current shunt feedback amplifiers – Study of the effect of Negative feedback on Gain, Bandwidth, Noise, Distortion, Input and Output impedances with the help of Block Schematic and Mathematical Expressions

# Unit-4Oscillators

#### 8 hours

Sinusoidal oscillators –phase shift oscillator – Wien bridge oscillator – Hartley oscillator – Colpits oscillator – frequency stability, inclusive of design, Crystal oscillators.

# Unit-5Tuned amplifiers 8 hours

Characteristics of Tuned amplifiers – Analysis of Single tuned, Doubled tuned and stagger tuned amplifiers, Gain – bandwidth product – High frequency effect – neutralization. Power Amplifiers: Classification of amplifiers – class A large signal amplifiers – second harmonic distortion – higher order harmonic generations – computation of Harmonic distortion – Transformer coupled audio power amplifier – efficiency – push - pull amplifier – class B amplifier – class AB operation – Push-Pull circuit with Transistors of Complimentary Symmetry.

# Unit-6 Recent trends and Application 8 hours

Trend of Energy Saving in Electronic Devices, Application of oscillators- springs and damping, shock absorber in cars, Pendulum

#### Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Design and Engineering				
Course					
Course Code	BEE02T2003				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	С
		2	0	0	2

# Course Objectives:

The purpose of this course is to excite the student on creative and innovative design and its significance,

aware of the processes involved in design, understand the interesting interaction of various segments of humanities, sciences and engineering in the evolution of a design and get an exposure as to how to engineer a design.

#### Course Outcomes

CO1	Able to appreciate the different elements			
	involved in good designs and to apply			
	them in practice when called for.			
CO2	To understand the production based on the			
	market demand			
CO3	Aware of the product oriented and user			
	oriented aspects that make the design a			
	success.			
CO4	Will be capable to think of innovative			
	designs incorporating different segments			
	of knowledge gained in the course			
CO5	Students will have a broader perspective of			
	design covering function, cost,			
	environmental sensitivity, safety and other			
	factors other than engineering analysis.			
CO6	Will be able to design the Product centred			
	and user centred design.			

#### Text Book (s)

- Balmer, R. T., Keat, W. D., Wise, G., and Kosky, P., Exploring Engineering, Third Edition: An Introduction to Engineering and Design – [Part 3 – Chapters 17 to 27], ISBN13: 978-0124158917 ISBN-10: 0124158919
- 2. Dym, C. L., Little, P. and Orwin, E. J., Engineering Design A Project based introduction Wiley, ISBN-978-1-118-32458-5
- 3. Eastman, C. M. (Ed.), Design for X Concurrent engineering imperatives, 1996, XI, 489 p. ISBN 978-94-011-3985-4 Springer
- 4. Haik, Y. And Shahin, M. T., Engineering Design Process, Cengage Learning, ISBN-13: 978-0-495-66816-9
- Pahl, G., Beitz, W., Feldhusen, J. and Grote, K. H., Engineering Design: A Systematic Approach, 3rd ed. 2007, XXI, 617p., ISBN 978-1-84628-319-2
- 6. Voland, G., Engineering by Design, ISBN 978-93-325-3505-3, Pearson India

# Reference Book (s)

1. E-Book (Free download): <u>http://opim.wharton.upenn.edu/~ulrich/designbook.html</u> 2. .http://www2.warwick.ac.uk/fac/sci/wmg/ftmsc/modules/modulelist/peuss/designforx/design_f or_x_notes_section_5.pdf

#### Course Content:

Unit I:Introduction to design 11 lecture hours Design and its objectives; Design constraints, Design functions, Design means and Design from; Role of Science, Engineering and Technology in design; Engineering as a business proposition; Functional and Strength Designs. Design form, function and strength. How to initiate creative designs? Initiating the thinking process for designing a product of daily use. Need identification; Problem Statement;

Unit II: Market Survey

Market survey customer requirements; Design attributes and objectives; Ideation; Brain storming approaches; arriving at solutions; Closing on to the Design needs.

Unit III: Design process 9 lecture hours Design process- Different stages in design and their significance; Defining the design space; Analogies and "thinking outside of the box"; Quality function deployment-meeting what the customer wants; Evaluation and choosing of a design. Design Communication; Realization of the concept into a configuration, drawing and model. Concept of "Complex is Simple". Design for function and strength. Design detailing-Material selection, Design visualization- Solid modelling; Detailed 2D drawings; Tolerancing; Use of standard items in design; Research needs in design; Energy needs of the design, both in its realization and in the applications.

Unit IV: Prototype 8 lecture hours
Prototyping- rapid prototyping; testing and
evaluation of design; Design modifications;
Freezing the design; Cost analysis Engineering the
design – From prototype to product. Planning;
Scheduling; Supply chains; inventory; handling;
manufacturing/construction operations; storage;
packaging; shipping; marketing; feed-back on
design

Unit V: Design Monitoring 7 lecture hours Design for "X"; covering quality, reliability, safety, manufacturing/construction, assembly, maintenance, logistics, handling; disassembly; recycling; re-engineering etc. List out the design requirements(x) for designing a rocket shell of 3 meter diameter and 8 meter length.

Unit VI: Design Attributes 4 lecture hours

Product centred and user centred design. Product centred attributes and user centred attributes. Bringing the two closer.

#### Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Exam	Exam	
	(MTE)	(ETE)	
20	30	50	100

#### Semester 4

Name of The	Control system	S			
Course					
Course Code	BEEE3002				
Prerequisite	Signals and Systems				
Corequisite	None				
Antirequisite	None				
		L	T	P	С
		3	0	0	3

# Course Objectives:

- 1. To understand and develop the Mathematical Modelingof dynamic systems using classical and state-space techniques.
- 2. To apply analytical /graphical techniques in time/frequency domain to determine stability.
- 3. To understand and use applications of feedback control theory to a variety of real world problems.

#### Course Outcomes

Course	Guteomes				
CO1	Understand mathematics modeling of				
	control systems sand solve it using transfer				
	function, block diagram and signal flow				
	diagram reduction techniques.				
CO2	Design and analyze control system				
	engineering problems in time response of				
	first and second order systems.				
CO3	Analyze the concept and stability of servo				
	systems using algebraic stability criteria				
	with necessary conditions.				
CO4	Understand and analyze the stability				
	analysis using the polar, inverse polar,				
	Bode, and Nyquist stability criterion of				
	control systems				
CO5	Understand and design of lead, lag and				
	lead-lag compensator of the control				
	process in time and frequency domains.				
CO6	Analysis of the state space systems and its				
200	application				
l	i anniication				

# Text Book (s)

- 1. Nagrath& Gopal, "Control System Engineering", 4th Edition, New age International
- 2. K. Ogata, "Modern Control Engineering", Prentice Hall of India.

# Reference Book (s)

- 1. B.C. Kuo&FaridGolnaraghi, "Automatic Control System" Wiley IndiaLtd, 2008.
- 2. D.RoyChoudhary, "Modern Control Engineering", Prentice Hall of India.

# Course Content:

Unit-1Introduction

Cint Tinti occion				
Feedback Control: Open loop and closed control				
system, servomechanism, Physical examples.				
Transfer functions of linear time-invariant				
systems, Block diagram algebra, and Signal flow				
graph, Mason's gain formula Reduction of				
parameter variation and effects of disturbance by				

using negative feedback.

#### Unit-2

Standard test signals, time response of first and second order systems, time response specifications, steady state errors and error constants. Design specifications of second order systems: Error analysis. P, PI, PD, PID controllers, design considerations for higher order systems, performance indices.

#### Unit-3

Concept of Stability. Routh-Hurwitz Criteria. Relative Stability analysis, Routh-Hurwitz criteria and limitations, root locus concepts, construction of root locus. Design of controllers using root-locus. Pole placement with state feedback, controllability.

#### Unit-4

Frequency response, correlation between time and frequency responses, polar and inverse polar plots, Bode plots Stability in Frequency Domain: Nyquist stability criterion, assessment of relative stability: gain margin and phase margin, constant M&N circles.

# Unit-5

Application of Proportional, Integral and Derivative Controllers, Lead and Lag compensation in designs in time domain and frequency domain. Review of state variable technique:

Unit -6

Review of state variable technique, conversion of state variable model to transfer function model and vice-versa, diagonalization, Controllability and observability and their testing.

#### Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The	The Electrical Machine-I				
Course					
Course Code	BTEE2006				
Prerequisite	Basic Electrical Engineering				
Corequisite					
Antirequisite					
		L	T	P	С
		3	0	0	3

# Course Objectives:

- 1. To acquaint the students with the principle of operation and performance of transformers and DC machines.
- 2. To familiarize students with the parameter estimation of electrical machines
- 3. To learn the mathematical models and equations related to electrical machines.

# Course Outcomes

Course	Outcomes				
CO1	Apply the knowledge of circuit analysis and electromagnetic principles of electric machines				
CO2	Analyse the electrical machines performance.				
CO3	Test and estimate the parameter of the electrical machine.				
CO4	Analysis the numerical problems associated with transformer and DC machines.				
CO5	Make use of application of the subject topic with industries and day to day life				
CO6	Understand of the special purpose transformer for measurement and its application				

#### Text Book (s)

- 1. I.J. Nagrath& D.P. Kothari, "Electrical Machines", Tata McGraw Hill.
- 2. P S Bimbhra, "Generalized Theory of Electrical Machines", Khana Publisher.

3. P S Bimbhra, "Electrical Machinery", Khana Publisher.

# Reference Book (s)

- 1. A. E. Fitzgerald, C. Kingsley, and S. D. Umans, *Electric Machinery*, 6th ed., New York: McGraw-Hill, 2003.
- 2. Vincent Del Toro, "Electrical Machine and Power System", PHI.

# Course Content:

Unit-1Introduction
Flow of Energy in Electromechanical Devices,
Magnetic Circuit, Analogy b/w Electric and
magnetic Ckt, B-H Curve, Hysteresis and eddy
current losses, Mutual Coupling with dot
convention, Energy in magnetic systems(defining
energy & Co-energy), Singly Excited Systems and
Doubly excited Systems, Generated emf in
machines; torque in machines with cylindrical air
gap.

# Unit-2 Single Phase Transformer

Construction- Core and Shell type, Basic principle of Operation, Phasor diagram, efficiency and voltage regulation, all day efficiency. Testing of Transformers: O.C. and S.C. tests, Sumpner's test, polarity test. Auto Transformer: Single phase and three phase auto transformers, volt-amp, relation, efficiency, merits & demerits and applications.

# Unit-3 Three Phase Transformers

Construction, three phase transformer phasor groups and their connections, open delta connection, choice of transformers for three phase circuits, three phase to 2 phase, 6 phase or 12 phase connections, and their applications, parallel operation and load sharing of single phase and three phase transformers, excitation phenomenon and harmonics in transformers, three winding transformers.

# Unit-4 D.C. Machines

Construction of DC Machines, Armature winding, Emf and torque equation, Armature Reaction, Commutation, Interpoles and Compensating Windings, Methods of improving commutation, Performance Characteristics of D.C. generators, Voltage Regulation, Parallel operation of DC generator (shunt, series and compound machine).

# Unit-5 D.C. Machines (Contd.)

Performance Characteristics of D.C. motors, Starting of D.C. motors; 3 point and 4 point starters, Speed control of D.C. motors: Field Control, armature control and Voltage Control (Ward Lenonard method); Efficiency and Testing of D.C.

machines (Hopkinson's and Swinburn's Test),
Electric braking

Unit 6: Special Purpose Transformer

Instrument Transformer Current Transformer and
Potential Transformer, Earthing Transformer

#### Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The	Electrical Machine-I lab				
Course					
Course Code	BTEE2007				
Prerequisite	Basic Electrical Engineering				
	lab				
Corequisite					
Antirequisite					
		L	T	P	С
		0	0	2	1

# Course Objectives:

After the completion of course the students will

- 1. This lab gives the chance to get friendship with Electrical machines.
- 2. To acquaint the students with the principle of operation and performance of transformers and DC machines.
- 3. To familiarize the students with the parameter estimation of electrical machines.
- 4. To compare the mathematical models and equations related to electrical machines.
- 5. The lab instills in the students the awareness and practice of safety.

#### Course Outcomes

CO1	Apply the knowledge of circuit analysis				
	and electromagnetic principles for the				
	physical operation of electric machines.				
CO2	Analysis the electrical machine				
	performance through experiments.				
CO3	Estimate the parameter of the transformer,				
	DC machines.				
CO4	Test the transformer, DC machines with				
	various loads.				

CO5	Make use of application of the subject
	topic with industries and day to day life.

# List of Experiments of Electrical Machine –I

	Maciniic —
1	Efficiency and regulation of single phase
	transformer by Sumpner's back to back
	test.
2	Efficiency of DC shunt motor by
	Swinburne's test
3	Open circuit and short circuit test on single
	phase transformer.
4	3-phase to 2-phase conversion with two
	single phase transformers by Scott
	connection.
5	Speed control of DC motor by Armature
	and Field Control.
6	Load characteristics of DC shunt generator
	and plot load voltage Vs load current.
7	Magnetization characteristics of DC shunt
	generator.
8	Losses and efficiency of DC machine by
	Hopkinson's test.
9	Load characteristics of DC compound
	generator and plot load voltage Vs load
	current.

### Continuous Assessment Pattern

Internal	Mid	End	Total Marks
Assessment	Term	Term	
(IA)	Exam	Exam	
	(MTE)	(ETE)	
50	-	50	100

Name of The	Fundamenta	l of	Pov	ver s	systems
Course					
Course Code	BTEE2008				
Prerequisite	Basic Electri	ical			
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

# Course Objectives:

- 1. To develop solid foundation for further study of power system courses.
- 2. To develop the analytical skills for solving problems related to power system.
- 3. To familiarize students of the basics of power system components, transmission

parameters and losses in the transmission line etc.

#### Course Outcomes

CO1	Exposure to the modeling of individual
	power system components like
	transmission lines and generators
CO2	To understand the overhead transmission
	line parameters importance and its
	calculation procedure
CO3	Analyze the overhead transmission line
	performance
CO4	Analyze the corona phenomena,
	interference and insulator application and
	transmission lines
CO5	Apply the knowledge of transmission line
	design in analysis of mechanical strength
	of the towers.
CO6	Estimate EHVC and HVDC transmission
	line parameters and their neutral
	grounding

### Text Book (s)

- 1. C. L. Wadhwa, "Electrical Power Systems" New age international Ltd. Third Edition
- 2. AsfaqHussain, "'Power System", CBS Publishers and Distributors.

# Reference Book (s)

- 1. W. D. Stevenson, "Element of Power System Analysis", McGraw Hill
- 2. B. R. Gupta, "Power System Analysis and Design" Third Edition, S. Chand & Co.

# Course Content:

Unit-1	Power	Syst	em	Comp	onents
6 hours					
Single 1	line Diagra	am of F	Power	system	Brief
description of power system Elements: Synchronous					
machine,	machine, transformer, transmission line, bus bar,				
circuit br	eaker and is	solator Cal	lculatio	on of sing	le and
Three ph	Three phase Power Choice of transmission voltage				
Transmis	Transmission line types of conductors and resistance				
Skin effe	ct Proximity	effect Ke	elvin's	law	
Unit-2:	Over 1	Head T	[ransm	ission	Lines
6 hours					
Calculati	Calculation of inductance single phase, three phase				
and doub	le circuit Tr	ansmissio	n line		
Calculation of capacitance single phase, three phase					
and double circuit Transmission line					
Unit-3: Over Head Transmission Lines Performance					
Transmis	Transmission line classification Representation and				
performa	nce of short	Transmis	sion lir	ne	

Representation and performance of medium nominal T and Nominal Pi Transmission line Representation and performance of long Transmission line Surge impedance loading Ferranti effect

Unit: 4 Corona and Interference 9 hours

Phenomenon of corona and its formation Calculation of potential gradient Corona loss, factors affecting corona and methods of reducing corona Electrostatic and electromagnetic interference with communication lines Type of insulators and their applications Potential distribution over a string of insulators String efficiency and Methods of equalizing the potential

Unit-5 Mechanical Design of transmission line 9 hours

Catenary curve of transmission line Sag and tension Affect due to ice and wind on sag, Types of insulated cables and its construction Dielectric stress and Insulation resistance

Capacitance measurement of a single phase and three phase cables Dielectric loss and loss triangle

Unit-6 Neutral grounding and HVDC/HVAC 9 hours

Necessity and its methods of neutral grounding Earthing transformer and Grounding practices.

Design consideration of EHV transmission lines Choice of voltage Number of circuits Conductor configuration Insulation design and Selection of ground wires Introduction to EHV AC and HVDC transmission Their comparison Use of bundle conductors Kinds of DC links Use of HVDC system in AC transmission system

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Name of	The	Power Plant En	gine	eri	ng	
Course						
Course Cod	e	BTEE3015				
Prerequisite						
Corequisite						
Antirequisit	e					
			L	T	P	C
			3	0	0	3

# Course Objectives:

Power plant engineering or power station engineering is a division of power engineering, and is defined as the engineering and technology required for the production of central station electric power. The field is focused on the generation of power for industries and communities, not for household power production. The field is an interdisciplinary field, using the theoretical base of both mechanical and electrical engineering. The engineering aspect of power plant management has evolved with technology and has become progressively more complicated. The introduction of nuclear technology and the progression of other existing technologies have allowed power to be created in more ways and on a larger scale than was previously possible.

# Course Outcomes

CO1	Analyze different types of steam cycles and estimate efficiencies in a steam power plant.
CO2	Understand the basic components of coal base thermal power plants.
CO3	Define the performance characteristics and components of such power plants.
CO4	Estimate different efficiencies associated with power generation system systems.
CO5	Calculate present worth depreciation and cost of different types of power plants.
CO6	Estimate the cost of producing power per kW.

#### Text/ Reference Books:

- 1. S.N. Singh, "Electric Power Generation, Transmission& distribution." PHI Learning.
- 2. John Twideu and Tony Weir, "Renewal Energy Resources" BSP Publications, 2006.
- 3. Power system Voltage stability C.W. Taylor, Mc. Graw Hill, 1994.
- 4. D.S. Chauhan,"Non-conventional Energy Resources" New Age International.

# Syllabus

Unit-I	Coal based	Thermal	5 Hours
	Power Plants		
Rankine cycle - improvisations, Layout of modern			
coal power plant, Super Critical Boilers, FBC			
Boilers, Turbines, Condensers, Steam & Heat rate,			
Unit II	Component	of Thermal	5 Hours
	Power Plant		

Subsystems of thermal power plants – Fuel and ash handling, Draught system, Feed water treatment. Binary Cycles and Cogeneration systems.

Unit-III	Diesel, Gas Turbine and	7 Hours
	Combined Cycle Power	
	Plants	

Otto, Diesel, Dual & Brayton Cycle - Analysis & Optimisation. Components of Diesel and Gas Turbine power plants. Combined Cycle Power Plants. Integrated Gasifier based Combined Cycle systems.

Unit-IV Nuclear Power Plants 8 Hours

Basics of Nuclear Engineering, Layout and subsystems of Nuclear Power Plants, Working of Nuclear Reactors: Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), CANada Deuterium- Uranium reactor (CANDU), Breeder, Gas Cooled and Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants.

Unit-V	Power from Renewable	8 Hours
	Energy	

Hydro Electric Power Plants – Classification, Typical Layout and associated components including Turbines. Principle, Construction and working of Wind, Tidal, Solar Photo Voltaic (SPV), Solar Thermal, Geo Thermal, Biogas and Fuel Cell power systems.

Unit-VI	Energy, Economic and	7 Hours
	Environmental issues of	
	Power Plants	

Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants.

#### Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Electrical Measurements and
Course	Instrumentation
Course Code	BEEE2001
Prerequisite	Basic Electrical and
_	Electronics Engineering
Corequisite	EMFT
Antirequisite	

L	T	P	С
3	0	0	3

# Course Objectives:

- 1. To know the necessity of different measuring instruments and their design principle
- 2. To understand the working principle of different measuring instruments and technical solutions to handle different errors.
- 3. To learn the architecture and working principle of advanced measuring instrument and their applications.

#### Course Outcomes

CO1	Apply physical principles to study the
	construction and working principle of
	different analog instruments and analyze
	the errors takes place in measurements.(
	K3- Apply)
CO2	Apply the physical principle to study the
	working of instrument transformers and
	measurement of speed, frequency and
	power factor. (K3- Apply)
CO3	Model the solar and wind energy system
	for standalone and grid integration system.
	(Apply-KL-3)
CO4	Demonstrate the principle of operation of
	other renewable energy sources(ocean
	thermal, geo-thermal and micro hydro
	power) also importance of its role.
	(Understanding-KL-2)
CO5	Understand the basic working principle of
	digital instruments. (Understanding-KL-2)
CO6	Examine the waveforms using analyzers
	and oscilloscopes. (K3- Apply)
CO5	(Apply-KL-3)  Demonstrate the principle of operation of other renewable energy sources(ocean thermal, geo-thermal and micro hydro power) also importance of its role. (Understanding-KL-2)  Understand the basic working principle of digital instruments. (Understanding-KL-2)  Examine the waveforms using analyzers

#### Text Book (s)

- 1. A Course in Electrical and Electronics Measurement and Instrumentation, "A K Shawney", Publisher: Dhanpat Rai & Co
- 2. Electrical Measurements and Measuring Instruments, E.W Golding, F.C Widdis, Publisher: Reem Publications
- 3. Electronic Instrumentation and Measurements- David A Bell, Oxford University Press, 2006

#### Reference Book (s)

- 1. Basic Electrical Measurements: M B Stout
- 2. Electronic Instrumentation: H S Kalsi, Tata-Mc-Graw Hill Publication, Second Edition.

#### Course Content:

Unit-1Philosophy	of	Measurement	&	Analog
Measurement	of	Electrical	Q	uantities
9 hours				

Unit& dimensions, standards, Errors, Characteristics of Instruments and measurement system, basics of statistical analysis. PMMC instrument, DC ammeter, DC voltmeter, Ohm meter, Moving Iron instrument, Electrodynamic Wattmeter, errors and remedies, Three Phase Wattmeter, Power in three phase system, Energy meter.

Unit-2Measurement: Instrument Transformer 6 hours

Instrument Transformer and their applications in the extension of instrument range, Introduction to measurement of speed, frequency and power factor.

Unit-3Measurement of Parameters 9 hours

Different methods of measuring low, medium and high resistances, measurement of inductance & capacitance with the help of AC Bridges-Wheatstone, Kelvin, Maxwell, Hay's, Anderson, Owen, Heaviside, Campbell, Schering, Wien bridges, Wagner Earthing device, Q Meter.

Unit-4AC Potentiometer & Magnetic Measurement 7 hours

Polar type & Co-ordinate type AC potentiometers, application of AC Potentiometers in electrical measurement. Ballistic Galvanometer, Flux meter.

Unit-5Digital Measurement of Electrical Quantities 5 hours

Concept of digital measurement, Digital voltmeter, Frequency meter, Power Analyzer and Harmonics Analyzer, Electronic Multimeter.

Unit-6 Cathode Ray Oscilloscope 5 hours

CRT, wave form display, time base, dual trace oscilloscope, Measurement of voltage, frequency and phase by CRO, Oscilloscope probes, Sampling Oscilloscope, DSO, DSO applications.

# Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Test	Term	Marks
(IA)	(MTE)	Test	
		(ETE)	
20	30	50	100

# Semester 5

Name of The	Microcontroller				and
Course	Embedded Systems				
Course Code	BECE3004				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

# Course Objectives

Microcontrollers are the most useful electronic chips which are used to design and develop processor and computer based automatic smart electronics systems for home and industry application. Students learn CPU architecture, memory management, bus concepts, bus arbitration techniques, interfacing of systems using AD/DA, serial I/O devices, interrupt control devices, including design, construction, and testing of dedicated microcontroller systems.

### Course Outcomes

CO1	Demonstrate the internal organization and operation of microcontrollers.			
CO2	Analyse the design issues in the embedded system.			
CO3	Design Microcontroller based application.			
CO4	Program 8051 for application specific solution.			
CO5	Analyse the different programming methods for controller and their issues.			
CO6	Illustrate the latest trends adapted in designing microcontroller based system			

### Course Content:

Unit I: Introduct	tion	08 H	ours
and High-Level l Development En and integrated de	and syst anguage vironment velopme		mbly stem piler
Unit II: 8051 Mie			lours
architecture – programming, a	8051 ddressing	Microcontrollers,8 assembly lang g modes – Instruct d serial communicat	uage ction

Unit III: Embedded applications 08 Hours

Programming the interrupts, timers and serial communication – system design with 8051. Application **of Microcontrollers** in data acquisition systems, process control, signal processing, data communication and distributed computing and networking..

Unit IV: Embedded programming 08 Hours

Programming in Assembly Language (ALP) Vs. High level language – C program elements, Macros and Functions – Use of pointers– use of function calls – NULL pointers – multiple function calls in a cyclic order in the **main function** pointers –C program compilers – Cross compiler – optimization of memory codes.

Unit V: EmbeddedSystemdesign 08 Hours

Introduction, Embedded System project management – Embedded system design and Co-

Design Issues in System Development process – Design cycle in the development phase for an embedded system – Uses of Target system or its emulator and In-Circuit Emulator

Unit VI: Recent trends in Micro controller

Machine learning on tiny ML processor, introduction of mixed signal processor, DMA architecture

# Suggested Reading.

- 1. Mohammad Ali Mazidi and Janice GillispieMaszidi "The 8051 Microcontroller andEmbedded Systems" Pearson education, 2003, ISBN-9788131710265, 2ndEdition
- 2. Kenneth J. Ayla, "The 8051 Micro controller", Thomson learning, 3rd edition, 2004,ISBN-140186158X
- 3. Alan Clements, "Principles of Computer Hardware", OxfordUniversity Press, 3rd Edition, 2003, ISBN-9780198564539

### Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam	Total Marks
		(ETE)	
20	30	50	100

Name of The	Electrical Machine-II				
Course					
Course Code	BTEE3004				
Prerequisite					
Co-requisite	requisite				
Anti-requisite					
		L	T	P	С
		3	0	0	3

# Course Objectives

- 1. To acquaint the students with the principle of operation and performance of AC machines.
- 2. To familiarize students with the parameter estimation of electrical machines.
- 3. To learn the mathematical models and equations related to electrical machines.
- 4. To familiarize students with the other special machines.

#### Course Outcomes

CO1	Apply the knowledge of circuit analysis and electromagnetic principles of three-phase Induction Motor.
CO2	Analysis the numerical problems and performance associated with AC machines.
CO3	Make use of application of the single phase IM with industries and day to day life.
CO4	Use special machine for different application.
CO5	Analysis the demanding and conventional Alternator performance.
CO6	Test and estimate the parameter of the Synchronous Motor.

# Course Content:

Unit I: Three phase Induction Machine – I	08
Hours	

Constructional features, Rotating magnetic field, Principle of operation Phasor diagram, equivalent circuit, torque and power equations, Torque-slip characteristics, no load & blocked rotor tests, efficiency, Induction generator: Generator action, methods of excitation & applications.

Unit II:Three phase Induction Machine- II 08 Hours

Starting, Deep bar and double cage rotors, Speed Control (with and without emf injection in rotor circuit.), Electrical braking, operation on unbalanced supply voltage, effect of slot harmonics and space harmonics, merits, demerits and introduction of linear induction motor.

Unit III: Single phase Induction Motor 08 Hours

Double revolving field theory, Equivalent circuit, No load and blocked rotor tests, Starting methods of Single phase Induction Motor,

Unit IV: Fractional Motors

Repulsion motor, other Motors: Universal motor, Hysteresis motor, stepper motors, switched reluctance motor, BLDC, brushless dc motor

Unit V: Synchronous Machine I 08 Hours

Constructional features, EMF Equation, Armature winding, Winding coefficients, equivalent circuit and phasor diagram, Armature reaction, O. C. & S. C. tests, Voltage Regulation using Synchronous Impedance Method, MMF Method, Potier's Triangle Method, Parallel Operation of synchronous generators, operation on infinite bus, synchronizing power and torque co-efficient.

Unit V: Synchronous Machine II 08 Hours

Two Reaction Theory, Power flow equations of cylindrical and salient pole machines, operating characteristics. Synchronous Motor: Starting methods, Effect of varying field current at different loads, V- Curves, concepts of synchronous machine reactance, Synchronizing, Electrical braking, Hunting & damping, synchronous condenser.

# Suggested Reading

- 1. I.J. Nagrath& D.P. Kothari, "Electrical Machines", Tata McGraw Hill.
- 2. P S Bimbhra, "Generalized Theory of Electrical Machines", Khana Publisher.
- 3. P S Bimbhra, "Electrical Machinery", Khana Publisher.
- 4. Theodre F. Boghert, 'Electronic Devices & Circuits',6th Edition, Pearson Education 2004.
- 5. Ben G. Streetman and Sanjay Banerjee, 'Solid State Electronic Devices', 6th Edition, PHI 2009, ISBN 0132454793, 9780132454797

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Name of The	Power System Analysis				
Course					
Course Code BTEE3009					
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

# Course Objectives

- 1. Modeling and solution on digital computers is the only practical approach to systems analysis and planning studies for modern day power system with its large size, complex and integrated nature.
- 2. This course has been designed to fulfill this need by integrating the basic principles of power system analysis illustrated through the simplest system structure with analysis techniques for practical size systems.
- 3. The digital computer being an indispensable tool for power system analysis, computational algorithms for various system studies such as load flow, fault level analysis, stability etc have been included in the syllabus. Students should be encouraged to build computer programs for these studies using algorithms provided.

### Course Outcomes

CO1	Understand fundamental concepts relating
	to the analysis of electrical power systems
	Understand the fault condition inside
CO2	transmission line and the generating
	system.
	Analyse of load flow equations and
CO3	representation of power system
	components
CO4	Understand the importance of power
CO4	swing equation in power system stability
	Apply the knowledge in power system
CO5	stability analysis during abnormal
	conditions.
CO6	Understand the basic concepts of
CO6	travelling waves over transmission lines.

#### Course Content:

Unit	I:	Representation	of	Power	System
Comp	one	ents			
0	8 H	ours			

Transformers. Synchronous machines. Transmission lines, One line diagram, Impedance and reactance diagram, per unit System. components: Symmetrical Symmetrical Components of unbalanced phasors, power in terms of symmetrical components, sequence impedances and sequence networks. Symmetrical fault analysis, Transient in R-L series circuit, calculation of 3-phase short circuit current and reactance of synchronous machine, internal voltage of loaded machines under transient conditions.

Unit II: Unsymmetrical faults 08 Hours

Analysis of single line to ground fault, line-to-line fault and Double Line to ground fault on an unloaded generators and power system network with and without fault impedance. Formation of Z-bus using singular transformation and algorithm, computer method for short circuit calculations.

Unit III: Load Flow Analysis 08 Hours

Introduction, bus classifications, nodal admittance matrix (bus y), development of load flow equations, load flow solution using Gauss Siedel and Newton-Raphson method, approximation to N-R method, line flow equations and fast decoupled method, Comparison of load flow methods.

Unit IV: Power System Stability-108 Hours

Stability and Stability limit, Steady state stability study, derivation of Swing equation, transient stability studies by equal area criterion,

Unit V: Power System Stability-2 08 Hours

Synchronizing power coefficient, critical clearing angle and critical clearing time. Factors affecting steady state and transient stability and methods of improvement.

Unit VI: Traveling Waves 08 Hours

Wave equation for uniform Transmission lines, velocity of propagation, surge impedance, reflection and transmission of traveling waves under different line loadings. Bewlay's lattice

diagram, protection of equipment's and line against traveling waves.

# Suggested Reading

- 1. C. L. Wadhwa, "Electrical Power Systems" New age international Ltd. Third Edition.
- 2. Asfaq Hussain, "Power System", CBS Publishers and Distributors.
- 3. H.Saadat, Power System Analysis, Tata McGraw-Hill Publishing Company Limited, Edition 2008.
- 4. W. D. Stevenson, "Element of Power System Analysis", McGraw Hill.
- 5. B. R. Gupta, "Power System Analysis and Design" Third Edition, S. Chand & Co.

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Name of The	Power Electronics				
Course					
Course Code	BTEE3011				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

# Course Objectives

- 1. The field of power electronics encompasses the application of fundamental concepts in several disciplines: electronic devices and circuits, variable speed drives and control systems.
- 2. The use of electric cars, electric trains and electric subway trains can substantially reduce urban pollution problems.
- 3. Students learn power electronics devices like thristors, MOSFET, IGBT, GTO etc., various phase controlled single phase and three phase rectifiers with performance factors, dual converters, principle of dc to dc conversion, class A,B,C,D,E,F choppers, commutation techniques, comprehensive treatment

of dc to ac inverters, ac voltage converters and cycloconverters.

#### Course Outcomes

CO1	Understand the operation of switching power devices eg. thyristors, transistors and TRIAC.
CO2	Implement configurations of thyristor based choppers.
CO3	Apply and develop configurations of thyristor based Single phase controlled rectifiers
CO4	Apply and develop configurations of thyristor based Three phase controlled rectifiers
CO5	Apply and develop configurations of thyristor based ac voltage controllers, cycloconverters
CO6	Implement different configurations of thyristor based inverters.

#### Course Content:

Unit I:	Power	semiconductor	Devices	08
Hours				

Introduction, Characteristics and specifications of switches, Power Diodes, Power Transistors: Operation.Steady state and switching characteristic, Power MOSFETs: Operation and characteristics, Insulated Gate Bipolar transistor: structure, working, latch-up, characteristics, Operation, charateristics, Thyristors: transistor model, Turn-on methods, Switching protection. characteristic. Rating and Commutation techniques of thyristor, Series and parallel operation of thyristors, Gate turn off thyristor.

Unit II: DC-DC Converters 08 Hours

Principles of step-down chopper, step down chopper with R-L load Principle of step-up chopper, and operation with RL load, classification of choppers, Buck, Boost and Buck-Boost converter.

Unit III:Single Phase Controlled Converters05 Hours

Single-phase half wave converter with R, RL and RLE loads, Effect of freewheeling diode, Performance parameters, Single-phase full wave converter, midpoint and bridge converter, Effect

of source inductance on single-phase converter, Single phase dual converter,

Unit IV:Three Phase Controlled Converters05 Hours

Three phase half wave converter with R and RL loads, Three-phase full converter, Performance parameters, Effect of source inductance on three-phase converters, Three-phase dual converter.

Unit IV: AC Voltage Controllers 08 Hours

Principle of on-off and phase control, Single-phase two SCRs in anti parallel with R and RL load, Triac with R and RL load, Three-phase ac voltage controllers, Cycloconverters: Basic principle of operation, Single phase to single phase, three-phase to single-phase cycloconverters, Three phase to three phase cycloconverters

Unit V: Inverters 08 Hours

Single phase voltage source inverter, Three-phase bridge inverters, 180 degree conduction, 120 degree conduction, Voltage control of inverters, Pulse-width modulated inverters, Harmonics reduction techniques, Single phase and three phase current source inverters.

# Suggested Reading

- M. H. Rashid," Power Electronics: Circuits, Devices & Applications", Prentice Hall of India, Ltd. 3rd Edition, 2004.
- 2. V. R. Moorthy, "Power Electronics: Devices, Circuits and Industrial Applications" Oxford, University Press, 2007.
- 3. M. D. Singh & K. B. Khanchandani, "Power Electronics", Tata McGraw Hill Publishing Company, 1989.
- 4. M. S. Jamil Asghar, "Power Electronics" Prentice Hall of India Ltd., 2004.
- 5. Chakrabarti& Rai, "Fundamentals of Power Electronics & Drives" Dhanpat Rai & Sons.

#### Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The	Finance for E	Finance for Electrical			
Course	Engineers	Engineers			
Course Code	BEE02T3004	BEE02T3004			
Prerequisite					
Co-requisite					
Anti-requisite					
-		L	T	P	С
		3	0	0	3

# Course Objectives

- For any developing country, innovation, entrepreneurship and intellectual property rights hold the key to the entry in the league of developed countries. Equipped with the scientific knowledge and the right training, the engineer is an important building block of a nation.
- Economics and its impact on science and technology have to be well understood by the engineers to ensure success of any technological venture.

#### Course Outcomes

CO1	Understand basics of industrial finance
	and economy.
CO2	Analyze the various concept of cost.
CO3	Analyze the market types and lay supply
CO4	Apply various technique to build budget
	for electrical project.
CO5	Analyze various financial techniques.
CO6	Understand the basic financial installation cost of renewable power plant

### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

### Course Content:

Unit I: Introduction	08 Hours			
Various Definition	of Economics, Nature of			
Economics problem, relation between science,				
engineering, technology & economics, Meaning				

of demand, law of demand, elasticity of demand, practical importance & applications of the concept of elasticity of demand.

08

Unit II: Capital Budgeting

#### Hours

Meaning of production and factor of production – Land, Labour, Capital, Entrepreneur & organizations – their characteristics, law of variable proportion, return to scale, Cost Analysis-various concept of cost, cost function, short & long run cost, concept of revenue, break-even analysis.

Unit III: Management of Working Capital 08

#### Hours

Meaning of market-type of market-perfect competition, Monopoly, Oligopoly, Monopolistic competition (Main feature of these market) Meaning of supply and law of supply; Role of demand & supply in price determination imperfect competition.

Unit IV: Budgeting Control Technique 08 Hours

Concepts of Budget, budgeting and budgetary control, Objectives, Functions, Uses, Advantages, Limitations; Master Budget and Report.

Unit V: Financial management 08

#### Hours

Financial management: Financial management, accounting concepts. Financial statement analysis. Financial investment analysis. Financial decisions. Managing components of working capital investment & financing decisions.

Unit VI: Renewable Power Plant

Analysis of installation cost based on rating of Renewable power plant

# Suggested Reading

- Financial Management and Accounting P. K. Jain, S. Chand & Co.
- 2. Modern micro economic theory H.L. Ahuja, S.Chand.
- 3. Advance economic theory M.L. Jhingan, Konark publication.
- 4. Engineering economics Sullivan, Wicks, Koelling Pearsons.

5. Financial management by Rajiv shrivastava and Anil Mishra – Oxford publication

Name of The	Electrical Machine-II lab				
Course					
Course Code	BTEE3005				
Prerequisite	Electrical Machine-I and				
	BEEE Lab				
Corequisite					
Antirequisite					
		L	T	P	С
		0	0	2	1

# Course Objectives:

After the completion of course the students will

- 1. This lab gives the chance to get friendship with Electrical machines.
- 2. To acquaint the students with the principle of operation and performance of AC machines.
- 3. To familiarize the students with the parameter estimation of AC machines.
- 4. To compare the mathematical models and equations related to AC machines.
- 5. The lab instills in the students the awareness and practice of safety.

# Course Outcomes

Course	Outcomes		
CO1	Apply the knowledge of circuit analysis		
	and electromagnetic principles for the		
	physical operation of Single and three		
	phase Induction machines and three phase		
	Synchronous machines.		
CO2	Analysis the AC machines performance		
	through experiments		
CO3	Estimate the parameter of the Induction		
	machines and Synchronous machines		
CO4	Test Induction and Synchronous machines		
	with various loads		
CO5	Make use of application of the subject		
	topic with industries and day to day life		

# List of Experiments:

1	Perform no load and blocked rotor test on a
	single phase induction motor.
2	Determine performance characteristic of a
	three phase squirrel cage induction motor.
3	No load and blocked rotor test on three phase
	induction motor.

4	Load test on three phase squirrel cage			
	induction motor.			
5	Break test on three phase induction motor.			
6	Separation of no load losses of three phase			
	induction motor.			
7	Perform open and short circuit test on a 3-			
	phase alternator			
8	Regulation of a three phase alternator by ZPF			
	and ASA method.			
9	Determination of Xd and Xq of a Salent pole			
	synchronous machine.			
10	Determine the characteristic of field current			
	with armature current of the synchronous			
	machine			

# Continuous Assessment Pattern

Internal	Mid Term	End Term	Total	
Assessmen	Exam	Exam	Marks	
t (IA)	(MTE)	(ETE)		
50	-	50	100	

Name of The	ne of The Microcontroller and Embedded			ded	
Course	Systems Lab				
Course Code BECE3005					
Prerequisite Digital Electronics					
Corequisite					
Antirequisite					
		L	T	P	С
		0	0	2	1

# Course Objectives:

To Introduce ALP concepts, features and Coding methods

- 1. Write ALP for arithmetic and logical operations in 8051
- 2. Differentiate Serial and Parallel Interface
- 3. Interface different I/Os with Microcontroller

# Course Outcomes:

# After the completion of course the students will

CO1	Demonstrate ability to handle arithmetic
	operations using assembly language
	programming
CO2	Demonstrate ability to handle logical
	operations using assembly language
	programming
CO3	Demonstrate ability to handle string
	instructions using assembly language
	programming

CO4	Demonstrate ability to handle sorting operations and using assembly language programming
CO5	Develop microcontroller based designs of Real Time Systems.

# List of Experiments:

	Experiments.
1	Basic arithmetic and Logical operations
2	Code conversion, decimal arithmetic and
	Matrix operations.
3	Square and Cube program, Find 2's
	complement of a number
4	Unpacked BCD to ASCII
5	Counters and Time Delay Peripherals and
	Interfacing Experiments
6	Traffic light controller
7	Stepper motor control
8	Digital clock
9	Key board and Display
10	Serial interface and Parallel interface
11	A/D and D/A interface and Waveform
	Generation 8051 kits

# Continuous Assessment Pattern

Internal	Mid Term	End Term	Total	
Assessment	Exam	Exam	Marks	
(IA)	(MTE)	(ETE)		
50	-	50	100	

# Semester 6

Name of	The	High Voltage Engineering				
Course						
Course Code	е	BEE02T30	05			
Prerequisite						
Co-requisite						
Anti-requisite						
			L	T	P	С
			3	0	0	3

# Course Objectives

- 1. The course imparts knowledge about voltage break down of solid, liquid and gaseous materials used in electrical engineering field.
- 2. Students will learn generation of high voltages and currents.
- 3. Students will learn the measurement and testing of high voltages and currents.

#### Course Outcomes

CO1	Understand the significance high voltage		
	engineering and its implementation in		
	power System		
CO2	Overcome upon the challenges associated		
	with generation and measurement of high		
	voltages and currents		
CO3	To analyze Generation of High Voltages		
	and Currents drivers and its benefits.		
CO4	To analyze measurement of High Voltages		
	and Currents drivers and its benefits		
CO5	Understand about Non-Destructive		
	Testing Sources.		
CO6	Understand about the High Voltage		
	Testing.		

Course Content:
Unit I: Break Down In Gases 08 Hours
Ionization processes, Townsend's criterion,
breakdown in electronegative gases, time lags for
breakdown, streamer theory, Paschen's law, break
down in non-uniform field, breakdown in vacuum.
Unit II: Break Down In Liquid Dielectrics 08
Hours
Classification of liquid dielectric, characteristic of
liquid dielectric, breakdown in pure liquid and
commercial liquid. Break Down In Solid
Dielectrics: Intrinsic breakdown,
electromechanical breakdown, breakdown of
solid, dielectric in practice, breakdown in
composite dielectrics.
Unit III: Generation of High Voltages and
Currents 05 Hours
Generation of high direct current voltages,
generation of high alternating voltages, generation
of impulse voltages, generation of impulse
currents, tripping and control of impulse
generators.

Measurement of high direct current voltages, measurement of high alternating and impulse voltages, measurement of high direct, alternating and impulse currents, Cathode Ray Oscillographs for impulse voltage and current measurements,

Unit IV: Measurement of High Voltages and

05 Hours

07

factor, partial discharge measurements.
Unit V: Non-Destructive Testing

Hours

Currents

Measurement of direct current resistively, measurement of dielectric constant and loss.

Unit VI: High Voltage Testing08 Hours

Testing of insulators and bushings, testing of isolators and circuit breakers, testing of cables, testing of transformers, testing of surge arresters, radio interference measurements.

# Suggested Reading

- 1. M. S. Naidu and V. Kamaraju, "High Voltage Engineering, Tata Mc-Graw Hill
- 2. Subir Ray,' An Introduction to High Voltage Engineering' Prentice Hall of India.
- 3. E. Kuffel and W. S. Zacngal, High Voltage Engineering", Pergamon Press.
- 4. M. P. Chaurasia , "High Voltage Engineering", Khanna Publishers.
- 5. R. S. Jha, "High Voltage Engineering", DhanpatRai& sons.

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Name of The	Power System Protection				
Course					
Course Code	BEE02T3006	)			
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	С
		3	0	0	3

#### Course Objectives

- 1. To introduce the students the principles of different protection schemes.
- 2. To develop students with an understanding of the characteristics, advantages and defects of different protection methods.
- 3. To prepare the students to design/coordinate protection schemes for given requirements.

# Course Outcomes

CO1	Illustrate the principle of switchgear and
COI	protection schemes.

CO2	Choose right relays or circuit breakers
	for protection of electrical equipments
CO3	Design the ratings for relays or circuit
	breakers according to the requirement.
	Understand the differential protection
CO4	scheme and its application in protection of
	alternator and transformer
CO5	Examine protection of power system with
	various protection relays
CO6	Discuss about operation of circuit
	breakers.

#### Course Content:

Unit I: Introduction to protection system 08 Hours

Introduction to protection system and its elements, functions of protective relaying, protective zones, primary and backup protection, desirable qualities of protective relaying, basic terminology. Relays: Electromagnetic, attracted and induction type relays, thermal relay, gas actuated relay, design considerations of electromagnetic relay.

Unit II: Relay application and characteristics 08 Hours

Amplitude and phase comparators, over current relays, directional relays, distance relays, differential relay. Static Relays: Comparison with electromagnetic relay, classification and their description, over current relays, directional relay, distance relays, differential relay.

Unit III: Protection of transmission line
08 Hours

Properties of arc, arc extinction theories, restriking voltage transient, current chopping, resistance switching, capacitive current interruption, short line interruption, circuit breaker ratings. Testing of Circuit Breaker: Classification, testing station and equipment's, testing procedure, direct and indirect testing.

Unit IV: Differential Protection 05 hours

Types of fault on transformers and motors, and its differential protection scheme

Unit V: Circuit Breaking 05 Hours

Properties of arc, arc extinction theories, restriking voltage transient, current chopping, resistance switching, capacitive current interruption, short line interruption, circuit

breaker ratings. Testing Of Circuit Breaker: Classification, testing station and equipment's, testing procedure, direct and indirect testing.

Unit VI: Apparatus protection 08 Hours

Circuit Breaker: Operating modes, selection of circuit breakers, constructional features and operation of Bulk Oil, Minimum Oil, Air Blast, SF6, Vacuum and d. c. circuit breakers. Types of faults on alternator, stator and rotor protection, Types of fault on transformers and motors

# Suggested Reading

- 1. S. S. Rao, "Switchgear and Protection", Khanna Publishers.
- 2. B. Ravindranath and M. Chander, Power system Protection and Switchgear, Wiley Eastern Ltd.
- 3. Y. G. Paithankar and S R Bhide, "Fundamentals of Power System Protection", Prentice Hall of India
- 4. T.S.M Rao, "Power System Protection: Static Relays with Microprocessor Applications", Tata Macgraw Hill.

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Name of The	Electrical Machine Design				
Course					
Course Code	BTEE4013				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
3 0 0			3		

# Course Objectives

The goal of this course is to provide advanced knowledge and understanding about the construction and design of the electrical machines. The course provides to the students the basis and the methodologies to a correct design of the electrical machines (transformers, rotating AC machines and DC machines). Innovative tools and techniques will

be used for the design optimization of the electrical machine for industrial, automotive and aerospace applications. The applying knowledge and understanding capabilities will allow at the graduate to approach the problem linked to the design of the electrical machines.

#### Course Outcomes

CO1	Identify different components, parameters,
	materials, equations used in designing for
	electric machines and transformers.
CO2	Understand the dimension designing of
	transformer components based on equation
	and cooling methods.
CO3	Concepts of Induction motor and solve the
	problems related to design.
CO4	understand the design of various parts of
	DC machines
CO5	design concepts of synchronous machines
	and know about
CO5	Apply the computer aided design on an
	electrical machine.

#### Course Content:

T	Init	Ţ.	Introd	luction	NΩ	Hours

Basic design principles and approaches, Electrical Engineering Materials, Choice of specific Magnetic and electric loading, output equations and output coefficients, Main dimensions. Ratings, Heating, cooling and temperature rise, Standard specification.

Unit II: Transformer 08 Hours

Output Equation, Main Dimensions, Magnetic circuit, core construction and design, winding types, insulation, Loss allocation and estimation, Reactance, Temperature rise and method of cooling.

Unit III: Induction Machine 08 Hours

Output Equation, Main Dimensions, 3 phase: Rating specifications, length of air gap, standard frame sizes, choice of specific loadings, Design of stator windings, Rotor design – slots and windings, calculations of equivalent circuit parameters. Operating characteristics.

Unit IV: DC machine 08 Hours

Output Equation, Main Dimensions, Magnetic circuit and Magnetization curve, Selection of

poles, Design of armature, Commutator and brushes, performance prediction.

Unit V: Synchronous Machine 08 Hours

Output Equation, Main Dimensions, choice of specific loadings, Magnetization characteristic, Armature design, Field winding design, Design of damper winding.

Unit VI: Computer assisted design

Computer assisted design of transformer, Induction, dc and synchronous machines.

# Suggested Reading

- 1. A K Sawhney; A Course in Electrical Machine Design; Dhanpat Rai & Co.
- 2. Clayton A E & Hancock N N : The Performance and Design of Direct Current Machines; CBS Publishers and Distributors
- 3. "DESIGN OF ROTATING ELECTRICAL MACHINES", JUHA PYRHONEN, TAPANI JOKINEN.
- 4. "PM MOTOR TECHNOLOGY: DESIGN AND APPLICATIONS", J.F. GIERAS, M. WING.

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

#### Semester 7

Name of	Smart Grid and Energy Management		
The Course			
Course	BEEE4001		
Code			
Prerequisite	Power System Analysis and I	Powe	er
_	Electronics		
Corequisite			
Antirequisit			
e			
	L T	P	C
	3 0	0	3

Course Objectives:

A smart grid is an electrical grid which includes a variety of operational and energy measures including smart meters, smart appliances, renewable energy resources, and energy efficient resources. Electronic power conditioning and control of the production and distribution of electricity are important aspects of the smart grid.

- 1. To make use of the Smart grid with the coming future.
- 2. To analyze the global policies about the smart grid.
- 3. To develop and design the Advanced Metering infrastructure (AMI).
- 4. To estimate the Power Quality issues of Grid connected Renewable Energy Sources.

#### Course Outcomes

CO1	To learn about the Evolution of Electric
	Grid, Concept, Definitions and Need for
	Smart Grid.
CO2	Understand about the International
	policies in Smart Grid, Diverse
	perspectives from experts and global
	Smart Grid initiatives
CO3	To analyze Advanced Metering
	infrastructure (AMI) drivers and its
	benefits.
CO4	Understand about the Power Quality issues
	of Grid connected Renewable Energy
	Sources.
CO5	Understand about the IP based Protocols,
	Basics of Web Service and CLOUD
	Computing to make Smart Grids smarter.
CO6	To analyze the conventional grid
	integrated with renewable energy sources

#### Text/ Reference Books:

- 1. A. S boyer, SCADA:supervisory Control and Data Acquisition, The Instrumentation system and Automation Society,4 th Edition 2009.
- 2. Vehbi C. Dilan Sahin, Güngör, SalihErgüt, TaskinKocak, ConcettinaBuccella, Carlo Cecati, and Gerhard P. Hancke: Smart Grid Technologies-Communication Technologies and Standards **IEEE** Transactions on Industrial Informatics, Vol. 7, No. 4, November 2011.
- 3. Xi Fang, SatyajayantMisra, GuoliangXue, and Dejun Yang: Smart Grid The New and

- Improved Power Grid- A Survey, IEEE Transaction on Smart Grids.
- 4. Stuart Borlase: Smart Grid-Infrastructure, Technology and Solutions, CRC Press.
- 5. B.G. Liptac Instrument Engineering Handbook, Volume 3:process Software and Digital Networks, CRC Press, 4 th Edition 2011

# Syllabus

Syllabus		
Unit-I	Introduction to Smart	8 Hours
	Grid	
	of Electric Grid, Concept,	
	for Smart Grid, Smart g	
	opportunities, challenges	
Difference	between conventional &	Smart Grid,
	Resilient & Self-Healing (	
	nt & International policie	
Grid, Dive	erse perspectives from o	experts and
global Sma	rt Grid initiatives.	
Unit-II	Smart Grid	8 Hours
	Technologies	
Technology	Drivers, Smart energy	resources,
	ations, Substation Automa	
Automation	, Wide area monitoring	, Protection
and Cont	rol, Distribution System	ms: DMS,
Volt/Var co	ontrol, Fault Detection, Is	solation and
service res	toration, Outage manager	ment, High-
Efficiency	Distribution Transform	ers, Phase
Shifting Tr	ansformers, Plug in Hyb	orid Electric
Vehicles (P	HEV).	
Unit-III	Smart Meters and	8 Hours
	Advanced Metering	
	Infrastructure	
Introduction	n to Smart Meters, Advanc	ed Metering
infrastructu	re (AMI) drivers and be	nefits, AMI
protocols, s	tandards and initiatives, A	MI needs in
	rid, Phasor Measurement I	
	Electronic Devices (IEI	
application	for monitoring & protection	on.
Unit-IV	Power Quality	06 Hours
	Management in Smart	
	Grid	
Power Qua	ality & EMC in Smart C	Grid, Power
Quality Co	nditioners for Smart Grid,	Web based
Power Qua	lity monitoring, Power Qu	ality Audit
Unit-V	High Performance	07 Hours
	Computing for Smart	
	Grid Applications	
Local Area	Network (LAN), House A	rea Network

(HAN), Wide Area Network (WAN), Broad band over Power line (BPL), IP based Protocols, Basics

of Web Service and CLOUD Computing to make Smart Grids smarter, Cyber Security for Smart						
Grid.						
UnitVI	Integration	Integration with 04 Hours				
	renewable energy					
sources						
Power Quality issues of Grid connected						
Renewable	Renewable Energy Sources,					

# Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Electrical Design, Estim Energy Audit	ati	on	an	d
Course Code	BEE02T4001				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

Energy Audit is the key to a systematic approach for decision-making in the area of energy management. The effective use of energy to maximize profits (minimize costs) and enhance competitive positions, it is necessary to conserve energy. Hence it is necessary to study energy auditing methods and energy saving opportunities in electrical system.

# Course Objectives

On completion of the following units of syllabus contents, the students must be able to

- Draw conventional symbols for various electricalinstallations.
- To quote the relevant IE rules for a given electrical installation, earthingand clearance of service lines.
- Familiarize the types of wiring.
- List the points to be considered for selectionwiring.
- Determine the size of wire for internal wiring.
- Explain the necessity and types of earthing.

- Estimate the quantity of materials required forearthing.
- Differentiate between neutral and earthwire.
- Estimate the quantity of materials required for domestic and industrialwiring.
- Explain the concept and types of Energy of energyaudit.
- Explain the energy saving opportunities in Transformer, Induction motor, lighting and DGsystem.
- Explain the roll of power factor controller in energy savingsystem.
- Explain the roll of sensors in energy savingsystem.
- Explain the energy efficient technologies in electrical system.

#### Course Outcomes

CO1	Identification of different types of electrical symbols and various electrical wiring systems
CO2	Identification of needs earthing and its procedure.
CO3	Illustrate the estimation of components required for Industrial and Domestic application
CO4	Understand energy audit and energy management system
CO5	Identify the types of tariff that are benefit for consumers and methods of improving power factor
CO6	Understand different technologies used for Energy efficient Technologies in Electrical System

#### Text Books:

- K.B.Raina&S.K.Battacharya, Electrical Design Estimating And Costing, New age International
- 2. General Aspect Of Energy Management And Energy Audit, Bureau of energy efficiency, New Delhi
- 3. Energy Efficiency In Electrical Utilities, ,Bureau of energy efficiency, New Delhi

# Reference books:

- 1. Surjit Singh, Electrical Design Estimating and Costing, Dhanpat Rai & Company
- 2. Surjit Singh, Electrical Engineering Design and Drawing, Dhanpat Rai & Company

#### Syllabus

Unit-I	System of	Internal	8 Hours
	Wiring and E	Earthing	

Need of electrical symbols – List of symbols – Brief study of important Indian Electricity Rules 1956 - Methods of representation for wiring diagrams – Looping back system and Joint box system and tree system of wiring – Types of internal wiring – Service connection (Overhead and Underground) - Protection of electrical installation against overload, short circuit and earth fault – protection against electric shock – Effects of electric shock – Recommended first aid for electric shock – Treatment for electric shock - Construction and working of ELCB – Overview of Busbar, Trunking and Cable tray.

Unit-II	Earthing	6 hours
	System	

Necessity – General requirements of Earthing – Earthing and Soil Resistivity – Earth electrodes – Methods of earthing – Plate earthing – Pipe earthing – Rod earthing – Soil Resistivity – Methods of improving earth resistance - Size of earth continuity conductor - Difference between Neutral and Earth Wires.

Safety signs showing type of PPE to be worn, Prohibition Signs, Warning Signs, Mandatory Signs, Advisory or Safe ConditionSigns

Unit-III	Domestic	and	07 Hours
	Industrial Esti	mation	

General requirements of electrical installations for Residential, Commercial and Industrial – Lighting and power sub- circuits – Diversity factor for sub circuits - Location of outlets, control switches, main board and distribution boards – Permissible voltage drops and size of wires - Steps to be followed in preparing electrical estimate.

Estimate the quantity of material required in Electrical Installation for

- 1. Small residential building/Flat
- 2. Factory Lightingscheme
- **3.** Computer centre having 10 computers, a/c unit, UPS, light and fan.
- 4. Street Light service having 12 lamp lightfitting
- 5. Workshop with one number of  $3\Phi$ , 15hp inductionmotor.
- 6. Small Workshop with 3 or 4Machines.

Unit-IV	Energy Audit	8 Hours
Definition	, Energy audit- need, Ty	pes of energy
audit, End	ergy management (aud	it) approach-

Understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution, Energy audit Instruments.

Unit-V	Energy Management	8 Hours
	of Electrical System	

Electricity billing, Electrical load management and maximum demand control, Power factor improvement and its benefit, Selection and location of capacitors, Performance assessment of PF capacitors, Distribution and transformer losses.

Unit-VI	Energy	efficie	nt	8 Hours
	Technolog	gies	in	
	Electrical	System		

Maximum demand controllers, Automatic power factor controllers, Energy efficient motors, Soft starters with energy saver, Variable speed drives, Energy efficient transformers, Electronic ballast, Occupancy sensors, Energy efficient lighting controls, Energy saving potential of each technology.

Name of The	PLC/SCADA LAB				
	PLC/SCADA LAB				
Course					
Course Code	BEEE3008				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		0	0	2	1

Course Objectives: Students will be able to design and program basic PLC circuits for entry-level PLC applications. Students will be able to design and program a small, automated l production line. Apply the knowledge of PLC/SCADA in engineering specialization to the solution of complex engineering problems.

Students are trained for to create ladder diagrams from process control descriptions. Students work in team to formulate solution for Electrical System using hardware and software tools. Students understand PLC functions, Data Handling Function, apply PLC Timers and Counters for the control of industrial processes.

## Course Outcomes

	CO1	Identify different components of PLC.	
--	-----	---------------------------------------	--

CO2	Understand working of PLC, I/O modules of			
	PLC			
CO3	Able to create ladder diagrams from process			
	control descriptions.			
CO4	Ability to apply PLC timers and counters for			
	Ability to apply PLC timers and counters for the control of industrial processes			
CO5	Able to use different types PLC functions, Data Handling Function.			
	Data Handling Function.			

# Text/ Reference Books:

- 1. Programmable Logic Controllers Principle and Applications by John W Webb and Ronald A Reiss Filth edition, PHI
- 2. Programmable Logic Controllers Programming Method and Applications by JR Hackworth and ED Hackworth Jr-Pearson, 2004.

# List of Experiments

- 1. Study hardware and software used in PLC
- 2. To study PLC Input and output symbols
- 3. Implementation of Logic Gates
- 4. Implementation of DOL starter
- 5. Implementation of on-delay timer
- 6. Implementation of off-delay timer
- 7. Implementation of up-down counter
- 8. Implementation of PLC Arithmetic Instructions
- 9. Implementation of PID Controller

# Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of	The	Technical Semina	r			
Course						
Course Code		BEE02P4005				
Prerequisite						
Corequisite						
Antirequisite						
			L	T	P	C
			0	0	2	0

# Course Objectives:

# Objective

- To develop institute-industry interaction
- To know the industry practices
- To understand cutting edge technology in the chosen area

### Course Outcomes

CO1	Identify the Literature Survey					
CO2	Do the Formulation of the Problem /					
	Project					
CO3	Do Mathematical Modeling and do					
	Programs in MATLAB / PSPICE.					
CO4	Do compilations / Simulation and					
	Synthesis.					
CO5	Do testing and write Dissertations/Reports.					

# Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of	Capstone Design	Ph	ase –I		
The Course					
Course	BEE02P4002				
Code					
Prerequisite					
Corequisite					
Antirequisit					
e					
		L	T	P	$\mathbf{C}$
		0	0	10	2

# Course Objectives:

- Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Work in team to formulate solution for Electrical System using hardware or software tools.
- Analyze & research about the work to be implemented with resources available from internet & other sources.
- Work collaboratively to plan and execute project work or research to advance the scientific basis, technologies or practices within the Electrical Engineering discipline.

#### Course Outcomes

CO1	Develop creative solutions to problems and conceive innovative approaches in developing and designing of electrical system.
CO2	Prepare high quality engineering documents and present a clear and

	coherent presentation of these to a range of				
	technical and nontechnical audiences.				
CO3	Acquire and evaluate research regarding new knowledge development within the electronic engineering discipline and its social, cultural, environmental and legal context.				
CO4	Demonstrate a responsible, ethical and professional attitude regarding the role of engineers in society, including situations involving potentially adverse environmental and cultural impacts.				
CO5	Work collaboratively to plan and execute project work or research to advance the scientific basis, technologies or practices within the Electrical Engineering discipline.				

#### Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

#### **Semester 8**

Name of	Capstone Design Phase-II	
Course		
Course Code		BEE02P4003
Prerequisite		
Corequisite		
Antirequisite		
		L T P C
		0 0 18 6

# Course Objectives:

- Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Work in team to formulate solution for Electrical System using hardware or software tools.
- Analyze & research about the work to be implemented with resources available from internet & other sources.
- Work collaboratively to plan and execute project work or research to advance the scientific basis, technologies or practices within the Electrical Engineering discipline.

# **Course Outcomes**

CO1	Identify project goals and constraints			
CO2	Acquire knowledge about the project			
	through previous works in the current field			
CO3	Formulate the methodologies to obtain			
	experimental results			
CO4	Plan for the resource requirements			
CO5	Obtain the experimental results based on			
	the methodologies formulated.			

# Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of	Industrial Internship & Technical
The Course	Seminar
Course	BEE02P4004
Code	
Prerequisite	
Corequisite	
Antirequisit	
e	
	L T P C
	0 0 0 6

# Course Objectives:

# Objective

- To develop institute-industry interaction
- To know the industry practices
- To understand cutting edge technology in the chosen area

### **Course Outcomes**

CO1	Identify the Literature Survey		
CO2	Do the Formulation of the Problem /		
	Project		
CO3	Do Mathematical Modeling and do		
	Programs in MATLAB / PSPICE.		
CO4	Do compilations / Simulation and		
	Synthesis.		
CO5	Do testing and write Dissertations/Reports.		

# Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
50		50	100

# **Basket- (Control Engineering)**

Name	of	The	Advanced Control System				
Course							
Course Code BTEE3019							
Prerequis	ite		Control System				
Co-requisite			Signal Systems				
Anti-requisite							
				L	T	P	C
				3	0	0	3

# Course Objectives

- 1. Introduce the fundamentals and concepts of Control systems
- 2. Understanding and predicting system behavior in state space and non-linear systems.
- 3. Design and analysis of closed loop control systems.
- 4. Analyse higher order control systems with appropriate state space models.

#### Course Outcomes

CO1	Apply linear algebra to complex real world problems in order to obtain models that are expressed using state space equations.		
CO2	Understand the basic Canonical Forms in state space domain.		
CO3	Analyze the system behavior based on the mathematical model of that system where the model may be expressed in state-space domain		
CO4	Design and analysis of closed loop control systems.		
CO5	Design controllers using the concept of state feedback and pole placement technique.		
CO6	Write a report that effectively communicates the results of an analysis or design.		

# Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	-	50	100

# Course Content:

Unit I: State Space Analysis of Control Systems

# 8 Hours

State Variables; State-Space Representation of Electrical and Mechanical and Electromechanical Systems; State Space Representation of Nth Order Linear Differential Equation; Transformation to Phase Variable Canonical Form; Relationship Between State Equations and Transfer Functions; Characteristic Equation; Eigen Values and Eigen Vectors:

Unit II: Canonical Form

Transformation to Diagonal Canonical Form; Jordan Canonical Form; Controllability Canonical Form; Observabilty Canonical Form; Decomposition of Transfer Function-Direct, Cascade and Parallel Decomposition; State Diagram; Solution of the Time-Invariant State Equation; State Transition Matrix and its Properties; Transfer Matrix; Transfer Matrix of Closed Loop systems.

Unit III: Controllability and Observability 8 Hours

Concept of Controllability and Observability; Kalman's Theorems on Controllability; and Observability, Alternative Tests (Gilbert's Method) of Controllability and Observability; Principle of Duality; Relationship among Controllability, Observability and Transfer Function.

Unit IV: State feedback controller 8
Hours

Design of state feedback controller using pole placement technique, Ackerman's formula.

Unit V: Lyapunov Stability Analysis 8 Hours

Stability of Equilibrium State in the Sense of Liapunov; Graphical Representation of Stability; Asymptotic Stability and Instability; Sign-Definiteness of Scalar Function; Second Method of Liapunov; Stability Analysis of Linear Systems; Krasovski's Theorem; Liapunov Function Based on Variable Gradient Method.

Unit VI: Describing Function Analysis of Nonlinear Control System and Phase Plane Analysis 8 Hours

Introduction to Nonlinear Systems, Describing Functions for Common Types of Nonlinearities, Describing Function Analysis, Stability and Limit

Cycles, ntroduction: Analytical Methods for constructing Trajectories, Classification of Singular Points; Limit Cycles; Phase-Place Analysis of Linear control system.

# Suggested Reading

- 1. Nagrath and Gopal, "Control System Engineering", 4th Edition, New age International.
- 2. K. Ogata, "Modern Control Engineering", Prentice Hall of India.
- 3. B.C. Kuoand FaridGolnaraghi, "Automatic Control System" Wiley India Ltd, 2008.
- 4. D.RoyChoudhary, "Modern Control Engineering", Prentice Hall of India.
- Norman S. Nise, Control System Engineering 4th edition, Wiley Publishing Co
- 6. E Slotine, Weiping Li, Applied Nonlinear Control, Prentice-Hall.
- 7. R.T. Stefani, B.Shahian, C.J.Savant and G.H. Hostetter, "Design of Feedback Control Systems" Oxford University Press.

Name of The	Industrial	Autor	natio	on	and	
Course	Control					
Course Code	Course Code BTEE3020					
Prerequisite	Control System					
Co-requisite Power System Analysis						
Anti-requisite						
		L	T	P	С	
		3	0	0	3	

# Course Objectives

- 1. This course introduces the various types of controllers and their principles
- 2. Knowledge of sequence control, PLCs and Ladder logic is also imparted
- 3. Applications of industrial automation systems including identification of system requirements, equipment integration, motors, controllers, and sensors.
- 4. Coverage of set-up, maintenance, and testing of the automated system

#### Course Outcomes

	Describe the properties and applications of				
CO1	open- and closed-loop process control				
COI	systems and distinguish between their				
	dynamics.				

CO2	Summarize the operation of the different controller modes and their practical limitations; determine their response to standard inputs.
CO3	Understand the open loop and closed loop transient response using Ziegler-Nichols method. Frequency response method.
CO4	Outline the criteria determining the selection of control valves for specific purposes.
CO5	Explain various special control structures in process control.
CO6	Identify the applications of PLC's to industrial processes and design PLC programs to solve sequential control problems.

#### Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

## Course Content:

Unit I:	Process Dynamics	8
Hours		

Dynamic Elements in Control Loops, Open- and closed-loop properties of processes; Process lags; Dead-time; Stability of control systems; Block diagrams and process line diagrams to explain the operation of control systems. Dynamic behaviors of first order, second order, and higher order systems. Interacting and non-interacting systems.

# Unit II: Controller Principles 5 Hours

Process characteristics. Control system parameters. Discontinuous, continuous, and composite modes of control action (P, PI, PD & PID). Analog and Digital Controllers, General features. Electronic controllers, pneumatic controllers and hydraulic controllers, and Design considerations.

Unit	III:	Process	loop	Tuning
5 Hours				

Open loop transient response method. Ziegler-Nichols method. Frequency response method.

Unit IV: Control Valves 7 H	lours
-----------------------------	-------

Valve types and characteristics; Factors influencing valve selection; Valve sizing; Valve petitioners; Installed systems: control valve characteristics, pipe pressure drops and pump characteristics.

Unit V: Special Control Structures7 Hours

Feed forward and Ratio Control, Predictive Control, Control of Systems with Inverse Response Special Control Structures: Cascade Control, Overriding Control, Selective Control, Split Range Control.

Unit VI:	Intro	duction	to	Sequence
Control,	<b>PLCs</b>	&	Relay	Ladder
8 Hours				

Discrete state process control, characteristics of the system, discrete state variables, process specifications and event sequence description, ladder diagram – ladder diagram elements and examples, programmable controller – relay sequencers, programmable logic controller, architecture, operation and programming, types of PLC.

#### Suggested Reading

- Process Control Instrumentation Technology, C. D. Johnson, Prentice Hall, (2002).
- 2. M. Gopal, Control Systems Principles & Design, 2nd Edition, TMH, 2002.
- 3. Bela G. Liptak, Process Control, Instrument Engineer's Handbook, 3rd Edition, Chilton Book
- 4. Company, 1970.
- 5. D.RoyChoudhary, "Modern Control Engineering", Prentice Hall of India.
- 6. George Stephenopoulos, Chemical Process Control, PHI, 1999.
- 7. Kirk and Rimbol, Instrumentation, D.B. Taraporewala Sons and Co. Pvt. Ltd., 1996
- 8. Douglas M. Considine, Process/Industrial Instruments and Control Handbook, 4thEdition,McGraw Hill International Edition, 1974.
- 9. Introduction to Programmable Logic Controllers, G. Dunning, Delmar Thomson Learning, 2002

Name of The	Industrial Instrumentation and
Course	Automation
Course Code	BEE02T5001

Prerequisite	Electrical Inst	rum	enta	tion	
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

# Course Objectives

1. To impart knowledge about Industrial instrumentation and automation

### Course Outcomes

CO1	Select instruments and transducers for various physical variables
CO2	Design various signal conditioning systems for transducers.
CO3	Analyze dynamic responses of various systems.
CO4	Get the concepts of virtual instrumentation
CO5	Understand the programming realization of SCADA
CO6	Understand the programming realization of PLC

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	_	50	100

# Course Content:

1				
	Unit I:	Introduction	8 Hours	

Introduction to Process Control - block diagram of process control loop, definition of elements. Sensor time response - first and second order responses. Review of Transducers: Characteristics and Choice of transducer-factors influencing choice of transducer.

Unit II: Applications of Transducers
Hours

Displace measurement: Resistance potentiometer, Capacitive and Inductive. Capacitive differential pressure measurement Torsional, shearing stress and rotating shaft Torque measurement using strain gauge. Flow measurement :Hotwire anemometer, constant resistance Constant current type Eddy current sensors, Variable reluctance tachometers Phase measurement :Analog and digital phase detectors Nano Instrumentation

Unit III: Signal conditioning	8 Hours
Signal conditioning circuits-In	
amplifiersUnbalanced bridge. Bridge	e linearization
using op amp Precision rectifiers, L	og amplifiers,
Charge amplifiers, Isolation amplif	ier, Switched
capacitor circuits, Phase sensitive de	tectors, Noise
problem in instrumentation and its n	ninimization.
Unit IV: Micro Electromechar	nical system

(MEMS) 8 Hours

Advantages and Applications, MEMS micro sensors and actuators, Manufacturing process: Bulk micro machining and surface micromachining, MEMS accelerometers Virtual instrumentation system: architecture of virtual instruments - Virtual instruments and traditional instruments – concepts of graphical programming.

Unit V: SCADA 5Hours

Introduction to Timer/Counters, Exercises based on Timers, Counters. Basic concepts of SCADA, DCS and CNC

Unit VI: PLC 5Hours

Introduction to Sequence Control, PLCs Working. **Specifications** of **PLC** Onboard/Inline/Remote IO's, Comparison of PLC & PC, Relay Ladder Logic- PLC Programmingrealization of AND, OR logic, concept of latching,

# Suggested Reading

- 1. Curtis D Johnson Process Control Instrumentation Technology", PHI, 1986
- E.O. 'Measurement 2. Doeblin Systems: Application and Design, Fourth Edition, McGraw Hill, Newyork, 1992
- 3. DVS. Murty, 'Transducers and Instrumentation' Second Edition, PHI Learning Pvt Ltd New Delhi ,2013
- 4. MadhuchhandaMitra, SamarjitSengupta, 'Programmable Logic Controllers and Industrial Automation An Introduction'. International Publishing (India) Pvt Ltd., 2009
- 5. Mickell. P. Groover 'Automation, Production computer integrated manufacturing' and Prentice Hall of India, 1992
- 6. Patranabis, D., 'Principles of Industrial Instrumentation', Second Edition Tata McGraw Hill Publishing Co. Ltd., New Delhi
- 7. Robert В. Northrop, 'Introduction instrumentation and measurements', CRC, Taylor and Francis 2005.

Name of The	Power System Operation and				
Course	Control				
Course Code	BEEE5005				
Prerequisite	Power System Analysis				
Co-requisite	Fundamentals of		Po	ower	
_	System				
Anti-requisite	Anti-requisite				
		L	T	P	С
		3	0	0	3

# Course Objectives

- **1.** Introduce the fundamentals concepts operation of Modern power systems.
- 2. Understand various Load driving parameters and various forecasting methods.
- 3. Introduce the concepts of Unit Commitment and Online economic dispatch.
- 4. Understand and analyze control relationship between real power vs frequency and reactive power vs voltage.

# Course Outcomes

CO1	Identify various load driving parameters and review various forecasting methods for efficient power system operation			
	Analyze the relationship between various			
CO2	power system variables in terms of			
	mathematical modeling			
000	Model the steady state and dynamic			
CO3	performance of power system control.			
	Apply the knowledge of Unit			
CO4	Commitment and economic Dispatch to			
CO4	solve numerical problems based on real			
	time situations.			
	Explain various functional aspects of			
CO5	SCADA/ECC along with various			
	operating states of power system.			
COC	Understand the application of power			
CO6	System estimation			
1	1 · J			

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	-	50	100

# Course Content:

# SCHOOL OF ELECTRICAL, ELECTRONICS AND School of Electrical Electronics and Communication EngiCOMMUNICATION ENGINEERING

Unit I: Introduction 8 Hours

System load – variation, load characteristics – load curves and load-duration curves, load factor, diversity factor, load forecasting, simple techniques of forecasting, basics of power system operation and control, reserve margin, load-frequency control, voltage control.

Unit II: Real Power – Frequency Control 8
Hours

Speed governing mechanism and modelling, speed-load characteristics, load sharing, control area concept, LFC control of a single-area system, static and dynamic analysis, integration of economic dispatch control with LFC, two-area system — modelling — static analysis of uncontrolled case, tie line with frequency bias control of two-area system.

Unit III: Economic Load Dispatch8 Hours

Economic dispatch problem – cost of generation, incremental cost curve, co-ordination equations, solution by direct method and  $\lambda$ - iteration method, unit Commitment problem – constraints, solution methods – Priority-list methods – forward dynamic programming approach (Numerical problems only in priority-list method using full-load average production cost).

Unit IV: Reactive Power – Voltage Control8 Hours

Reactive power control, excitation systems – modelling, static and dynamic analysis, stability compensation, generation and absorption of reactive power, relation between voltage, power and reactive power at a node, method of voltage control, tap changing transformers, tap setting of OLTC transformer and MVAR injection of switched capacitors.

Unit V: Computer control of power systems
Hours

Need of computer control of power systems, concept of energy control centre (or) load dispatch centre and the functions, system monitoring, data acquisition and control, system hardware configuration,

Unit VI Power System Estimation

SCADA and EMS functions, network topology, state estimation, security analysis and control, operating states (Normal, alert, emergency, inextremis and restorative).

# Suggested Reading

- 1. Allen. J. Wood and Bruce F. Wollenberg, "Power Generation, Operation and Control", John Wiley & Sons, Inc., 2003.
- 2. D.P. Kothari and I.J. Nagrath, "Modern Power System Analysis", Third Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 2003
- 3. Chakrabarti&Halder, "Power System Analysis: Operation and Control", PHI, 2004 Edition.
- 4. L.L. Grigsby, "The Electric Power Engineering, Hand Book", CRC Press & IEEE Press, 2001.
- 5. Olle. I. Elgerd, "Electric Energy Systems theory: An introduction", Tata McGraw Hill Publishing Company Ltd. New Delhi, Second Edition 2003.

Name of	The	Digital Control				
Course						
Course Code	Course Code BEEE5004					
Prerequisite	Control System					
Co-requisite Advanced Control Syste			tem			
Anti-requisite						
_		L	T	P	С	
		3	0	0	3	

#### Course Objectives

- 1. The purpose of this course is to provide basic concepts of Digital control systems.
- 2. The main goal of the course is to teach the students how to select and design digital controller for different systems.
- **3.** This course is also to learn microprocessors and microcontrollers based digital control systems.
- **4.** This also provides knowledge of effect of quantization on signals in digital control systems.

# Course Outcome

CO1	Analyze and design SISO systems through
COI	Z-transform.
CO2	Analyze and design of MIMO systems
CO2	through state space analysis.
CO3	Understand the Controller design using
COS	transformation techniques.
CO4	Analyze system's stability.
CO5	Discuss Microprocessor and DSP based
COS	control.
CO6	Discuss the quantization effect on the
CO6	digital control system

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	_	50	100

## Course Content:

Unit I: Introduction Hours	8
Overview of design approaches, contin	
versus digital control, sampling process, effe	ect of
sampling rate. Calculus of difference equat	ions.
Z-transform. Signal flow graphs.	

Unit II: Design of State space systems 8 Hours

Controllability, Observability, Discretization of continuous transfer functions; Digital filter properties.

Unit III: Controller design using transformation techniques

Z-plane specifications. Design in the w domain. PID controller. Deadbeat controller. Root Locus design.

Unit IV: State space methods
Hours

Pole placement design, stabilization and all stabilizing controllers. Observer design. Infinite time optimal regulator, Stability and tracking in SD systems.

Unit V: Quantization effects 8 Hours

Limit cycles and dither. Sample rate reduction. Multi-rate sampled data system and stability studies. Design of digital controller using fast output sampling.

Unit VI: Microprocessor and DSP control 8 Hours

Mechanization of control algorithms. Iterative computation via parallel, direct, canonical, cascade realization; Effects of computing time. Systems with time delay. Case studies

# Suggested Reading

- **1.** K. Ogata, "Discrete-time control sytems", PHI, 2005.
- **2.** B.C. Kuo, "Digital Control System", Oxford University press, 1995
- **3.** Norman S. Nise," Control systems Engineering", John Wiley and Sons, 4th Edition, 2004.

- **4.** G. F. Franklin, J. David Powell and MichealWorkman, "Digital Control of Dynamic Systems", Pearson Education, 3rd Edition, 2003.
- **5.** M.Gopal, "Digital Control Engineering", New Age Publishers, 2008.

Name of	The	Automation and Robotics				
Course						
Course Code		BEE03T5002				
Prerequisite		Control Systems				
Co-requisite						
Anti-requisite						
L T P C					C	
3 0 0 3				3		

# Course Objectives

1. To identify potential areas for automation and justify need for automation.

#### Course Outcomes

CO1	Select suitable major control components required to automate a process or an activity
CO2	Study the various parts of robots and fields of robotics.
CO3	Understand the fundamentals of automated assembly systems
CO4	Study the various kinematics and inverse kinematics of robots.
CO5	Study the control of robots for some specific applications.
CO6	Design real time robotics systems.

#### Continuous Assessment Pattern

Internal Assessment	Mid Term Exam	End Term	Total Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	-	50	100

#### Course Content:

Unit I: Introduction	8 Hours				
Basic elements of an automated system, advanced					
automation functions,	levels of automation,				
process industries versus	discrete manufacturing				
industries, continuous v	ersus discrete control,				
computer process control	. Hardware components				
for automation and pro	ocess control, sensors,				

actuators, analog to digital converters, digital to

analog converters, input/output devices for discrete data.

# Unit II: Automated Production lines 18 Hours

Fundamentals of automated production lines, application of automated production lines, analysis of transfer lines, automated assembly systems,

#### Unit III: Automated Production lines 2

Fundamentals of automated assembly systems, quantitative analysis of assembly systems, automatic identification methods, barcode technology, radio frequency identification, other AIDC technologies

# Unit IV: Industrial Robotics 8 Hours

Robotic configuration, robot anatomy and related attributes, robot control systems, end effectors, sensors in robotics, industrial robot applications, robot accuracy and repeatability, different types of robotics, various generations of robots, degrees of freedom — Asimov's laws of robotics dynamic stabilization of robots.

Unit V: Spatial descriptions and transformations8 Hours

Positions, orientations, and frames. Mappings: Changing descriptions from frame to frame. Operators: translations. rotations and transformations. transformation arithmetic transform equations, transformation of free vectors computational considerations. manipulator Kinematics, link description, linkconnection description, actuator space joint space and Cartesian space

Unit VI: Robot programming 8 Hours

Introduction, levels of robot programming, requirements of robot programming language, problems pertaining to robot programming languages, offline programming systems, central issues in OLP systems, automating subtasks in OLP systems, simple programs on robot applications

### Suggested Reading

- 1. Automation, Production systems, and computer integrated manufacturing-MikellP.Groover 3rd edition, Pearson 2009
- 2. Industrial Robotics-Groover, Weiss, Nagel, McGraw Hill International, 2nd edition, 2012

# **Basket- (Power Engineering)**

Name of T Course	he	Power System Equipme	ent	s		
Course Code		BTEE3017				
Prerequisite						
Corequisite						
Antirequisite						
			L	T	P	C
			3	0	0	3

# Course Objectives:

Power Engineering is concerned with the generation, transmission, distribution and utilization of electrical energy. Large power systems are interconnected physical networks of many different types of equipment and apparatus: synchronous generators for generating electricity, power transformers for changing the voltage levels, overhead transmission lines, underground cables, metering and control equipment, switchgear for connection/disconnection, high-voltage insulators, etc. Because of operating conditions (different voltage and power levels) each equipment type in turn comprises many different designs.

### Course Outcomes

Course	irse Outcomes				
CO1	Identify various designs of transmission line and overhead line				
CO2	Explain various Substation equipments Protection & Control theories				
CO3	Explain various necessities of power system earthing				
CO4	Identify various basic concepts about Surge Protection & Insulation Co- ordination				
CO5	Identify various basic concepts about Insulation Co-ordination				
CO6	Introduce reliability of transmission & distribution Systems				

Text/ Reference Books:

- 1. Power System Analysis & Design by B.R. Gupta –S.Chand.
- 2. Sub Station Design and Equipment Gupta &Satnam (Dhanpat Rai & Sons).
- 3. Transmission & Distribution Westinghouse.
- 4. P. Gill, Electrical Power Equipment Maintenance and Testing, 2nd ed., CRC Press, 2008.
- 5. F. Kussy, and J. Warren, Design Fundamentals for Low Voltage Distribution and Control, Marcel Dekker, 1987.

6. Syllabus

Unit-I	Transmission	Line	8 Hours
	Design & Over	head	
	Line Design		

Types Insulator, String Efficiency, of **Improvement** of voltage distribution, Improvement of String Efficiency, Line Supports, Types of Steel Towers, Cross Arms, Equivalent span, Conductor configurations, Spacing & Clearance, Sag & Tension calculations, Erection conditions, Factors affecting Sag, Sag Template, Catenary, Vibration of conductors & prevention, Selection of conductor size, Cross arm, No. Of circuits, Selection of ground wire.

Unit-II	Electrical	Substation	8 Hours
	&Earthing		

Types of Substation, Layout and Bus Bar schemes, Voltage level, Substation equipments Protection & Control Substation Earthing, Tolerance limits of body currents, Soil resistivity, Earth resistance, Tolerable & Actual Step & Touch Voltages, Design of EarthingGrid, Tower Footing Resistance, Measurement of soil & earth resistivity

Unit-III Power System Earthing 6 Hours
----------------------------------------

Ground versus isolated neutral, Solidly and effectively grounded system Resistance and Impedance Grounding, Resonant Grounding, Reactance Grounding, Voltage Transformer Grounding, Zigzag Transformer Grounding, Grounding practice, Effect of grounding on system over voltages & protection over voltage and over voltage phenomenon in isolated and grounded neutral system.

Unit-IV	Surge Protection	5 Hours

External and Internal over voltages mechanism of lighting discharge, wave shapes of stroke current line design based on direct stroke, over voltage protection, earth wire Rod gap T.F.R., Expulsion tube, surge diverter.

Unit-V	Insulation	Co-	5Hours
	ordination		

General idea, Selection of B.I.L., International recommendation, Selection of arrester rating, Coordination of protector devices with apparatus insulation

Unit-VI	Reliability	of	7 Hours
	Transmission	&	
	Distribution Syste	ms	

Definition, Outage, Bath Tub Curve, Two State Model, Failure & Repair Rate, Probability Density Function, Probabilities of Survival & Failure, Mean Time to Failure, Mean Down Time, Reliability of Series & Parallel Systems, Two-State Fluctuating Enviornment, Approximate Method, Reliability Planning, Preparation of Reliability Models.

#### Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	Power Qua	ality			
Course Code	BTEE3023	3			
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	С
		3	0	0	3

# Course Objectives:

- 1. To understand the various power quality issues
- 2. To understand the concept of power and power factor in single phase and three phase systems supplying non linearloads

- 3. To understand the active compensation techniques used for power factor correction.
- 4. To understand the active compensation techniques used for load voltage regulation.

## Course Outcomes

CO	Toacquireanin-
1	depthknowledgeonvariouspowerqualityissu
	eslikevoltage sag, interruption
	andharmonics.
CO	To learn about various aspects of power
2	quality measurements and power quality
CO	Ability to understand and analyze power
3	system operation, stability, control and
	protection.
CO	Introduce the importance of grounding on
4	power quality.
CO	Learn to apply appropriate solution
5	techniques for power quality mitigation
	based on the type of problem.
CO	Illustrate the latest trends adapted in power
6	quality improvements.

# Text Book (s)

1.Eswald.F.Fudis and M.A.S.Masoum, "Power Quality in Power System and Electrical Machines," Elseviar Academic Press, 2013.

 Dugan, M. McGranahan, S. Santoso, W. Beaty, Electric Power Systems Quality, 2nd Edition (McGraw-Hill.

New York, NY, 2002).

#### Reference Book (s)

- 1. Heydt, Electric Power Quality, Stars in a Circle Publications, 1991. (optional)
- 2. Handbook of power quality, editor: Angelo Baggini, John Wiley & Sons, 2008.

# Unit I:

Power and Voltage Quality: General, classes of Power Quality Problems, Power quality terms, Power frequency variations, the power quality evaluation procedure. formula, sensitivity, Reduction of effect of parameter variation and disturbance by using negative feedback.

Unit II:

Voltage sags and Interruptions: Sources of sags and Interruptions, Estimating Voltage sag performance. Fundamental Principles of Protection, Solutions at the end-user level, Evaluating Ride-through Alternatives, Motor-Starting Sags.

#### Unit III:

Fundamentals of Harmonics: Harmonic distortion, Voltage versus Current distortion, Harmonic indexes, Harmonic sources from commercial loads, Harmonic sources from industrial loads, Locating Harmonic sources, System response characteristics, Effects of Harmonic Distortion. Considerations.

#### Unit IV:

Distributed Generation and Power Quality: Resurgence of DG, DG Technologies, Interface to the Utility System, Power

Quality Issues, Operating Conflicts, DG on distribution Networks, Sitting DG distributed Generation, Interconnection standards.

### Unit V:

Wiring and Grounding: Recourses, Definitions, Reasons for Grounding, Typical wiring and grounding problems, Solution to wiring and grounding problems.

Unit VI: Recent Technologies

Recent trends and technologies using to improve the power quality

# Continuous Assessment Pattern

Internal Assessment	Mid Term Exam	End Term Exam	Total
(IA)	(MTE)	(ETE)	Marks
20	30	50	100

Name of The	Electric Drives				
Course					
Course Code	BEEE4001				
Prerequisite	Power Electron	ics			
Corequisite					
Antirequisite					
		L	T	P	С
		3	0	0	3

# Course Objectives:

- 1. To introduce the electric drives fundamentals including speed torque curves of motor and load, types of load.
- 2. To determine stability of drive system and select motor rating for any particular duty of application.

### Course Outcomes

CO1	Demonstrate the basic of drive system and different types of loads.
CO2	Understand the motor dynamics and the rating of motor for different condition of load.
CO3	Analyse the types of breaking and select appropriate breaking to the working environment.
CO4	Analyse power circuit topology and control mechanism to control the speed of DC motor.
CO5	Apply various types of control mechanism to employ for variable speed drives.
CO6	Illustrate the latest trends adapted in Electrical drives

### Text Book (s)

- 1. G.K. Dubey, "Fundamentals of Electric Drives", Narosa publishing House
- 2. S.K.Pillai, "A First Course on Electric Drives", New Age International.

#### Reference Book (s)

- 1. M.Chilkin, "Electric Drives", Mir Publishers, Moscow.
- 2. N.K. De and Prashant K. Sen, "Electric Drives", Prentice Hall of India Ltd

### Course Content:

Unit-1Fundamentals of Electric Drive				
8 hours				
Electric Drives and its parts, advantages of electric				
drives, Classification of electric drives, Speed-				
torque conventions and multi-quadrant operations,				
Constant torque and constant power operation,				
Types of load, Load torque: components, nature				
and classification.				
Unit-2Dynamics of Electric Drive				
8 hours				
Dynamics of motor-load combination, Steady				
state stability of Electric Drive, Transient stability				
of electric Drive, Selection of Motor Power rating,				
Thermal model of motor for heating and cooling,				
classes of motor duty, determination of motor				

Unit-3Electric	Braking
8 hours	

and intermittent duty, Load equalization

power rating for continuous duty, short time duty

Purpose and types of electric braking, braking of dc, three phase induction and synchronous motors Dynamics During Starting and Braking: Calculation of acceleration time and energy loss during starting of dc shunt and three phase induction motors, methods of reducing energy loss during starting, Energy relations during braking, dynamics during braking.

Unit-4Power Electronic Control of DC Drives 8 hours

Single phase and three phase controlled converter fed separately excited dc motor drives (continuous conduction only), dual converter fed separately excited dc motor drive, rectifier control of dc series motor. Supply harmonics, power factor and ripples in motor current, Chopper control of separately excited dc motor and dc series motor.

Unit-5Power Electronic Control of AC Drives 8 hours

Three Phase induction Motor Drive: Static Voltage control scheme, static frequency control scheme (VSI, CSI, and cycloconverter based) static rotor resistance and slip power recovery control schemes. Three Phase Synchronous motor: Self-controlled schemes. Special Drives: Switched Reluctance motor, Brushless dc motor

Unit 6: Recent Technologies

Recent trends and technologies using in electrical drives.

### Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Exam	Exam	
	(MTE)	(ETE)	
20	30	50	100

Name	of	The	FACTS and HVDC				
Course							
Course Code BTEE4010							
Prerequi	Prerequisite						
Corequisite							
Antirequ	iisite						
				L	T	P	С
				3	0	0	3

### Course Objectives:

- 1. Apply concepts of transmission in HVDC Transmission
- 2. To prepare students to know the role of HVDC systems

### **Course Outcomes**

CO1	Identify significance of DC over AC			
	transmission system, types and application			
	of HVDC links in practical power systems			
CO2	To Analyze different converters viz.3,6			
	and 12 pulse converter			
CO3	To Analyze AC/DC system interactions			
	and know the operation and control of			
	various MTDC systems.			
CO4	Model AC/DC system and apply			
	protection for HVDC system against			
	transient overvoltage and over currents			
CO5	To estimate Improvement of voltage			
	stability			
CO6	Illustrate the latest trends adapted in			
	HVDC.			

### Text Book (s)

- 1. HVDC transmission by Adamson and Hingorani.
- 2. H.V.D.C.Transmission by J.Arillaga : Peter Peregrinus ltd., London UK 1983.

### Reference Book (s)

- Direct current Transmission, by . E.W. Kimbark ,Wiely Inter Science – NewYork. EHV-AC & HVDC transmission Engg. Practice" by S.Rao, Khanna Publishers.
- 2. B. R. Gupta, "Power System Analysis and Design" Third Edition, S. Chand & Co.

### Unit I: H.V.D.C. Transmission6 lecture hours

H.V.D.C. Transmission: General considerations, Power Handling Capabilities of HVDC Lines, Basic Conversion principles, static converter configuration. Static Power Converters: 3-pulse, 6-pulse and 12-pulse converters, converter station and Terminal equipment, commutation process, Rectifier and inverter operation, equivalent circuit for converter – special features of converter transformers.

### Unit II:

Harmonics in HVDC Systems, Harmonic elimination, AC and DC filters. Control of HVDC Converters and systems: constant current, constant extinction angle and constant Ignition angle control, DC power flow control.

### Unit III:

Interaction between HV AC and DC systems – Voltage interaction, Harmonic instability problems and DC power modulation. Multiterminal DC links and systems; series, parallel and series parallel systems, their operation and control.

Unit IV: FACTS Introduction

The concept of flexible AC transmission - reactive power control in electrical power transmission lines, uncompensated transmission line - series and shunt compensation. Overview of FACTS devices - Static Var Compensator (SVC) - Thyristor Switched Series capacitor (TCSC) - Unified Power Flow controller (UPFC).

Unit V: 7 lecture hours

Voltage control by STATIC VAR COMPENSATOR (SVC), THYRISTOR CONTROLLED SERIES CAPACITOR(TCSC)

And Static Synchronous Compensator (STATCOM): advantages of slope in dynamic characteristics, influence of SVC on system voltage. Applications: enhancement of transient stability and steady state, power transfer.

Unit VI: Recent Technologies

Recent trends and technologies using in HVDC.

### Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The	Electrical and Hybrid vehicle			le	
Course Code	BEE02T5003				
Prerequisite	BEE0213003				
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

### Course Objectives:

- 1. To understand the electrical vehicle
- 2. To understand the hybrid vehicle

### Course Outcomes

CO1 Understand basics of battery technology.

CO2 Understand scheme of HEV and full electric vehicle.

CO3 Analyse need of different motor drives for electric vehicle.

CO4 Apply new topologies to electric vehicle.

CO5 Evaluate performance parameters of electric vehicle.

CO6 Understand recent industrial power electronic applications for electric vehicle.

### Text Books:

- 1. Sandeep Dharmeja, Electric Vehicle Battery Systems, 1st Edition, Newnes, 2001
- 2. K.T.Chau, Zheng Wang, Chaos in Electrical Drive Systems: Analysis, Control & Applications, 1st Edition, John Wiley and Sons, 2011

### Reference Books:

- 1. Chung Chow Chan, K.T.Chau, Modern Electric Vehicle Technology, 1st Edition, Oxford University Press, 2001
- 2. Springer Books, Electrical Vehicle Integration into Modern Power Networks
- 3. A.T.P.So George C.Barney waterstones.com, International Journal of Elevator Engineering, United Kingdom
- 4. John Lowry, John Wiley and Sons, Electrical Vehicle Technology Explained-James Larminie, 1st Edition, 2003

### Unit I: Introduction to Electric Vehicles Electric vehicles (EV) development, past, present and future, comparison with IC engine driven vehicles. Unit II: Storage Units Batteries, fuel cells, ultracapacitors. Power converters in EV. Different types of motors used in EV and their torque-speed characteristics, motor control techniques, Unit III: Vehicle Control 10 lecture hours performance and efficiency-optimized High control, sensorless control. Electric vehicles modeling and their Characteristics.

### Unit IV: Electric drive-trains

Basic concept of electric traction - introduction to various electric drive-train topologies - power flow control in electric drive-train topologies - fuel efficiency analysis

### Unit V: Hybrid Electric Vehicle

Fuel cell Vehicles, Hybrid Electric Vehicles (HEV), series, parallel and series-parallel (split) systems,

### Unit VI: Recent Technologies

Recent industrial power electronic applications. Advanced topic on the subject

#### Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	Marks
20	30	50	100

		_			
Name of The	Power System Deregulation				
Course	•				
Course Code	BTEE4009				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	С
		3	0	0	3

### Course Objectives:

- 1. To understand the restructuring of electrical power systems
- 2. To understand the marketing in power sector

#### Course Outcomes

CO1	To provide in-depth understanding				
	of operation of deregulated				
	electricity market systems.				
CO2	To Understand the Fundamentals of				
	Economics				
CO3	To examine topical issues in electrici				
	ty markets and how these are handle				
	d world-wide in various markets.				
CO4	To train the students to analyze vari				
	ous types of electricity market operat				
	ional and control issues under				
	congestion management.				
CO5	To understand the operation				
	of ancillary				
CO6	To learn				
	different pricing mechanism and				
	power trading in restructured power				
	system				

### Text Book (s)

- 1. L.Philipson and H. Lee Willis, "Understanding Electric Utilities and Deregulation", Marcel Dekker 1998
- 2. KankarBhattacharya , Math Bollen and J.E. Daadler, "Operation of restructured Power Systems," Kluwer 2001
- 3. M. Shahidepour and M. Alomoush, "Restructured Electrical Power Systems", Marcel Dekker 2001

- 4. Steven Stoft, "Power System Economics: Designing Markets for Electricity", IEEE Press 2002
- 5. AshikurBhuiya, "Power System Deregulation: Loss Sharing in Bilateral Contracts and Generator Profit Maximization", VDM Publishing 2008
- 6. Daniel S. Kirschen, Goran Strbac, "Fundamentals of Power System Economics", WILEY 2004

### Unit I: Restructuring Of Power Industry:

An Introduction: Introduction, reasons and objectives of restructuring/ deregulation of power industry, restructuring process, issues involved in restructuring/ deregulation.

### Unit II: Fundamentals of Economics

Introduction, consumer behavior, supplier behavior, market equilibrium, short-run and longrun costs, various costs of production, perfectly competitive market

Unit III: Philosphy of market models:9 lecture hours

Introduction to philosophy of market models, market models based on contractual arrangements, comparison of various market models, electricity as a commodity market architecture

Unit IV: Transmission congestion management: 10 lecture hours

Introduction, classification of congestion management methods, calculation of atc (available transfer capability), non-market methods, nodal pricing, inter-zonal/ intra-zonal congestion management, price area congestion management, capacity alleviation method

Unit V: Electricity market evolution:8 lecture hours
US and European electricity market evolution, PJM,
NEMMCO, ERCOT, NORDIC Markets,
comparison of power markets, towards standard
market design (SMD)

Unit VI: Reforms in Indian power sector:7 lecture hours

Introduction, framework for Indian power sector, reform initiatives in India, The Electricity Act 2003, availability based tariff (ABT), open access issues, power exchange

### Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	IVIAIKS
20	30	50	100

### **Basket-(Energy Engineering)**

Name of	The	Non-Conventional Energy				rgy
Course		Resources				
Course Code		BEEE2018				
Pre-requisite		Power system	1			
Co-requisite						
Anti-requisite						
			L	T	P	С
			3	0	0	3

### Course Objectives:

- 1. To have an overview of non-conventional energy sources.
- 2. To understand the need of alternate sources of energy.

### **Course Outcomes**

CO1	Understand the different types of
	renewable energy sources and their
	utilities
CO2	Design models for generating energy
	through alternate energy sources (with the
	help of additional learning)

CO3	To understand the practical limitation and hence steps for continuous improvement through research.
CO4	Apply genetic algorithms to optimization problems
CO5	Design models for generating energy through alternate energy sources (with the help of additional learning)
CO6	Apply the fundamentals of energy systems in real time applications

#### Text Book (s)

- 1. 1. Renewable energy technologies R. Ramesh, Narosa Publication
- 2. Non-conventional Energy Systems Mittal, Wheelers Publication.

### Reference Book (s)

3. John F Walker & Jekins. N, Wind Energy Technology., John Wiley and Sons, chichester, UK, 1997.

4. Van Overstra ,Mertens, R.P, Physics, Technology and use of Photovoltaics, Adam Hilger, Bristol, 1996.

#### Course Content:

Unit I:Energy Scenario:	6
lecture hours	

Classification of Energy Sources, Energy resources (Conventional and nonconventional), Energy needs of India, and energy consumption patterns. Worldwide Potentials of these sources. Energy efficiency and energy security. Energy and its environmental impacts. Global environmental concern, Kyoto Protocol, Concept of Clean Development Mechanism (CDM) and Prototype Carbon Funds(PCF). Factors favoring and against renewable energy sources, IRP.

Unit II: Solar Energy	9 lecture
hours	

Solar thermal Systems: Types of collectors, Collection systems, efficiency calculations, applications. Photo voltaic (PV) technology: Present status, - solar cells , cell technologies, characteristics of PV systems, equivalent circuit, array design , building integrated PV system, its components , sizing and economics. Peak power operation. Standalone and grid interactive systems.

Unit III: Wind Energy	10	lecture
hours		

Wind speed and power relation, power extracted from wind, wind distribution and wind speed predictions. Wind power systems: system components, Types of Turbine, Turbine rating, Choice of generators, turbine rating, electrical load matching, Variable speed operation, maximum power operation, control systems, system design features, stand alone and grid connected operation.

Unit IV :Other energy sources 8 lecture hours

Biomass — various resources, energy contents, technological advancements, conversion of biomass in other form of energy — solid, liquid and gases. Gasifiers, Biomass fired boilers, Cofiring, Generation from municipal solid waste, Issues in harnessing these sources. Hydro energy — feasibility of small, mini and micro hydel plants scheme layout economics. Tidal and wave energy, Geothermal and Ocean-thermal energy conversion. (OTEC) systems — schemes, feasibility and viability.

Unit V: Energy storage and hybrid system configurations 7 lecture hours

Energy storage: Battery – types, equivalent circuit,

Energy storage: Battery – types, equivalent circuit, performance characteristics, battery design, charging

and charge regulators. Battery management. Fly wheel-energy relations, components, benefits over battery. Fuel Cell energy storage systems. Ultra Capacitors.

### Unit VI: Application of NCES

Grid integration of hybrid system, fuel cell integration in hybrid vehicles

### Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	Marks
20	30	50	100

Name of The	Energy Assessment and Audit				
Course					
Course Code	BTEE4011				
Pre-requisite					
Co-requisite	ite				
Anti-requisite					
		L	T	P	С
		3	0	0	3

### Course Objectives:

- 1. To have an overview of energy audit.
- 2. To understand the need of energy assessment.

### **Course Outcomes**

- CO1 To prepare the students for successful career in the energy industry agencies; and in the academic and R &D institutions.
- CO2 Toproducegraduatesstronginenergyresources,technologiesandr addressing the present and potential future energy problems
- CO3 To produce energy professionals, who are sensitive to, and concerns, and who can apply their specialized knowledge for t
- CO4 Acquaintance with conservation of energy and its managemen
- CO5 Identify the source of conservation of energy and energy plans
- CO6 Know-How of energy efficient machinery systems, energy loss

### Text Book (s)

- 1. Albert Thumann, Handbook of energy engineering ,"Abe Books , 1979
- 2.JamesWilsonBrownandShirleyHanse n,,,InvestmentGradeEnergyAudit",Gor dan&BreachScainPublishers,November 2000
- 3.Endreni, J., "Reliability modelling in Electric Power System" John Wiley, 1980.

Reference Book (s)

- 1.Roy Billinton and Ronald Allan Pitam: Reliability Evaluation of Power Systems, 1996
- 2. Wheel Wright and Makridakis: Forecasting methods and Applications, John Wiley, 1992.

### Course Content:

### Unit I: Energy Auditing

Introduction, Scope of Energy Audit, Types of Energy Audit, Detailed Energy Audit Methodology, Implementing Energy Efficiency Measures, Detailed Project Report (DPR), Measurement & Verification.

### **Unit II: Electrical System**

Introduction, Main Components of Electrical System, Load Management, Power Factor, Electricity Tariff, Distribution Transformers, Voltage Drop Survey, Cable Losses, Inverter/UPS, Power Quality, Energy Auditing ApproachforElectricalDistributionSystemandTra nsformers,ENCONOpportunitiesinElectricalSyst em.

### Unit III: Electrical Motors

Introduction, Typesof Motors, Selection of an Electrical Motor, Motor Loading, Energy Efficiency Motors, Power Factor Correction for Motors, Avoiding Idle Running of Motors, Efficient Belt Drives, Application of Variable Frequency Drive (VFD), Effect of Power Supply Quality on Motors

### Unit IV: Pumping system-1

Introduction, PumpPerformanceCurves, SystemCurve, PumpPerformanceAssessment, Flow, Balance, Control Valve Operation (Throtiling), By-pass Valve Operation, Optimum Pipe Sizing, Impeller Trimming, Reducing Number of Stages, Variable Speed Operation..

Unit V: Pumping System-2

Energy Auditing & Approach for Pumping System, ENCON OpportunitiesinPumpingSystem,DemoofEnergyE

OpportunitiesinPumpingSystem,DemoofEnergyl fficiencyPracticesinPumpLaboratory

Unit VI: Air Handling and Distribution System 7 lecture hours

Introduction, Ducting System Design, Fan Discharge and Inlet System, Filter Losses, Coil Losses, Fan Efficiency, ExcessAirFlow,ConstantAirVolume(CAV)versus

VariableAirVolume(VAV),AirDistributionandBa lancing, Fresh Air Control, Energy Auditing Approach in Air Handling & Distribution System,

#### Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

	T				
Name of The	Utilization	of	El	ectri	cal
Course	Energy & Trac	ction	Sys	tem	
Course Code	BTEE5102				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	С
		3	0	0	3

### Course Objectives:

- 1. To develop the lighting schemes.
- 2. To develop the analytical skills for electric heating.

### Course Outcomes

CO1	Understand with the process and
	application of electrical energy utilization
	system
CO2	Identify effective electrical system with
	various applications prospective.
CO3	Analyse effective control scheme with
	different electrical appliances.
CO4	Solve problems in the subject of utilization
	of electrical energy and traction system.
CO5	Design an effective control structure and
	save energy in utilization of electrical
	energy and traction system.
CO6	Understand the advancement in in traction
	system

#### Text Book (s)

- 1. H. Pratab. "Art & Science of Electric Energy's" Dhanpat Rai & Sons.
- 2. G.K. Dubey, "Fundamentals of electric drives" Narosa Publishing house

### Reference Book (s)

- 1. Pratab."Modern electric traction" Dhanpat Rai & Sons. □
- 2. C.L. Wadhwa,"Generation, Distribution and Utilization of Electrical Energy, "New Age International Publishers.

#### Course Content:

### Unit I: ELECTRIC HEATING

Advantage & methods of electric heating, resistance heating, electric arc heating, induction heating, dielectric heating.

### Unit II: ELECTRIC WELDING

9 lecture

Electric arc welding, electric resistance welding, electric welding control, electrolyte process: principle of electro deposition, laws of electrolysis, application of electrolysis.

### Unit III: ILLUMINATION

10 lecture hours

Various definition, laws of Illumination, requirement of good lighting, design of indoor lighting & outdoor lighting system, refrigeration system, domestic refrigerator, water cooler, types of air conditioning, window air conditioner.

### Unit IV: ELECTRIC TRACTION – I

8 lecture hours

Types of electric traction, system of track electrification, traction mechanics-types of services, speed time curve and its simplification, average and schedule speeds, tractive effort specific energy consumption, mechanics of train movement, coefficient of adhesion and its influence.

Unit V: ELECTRIC TRACTION – II 7 lecture hours Salient features of traction drives, series-parallel control of dc traction drives (bridge traction) and energy saving, power electronic control of dc & ac traction drives, diesel electric traction.

Unit VI: Recent Trends

Recent advancement in traction system

### Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	Marks
20	30	50	100

Name of The	Power electronics application				
Course	in renewable enrgy				
Course Code	BEE03T5010				
Prerequisite					
Corequisite	Corequisite				
Antirequisite					
		L	T	P	С
		3	0	0	3

### Course Objectives:

To provide knowledge about various renewable energy technologies, their potential and applications Course Outcomes

Text Books:

- 1. Title Power Electronics Hand book Author Rashid .M. H Publisher Academic press Edition 2001 and Reprints
- 2. Title Non-conventional energy sources Author Rai. G.D Publisher Khanna publishes Edition 1993 and Reprints
- 3. Title Solar energy utilization Author Rai. G.D. Publisher Khanna publishes Edition 1993 and Reprints

### Reference Books:

- 1. Title Wind energy system Author Gray, L. Johnson Publisher prentice hall linc Edition 1995 and Reprints 161
- 2. Title Non-conventional Energy sources Author B.H.Khan Publisher Tata McGraw-hill Publishing Company, New Delhi Edition 2nd Edition

### Unit I: Introduction:

Environmental aspects of electric energy conversion: impacts of renewable energy generation on environment (cost-GHG Emission) - Qualitative study of different renewable energy resources: Solar, wind, ocean, Biomass, Fuel cell, Hydrogen energy systems and hybrid renewable energy systems.

Unit II: Electrical Machines for Renewable Energy Conversion:

Review of reference theory fundamentals-principle of operation and analysis: IG, PMSG, SCIG and DFIG.

Unit III: Power Converters:

Solar: Block diagram of solar photo voltaic system -Principle of operation: line commutated converters (inversion-mode) - Boost and buck-boost convertersselection Of inverter, battery sizing, array sizing. Wind: three phase AC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers. PWM Inverters. Grid Interactive Inverters-matrix converters.

### Unit IV: Analysis of Wind Energy Systems:

Stand alone operation of fixed and variable speed wind energy conversion systems and solar system-Grid connection Issues -Grid integrated PMSG and SCIG Based WECS Grid Integrated solar system

Unit V: Analysis of PV Systems

solar system-Grid connection Issues -Grid integrated, Wind and PV solar hybrid system

Unit VI: Hybrid Renewable Energy Systems:

Need for Hybrid SystemsRange and type of Hybrid systems- Case studies of Wind-PV Maximum Power Point Tracking (MPPT).

#### Continuous Assessment Pattern

Internal Assessment	Mid Term Exam	End Term Exam	Total
(IA)	(MTE)	(ETE)	Marks
20	30	50	100

Name	of	The	Special Electrical Machines				
Course							
Course C	Code		BTEE5202				
Prerequis	site						
Corequis	ite						
Antirequ	isite						
				L	T	P	C
				3	0	0	3

### Course Objectives:

- 1. To understand the various machines
- 2. To understand the concept of special electrical machines and applications

### Course Outcomes

CO1	Apply the knowledge of Commutator	
	motors and circuits analysis of FHP	
	Universal Commutator motors	
CO2	Make use of application of the BLDC	
	Motors with industries and day to day life	
CO3	Analysis the demanding and appropriate	
	drive performance for the Stepper motor.	
CO4	Analysis the numerical problems	
	associated with FHP Synchronous Motors	
CO5	Test and estimate the parameter of the	
	Special machine. Analysis the demanding	
	and appropriate drive performance for the	
	specific purpose.	
CO6	Test and estimate the parameter of the	
	LIM.	

### Text Book (s)

- 1. P.C. Sen, "Principles of Electric Machines and Power Electronics", 2nd Edition, Wiley India Ltd. 2007
- 2. E. Openshaw Taylor, "The Performance and Design of AC Commutator Motors", Wheeler Publishing, 1997
- 3. R. Krishnan, "Switched Reluctance Motor Drives", 1st Edition, CRC Press. 2001

Unit I: FHP Universal Commutator motors:

Principle of operation and performance characteristics of universal commutator motor without and with compensating windings, phasor diagrams and expressions for power and torque, speed-torque characteristics with DC and AC excitations.

### Unit II: Introduction to Brushless DC Motor Drives (BLDC)

Salient features of various permanent magnet materials- B-H- Loop and demagnetization characteristics, Comparison of BLDC Vs conventional, BLDC Vs Synchronous motor, BLDC Vs induction motor. Operating principle of BLDC- Principle of hall sensor - unipolar BLDC and Bi-polar BLDC.

### Unit III: Stepper motors:

Introduction, Multi-stack variable-reluctance stepping motors, Principles of operation, Aspects of design, Singlestack variable-reluctance stepping motors, Hybrid stepping motors, Comparison of motor types, design of drive circuits, torque/rotor position characteristics.

### Unit IV : Servomotors:

DC and AC servomotors, transfer function analysis, Synchronous

### Unit V: Switched Motor Reluctance Drives

Introduction, Poles, phase and windings, Static torque production, Partition of energy and effects of saturation, Dynamic torque production, Converter circuits, Current regulation, Commutation, torque – speed characteristics, Shaft position sensing.

### Unit VI: Linear Induction motors

Basic principle of operation and types. Field analysis & Propulsion force; equivalent circuit

### Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	Marks
20	30	50	100

### **Basket- (Processing and Computing Techniques)**

Name of The	Machine learning		
Course			
Course Code	BTEE4012		
Prerequisite	Python		
Co-requisite			
Anti-requisite			
	L T P C		
	3 0 0 3		

### Course Objectives

- 1. Get the exposure to Artificial Neural Networks & Fuzzy Logic.
- 2. Understand the importance of tolerance of imprecision and uncertainty for design of robust &low cost intelligent machines.
- 3. Explore the functional components of neural network classifiers or controllers, and the functional components of fuzzy logic classifiers or controllers.
- 4. Develop and implement a basic trainable neural network or a fuzzy logic system for a typical control, computing application or biomedical application.

#### Course Outcomes

CO1	Identify and describe Fuzzy Logic and Artificial Neural Network techniques in building intelligent machines.
CO2	Understand setup and solve typical machine learning problems, by implementation or by using simulation tools.
CO3	Design supervised learning models.
CO4	Design unsupervised learning models.
CO5	Understand the Convolution neural networks.
CO6	Develop machine learning algorithms for an application.

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	-	50	100
~ ~			

#### Course Content:

Unit I: Introduction	8
Hours	
Data acquisition, pre-processing, extraction and processing,	feature feature
ranking/selection, feature reduction,	model
learning, evaluation, deployment. Matrix	algebra,
Bayes theory	
Unit II: Supervised Learning	8
Hours	
Decision trees, Inductive bias, Classic	
Regression, Perceptron, Tree learning algorithms	orithms.

Unit III: Unsupervised Learning 8
Hours
Clustering, K-means algorithm, Univariate linear
modeling function, Cost function and its
minimization, Logistic regression, Softmax
regression.
Unit IV: Neural Networks 6
Hours
Artificial neurons, Gradients and back
propagation, Gradient decent,
Unit V:Convolution neural networks 6
Hours
Continuous convolution, discrete convolution,
pooling. Recurrent neural networks. Deep neural
networks
Unit VI: Advanced topic
6Hours
Development of an application of machine
learning in field of electrical engineering

### Suggested Reading

- 1. Ross, Timothy J. Fuzzy logic with engineering applications. John Wiley & Sons, 2009.
- 2. Yegnanarayana, B. Artificial neural networks. PHI Learning Pvt. Ltd., 2004.
- 3. Stamatios V. Kartalopoulos, Understanding Neural Networks and Fuzzy Logic: Basic Concepts and Applications 1st Edition.
- 4. S. Rajasekaran, Neural Networks, Fuzzy Systems and Evolutionary Algorithms: Synthesis and Applications.
- 5. Aaron M. Tenenbaum, YedidyahLangsam and Moshe J. Augenstein "Data Structures Using C and C++", PHI, 1996.
- 6. Jean Paul Trembley and Paul G. Sorenson, "An Introduction to Data Structures with applications", McGraw Hill, 2007.
- 7. Kosko, B, "Neural Networks and Fuzzy Systems: A Dynamical Approach to Machine Intelligence", PrenticeHall, NewDelhi, 2004.
- 8. Timothy J Ross, "Fuzzy Logic with Engineering Applications", John Willey and Sons, West Sussex, England, 2005.

Name of The	Digital Signal Processing				
Course					
Course Code	BECE2020				
Prerequisite	Signals and Systems				
Co-requisite	Network Theory				
Anti-requisite					
		L	T	P	C
		3	0	0	3

### Course Objectives

- 1. Introduce to discrete time signal processing and characterization of random signals, filter design techniques, and imperfections caused by finite word length.
- 2. Learn how design FIR and IIR filters.
- 3. Learn the theory of digital signal processing and digital filter design, including hands-on experience with important techniques involving digital filter design and digital simulation experiments.
- 4. Introduce the fundamental principles and techniques of digital signal processing for understanding and designing new digital signal processing systems and for continued learning.

#### Course Outcomes

Course	Outcomes
CO1	Apply digital signal processing fundamentals.
	Comprehend if a DT system is linear,
	time-invariant, causal, and memory-less,
CO2	High Pass, Low Pass, All Pass and able to
	apply Z and inverse Z transform on DT
	signal.
	Acquire the knowledge of representation
CO3	of discrete-time signals in the frequency
	domain, using DFT and FFT.
	Design FIR and IIR filters to meet the
CO4	specific magnitude and phase
	requirements.
CO5	Understand the concept of linear
CO3	prediction and spectrum estimation.
CO6	Understand the concept of advance
CO6	processor

### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	_	50	100

### Course Content:

Unit I: Sampling of Continuous Time Signals 8 Hours

Sampling and reconstruction of signals, frequency domain representation of sampling, discrete time processing of continuous time signals, continuous time processing of discrete time signals, changing the sampling rate using discrete time processing, multi rate signal processing, digital processing of analog signals, over sampling and noise shaping in A/D and D/A conversion.

Unit II: Sampling of Continuous Time Signals 8 Hours

Sampling and reconstruction of signals, frequency domain representation of sampling, discrete time processing of continuous time signals, continuous time processing of discrete time signals, changing the sampling rate using discrete time processing, multi rate signal processing, digital processing of analog signals, over sampling and noise shaping in A/D and D/A conversion.

Unit III: Transform Analysis of LTI Systems 8 Hours

Frequency response of LTI systems, system functions, frequency response for rational system functions, magnitude-phase relationship, all pass systems, minimum phase systems, and linear systems with generalized linear phase Overview of finite precision numerical effects, effects of coefficient quantization, Effects of round-off noise in digital filters, zero-input limit cycles in fixed point realizations of IIR digital filters.

Unit IV: Filter Design Techniques 8 Hours

Design of D-T IIR filters from continuous – time filters, design of FIR filters by windowing, Kaiser Window method, optimum approximations of FIR filters, FIR equiripple approximation.

Unit V: Fourier analysis of Signals Using DFT 8 Hours

DFT analysis of sinusoidal signals, time-dependent Fourier transforms: Block convolution, Fourier analysis of non – stationary and stationary random signals, spectrum analysis of random signals using estimates of the autocorrelation sequence.

Unit VI: Recent Trends in DSP

DSP architecture, Memory organization, Simulation

### **Suggested Reading**

- 1. Oppenheim A.V., Schafer, Ronald W. & Buck, John R., "Discrete Time Signal processing", Pearson Education, 2nd Edition.
- 2. Proakis J. G. and Manolakis D. G., "Digital Signal Processing: Principles, Algorithms And Applications", Pearson Education, 4rd Ed., 2007.

- 3. Ramesh P., "Digital Signal Processing", SciTech Publication, 41FL Ed., 2008.
- 4. MitraSanjit K., "Digital Signal Processing: A Computer Based Approach", 3rd Ed., Tata McGraw-Hill, 2008.
- 5. Lawrence R. Rabiner, Bernard Gold, "Theory and Application of Digital SignalProcessing", PHI 2001.
- 6. Shaliwahan S., Vallavaraj A. and Gnanapriya C., "Digital Signal Processing", Tata McGraw-Hill, 2nd Ed., 2000.

Name of The	Neural Networks and Fuzzy
Course	Control
Course Code	BTEE4015
Prerequisite	Control System
Co-requisite	Advanced Control System
Anti-requisite	
	L T P C
	3 0 0 3

### Course Objectives

- 1. The objective of this course is to present sufficient background in both fuzzy and neural network so that students in future can pursue advanced soft computing methodologies.
- 2. This course combines knowledge, techniques, and methodologies from various sources, using techniques from neural networks and fuzzy set theory, as an extension, the course uses the Neuro Fuzzy models for the complex engineering problems.

### Course Outcomes

CO1	Identify and describe Fuzzy Logic and Artificial Neural Network techniques in building intelligent machines.
CO2	Apply Artificial Neural Network & Samp; Fuzzy Logic models to handle uncertainty and solve engineering problems
CO3	Understand the feed forward and Recurrent neural networks cocept.
CO4	Understanding of fuzzy relation rule and aggregations.
CO5	Understand concept of classical and fuzzy sets, fuzzification and defuzzification.
CO6	Recognize the feasibility of applying a Neuro-Fuzzy model for a particular problem.

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	-	50	100

Course Content:

Unit I:	Introduction	8
Hours		

Artificial neural networks and their biological motivation – Terminology – Models of neuron – Topology – characteristics of artificial neural networks – types of activation functions – learning methods – error correction learning – Hebbian learning – Perceptron – XOR Problem – Perceptron learning rule convergence theorem – Adaline.

Unit II: Feed forward Neural Networks8 Hours

Architecture: perceptron model, solution, single layer artificial neural network, multilayer perceptron model; back propagation learning methods, effect of learning rule co-efficient; back propagation algorithm, factors affecting backpropagation training, applications;

Unit III: Recurrent Neural Networks

Recurrent neural networks: Linear auto associator – Bi-directional associative memory – Hopfield neural network.

Unit IV: Fuzzy Logic & Fuzzy Sets	8
Цонга	

Introduction to Fuzzy Logic, Classical and Fuzzy Sets, Membership Function, Membership Grade, Universe of Discourse, Linguistic Variables, Operations on Fuzzy Sets: Intersections, Unions, Negation, Product, Difference, Properties of Classical set and Fuzzy sets, Fuzzy vs Probability, Fuzzy Arithmetic, Fuzzy Numbers.

Unit V: Fuzzy Relations & Aggregations 8 Hours

Essential Elements of Fuzzy Systems, Classical Inference Rule, Classical Implications and Fuzzy Implications, Crisp Relation and Fuzzy Relations, Composition of fuzzy relations, Cylindrical Extension and Projection. Fuzzy IF-THEN rules, Inference: Scaling and Clipping Method, Aggregation, Fuzzy rule based Model: Mamdani Model, TSK model, Fuzzy Propositions, Defuzzification: MOM, COA

Unit VI: Fuzzy Optimization and Neuro Fuzzy Systems 8 Hours

Fuzzy optimization —one-dimensional optimization. Introduction of Neuro-Fuzzy Systems, Architecture of Neuro Fuzzy Networks.

### Suggested Reading

- 1. Ross, Timothy J. Fuzzy logic with engineering applications. John Wiley & Sons, 2009.
- 2. Yegnanarayana, B. Artificial neural networks. PHI Learning Pvt. Ltd., 2004.
- 3. Stamatios V. Kartalopoulos, Understanding Neural Networks and Fuzzy Logic: Basic Concepts and Applications 1st Edition.
- 4. S. Rajasekaran, Neural Networks, Fuzzy Systems and Evolutionary Algorithms: Synthesis and Applications.
- 5. Aaron M. Tenenbaum, YedidyahLangsam and Moshe J. Augenstein "Data Structures Using C and C++", PHI, 1996.
- 6. Jean Paul Trembley and Paul G. Sorenson, "An Introduction to Data Structures with applications", McGraw Hill, 2007.
- 7. Kosko, B, "Neural Networks and Fuzzy Systems: A Dynamical Approach to Machine Intelligence", PrenticeHall, NewDelhi, 2004.
- 8. Timothy J Ross, "Fuzzy Logic with Engineering Applications", John Willey and Sons, West Sussex, England, 2005.

Name of The	Soft Computin	ng			
Course					
Course Code	BECE4401				
Prerequisite					
Co-requisite					
Anti-requisite					
_		L	T	P	С
		3	0	0	3

### Course Objectives

- 1. Introduce the fundamentals of Soft Computing.
- 2. Apply Computing models to solve problems.
- 3. Get the exposure of soft computing, especially evolutionary computation, fuzzy logic, GA and neural networks
- 4. Become expert in calculating and comparing complexities of various searching and sorting algorithms.

#### Course Outcomes

CO1	Identify and describe Soft-Computing techniques and their roles in building intelligent machines
CO2	Apply Soft – Computing models & reasoning to handle uncertainty and solve engineering problems.
CO3	Recognize the feasibility of applying a soft computing methodology for a particular problem
CO4	Apply genetic algorithms to optimization problems
CO5	Identify the importance of tolerance of imprecision and uncertainty for design of robust &low cost intelligent machines.
CO6	Understand the recent development in electrical engineering using soft computing

#### Continuous Assessment Pattern

Internal Assessment	Mid Term Exam	End Term	Total Marks
(IA)	(MTE)	Exam	Iviaiks
		(ETE)	
50	-	50	100

### Course Content:

Unit I: Artificial Neural Networks	8 Hours
Introduction, model of neuron,	activation
functions, important terminologies	of ANN,
Hebb's learning, Supervised	learning,
Unsupervised learning, reinforcemen	t learning,
Adaline, Perceptron, Back propagation	n networks,
Adaptive Resonance Theory,	Associative
Memories, Applications.	
Unit II: Fuzzy Logic & Fuzzy Sets	8 Hours

Introduction to Fuzzy Logic, Classical and Fuzzy Sets, Membership Function ,Membership Grade, Universe of Discourse, Linguistic Variables, Operations on Fuzzy Sets: Intersections, Unions, Negation, Product, Difference, Properties of Classical set and Fuzzy sets, Fuzzy vs Probability, Fuzzy Arithmetic, Fuzzy Numbers

Unit III: Fuzzy Relations & Aggregations
Hours

Essential Elements of Fuzzy Systems, Classical Inference Rule, Classical Implications and Fuzzy Implications, Crisp Relation and Fuzzy Relations, Composition of fuzzy relations, Cylindrical Extension and Projection. Fuzzy IF-THEN rules, Inference: Scaling and Clipping Method, Aggregation, Fuzzy rule based Model: Mamdani Model, TSK model, Fuzzy Propositions, Defuzzification: MOM, COA

Unit IV: Neuro-Fuzzy Systems 8 Hours
Introduction of Neuro-Fuzzy Systems,
Architecture of Neuro Fuzzy Networks.
Application of Fuzzy Logic: Medicine,
Economics, Industry etc.
Unit V: Genetic algorithm 8 Hours
Genetic Algorithm: An Overview, GA in problem
solving, Implementation of GA fundamentals,
basic concepts, working principle, encoding,
fitness function, reproduction, Genetic modelling:
Inheritance operator, crossover, inversion &
deletion, mutation operator, Bitwise operator,
Generational Cycle, Convergence of GA,
Applications & advances in GA, Differences &
similarities between GA & other traditional
method.
Unit VI: Recent development using soft
computing
Recent development in electrical engineering
using soft computing

### Suggested Reading

- 1. Ross, Timothy J. Fuzzy logic with engineering applications. John Wiley & Sons, 2009.
- 2. Yegnanarayana, B. Artificial neural networks. PHI Learning Pvt. Ltd., 2004.
- 3. Zurada, Jacek M. Introduction to artificial neural systems, West St. Paul, 1992.
- 4. Hagan, Martin T., Howard B. Demuth, and Mark H. Beale. Neural network design. Boston: Pws
- 5. Pub., 1996.
- 6. Haykin, Simon. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.

Name of	Neural Networks and Deep
The Course	Learning Algorithms
Course	BEE0275007
Code	
Prerequisit	Python/Javascript/Java/C++/Matla
e	b)
Co-	
requisite	
Anti-	
requisite	
	L T P C
	3 0 0 3

### Course Objectives

1. Introduce major deep learning algorithms, the problem settings, and their applications to solve real world problems.

### Course Outcomes

CO1	Use the backpropagation algorithm to calculate weight gradients in a feed forward neural network by hand
CO2	Understand the motivation for different neural network architectures and select the appropriate architecture for a given problem
CO3	Write a neural network from scratch in using PyTorch in Python, train it 104ntil convergence and test its performance given a dataset.
CO4	Understand how neural networks fit into the more general framework of machine learning, and what their limitations and advantages are in this context.
CO5	Implement deep learning algorithms and solve real-world problems.
CO6	Apply the deep learning techniques for data analysis.

### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	-	50	100

### Course Content:

Unit I: Introduction	8 Hours
Various paradigms of Perspectives and Issues framework, review of fu techniques	in deep learning
Unit II: Feedforward neural r	network 5 Hours
Artificial Neural Network, multi-layer neural network.	activation function,
Unit III: Training Neu	ral Network and
Conditional Rand	
8 Hours	
Risk minimization,	loss function,
backpropagation, regularizati	ion, model selection,
and optimization. Linear chai	in, partition function,
Markov network, Belief pr	opagation, Training
CRFs, Hidden Markov Mode	el, Entropy.

Unit IV: Probabilistic Neural Network	5
Hours	
Hopfield Net, Boltzman machine, RBMs	s,
Sigmoid net, Autoencoders.	
Unit V: Deep Learning and Its tool	S
12 Hours	
Deep Feed Forward network, regularizations	ς,
training deep models, dropouts, Convolutiona	ıl
Neural Network, Recurrent Neural Network	ζ,
Deep Belief Network. Object recognition, spars	e
coding, computer vision, natural languag	e
processing.	
Deep Learning Tools: Caffe, Theano, Torch.	
Unit VI: Demonstrate deep learning algorithm	
Apply the deep learning techniques for dat	a
analysis in electrical engineering	

### Suggested Reading

- 1. Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2016..
- 2. Bishop, C. ,M., Pattern Recognition and Machine Learning, Springer, 2006.
- 3. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- 4. Golub, G.,H., and Van Loan,C.,F., Matrix Computations, JHU Press,2013.
- 5. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.
- 6. Ravindran, K. M. Ragsdell, and G. V. Reklaitis, ENGINEERING OPTIMIZATION: Methods and Applications, John Wiley & Sons, Inc., 2016..
- 7. Antoniou, W. S. Lu, PRACTICAL OPTIMIZATION Algorithms and Engineering Applications, Springer, 2007.

Name of The	Human Computer Interface				
Course					
Course Code	BEE02T5008				
Prerequisite	Knowledge of C programming				
_	language/UNIX				
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

### Course Objectives

1. This course provides an introduction to and overview of the field of human-computer interaction (HCI).

- 2. HCI is an interdisciplinary field that integrates theories and methodologies from computer science, psychology, design, and many other areas.
- Course readings will span current theory and practice in interface specification, design and evaluation, as well as current and classic research papers in HCI.
- 4. Students will work on both individual assignments and a team project to design, implement and evaluate computer interfaces.

### Course Outcomes

	Describe and apply user-centered design
CO1	methods to conduct formative and
	summative evaluations.
CO2	Explain and apply core theories and
CO2	models from the field of HCI.
CO3	Design and implement useful, usable, and
COS	engaging graphical computer interfaces.
CO4	Discuss and critique research in the field
CO4	of HCI.
CO5	Describe special considerations in
COS	designing user interfaces for wellness.
CO6	Develop Human Computer Interface
CO6	applications

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	_	50	100

### Course Content:

Unit I: Introduction	8 Hours
Introduction and history of HCI, Proj	ect overview,
IRB, UCD, Usability principles.	
Unit II: Design	6 Hours
Human abilities, Predictive	evaluation,
Understanding users, request gar	thering, task
analysis, DOET.	
Unit III: Graphics Design 6 Ho	ours
Graphics Design, Handling errors ar	nd help.
Unit IV:Prototype	6 Hours
Prototyping and UI software, User	models and
Predictive models.	
Unit V: Universalesiign	6Hours
Universal design, Information	visualization,
Embodied agents, CSCW, Ubicom.	
Unit VI: Application of Huma	n Computer
Interface	

Case Study related to Human Computer Interface

### Suggested Reading

- 1. Interaction Design: Beyond Human-Computer Interaction, Fourth Edition by Preece, Sharp & Rogers (2015).
- 2. About Face: The Essentials of Interaction Design, Fourth Edition by Cooper, Reimann, Cronin, &Noessel (2014).

Name of The	Introduction to	o S	cilat	an	d its	
Course	applications					
Course Code	BEE0275006					
Prerequisite	MATLAB					
Co-requisite						
Anti-requisite						
		L	T	P	C	
		3	0	0	3	

### Course Objectives

- 1. Scilab can help a student focus on the procedure for solving a problem instead of spending time and energy developing a matrix algebra library.
- 2. In fact, it is a calculator that is capable of matrix algebra computations.
- 3. Once the student is sure of having mastered the steps, they can be converted into functions and whole problems can be solved by simply calling a few functions.
- 4. Scilab is an invaluable tool as solved problems need not be restricted to simple examples to suit hand calculations.

### **Course Outcomes**

CO1	To aware the students about SCILAB software environment.
CO2	Students will understand the basics of SCILAB software and its data class.
СОЗ	The course contents will enable the students to learn basic SCILAB programming for engineering application
CO4	Differentiate between Scilab and MATLAB
CO5	SCILAB Simulink for simulation, analysis and design of the system
CO6	Develop real time system for society needs.

### Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam	Total Marks
		(ETE)	
50	_	50	100

#### Course Content:

Unit I:	Introduction	8
Hours		

About SCILAB/MATLAB, SCILAB/MATLAB System, Starting and Quitting SCILAB/MATLAB, Entering Matrices sum and transpose, subscripts, colon Operator, magic Function

Unit II: Working with matrices 8

Generating Matrices, The load Function, M-Files, Concatenation, Deleting Rows and Columns, Linear Algebra, Arrays Multivariate Data, Scalar Expansion, Logical Subscripting, find Function, Variables Numbers, Operators Functions, Expressions.

Unit III: Command Window and Graphics8

The format Function, Suppressing Output, Entering Long Statements, Command Line Editing, Plotting Process, Editing Process, Preparing Graphs, Basic Plotting Functions, Mesh & Surface Plot, and Image Reading & Writing, Printing graphics.

Unit IV: Flow Control and data structure 8 Hours

If, else, and else if, switch and case, for, while, continue, break try – catch, return, Multidimensional Arrays, Cell Arrays, Characters and Text, Structures

Unit V: Scripts and Functions 8
Hours

Scripts, Functions, Global Variables, Passing String Arguments to Functions, eval Function, Function Handles, Vectorization, Pre allocation.

Unit VI: Application

Application of the Scilab in renewable energy

### Suggested Reading

- 1. Introduction to SCILAB by RachnaVerma and Arvind Verma.
- 2. SCILAB—A Beginner's Approach by Anil Kumar Verma.
- 3. MATLAB & Its Applications in Engineering By: Raj Kumar Bansal, Ashok Kumar Goel, Manoj Kumar Sharma.

- 4. A Guide to MATLAB: For Beginners & Experienced Users By: Kevin
- 5. R. Coombes, John E. Osborn, Garrett J. Stuck



**Program: B.Tech in Electrical & Electronics Engineering** 

Scheme: 2020-2021

### Vision

To be known globally as a premier Department offering value based education in Electrical and Electronics Engineering inculcating the spirit of interdisciplinary research and innovation.

#### Mission

- Create a strong foundation on fundamentals in the areas of Electrical and Electronics Engineering through outcome based teaching learning process.
- Establish state-of-the-art facilities for design and simulation.
- Provide opportunities to students to work on real world problems and develop sustainable ethical solutions.
- Involve the students in group activities, including those of professional bodies to develop leadership and communication skills.

### **Program Educational Objectives**

#### Graduate shall

**PEO-1:** Electrical and Electronics Engineering graduates will have successful careers in core engineering, academia, research organizations.

**PEO-2:** The graduates will be well prepared to adapt usage of modern tools & technologies and contribute to interdisciplinary research with innovative practices.

**PEO-3:** The graduates will be academically prepared to become leaders in their organizations, become professional engineers, as necessary, and will contribute effectively to the growth and development of their organization.

**PEO-4:** The graduates will engage in professional activities with ethical practices in the field of Electrical Engineering to enhance their own stature and simultaneously contribute to the profession and society at large.

### **Program Specific Outcome**

**PSO1:** Electrical and Electronics Engineering students will be able to apply their knowledge for developing reliable electrical circuits and systems with proper protection.

**PSO2:** Electrical and Electronics Engineering students will be able to develop software based design and analysis of systems using MATLAB, SIMPOWER, PLC/SCADA etc

**PSO 3:** Creative design to produce and maintain quality of power supply and use of suitable instruments for energy audit and calibration.

### **Program Outcomes**

- Engineering Knowledge: Apply the knowledge of Mathematics, Science, and Engineering fundamentals, and an engineering specialization to solution of complex engineering problems
- Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences
- Design/development of solutions: Design of solutions for complex engineering problems and design of system components or processes that meet the specified needs with appropriate considerations of public health and safety, and cultural, societal, and environmental considerations
- Conduct investigations of complex problems: Use research based methods including design of experiments, analysis and interpretation of data and synthesis of information leading to logical conclusions
- Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling complex engineering activities with an understanding of limitations

- The engineer and society: Apply reasoning within the contextual knowledge to access societal, health, safety, legal,
- and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- Environment and sustainability: Understand the impact of the professional engineering solutions in the societal and environmental contexts, and demonstrate the knowledge of, and the need for sustainable developments
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice
- Individual and team work: Function effectively as an individual independently and as a member or leader in diverse teams, and in multidisciplinary settings
- Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large such give and receive clear instructions
- Project management and finance: Demonstrate knowledge and understanding of engineering management principles and apply those to one's own work as a member and leader of a team to manage projects in multidisciplinary environments
- Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

### Curriculum

Semester 1											
Sl.	Course Code	Name of the Course				1		sment Pa			
No	Course Coue		L	T	P	C	IA	MTE	ETE		
1	BEE01T1001	Energy Sources and Audit	1	0	0	1	20	30	50		
2	BCS01T1001	Data Analytics (Excel and Tableu)	1	0	0	1	50	-	50		
3	BCS01T1002	AI Fundamentals	2	0	0	2	20	30	50		
		Multivariable Calculus and Vector					20	30	50		
4	BBS01T1001	calculus	3	0	0	3	20	30	30		
		Programing for Problem Solving					20	30	50		
5	BCS01T1003	(C)	1	0	4	3	20	30	30		
6	BLL01T1001	Communication Skill	3	0	0	3	20	30	50		
7	BBS01T1002	Engineering Physics	2	0	0	2	20	30	50		
8	BBS01P1002	Engineering Physics Lab	0	0	2	1	50	-	50		
9	BEE01T1002	Bio Systems in Engineering	2	0	0	2	20	30	50		
11	BEE01T1003	AC DC Circuits	2	0	2	3	20	30	50		
		Total									
	T	Semester II	ı				1 .				
Sl	Course Codee	Name of the Course		Assessn			1				
No			L	T	P	C	IA	MTE	ETE		
1		Linear Algebra and Differential	2	0	0	2	20	30	50		
	BBS01T1003	Equations	1	0	0	1	50	-	50		
2	BEE01T1004	Embedded Technology and IoT	1	0	2	2	50	-	50		
3	BCE01P1001	Waste Management	0	0	2	1	20	30	50		
4	BCE01P1002	Environmental Science	0	0	1	0.5	50	-	50		
5	BLE01P1001	Liberal and Creative Arts	0	0	1	0.5	50	-	50		
6		Creativity, Innovation and					50	_	50		
	BSB01T1001	Entrepreneurship	1	0	2	2	20		20		
7		Application of Python					50	_	50		
	BCS01P1004	Programming	0	0	2	1	30				
8	BEE01T1005	Introduction to Digital System	2	0	2	3	20	30	50		
9	BCS01T1005	Data Structure Using C	2	0	2	3	50	-	50		
10	BME01P1001	Digital Fabrication	0	0	2	1	50	-	50		
		Electrical- AC/DC Machine,									
		Civil - Engineering Mechanics,									
11	BXX01T10XX	Mechanical – Engineering					20	30	50		
		Graphics,									
		Electronics - Analog Circuits	2	0	2	3					
Total											
~ <del>-</del>	T	Semester III	1				T .	. =			
Sl	Course Code	Name of the Course	T	/m	n			sment Pa			
No	BECE2010	Digital Electronics	1 L	<b>T</b>	<b>P</b> 0	<u>C</u>	1A 20	MTE	ETE		
1	DECE2010	Functions of Complex Variables	3	0	0	3	20	30	50 50		
2	MATH2001	and Transforms	3	0	0	)	20	30	30		
3	BECE2012	Electromagnetic Field Theory	3	0	0	3	20	30	50		
3	DECE2012	Electromagnetic Field Theory	ر ا	U	U	دا	20	30	30		

			ı	1				1	
4	BECE2015	Electronic Devices and Circuits	3	0	0	3	20	30	50
5	BTEE2002	Network Analysis and Synthesis	3	0	0	3	20	30	50
6	BECE2016	Signals and Systems	3	0	0	3	20	30	50
7		Design and Engineering/	2	0	0	1	20	30	50
7	BEE02T2003	Transducer and IOT							
0		Network Analysis and Synthesis	0	0	2	1	50		50
8	BTEE2003	Lab					50		50
9	BEE02P2003	Engineering Clinic-1	0	0	2	1	50		50
10		English Proficiency and Aptitude					50		50
10	SLBT2021	Building - 3	0	0	2	1	50	-	50
		Electronic Devices and Circuits	0	0	2	1	50		50
	BEE02P2010	Lab					50		50
	ENVS1004	Environmental Science and	2	0	0	0	20	30	50
11		Engineering (Mandatory							
		Audit Course)							
		Total				23			
		Semester IV					,		
Sl	Course Code	Name of the Course			1	1		sment Pa	
No			L	T	P	С	IA	MTE	ETE
1	3.5.4.7777.0.0.4	Probability and Stochastic	3	0	0	3	20	30	50
	MATH2004	Processes			_	_			
2	BEEE3002	Control Systems	3	0	0	3	20	30	50
3	BTEE2006	Electrical Machine-1	3	0	0	3	20	30	50
4	BTEE2008	Fundamentals of Power Systems	3	0	0	3	20	30	50
5	BTEE3015	Power Plant Engineering	3	0	0	3	20	30	50
6		Electrical Measurement and	3	0	0	3	20	30	50
	BEEE2001	Instrumentation							
7		Engineering Clinic-2 ( IOT based	0	0	2	1	50		50
	BEE02P2007	Tinker CAD)					30		30
8	BTEE2007	Electrical Machine Lab-1	0	0	2	1	50		50
9		Measurement and Control Systems	0	0	2	1	50		50
	BEE02P2009	Lab					30		30
10	BEE02P2008	Logical and Critical Reasoning	0	0	2	1	50		50
		Total				22			
		Semester V	1				1 .		
Sl	Course Code	Name of the Course		Tr.	D		-	sment Pa	
No 1	BECE3004	Microcontroller and Embedded	1 L 3	T 0	P 0	С	IA	MTE	ETE
1	DECESUU4		3	0	0	3	20	30	50
2	BTEE3004	system Electrical Machine-2	3	0	0	3	20	20	50
3			3	0	0	3	20	30	50
	BTEE3009	Power System Analysis					20	30	50
4	BTEE3011	Power Electronics	3	0	0	3	20	30	50
5	*****	Program Elective-I	3	0	0	3	20	30	50
6	BEE03T3001	Engineering Economics and Management	3	0	0	3	20	30	50

VIIVIO	NICATION ENG	IIVEEIMING									
7	BEE02P3001	Engineering Clinic-3(Industrial Internship)	0	0	2	1	50		50		
8	BEE02P3002	Effective Leadership and Decission Making Skills	0	0	2	1	50		50		
9	BECE3005	Microcontroller and Embedded	0	0	2	1	50		50		
		Systems Lab				1	50		50		
10	BTEE3002	Power Electronics Lab	0	0	2	1	50		50		
11	BEE02T3004	Finance for Electrical Engineers	2	0	0	1	20	30	50		
12	BTEE3005	Electrical Machine Lab-2	0	0	2	1	50		50		
		Total				24					
Semester VI											
Sl No	Course Code	Name of the Course	L	Т	P	С		sment Pa			
1	SLBT3002	Campus to Corporate program	0	0	4	2	IA 50	MTE	50 ETE		
2	BECE3020	Digital Signal Processing	3	0	0	3	20	30	50		
3	BEE02T3006	Power System protection	3	0	0	3			50		
	BTEE4005	Professional Ethics and Values	2	0	0	0	20	30			
4	******					_	20	30	50		
5	*****	Program Elective-II	3	0	0	3	20	30	50		
6		Program Elective-III	3	0	0	3	20	30	50		
7	*****	Open Elective -1	3	0	0	3	20	30	50		
8	BEE02P3008	Design and Innovation Project	0	0	2	1	50		50		
9	BEE02P3007	Power System protection Lab	0	0	2	1	50		50		
10	GERN1001/JAP	Forign Language - 1 (German,	0	0	2	0					
	A1001/FREN10 01	Japneese, French) *any one					50		50		
	01	Total				19					
		Semester VII				19					
Sl							Asses	sment Pa	ttern		
No	Course Code	Name of the Course	L	Т	P	С	IA	MTE	ETE		
		Smart Grid and Energy									
1	BEEE4001	management	3	0	0	3	20	30	50		
2	*****	Program Elective-IV	3	0	0	3					
3	*****	Program Elective-V	3	0	0	3					
	DEEE2010	Non-Conventional Energy									
4	BEEE2018	Resources	3	0	0	3	20	30	50		
5	*****	Open Elective-2	3	0	0	3	20	30	50		
	BTEE4001	Electric Drive	3	0	0	3	20	30	50		
6	BTEE3008	PLC/SCADA Lab	0	0	2	1	50		50		
7	BEE03P4003	Industrial Internship	0	0	0	0	50		50		
8	BEE02P4005	Technical Seminar	0	0	2	0	50		50		
9	BEE02P4002	Capstone Design Phase-I	0	0	10	2	50		50		
	GERN/JAPA/F	Forign Language - 2 (German,			1						
10	REN 1002	Japneese, French) *Optional	0	0	2	0	50		50		
		Total			†	21					
		Semester VIII	[	1	I	<u>,</u>	I	1	I		
	Course Code	Name of the Course					Asse	essment ]	Pattern		

### School of Electrical, Electronics and Communication Engineering

S1	_		т	т	D	C	IA	MTE	ЕТЕ
No			L	1	Р		IA	MILE	EIE
1	BEE02P4003	Capstone Design phase - II	0	0	18	6	50		50
		Industrial Internship & Technical					50		50
2	BEE02P4004	Seminar	0	0	0	6	50		50
		Total				12			

### **List of Program Electives**

### **Control Engineering**

Sl	Course Code	Name of the Electives					Assessment Pattern				
No	Course Code	Name of the Electives	L	T	P	С	IA	MTE	ETE		
1	BTEE3019	Advanced Control System	3	0	0	3	20	30	50		
2.	BTEE3020	Industrial Automation and	3	0	0	3	20	30	50		
	BTEE3020	Control					20	30	30		
3	BEE02T5001	Industrial Instrumentation and	3	0	0	3	20	30	50		
3	DLL0213001	Automation					20	30	30		
4	BEEE5005	Power System Operation and	3	0	0	3	20	30	50		
-	DEEE5005	Control					20	30	30		
5	BEEE5004	Digital Control	3	0	0	3	20	30	50		
6	BEE03T5002	Automation and Robotics	3	0	0	3	20	30	50		

### **Power Engineering**

Sl	Course Code	Name of the Elective		L T P C		Assess	ttern		
No	Course Code	Name of the Elective	L			C	IA	MTE	ETE
1	BEE03T5011	Power System Equipments	3	0	0	3	20	30	50
2	BTEE3023	Power Quality	3	0	0	3	20	30	50
3	BTEE4010	FACTS and HVDC	3	0	0	3	20	30	50
4	BEE02T5003	Electrical and Hybrid Vehicle	3	0	0	3	20	30	50
5	BTEE4009	Power System Deregulation	3	0	0	3	20	30	50
6	BEE02T3005	High Voltage Engineering	3	0	0	3	20	30	50

### **Energy Engineering**

Sl	Course Code	Name of the Elective Assessment Pat						ttern	
No		Name of the Elective		T	P	С	IA	MTE	ETE
1	BTEE4011	Energy Assessment and Audit	3	0	0	3	20	30	50
		Utilization of Electrical					20	20	50
2	BTEE5102	Energy and Traction System	3	0	0	3	20	30	30

		Power Electronics							
		applications in Renewable					20	30	50
3	BEE03T5010	Energy	3	0	0	3			
4	BTEE5202	Special Electrical Machine	3	0	0	3	20	30	50
		Energy Modelling Simulation					20	30	50
5	BEE02T5004	Using MATLab	3	0	0	3	20	30	30
		Electrical Design, Estimation					20	20	50
6	BEE02T4001	and Energy Audit	3	0	0	3	20	30	50

### IOT

Sl	Course Code	Name of the Elective					Assess	sment Pa	ttern
No	Course Cour	Traine of the Breen's	L	T	P	С	IA	MTE	ETE
1	BEE03T5001	Introduction to IoT and its Applications	3	0	0	3	20	30	50
2	BEE03T5002	Automation and Robotics	3	0	0	3	20	30	50
3	BEE03T5003	Deep Learning Algorithms	3	0	0	3	20	30	50
4	BEE03T5004	Object Oriented Programming	3	0	0	3	20	30	50
5	BEE03T5005	Virtual Reality	3	0	0	3	20	30	50
6	BEE03T5006	Raspberry Pi and its applications	3	0	0	3	20	30	50
7	BEE03T5007	Introduction to Arduino programming and its applications	3	0	0	3	20	30	50
8	BEE03T5008	Cloud Computing	3	0	0	3	20	30	50
9	BEE03T5009	Python Programming							

		List of Open elective (Engineering courses) Proposed											
		Basket 1											
Sl. No.	Course Code Course Title						Ass	essment P	attern				
		Basket 1	L	T	P	C	IA	MTE	ETE				
1	BOE601	Human Computer Interface	3	0	0	3	20	50	100				
2	BOE602	Introduction to cyber Physical Systems	3	0	0	3	20	50	100				
3	BOE603	Selected Topics in Signal Processing	3	0	0	3	20	50	100				
4	BOE604	Selected Topics in Communication Engineering	3	0	0	3	20	50	100				
5	BOE605	Autonomous Vehicles	3	0	0	3	20	50	100				

6	BOE606	Data Science	3	0	0	3	20	50	100
7	BOE607	Computer Vision	3	0	0	3	20	50	100
8	BOE608	Artificial Intelligence	3	0	0	3	20	50	100
9	BOE609	Cyber Security	3	0	0	3	20	50	100
10	BOE610	Energy Management	3	0	0	3	20	50	100
11	BOE611	Estimation and Costing	3	0	0	3	20	50	100
12	BOE612	Data Envelopment Analysis	3	0	0	3	20	50	100
13	BOE613	Operation Management	3	0	0	3	20	50	100
14	BOE614	Construction Engineering	3	0	0	3	20	50	100
16	BOE615	Disaster Management	3	0	0	3	20	50	100
16	BOE616	Bioinformatics	3	0	0	3	20	50	100
		Basket-2							
1	BOE701	Remote Sensing and GIS	3	0	0	3	20	50	100
2	BOE702	Automotive Electronics	3	0	0	3	20	50	100
3	BOE703	Sensors & Actuators	3	0	0	3	20	50	100
4	BOE704	IoT and Smart Cities	3	0	0	3	20	50	100
5	BOE705	Web Design and Management	3	0	0	3	20	50	100
6	BOE706	Principles of Telemedicine	3	0	0	3	20	50	100
7	BOE707	Mobile Application Development	3	0	0	3	20	50	100
8	BOE708	Business Analytics	3	0	0	3	20	50	100
9	BOE709	Cloud Computing	3	0	0	3	20	50	100
10	BOE710	Block Chain	3	0	0	3	20	50	100
11	BOE711	Augmented / Virtual Reality	3	0	0	3	20	50	100
12	BOE712	Digital Forensics	3	0	0	3	20	50	100
13	BOE713	Operations Research	3	0	0	3	20	50	100
14	BOE714	Renewable Energy	3	0	0	3	20	50	100
15	BOE715	Interior Design	3	0	0	3	20	50	100
16	BOE716	Landscaping	3	0	0	3	20	50	100
17	BOE717	Biology for Engineers	3	0	0	3	20	50	100

### **Detailed Syllabus**

Name of The Course	AC & DC Circuits									
Course Code	BEEL101, B	BEEL101, BEEP101.								
Prerequisite										
Co-requisite										
Anti-requisite										
		L	T	P	C					
		1	-	2	2					

### **Course Objectives**

- 4. To study Different types of Circuit Elements
- 5. To study Basic Circuits Laws.
- 6. To study Basic Concepts of A.C. Circuits

### **Course Outcomes**

Students will be able to

CO1	Understand relationship between different electrical parameters.
CO2	Students will develop an ability to analyze D.C Circuits of different configurations.
CO3	Understand magnetic aspects of electric current.
CO4	Students will develop an ability to analyze A.C. Circuits of different configurations
CO5	Students will develop an ability to analyze Resonance Circuits.

### **Continuous Assessment Pattern**

<b>Evaluation Scheme</b>						
	The	eory	Practical	Total Marks		
TAE	CAE	ESE	Cont			
10	15	25	25	75		

Unit I: D.C. Circuits: 8 Hours	CO
	Mapping
Circuits Elements(R, L, C),	
Kirchhoff's Laws, Superposition	
Principle and theorem, Norton's	CO1&CO2
theorem, Thevenin's Theorem,	
Voltage source, (definition,	
characteristics of practical source,	
equivalent current source) Star-	
Delta transformation	
Unit II:Magnetic circuits 7	
Hours	
Flux, mmf, reluctance, analogous	
electric circuits, simple calculations	CO3
for composite magnetic circuits.	
Unit III: A. C. Circuits	
10 Hours	
Periodic functions, average & rms	
values, Steady state behaviours with	
sinusoidal excitation, phasor	
representation, reactance and	CO4&
impedance, Series <b>and</b> Parallel A.C.	CO5
circuits, resonance, power in A. C.	
circuits, power factor, Principle of	
generation of single phase & Three	
phase voltages. Power in balanced	
three phase A.C. systems.	
Suggested Reading	

### **Suggested Reading**

- 1. Textbook of Electrical Engineering, B.L. Theraja, Vol. I & II, Twenty, S. Chand & Co 1997 Second.
- 2. Basic Electrical Engineering, D C.Kulkshreshtha, McGraw, 2012, First.
- 3.Introduction to Electrical Engineering, Naidu, Kamakshaia, Tata McGraw Hill, 2000, Third
- 4. Basic Electrical Engineering, H. Cotton, CBC, 2005, Seventh
- 5.Laboratory courses in Electrical Engg, S G Tarnekar, P K Kharbanda, S B Bodkhe, S D Naik, S. Chand & Co, 2010, Second.

#### **Course Content:**

**List of Experiment** 

List	or Experiment					
1.	To Verify KVL & KCL.					
2.	To plot B-H Curve Of Magnetic Material.					
3.	Verification Of Line Voltage and Phase					
	Voltage In Three Phase Star Connected					
	Balanced Load.					
4.	Study of phase relationship in R-L-C					
	network by computer simulation using P-					
	SIM Software.					
5.	Open Ended					
	1) To Study 11 KV distribution Substation					
	(Overview).					
	2) To Study Ferranti Effect.					
	3) To Study different types of FACT					
	Controller.					
	4)To Study Comparison between DC Motor					
	& Induction Motor.					

Name of The	AC & DC Machines				
Course					
Course Code	BEEL102				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		2	-	-	2

### **Course Objectives**

- 3. To prepare the students to understand basic fundamentals of Electrical Circuits
- 4. To make the students aware about basic principle of operation of Electrical machines under the Influence of magnetic field.

### **Course Outcomes**

Student will be able to

	** ** *** ***
CO1	Understand Concepts of energy transfer
COI	through magnetic coupling.
CO2	Understand working principle of
COZ	transformer.
CO3	Understand Concepts of D.C machines.
CO4	Understand Operation of A.C machines.

### **Continuous Assessment Pattern**

<b>Evaluation Scheme</b>				
Practical				
	Practical			

TAE	CAE	ESE	Cont	Total
				Marks
10	15	25		50

### **Course Content:**

<b>Unit I:Single Phase Transformers</b>	CO
Hours 10	Mapping
Introduction, Basic principle, construction of phasor diagram for transformer under no load condition, Transformer on load, EMF equation Phasor diagrams, Equivalent circuit, Losses, Efficiency, Regulation, Open-circuit & short-circuit test.	CO1 &CO2
Unit II:D. C. Machines Hours 10	
Introduction, construction, EMF and Torque equation, classification, self-excitation of D.C. shunt generators, EMF, voltage, current relations in generator and motor, Characteristics, starting and speed control of d. c. motors.	CO3
Unit III: Introduction to AC Motors.Hours10	
Three phase Induction motor Construction, and principle of rotating field, synchronous speed, Rotor current, torque and slip, Principle of Single phaseCapacitor Start motor.	CO4

### **Suggested Reading**

1.Basic Electrical Engineering, D C.

Kulkshreshtha, McGraw, 2012, First

2.Textbook of Electrical Engineering, B. L. Theraja, Vol. I & II, Twenty, S. Chand & Co., 1997, Second. 3.Introduction to Electrical Engineering, Naidu,

Kamakshaia, Tata McGraw Hill, 2000, Third

4. Basic Electrical Engineering, H. Cotton , CBS, 2005, Seventh.

5.Laboratory courses in Electrical Engg. S. Chand &Co, 2010 ,Second.

6. Electric Machines, Kothari, Nagrath, Tata McGraw Hill, 2006, ThirdEdition.

Name of The	Energy Sources & Audit				
Course					
<b>Course Code</b>	BEEL103				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		1	-	-	1

### **Course Objectives**

- 7. To study the various types of Electrical Sources.
- 8. To study the comparison of various sources.
- 9. To study the Non-conventional electrical sources.

### **Course Outcomes**

Student will be able to

CO1	To understand present scenario of energy
	& its importance.
CO2	To Learn Conventional energy sources
COZ	&Non conventional Energy sources.
CO3	To Understand concept of Energy
COS	Management
CO4	To apply knowledge of energy audit to
CO4	industry.
CO5	To understand importance of safety
	components.

### **Continuous Assessment Pattern**

<b>Evaluation Scheme</b>						
	The	eory	Practical	Total Marks		
TAE	CAE	ESE	Cont			
10	15			25		

### **Course Content:**

Unit I:Current Energy Scenario Hours 4	CO Mapping
Conventional Energy Sources, Types of conventional energy sources,	

importance & drawbacks of Conventional Energy Sources, Alternatives to conventional energy sources. Non Conventional Energy Sources, Types of non-conventional energy sources, importance& drawbacks of Non-Conventional Energy Sources, Comparison with conventional energy sources & its application.  Unit II: Energy Management & Audit Hours 4  Definition, need and types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.  Unit III:Electrical Installations 6  Hours  Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, types of Earthing systems, power fector improvement		I
Alternatives to conventional energy sources. Non Conventional Energy Sources, Types of non-conventional energy sources, importance& drawbacks of Non-Conventional Energy Sources, Comparison with conventional energy sources & its application.  Unit II: Energy Management & Audit Hours 4  Definition, need and types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements.  Unit III: Electrical Installations 6  Hours  CO3 & CO4  CO5  CO5  CO5  CO5	_	
sources. Non Conventional Energy Sources, Types of non-conventional energy sources, importance& drawbacks of Non-Conventional Energy Sources, Comparison with conventional energy sources & its application.  Unit II: Energy Management & Audit Hours 4  Definition, need and types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.  Unit III: Electrical Installations 6  Hours  CO5  CO5  CO5  CO5		001 0
Sources, Types of non-conventional energy sources, importance& drawbacks of Non-Conventional Energy Sources, Comparison with conventional energy sources & its application.  Unit II: Energy Management & Audit Hours 4  Definition, need and types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.  Unit III: Electrical Installations 6  Hours  CO5  CO5  CO5  CO5  CO5		
energy sources, importance& drawbacks of Non-Conventional Energy Sources, Comparison with conventional energy sources & its application.  Unit II: Energy Management & Audit Hours 4  Definition, need and types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.  Unit III: Electrical Installations 6  Hours  Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, types of Earthing systems,		CO2
drawbacks of Non-Conventional Energy Sources, Comparison with conventional energy sources & its application.  Unit II: Energy Management & Audit Hours 4  Definition, need and types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.  Unit III: Electrical Installations 6  Hours  CO5  CO5  CO5  CO5  CO5	* *	
Energy Sources, Comparison with conventional energy sources & its application.  Unit II: Energy Management & Audit Hours 4  Definition, need and types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.  Unit III: Electrical Installations 6  Hours  CO3 & CO4  CO5  CO5  CO5  CO5	energy sources, importance&	
conventional energy sources & its application.  Unit II: Energy Management & Audit Hours 4  Definition, need and types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.  Unit III: Electrical Installations 6  Hours  CO3 & CO4  CO5  Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, types of Earthing systems,		
application.  Unit II: Energy Management &Audit Hours 4  Definition, need and types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.  Unit III: Electrical Installations 6 Hours  Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, types of Earthing systems,		
Unit II: Energy Management & Audit Hours 4  Definition, need and types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.  Unit III: Electrical Installations 6  Hours  Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, types of Earthing systems,	conventional energy sources & its	
&Audit Hours 4  Definition, need and types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.  Unit III:Electrical Installations 6  Hours  CO3 & CO4  CO5  CO5  CO5  CO5  CO5	application.	
Definition, need and types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.  Unit III: Electrical Installations 6 Hours  Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, types of Earthing systems,		
audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.  Unit III: Electrical Installations 6 Hours  Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, types of Earthing systems,	<b>&amp;Audit</b> Hours 4	
approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.  Unit III: Electrical Installations 6 Hours  Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, types of Earthing systems,	Definition, need and types of energy	
bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.  Unit III: Electrical Installations 6 Hours  CO3 & CO4  CO5  CO5  CO5  CO5  CO5  CO5	audit. Energy management (audit)	
matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.  Unit III: Electrical Installations 6 Hours  Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, types of Earthing systems,	approach-understanding energy costs,	
maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.  Unit III:Electrical Installations 6 Hours  Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, types of Earthing systems,	bench marking, energy performance,	
maximizing system efficiencies, optimizing the input energy requirements, energy audit instruments.  Unit III:Electrical Installations 6 Hours  Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, types of Earthing systems,	matching energy use to requirement,	CO3 &
optimizing the input energy requirements, energy audit instruments.  Unit III: Electrical Installations 6 Hours  Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, types of Earthing systems,	maximizing system efficiencies,	CO4
requirements, energy audit instruments.  Unit III:Electrical Installations 6 Hours  Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, types of Earthing systems,		
instruments.  Unit III: Electrical Installations 6 Hours  Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, types of Earthing systems,		
Hours  Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, types of Earthing systems,		
Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, types of Earthing systems,	Unit III:Electrical Installations 6	
Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, types of Earthing systems,	Hours	
ELCB, MCCB, Types of Wires and CO5 Cables, types of Earthing systems,	Components of LT Switchgear:	_
Cables, types of Earthing systems,	Switch Fuse Unit (SFU), MCB,	
Cables, types of Earthing systems,	ELCB, MCCB, Types of Wires and	CO5
	Cables, types of Earthing systems,	
power ractor improvement.	power factor improvement.	

### **Suggested Reading**

- 1.Non-Conventional Energy Resources, B H Khan, Tata McGraw-Hill Education, 01-Jan-2006, Second Edition
- 2. Energy Management Audit and Conservation, Barun Kumar De, Vrinda Publications, 2007, Third Edition.
- 3. Handbook of Energy Audit, Sonal Desai
- 4. Energy Management, Audit & Conservation by, Barun Kumar De.

Name of The	Introduction to Digital				
Course	Systems.				
Course Code	BECL101				
	BECP101				
Prerequisite					
Co-requisite					
Anti-requisite	Anti-requisite				
		L	T	P	C
		1	1	2	3

### **Course Objectives**

- 4. To familiarize with various Digital IC
- 5. To understand basic fundamentals of Digital circuits.
- 6. To prepare for various engineering applications.

### **Course Outcomes**

Student will be able to

	Solve the problems on Number system
CO1	codes and their conversions.
Identify Digital IC and implement i	
CO2	circuits.
CO3	Create, design and simulate canonical
COS	logic forms.
	Demonstrate the application of
CO4	combinational and sequential logic
	circuits

### **Continuous Assessment Pattern**

<b>Evaluation Scheme</b>						
	Theory Practical Total					
TAE	CAE	ESE	Cont	Marks		
10	15	25	25	75		

### **Course Content:**

UnitI:Number Systems & Boolean	CO
Algebra	Mapping
Hours 8	
Decimal, binary, octal, hexadecimal number system and conversion, binary weighted & non-weighted codes & code conversion, signed numbers, 1s and 2s complement codes, Binary arithmetic, Binary logic functions, Boolean laws, truth tables, associative and distributive properties, De-Morgan's theorems, realization of switching functions using logic gates. Logic families: TTL, ECL, CMOS.	CO1
Unit II: Combinational Logic:	
Hours 8  Switching equations(Mathematical operations), canonical logic forms, sum of product & product of sums, Karnaugh maps, two, three and four variable Karnaugh maps, simplification of expressions, mixed logic combinational circuits, multiple output functions, Quine Mcluskey Methods for 5 variables.	CO2

Introduction to combinational circuits,	
code conversions, decoder, encoder,	
priority encoder, multiplexers & De-	
multiplexer, binary adder, Subtractor,	
BCD adder, carry look ahead adder,	
Binary comparator, Arithmetic Logic	
Units.	
Unit III:Sequential Logic &	
Circuits:	
Hours 8	
Latch, flip-flops, clocked and edge	
triggered flip-flops, timing	
specifications, asynchronous and	
synchronous counters counter design,	CO3,
Registers, types of registers. Analysis	CO4
of simple synchronous sequential	
circuits, Introduction to Mealy and	
Moore Circuits.	

### **Suggested Reading**

- 1.Digital Electronics, R P Jain , McGraw Hill, 2017, Second edition.
- 2.Digital Electronic Principles, Malvino , PHI, 2011-13, Seventh Publication.
- 3. Digital Logic and Computer Design, Morris Mano, PHI, 2017 review, second edition.

### **List of Experiment**

	<del>.</del>
Sr. No	List of Experiment
1.	To study the basic logic gates
	Verify their truth table.
	Verification of De Morgan's Theorem.
2.	Verification Of SOP & POS Given
	Algebraic Expression Using Universal
	Gates.
3.	Designing of HALF and Full adder
	using basic logic gates.
4.	Design of 4:1 MULTIPLEXER USING
	GATES.
5.	Design and Implementation of 1-bit
	Magnitude Comparator using basic
	logic gates.
6.	Design and Verification of S-R Flip-
	Flop Circuits.
7.	Realization of 3-bit synchronous
	counter design For Various Application.
	<ul> <li>Frequency counters</li> </ul>

	<ul><li>Digital clock</li><li>Time measurement.</li></ul>
8.	Project based learning: Building of LED Series / Seven Segment LED / Display unit. Students Will Select a project and perform on breadboard in a group of Four.

Name of The	Analog Circu	its			
Course					
Course Code	BECL102				
	BECP102				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		1	1	2	3

### **Course Objectives**

- 4. To familiarize with various electronic components and understand their properties.
- 5. To understand basic fundamentals of analog circuits.
- 6. To prepare for various engineering applications.

### Course OutcomesStudent will be able to

CO1	Understand the electronics devices.
CO2	Understand electronics circuits and
COZ	measure their performance parameters
CO3	Create, design and simulateanalog
COS	Create, design and simulateanalog circuits by using diode and transistor

### **Continuous Assessment Pattern**

Evaluation Scheme						
	Theory Practical Total					
TAE	CAE	ESE	Cont	Marks		
10	15	25	25	75		

### **Course Content:**

Unit I: PN Junction Diode Hours 8	CO Mapping
Review of PN junction, forward and reverse bias, VI Characteristics, Dynamic Resistance, Equivalent Circuit of diode, Temperature dependence. Diode numerical.	CO1

Varactor Diode, Tunnel Diodes, LED,	
LCD	
Unit II:Applications of	
Diodes&Linear Circuits:	
Hours 8	
Rectifier with C Filter, Numerical on	
Rectifiers, Clippers, Clampers,	CO2
Limiters, Low pass filter, High pass	
filter with characteristics.	
Unit III: Bipolar Junction	
Transistor and its application.	
Hours 8	
Transistor Doping, Transistor action,	
Current Components, BJT	
configurations: CE, CC, CB	
characteristics, Base Width	CO3,
Modulation. Punch Through Effect.	
DC load line, Fixed Bias Method.	
Single stage CE transistor as amplifier,	
BJT as a switch.	

### **Suggested Reading**

### **Text Books:**

- 3. Basic Electronics & Linear circuits: N.N. Bhargava, Tata Mcgraw-Hill, 2013, Second edition.
- 4. Electronic Devices & Circuits, Sanjiv Gupta Sanjay Gupta, Dhampat Rai

Publication,2012

### **Reference Books:**

- 4. Electronic Devices & Circuits Theory, Robert L. Boylestad, Louis Nashelsky, Pearson India, 2009, Tenth Edition.
- 5. Integrated Electronics, Jacob Millman, Tata Mcgraw-Hill, 2009, second edition.
- 6. Microelectronics Circuits, A.S. Sedra& K.C. Smith, Oxford University Press, 2013, seventh edition.

### List of Experiments:

s.no	List of Experiment	CO
		Mapping

1.	To design clipper & clamper circuits by using basic components.	CO1 & CO2
2.	To design low pass filter by using basic components.	CO1 & CO2
3.	To design high pass filter by using basic components	CO1 & CO2
4.	To verify input characteristics and output characteristics of transistor in common base mode, to find out current gain, voltage gain, power gain.	CO3
5.	To design CE transistor as an attenuator switch	CO3
6.	To design CE transistor as an attenuator/using microcap simulation	CO3
7.	To design fixed bias for transistor.	CO3

Name of The	Embedded Programming				
Course					
Course Code	BECP103				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		-	-	2	1

### **Course Objectives**

- 3. To give the awareness of major embedded devices
- 4. To give the knowledge about interfacing devices

### **Course Outcomes**

Student will be able to

CO1	Recognize and analyze given embedded
COI	system design and its performance.

	1				
~~			cation base	d	
CO2	competencies in Embedded				
	Programming.  Evaluation Scheme				
				Τ,	T 4 1
(DAE)	Theor	<u> </u>	Practical		Total
TAE	CAE	ESE	Cont		Marks
S.No	T :-4 - C	<u> </u>	25		25
5.110	List of	Experim	ents	CO	
1.	Introduc	tion to En	ah addad		pping
1.				CO	1,CO2
2.		and its So	-	CO	1,CO2
2.	Arduino		ın ine	CO	1,002
		ommunica	ntion		
			board and		
		acter send			
	received	, Read and	d display		
	voltage.		1 7		
3.	Experim	ents using	single	CO	1,CO2
	and mult	iple LED	S.		
	_	ents on di	-		
	input and				
	Arduino Uno board and				
	using LED and Buzzer.  Interfacing of the switches,				
4.		-	switches,	CO	1,CO2
_	potention			00	1 002
5	Introduction to the arithmetic operators, loops			CO	1,CO2
6.	Hands on experiments on				1,CO2
0.	Interfacing of the				1,002
	LDR,LC				
	Experim				
	_	Print num			
	Name, T				
7.	Experim	ents using	Seven	CO	1,CO2
	Segment	display.			
8.	Experiments using			CO	1,CO2
	_	Temperature, IR, Finger			
	print ser				
9.	Introduction to IoT and			CO	1,CO2
4.0	Raspberry Pi architecture.			~ -	4 60 -
10.	_	ents with	1.00	CO	1,CO2
11	_	ry Pi using		00	1.002
11.		ng of the	LDK, IK	CO	1,CO2
12	sensors.	, .4		00	1.002
12.	Experiments on the applications of Buzzer,			CO	1,CO2
			ızzer,		
	potention	neter.			

13.	Introduction to cloud	CO1,CO2
	Programming.	
14.	Experiments on Interfacing	CO1,CO2
	with Bluetooth devices.	

Name of The	Internet of Th	ings	,		
Course					
<b>Course Code</b>					
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		-	-	2	1

### **Course Objectives**

- 4. To understand key technologies in Internet of Things.
- 5. Analyze, design or develop parts of an Internet of Things solution
- 6. Students will understand the concepts of Internet of Things and can build IoT applications.

### **Course Outcomes**

Student will be able to

CO1	Identify and adopt knowledge of the terminology, requirements and constraints
	for IoT system development.
CO2	Demonstrate IoT system for smaller applications.
	applications.

### **Continuous Assessment Pattern**

Evaluation Scheme				
	Theor	y	Practical	Total
TAE	CAE	ESE	Cont	Marks
			25	25

S.No	List of Experiments	CO
		Mapping
1.	Design and development of	CO1,CO2
	Arduino/Raspberry Pi	
	based system for defined	
	application/ projects.	
2.	Introduction to Embedded	CO1,CO2
	systems and its Scope.	

3.	Getting started with the	CO1,CO2
	Arduino IDE	
	Serial Communication	
	between Arduino board and	
	PC:-character send and	
	received, Read and display	
4	voltage.	601.602
4.	Experiments using single	CO1,CO2
	and multiple LEDs.	
	Experiments on digital	
	input and digital output on	
	Arduino Uno board and	
_	using LED and Buzzer.	601.602
5	Interfacing of the switches,	CO1,CO2
	potentiometer.	G04 G04
6.	Introduction to the	CO1,CO2
	arithmetic operators, loops.	
7.	Hands on experiments on	CO1,CO2
	Interfacing of the	
	LDR,LCD	
	Experiment on LCD	
	display:-Print numbers,	
	Name, Time etc.	601.602
8.	Experiments using Seven	CO1,CO2
9.	Segment display.  Experiments using	CO1,CO2
9.		CO1,CO2
	Temperature, IR, Finger print sensors.	
10.	Introduction to IoT and	CO1,CO2
10.		CO1,CO2
11.	Raspberry Pi architecture.	CO1 CO2
11.	Experiments with	CO1,CO2
12.	Raspberry Pi using LED.	CO1 CO2
14.	Interfacing of the LDR, IR	CO1,CO2
13.	Sensors.	CO1,CO2
13.	Experiments on the	CO1,CO2
	applications of Buzzer,	
1.4	potentiometer.	CO1 CO2
14.	Introduction to cloud	CO1,CO2
15	Programming.	CO1 CO2
15.	Experiments on Interfacing	CO1,CO2
16	with Bluetooth devices.	CO1 CO2
16.	Design and development of	CO1,CO2
	Arduino/Raspberry Pi	
	based system for defined	
	application/ projects.	

Semester III

Name of The	Digital Electro	onic	s		
Course					
Course Code	BECE2010				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	С
		3	0	0	3

### **Course Objectives**

- 1. To present the Digital fundamentals, Boolean algebra and its applications in digital systems
- 2. To familiarize with the design of various combinational digital circuits using logic gates
- To introduce the analysis and design procedures for synchronous and asynchronous sequential circuits
- 4. To explain the various semiconductor memories and related technology
- 5. To introduce the electronic circuits involved in the making of logic gates

### Course Outcomes

CO1	Design and analyze combinational logic
COI	circuits
	Design & analyze modular combinational
CO2	circuits with MUX/DEMUX, Decoder,
	Encoder
CO3	Understand Logic Families and Design
COS	memories
CO4	Design & analyze synchronous sequential
CO4	logic circuits
Use HDL & appropriate EDA tools for	
digital logic design and simulation	

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

#### Course Content:

Unit-1 Introduction	8
hours	

Logic Simplification and Combinational Logic Design: Review of Boolean Algebra and De Morgan's Theorem, SOP & POS forms, Canonical forms, Karnaugh maps up to 6 variables, Binary codes, Code Conversion.

Unit-2MSI devices 8 hours

MSI devices like Comparators, Multiplexers, Encoder, Decoder, Driver & Multiplexed Display, Half and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder, Barrel shifter and ALU.

Unit-3Sequential Logic Design 8 hours

Sequential Logic Design: Building blocks like S-R, JK and Master-Slave JK FF, Edge triggered FF, Ripple and Synchronous counters, Shift registers, Finite state machines, Design of synchronous FSM, Algorithmic State Machines charts. Designing synchronous circuits like Pulse train generator, Pseudo Random Binary Sequence generator, Clock generation.

Unit-4Logic Families and Semiconductor Memories 8 hours

Logic Families and Semiconductor Memories: TTL NAND gate, Specifications, Noise margin, Propagation delay, fan-in, fan-out, Tristate TTL, ECL, CMOS families and their interfacing, Memory elements, Concept of Programmable logic devices like FPGA. Logic implementation using Programmable Devices.

Unit-5 VLSI Design flow 8 hours

VLSI Design flow: Design entry: Schematic, FSM & HDL, different modeling styles in VHDL, Data types and objects, Dataflow, Behavioral and Structural Modeling, Synthesis and Simulation VHDL constructs and codes for combinational and sequential circuits.

### Suggested Reading

- 1. R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009.
- 2. Douglas Perry, "VHDL", Tata McGraw Hill, 4th edition, 2002.
- 3. W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd edition .2006.
- 4. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989

5. Charles Roth, "Digital System Design using VHDL", Tata McGraw Hill 2nd edition 2012.

Name of The	Electromagnetic Field Theory				
Course					
Course Code	BECE2012				
Pre-requisite	Engineering Mathematics				
Co-requisite					
Anti-requisite					
		L	T	P	С
		3	0	0	3

### Course Objectives:

- 1. To gain conceptual and basic mathematical understanding of electric and magnetic fields in free space and in materials
- 2. To understand the coupling between electric and magnetic fields through Faraday's law, displacement current and Maxwell's equations
- 3. To understand wave propagation in lossless and in lossy media
- 4. To be able to solve problems based on the above concepts

#### Course Outcomes:

000100	o uce o mes.	
	Apply coordinate systems and transformation	
CO1	techniques to solve problems on	
	Electromagnetic Field Theory	
CO2	Apply the concept of static electric field and	
CO2	solve problems on boundary value problems.	
	Analyze the concept of static magnetic field	
CO3	and solve problems using Biot - Savart's Law,	
	Ampere's circuit law, Maxwell's equation.	
CO4	Understands magnetic forces, magnetic	
CO4	dipole and magnetic boundary conditions.	
	Understands the time-varying	
CO5	Electromagnetic Field and derivation of	
	Maxwell's equations.	
CO6	Understand the application of	
C06	Electromagnetism in Daily Life	

### Reference Books

- 1. Principles of Electromagnetics N. O. Sadiku, Oxford University Press Inc
- 2. Engineering Electromagnetics W H Hayt, J A Buck, McGraw Hill Education
- 3. Electromagnetic Waves, R.K. Shevgaonkar, Tata McGraw Hill India, 2005
- 4. Electromagnetics with Applications, Kraus and Fleish, Edition McGraw Hill International Editions, Fifth Edition, 1999Syllabus

#### Course Content:

UNIT	I	STATIC	ELEC	TRIC	<b>FIELDS</b>
9 Hours					
Introduct	ion		to		Co-
ordinate		Systen	n	- Rec	tangular –
Cylindric	cal a	and Spheric	cal Co-	ordinate	System –
Introduct	ion	to line, Sur	face and	Volume	e Integrals
<ul><li>Definit</li></ul>	ion	of Curl, D	ivergen	ce and C	Gradient –
Meaning	of	Stokes the	heorem	and D	ivergence
theorem	Co	ulomb's L	aw in	Vector	Form -
Definitio	n of	Electric Fi	eld Inter	nsity – P	rinciple of
Superpos	sitio	n – Electr	ic Field	due to	discrete
charges -	- El	ectric field	due to	continuo	us charge
distributi	on	<ul> <li>Electric</li> </ul>	Field	due to	charges
		niformly or			
		eld on the a			•
		<ul> <li>Electric</li> </ul>			
	-	arged shee			
		ip between	•		
		ue to infini		•	•
		ue to electr	•		
_		auss Law	<ul><li>Proof</li></ul>	of Gau	ss Law –
Applicati	ions				

### UNIT II: STATIC MAGNETIC FIELDS 8Hours

The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential.

### UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours

Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials-Definition of Capacitance – Capacitance of various geometries using Laplace's equation—Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields – Nature of magnetic materials – magnetization and permeability – magnetic boundary conditions

### UNT IV: TIME VARYING ELECTRIC AND MAGNETIC FIELDS 8 Hours

Faraday's law – Maxwell's Second Equation in integral form from Faraday's Law – Equation expressed in point form. Displacement current – Ampere's circuital law in integral form – Modified form of Ampere's circuital law as Maxwell's first equation in integral form – Equation expressed in point form. Maxwell's four equations in integral form and differential form. Poynting Vector and the flow of power – Power flow in a co-axial cable – Instantaneous Average and Complex Poynting Vector.

### UNIT V: ELECTRO MAGNETIC WAVES 9 Hours

Derivation of Wave Equation – Uniform Plane Waves – Maxwell's equation in Phasor form – Wave equation in Phasor form – Plane waves in free space and in a homogenous material. Wave equation for a conducting medium – Plane waves in lossy dielectrics – Propagation in good conductors – Skin effect. Linear, Elliptical and circular polarization – Reflection of Plane Wave from a conductor – normal incidence – Reflection of Plane Waves by a perfect dielectric – normal and oblique incidence. Dependence on Polarization, Brewster angle.

UNIT VIApplications of Electromagnetism

Household Application, Industrial Application, Magnetic Levitation Trains, Communication System, medical Systems

### Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Electronics	Dev	ices	8	nd
Course	Circuits				
Course Code	BECE2015				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	С
		3	0	0	3

- 3. Apply concepts of semiconductor devices to design and analyze circuits.
- 4. To prepare students to know the characteristics of different semiconductor devices.

### Course Outcomes

CO1	Realize the transistor biasing methods and
	Design analog electronic circuits using
	discrete components
CO2	Design common amplifier circuits and
	analyze the amplitude and frequency
	responses
CO3	Design various analog circuits to analyze
	their responses
CO4	Understand the principle of operation of
	different Oscillator circuits.
CO5	Understand the principle of operation of
	various amplifier circuits
CO6	Understand the recent trends and practical
	applicationsof electronic devices

### Text Book (s)

- 1. Jacob. Millman, Christos C.Halkias, 'Electronic Devices and Circuits', 2nd Edition, Tata McGraw Hill Publishing Limited, New Delhi, 2008, ISBN 0070634637, 9780070634633
- 2. David A.Bell, 'Electronic Devices and Circuits', Prentice Hall of India Private Limited, New Delhi, 2003, ISBN 013253147X, 9780132531474

### Reference Book (s)

- 1.Theodre F. Boghert, 'Electronic Devices & Circuits',6th Edition, Pearson Education 2004 ISBN 8177588877, 9788177588873.
- 2. Ben G. Streetman and Sanjay Banerjee, 'Solid State Electronic Devices', 6th Edition, PHI 2009, ISBN 0132454793, 9780132454797

### **Course Content:**

Unit-1 Introduction	
8 hours	
BJT and BJT Biasing .Hybrid models of CE, CB,	
CC, configurations – Study of the effect of emitter	
by- pass condenser at low frequencies - Hybrid –	
$\pi$ common emitter transistor model – hybrid $\pi$	
conductance and capacitance – CE short circuit	
current gain – current gain with resistive load –	
gain bandwidth product – Study of the effect of un	
bypassed emitter resister on amplifier	
performance, Cascode amplifier. HF & LF	

### Course Objectives:

compensation	of	RC	coupled	amplifier.
Multistage Am	plifie	rs.	_	_
Unit-2FET and FET Biasing8 hours				

FET and FET Biasing. FET Amplifiers: Common source, Common gate and Common drain Amplifiers – problems. Small signal analysis of FET Amplifiers. High Frequency analysis of FET Amplifiers, VMOS & CMOS Concepts.

Unit-3Feedback amplifiers 8 hours

The feedback concept – Transfer gain with feedback – general characteristics and advantages of negative feedback – analysis of voltage series, Voltage shunt, current series and current shunt feedback amplifiers – Study of the effect of Negative feedback on Gain, Bandwidth, Noise, Distortion, Input and Output impedances with the help of Block Schematic and Mathematical Expressions

**Unit-4Oscillators** 

8 hours

Sinusoidal oscillators —phase shift oscillator — Wien bridge oscillator — Hartley oscillator — Colpits oscillator — frequency stability, inclusive of design, Crystal oscillators.

### Unit-5Tuned amplifiers 8 hours

Characteristics of Tuned amplifiers – Analysis of Single tuned, Doubled tuned and stagger tuned amplifiers, Gain – bandwidth product – High frequency effect – neutralization. Power Amplifiers: Classification of amplifiers – class A large signal amplifiers – second harmonic distortion – higher order harmonic generations – computation of Harmonic distortion – Transformer coupled audio power amplifier – efficiency – push - pull amplifier – class B amplifier – class AB operation – Push-Pull circuit with Transistors of Complimentary Symmetry.

Unit-6 Recent trends and Application 8 hours

Trend of Energy Saving in Electronic Devices, Application of oscillators- springs and damping, shock absorber in cars, Pendulum

### Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100
Name of Th	e Network	Analys	is and
Course	Synthesis	S	

Course Code	BTEE2002				
Prerequisite	Basic Elec	ctric	al	8	ind
	Electronics Eng	gine	ering	3	
Corequisite	Signals and sys	tem	S		
Antirequisite					
		L	T	P	С
		3	0	0	3

### Course Objectives:

- 4. To learn the concepts of network analysis in electrical and electronics engineering.
- 5. To learn linear circuit analysis, graph theory and network theorems.
- 6. Analyze two port networks using Z, Y, ABCD and h parameters

### **Course Outcomes**

Course	Gutcomes
CO1	Apply the knowledge of graph theory with
	basic circuital laws and simplify the
	network using reduction techniques
CO2	Analyze the circuit using Kirchhoff's law
	and Network simplification theorems
CO3	Infer and evaluate transient response,
	Steady state response, network functions
CO4	Evaluate two-port network parameters and
	explain the inter-relationship among
	parameters for network analysis.
CO5	Synthesize one port network using Foster
	and Cauer Forms and
CO6	Examine active filter configurations for
	possible applications in network theory.

### Text Book (s)

- 6. M.E. Van Valkenburg, "Network Analysis", Prentice Hall of India
- 7. A C.L Wadhwa, "Network Analysis and Synthesis" New Age International Publishers, 2007,
- 8. D.RoyChoudhary, "Networks and Systems" Wiley Eastern Ltd.
- 9. A.Chakrabarti, "Circuit Theory" DhanpatRai& Co
- M.E. Van Valkenburg, "An Introduction to Modern Network Synthesis", Wiley Eastern Ltd.

### Reference Book (s)

- 5. Hayt, W., Engineering Circuit Analysis, Tata McGraw Hill (2006)
- 6. Hussain, A., Networks and Systems, CBS Publications (2004).

- 7. Sudhakar, A., Circuits and Networks, Tata McGraw Hill (2006).
- 8. Suresh Kumar, K.S. Electrical circuits and Networks, Pearson Education, (2009).

### Course Content:

Unit-1GraphTh	eory		6
hours			
Graph of a Ne	twork, defin	nitions, tree	, co tree ,
link, basic loop	and basic cu	ıt set,Incider	ice matrix,
cut set matrix,	Tie set mat	rix Duality,	Loop and
Nodal methods	of analysis.		_
Unit-2Network	Theorems	(Application	ons to ac
networks)			9 hours
Super-position	theorem,	Thevenin's	theorem,

theorem, Reciprocity theorem.

Millman'stheorem, compensation theorem,
Tellegen's theorem.

Unit-3Network Functions and Transient analysis

Norton's theorem, maximum power transfer

Transform Impedances Network functions of one port and two port networks, concept of poles and zeros, properties of driving point and transfer functions, time response and stability from pole zero plot, transient analysis of ac & dc systems.

Unit-4Two	Port	Networks
10 hours		

Characterization of LTI two port networks ZY, ABCD and h parameters, reciprocity and symmetry. Inter-relationships between the parameters, inter-connections of two port networks, T & II Representation.

Unit-5Network Synthesis & Filters 9 hours

Positive real function; definition and properties; properties of LC, RC and RL driving point functions, synthesis of LC, RC and RL driving point immittance functions using Foster and Cauer first and second forms. Image parameters and characteristics impedance,

#### Unit-6 Filters

Passive and active filter fundamentals, low pass, high pass, (constant K type) filters, and introduction to active filters.

### Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	

20	30	50	100
----	----	----	-----

Name of The	Network A	naly	sis	8	and
Course	Synthesis Lab				
Course Code	BTEE2003				
Prerequisite	Basic Electric	al E	Engi	neer	ing
	lab				
Corequisite					
Antirequisite					
	_	L	T	P	С
		0	0	2	1

### Course Objectives:

After the completion of course the students will

- 5. To introduce the concept of circuit elements lumped circuits, circuit laws and reduction.
- 6. To study the transient response of series and parallel A.C. circuits.
- 7. To study the concept of coupled circuits and two port networks.
- 8. To study the two port networks.

### Course Outcomes

CO1	To introduce the concept of circuit elements
	lumped circuits, circuit laws and reduction.
CO2	To study the transient response of series and
	parallel A.C. circuits.
CO3	To study the concept of coupled circuits and
	two port networks.
CO4	To study the two port networks.
CO5	To introduce the concept of short circuit and
	open circuit.

### Network Analysis and Synthesis Lab

	Network Analysis and Synthesis Lab
1	To verify Thevenin's theorem in a.c.
2	To verify Norton's theorem in a.c.
3	To verify Superposition theorem in a.c.
4	To verify the Maximum Power Transfer
	Theorem.
5	Determination of Z-parameters of a two-port
	network.
6	To verify and determination of y-parameters
	of a parallel connected two-port network.
7	Determination of h-parameters of a two-port
	network.
8	To verify and determination of ABCD-
	parameters of a cascade interconnected two-
	port network.

9	Determination of characteristics impedance
	of a symmetrical T-network using S/C and
	O/C test.

#### Continuous Assessment Pattern

Internal	Mid	Term	End	Term	Total
Assessment	Exam		Exam (ETE)		Marks
(IA)	(MTE	E)			
50	-		50		100

Name of The	Signals and Systems				
Course					
Course Code	Course Code BECE2016				
Pre-requisite Engineering Mathematics					
Co-requisite					
Anti-requisite					
			T	P	С
		3	0	0	3

## Course Objectives:

This subject is about the mathematical representation of signals and systems. The most important representations we introduce involve the *frequency* domain - a different way of looking at signals and systems, and a complement to the time-domain viewpoint. Indeed engineers and scientists often think of signals in terms of frequency content, and systems in terms of their effect on the frequency content of the input signal. Some of the associated mathematical concepts and manipulations involved are challenging, but the mathematics leads to a new way of looking at the world.

Course	Course Outcomes:				
CO1	Understand various types of signals, classify,				
	analyze and perform various operations on				
	them.				
CO2	Classify the systems and realize their responses				
CO3	Analyze the response of continuous time				
	systems using Fourier transforms				
CO4	Use Laplace and Z transform techniques as tool				
	for System analysis				
CO5	Analyze the continuous and discrete time				
	system functions				
CO6	Understand the application of Sampling				
	Theorem, Multirate Signal Processing and their				
	applications in real-world problems				

#### Text Book:

- 3. P. Ramakrishna Rao, 'Signal and Systems' 2008 Ed., Tata McGraw Hill, New Delhi, ISBN 1259083349, 9781259083341
- 4. Signals and Systems by Oppenheim & Wilsky Millman

#### Course Content:

Unit-1	Introduction
8 hours	

Signals and systems as seen in everyday life, and in various branches of engineering and science. Types of signals and their representations: periodic/noncontinuous-time/discrete-time, periodic, even/odd, energy/power, deterministic/ random, one dimensional/ multidimensional; Basic Signals: unit impulse, unit step, unit ramp, exponential, rectangular pulse, sinusoidal; operations on continuous-time and discrete-time signals (including transformations of independent variables)

#### Unit-2 Classification of **Systems** 8 hours

Classification, linearity, time-invariance and causality, impulse response, characterization of linear time-invariant (LTI) systems, unit sample response, convolution summation, step response of discrete time systems, stability, convolution integral, co-relations, signal energy and energy spectral density, signal power and power spectral density, properties of power spectral density.

#### Unit-3 Fourier Series and Transforms 8 hours

Continuous-time Fourier series: Periodic signals their properties, exponential trigonometric FS representation of periodic signals, convergence, FS of standard periodic signals, salient properties of Fourier series, Definition, conditions of existence of FT, properties, magnitude and phase spectra, Parseval's theorem, Inverse FT, Discrete time Fourier transform (DTFT), inverse DTFT, properties convergence, and theorems. Comparison between continuous time FT and DTFT.

## **Unit-4 Laplace Transforms and Z Transforms**

One-sided LT of some common signals, important theorems and properties of LT, inverse LT, solutions of differential equations using LT, Bilateral LT, Regions of convergence (ROC), One sided and Bilateral Z-transforms, ZT of some

common signals, ROC, Properties and theorems, solution of difference equations using one-sided ZT, s- to z-plane mapping

Unit-5	Analysis	of	LTI	systems
6 hours				

Analysis of first order and second order systems, continuous-time (CT) system analysis using LT, system functions of CT systems, poles and zeros, block diagram representations; discrete-time system functions, block diagram representation, illustration of the concepts of system bandwidth and rise time through the analysis of a first order CT low pass filter

Unit -6: **Multirate Signal Processing**6 hours

Sampling and data reconstruction process,

Multirate Signal Processing, Sampling, Sampling
rate conversion, introduction to compressive sensing.

#### Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Design and Engineering				
Course					
Course Code	BEE02T2003				
Prerequisite					
Corequisite					
Antirequisite					
	_	L	T	P	С
		2	0	0	2

## Course Objectives:

The purpose of this course is to excite the student on creative and innovative design and its significance, aware of the processes involved in design, understand the interesting interaction of various segments of humanities, sciences and engineering in the evolution of a design and get an exposure as to how to engineer a design.

## Course Outcomes

CO1	Able to appreciate the different elements				
	involved in good designs and to apply				
	them in practice when called for.				
CO2	To understand the production based on the				
	market demand				

CO3	Aware of the product oriented and user oriented aspects that make the design a			
	success.			
CO4	Will be capable to think of innovative			
	designs incorporating different segments			
	of knowledge gained in the course			
CO5	Students will have a broader perspective of			
	design covering function, cost,			
	environmental sensitivity, safety and other			
	factors other than engineering analysis.			
CO6	Will be able to design the Product centred			
	and user centred design.			

#### Text Book (s)

- Balmer, R. T., Keat, W. D., Wise, G., and Kosky, P., Exploring Engineering, Third Edition: An Introduction to Engineering and Design - [Part 3 - Chapters 17 to 27], ISBN13: 978-0124158917 ISBN-10: 0124158919
- 2. Dym, C. L., Little, P. and Orwin, E. J., Engineering Design A Project based introduction Wiley, ISBN-978-1-118-32458-5
- 3. Eastman, C. M. (Ed.), Design for X Concurrent engineering imperatives, 1996, XI, 489 p. ISBN 978-94-011-3985-4 Springer
- 4. Haik, Y. And Shahin, M. T., Engineering Design Process, Cengage Learning, ISBN-13: 978-0-495-66816-9
- 5. Pahl, G., Beitz, W., Feldhusen, J. and Grote, K. H., Engineering Design: A Systematic Approach, 3rd ed. 2007, XXI, 617p., ISBN 978-1-84628-319-2
- 6. Voland, G., Engineering by Design, ISBN 978-93-325-3505-3, Pearson India

#### Reference Book (s)

- 1. E-Book (Free download): <u>http://opim.wharton.upenn.edu/~ulrich/designbook.html</u>
- 2. .http://www2.warwick.ac.uk/fac/sci/wmg/ftmsc/modules/modulelist/peuss/designforx/design_f or x notes section 5.pdf

## Course Content:

Unit I:Introduction to design 11 lecture hours Design and its objectives; Design constraints, Design functions, Design means and Design from; Role of Science, Engineering and Technology in design; Engineering as a business proposition; Functional and Strength Designs. Design form, function and strength. How to initiate creative

designs? Initiating the thinking process for designing a product of daily use. Need identification; Problem Statement;

Unit II: Market Survey

Market survey customer requirements; Design attributes and objectives; Ideation; Brain storming approaches; arriving at solutions; Closing on to the Design needs.

Unit III: Design process 9 lecture hours Design process- Different stages in design and their significance; Defining the design space; Analogies and "thinking outside of the box"; Ouality function deployment-meeting what the customer wants; Evaluation and choosing of a design. Design Communication; Realization of the concept into a configuration, drawing and model. Concept of "Complex is Simple". Design for function and strength. Design detailing-Material selection, Design visualization- Solid modelling; Detailed 2D drawings; Tolerancing; Use of standard items in design; Research needs in design; Energy needs of the design, both in its realization and in the applications.

Unit IV: Prototype 8 lecture hours
Prototyping- rapid prototyping; testing and
evaluation of design; Design modifications;
Freezing the design; Cost analysis Engineering the
design – From prototype to product. Planning;
Scheduling; Supply chains; inventory; handling;
manufacturing/construction operations; storage;
packaging; shipping; marketing; feed-back on
design

Unit V: Design Monitoring 7 lecture hours Design for "X"; covering quality, reliability, safety, manufacturing/construction, assembly, maintenance, logistics, handling; disassembly; recycling; re-engineering etc. List out the design requirements(x) for designing a rocket shell of 3 meter diameter and 8 meter length.

Unit VI: Design Attributes 4 lecture hours

Product centred and user centred design. Product centred attributes and user centred attributes. Bringing the two closer.

#### Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Exam	Exam	
	(MTE)	(ETE)	
20	30	50	100

#### Semester IV

Name of The	e Control systems				
Course					
Course Code	BEEE3002				
Prerequisite	Signals and Systems				
Corequisite None					
Antirequisite	Antirequisite None				
		L	T	P	С
		3	0	0	3

## Course Objectives:

- 4. To understand and develop the Mathematical Modelingof dynamic systems using classical and state-space techniques.
- 5. To apply analytical /graphical techniques in time/frequency domain to determine stability.
- 6. To understand and use applications of feedback control theory to a variety of real world problems.

## Course Outcomes

	0 0000					
CO1	Understand mathematics modeling of					
	control systems sand solve it using transfer					
	function, block diagram and signal flow					
	diagram reduction techniques.					
CO2	Design and analyze control system					
	engineering problems in time response of					
	first and second order systems.					
CO3	Analyze the concept and stability of servo					
	systems using algebraic stability criteria					
	with necessary conditions.					
CO4	Understand and analyze the stability					
	analysis using the polar, inverse polar,					
	Bode, and Nyquist stability criterion of					
	control systems					
CO5	Understand and design of lead, lag and					
	lead-lag compensator of the control					
	process in time and frequency domains.					
CO6	Analysis of the state space systems and its					
	application					

## Text Book (s)

- 3. Nagrath& Gopal, "Control System Engineering", 4th Edition, New age International
- 4. K. Ogata, "Modern Control Engineering", Prentice Hall of India.

Reference Book (s)

- 3. B.C. Kuo& Farid Golnaraghi, "Automatic Control System" Wiley IndiaLtd, 2008.
- 4. D.Roy Choudhary, "Modern Control Engineering", Prentice Hall of India.

#### Course Content:

#### Unit-1Introduction

Feedback Control: Open loop and closed control system, servomechanism, Physical examples. Transfer functions of linear time-invariant systems, Block diagram algebra, and Signal flow graph, Mason's gain formula Reduction of parameter variation and effects of disturbance by using negative feedback.

#### Unit-2

Standard test signals, time response of first and second order systems, time response specifications, steady state errors and error constants. Design specifications of second order systems: Error analysis. P, PI, PD, PID controllers, design considerations for higher order systems, performance indices.

#### Unit-3

Concept of Stability. Routh-Hurwitz Criteria. Relative Stability analysis, Routh-Hurwitz criteria and limitations, root locus concepts, construction of root locus. Design of controllers using root-locus. Pole placement with state feedback, controllability.

#### Unit-4

Frequency response, correlation between time and frequency responses, polar and inverse polar plots, Bode plots Stability in Frequency Domain: Nyquist stability criterion, assessment of relative stability: gain margin and phase margin, constant M&N circles.

### Unit-5

Application of Proportional, Integral and Derivative Controllers, Lead and Lag compensation in designs in time domain and frequency domain. Review of state variable technique:

#### Unit -6

Review of state variable technique, conversion of state variable model to transfer function model and vice-versa, diagonalization, Controllability and observability and their testing.

## Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	

20	30	50	100
----	----	----	-----

Name of T	he	Electrical Machine-I				
Course						
Course Code		BTEE2006				
Prerequisite		Basic Electrical				
_		Engineering	,			
Corequisite						
Antirequisite						
			L	T	P	С
			3	0	0	3

## Course Objectives:

- 4. To acquaint the students with the principle of operation and performance of transformers and DC machines.
- 5. To familiarize students with the parameter estimation of electrical machines
- 6. To learn the mathematical models and equations related to electrical machines.

#### Course Outcomes

CO1	Apply the knowledge of circuit analysis				
	and electromagnetic principles of electric				
	machines				
CO2	Analyse the electrical machines				
	performance.				
CO3	Test and estimate the parameter of the				
	electrical machine.				
CO4	Analysis the numerical problems				
	associated with transformer and DC				
	machines.				
CO5	Make use of application of the subject				
	topic with industries and day to day life				
CO6	Understand of the special purpose				
	transformer for measurement and its				
	application				

#### Text Book (s)

- 4. I.J. Nagrath& D.P. Kothari, "Electrical Machines", Tata McGraw Hill.
- 5. P S Bimbhra, "Generalized Theory of Electrical Machines", Khana Publisher.
- 6. P S Bimbhra, "Electrical Machinery", Khana Publisher.

## Reference Book (s)

- 3. A. E. Fitzgerald, C. Kingsley, and S. D. Umans, *Electric Machinery*, 6th ed., New York: McGraw-Hill, 2003.
- 4. Vincent Del Toro, "Electrical Machine and Power System", PHI.

## Course Content:

Flow of Energy in Electromechanical Devices, Magnetic Circuit, Analogy b/w Electric and magnetic Ckt, B-H Curve, Hysteresis and eddy current losses, Mutual Coupling with dot convention, Energy in magnetic systems(defining energy & Co-energy), Singly Excited Systems and Doubly excited Systems, Generated emf in machines; torque in machines with cylindrical air gap.

## Unit-2 Single Phase Transformer

Construction- Core and Shell type, Basic principle of Operation, Phasor diagram, efficiency and voltage regulation, all day efficiency. Testing of Transformers: O.C. and S.C. tests, Sumpner's test, polarity test. Auto Transformer: Single phase and three phase auto transformers, volt-amp, relation, efficiency, merits & demerits and applications.

## Unit-3 Three Phase Transformers

Construction, three phase transformer phasor groups and their connections, open delta connection, choice of transformers for three phase circuits, three phase to 2 phase, 6 phase or 12 phase connections, and their applications, parallel operation and load sharing of single phase and three phase transformers, excitation phenomenon and harmonics in transformers, three winding transformers.

## Unit-4 D.C. Machines

Construction of DC Machines, Armature winding, Emf and torque equation, Armature Reaction, Commutation, Interpoles and Compensating Windings, Methods of improving commutation, Performance Characteristics of D.C. generators, Voltage Regulation, Parallel operation of DC generator (shunt, series and compound machine).

## Unit-5 D.C. Machines (Contd.)

Performance Characteristics of D.C. motors, Starting of D.C. motors; 3 point and 4 point starters, Speed control of D.C. motors: Field Control, armature control and Voltage Control (Ward Lenonard method); Efficiency and Testing of D.C. machines (Hopkinson's and Swinburn's Test), Electric braking

Unit 6: Special Purpose Transformer

Instrument Transformer Current Transformer and Potential Transformer, Earthing Transformer

#### Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The	Electrical Machine-I lab				
Course					
Course Code	BTEE2007				
Prerequisite	Basic Electrical Engineering				
	lab				-
Corequisite	Corequisite				
Antirequisite					
		L	T	P	С
		0	0	2	1

## Course Objectives:

After the completion of course the students will

- 6. This lab gives the chance to get friendship with Electrical machines.
- 7. To acquaint the students with the principle of operation and performance of transformers and DC machines.
- 8. To familiarize the students with the parameter estimation of electrical machines.
- 9. To compare the mathematical models and equations related to electrical machines.
- 10. The lab instills in the students the awareness and practice of safety.

#### Course Outcomes

CO1	Apply the knowledge of circuit analysis				
	and electromagnetic principles for the				
	physical operation of electric machines.				
CO2	Analysis the electrical machine				
	performance through experiments.				
CO3	Estimate the parameter of the transformer,				
	DC machines.				
CO4	Test the transformer, DC machines with				
	various loads.				
CO5	Make use of application of the subject				
	topic with industries and day to day life.				

## List of Experiments of Electrical Machine –I

1	Efficiency and regulation of single phase
	transformer by Sumpner's back to back
	test.

2	Efficiency of DC shunt motor by Swinburne's test
3	Open circuit and short circuit test on single phase transformer.
4	3-phase to 2-phase conversion with two single phase transformers by Scott connection.
5	Speed control of DC motor by Armature and Field Control.
6	Load characteristics of DC shunt generator and plot load voltage Vs load current.
7	Magnetization characteristics of DC shunt generator.
8	Losses and efficiency of DC machine by Hopkinson's test.
9	Load characteristics of DC compound generator and plot load voltage Vs load current.

## Continuous Assessment Pattern

Internal	Mid	End Term	Total
Assessment	Term	Exam	Marks
(IA)	Exam	(ETE)	
	(MTE)		
50	-	50	100

Name of The	Fundamental of Power systems				
Course					
Course Code	BTEE2008				
Prerequisite	Basic Electr	ical			
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

## Course Objectives:

- 4. To develop solid foundation for further study of power system courses.
- 5. To develop the analytical skills for solving problems related to power system.
- 6. To familiarize students of the basics of power system components, transmission parameters and losses in the transmission line etc.

## **Course Outcomes**

CO1	Exposure to the modeling of individual
	power system components like
	transmission lines and generators

CO2	To understand the overhead transmission				
	line parameters importance and its				
	calculation procedure				
CO3	Analyze the overhead transmission line				
	performance				
CO4	Analyze the corona phenomena,				
	interference and insulator application and				
	transmission lines				
CO5	Apply the knowledge of transmission line				
	design in analysis of mechanical strength				
	of the towers.				
CO6	Estimate EHVC and HVDC transmission				
	line parameters and their neutral				
	grounding				

## Text Book (s)

- 1. C. L. Wadhwa, "Electrical Power Systems" New age international Ltd. Third Edition
- 2. AsfaqHussain, "'Power System", CBS Publishers and Distributors.

### Reference Book (s)

- 1. W. D. Stevenson, "Element of Power System Analysis", McGraw Hill
- 2. B. R. Gupta, "Power System Analysis and Design" Third Edition, S. Chand & Co.

#### Course Content:

Course Co	ntent:				
Unit-1	Power	System	Components		
6 hours					
Single 1	ine Diagram	of Power	system Brief		
description	on of power sy	ystem Elemen	ts: Synchronous		
machine,	transformer,	transmission	line, bus bar,		
circuit br	eaker and isol	ator Calculati	on of single and		
Three ph	ase Power Cl	hoice of trans	mission voltage		
Transmis	sion line type	s of conductor	rs and resistance		
Skin effe	ct Proximity e	effect Kelvin's	law		
Unit-2:	Over He	ead Transm	nission Lines		
6 hours					
Calculati	on of inducta	nce single ph	ase, three phase		
and double circuit Transmission line					
Calculati	on of capacita	ince single ph	ase, three phase		
and doub	le circuit Tran	smission line	_		
Unit-3: C	ver Head Tra	nsmission Lin	es Performance		
Transmis	sion line class	sification Rep	presentation and		
performance of short Transmission line					
Represer	Representation and performance of medium nominal				
T and No	ominal Pi Trar	smission line	Representation		

and performance of long Transmission line Surge

impedance loading Ferranti effect

Unit: 4 Corona and Interference 9 hours

Phenomenon of corona and its formation Calculation of potential gradient Corona loss, factors affecting corona and methods of reducing corona Electrostatic and electromagnetic interference with communication lines Type of insulators and their applications Potential distribution over a string of insulators String efficiency and Methods of equalizing the potential

Unit-5 Mechanical Design of transmission line 9 hours

Catenary curve of transmission line Sag and tension Affect due to ice and wind on sag, Types of insulated cables and its construction Dielectric stress and Insulation resistance

Capacitance measurement of a single phase and three phase cables Dielectric loss and loss triangle

Unit-6 Neutral grounding and HVDC/HVAC 9 hours

Necessity and its methods of neutral grounding Earthing transformer and Grounding practices.

Design consideration of EHV transmission lines Choice of voltage Number of circuits Conductor configuration Insulation design and Selection of ground wires Introduction to EHV AC and HVDC transmission Their comparison Use of bundle conductors Kinds of DC links Use of HVDC system in AC transmission system

### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Name of	The	Power Plant Engineering				
Course						
Course Code		BTEE3015				
Prerequisite						
Corequisite						
Antirequisite						
			L	T	P	C
			3	0	0	3

## Course Objectives:

Power plant engineering or power station engineering is a division of power engineering, and is defined as the engineering and technology required for the production of central station electric power. The field is focused on the generation of power for industries and communities, not for household power production. The field is an interdisciplinary field, using the theoretical base of both mechanical and electrical engineering. The engineering aspect of power plant management has evolved with technology and has become progressively more complicated. The introduction of nuclear technology and the progression of other existing technologies have allowed power to be created in more ways and on a larger scale than was previously possible.

#### Course Outcomes

Course	Gutcomes
CO1	Analyze different types of steam cycles and estimate efficiencies in a steam power
	•
	plant.
CO2	Understand the basic components of coal
	base thermal power plants.
CO3	Define the performance characteristics and
	components of such power plants.
CO4	Estimate different efficiencies associated
	with power generation system systems.
CO5	Calculate present worth depreciation and
	cost of different types of power plants.
CO6	Estimate the cost of producing power per
	kW.

#### Text/ Reference Books:

- 5. S.N. Singh, "Electric Power Generation, Transmission& distribution." PHI Learning.
- 6. John Twideu and Tony Weir, "Renewal Energy Resources" BSP Publications, 2006.
- 7. Power system Voltage stability C.W. Taylor, Mc. Graw Hill, 1994.
- 8. D.S. Chauhan,"Non-conventional Energy Resources" New Age International.

### **Syllabus**

Unit-I	Coal	based	Thermal	5 Hours
	Power	Plants		
Rankine cycle - improvisations, Layout of modern				
coal power plant, Super Critical Boilers, FBC				
Boilers, Turbines, Condensers, Steam & Heat rate,				
Unit II	Com	ponent o	f Thermal	5 Hours
	Powe	r Plant		

Subsystems of thermal power plants – Fuel and				
ash handling, Draught system, Feed water				
treatment. Binary	Cycles and Cogeneration			
systems.				

Unit-III	Diesel, Gas Turbine and	7 Hours
	Combined Cycle Power	
	Plants	

Otto, Diesel, Dual & Brayton Cycle - Analysis & Optimisation. Components of Diesel and Gas Turbine power plants. Combined Cycle Power Plants. Integrated Gasifier based Combined Cycle systems.

Unit-IV	Nuclear	Power Plan	ants	8 Hou	rs
Basics of	Nuclear	Enginee	ring, I	Layout	and
subsystems	of Nuclea	ar Power	Plants,	Workin	ig of
Nuclear Rea	actors : Bo	oiling Wa	ter Rea	ctor (BV	VR),
Pressurized	Water	Reactor	(PWR	), CAN	Vada
Deuterium-	Uranium	reactor (	CAND	U), Bree	eder,
Gas Cooled	d and Liq	uid Meta	l Coole	ed Reac	tors.
Safety meas	sures for I	Nuclear P	ower pl	lants.	

Unit-V	Power from Renewable	8 Hours
	Energy	

Hydro Electric Power Plants – Classification, Typical Layout and associated components including Turbines. Principle, Construction and working of Wind, Tidal, Solar Photo Voltaic (SPV), Solar Thermal, Geo Thermal, Biogas and Fuel Cell power systems.

Unit-VI	Energy, Economic and	7 Hours
	Environmental issues of	
	Power Plants	

Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants.

## Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Electrical Measurements and		
Course	Instrumentation		
Course Code	BEEE2001		
Prerequisite	Basic Electrical and		
	Electronics Engineering		
Corequisite	EMFT		

Antirequisite				
	L	T	P	C
	3	0	0	3

## Course Objectives:

- 4. To know the necessity of different measuring instruments and their design principle
- 5. To understand the working principle of different measuring instruments and technical solutions to handle different errors.
- 6. To learn the architecture and working principle of advanced measuring instrument and their applications.

## Course Outcomes

	Outcomes
CO1	Apply physical principles to study the construction and working principle of different analog instruments and analyze the errors takes place in measurements.( K3- Apply)
CO2	Apply the physical principle to study the working of instrument transformers and measurement of speed, frequency and power factor. (K3- Apply)
CO3	Model the solar and wind energy system for standalone and grid integration system. (Apply-KL-3)
CO4	Demonstrate the principle of operation of other renewable energy sources(ocean thermal, geo-thermal and micro hydro power) also importance of its role. (Understanding-KL-2)
CO5	Understand the basic working principle of digital instruments. (Understanding-KL-2)
CO6	Examine the waveforms using analyzers and oscilloscopes. (K3- Apply)

#### Text Book (s)

- 4. A Course in Electrical and Electronics Measurement and Instrumentation, "A K Shawney", Publisher: Dhanpat Rai & Co
- Electrical Measurements and Measuring Instruments, E.W Golding, F.C Widdis, Publisher: Reem Publications
- 6. Electronic Instrumentation and Measurements- David A Bell, Oxford University Press, 2006

## Reference Book (s)

9. Basic Electrical Measurements: M B Stout

10. Electronic Instrumentation: H S Kalsi, Tata-Mc-Graw Hill Publication, Second Edition.

Unit-1Philosophy of Measurement & Analog

#### Course Content:

Measurement	of	Electrical	Quantities
9 hours			
Unit& dime	nsions,	standards	s, Errors,
Characteristics of	of Instru	ments and i	measurement
system, basics	of stati	stical analy	sis. PMMC
instrument, DC	ammete	er, DC volt	meter, Ohm
3.7.			

instrument, DC ammeter, DC voltmeter, Ohm meter, Moving Iron instrument, Electrodynamic Wattmeter, errors and remedies, Three Phase Wattmeter, Power in three phase system, Energy meter.

Unit-2Measurement: Instrument Transformer 6 hours

Instrument Transformer and their applications in the extension of instrument range, Introduction to measurement of speed, frequency and power factor.

Unit-3Measurement of Parameters 9 hours

Different methods of measuring low, medium and high resistances, measurement of inductance & capacitance with the help of AC Bridges-Wheatstone, Kelvin, Maxwell, Hay's, Anderson, Owen, Heaviside, Campbell, Schering, Wien bridges, Wagner Earthing device, Q Meter.

Unit-4AC	Potentiometer	&	Magnetic
Measuremen	nt		7 hours
Polar type &	Co-ordinate type A	AC pote	entiometers,
application	of AC Potentiom	eters i	n electrical
measuremen	t. Ballistic Galvano	meter,	Flux meter.

Unit-5Digital Measurement of Electrical Quantities 5 hours

Concept of digital measurement, Digital voltmeter, Frequency meter, Power Analyzer and

Harmonics Analyzer, Electronic Multimeter.
Unit-6 Cathode Ray Oscilloscope 5 hours

CRT, wave form display, time base, dual trace oscilloscope, Measurement of voltage, frequency and phase by CRO, Oscilloscope probes, Sampling Oscilloscope, DSO, DSO applications.

#### Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

#### Semester V

Name of The	he Microcontroller			and	
Course	Embedded Systems				
Course Code	BECE3004				
Prerequisite					
Co-requisite					
Anti-requisite					
_		L	T	P	С
		3	0	0	3

## Course Objectives

Microcontrollers are the most useful electronic chips which are used to design and develop processor and computer based automatic smart electronics systems for home and industry application. Students learn CPU architecture, memory management, bus concepts, bus arbitration techniques, interfacing of systems using AD/DA, serial I/O devices, interrupt control devices, including design, construction, and testing of dedicated microcontroller systems.

## Course Outcomes

CO1	Demonstrate the internal organization and operation of microcontrollers.		
CO2	Analyse the design issues in the embedded system.		
CO3	Design Microcontroller based application.		
CO4	Program 8051 for application specific solution.		
CO5	Analyse the different programming methods for controller and their issues.		
CO6	Illustrate the latest trends adapted in designing microcontroller based system		

#### Course Content:

Unit I: Introduct	ion	08 Hours	
Introduction	to	Microprocessors,	
Microcontrollers and system design – Assembl			
and High-Level language programming – System		rogramming – System	
Development Environment: assembler, compiler			
and integrated development environment.			
Unit II: 8051 Mic	rocontroll	er 08 Hours	

Introduction to single chip Microcontrollers,8051-architecture – 8051 assembly language programming, addressing modes – Instruction sets- interrupts, timers and serial communication.

Unit III: Embedded applications 08 Hours

Programming the interrupts, timers and serial communication – system design with 8051. Application **of Microcontrollers** in data acquisition systems, process control, signal processing, data communication and distributed computing and networking..

Unit IV: Embedded programming 08 Hours

Programming in Assembly Language (ALP) Vs. High level language – C program elements, Macros and Functions – Use of pointers– use of function calls – NULL pointers – multiple function calls in a cyclic order in the **main function** pointers –C program compilers – Cross compiler – optimization of memory codes.

Unit V: Embedded System design 08
Hours

Introduction, Embedded System project management – Embedded system design and Co-Design Issues in System Development process – Design cycle in the development phase for an embedded system – Uses of Target system or its emulator and In-Circuit Emulator

Unit VI: Recent trends in Micro controller

Machine learning on tiny ML processor, introduction of mixed signal processor, DMA architecture

#### Suggested Reading.

- 1. Mohammad Ali Mazidi and Janice GillispieMaszidi "The 8051 Microcontroller andEmbedded Systems" Pearson education, 2003, ISBN-9788131710265, 2ndEdition
- 2. Kenneth J. Ayla, "The 8051 Micro controller", Thomson learning, 3rd edition, 2004,ISBN-140186158X
- 3. Alan Clements, "Principles of Computer Hardware", OxfordUniversity Press, 3rd Edition, 2003, ISBN-9780198564539

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100
		_	

Name of The	Electrical Machine-II				
Course					
Course Code	BTEE3004				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

## **Course Objectives**

- 5. To acquaint the students with the principle of operation and performance of AC machines.
- 6. To familiarize students with the parameter estimation of electrical machines.
- 7. To learn the mathematical models and equations related to electrical machines.
- 8. To familiarize students with the other special machines.

#### **Course Outcomes**

CO1 Apply the knowledge of circuit analy and electromagnetic principles of thr				
	phase Induction Motor.			
	Analysis the numerical problems and			
CO2	performance associated with AC			
	machines.			
CO2	Make use of application of the single phase			
CO3	IM with industries and day to day life.			
CO4	Use special machine for different			
CO4	application.			
COF	Analysis the demanding and conventional			
Alternator performance.				
COC	Test and estimate the parameter of the			
CO6	Synchronous Motor.			

#### Course Content:

Unit I: Three phase Induction Machine – I	08
Hours	

### Continuous Assessment Pattern

Constructional features, Rotating magnetic field, Principle of operation Phasor diagram, equivalent circuit, torque and power equations, Torque-slip characteristics, no load & blocked rotor tests, efficiency, Induction generator: Generator action, methods of excitation & applications.

Unit II:Three phase Induction Machine- II 08 Hours

Starting, Deep bar and double cage rotors, Speed Control (with and without emf injection in rotor circuit.), Electrical braking, operation on unbalanced supply voltage, effect of slot harmonics and space harmonics, merits, demerits and introduction of linear induction motor.

Unit III: Single phase Induction Motor 08 Hours

Double revolving field theory, Equivalent circuit, No load and blocked rotor tests, Starting methods of Single phase Induction Motor,

**Unit IV: Fractional Motors** 

Repulsion motor, other Motors: Universal motor, Hysteresis motor, stepper motors, switched reluctance motor, BLDC, brushless dc motor

Unit V: Synchronous Machine I 08 Hours

Constructional features, EMF Equation, Armature winding, Winding coefficients, equivalent circuit and phasor diagram, Armature reaction, O. C. & S. C. tests, Voltage Regulation using Synchronous Impedance Method, MMF Method, Potier's Triangle Method, Parallel Operation of synchronous generators, operation on infinite bus, synchronizing power and torque co-efficient.

Unit VI: Synchronous Machine II 08 Hours

Two Reaction Theory, Power flow equations of cylindrical and salient pole machines, operating characteristics. Synchronous Motor: Starting methods, Effect of varying field current at different loads, V- Curves, concepts of synchronous machine reactance, Synchronizing, Electrical braking, Hunting & damping, synchronous condenser.

## Suggested Reading

- 1. I.J. Nagrath & D.P. Kothari, "Electrical Machines", Tata McGraw Hill.
- 2. P S Bimbhra, "Generalized Theory of Electrical Machines", Khana Publisher.

- 3. P S Bimbhra, "Electrical Machinery", Khana Publisher.
- 4. Theodre F. Boghert, 'Electronic Devices & Circuits',6th Edition, Pearson Education 2004.
- 5. Ben G. Streetman and Sanjay Banerjee, 'Solid State Electronic Devices', 6th Edition, PHI 2009, ISBN 0132454793, 9780132454797

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Name of The Course	Power System Analysis					
	BTEE3009					
Course Code	B1EE3009					
Prerequisite						
Co-requisite						
Anti-requisite						
L T P C					C	
3 0 0 3					3	

## Course Objectives

- 1. modeling and solution on digital computers is the only practical approach to systems analysis and planning studies for modern day power system with its large size, complex and integrated nature.
- 2. This course has been designed to fulfill this need by integrating the basic principles of power system analysis illustrated through the simplest system structure with analysis techniques for practical size systems.
- 3. The digital computer being an indispensable tool for power system analysis, computational algorithms for various system studies such as load flow, fault level analysis, stability etc have been included in the syllabus. Students should be encouraged to build computer programs for these studies using algorithms provided.

#### Course Outcomes

CO1	Understand fundamental concepts relating to the analysis of electrical power systems
CO2	Understand the fault condition inside transmission line and the generating system.
СОЗ	Analyse of load flow equations and representation of power system components
CO4	Understand the importance of power swing equation in power system stability
CO5	Apply the knowledge in power system stability analysis during abnormal conditions.
CO6	Understand the basic concepts of travelling waves over transmission lines.

#### Course Content:

Unit	I:	Representation	of	Power	System
Comp	one	nts			
0	8 H	ours			

Synchronous machines. Transformers. Transmission lines, One line diagram, Impedance and reactance diagram, per unit System. Symmetrical components: Symmetrical Components of unbalanced phasors, power in terms of symmetrical components, sequence impedances and sequence networks. Symmetrical fault analysis, Transient in R-L series circuit, calculation of 3-phase short circuit current and reactance of synchronous machine, internal voltage of loaded machines under transient conditions.

Unit II: Unsymmetrical faults 08 Hours

Analysis of single line to ground fault, line-to-line fault and Double Line to ground fault on an unloaded generators and power system network with and without fault impedance. Formation of Z-bus using singular transformation and algorithm, computer method for short circuit calculations.

Unit III: Load Flow Analysis 08 Hours

Introduction, bus classifications, nodal admittance matrix (bus y), development of load flow equations, load flow solution using Gauss Siedel and Newton-Raphson method, approximation to N-R method, line flow equations and fast decoupled method, Comparison of load flow methods.

Unit IV: Power System Stability-1 08 Hours

## Suggested Reading

against traveling waves.

- 1. C. L. Wadhwa, "Electrical Power Systems" New age international Ltd. Third Edition.
- 2. Asfaq Hussain, "Power System", CBS Publishers and Distributors.
- 3. H.Saadat, Power System Analysis, Tata McGraw-Hill Publishing Company Limited, Edition 2008.
- 4. W. D. Stevenson, "Element of Power System Analysis", McGraw Hill.
- 5. B. R. Gupta, "Power System Analysis and Design" Third Edition, S. Chand & Co.

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

	1				
Name of The	Power Electronics				
Course					
Course Code	BTEE3011				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

## **Course Objectives**

1. The field of power electronics encompasses the application of fundamental concepts in several

disciplines: electronic devices and circuits, variable speed drives and control systems.

- 2. The use of electric cars, electric trains and electric subway trains can substantially reduce urban pollution problems.
- 3. Students learn power electronics devices like thristors, MOSFET, IGBT, GTO etc., various phase controlled single phase and three phase rectifiers with performance factors, dual converters, principle of dc to dc conversion, class A,B,C,D,E,F choppers, commutation techniques, comprehensive treatment of dc to ac inverters, ac voltage converters and cycloconverters.

## Course Outcomes

CO1	Understand the operation of switching power devices eg. thyristors, transistors and TRIAC.
CO2	Implement configurations of thyristor based choppers.
CO3	Apply and develop configurations of thyristor based Single phase controlled rectifiers
CO4	Apply and develop configurations of thyristor based Three phase controlled rectifiers
CO5	Apply and develop configurations of thyristor based ac voltage controllers, cycloconverters
CO6	Implement different configurations of thyristor based inverters.

## Course Content:

Unit I:	Power	semiconductor	Devices	08
Hours				

Introduction, Characteristics and specifications of switches, Power Diodes, Power Transistors: Operation. Steady and switching state characteristic, Power MOSFETs: Operation and characteristics, Insulated Gate Bipolar transistor: structure, working, latch-up, characteristics, Thyristors: Operation, charateristics, transistor model, Turn-on methods, Switching Rating characteristic. and protection, Commutation techniques of thyristor, Series and parallel operation of thyristors, Gate turn off thyristor.

## Unit II: DC-DC Converters 08 Hours

Principles of step-down chopper, step down chopper with R-L load Principle of step-up chopper, and operation with RL load, classification of choppers, Buck, Boost and Buck-Boost converter.

Unit III: Single Phase Controlled Converters 05 Hours

Single-phase half wave converter with R, RL and RLE loads, Effect of freewheeling diode, Performance parameters, Single-phase full wave converter, midpoint and bridge converter, Effect of source inductance on single-phase converter, Single phase dual converter,

Unit IV: Three Phase Controlled Converters05 Hours

Three phase half wave converter with R and RL loads, Three-phase full converter, Performance parameters, Effect of source inductance on three-phase converters, Three-phase dual converter.

Unit IV: AC Voltage Controllers 08 Hours

Principle of on-off and phase control, Single-phase two SCRs in anti parallel with R and RL load, Triac with R and RL load, Three-phase ac voltage controllers, Cycloconverters: Basic principle of operation, Single phase to single phase, three-phase to single-phase cycloconverters, Three phase to three phase cycloconverters

Unit V: Inverters 08 Hours

Single phase voltage source inverter, Three-phase bridge inverters, 180 degree conduction, 120 degree conduction, Voltage control of inverters, Pulse-width modulated inverters, Harmonics reduction techniques, Single phase and three phase current source inverters.

### Suggested Reading

- 6. M. H. Rashid," Power Electronics: Circuits, Devices & Applications", Prentice Hall of India, Ltd. 3rd Edition, 2004.
- 7. V. R. Moorthy, "Power Electronics: Devices, Circuits and Industrial

- Applications" Oxford, University Press, 2007.
- 8. M. D. Singh & K. B. Khanchandani, "Power Electronics", Tata McGraw Hill Publishing Company, 1989.
- 9. M. S. Jamil Asghar, "Power Electronics" Prentice Hall of India Ltd., 2004.
- 10. Chakrabarti & Rai, "Fundamentals of Power Electronics & Drives" Dhanpat Rai & Sons.

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Name of The	Finance for E	lectr	ical		
ourse	Engineers				
Course Code	BEE02T3004				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

## Course Objectives

- For any developing country, innovation, entrepreneurship and intellectual property rights hold the key to the entry in the league of developed countries. Equipped with the scientific knowledge and the right training, the engineer is an important building block of a nation.
- Economics and its impact on science and technology have to be well understood by the engineers to ensure success of any technological venture.

## Course Outcomes

CO1	Understand basics of industrial finance
	and economy.
CO2	Analyze the various concept of cost.
CO3	Analyze the market types and lay supply

CO4	Apply various technique to build budget for electrical project.
CO5	Analyze various financial techniques.
CO6	Understand the basic financial installation cost of renewable power plant

#### Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam	Total Marks
		(ETE)	
20	30	50	100

#### Course Content:

Unit I: Introduction	08 Hours	
	00 110 615	
Various Definition	of Economics, Nature of	
	,	
Economics problem,	relation between science,	

Economics problem, relation between science, engineering, technology & economics, Meaning of demand, law of demand, elasticity of demand, practical importance & applications of the concept of elasticity of demand.

Unit II: Capital Budgeting 08
Hours

Meaning of production and factor of production – Land, Labour, Capital, Entrepreneur & organizations – their characteristics, law of variable proportion, return to scale, Cost Analysis-various concept of cost, cost function, short & long run cost, concept of revenue, break-even analysis.

Unit III: Management of Working Capital 08
Hours

Meaning of market-type of market-perfect competition, Monopoly, Oligopoly, Monopolistic competition (Main feature of these market) Meaning of supply and law of supply; Role of demand & supply in price determination imperfect competition.

Unit IV: Budgeting Control Technique 08 Hours

Concepts of Budget, budgeting and budgetary control, Objectives, Functions, Uses, Advantages, Limitations; Master Budget and Report.

Unit V: Financial management 08
Hours
Financial management: Financial management, accounting concepts. Financial statement analysis.  Financial investment analysis. Financial decisions. Managing components of working capital investment & financing decisions.  Unit VI: Renewable Power Plant
Analysis of installation cost based on rating of
Renewable power plant

## Suggested Reading

- 1. Financial Management and Accounting P. K. Jain, S. Chand & Co.
- 2. Modern micro economic theory H.L. Ahuja, S.Chand.
- 3. Advance economic theory M.L. Jhingan, Konark publication.
- 4. Engineering economics Sullivan, Wicks, Koelling Pearsons.
- 5. Financial management by Rajiv shrivastava and Anil Mishra Oxford publication

Name of The Course	Electrical Machine-II lab				
Course Code	BTEE3005				
Prerequisite	Electrical N	<b>lach</b>	ine-l	I	and
•	BEEE Lab				
Corequisite					
Antirequisite					
		L	T	P	С
		0	0	2	1

## Course Objectives:

After the completion of course the students will

- 1. This lab gives the chance to get friendship with Electrical machines.
- 2. To acquaint the students with the principle of operation and performance of AC machines.
- 3. To familiarize the students with the parameter estimation of AC machines.
- 4. To compare the mathematical models and equations related to AC machines.
- 5. The lab instills in the students the awareness and practice of safety.

### **Course Outcomes**

CO1	Apply the knowledge of circuit analysis
	and electromagnetic principles for the
	physical operation of Single and three
	phase Induction machines and three phase
	Synchronous machines.
CO2	Analysis the AC machines performance
	through experiments
CO3	Estimate the parameter of the Induction
	machines and Synchronous machines
CO4	Test Induction and Synchronous machines
	with various loads
CO5	Make use of application of the subject
	topic with industries and day to day life

## List of Experiments:

1	Perform no load and blocked rotor test on a
	single phase induction motor.
2	Determine performance characteristic of a
	three phase squirrel cage induction motor.
3	No load and blocked rotor test on three phase
	induction motor.
4	Load test on three phase squirrel cage
	induction motor.
5	Break test on three phase induction motor.
6	Separation of no load losses of three phase
	induction motor.
7	Perform open and short circuit test on a 3-
	phase alternator
8	Regulation of a three phase alternator by ZPF
	and ASA method.
9	Determination of Xd and Xq of a Salent pole
	synchronous machine.
10	Determine the characteristic of field current
	with armature current of the synchronous
	machine

#### Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessmen	Exam	Exam	Marks
t (IA)	(MTE)	(ETE)	
50	-	50	100

Name of The	Microcontroller and Embedded			
Course	Systems Lab			
Course Code	BECE3005			
Prerequisite	Digital Electronics			
Corequisite				
Antirequisite				
-	L T P C			

0	0	2	1

## Course Objectives:

To Introduce ALP concepts, features and Coding methods

- 1. Write ALP for arithmetic and logical operations in 8051
- 2. Differentiate Serial and Parallel Interface
- 3. Interface different I/Os with Microcontroller

#### Course Outcomes:

## After the completion of course the students will

	the completion of course the students will
CO1	Demonstrate ability to handle arithmetic
	operations using assembly language
	programming
CO2	Demonstrate ability to handle logical
	operations using assembly language
	programming
CO3	Demonstrate ability to handle string
	instructions using assembly language
	programming
CO4	Demonstrate ability to handle sorting
	operations and using assembly language
	programming
CO5	Develop microcontroller based designs of
	Real Time Systems.

## List of Experiments:

List	st of Experiments.				
1	Basic arithmetic and Logical operations				
2	Code conversion, decimal arithmetic and				
	Matrix operations.				
3	Square and Cube program, Find 2's				
	complement of a number				
4	Unpacked BCD to ASCII				
5	Counters and Time Delay Peripherals and				
	Interfacing Experiments				
6	Traffic light controller				
7	Stepper motor control				
8	Digital clock				
9	Key board and Display				
10	Serial interface and Parallel interface				
11	A/D and D/A interface and Waveform				
	Generation 8051 kits				

#### Continuous Assessment Pattern

Internal	Mid Term	End Term	Total		
Assessment	Exam	Exam	Marks		
(IA)	(MTE)	(ETE)			

50	-	50	100

#### Semester VI

Name of The	Digital Signal Processing		
Course			
Course Code	BECE2020		
Prerequisite	Signals and Systems		
Co-requisite	Network Theory		
Anti-requisite			
	L T P C		
3 0 0 3			

## Course Objectives

- 5. Introduce to discrete time signal processing and characterization of random signals, filter design techniques, and imperfections caused by finite word length.
- 6. Learn how design FIR and IIR filters.
- 7. Learn the theory of digital signal processing and digital filter design, including hands-on experience with important techniques involving digital filter design and digital simulation experiments.
- 8. Introduce the fundamental principles and techniques of digital signal processing for understanding and designing new digital signal processing systems and for continued learning.

## Course Outcomes

Course	Outcomes
CO1	Apply digital signal processing
COI	fundamentals.
	Comprehend if a DT system is linear,
	time-invariant, causal, and memory-less,
CO2	High Pass, Low Pass, All Pass and able to
	apply Z and inverse Z transform on DT
	signal.
	Acquire the knowledge of representation
CO3	of discrete-time signals in the frequency
	domain, using DFT and FFT.
	Design FIR and IIR filters to meet the
CO4	specific magnitude and phase
	requirements.
CO5	Understand the concept of linear
COS	prediction and spectrum estimation.
CO6	Understand the concept of advance
CO6	processor

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	-	50	100

#### Course Content:

Unit I: Sampling of Continuous Time Signals 8 Hours

Sampling and reconstruction of signals, frequency domain representation of sampling, discrete time processing of continuous time signals, continuous time processing of discrete time signals, changing the sampling rate using discrete time processing, multi rate signal processing, digital processing of analog signals, over sampling and noise shaping in A/D and D/A conversion.

Unit II: Sampling of Continuous Time Signals 8 Hours

Sampling and reconstruction of signals, frequency domain representation of sampling, discrete time processing of continuous time signals, continuous time processing of discrete time signals, changing the sampling rate using discrete time processing, multi rate signal processing, digital processing of analog signals, over sampling and noise shaping in A/D and D/A conversion.

Unit III: Transform Analysis of LTI Systems 8 Hours

Frequency response of LTI systems, system functions, frequency response for rational system functions, magnitude-phase relationship, all pass systems, minimum phase systems, and linear systems with generalized linear phase Overview of finite precision numerical effects, effects of coefficient quantization, Effects of round-off noise in digital filters, zero-input limit cycles in fixed point realizations of IIR digital filters.

Unit IV: Filter Design Techniques Hours

Design of D-T IIR filters from continuous – time filters, design of FIR filters by windowing, Kaiser Window method, optimum approximations of FIR filters, FIR equiripple approximation.

Unit V: Fourier analysis of Signals Using DFT 8 Hours

DFT analysis of sinusoidal signals, timedependent Fourier transforms: Block convolution, Fourier analysis of non – stationary and stationary

random signals, spectrum analysis of random signals using estimates of the autocorrelation sequence.				
Unit VI: Recent Trends in DSP				
DSP architecture, Memory organization,				
Simulation				

## **Suggested Reading**

- 1. Oppenheim A.V., Schafer, Ronald W. & Buck, John R., "Discrete Time Signal processing", Pearson Education, 2nd Edition.
- Proakis J. G. and Manolakis D. G., "Digital Signal Processing: Principles, Algorithms And Applications", Pearson Education, 4rd Ed., 2007.
- 3. Ramesh P., "Digital Signal Processing", SciTech Publication, 41FL Ed., 2008.
- 4. Mitra Sanjit K., "Digital Signal Processing: A Computer Based Approach", 3rd Ed., Tata McGraw-Hill, 2008.
- 5. Lawrence R. Rabiner, Bernard Gold, "Theory and Application of Digital SignalProcessing", PHI 2001.
- 6. Shaliwahan S., Vallavaraj A. and Gnanapriya C., "Digital Signal Processing", Tata McGraw-Hill, 2nd Ed., 2000.

Name of The	Power System Protection				
Course					
Course Code	BEE02T3006				
Prerequisite	ite				
Co-requisite	uisite				
Anti-requisite					
		L	T	P	C
3 0 0 3				3	

## Course Objectives

- 4. To introduce the students the principles of different protection schemes.
- 5. To develop students with an understanding of the characteristics, advantages and defects of different protection methods.
- 6. To prepare the students to design/coordinate protection schemes for given requirements.

#### Course Outcomes

8

CO1	Illustrate the principle of switchgear and protection schemes.
CO2	Choose right relays or circuit breakers for protection of electrical equipments
CO3	Design the ratings for relays or circuit breakers according to the requirement.
CO4	Understand the differential protection scheme and its application in protection of alternator and transformer
CO5	Examine protection of power system with various protection relays
CO6	Discuss about operation of circuit breakers.

### Course Content:

## Unit I: Introduction to protection system 08 Hours

Introduction to protection system and its elements, functions of protective relaying, protective zones, primary and backup protection, desirable qualities of protective relaying, basic terminology. Relays: Electromagnetic, attracted and induction type relays, thermal relay, gas actuated relay, design considerations of electromagnetic relay.

Unit II: Relay application and characteristics 08 Hours

Amplitude and phase comparators, over current relays, directional relays, distance relays, differential relay. Static Relays: Comparison with electromagnetic relay, classification and their description, over current relays, directional relay, distance relays, differential relay.

Unit III: Protection of transmission line 08 Hours

Properties of arc, arc extinction theories, restriking voltage transient, current chopping, resistance switching, capacitive current interruption, short line interruption, circuit breaker ratings. Testing of Circuit Breaker: Classification, testing station and equipment's, testing procedure, direct and indirect testing.

Unit IV: Differential Protection 05 hours

Types of fault on transformers and motors, and its differential protection scheme

Unit V: Circuit Breaking 05 Hours Properties of arc, arc extinction theories, restriking voltage transient, current chopping, resistance switching, capacitive current interruption, short line interruption, circuit breaker ratings. Testing Of Circuit Breaker: Classification, testing station and equipment's, testing procedure, direct and indirect testing.

Unit VI: Apparatus protection 08 Hours

Circuit Breaker: Operating modes, selection of circuit breakers, constructional features and operation of Bulk Oil, Minimum Oil, Air Blast, SF6, Vacuum and d. c. circuit breakers. Types of faults on alternator, stator and rotor protection, Types of fault on transformers and motors

## Suggested Reading

- 1. S. S. Rao, "Switchgear and Protection", Khanna Publishers.
- 2. B. Ravindranath and M. Chander, Power system Protection and Switchgear, Wiley Eastern Ltd.
- 3. Y. G. Paithankar and S R Bhide, "Fundamentals of Power System Protection", Prentice Hall of India.
- 4. T.S.M Rao, "Power System Protection: Static Relays with Microprocessor Applications", Tata Macgraw Hill.

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

### **Semester VII**

Name of	Smart Grid and Energy M	ana	gen	nent	
The Course					
Course	BEEE4001				
Code					
Prerequisite	Power System Analysis	an	d F	Powe	er
_	Electronics				
Corequisite					
Antirequisit					
e					
		L	T	P	C
		3	0	0	3

## Course Objectives:

A smart grid is an electrical grid which includes a variety of operational and energy measures including smart meters, smart appliances, renewable energy resources, and energy efficient resources. Electronic power conditioning and control of the production and distribution of electricity are important aspects of the smart grid.

- 1. To make use of the Smart grid with the coming future.
- 2. To analyze the global policies about the smart grid.
- 3. To develop and design the Advanced Metering infrastructure (AMI).
- 4. To estimate the Power Quality issues of Grid connected Renewable Energy Sources.

#### Course Outcomes

Course	Outcomes
CO1	To learn about the Evolution of Electric
	Grid, Concept, Definitions and Need for
	Smart Grid.
CO2	Understand about the International
	policies in Smart Grid, Diverse
	perspectives from experts and global
	Smart Grid initiatives
CO3	To analyze Advanced Metering
	infrastructure (AMI) drivers and its
	benefits.
CO4	Understand about the Power Quality issues
	of Grid connected Renewable Energy
	Sources.
CO5	Understand about the IP based Protocols,
	Basics of Web Service and CLOUD
	Computing to make Smart Grids smarter.
CO6	To analyze the conventional grid
	integrated with renewable energy sources

#### Text/ Reference Books:

- 1. A. S boyer, SCADA:supervisory Control and Data Acquisition, The Instrumentation system and Automation Society,4 th Edition 2009.
- Vehbi C. Güngör, Dilan Sahin, Taskin Kocak, Salih Ergüt, Concettina Buccella, Carlo Cecati, and Gerhard P. Hancke: Smart Grid Technologies- Communication Technologies and Standards IEEE Transactions on Industrial Informatics, Vol. 7, No. 4, November 2011.
- 3. Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang: Smart Grid The New and

- Improved Power Grid- A Survey, IEEE Transaction on Smart Grids.
- 4. Stuart Borlase: Smart Grid-Infrastructure, Technology and Solutions, CRC Press.
- B.G. Liptac Instrument Engineering Handbook, Volume 3:process Software and Digital Networks, CRC Press, 4 th Edition 2011.

Syllabus		
Unit-I	Introduction to Smart Grid	8 Hours
Evolution of	of Electric Grid, Concept,	Definitions
	for Smart Grid, Smart g	
	opportunities, challenges a	
	between conventional &	
	Resilient & Self-Healing C	
	nt & International policie	
	rse perspectives from e	
	rt Grid initiatives.	
Unit-II		8 Hours
01110 11	Technologies	0 110 0115
Technology	Drivers, Smart energy	resources
	ations, Substation Automa	
	, Wide area monitoring	
	col, Distribution System	
	ontrol, Fault Detection, Is	
	coration, Outage manager	
	Distribution Transform	
•	ansformers, Plug in Hyb	
Vehicles (P		Tid Electric
Unit-III	Smart Meters and	8 Hours
Cint III	Advanced Metering	o Hours
	Infrastructure	
Introduction	n to Smart Meters, Advanc	ed Metering
	re (AMI) drivers and be	
	tandards and initiatives, A	
	rid, Phasor Measurement I	
	Electronic Devices (IEI	
	for monitoring & protection	
		06 Hours
OIIIt-I V	Management in Smart	OO HOUIS
D 0	Grid	7 : 1 P
	lity & EMC in Smart C	
	nditioners for Smart Grid,	
	ity monitoring, Power Qu	
Unit-V	High Performance	U/ Hours
	Computing for Smart	

**Grid Applications** 

Local Area Network (LAN), House Area Network

(HAN), Wide Area Network (WAN), Broad band

over Power line (BPL), IP based Protocols, Basics of Web Service and CLOUD Computing to make Smart Grids smarter, Cyber Security for Smart Grid.

UnitVI Integration with renewable energy sources

Power Quality issues of Grid connected

Renewable Energy Sources,

### Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of	The	Non-Convent	iona	ıl I	Ene	rgy
Course		Resources				
Course Code		BEEE2018				
Pre-requisite		Power system				
Co-requisite						
Anti-requisite						
_			L	T	P	С
			3	0	0	3

## Course Objectives:

- 3. To have an overview of non-conventional energy sources.
- 4. To understand the need of alternate sources of energy.

#### Course Outcomes

CO1	Understand the different types of
	renewable energy sources and their
	utilities
CO2	Design models for generating energy
	through alternate energy sources (with the
	help of additional learning)
CO3	To understand the practical limitation and
	hence steps for continuous improvement
	through research.
CO4	Apply genetic algorithms to optimization
	problems
CO5	Design models for generating energy
	through alternate energy sources (with the
	help of additional learning)
CO6	Apply the fundamentals of energy systems
	in real time applications

#### Text Book (s)

- 1. 1. Renewable energy technologies R. Ramesh, Narosa Publication
- 2. Non-conventional Energy Systems Mittal, Wheelers Publication.

#### Reference Book (s)

- 1. John F Walker & Jekins. N, Wind Energy Technology., John Wiley and Sons, chichester, UK, 1997.
- 2. Van Overstra ,Mertens, R.P, Physics, Technology and use of Photovoltaics, Adam Hilger, Bristol, 1996.

#### Course Content:

Unit I:Energy Scenario:	6
lecture hours	

Classification of Energy Sources, Energy resources (Conventional and nonconventional), Energy needs of India, and energy consumption patterns. Worldwide Potentials of these sources. Energy efficiency and energy security. Energy and its environmental impacts. Global environmental concern, Kyoto Protocol, Concept of Clean Development Mechanism (CDM) and Prototype Carbon Funds(PCF). Factors favoring and against renewable energy sources, IRP.

## Unit II: Solar Energy 9 lecture hours

Solar thermal Systems: Types of collectors, Collection systems, efficiency calculations, applications. Photo voltaic (PV) technology: Present status, - solar cells, cell technologies, characteristics of PV systems, equivalent circuit, array design, building integrated PV system, its components, sizing and economics. Peak power operation. Standalone and grid interactive systems.

Unit III: Wind Energy	10	lecture
hours		

Wind speed and power relation, power extracted from wind, wind distribution and wind speed predictions. Wind power systems: system components, Types of Turbine, Turbine rating, Choice of generators, turbine rating, electrical load matching, Variable speed operation, maximum power operation, control systems, system design features, stand alone and grid connected operation.

Unit IV :Other energy sources 8 lecture hours

Biomass – various resources, energy contents, technological advancements, conversion of biomass in other form of energy – solid, liquid and gases.

Gasifiers, Biomass fired boilers, Cofiring, Generation from municipal solid waste, Issues in harnessing these sources. Hydro energy – feasibility of small, mini and micro hydel plants scheme layout economics. Tidal and wave energy, Geothermal and Ocean-thermal energy conversion. (OTEC) systems – schemes, feasibility and viability.

Unit V: Energy storage and hybrid system configurations 7 lecture hours

Energy storage: Battery – types, equivalent circuit, performance characteristics, battery design, charging and charge regulators. Battery management. Fly wheel-energy relations, components, benefits over battery. Fuel Cell energy storage systems. Ultra Capacitors.

Unit VI: Application of NCES

Grid integration of hybrid system, fuel cell integration in hybrid vehicles

#### Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	
(IA)	(MTE)	(ETE)	Marks
20	30	50	100

Name of The	Electric Drives				
Course					
Course Code	BTEE4001				
Prerequisite	Power Electronics				
Corequisite					
Antirequisite					
		L	T	P	С
		3	0	0	3

## Course Objectives:

- 3. To introduce the electric drives fundamentals including speed torque curves of motor and load, types of load.
- 4. To determine stability of drive system and select motor rating for any particular duty of application.

#### Course Outcomes

CO1	Demonstrate the basic of drive system and
	different types of loads.
CO2	Understand the motor dynamics and the rating of motor for different condition of
	load.
CO3	Analyse the types of breaking and select appropriate breaking to the working environment.

CO4	Analyse power circuit topology and control mechanism to control the speed of
	control mechanism to control the speed of
	DC motor.
CO5	Apply various types of control mechanism to employ for variable speed drives.
CO6	Illustrate the latest trends adapted in Electrical drives

#### Text Book (s)

- 3. G.K. Dubey, "Fundamentals of Electric Drives", Narosa publishing House
- 4. S.K.Pillai, "A First Course on Electric Drives", New Age International.

## Reference Book (s)

- 3. M.Chilkin, "Electric Drives", Mir Publishers, Moscow.
- 4. N.K. De and Prashant K. Sen, "Electric Drives", Prentice Hall of India Ltd

## Course Content:

l	Unit-1Fundamentals of Electric Drive						
ļ	8 hours						
	Unit-1Fundamentals of Electric Drive 8 hours Electric Drives and its parts, advantages of electric						
	drives, Classification of electric drives, Speed-						

drives, Classification of electric drives, Speed-torque conventions and multi-quadrant operations, Constant torque and constant power operation, Types of load, Load torque: components, nature and classification.

Unit-2Dynamics of Electric Drive 8 hours

Dynamics of motor-load combination, Steady state stability of Electric Drive, Transient stability of electric Drive, Selection of Motor Power rating, Thermal model of motor for heating and cooling, classes of motor duty, determination of motor power rating for continuous duty, short time duty and intermittent duty, Load equalization

Unit-3Electric Braking 8 hours

Purpose and types of electric braking, braking of dc, three phase induction and synchronous motors Dynamics During Starting and Braking: Calculation of acceleration time and energy loss during starting of dc shunt and three phase induction motors, methods of reducing energy loss during starting, Energy relations during braking, dynamics during braking.

Unit-4Power Electronic Control of DC Drives 8 hours

Single phase and three phase controlled converter fed separately excited dc motor drives (continuous conduction only), dual converter fed separately excited dc motor drive, rectifier control of dc series motor. Supply harmonics, power factor and ripples in motor current, Chopper control of separately excited dc motor and dc series motor.

Unit-5Power Electronic Control of AC Drives 8 hours

Three Phase induction Motor Drive: Static Voltage control scheme, static frequency control scheme (VSI, CSI, and cycloconverter based) static rotor resistance and slip power recovery control schemes. Three Phase Synchronous motor: Self-controlled schemes. Special Drives: Switched Reluctance motor, Brushless dc motor

Unit 6: Recent Technologies

Recent trends and technologies using in electrical drives.

#### Continuous Assessment Pattern

Internal	Mid	End	Total	
Assessment	Term	Term	Marks	
(IA)	Exam	Exam		
	(MTE)	(ETE)		
20	30	50	100	

Name of The	PLC/SCADA LAB				
Course					
Course Code	BEEE3008				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		0	0	2	1

Course Objectives: Students will be able to design and program basic PLC circuits for entry-level PLC applications. Students will be able to design and program a small, automated l production line. Apply the knowledge of PLC/SCADA in engineering specialization to the solution of complex engineering problems.

Students are trained for to create ladder diagrams from process control descriptions. Students work in team to formulate solution for Electrical System using hardware and software tools. Students understand PLC functions, Data Handling Function, apply PLC Timers and Counters for the control of industrial processes.

#### Course Outcomes

CO1	Identify different components of PLC.
CO2	Understand working of PLC, I/O modules of
	PLC
CO3	Able to create ladder diagrams from process
	control descriptions.
CO4	Ability to apply PLC timers and counters for
	the control of industrial processes
CO5	Able to use different types PLC functions,
	Data Handling Function.

#### Text/ Reference Books:

- 3. Programmable Logic Controllers Principle and Applications by John W Webb and Ronald A Reiss Filth edition, PHI
- 4. Programmable Logic Controllers Programming Method and Applications by JR Hackworth and ED Hackworth Jr-Pearson, 2004.

## List of Experiments

- 10. Study hardware and software used in PLC
- 11. To study PLC Input and output symbols
- 12. Implementation of Logic Gates
- 13. Implementation of DOL starter
- 14. Implementation of on-delay timer
- 15. Implementation of off-delay timer
- 16. Implementation of up-down counter
- **17.** Implementation of PLC Arithmetic Instructions
- 18. Implementation of PID Controller

### Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of	The	Technical Seminar	
Course			
Course Code		BEE02P4005	
Prerequisite			
Corequisite			
Antirequisite			
		LTF	C
		0 0 2	0

Course Objectives: Objective

- To develop institute-industry interaction
- To know the industry practices
- To understand cutting edge technology in the chosen area

#### Course Outcomes

CO1	Identify the Literature Survey					
CO2	Do the Formulation of the Problem /					
	Project					
CO3	Do Mathematical Modeling and do					
	Programs in MATLAB / PSPICE.					
CO4						
	Synthesis.					
CO5	Do testing and write Dissertations/Reports.					

#### Continuous Assessment Pattern

Internal	Mid	End	Total	
Assessment	Term	Term	Marks	
(IA)	Test	Test		
	(MTE)	(ETE)		
20	30	50	100	

Name of	Capstone Design	Ph	ase –I		
The Course					
Course	BEE02P4002				
Code					
Prerequisite					
Corequisite					
Antirequisit					
e					
		L	T	P	C
		0	0	10	2

## Course Objectives:

- Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Work in team to formulate solution for Electrical System using hardware or software tools.
- Analyze & research about the work to be implemented with resources available from internet & other sources.
- Work collaboratively to plan and execute project work or research to advance the scientific basis, technologies or practices within the Electrical Engineering discipline.

#### Course Outcomes

CO1	Develop	creative	solution	s to	proble	ms
	and cond	ceive in	novative	appr	oaches	in

	developing and designing of electrical system.
CO2	Prepare high quality engineering documents and present a clear and coherent presentation of these to a range of technical and nontechnical audiences.
CO3	Acquire and evaluate research regarding new knowledge development within the electronic engineering discipline and its social, cultural, environmental and legal context.
CO4	Demonstrate a responsible, ethical and professional attitude regarding the role of engineers in society, including situations involving potentially adverse environmental and cultural impacts.
CO5	Work collaboratively to plan and execute project work or research to advance the scientific basis, technologies or practices within the Electrical Engineering discipline.

#### Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

#### **Semester VIII**

Name of Course	The	Capstone Design Phase-II
Course Code		BEE02P4003
Prerequisite		
Corequisite		
Antirequisite		
		L T P C
		0 0 18 6

## Course Objectives:

- Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Work in team to formulate solution for Electrical System using hardware or software tools.
- Analyze & research about the work to be implemented with resources available from internet & other sources.

 Work collaboratively to plan and execute project work or research to advance the scientific basis, technologies or practices within the Electrical Engineering discipline.

## Course Outcomes

CO1	Identify project goals and constraints
CO2	Acquire knowledge about the project
	through previous works in the current field
CO3	Formulate the methodologies to obtain
	experimental results
CO4	Plan for the resource requirements
CO5	Obtain the experimental results based on
	the methodologies formulated.

#### Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of	Industrial Internship & Technical
The Course	Seminar
Course	BEE02P4004
Code	
Prerequisite	
Corequisite	
Antirequisit	
e	
	LTPC
	0 0 0 6

## Course Objectives:

## Objective

- To develop institute-industry interaction
- To know the industry practices
- To understand cutting edge technology in the chosen area

#### Course Outcomes

CO1	Identify the Literature Survey
CO2	Do the Formulation of the Problem /
	Project
CO3	Do Mathematical Modeling and do
	Programs in MATLAB / PSPICE.
CO4	
	Synthesis.
CO5	Do testing and write Dissertations/Reports.

## Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	

50	50	100
20	20	100

## **Basket- (Control Engineering)**

Name of	The	Advanced Control System				
Course						
Course Code		BTEE301	9			
Prerequisite	Control System					
Co-requisite		Signal Systems				
Anti-requisite						
			L	T	P	С
			3	0	0	3

## **Course Objectives**

- 1. Introduce the fundamentals and concepts of Control systems
- 2. Understanding and predicting system behavior in state space and non-linear systems.
- 3. Design and analysis of closed loop control systems.
- 4. Analyse higher order control systems with appropriate state space models.

### Course Outcomes

CO1	Apply linear algebra to complex real world problems in order to obtain models that are expressed using state space equations.
CO2	Understand the basic Canonical Forms in state space domain.
CO3	Analyze the system behavior based on the mathematical model of that system where the model may be expressed in state-space domain
CO4	Design and analysis of closed loop control systems.
CO5	Design controllers using the concept of state feedback and pole placement technique.
CO6	Write a report that effectively communicates the results of an analysis or design.

#### Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam	Total Marks
		(ETE)	
50	_	50	100

### Course Content:

Unit I: State Space Analysis of Control Systems

#### 8 Hours

State Variables; State-Space Representation of Electrical and Mechanical and Electromechanical Systems; State Space Representation of Nth Order Linear Differential Equation; Transformation to Phase Variable Canonical Form; Relationship Between State Equations and Transfer Functions; Characteristic Equation; Eigen Values and Eigen Vectors:

Unit II: Canonical Form

Transformation to Diagonal Canonical Form; Jordan Canonical Form; Controllability Canonical Form; Observabilty Canonical Form; Decomposition of Transfer Function-Direct, Cascade and Parallel Decomposition; State Diagram; Solution of the Time-Invariant State Equation; State Transition Matrix and its Properties; Transfer Matrix; Transfer Matrix of Closed Loop systems.

Unit III: Controllability and Observability 8 Hours

Concept of Controllability and Observability; Kalman's Theorems on Controllability; and Observability, Alternative Tests (Gilbert's Method) of Controllability and Observability; Principle of Duality; Relationship among Controllability, Observability and Transfer Function.

Unit IV: State feedback controller 8 Hours

Design of state feedback controller using pole placement technique, Ackerman's formula.

Unit V: Lyapunov Stability Analysis 8 Hours

Stability of Equilibrium State in the Sense of Liapunov; Graphical Representation of Stability; Asymptotic Stability and Instability; Sign-Definiteness of Scalar Function; Second Method of Liapunov; Stability Analysis of Linear Systems; Krasovski's Theorem; Liapunov Function Based on Variable Gradient Method.

Unit VI: Describing Function Analysis of Nonlinear Control System and Phase Plane Analysis 8 Hours

Introduction to Nonlinear Systems, Describing Functions for Common Types of Nonlinearities, Describing Function Analysis, Stability and Limit Cycles, ntroduction: Analytical Methods for constructing Trajectories, Classification of Singular Points; Limit Cycles; Phase-Place Analysis of Linear control system.

## Suggested Reading

- Nagrath and Gopal, "Control System Engineering", 4th Edition, New age International.
- 2. K. Ogata, "Modern Control Engineering", Prentice Hall of India.
- 3. B.C. Kuoand FaridGolnaraghi, "Automatic Control System" Wiley India Ltd, 2008.
- 4. D.RoyChoudhary, "Modern Control Engineering", Prentice Hall of India.
- 5. Norman S. Nise, Control System Engineering 4th edition, Wiley Publishing
- 6. E Slotine, Weiping Li, Applied Nonlinear Control, Prentice-Hall.
- 7. R.T. Stefani, B.Shahian, C.J.Savant and G.H. Hostetter, "Design of Feedback Control Systems" Oxford University Press.

Name of The	Industrial A	utor	nati	on	and
Course	Control				
Course Code	BTEE3020				
Prerequisite	Control System				
Co-requisite	Power System Analysis				
Anti-requisite					
		L	T	P	C
		3	0	0	3

## Course Objectives

- 1. This course introduces the various types of controllers and their principles
- 2. Knowledge of sequence control, PLCs and Ladder logic is also imparted
- 3. Applications of industrial automation systems including identification of system requirements, equipment integration, motors, controllers, and sensors.

4. Coverage of set-up, maintenance, and testing of the automated system

#### Course Outcomes

CO1	Describe the properties and applications of open- and closed-loop process control systems and distinguish between their dynamics.
CO2	Summarize the operation of the different controller modes and their practical limitations; determine their response to standard inputs.
CO3	Understand the open loop and closed loop transient response using Ziegler-Nichols method. Frequency response method.
CO4	Outline the criteria determining the selection of control valves for specific purposes.
CO5	Explain various special control structures in process control.
CO6	Identify the applications of PLC's to industrial processes and design PLC programs to solve sequential control problems.

## Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	_	50	100

## Course Content:

features.

Unit I: Process Dynamics

Clift I. Trocess Dynamics
Hours
110415
D 1 F1 1 1 C 1 1 1 0 1
Dynamic Elements in Control Loops, Open- and
closed-loop properties of processes; Process lags;
Dead-time; Stability of control systems; Block
diagrams and process line diagrams to explain the
operation of control systems. Dynamic behaviors
of first order, second order, and higher order
systems. Interacting and non-interacting systems.
Unit II: Controller Principles 5 Hours
Process characteristics. Control system
parameters. Discontinuous, continuous, and
composite modes of control action (P, PI, PD &

PID). Analog and Digital Controllers, General

Electronic controllers, pneumatic

controllers and hydraulic controllers, and Design considerations.

Unit III: Process loop Tuning 5 Hours

Open loop transient response method. Ziegler-Nichols method. Frequency response method.

Unit IV: Control Valves 7 Hours

Valve types and characteristics; Factors influencing valve selection; Valve sizing; Valve petitioners; Installed systems: control valve characteristics, pipe pressure drops and pump characteristics.

Unit V: Special Control Structures 7 Hours

Feed forward and Ratio Control, Predictive Control, Control of Systems with Inverse Response Special Control Structures: Cascade Control, Overriding Control, Selective Control, Split Range Control.

Unit VI: Introduction to Sequence Control, PLCs & Relay Ladder 8 Hours

Discrete state process control, characteristics of the system, discrete state variables, process specifications and event sequence description, ladder diagram – ladder diagram elements and examples, programmable controller – relay sequencers, programmable logic controller, architecture, operation and programming, types of PLC.

## Suggested Reading

- Process Control Instrumentation Technology, C. D. Johnson, Prentice Hall, (2002).
- 2. M. Gopal, Control Systems Principles & Design, 2nd Edition, TMH, 2002.
- 3. Bela G. Liptak, Process Control, Instrument Engineer's Handbook, 3rd Edition, Chilton Book
- 4. Company, 1970.
- 5. D.RoyChoudhary, "Modern Control Engineering", Prentice Hall of India.
- 6. George Stephenopoulos, Chemical Process Control, PHI, 1999.
- 7. Kirk and Rimbol, Instrumentation, D.B. Taraporewala Sons and Co. Pvt. Ltd., 1996

8

- 8. Douglas M. Considine, Process/Industrial Instruments and Control Handbook, 4thEdition,McGraw Hill International Edition, 1974.
- 9. Introduction to Programmable Logic Controllers, G. Dunning, Delmar Thomson Learning, 2002

Name of The	Industrial Instrumentation and			and	
Course	Automation				
Course Code	BEE02T5001				
Prerequisite	Electrical Instrumentation				
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

## Course Objectives

1. To impart knowledge about Industrial instrumentation and automation

#### Course Outcomes

CO1	Select instruments and transducers for various physical variables
CO2	Design various signal conditioning systems for transducers.
CO3	Analyze dynamic responses of various systems.
CO4	Get the concepts of virtual instrumentation
CO5	Understand the programming realization of SCADA
CO6	Understand the programming realization of PLC

#### Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam	Total Marks
50	_	(ETE) 50	100

## Course Content:

Unit I: Introduction	8	Hours
----------------------	---	-------

Introduction to Process Control - block diagram of process control loop, definition of elements. Sensor time response - first and second order responses. Review of Transducers: Characteristics and Choice of transducer-factors influencing choice of transducer.

Unit II: Applications	s of Transducers	
Hours		

Displace measurement: Resistance potentiometer, Capacitive and Inductive. Capacitive differential pressure measurement Torsional, shearing stress and rotating shaft Torque measurement using strain gauge. Flow measurement :Hotwire anemometer, constant resistance Constant current type Eddy current sensors, Variable reluctance tachometers Phase measurement :Analog and digital phase detectors Nano Instrumentation

Unit III: Signal conditioning 8 Hours

Signal conditioning circuits-Instrumentation amplifiers Unbalanced bridge. Bridge linearization using op amp Precision rectifiers, Log amplifiers, Charge amplifiers, Isolation amplifier, Switched capacitor circuits, Phase sensitive detectors, Noise problem in instrumentation and its minimization.

Unit IV: Micro Electromechanical system (MEMS) 8 Hours

Advantages and Applications, MEMS micro sensors and actuators, Manufacturing process: Bulk micro machining and surface micromachining, MEMS accelerometers Virtual instrumentation system: architecture of virtual instruments – Virtual instruments and traditional instruments – concepts of graphical programming.

Unit V: SCADA 5Hours

Introduction to Timer/Counters, Exercises based on Timers, Counters. Basic concepts of SCADA, DCS and CNC

Unit VI: PLC 5Hours

Introduction to Sequence Control, PLCs - Working, Specifications of PLC Onboard/Inline/Remote IO's, Comparison of PLC & PC, Relay Ladder Logic- PLC Programming-realization of AND, OR logic, concept of latching,

#### Suggested Reading

- 1. Curtis D Johnson ," Process Control Instrumentation Technology", PHI, 1986
- 2. Doeblin E.O, 'Measurement Systems: Application and Design, Fourth Edition, McGraw Hill, Newyork, 1992
- 3. DVS. Murty, 'Transducers and Instrumentation' Second Edition, PHI Learning Pvt Ltd New Delhi ,2013

- MadhuchhandaMitra, SamarjitSengupta, 'Programmable Logic Controllers and Industrial Automation An Introduction', Penram International Publishing (India) Pvt Ltd., 2009
- 5. Mickell. P. Groover 'Automation, Production and computer integrated manufacturing' Prentice Hall of India, 1992
- 6. Patranabis, D., 'Principles of Industrial Instrumentation', Second Edition Tata McGraw Hill Publishing Co. Ltd.. New Delhi
- 7. Robert B. Northrop, 'Introduction to instrumentation and measurements', CRC, Taylor and Francis 2005.

Name of The	Power System Operation and			and	
Course	Control				
Course Code	BEEE5005				
Prerequisite	Power System Analysis				
Co-requisite	Fundamentals		of	Po	ower
	System				
Anti-requisite					
		L	T	P	С
		3	0	0	3

## Course Objectives

- **1.** Introduce the fundamentals concepts of operation of Modern power systems.
- **2.** Understand various Load driving parameters and various forecasting methods.
- **3.** Introduce the concepts of Unit Commitment and Online economic dispatch.
- **4.** Understand and analyze control relationship between real power vs frequency and reactive power vs voltage.

## **Course Outcomes**

G01	Identify various load driving parameters
CO1	and review various forecasting methods
	for efficient power system operation
	Analyze the relationship between various
CO2	power system variables in terms of
	mathematical modeling
CO3	Model the steady state and dynamic
COS	performance of power system control.
	Apply the knowledge of Unit
CO4	Commitment and economic Dispatch to
	solve numerical problems based on real
	time situations.

CO5	Explain various functional aspects of SCADA/ECC along with various operating states of power system.
CO6	Understand the application of power System estimation

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	-	50	100

#### Course Content:

Unit I:	Introduction	8
Hours		

System load — variation, load characteristics — load curves and load-duration curves, load factor, diversity factor, load forecasting, simple techniques of forecasting, basics of power system operation and control, reserve margin, load-frequency control, voltage control.

Unit II: Real Power – Frequency Control Hours

Speed governing mechanism and modelling, speed-load characteristics, load sharing, control area concept, LFC control of a single-area system, static and dynamic analysis, integration of economic dispatch control with LFC, two-area system — modelling — static analysis of uncontrolled case, tie line with frequency bias control of two-area system.

## Unit III: Economic Load Dispatch8 Hours

Economic dispatch problem – cost of generation, incremental cost curve, co-ordination equations, solution by direct method and  $\lambda$ - iteration method, unit Commitment problem – constraints, solution methods – Priority-list methods – forward dynamic programming approach (Numerical problems only in priority-list method using full-load average production cost).

Unit IV: Reactive Power – Voltage Control8 Hours

Reactive power control, excitation systems – modelling, static and dynamic analysis, stability compensation, generation and absorption of reactive power, relation between voltage, power and reactive power at a node, method of voltage

# School of Electrical, Electronics and Communication SCHOOL OF ELECTRICAL, ELECTRONICS AND COMMUNICATION ENGINEERING

control, tap changing transformers, tap setting of OLTC transformer and MVAR injection of switched capacitors.

Unit V: Computer control of power systems 8 Hours

Need of computer control of power systems, concept of energy control centre (or) load dispatch centre and the functions, system monitoring, data acquisition and control, system hardware configuration,

Unit VI Power System Estimation

SCADA and EMS functions, network topology, state estimation, security analysis and control, operating states (Normal, alert, emergency, inextremis and restorative).

### Suggested Reading

- 1. Allen. J. Wood and Bruce F. Wollenberg, "Power Generation, Operation and Control", John Wiley & Sons, Inc., 2003.
- 2. D.P. Kothari and I.J. Nagrath, "Modern Power System Analysis", Third Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.
- 3. Chakrabarti&Halder, "Power System Analysis: Operation and Control", PHI, 2004 Edition.
- 4. L.L. Grigsby, "The Electric Power Engineering, Hand Book", CRC Press & IEEE Press, 2001.
- 5. Olle. I. Elgerd, "Electric Energy Systems theory: An introduction", Tata McGraw Hill Publishing Company Ltd. New Delhi, Second Edition 2003.

Name of	The	Digital Co	ontro	ol		
Course						
Course Code BEEE5004						
Prerequisite		Control S	ystei	m		
Co-requisite	Advanced Control System					
Anti-requisite						
		L	T	P	C	
			3	0	0	3

## Course Objectives

- 1. The purpose of this course is to provide basic concepts of Digital control systems.
- 2. The main goal of the course is to teach the students how to select and design digital controller for different systems.

- **3.** This course is also to learn microprocessors and microcontrollers based digital control systems.
- **4.** This also provides knowledge of effect of quantization on signals in digital control systems.

#### Course Outcome

Course	Outcome
CO1	Analyze and design SISO systems through
	Z-transform.
CO2	Analyze and design of MIMO systems
CO2	through state space analysis.
CO3	Understand the Controller design using
COS	transformation techniques.
CO4	Analyze system's stability.
CO5	Discuss Microprocessor and DSP based
COS	control.
CO6	Discuss the quantization effect on the
	digital control system

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	_	50	100

#### Course Content:

Course Content.
Unit I: Introduction 8
Hours
Overview of design approaches, continuous
versus digital control, sampling process, effect of
sampling rate. Calculus of difference equations.
Z-transform. Signal flow graphs.
Unit II: Design of State space systems 8
Hours
Controllability, Observability, Discretization of
continuous transfer functions; Digital filter
properties.
Unit III: Controller design using transformation
techniques
Z-plane specifications. Design in the w domain.
PID controller. Deadbeat controller. Root Locus
design.
Unit IV: State space methods 8
Hours
Pole placement design, stabilization and all
stabilizing controllers. Observer design. Infinite

time optimal regulator, Stability and tracking in

SD systems.

Unit V: Quantization effects	8 Hours		
Limit cycles and dither. Sample rate r Multi-rate sampled data system and studies. Design of digital controller u	stability		
output sampling. Unit VI: Microprocessor and DSP contro			
8 Hours			
Mechanization of control algorithms. computation via parallel, direct, cascade realization; Effects of comput	canonical,		
Systems with time delay. Case studies			

## Suggested Reading

- 1. K. Ogata, "Discrete-time control sytems", PHI, 2005
- **2.** B.C. Kuo, "Digital Control System", Oxford University press, 1995
- **3.** Norman S. Nise," Control systems Engineering", John Wiley and Sons, 4th Edition, 2004.
- **4.** G. F. Franklin, J. David Powell and MichealWorkman, "Digital Control of Dynamic Systems", Pearson Education, 3rd Edition, 2003.
- **5.** M.Gopal, "Digital Control Engineering", New Age Publishers, 2008.

Name of	The	Automation and Robotics				
Course						
Course Code	Course Code BEE03T5002					
Prerequisite	Control Systems					
Co-requisite						
Anti-requisite						
			L	T	P	C
			3	0	0	3

## Course Objectives

1. To identify potential areas for automation and justify need for automation.

#### Course Outcomes

CO1	Select suitable major control components required to automate a process or an activity
CO2	Study the various parts of robots and fields of robotics.
CO3	Understand the fundamentals of automated assembly systems
CO4	Study the various kinematics and inverse kinematics of robots.

	Study the control of robots for some specific applications.
CO6	Design real time robotics systems.

## Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	-	50	100

#### Course Content:

Ī	Unit I:	Introduction	8 Hours
ı			

Basic elements of an automated system, advanced automation functions, levels of automation, process industries versus discrete manufacturing industries, continuous versus discrete control, computer process control. Hardware components for automation and process control, sensors, actuators, analog to digital converters, digital to analog converters, input/output devices for discrete data.

Unit II: Automated Production lines 1	8
Hours	

Fundamentals of automated production lines, application of automated production lines, analysis of transfer lines, automated assembly systems.

## Unit III: Automated Production lines 2

Fundamentals of automated assembly systems, quantitative analysis of assembly systems, automatic identification methods, barcode technology, radio frequency identification, other AIDC technologies

#### Unit IV: Industrial Robotics 8 Hours

Robotic configuration, robot anatomy and related attributes, robot control systems, end effectors, sensors in robotics, industrial robot applications, robot accuracy and repeatability, different types of robotics, various generations of robots, degrees of freedom — Asimov's laws of robotics dynamic stabilization of robots.

Unit V: Spatial descriptions and transformations8 Hours

Positions, orientations, and frames. Mappings: Changing descriptions from frame to frame. Operators: translations, rotations and transformations, transformation arithmetic transform equations, transformation of free

# School of Electrical, Electronics and Communication SCHOOL OF ELECTRICAL, ELECTRONICS AND COMMUNICATION ENGINEERING

vectors computational considerations, manipulator Kinematics, link description, linkconnection description, actuator space joint space and Cartesian space

Unit VI: Robot programming 8 Hours

Introduction, levels of robot programming, requirements of robot programming language, problems pertaining to robot programming languages, offline programming systems, central issues in OLP systems, automating subtasks in OLP systems, simple programs on robot applications

## Suggested Reading

- 1. Automation, Production systems, and computer integrated manufacturing-MikellP.Groover 3rd edition, Pearson 2009
- 2. Industrial Robotics-Groover, Weiss, Nagel, McGraw Hill International, 2nd edition, 2012

## **Basket- (Power Engineering)**

Name of Course	The	Power System Equipme	ent	S		
Course Code		BTEE3017				
Prerequisite						
Corequisite						
Antirequisite						
			L	T	P	С
			3	0	0	3

## Course Objectives:

Power Engineering is concerned with the generation, transmission, distribution and utilization of electrical energy. Large power systems are interconnected physical networks of many different types of equipment and apparatus: synchronous generators for generating electricity, power transformers for changing the voltage levels, overhead transmission lines, underground cables, metering and control equipment, switchgear for connection/disconnection, high-voltage insulators, etc. Because of operating conditions (different

voltage and power levels) each equipment type in turn comprises many different designs.

#### **Course Outcomes**

CO1	Identify various designs of transmission line and overhead line					
CO2	Explain various Substation equipments Protection & Control theories					
CO3	Explain various necessities of power system earthing					
CO4	Identify various basic concepts about Surge Protection & Insulation Coordination					
CO5	Identify various basic concepts about Insulation Co-ordination					
CO6	Introduce reliability of transmission & distribution Systems					

#### Text/ Reference Books:

- 1. Power System Analysis & Design by B.R. Gupta –S.Chand.
- 2. Sub Station Design and Equipment Gupta & Satnam (Dhanpat Rai & Sons).
- 3. Transmission & Distribution Westinghouse.
- 4. P. Gill, Electrical Power Equipment Maintenance and Testing, 2nd ed., CRC Press, 2008.
- 5. F. Kussy, and J. Warren, Design Fundamentals for Low Voltage Distribution and Control, Marcel Dekker, 1987.

6. Syllabus

- · · · · · · · · · · · · · · · · · · ·		
Unit-I	Transmission Line	8 Hours
	Design & Overhead	
	Line Design	

Types of Insulator, String Efficiency, Improvement of voltage distribution. Improvement of String Efficiency, Line Supports, Types of Steel Towers, Cross Arms, Equivalent span, Conductor configurations, Spacing & Clearance, Sag & Tension calculations, Erection conditions, Factors affecting Sag, Sag Template, Catenary, Vibration of conductors & prevention, Selection of conductor size, Cross arm, No. Of circuits, Selection of ground wire.

Electrical

Unit-II

resistivity

	&Earthing		
Types of	Substation,	Layout and	d Bus Bar
schemes, V	oltage level,	Substation	equipments
Protection	& Control	Substation	n Earthing,
Tolerance li	imits of body	currents, So	il resistivity,
Earth resis	tance, Tolera	ble & Act	ual Step &
Touch Volt	ages, Design	of Earthing	Grid, Tower
Footing Res	sistance, Meas	surement of	soil & earth

Substation | 8 Hours

Unit-III	Power System Earthing	6 Hours
Cint III	1 ower system Earthing	OTTOUTS

Ground versus isolated neutral, Solidly and effectively grounded system Resistance and Impedance Grounding, Resonant Grounding, Reactance Grounding, Voltage Transformer Grounding, Zigzag Transformer Grounding, Grounding practice, Effect of grounding on system over voltages & protection over voltage and over voltage phenomenon in isolated and grounded neutral system.

Unit-IV	Surge Protection	5 Hours

External and Internal over voltages mechanism of lighting discharge, wave shapes of stroke current line design based on direct stroke, over voltage protection, earth wire Rod gap T.F.R., Expulsion tube, surge diverter.

Unit-V	Insulation	Co-	5Hours
	ordination		

General idea, Selection of B.I.L., International recommendation, Selection of arrester rating, Coordination of protector devices with apparatus insulation

Unit-VI	Reliability	of	7 Hours
	Transmission	&	
	Distribution System	IS	

Definition, Outage, Bath Tub Curve, Two State Model, Failure & Repair Rate, Probability Density Function, Probabilities of Survival & Failure, Mean Time to Failure, Mean Down Time, Reliability of Series & Parallel Systems, Two-State Fluctuating Enviornment, Approximate Method, Reliability Planning, Preparation of Reliability Models.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	Power Qua	ality			
Course Code	BTEE3023	3			
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

### Course Objectives:

- 1. To understand the various power quality issues
- 2. To understand the concept of power and power factor in single phase and three phase systems supplying non linearloads
- 3. To understand the active compensation techniques used for power factor correction.
- 4. To understand the active compensation techniques used for load voltage regulation.

#### Course Outcomes

	<u> </u>
CO	Toacquireanin-
1	depthknowledgeonvariouspowerqualityissu
	eslikevoltage sag, interruption and
	harmonics.
CO	To learn about various aspects of power
2	quality measurements and power quality
CO	Ability to understand and analyze power
3	system operation, stability, control and
	protection.
CO	Introduce the importance of grounding on
4	power quality.
CO	Learn to apply appropriate solution
5	techniques for power quality mitigation
	based on the type of problem.
CO	Illustrate the latest trends adapted in power
6	quality improvements.

## Text Book (s)

1.Eswald.F.Fudis and M.A.S.Masoum, "Power Quality in Power System and Electrical Machines," Elseviar Academic Press, 2013.

2.R. Dugan, M. McGranahan, S. Santoso, W. Beaty,
 Electric Power Systems Quality, 2nd Edition
 (McGraw-Hill,

New York, NY, 2002).

#### Reference Book (s)

- 1. Heydt, Electric Power Quality, Stars in a Circle Publications, 1991. (optional)
- 2. Handbook of power quality, editor: Angelo Baggini, John Wiley & Sons, 2008.

## Unit I:

Power and Voltage Quality: General, classes of Power Quality Problems, Power quality terms, Power frequency variations, the power quality evaluation procedure. formula, sensitivity, Reduction of effect of parameter variation and disturbance by using negative feedback.

### Unit II:

Voltage sags and Interruptions: Sources of sags and Interruptions, Estimating Voltage sag performance. Fundamental Principles of Protection, Solutions at the end-user level, Evaluating Ride-through Alternatives, Motor-Starting Sags.

#### Unit III:

Fundamentals of Harmonics: Harmonic distortion, Voltage versus Current distortion, Harmonic indexes, Harmonic sources from commercial loads, Harmonic sources from industrial loads, Locating Harmonic sources, System response characteristics, Effects of Harmonic Distortion. Considerations.

#### Unit IV:

Distributed Generation and Power Quality: Resurgence of DG, DG Technologies, Interface to the Utility System, Power

Quality Issues, Operating Conflicts, DG on distribution Networks, Sitting DG distributed Generation, Interconnection standards.

## Unit V:

Wiring and Grounding: Recourses, Definitions, Reasons for Grounding, Typical wiring and grounding problems, Solution to wiring and grounding problems.

## Unit VI: Recent Technologies

Recent trends and technologies using to improve the power quality

## Continuous Assessment Pattern

Internal Assessment	Mid Term Exam	End Term Exam	Total Marks
(IA)	(MTE)	(ETE)	Marks
20	30	50	100

Name of The	me of The FACTS and HVDC				
Course					
Course Code BTEE4010					
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	С
		3	0	0	3

## Course Objectives:

- 3. Apply concepts of transmission in HVDC Transmission
- 4. To prepare students to know the role of HVDC systems

### Course Outcomes

~~1	*1 10 1 10 0 0 0
CO1	Identify significance of DC over AC
	transmission system, types and application
	of HVDC links in practical power systems
CO2	To Analyze different converters viz.3,6
	and 12 pulse converter
CO3	To Analyze AC/DC system interactions
	and know the operation and control of
	various MTDC systems.
CO4	Model AC/DC system and apply
	protection for HVDC system against
	transient overvoltage and over currents
CO5	To estimate Improvement of voltage
	stability
CO6	Illustrate the latest trends adapted in
	HVDC.

### Text Book (s)

- 1. HVDC transmission by Adamson and Hingorani.
- 2. H.V.D.C.Transmission by J.Arillaga : Peter Peregrinus ltd., London UK 1983.

## Reference Book (s)

- 3. Direct current Transmission, by . E.W. Kimbark, Wiely Inter Science NewYork. EHV-AC & HVDC transmission Engg. Practice" by S.Rao, Khanna Publishers.
- 4. B. R. Gupta, "Power System Analysis and Design" Third Edition, S. Chand & Co.

### Unit I: H.V.D.C. Transmission**6 lecture hours**

H.V.D.C. Transmission: General considerations, Power Handling Capabilities of HVDC Lines, Basic Conversion principles, static converter configuration. Static Power Converters: 3-pulse, 6-pulse and 12-pulse converters, converter station and Terminal equipment, commutation process, Rectifier and inverter operation, equivalent circuit for converter – special features of converter transformers.

## **Unit II:**

Harmonics in HVDC Systems, Harmonic elimination, AC and DC filters. Control of HVDC Converters and systems: constant current, constant extinction angle and constant Ignition angle control, DC power flow control.

#### Unit III:

Voltage

Interaction between HV AC and DC systems – Voltage interaction, Harmonic instability problems and DC power modulation. Multiterminal DC links and systems; series, parallel and series parallel systems, their operation and control.

## Unit IV: FACTS Introduction

The concept of flexible AC transmission - reactive power control in electrical power transmission lines, uncompensated transmission line – series and shunt compensation. Overview of FACTS devices - Static Var Compensator (SVC) – Thyristor Switched Series capacitor (TCSC) – Unified Power Flow controller (UPFC).

## Unit V: 7 lecture hours

control

COMPENSATOR (SVC), THYRISTOR CONTROLLED SERIES CAPACITOR(TCSC) And Static Synchronous Compensator (STATCOM): advantages of slope in dynamic characteristics, influence of SVC on system voltage. Applications: enhancement of transient stability and steady state, power transfer.

by

**STATIC** 

VAR

Unit VI: Recent Technologies

Recent trends and technologies using in HVDC.

#### Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name	of	The	Electrical and Hybrid vehicle				
Course							
Course	Code		BEE02T5003				
Prerequisite							
Corequisite							
Antirequisite							
				L	T	P	C
				3	0	0	3

## Course Objectives:

- 3. To understand the electrical vehicle
- 4. To understand the hybrid vehicle

#### Course Outcomes

CO1 Understand basics of battery technology.

CO2 Understand scheme of HEV and full electric vehicle.

CO3 Analyse need of different motor drives for electric vehicle.

CO4 Apply new topologies to electric vehicle.

CO5 Evaluate performance parameters of electric vehicle.

CO6 Understand recent industrial power electronic applications for electric vehicle.

## Text Books:

- 1. Sandeep Dharmeja, Electric Vehicle Battery Systems, 1st Edition, Newnes, 2001
- 2. K.T.Chau, Zheng Wang, Chaos in Electrical Drive Systems: Analysis, Control & Applications, 1st Edition, John Wiley and Sons, 2011

#### Reference Books:

- 1. Chung Chow Chan, K.T.Chau, Modern Electric Vehicle Technology, 1st Edition, Oxford University Press, 2001
- 2. Springer Books, Electrical Vehicle Integration into Modern Power Networks
- 3. A.T.P.So George C.Barney waterstones.com, International Journal of Elevator Engineering, United Kingdom
- 4. John Lowry, John Wiley and Sons, Electrical Vehicle Technology Explained-James Larminie, 1st Edition, 2003

Unit I: Introduction to Electric Vehicles
Electric vehicles (EV) development, past, present and future, comparison with IC engine driven vehicles.
Unit II: Storage Units

Batteries, fuel cells, ultracapacitors. Power converters in EV. Different types of motors used in EV and their torque-speed characteristics, motor control techniques,

## Unit III: Vehicle Control

High performance and efficiency-optimized control, sensorless control. Electric vehicles modeling and their Characteristics.

## Unit IV: Electric drive-trains

Basic concept of electric traction - introduction to various electric drive-train topologies - power flow control in electric drive-train topologies - fuel efficiency analysis

## Unit V: Hybrid Electric Vehicle

Fuel cell Vehicles, Hybrid Electric Vehicles (HEV), series, parallel and series-parallel (split) systems,

## Unit VI: Recent Technologies

Recent industrial power electronic applications. Advanced topic on the subject

## Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	Marks
20	30	50	100

Name of The	Power System Deregulation				
Course					
Course Code	BTEE4009				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

## Course Objectives:

- 3. To understand the restructuring of electrical power systems
- 4. To understand the marketing in power sector

## Course Outcomes

CO1	To	provide in	-dept	h understandi	ing
	of operation of			deregula	ted
	elect	ricity marke	tems.		
CO2	To	Understand	the	Fundamentals	of
	Econ	nomics			

CO3	To examine topical issues in electrici ty markets and how these are handle d world-wide in various markets.
CO4	To train the students to analyze various types of electricity market operational and control issues under congestion management.
CO5	To understand the operation of ancillary
CO6	To learn different pricing mechanism and power trading in restructured power system

## Text Book (s)

- 1. L.Philipson and H. Lee Willis, "Understanding Electric Utilities and Deregulation", Marcel Dekker 1998
- 2. Kankar Bhattacharya , Math Bollen and J.E. Daadler, "Operation of restructured Power Systems," Kluwer 2001
- 3. M. Shahidepour and M. Alomoush, "Restructured Electrical Power Systems", Marcel Dekker 2001
- 4. Steven Stoft, "Power System Economics: Designing Markets for Electricity", IEEE Press 2002
- 5. Ashikur Bhuiya, "Power System Deregulation: Loss Sharing in Bilateral Contracts and Generator Profit Maximization", VDM Publishing 2008
- 6. Daniel S. Kirschen, Goran Strbac, "Fundamentals of Power System Economics", WILEY 2004

## Unit I: Restructuring Of Power Industry:

An Introduction: Introduction, reasons and objectives of restructuring/ deregulation of power industry, restructuring process, issues involved in restructuring/ deregulation.

#### Unit II: Fundamentals of Economics

Introduction, consumer behavior, supplier behavior, market equilibrium, short-run and longrun costs, various costs of production, perfectly competitive market

Unit III: Philosphy of market models:9 lecture hours

Introduction to philosophy of market models, market models based on contractual arrangements, comparison of various market models, electricity as a commodity market architecture

Unit IV: Transmission congestion management: 10 lecture hours

Introduction. classification congestion management methods, calculation of atc (available transfer capability), non-market methods, nodal inter-zonal/ intra-zonal congestion pricing, management, price area congestion management, capacity alleviation method

Unit V: Electricity market evolution:8 lecture hours US and European electricity market evolution, PJM, NEMMCO. ERCOT, **NORDIC** Markets. comparison of power markets, towards standard market design (SMD)

Unit VI: Reforms in Indian power sector:7 lecture hours

Introduction, framework for Indian power sector, reform initiatives in India, The Electricity Act 2003, availability based tariff (ABT), open access issues, power exchange

#### Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	IVIAIKS
20	30	50	100

Name of The	High Voltage	Eng	inee	ring	
Course					
Course Code	BEE02T3005				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

## Course Objectives

- 1. The course imparts knowledge about voltage break down of solid, liquid and gaseous materials used in electrical engineering field.
- 2. Students will learn generation of high voltages and currents.
- 3. Students will learn the measurement and testing of high voltages and currents.

## Course Outcomes

CO1	Understand the significance high voltage
	engineering and its implementation in
	power System

CO2	Overcome upon the challenges associated				
	with generation and measurement of high				
	voltages and currents				
CO3	To analyze Generation of High Voltages				
	and Currents drivers and its benefits.				
CO4	To analyze measurement of High Voltages				
	and Currents drivers and its benefits				
CO5	Understand about Non-Destructive				
	Testing Sources.				
CO6	Understand about the High Voltage				
	Testing.				

Testing of insulators and bushings, testing of isolators and circuit breakers, testing of cables, testing of transformers, testing of surge arresters, radio interference measurements.

## Suggested Reading

- 1. M. S. Naidu and V. Kamaraju, "High Voltage Engineering, Tata Mc-Graw Hill
- 2. Subir Ray,' An Introduction to High Voltage Engineering' Prentice Hall of India.
- 3. E. Kuffel and W. S. Zacngal, High Voltage Engineering", Pergamon Press.

- 4. M. P. Chaurasia , "High Voltage Engineering", Khanna Publishers.
- 5. R. S. Jha, "High Voltage Engineering", DhanpatRai& sons.

#### Continuous Assessment Pattern

Internal	Mid Term	End	Total Marks
Assessment	Exam	Term	IVIarks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

## **Basket- (Energy Engineering)**

Name of The	Energy	Ass	essn	nent	8	and
Course	Audit					
Course Code	BTEE4011					
Pre-requisite						
Co-requisite						
Anti-requisite						
			L	T	P	С
			3	0	0	3

## Course Objectives:

- 1. To have an overview of energy audit.
- 2. To understand the need of energy assessment.

## Course Outcomes

CO1	To prepare the students for successful career in the energy industry; energy regulation and management agencies; and in the academic and R &D institutions.
CO2	Toproducegraduatesstronginenergyresources, technologiesandmanagementfundamentals,an dcapablein addressing the present and potential future energy problems
CO3	To produce energy professionals, who are sensitive to, and well aware of, the energy issues and concerns and who can apply their specialized knowledge for the sustainable energy management.
CO4	Acquaintance with conservation of energy and its management.

	Identify the source of conservation of energy and energy planning, and energy economics.
CO6	Know-How of energy efficient machinery systems, energy losses and their management

## Text Book (s)

Albert Thumann, Handbook of energy engineering ,"AbeBooks ,1979

JamesWilsonBrownandShirleyHansen,,,Inv estmentGradeEnergyAudit",Gordan&Breac hScain Publishers,November2000

Endreni, J., "Reliability modelling in Electric Power System" John Wiley, 1980.

#### Reference Book (s)

Roy Billinton and Ronald Allan Pitam: Reliability Evaluation of Power Systems, 1996

Wheel Wright and Makridakis: Forecasting methods and Applications, John Wiley, 1992.

#### Course Content:

Unit I: Energy Auditing
Introduction, Scope of Energy Audit, Types of
Energy Audit, Detailed Energy Audit
Methodology, Implementing Energy Efficiency
Measures, Detailed Project Report (DPR),
Measurement & Verification.

## **Unit II: Electrical System**

Introduction, Main Components of Electrical System, Load Management, Power Factor, Electricity Tariff, Distribution Transformers, Voltage Drop Survey, Cable Losses, Inverter/UPS, Power Quality, Energy Auditing ApproachforElectricalDistributionSystemandTra nsformers,ENCONOpportunitiesinElectricalSyst em.

## Unit III: Electrical Motors

Introduction, Types of Motors, Selection of an Electrical Motor, Motor Loading, Energy Efficiency Motors, Power Factor Correction for Motors, Avoiding Idle Running of Motors, Efficient Belt Drives, Application of Variable Frequency Drive (VFD), Effect of Power Supply Quality on Motors

## Unit IV: Pumping system-1

Introduction, PumpPerformanceCurves, SystemCurve, PumpPerformanceAssessment, Flow, Balance, Control Valve Operation (Throtiling), By-pass Valve Operation, Optimum Pipe Sizing, Impeller Trimming, Reducing Number of Stages, Variable Speed Operation,.

## Unit V: Pumping System-2

Energy Auditing & Approach for Pumping System, ENCON

Opportunities in Pumping System, Demoof Energy Efficiency Practices in Pump Laboratory

Unit VI: Air Handling and Distribution System 7 lecture hours

Introduction, Ducting System Design, Fan Discharge and Inlet System, Filter Losses, Coil Losses, Fan Efficiency, ExcessAirFlow,ConstantAirVolume(CAV)versus VariableAirVolume(VAV),AirDistributionandBa lancing, Fresh Air Control, Energy Auditing Approach in Air Handling & Distribution System,

#### Continuous Assessment Pattern

Internal Assessment	Mid Term Exam	End Term Exam	Total
(IA)	(MTE)	(ETE)	Marks
20	30	50	100

Name of The	Utilization	of	El	ectri	cal
Course	Energy & Traction System				
Course Code	BTEE5102				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	С
		3	0	0	3

## Course Objectives:

- 3. To develop the lighting schemes.
- 4. To develop the analytical skills for electric heating.

#### **Course Outcomes**

CO1	Understand with the process and
	application of electrical energy utilization
	system
CO2	Identify effective electrical system with
	various applications prospective.
CO3	Analyse effective control scheme with
	different electrical appliances.
CO4	Solve problems in the subject of utilization
	of electrical energy and traction system.
CO5	Design an effective control structure and
	save energy in utilization of electrical
	energy and traction system.
CO6	Understand the advancement in in traction
	system

#### Text Book (s)

- 1. H. Pratab. "Art & Science of Electric Energy's" Dhanpat Rai & Sons.
- 2. G.K. Dubey, "Fundamentals of electric drives" Narosa Publishing house

#### Reference Book (s)

- 1. Pratab."Modern electric traction" Dhanpat Rai & Sons. □
- 2. C.L. Wadhwa,"Generation, Distribution and Utilization of Electrical Energy, "New Age International Publishers.

#### Course Content:

## Unit I: ELECTRIC HEATING

Advantage & methods of electric heating, resistance heating, electric arc heating, induction heating, dielectric heating.

## Unit II: ELECTRIC WELDING 9 lecture hours

Electric arc welding, electric resistance welding, electric welding control, electrolyte process: principle of electro deposition, laws of electrolysis, application of electrolysis.

## Unit III: ILLUMINATION

### 10 lecture hours

Various definition, laws of Illumination, requirement of good lighting, design of indoor lighting & outdoor lighting system, refrigeration system, domestic

refrigerator, water cooler, types of air conditioning, window air conditioner.

## Unit IV : ELECTRIC TRACTION – I 8 lecture hours

Types of electric traction, system of track electrification, traction mechanics-types of services, speed time curve and its simplification, average and schedule speeds, tractive effort specific energy consumption, mechanics of train movement,

coefficient of adhesion and its influence.

Unit V: ELECTRIC TRACTION – II 7 lecture hours Salient features of traction drives, series-parallel control of dc traction drives (bridge traction) and energy saving, power electronic control of dc & ac traction drives, diesel electric traction.

Unit VI: Recent Trends

Recent advancement in traction system

#### Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	Marks
20	30	50	100

Name of The	Power electronics application				
Course	in renewable energy				
Course Code	BEE03T5010				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	С
3 0 0 3				3	

#### Course Objectives:

To provide knowledge about various renewable energy technologies, their potential and applications Course Outcomes

#### Text Books:

- 1. Title Power Electronics Hand book Author Rashid .M. H Publisher Academic press Edition 2001 and Reprints
- 2. Title Non-conventional energy sources Author Rai. G.D Publisher Khanna publishes Edition 1993 and Reprints
- 3. Title Solar energy utilization Author Rai. G.D Publisher Khanna publishes Edition 1993 and Reprints

#### Reference Books:

1. Title Wind energy system Author Gray, L. Johnson Publisher prentice hall linc Edition 1995 and Reprints 161

2. Title Non-conventional Energy sources Author B.H.Khan Publisher Tata McGraw-hill Publishing Company, New Delhi Edition 2nd Edition

## Unit I: Introduction:

Environmental aspects of electric energy conversion: impacts of renewable energy generation on environment (cost-GHG Emission) - Qualitative study of different renewable energy resources: Solar, wind, ocean, Biomass, Fuel cell, Hydrogen energy systems and hybrid renewable energy systems.

Unit II: Electrical Machines for Renewable Energy Conversion:

Review of reference theory fundamentals-principle of operation and analysis: IG, PMSG, SCIG and DFIG.

## Unit III : Power Converters :

Solar: Block diagram of solar photo voltaic system - Principle of operation: line commutated converters (inversion-mode) - Boost and buck-boost converters-selection Of inverter, battery sizing, array sizing. Wind: three phase AC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers, PWM Inverters, Grid Interactive Inverters-matrix converters.

## Unit IV : Analysis of Wind Energy Systems :

Stand alone operation of fixed and variable speed wind energy conversion systems and solar system-Grid connection Issues -Grid integrated PMSG and SCIG Based WECS Grid Integrated solar system

Unit V: Analysis of PV Systems

solar system-Grid connection Issues -Grid integrated, Wind and PV solar hybrid system

Unit VI: Hybrid Renewable Energy Systems:

Need for Hybrid SystemsRange and type of Hybrid systems- Case studies of Wind-PV Maximum Power Point Tracking (MPPT).

#### Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	Marks
20	30	50	100

Name of	The	Special Electr	ical	Mac	chine	es
Course						
Course Code		BTEE5202				
Prerequisite						
Corequisite						
Antirequisite						
			L	T	P	С
			3	0	0	3

Course Objectives:

- 3. To understand the various machines
- 4. To understand the concept of special electrical machines and applications

#### Course Outcomes

CO1	Apply the knowledge of Commutator
	motors and circuits analysis of FHP
	Universal Commutator motors
CO2	Make use of application of the BLDC
	Motors with industries and day to day life
CO3	Analysis the demanding and appropriate
	drive performance for the Stepper motor.
CO4	Analysis the numerical problems
	associated with FHP Synchronous Motors
CO5	Test and estimate the parameter of the
	Special machine. Analysis the demanding
	and appropriate drive performance for the
	specific purpose.
CO6	Test and estimate the parameter of the
	LIM.

## Text Book (s)

- 1. P.C. Sen, "Principles of Electric Machines and Power Electronics", 2nd Edition, Wiley India Ltd. 2007
- 2. E. Openshaw Taylor, "The Performance and Design of AC Commutator Motors", Wheeler Publishing, 1997
- 3. R. Krishnan, "Switched Reluctance Motor Drives", 1st Edition, CRC Press. 2001

## Unit I: FHP Universal Commutator motors:

Principle of operation and performance characteristics of universal commutator motor without and with compensating windings, phasor diagrams and expressions for power and torque, speed-torque characteristics with DC and AC excitations.

## Unit II: Introduction to Brushless DC Motor Drives (BLDC)

Salient features of various permanent magnet materials- B-H- Loop and demagnetization characteristics, Comparison of BLDC Vs conventional, BLDC Vs Synchronous motor, BLDC Vs induction motor. Operating principle of BLDC- Principle of hall sensor - unipolar BLDC and Bi-polar BLDC.

## Unit III: Stepper motors:

Introduction, Multi-stack variable-reluctance stepping motors, Principles of operation, Aspects of design, Single stack variable-reluctance stepping motors, Hybrid stepping motors, Comparison of motor types, design of drive circuits, torque/rotor position characteristics.

## Unit IV: Servomotors:

DC and AC servomotors, transfer function analysis, Synchronous

## Unit V: Switched Motor Reluctance Drives

Introduction, Poles, phase and windings, Static torque production, Partition of energy and effects of saturation, Dynamic torque production, Converter circuits, Current regulation, Commutation, torque – speed characteristics, Shaft position sensing.

#### Unit VI: Linear Induction motors

Basic principle of operation and types. Field analysis & Propulsion force; equivalent circuit

## Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	Marks
20	30	50	100

Name of The	Electrical Design, Estima	ati	on	an	d
Course	Energy Audit				
Course Code	BEE02T4001				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

Energy Audit is the key to a systematic approach for decision-making in the area of energy management. The effective use of energy to maximize profits (minimize costs) and enhance competitive positions, it is necessary to conserve energy. Hence it is necessary to study energy auditing methods and energy saving opportunities in electrical system.

## **Course Objectives**

On completion of the following units of syllabus contents, the students must be able to

- Draw conventional symbols for various electricalinstallations.
- To quote the relevant IE rules for a given electrical installation, earthing and clearance of service lines.

- Familiarize the types of wiring.
- List the points to be considered for selectionwiring.
- Determine the size of wire for internal wiring.
- Explain the necessity and types of earthing.
- Estimate the quantity of materials required forearthing.
- Differentiate between neutral and earthwire.
- Estimate the quantity of materials required for domestic and industrialwiring.
- Explain the concept and types of Energy of energyaudit.
- Explain the energy saving opportunities in Transformer, Induction motor, lighting and DGsystem.
- Explain the roll of power factor controller in energy savingsystem.
- Explain the roll of sensors in energy savingsystem.
- Explain the energy efficient technologies in electrical system.

## Course Outcomes

CO1	Identification of different types of
	electrical symbols, need of earthing and
	various electrical wiring systems
CO2	Illustrate the estimation of components
	required for Industrial and Domestic
	application
CO3	Understand energy audit and energy
	management system
CO4	Identify the types of tariff that are benefit
	for consumers and methods of improving
	power factor
CO5	Understand different technologies used
	for Energy efficient Technologies in
	Electrical System

## Text Books:

- K.B.Raina& S.K.Battacharya, Electrical Design Estimating And Costing, New age International
- 2. General Aspect Of Energy Management And Energy Audit, Bureau of energy efficiency, New Delhi
- 3. Energy Efficiency In Electrical Utilities, ,Bureau of energy efficiency, New Delhi

#### Reference books:

- 3. Surjit Singh, Electrical Design Estimating and Costing, Dhanpat Rai & Company
- 4. Surjit Singh, Electrical Engineering Design and Drawing, Dhanpat Rai & Company

#### **Syllabus**

Unit-I	System	of	Internal	8 Hours
	Wiring a	and E	arthing	

Need of electrical symbols – List of symbols – Brief study of important Indian Electricity Rules 1956 - Methods of representation for wiring diagrams – Looping back system and Joint box system and tree system of wiring - Types of internal wiring – Service connection (Overhead and Underground) - Protection of electrical installation against overload, short circuit and earth fault – protection against electric shock – Effects of electric shock – Recommended first aid for electric shock - Treatment for electric shock - Construction and working of ELCB – Overview of Busbar, Trunking and Cable tray.

Necessity – General requirements of Earthing – Earthing and Soil Resistivity – Earth electrodes – Methods of earthing - Plate earthing - Pipe earthing - Rod earthing – Soil Resistivity – Methods of improving earth resistance - Size of earth continuity conductor - Difference between Neutral and Earth Wires.

Safety signs showing type of PPE to be worn, Prohibition Signs, Warning Signs, Mandatory Signs, Advisory or Safe ConditionSigns.

Unit-II	Domestic	and	8 Hours
	Industrial Esti	mation	

General requirements of electrical installations for Residential, Commercial and Industrial – Lighting and power sub- circuits – Diversity factor for sub circuits - Location of outlets, control switches, main board and distribution boards – Permissible voltage drops and size of wires - Steps to be followed in preparing electrical estimate.

Estimate the quantity of material required in Electrical Installation for

- 7. Small residential building/Flat
- **8.** Factory Lightingscheme
- 9. Computer centre having 10 computers, a/c unit, UPS, light and fan.
- 10. Street Light service having 12 lamp lightfitting
- 11. Workshop with one number of  $3\Phi$ , 15hp induction motor.

8 Hours

12. Small Workshop with 3 or 4Machines.

Energy Audit

Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-Understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies,

Unit-III

Optimizing the input energy requirements, Fuel					
and	energy	substitution,	Energy	audit	
Instru	iments.				

Unit-IV	Energy Management	8 Hours
	of Electrical System	

Electricity billing, Electrical load management and maximum demand control, Power factor improvement and its benefit, Selection and location of capacitors, Performance assessment of PF capacitors, Distribution and transformer losses.

Unit-V	Energy	efficient	8 Hours
	Technologie	es in	
	Electrical Sy	ystem	

Maximum demand controllers, Automatic power factor controllers, Energy efficient motors, Soft starters with energy saver, Variable speed drives, Energy efficient transformers, Electronic ballast, Occupancy sensors, Energy efficient lighting controls, Energy saving potential of each technology.

## Basket-4 (IOT)

Name of	The	Automation and Robotics				
Course						
Course Code		BEE03T50	02			
Prerequisite		Control Sys	stem	.S		
Co-requisite						
Anti-requisite						
			L	T	P	С
			3	0	0	3

## **Course Objectives**

1. To identify potential areas for automation and justify need for automation.

#### Course Outcomes

CO1	Select suitable major control components required to automate a process or an activity
CO2	Study the various parts of robots and fields of robotics.
CO3	Understand the fundamentals of automated assembly systems
CO4	Study the various kinematics and inverse kinematics of robots.
CO5	Study the control of robots for some specific applications.
CO6	Design real time robotics systems.

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	-	50	100

#### Course Content:

Unit I:	Introduction	8 Hours

Basic elements of an automated system, advanced automation functions, levels of automation, process industries versus discrete manufacturing industries, continuous versus discrete control, computer process control. Hardware components for automation and process control, sensors, actuators, analog to digital converters, digital to analog converters, input/output devices for discrete data.

Unit II: Automated Production lines 1 8
Hours

Fundamentals of automated production lines, application of automated production lines, analysis of transfer lines, automated assembly systems,

Unit III: Automated Production lines 2

Fundamentals of automated assembly systems, quantitative analysis of assembly systems, automatic identification methods, barcode technology, radio frequency identification, other AIDC technologies

Unit IV: Industrial Robotics 8 Hours

Robotic configuration, robot anatomy and related attributes, robot control systems, end effectors, sensors in robotics, industrial robot applications, robot accuracy and repeatability, different types of robotics, various generations of robots, degrees of freedom — Asimov's laws of robotics dynamic stabilization of robots.

Unit V: Spatial descriptions and transformations8 Hours

Positions, orientations, and frames. Mappings: Changing descriptions from frame to frame. Operators: translations. rotations and transformations. transformation arithmetic transform equations, transformation of free computational vectors considerations. manipulator Kinematics, link description, linkconnection description, actuator space joint space and Cartesian space

Unit VI: Robot programming 8 Hours

Introduction, levels of robot programming, requirements of robot programming language, problems pertaining to robot programming

languages, offline programming systems, central issues in OLP systems, automating subtasks in OLP systems, simple programs on robot applications

## Suggested Reading

- 1. Automation, Production systems, and computer integrated manufacturing-MikellP.Groover 3rd edition, Pearson 2009
- 2. Industrial Robotics-Groover, Weiss, Nagel, McGraw Hill International, 2nd edition, 2012