GALGOTIAS UNIVERSITY

Email: <u>admissions@galgotiasuniversity.edu.in</u> Website: www.galgotiasuniversity.edu.in

COURSE BOOK

School of Electrical, Electronics and Communication Engineering -2019 Volume-1

Curriculum and syllabus for School of Electrical, Electronics and Communication

CONTENTS

1.	B. Tech Electronics and communication engineering	2
2.	B.Tech. Electrical Engineering	63
3.	B. Tech in Electrical & Electronics Engineering	
4.	M. Tech VLSI Design	
5.	M. Tech. Communication Engineering	

Program: B. Tech Electronics and communication engineering

Scheme: 2019-2020

Semester 1 **Assessment Pattern** SI. Course Name of the Course Code С MTE No L Т Р IA ETE Mathematics-I (Multivariable **BMA101 Calculus**) **Exploration with CAS-I BMA151** -**BHS101 Professional Communication** -**Fundamentals of Computer BCS101** Programming **Fundamentals of Computer BCS151 Programming Lab - 1 BPH101 Engineering Physics Engineering Physics Lab BPH151 Elements of Mechanical BME101** Engineering **BME151 Workshop Practice** -Total Semester II SI Course **Assessment Pattern** Name of the Course Т Р С No Code L IA MTE ETE Mathematics-I (Matrices and **BMA201 Differential Equations**) **BMA251 Exploration with CAS-II** -**BHS251 Professional Communication Lab** -**Fundamentals of Computer BCS251** _ **Programming Lab - 2 BOC251 Engineering Clinic-1** -**BLE101 Psychology and Sociology BCH101 Engineering Chemistry BCH151 Engineering Chemistry Lab Basic Electrical and Electronics BEC101** Engineering **Basic Electrical and Electronics BEC151** -**Engineering Lab** Total Semester III SI Course **Assessment Pattern** Name of the Course Т No Code L Р С IA MTE ETE **MATH200 Functions of Complex Variables** and Transforms **BECE2010 Digital Electronics BECE2012 Electromagnetic Field Theory BECE2015 Electronics Devices and Circuits Network Analysis and Synthesis BTEE2002 BEE01T20 Sensors and Transducers BEE01T20 Design and Engineering**

Curriculum

								-		
8	ENVS1004	ENERGY AND ENVIRONMENTAL SCIENCE	2	0	0	o	50	-	50	
9	BECE2011	Digital Electronics Lab	0	0	2	1	50	-	50	
10	SLBT2021	English Proficiency and Aptitude Building - 3	0	0	4	2	50	-	50	
11	BEE01P20 03	Engineering Clinic-I	0	0	2	2	50	-	50	
12	BEE01P20		2	0	0		20	50	100	
	04	IoT Lab				2		20	100	
	Total 22 0 8 25									
CI	C	Semester IV	, 				A	4 T		
Sl No	Course Code	Name of the Course	L	Т	Р	C	Asse IA	ssment H MTE	ETE	
		20	50							
1	Processes								100	
2	BEC407	Integrated Circuits	3	0	0	3	20	50	100	
3	BEC408	Electromagnetic Field Theory	3	0	0	3	20	50	100	
4	BEC409	Analog and Digital Communication	3	0	0	3	20	50	100	
5	BEC410	Computer Architecture and Organization	3	0	0	3	20	50	100	
6	BEC411	Microprocessors and Micro- Controllers	3	0	0	3	20	50	100	
7	BOC451	Engineering Clinic-4	0	0	2	1	50	-	50	
8	BEC455	Integrated Circuits Lab	0	0	2	1	50	-	50	
9	BLL452	Logical and Critical Reasoning	0	0	2	1	50	-	50	
10	BEC456	Microprocessor and Micro Controller Lab	0	0	2	1	50	-	50	
		Total	18	0	8	22				
		Semester V		-	-	1				
Sl	Course						Asse	ssment I	Pattern	
No	Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE	
1	BEC501	Control Systems	3	0	0	3	20	50	100	
2	BEC502	EM Waves	3	0	0	3	20	50	100	
3	BEC503	Object Oriented Programming and Data Structures	3	0	0	3	20	50	100	
4	BEC504	Digital Signal Processing	3	0	0	3	20	50	100	
5	· •	Program Elective-I	3	0	0	3	20	50	100	
6	BSB501	Engineering Economics and Management	3	0	0	3	20	50	100	
7	BOC551	Engineering Clinic-5	0	0	2	1	50	-	50	
8	BLL551	Effective Leadership and Decision Making Skills	0	0	2	1	50	-	50	
9	BEC551	Digital Signal Processing Lab	0	0	2	1	50	-	50	
10	BEC552	Communication Engineering Lab	0	0	2	1	50	-	50	
11	BEC553	Industrial Internship	0	0	0	1	50	-	50	
		Total	18	0	8	23				
		Semester V		•			•	•		
Sl	Course						Asse	ssment H	Pattern	
No	Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE	
1	BLL601	Campus to Corporate program	3	0	0	3	50	-	50	
2	BEC602	Computer Networks	3	0	0	3	20	50	100	
3	BEC603	VLSI Design	3	0	0	3	20	50	100	

	4BHS601Professional Ethics and Human20022050100												
4	BHS601	Values	2	0	0	2	20	50	100				
5		Program Elective-II	3	0	0	3	20	50	100				
6		Program Elective-III	3	0	0	3	20	50	100				
7		Open Elective -1	3	0	0	3	20	50	100				
8	BEC654	Computer Network Lab	0	0	2	1	50	-	50				
9	BEC655	Design and Innovation Project	0	0	2	1	50	-	50				
10	BLE601/ BLE602/ BLE603	Foreign Language - 1 (German, Japanese, French) *Optional0020						-	50				
		Total 20 0 6											
		Semester VI	Ι				•						
Sl	Nome of the Course												
No	Code L T P C							MTE	ETE				
1	BEC701	Embedded Systems	3	0	0	3	20	50	100				
2		Program Elective-IV	3	0	0	3	20	50	100				
3		Program Elective-V	3	0	0	3	20	50	100				
4		Open Elective-2	3	0	0	3	20	50	100				
5	BEC702	Advance Communication Systems	3	0	0	3	20	50	100				
6	BEC751	VLSI and Embedded Systems Lab	0	0	2	1	50	-	50				
7	BEC752	Industrial Internship	0	0	0	1	50	-	50				
8	BEC753	Technical Seminar	0	0	2	1	50	-	50				
9	BEC754	Capstone Design - I	0	0	10	5	50	-	50				
10	BLE701 / BLE702 / BLE 703	Foreign Language - 2 (German, Japanese, French) *Optional	0	0	2	0 50 - 50							
Total 15 0 16 23													
		Semester VI	II										
Sl	Course	Name of the Course					Assessment Pattern						
No	Code	Code L T P C		С	IA	MTE	ETE						
1	BEC801	Capstone Design - II	0	0	18	9	50	-	50				
		Total	0	0	18	9							

List of Electives

Basket-1

Sl	Course	Name of the Electives					Asses	sment Pa	attern
No	Code		L	Т	P	С	IA	MTE	ETE
1	EEC501	Automation and Robotics	3	0	0	3	20	50	100
2	EEC502	Satellite Communication	3	0	0	3	20	50	100
3	EEC503	MEMS	3	0	0	3	20	50	100
5	EEC504	Digital System Design using VHDL	3	0	0	3	20	50	100

Basket-2

Sl	Course	Name of the Elective					Assessment Pattern		
No	Code		L	Т	Р	С	IA	MTE	ETE
1	EEC505	Principles of Secure Communication	3	0	0	3	20	50	100
2	EEC506	Neural Networks and Fuzzy Control	3	0	0	3	20	50	100

3	EEC507	Wireless Sensor Networks	3	0	0	3	20	50	100
4	EEC508	Nano Science and Technology	3	0	0	3	20	50	100
5	EEC509	Mobile Ad Hoc Networks	3	0	0	3	20	50	100

Basket-3

Sl	Course	Name of the Elective					Assess	sment Pa	ment Pattern		
No	Code		L	Т	Р	С	IA	MTE	ETE		
1	EEC510	Digital Image Processing	3	0	0	3	20	50	100		
2	EEC511	Information Theory and Coding	3	0	0	3	20	50	100		
3	EEC512	Modern Digital Signal Processing	3	0	0	3	20	50	100		
4	EEC513	ASIC Design and FPGA	3	0	0	3	20	50	100		

Basket-4

Sl	Course	Name of the Elective					Assessment Pattern			
No	Code		L	Т	Р	С	IA	MTE	ETE	
1	EEC514	Soft Computing	3	0	0	3	20	50	100	
2	EEC515	Mobile Computing	3	0	0	3	20	50	100	
3	EEC516	Microwave Engineering	3	0	0	3	20	50	100	
4	EEC517	Biomedical engineering	3	0	0	3	20	50	100	
5	EEC518	Radar Guidance and Navigation	3	0	0	3	20	50	100	

Basket-5

Sl	Course	Name of the Elective					Assessment Pattern			
No	Code		L	Т	Р	С	IA	MTE	ETE	
1	EEC520	Introduction to IoT and its	3	0	0	3	20	50	100	
		Applications								
2	EEC521	Optical Communication	3	0	0	3	20	50	100	
3	EEC522	Mixed Signal Circuit Design	3	0	0	3	20	50	100	
4	EEC523	Audio Visual Engineering	3	0	0	3	20	50	100	
5	EEC524	PLC/SCADA	3	0	0	3	20	50	100	

		List of Open elective (Engineering cour	ses)	Pro	pose	ed			
		Basket 1							
Sl.No.	CourseCode	CourseTitle					Ass	essment P	attern
			L	Т	P	С	IA	MTE	ETE
1	BOE601	Human Computer Interface	3	0	0	3	20	50	100
2	BOE602	Introduction to cyber Physical Systems	3	0	0	3	20	50	100
3	BOE603	Selected Topics in Signal Processing	3	0	0	3	20	50	100
4	BOE604	Selected Topics in Communication Engineering	3	0	0	3	20	50	100
5	BOE605	Autonomous Vehicles	3	0	0	3	20	50	100
6	BOE606	Data Science	3	0	0	3	20	50	100
7	BOE607	Computer Vision	3	0	0	3	20	50	100
8	BOE608	Artificial Intelligence	3	0	0	3	20	50	100
9	BOE609	Cyber Security	3	0	0	3	20	50	100

10 BOE610 Energy Management 3 0 0 3 20 50 100 11 BOE611 Estimation and Costing 3 0 0 3 20 50 100 12 BOE612 Data Envelopment Analysis 3 0 0 3 20 50 100 13 BOE613 Operation Management 3 0 0 3 20 50 100 14 BOE614 Construction Engineering 3 0 0 3 20 50 100 16 BOE616 Bioinformatics 3 0 0 3 20 50 100 16 BOE701 Remote Sensing and GIS 3 0 0 3 20 50 100 2 BOE703 Sensors & Actuators 3 0 0 3 20 50 100 3 BOE704 IoT and Smart Cities 3 0 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>										
12 BOE612 Data Envelopment Analysis 3 0 0 3 20 50 100 13 BOE613 Operation Management 3 0 0 3 20 50 100 14 BOE614 Construction Engineering 3 0 0 3 20 50 100 16 BOE615 Disaster Management 3 0 0 3 20 50 100 16 BOE616 Bioinformatics 3 0 0 3 20 50 100 2 BOE701 Remote Sensing and GIS 3 0 0 3 20 50 100 3 BOE702 Automotive Electronics 3 0 0 3 20 50 100 3 BOE703 Sensors & Actuators 3 0 0 3 20 50 100 4 BOE704 IoT and Smart Cities 3 0 <t< td=""><td>10</td><td>BOE610</td><td>Energy Management</td><td>3</td><td>0</td><td>0</td><td>3</td><td>20</td><td>50</td><td>100</td></t<>	10	BOE610	Energy Management	3	0	0	3	20	50	100
13 BOE613 Operation Management 3 0 0 3 20 50 100 14 BOE614 Construction Engineering 3 0 0 3 20 50 100 16 BOE615 Disaster Management 3 0 0 3 20 50 100 16 BOE616 Bioinformatics 3 0 0 3 20 50 100 16 BOE701 Remote Sensing and GIS 3 0 0 3 20 50 100 2 BOE702 Automotive Electronics 3 0 0 3 20 50 100 3 BOE703 Sensors & Actuators 3 0 0 3 20 50 100 4 BOE704 IoT and Smart Cities 3 0 0 3 20 50 100 5 BOE705 Web Design and Management 3 0 0 3 20 50 100 6 BOE706 Principles of	11	BOE611	Estimation and Costing	3	0	0	3	20	50	100
14 BOE614 Construction Engineering 3 0 0 3 20 50 100 16 BOE615 Disaster Management 3 0 0 3 20 50 100 16 BOE616 Bioinformatics 3 0 0 3 20 50 100 16 BOE701 Remote Sensing and GIS 3 0 0 3 20 50 100 2 BOE702 Automotive Electronics 3 0 0 3 20 50 100 3 BOE703 Sensors & Actuators 3 0 0 3 20 50 100 4 BOE704 IoT and Smart Cities 3 0 0 3 20 50 100 5 BOE705 Web Design and Management 3 0 0 3 20 50 100 6 BOE706 Principles of Telemedicine 3 0	12	BOE612	Data Envelopment Analysis	3	0	0	3	20	50	100
16 BOE615 Disaster Management 3 0 0 3 20 50 100 16 BOE616 Bioinformatics 3 0 0 3 20 50 100 16 BOE616 Bioinformatics 3 0 0 3 20 50 100 2 BOE701 Remote Sensing and GIS 3 0 0 3 20 50 100 2 BOE702 Automotive Electronics 3 0 0 3 20 50 100 3 BOE703 Sensors & Actuators 3 0 0 3 20 50 100 4 BOE704 IoT and Smart Cities 3 0 0 3 20 50 100 5 BOE705 Web Design and Management 3 0 0 3 20 50 100 7 BOE707 Mobile Application Development 3 0	13	BOE613	Operation Management	3	0	0	3	20	50	100
16 BOE616 Bioinformatics 3 0 0 3 20 50 100 Basket-2 1 BOE701 Remote Sensing and GIS 3 0 0 3 20 50 100 2 BOE702 Automotive Electronics 3 0 0 3 20 50 100 3 BOE703 Sensors & Actuators 3 0 0 3 20 50 100 4 BOE704 IoT and Smart Cities 3 0 0 3 20 50 100 5 BOE705 Web Design and Management 3 0 0 3 20 50 100 6 BOE706 Principles of Telemedicine 3 0 0 3 20 50 100 7 BOE707 Mobile Application Development 3 0 0 3 20 50 100 8 BOE709 Cloud Co	14	BOE614	Construction Engineering	3	0	0	3	20	50	100
Basket-2 1 BOE701 Remote Sensing and GIS 3 0 0 3 20 50 100 2 BOE702 Automotive Electronics 3 0 0 3 20 50 100 3 BOE703 Sensors & Actuators 3 0 0 3 20 50 100 4 BOE704 IoT and Smart Cities 3 0 0 3 20 50 100 5 BOE705 Web Design and Management 3 0 0 3 20 50 100 6 BOE706 Principles of Telemedicine 3 0 0 3 20 50 100 7 BOE707 Mobile Application Development 3 0 0 3 20 50 100 8 BOE709 Cloud Computing 3 0 0 3 20 50 100 10 BOE710 Block C	16	BOE615	Disaster Management	3	0	0	3	20	50	100
1 BOE701 Remote Sensing and GIS 3 0 0 3 20 50 100 2 BOE702 Automotive Electronics 3 0 0 3 20 50 100 3 BOE703 Sensors & Actuators 3 0 0 3 20 50 100 4 BOE704 IoT and Smart Cities 3 0 0 3 20 50 100 5 BOE705 Web Design and Management 3 0 0 3 20 50 100 6 BOE706 Principles of Telemedicine 3 0 0 3 20 50 100 7 BOE707 Mobile Application Development 3 0 0 3 20 50 100 8 BOE708 Business Analytics 3 0 0 3 20 50 100 9 BOE709 Cloud Computing 3 0 0 3 20 50 100 11 BOE711 Augme	16	BOE616	Bioinformatics	3	0	0	3	20	50	100
2 BOE702 Automotive Electronics 3 0 0 3 20 50 100 3 BOE703 Sensors & Actuators 3 0 0 3 20 50 100 4 BOE704 IoT and Smart Cities 3 0 0 3 20 50 100 5 BOE705 Web Design and Management 3 0 0 3 20 50 100 6 BOE706 Principles of Telemedicine 3 0 0 3 20 50 100 7 BOE707 Mobile Application Development 3 0 0 3 20 50 100 8 BOE708 Business Analytics 3 0 0 3 20 50 100 9 BOE709 Cloud Computing 3 0 0 3 20 50 100 10 BOE710 Block Chain 3 0 0 3 20 50 100 11 BOE712 Digital Forensi			Basket-2					•		
3 BOE703 Sensors & Actuators 3 0 0 3 20 50 100 4 BOE704 IoT and Smart Cities 3 0 0 3 20 50 100 5 BOE705 Web Design and Management 3 0 0 3 20 50 100 6 BOE706 Principles of Telemedicine 3 0 0 3 20 50 100 7 BOE707 Mobile Application Development 3 0 0 3 20 50 100 8 BOE708 Business Analytics 3 0 0 3 20 50 100 9 BOE709 Cloud Computing 3 0 0 3 20 50 100 10 BOE710 Block Chain 3 0 0 3 20 50 100 11 BOE711 Augmented / Virtual Reality 3 0 0 3 20 50 100 12 BOE712 Digital F	1	BOE701	Remote Sensing and GIS	3	0	0	3	20	50	100
4 BOE704 IoT and Smart Cities 3 0 0 3 20 50 100 5 BOE705 Web Design and Management 3 0 0 3 20 50 100 6 BOE706 Principles of Telemedicine 3 0 0 3 20 50 100 7 BOE707 Mobile Application Development 3 0 0 3 20 50 100 8 BOE708 Business Analytics 3 0 0 3 20 50 100 9 BOE709 Cloud Computing 3 0 0 3 20 50 100 10 BOE710 Block Chain 3 0 0 3 20 50 100 11 BOE712 Digital Forensics 3 0 0 3 20 50 100 12 BOE712 Digital Forensics 3 0 0 3 20 50 100 13 BOE713 Operations Research<	2	BOE702	Automotive Electronics	3	0	0	3	20	50	100
5 BOE705 Web Design and Management 3 0 0 3 20 50 100 6 BOE706 Principles of Telemedicine 3 0 0 3 20 50 100 7 BOE707 Mobile Application Development 3 0 0 3 20 50 100 8 BOE708 Business Analytics 3 0 0 3 20 50 100 9 BOE709 Cloud Computing 3 0 0 3 20 50 100 10 BOE710 Block Chain 3 0 0 3 20 50 100 11 BOE711 Augmented / Virtual Reality 3 0 0 3 20 50 100 12 BOE712 Digital Forensics 3 0 0 3 20 50 100 13 BOE713 Operations Research 3 0 0 3 20 50 100 14 BOE715 Interior D	3	BOE703	Sensors & Actuators	3	0	0	3	20	50	100
6BOE706Principles of Telemedicine300320501007BOE707Mobile Application Development300320501008BOE708Business Analytics300320501009BOE709Cloud Computing3003205010010BOE710Block Chain3003205010011BOE711Augmented / Virtual Reality3003205010012BOE712Digital Forensics3003205010013BOE714Renewable Energy3003205010014BOE715Interior Design3003205010016BOE716Landscaping30032050100	4	BOE704	IoT and Smart Cities	3	0	0	3	20	50	100
7BOE707Mobile Application Development300320501008BOE708Business Analytics300320501009BOE709Cloud Computing3003205010010BOE710Block Chain3003205010011BOE711Augmented / Virtual Reality3003205010012BOE712Digital Forensics3003205010013BOE713Operations Research3003205010014BOE714Renewable Energy3003205010015BOE716Landscaping30032050100	5	BOE705	Web Design and Management	3	0	0	3	20	50	100
8 BOE708 Business Analytics 3 0 0 3 20 50 100 9 BOE709 Cloud Computing 3 0 0 3 20 50 100 10 BOE710 Block Chain 3 0 0 3 20 50 100 11 BOE711 Augmented / Virtual Reality 3 0 0 3 20 50 100 12 BOE712 Digital Forensics 3 0 0 3 20 50 100 13 BOE713 Operations Research 3 0 0 3 20 50 100 14 BOE714 Renewable Energy 3 0 0 3 20 50 100 15 BOE716 Landscaping 3 0 0 3 20 50 100	6	BOE706	Principles of Telemedicine	3	0	0	3	20	50	100
9BOE709Cloud Computing3003205010010BOE710Block Chain3003205010011BOE711Augmented / Virtual Reality3003205010012BOE712Digital Forensics3003205010013BOE713Operations Research3003205010014BOE714Renewable Energy3003205010015BOE715Interior Design3003205010016BOE716Landscaping30032050100	7	BOE707	Mobile Application Development	3	0	0	3	20	50	100
10 BOE710 Block Chain 3 0 0 3 20 50 100 11 BOE711 Augmented / Virtual Reality 3 0 0 3 20 50 100 12 BOE712 Digital Forensics 3 0 0 3 20 50 100 13 BOE713 Operations Research 3 0 0 3 20 50 100 14 BOE715 Interior Design 3 0 0 3 20 50 100 15 BOE715 Interior Design 3 0 0 3 20 50 100 16 BOE716 Landscaping 3 0 0 3 20 50 100	8	BOE708	Business Analytics	3	0	0	3	20	50	100
11BOE711Augmented / Virtual Reality3003205010012BOE712Digital Forensics3003205010013BOE713Operations Research3003205010014BOE714Renewable Energy3003205010015BOE715Interior Design3003205010016BOE716Landscaping30032050100	9	BOE709	Cloud Computing	3	0	0	3	20	50	100
12 BOE712 Digital Forensics 3 0 0 3 20 50 100 13 BOE713 Operations Research 3 0 0 3 20 50 100 14 BOE714 Renewable Energy 3 0 0 3 20 50 100 15 BOE715 Interior Design 3 0 0 3 20 50 100 16 BOE716 Landscaping 3 0 0 3 20 50 100	10	BOE710	Block Chain	3	0	0	3	20	50	100
13BOE713Operations Research3003205010014BOE714Renewable Energy3003205010015BOE715Interior Design3003205010016BOE716Landscaping30032050100	11	BOE711	Augmented / Virtual Reality	3	0	0	3	20	50	100
14 BOE714 Renewable Energy 3 0 0 3 20 50 100 15 BOE715 Interior Design 3 0 0 3 20 50 100 16 BOE716 Landscaping 3 0 0 3 20 50 100	12	BOE712	Digital Forensics	3	0	0	3	20	50	100
15 BOE715 Interior Design 3 0 0 3 20 50 100 16 BOE716 Landscaping 3 0 0 3 20 50 100	13	BOE713	Operations Research	3	0	0	3	20	50	100
16 BOE716 Landscaping 3 0 0 3 20 50 100	14	BOE714	Renewable Energy	3	0	0	3	20	50	100
	15	BOE715	Interior Design	3	0	0	3	20	50	100
17 BOE717 Biology for Engineers 3 0 0 3 20 50 100	16	BOE716	Landscaping	3	0	0	3	20	50	100
	17	BOE717	Biology for Engineers	3	0	0	3	20	50	100

Name of The Course	Basic Electrical and Electronics Engineering				
Course Code	BEC101				
Prerequisite	Physics, Modern Physics				
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

To acquaint the students with the construction, theory and operation of the basic electronic devices such as PN junction diode, Bipolar and Field effect Transistors, Power control devices, LED, LCD and other Optoelectronic devices

Course Outcomes

CO1	Apply fundamental laws to analyze DC Circuits.
CO2	Outline the AC source and analyze the steady staeresponse of RL, RC and RLC phasors.
CO3	Summerize the Digital Number Systemand Boolean Algebra with small combinational circuit design.
CO4	Illustrate the operation and charecteristics of PN Junction Diode, BJT with application
CO5	Demonstrate the commonly used Sensors and Transducers and their applications

Text Books

- 1. D.P. Kothari and I.J. Nagrath, "Basic Electrical Engineering", Tata McGraw-Hill
- 2. V.Mittle, ArvindMittle, "Basic Electrical Engineering", McGraw Hill
- 3. Robert L.Boylestad, Louis Nashelsky, "Electronic Devices and Circuit Theory
- 4. A.P.Malvino, Donald Leach, "Digital Principles and Applications", Tata McGraw-Hill
- 5. D.Patranabi, "Sensors and Transducers", PHI

Reference Books

- 1. D.C.Kulshreshtha,"Basic Electrical Engineering", Tata McGraw Hill
- 2. J. Edminister and M. Nahvi, "Electric Circuits", 3rd Edition, Tata McGraw-Hill
- 3. Jacob Millman, Christos C.Halkias, SatyabrataJit, "Electronics Devices and Circuits", Tata McGraw Hill
- 4. Morris Mano, "Digital Computer Design", PHI

Unit I: Analysis of DC Circuit	8 Hours			
Ohm's law, Series and Parallel Cir	rcuits, Current and Voltage division, Kirchoff's Law			
(KCL&KVL), Star-Delta Transforma	tion, Nodal Analysis.			
Unit II: Analysis of AC Circuits	8 Hours			
Alternating signals, Derivation of Root Mean Square (RMS) value, Average value, Peak or				
crest factor, Form factor				

Phasor representation of Pure Resistive, Pure Inductive,	Pure Capacitive, R-L Series, R-C
Series and R-L-C Series Circuits. Concept of lagging and le	eading power factor. Inductive and
Capacitive reactance, CalculationofAC power.	
Unit III: Digital Systems	9 Hours
Number System : Decimal form, Binary form, Octal form,	Hexadecimal form and their
interconversions	
Logic Gates : Basic logic gates and Universal gates. Realization	tion of basic gates using Universal
gates.	
Combinational logic circuitsdesign :Boolean algebra, De-M	organ's law, SOP and POS form,
Minimisationof logic circuits using Karnaugh Map. Design	of Half adder and Full adder
Unit IV: Semiconductor Devices	8 Hours
Semiconductor: Intrinsic & Extrinsic Semiconductor	s, PN Junction Diode – V-I
Charecteristics of normal and ideal diode. Zener diode and i	ts application as Voltage regulator,
Avalanche and Zener breakdown	
Diode Applications:Half Wave& Full Wave rectifiers, Filte	ers
Bipolar Junction Transistor (BJT): Construction and wo	rking of BJT. Characteristics and
uses of Common Emitter (CE) Configurations	
Unit V: Transducers and Sensors	4 Hours
Sensors and Transducers Definitions, Crieteria to choose	a sensor, Basic requirements of a
Sensor and Transducer, Classification of Sensors, Common	nly used Sensors and Transducers,
Analogue and Digital Sensors	

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Semester III

Name of The	Electronic Devi	ces a	nd C	rcuits
Course				
Course Code	BECE2015			
Prerequisite				
Co-requisite				
Anti-requisite				
	L	, T	Р	С
	3	0	0	3

Course Objectives

To acquaint the students with the construction, theory and operation of the basic electronic devices such as PN junction diode, Bipolar and Field effect Transistors, Power control devices, LED, LCD and other Optoelectronic devices

Course Outcomes

CO1	Realize the transistor biasing methods and Design analog electronic circuits using discrete		
	components		
CO2	Design common amplifier circuits and analyze the amplitude and frequency responses		
CO3	Design various analog circuits to analyze their responses		

CO4	Understand the principle of operation of different Oscillator circuits.
CO5	Understand the principle of operation of various amplifier circuits
CO6	Understand the recent trends and practical applications of electronic devices

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit-1 Introduction 8 hours
BJT and BJT Biasing .Hybrid models of CE, CB, CC, configurations – Study of the effect of emitter by- pass
condenser at low frequencies - Hybrid – π common emitter transistor model – hybrid π conductance and
apacitance – CE short circuit current gain – current gain with resistive load – gain bandwidth product – Study
of the effect of un bypassed emitter resister on amplifier performance, Cascode amplifier. HF & LF
ompensation of RC coupled amplifier. Multistage Amplifiers.
Jnit-2FET and FET Biasing8 hours
ET and FET Biasing. FET Amplifiers: Common source, Common gate and Common drain Amplifiers -
problems. Small signal analysis of FET Amplifiers. High Frequency analysis of FET Amplifiers, VMOS &
CMOS Concepts.
Jnit-3Feedback amplifiers 8 hours
The feedback concept - Transfer gain with feedback - general characteristics and advantages of negative
eedback-analysis of voltage series, Voltage shunt, current series and current shunt feedback amplifiers - Study
of the effect of Negative feedback on Gain, Bandwidth, Noise, Distortion, Input and Output impedances with
he help of Block Schematic and Mathematical Expressions
Jnit-4Oscillators 8 hours
Sinusoidal oscillators - phase shift oscillator - Wien bridge oscillator - Hartley oscillator - Colpits oscillator -
requency stability, inclusive of design, Crystal oscillators.
Jnit-5Tuned amplifiers 8 hours
Characteristics of Tuned amplifiers – Analysis of Single tuned, Doubled tuned and stagger tuned amplifiers,
Gain – bandwidth product – High frequency effect – neutralization. Power Amplifiers: Classification of
mplifiers – class A large signal amplifiers – second harmonic distortion – higher order harmonic generations
- computation of Harmonic distortion – Transformer coupled audio power amplifier – efficiency – push - pull
mplifier - class B amplifier - class AB operation - Push-Pull circuit with Transistors of Complimentary
Symmetry.
Jnit-6 Recent trends and Application 8 hours
Frend of Energy Saving in Electronic Devices, Application of oscillators- springs and damping, shock absorber
n cars, Pendulum

Suggested Reading

- 1. 1.Jacob. Millman, Christos C.Halkias, 'Electronic Devices and Circuits', Tata McGraw Hill Publishing Limited, New Delhi, 2008, ISBN 0070634556, 9780070634558.
- 2. Jacob Millman and C. Halkias, 'Integrated Electronics Analog and Digital Circuits and Systems', Tata Mc Graw Hill, 2001, ISBN 0074622455, 9780074622452
- 3. Electronic Devices & Circuits Theory Robert Boylestad and Louis Nashelsky, 10th EditionPrentice Hall, 2009, ISBN 0135026490, 9780135026496

Name of The	Network Analysis and Synthesis				
Course					
Course Code	BTEE2002				
Prerequisite	Basic Electrical and Electronics Engineering				
Co-requisite					
Anti-requisite					
	L T P C				
	3 0 0 3				

Course Objectives

- 1. To learn the concepts of network analysis in electrical and electronics engineering.
- 2. To learn linear circuit analysis, graph theory and network theorems.
- 3. Analyze two port networks using Z, Y, ABCD and h parameters.

Course Outcomes

CO1	Apply the knowledge of graph theory with basic circuital laws and simplify the network using reduction techniques
CO2	Analyze the circuit using Kirchhoff's law and Network simplification theorems
CO3	Infer and evaluate transient response, Steady state response, network functions
CO4	Evaluate two-port network parameters and explain the inter-relationship among parameters for
	network analysis.
CO5	Synthesize one port network using Foster and Cauer Forms and
CO6	Examine active filter configurations for possible applications in network theory.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Unit-1GraphTheory	6 hours		
•	ions, tree, co tree , link, basic loop and basic cu		
	x Duality, Loop and Nodal methods of analysis.		
	Applications to ac networks)	9 hours	
Super-position theorem, T	Thevenin's theorem, Norton's theorem, max	ximum power transfer	
theorem, Reciprocity theore	em. Millman'stheorem, compensation theore	m, Tellegen's theorem.	
Unit-3Network Functions a	nd Transient analysis	11 hours	
Transform Impedances Net	Transform Impedances Network functions of one port and two port networks, concept of poles		
and zeros, properties of dri	iving point and transfer functions, time resp	onse and stability from	
pole zero plot, transient ana	alysis of ac & dc systems.		
Unit-4Two Port Networks		10	
hours			
Characterization of LTI t	wo port networks ZY, ABCD and h param	neters, reciprocity and	
symmetry. Inter-relationshi	ips between the parameters, inter-connection	s of two port networks,	
Т & П Representation.		_	
Unit-5Network Synthesis &	z Filters	9	
hours			

Positive real function; definition and properties; properties of LC, RC and RL driving point functions, synthesis of LC, RC and RL driving point immittance functions using Foster and Cauer first and second forms. Image parameters and characteristics impedance,

Unit-6 Filters

Passive and active filter fundamentals, low pass, high pass, (constant K type) filters, and introduction to active filters.

Suggested Reading

1. M. E. Van Valkenburg, "Network Analysis", Prentice Hall, 2006.

2. D. Roy Choudhury, "Networks and Systems", New Age International Publications, 1998.

3. W. H. Hayt and J. E. Kemmerly, "Engineering Circuit Analysis", McGraw Hill Education, 2013.

4. C. K. Alexander and M. N. O. Sadiku, "Electric Circuits", McGraw Hill Education, 2004.

5. K. V. V. Murthy and M. S. Kamath, "Basic Circuit Analysis", Jaico Publishers, 1999. A. Chakrabarti, "Circuit Theory" DhanpatRai& Co

Name of The Course	Sensors and Transducers
Course Code	BEE01T2001
Prerequisite	
Co-requisite	
Anti-requisite	
	L T P C
	3 0 0 3

Course Objectives

- **1.** To make students familiar with the constructions and working principle of different types of sensors and transducers.
- 2. To gain an in-depth understanding of the operation of microcontrollers, machine language programming & interfacing techniques with peripheral devices
- **3.** To gain an understanding of applications of microcontroller in designing processor-based automated electronics system.

Course Outcomes

CO1	Apply network theorems for the analysis of electrical circuits
CO2	Obtain the transient response of electrical circuits
CO3	Obtain the steady-state response of electrical circuits
CO4	Analyze circuits in the sinusoidal steady-state (single-phase and three-phase).
CO5	Analyze two port circuit behavior.
CO6	Analyze the sensors used in IoT applications

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

UNIT-I: TRANSDUCERS

8-HOURS

Introduction to transducer, classification and characteristics of transducers, Resistive Transducers: principle of resistive strain gauge, signal conditioning circuit, Displacement Transducers: L.V.D.T, applications. Temperature Transducers: resistance temperature detectors (RTD), thermocouple. pressure transducers: diaphragm pressure transducer.

UNIT-II: SENSORS 8-HOURS

Introduction to sensors, classification, difference between transducer and sensors, Radiation Sensors: LDR, photodiodes - construction and response. Capacitive Sensor : stretched diaphragm type – microphone - construction and characteristics, ultrasonic sensor, optical sensor, magnetic sensor, sensor interface: signal processing ,introduction to smart sensor.

UNIT-III: MICROCONTROLLER 8-HOURS

Introduction to single chip microcontrollers, 8051-architecture –instruction sets, addressing modes, memory organizations, assembly language programming, programming interrupts, timers and serial communication.

UNIT-IV: IOT & EMBEDDED SYSTEM 8-HOURS

Introduction to IoT, physical design of IoT, logical design of IoT- functional blocks of IoT, challenges in IoT. introduction to embedded system ,difference between CISC and RISC Architecture, embedded system design methodologies, embedded controller design for communication, digital control.

UNIT-V: INTERFACING

8-HOURS

Sensors interfacing with embedded controller, ADC, DAC, LCD, weather monitoring system, water monitoring system, line follower robot ,distance sensor interface .

UNIT-VI Sensor used in industry for IoT Application Development 6 hrs

Temperature Sensor, Proximity sensos, Water Quality sensors, Gas Sensors, Smoke sensors, IR sensors, Motion Detection sensors

Suggested Reading

- 1. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation' Dhanpat Rai and Co 2004.
- 2. D.V.S.Murty ,Transducers and instrumentations , 2nd edition, Prentice Hall of India, 2012.
- 3. Mohammad Ali Mazidi and Janice Gillispie Maszidi "The 8051 Microcontroller and Embedded Systems" Pearson education, 2003, ISBN- 9788131710265, 2ndEdition
- 4. D. Patranabis, Sensors and Transducers, 2nd edition, Prentice Hall of India, 2010. E.A.
- 5. Microcontrollers: Architecture, Programming, Interfacing and System Design", Raj Kamal, "Pearson Education, 2005.
- **6.** "The 8051 Microcontroller Architecture, Programming & Applications", 2e Kenneth .Ayala ;, Penram International, 1996 / Thomson Learning 2005.

Name of The	Design and Engineering
Course	
Course Code	BEE01T2002
Prerequisite	

Co-requisite				
Anti-requisite				
	L	Т	Р	С
	3	0	0	3

Course Objectives

1. To excite the student on creative design and its significance;

2. To make the student aware of the processes involved in design;

3. To make the student understand the interesting interaction of various segments of humanities, sciences and engineering in the evolution of a design;

4. To get an exposure as to how to engineer a design.

Course Outcomes

CO1	Realize the different elements involved in good engineering designs and apply them in practice when called for.
CO2	Explain the product oriented and user oriented aspects that make the design a success.
CO3	Implement innovative designs incorporating different segments of knowledge gained.
CO4	Analyse the existing resources and select the apt resources and modern design tools.
CO5	Illustrate the perspective of design covering function, cost, environmental sensitivity, safety and other factors other than engineering analysis.
CO6	Explain the Engineering Design created proficiently to the society.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Unit-1 Introduction	8 hours
Design and its objectives; Design constraints, Design	n functions, Design means and Design from; Role of
Science, Engineering and Technology in design; Engine	eering as a business proposition; Functional and Strength
Designs. Design form, function and strength;	
Unit-2Design process 8 hours	
Design process- Different stages in design and their s	ignificance; Defining the design space; Analogies and
"thinking outside of the box"; Quality function deployn	ment-meeting what the customer wants; Evaluation and
choosing of a design.	
Unit-3Prototyping8 hours	
Prototyping- rapid prototyping; testing and evaluation	of design; Design modifications; Freezing the design;
Cost analysis. Engineering the Design - from protot	ype to product; Planning, Scheduling, Supply chains,
Inventory, handling, manufacturing/ construction of	perations; storage, packaging, shipping, marketing,
feedback on design.	
Unit-4 Design Attributes	8 hours
Product Centered and User Centered design, Product	centered attributes and user centered attributes; Value
engineering, concurrent engineering and reverse engine	eering in design; Culture based Design.
Unit-5 Modular Design	8 hours
Modular Design, design optimization, Intelligent and	autonomous products, User interfaces, communication
between products; autonomous products, internet of thin	ngs; human psychology and the advanced products. IPR,
product liability.	
Unit–6 Technology Trends in Engineering Design	8 Hours
Introduction: Digital Twins, Artificial Intelligence, Rol	botics, 3D Printing, Generative Design

Suggested Reading

- 1. Balmer, R. T., Keat, W. D., Wise, G., and Kosky, P., Exploring Engineering, Third Edition: An Introduction to Engineering and Design [Part 3 Chapters 17 to 27], ISBN-13: 978-0124158917 ISBN-10: 0124158919
- 2. Dym, C. L., Little, P. and Orwin, E. J., Engineering Design A Project based introduction- Wiley, ISBN-978-1-118-32458-5
- **3.** Eastman, C. M. (Ed.), Design for X Concurrent engineering imperatives, 1996, ISBN 978-94-011-3985-4 Springer

Name of The	Digital Electronics
Course	
Course Code	BECE2010
Prerequisite	
Co-requisite	
Anti-requisite	
	L T P C
	3 0 0 3

Course Objectives

- 1. To present the Digital fundamentals, Boolean algebra and its applications in digital systems
- 2. To familiarize with the design of various combinational digital circuits using logic gates
- 3. To introduce the analysis and design procedures for synchronous and asynchronous sequential circuits
- 4. To explain the various semiconductor memories and related technology
- 5. To introduce the electronic circuits involved in the making of logic gates

Course Outcomes

CO1	Design and analyze combinational logic circuits
CO2	Design & analyze modular combinational circuits with MUX/DEMUX, Decoder, Encoder
CO3	Understand Logic Families and Design memories
CO4	Design & analyze synchronous sequential logic circuits
CO5	Use HDL & appropriate EDA tools for digital logic design and simulation
CO6	Design application specific simple digital circuits.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit-1 Introduction	
---------------------	--

8 hours

Logic Simplification and Combinational Logic Design: Review of Boolean Algebra and De Morgan's Theorem, SOP & POS forms, Canonical forms, Karnaugh maps up to 6 variables, Binary codes, Code Conversion. Engineering

Unit-2MSI devices	8 hours	
· · · · · · · · · · · · · · · · · · ·	exers, Encoder, Decoder, Driver & Multiplexed Display, Half and Adders, BCD Adder, Barrel shifter and ALU.	d Full
Unit-3Sequential Logic Design	8 hours	
and Synchronous counters, Shift regis	cks like S-R, JK and Master-Slave JK FF, Edge triggered FF, Rip ers, Finite state machines, Design of synchronous FSM, Algorithr hronous circuits like Pulse train generator, Pseudo Random Binar	mic
Unit-4Logic Families and Semicondu	tor Memories 8 hours	
delay, fan-in, fan-out, Tristate TTL, E	mories: TTL NAND gate, Specifications, Noise margin, Propaga CL, CMOS families and their interfacing, Memory elements, Con- GA. Logic implementation using Programmable Devices.	
Unit-5 VLSI Design flow	8 hours	
· ·	matic, FSM & HDL, different modeling styles in VHDL, Data ty Structural Modeling, Synthesis and Simulation VHDL constructs circuits.	•
Unit 6		

Design and Implementation of Application specific digital circuits. Introduction of Microprocessors.

Suggested Reading

1. R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009.

2. Douglas "VHDL", Tata McGraw Hill, 4th edition, 2002. Perry, 3. W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd edition ,2006. "Digital Systems", Tata 4. D.V. Hall, Circuits and McGraw Hill, 1989 5. Charles Roth, "Digital System Design using VHDL", Tata McGraw Hill 2nd edition 2012.

Name of The Course	Electromagnetic Field Theory
Course Code	BECE2012
Prerequisite	Physics
Corequisite	Physics
Antirequisite	
	L T P C

Course Objectives:

• To gain conceptual and basic mathematical understanding of electric and magnetic fields in free space and in materials

- To understand the coupling between electric and magnetic fields through Faraday's law, displacement • current and Maxwell's equations
- To understand wave propagation in lossless and in lossy media •
- To be able to solve problems based on the above concepts ٠

Course Outcomes

CO1	Apply coordinate systems and transformation techniques to solve problems on Electromagnetic
	Field Theory
CO2	Apply the concept of static electric field and solve problems on boundary value problems.
CO3	Analyze the concept of static magnetic field and solve problems using Biot - Savart's Law,
	Ampere's circuit law, Maxwell's equation.
CO4	Understands magnetic forces, magnetic dipole and magnetic boundary conditions.
CO5	Understands the time-varying Electromagnetic Field and derivation of Maxwell's equations.
CO6	Understand the applications of Electromagnetism in Daily Life.

Unit-1 Coordinate Systems and Transformation8 hours								
Coordinate Systems and Tra	Coordinate Systems and Transformation : Basics of Vectors: Addition, subtraction and multiplications;							
Cartesian, Cylindrical, Spherical transformation. Vector calculus: Differential length, area and volume,								
line surface and volume integrals, Del operator, Gradient, Divergence of a vector, Divergence theorem,								
Curl of a vector, Stokes's theorem, Laplacian of a scalar.								
Unit-2 Electrostatic fields			8 ł	nours				
Electrostatic fields: Coulom	bs law and field intensity,	Electric field du	e to ch	arge distribution, Electric				
flux density, Gausses' Law	v- Maxwell's equation, E	Electric dipole an	nd flux	line, Energy density in				
electrostatic fields, Electric	field in material space: Pr	operties of mater	rials, co	onvection and conduction				
currents, conductors, polariz	ation in dielectrics, Dielec	tric-constants, Co	ontinui	ty equation and relaxation				
time, boundary conditions,	Electrostatic boundary val	ue problems: Poi	sson's	and Laplace's equations.,				
Methods of Images.								
Unit-3Magneto statics		8	hours					
Magneto statics : Magneto-s	static fields, Biot - Savart's	s Law, Ampere's	circuit	law, Maxwell's equation,				
Application of ampere's law	v, Magnetic flux density- N	Aaxwell's equation	on, Ma	xwell's equation for static				
fields, magnetic scalar and	vector potential.							
Unit-4Magnetic forces		8 hou	rs					
Magnetic forces: Materials	and devices, Forces due to	magnetic field,	Magne	etic torque and moment, a				
magnetic dipole. Magnetiza	tion in materials, Magnetic	boundary condi	tions, I	nductors and inductances,				
Magnetic energy.								
Unit-5Time-varying Fields8	3 hours							
Time-varying Fields: Maxy	well's equation, Faraday'	s Law, transform	ner and	d motional electromotive				
forces, Displacement currer	nt, Maxwell's equation in a	final form, Power	r and th	ne pointing vector. Basics				
of Transmission lines.								
Unit-6 Applications of Elec	Unit-6 Applications of Electromagnetism 6 hrs							
Household Application, Industrial Application, Magnetic Levitation Trains, Communication System,								
medical Systems								
Continuous Assessment Pattern								
Internal Assessment (IA)	Mid Term Test (MTE)	End Term (ETE)	Test	Total Marks				

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test		Total Marks
		(ETE)		
20	30	50		100

Suggested Reading

- 1. Principles of Electromagnetics N. O. Sadiku, Oxford University Press Inc
- 2. Engineering Electromagnetics W H Hayt, J A Buck, McGraw Hill Education
- 3. Electromagnetic Waves, R.K. Shevgaonkar, Tata McGraw Hill India, 2005
- **4.** Electromagnetics with Applications, Kraus and Fleish, Edition McGraw Hill International Editions, Fifth Edition, 1999

Name of The	Digital Electronics Lab
Course	
Course Code	BECE2011
Prerequisite	
Co-requisite	
Anti-requisite	
	L T P C
	0 0 2 1

Course Objectives

Students will learn and understand the Basics of digital electronics and able to design basic logic circuits, combinational and sequential circuits.

Course Outcomes

CO1	Understanding of Digital Binary System and implementation of Gates
CO2	Design the Sequential circuits with the help of combinational circuits and feedback element
CO3	Design data selector circuits with the help of universal Gates
CO4	Design the flip –flop and counters.
CO5	Design the counters with the help of sequential circuit and basic Gates.
CO6	Implement the projects using the digital ICs and electronics components

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

1. Introduction to digital electronics lab- nomenclature of digital ICs, specifications, study of the data sheet, Concept of Vcc and ground, verification of the truth tables of logic gates using TTL ICs.

- 2. Implementation of the given Boolean function using logic gates in both SOP and POS forms.
- 3. Verification of state tables of RS, JK, T and D flip-flops using NAND & NOR gates.
- 4. Implementation and verification of Decoder using logic gates.
- 5. Implementation and verification of Encoder using logic gates.
- 6. Implementation of 4:1 multiplexer using logic gates.
- 7. Implementation of 1:4 demultiplexer using logic gates.
- 8. Implementation of 4-bit parallel adder using 7483 IC.
- 9. Design, and verify the 4-bit synchronous counter.

10. Design, and verify the 4-bit asynchronous counter.

11. Implementation of Mini Project using digital integrated circuits and other components.

Name of The	Engineering Clinic	-I			
Course					
Course Code	BEE01P2003				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives

- **1.** To study basic electronic components
- 2. To observe characteristics of electronic devices

Course Outcomes

CO1	Plot the characteristics of semiconductor diodes and transistors to understand their behaviour.
CO2	Design, construct and test amplifier circuits and interpret the results
CO3	Operate electronic test equipment and hardware tools to characterize the behaviour of devices and circuits
CO4	Operate electronic test equipment and software tools to characterize the behaviour of devices and circuits
CO5	Design and test the Diode clippers, clampers and rectifiers.

Continuous Assessment Pattern

Internal Assessment (IA)	IA)Mid Term Exam (MTE)End Term Exam (ETE)		Total Marks		
50	-	50	100		

List of Experiments:

- 1. Study of Instruments and components
- 2. V-I Characteristics of Si and Ge Diodes
- 3. Zener Diode Characteristics and Zener Diode as Voltage Regulator
- 4. Clippers and clampers
- 5. Half Wave and Full Wave Rectifiers
- 6. BJT Characteristics
- 7. FET Characteristics
- 8. BJT Biasing
- 9. FET Biasing
- 10. BJT as an Amplifier

11. UJT characteristics

Name of The	IoT Lab				
Course					
Course Code	BEE01P2004				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		0	0	2	2

Course Objectives

1.To create an environment for research, design, development and testing of IoT solutions, in the field of energy management, communication systems, distributed sensor devices and advanced user interfaces

2.To provide a large-scale IoT system for the collection of information from the environment and its transfer to a server, as well as the skills necessary for the development of control logics, processing and display of data

3.To this end, IoT Laboratory is equipped with devices for the monitoring of energy consumption of electrical appliances, sensors for the monitoring of environmental parameters such as temperature and humidity and the communication infrastructure necessary to deliver the acquired information to a server

Course Outcomes

CO1	Investigate a variety of emerging devices and technologies such as smart sensing, pervasive connectivity, virtual interfaces & ubiquitous computing and their potential applications in consumer, retail, healthcare and industrial contexts
CO2	Collaborate on research with industry partners to address significant and complex challenges surrounding IoT technologies and applications
CO3	This may be used as a platform for conducting consultancy work required by government/Private organizations in around NCR
CO4	Enable faculty learning, research and hands-on experimentation to discover and demonstrate the promise of the Internet of Things
CO5	Provide students unique interdisciplinary learning and innovation experiences with IoT technologies

Continuous Assessment Pattern

Internal Assessment (IA)	Assessment (IA) Mid Term Exam (MTE)		Total Marks	
50	-	50	100	

List of Experiments:

- 1. Exercise on Eclipse IoT Project.
- 2. Experiments on few Eclipse IoT Projects.
- 3. Any Experiment on architecture of Iot Toolkit.
- 4. Exercise on smart object API Gateway service reference implementation in IoT Toolkit.
- 5. Experiment on HTTP-to-CoAP semantic mapping Proxy in IoT Toolkit.

- 6. Experiment on Gate way as a service deployment in IoT Toolkit.
- 7. Experiment on application framework and embedded software agents for IoT Toolkit.
- 8. Exercise on working principle of Rasberry Pi.
- 9. Experiment on connectivity of Rasberry Pi with existing system components.

Semester IV

Name of The Course	Integrated Circuits				
Course Code	BECE2008				
Prerequisite	Analog electronics				
Corequisite	Analog electronics				
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 1. To introduce the basic building blocks of linear integrated circuits
- 2. To learn the linear and non-linear applications of operational amplifiers
- **3.** To introduce the theory and applications of analog multipliers and PLL
- **4.** To learn the theory of ADC and DAC
- 5. To introduce the concepts of waveform generation and introduce some special function ICs

Course Outcomes

CO1	Illustrate the AC, DC characteristics and compensation techniques of Operational Amplifier
CO2	Realize the applications of Operational Amplifiers
CO3	Clarify and Analyze the working of Analog Multipliers and PLL
CO4	Classify and realize the working principle of various converter circuits using Op-Amps
CO5	Demonstrate the function of various signal generators and Waveform Shaping Circuits
CO6	Analyse the performance of Operational Amplifier Circuits.

Course Content:

Unit-1 Introduction	8 hours
Analysis of difference amplifiers, Monolithic IC operational amplifiers, specificatio	ns, frequency
response of op-amp,, slew rate and methods of improving slew rate, Linear and Non	linear Circuits
using operational amplifiers and their analysis, Inverting and Non inverting Amplifi	ers.
Unit-2	
Differentiator, Integrator, Voltage to Current convertor, Low pass, high pass, band p	bass filters,
comparator, Multi-vibrator and Schmitt trigger, Triangle wave generator, Precision	rectifier, Log
and Antilog amplifiers, Non-linear function generator, Sine wave Oscillators.	
Unit-3	
Analysis of four quadrant and variable trans-conductance multipliers, Voltage contra	olled Oscillator,
Closed loop analysis of PLL, Frequency synthesizers, Compander ICs.	
Unit-4	
Analog switches, High speed sample and hold circuits and sample and hold IC's, Ty	pes of D/A
converter- Current driven DAC, Switches for DAC, A/D converter, Flash, Single slo	ope, Dual slope,

Successive approximation, Voltage to Time and Voltage to frequency converters.

Unit-5

Wave shaping circuits, Multivibrator- Monostable&Bistable, Schmitt Trigger circuits, IC 555 Timer, Application of IC 555, Switched capacitor filter, Frequency to Voltage converters. Unit 6 Voltage to Frequency converters, Audio Power amplifier, Video Amplifier, Isolation Amplifier,

Optocouplers and fibre optic IC.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Suggested Reading

- 1. Sergio Franco, " Design with operational amplifiers and analog integrated circuits ", McGraw Hill, 2002, ISBN 0070530440, 9780070530447
- 2. Ramakant A. Gayakwad, " OP AMP and Linear IC's ", 4th Edition, Prentice Hall, 2000, ISBN 0132808684, 9780132808682
- **3.** Botkar K.R., "Integrated Circuits ", Khanna Publishers, 1996. Taub and Schilling, "Digital Integrated Electronics ", Tata McGraw-Hill Education, 2004, ISBN 0070265089, 9780070265080
- 4. Millman J. and Halkias C.C., " Integrated Electronics ", McGraw Hill, 2001, ISBN 0074622455, 9780074622452

Name of The Course	Signals and Systems				
Course Code	BECE2016				
Prerequisite	Engineering Mathematics				
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:To understand the basic properties of signal & systems • To know the methods of characterization of LTI systems in time domain • To analyze continuous time signals and system in the Fourier and Laplace domain • To analyze discrete time signals and system in the Fourier and Z transform domain

Course Outcomes

CO1	Understand various types of signals, classify, analyze and perform various operations on
	them.
CO2	Classify the systems and realize their responses
CO3	Analyze the response of continuous time systems using Fourier transforms
CO4	Use Laplace and Z transform techniques as tool for System analysis
CO5	Analyze the continuous and discrete time system functions
CO6	Understand the application of Sampling Theorem, Multirate Signal Processing and their
	applications in real-world problems

Unit-1 Introduction	8 hours
Signals and systems as seen in everydaylife, and in various branches of engine	eering and science.
Types of signals and their representations: continuous-time/discrete-time, per	U U
even/odd, energy/power, deterministic/ random, one dimensional/ multidimension	onal; Basic Signals:
unit impulse, unit step, unit ramp, exponential, rectangular pulse, sinusoid	lal; operations on
continuous-time and discrete-time signals (including transformations of independ	lent variables)
Unit-2 Classification of Systems	8 hours
Classification, linearity, time-invariance and causality, impulse response, charac	terization of linear
time-invariant (LTI) systems, unit sample response, convolution summation,	, step response of
discrete time systems, stability, convolution integral, co-relations, signal energy a	and energy spectral
density, signal power and power spectral density, properties of power spectral den	-
Unit-3 Fourier Series and Transforms	8 hours
Continuous-time Fourier series: Periodic signals and their properties,	exponential and
trigonometric FS representation of periodic signals, convergence, FS of standar	
salient properties of Fourier series, Definition, conditions of existence of FT, pro-	
and phase spectra, Parseval's theorem, Inverse FT, Discrete time Fourier transfor	
DTFT, convergence, properties and theorems, Comparison between continuous ti	
Unit-4 Laplace Transforms and Z Transforms	8 hours
One-sided LT of some common signals, important theorems and properties of	
solutions of differential equations using LT, Bilateral LT, Regions of convergence	
and Bilateral Z-transforms, ZT of some common signals, ROC, Properties and the	eorems, solution of
difference equations using one-sided ZT, s- to z-plane mapping	
<u> </u>	8 hours
Analysis of first order and second order systems, continuous-time (CT) system	• •
system functions of CT systems, poles and zeros, block diagram representations; d	•
functions, block diagram representation, illustration of the concepts of system b	bandwidth and rise
time through the analysis of a first order CT low pass filter	
Unit VI: Multirate Signal Processing 8 hours	
Sampling and data reconstruction process, Multirate Signal Processing, Sampl	ing, Sampling rate
conversion, introduction to compressive sensing.	

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total Marks
Assessment	Test (MTE)	Test (ETE)	
(IA)			
20	30	50	100

Suggested Reading

- 1. Signals and Systems, Robert, TMH
- 2. Signals and Systems by Oppenheim &Wilsky
- 3. P. Ramakrishna Rao, 'Signal and Systems' 2008 Ed., Tata McGraw Hill, New Delhi
- 4. Linear Signals and Systems by B. P. Lathi

Name of The Course	Analog and Digital Communication
Course Code	ECE417
Prerequisite	Signals and Systems, Digital System Design

Corequisite			
Antirequisite			
	L T	Р	С
	3 0	0	3

Course Outcomes

CO1	Analyze and compare different analog modulation schemes for their efficiency and
COI	bandwidth
CO2	Analyze the behavior of a communication system in presence of noise
CO2 CO3	
	Investigate pulsed modulation system and analyze their system performance
CO4	Analyze different digital modulation schemes and can compute the bit error performance
CO5	Analyze Source and Error control coding.
CO6	Utilize multi-user radio communication
	I Introduction Review of signals and systems 8 hours
	w of signals and systems, Frequency domain representation of signals, Principles of Amplitude
	lation Systems- DSB, SSB and VSB modulations. Angle Modulation, Representation of FM
	M signals, Spectral characteristics of angle modulated signals.
	2 Probability and random process 8 hours
	w of probability and random process. Gaussian and white noise characteristics, Noise in
-	tude modulation systems, Noise in Frequency modulation systems. Pre-emphasis and
	phasis, Threshold effect in angle modulation.
	3Pulse modulation 8 hours
	modulation. Sampling process. Pulse Amplitude and Pulse code modulation (PCM), Differential
-	code modulation. Delta modulation, Noise considerations in PCM, Time Division multiplexing,
-	al Multiplexers.
	4Elements of Detection Theory 8 hours
	ents of Detection Theory, Optimum detection of signals in noise, Coherent communication with
	Forms- Probability of Error evaluations. Baseband Pulse Transmission- Inter symbol
	erence and Nyquist criterion.
	5Pass band Digital Modulation schemes 8 hours
	band Digital Modulation schemes- Phase Shift Keying, Frequency Shift Keying, Quadrature
-	itude Modulation, Continuous Phase Modulation and Minimum Shift Keying.
	al Modulation tradeoffs. Optimum demodulation of digital signals over band-limited channels.
	6 MULTI-USER RADIO COMMUNICATION 8 hrs
	nced Mobile Phone System (AMPS) - Global System for Mobile Communications (GSM) -
	division multiple access (CDMA) - Cellular Concept and Frequency Reuse - Channel
	nment and Hand - Overview of Multiple Access Schemes - Satellite Communication -
Blueto	poth.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End	Term	Test	Total Marks
		(ETE)			
20	30	50			100

Suggested Reading

1. Haykin S., "Communications Systems", John Wiley and Sons, 2001.

2. Proakis J. G. and Salehi M., "Communication Systems Engineering", Pearson Education, 2002.

3. Taub H. and Schilling D.L., "Principles of Communication Systems", Tata McGraw Hill, 2001.

4. Wozencraft J. M. and Jacobs I. M., "Principles of Communication Engineering", John

Wiley, 1965.

5. Barry J. R., Lee E. A. and Messerschmitt D. G., ``Digital Communication", Kluwer

Academic Publishers, 2004.

6. Proakis J.G., "Digital Communications", 4th Edition, McGraw Hill, 2000

Name of The Course	DataBase Management System				
Course Code	BEE01T3003				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С

Course Objectives:

The scope of the course is Database System concepts and major application areas. The objective is to understand various data models and to develop the relational model of database including the rigorous practice of query language, SQL. The emphasis is to apply the concepts to wide range of applications.

Course Outcomes

CO1	Understand the relational database theory, application of database system in real life.
CO2	Describe DBMS architecture, physical and logical database designs, database modeling,
	relational, hierarchical and network models.
CO3	Learn and apply Structured query language (SQL) for database definition and database manipulation.
CO4	Illustrate relational database theory, and be able to write relational algebra expressions for
	queries.
CO5	Demonstrate an understanding of normalization theory and apply such knowledge to the
	normalization of a database.
CO6	Illustrate the Concept of stored procedures and functions.

Unit I	Introduction:	10 Hrs		
Onit 1 Introduction: IO Hrs Introduction: An overview of database management system, database system Vs file system, Database system concept and architecture, data model schema and instances, data independence and database language and interfaces, data definitions language, DML.				

Unit II	Data Model and ER Diagram	8 Hrs
Data Modeling usi	ng the Entity Relationship Model:	
-	s, notation for ER diagram, mapping constraints, keys, Concepts of Supe Generalization, aggregation, reduction of an ER diagrams to tables, exter	-
Unit III	Relational data Model	7 Hrs
	del concepts, integrity constraints, entity integrity, referential integrity, l s, relational algebra, relational calculus, tuple and domain calculus.	Keys constraints,
Unit IV	Database Language	8 Hrs
commands. SQL of	L: Characteristics of SQL, advantage of SQL. SQL data type and literal perators and their procedure. Tables, views and indexes. Queries and suls. Insert, update and delete operations, Joins, Unions, Intersection, Minu	o queries.
Unit V	Data Base Normalization	7 Hrs
Functional depende	encies, normal forms, first, second, third normal forms, BCNF	1
Unit VI Database	modifications using SQL. 6 hrs	
	tions using SQL PL/SQL: Basic Concepts-SQL within PL/SQL- C and functions-packages-Triggers.	ursors -Concept of

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Suggested Reading

- 1. Korth, Silbertz, Sudarshan," Database Concepts", McGraw Hill
- 2. Date C J, "An Introduction to Database Systems", Addision Wesley
- 3. Elmasri, Navathe, "Fudamentals of Database Systems", Addision Wesley
- 4. O'Neil, Databases, Elsevier Pub.
- 5. Leon & Leon,"Database Management Systems", Vikas Publishing House
- 6. Bipin C. Desai, "An Introduction to Database Systems", Galgotia Publications
- 7. Majumdar & Bhattacharya, "Database Management System", TMH (14)

Name of The	Integrated Circuits Lab
Course	
Course Code	BECE2009
Prerequisite	
Co-requisite	
Anti-requisite	
	L T P C

0 0 2

Course Objectives

The student should be able to:

- 1. To acquire the basic knowledge of special function IC. At the end of the course,
- 2. Design oscillators and amplifiers using operational amplifiers.
- 3. Design filters using Opamp and perform experiment on frequency response.

Course Outcomes

CO1	To design various types of amplifier using Op-amp.	
CO2	To design waveform generation circuits.	
CO3	To design basic timer and analog and digital circuits.	
CO4	To design simple logic circuits using digital ICs	
CO5	To design various types of Analog Integated Circuits.	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

- 1. Operational Amplifiers (IC741)-Characteristics and Application.
- 2. Waveform Generation using Op-Amp (IC741).
- 3. Applications of Timer IC555.
- 4. Design of Active filters.
- 5. Study and application of PLL IC's
- 6. Design of binary adder and subtractor.
- 7. Design of counters.
- 8. Study of multiplexer and demultiplexer /decoders.
- 9. Implementation of combinational logic circuits.
- 10. Study of DAC and ADC
- 11. Op-Amp voltage Regulator- IC 723.

Name of The Course	Microprocessor and Micro Controller Lab				
Course Code	BECE3005				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		0	0	2	

Course Objectives

- 1. To expose students to the operation of typical microprocessor (8085) trainer kit.
- 2. To prepare the students to be able to solve different problems by developing different programs.
- **3.** To develop the quality of assessing and analyzing the obtained data.

Course Outcomes

CO1	Write assembly language, C and C++ programs for arithmetic operations using Pentium
COI	processor based system
CO2	Write 8051 assembly language programs to control inbuilt timer and communication
02	modules. CO3 Interface ADC and DAC modules with microprocessor based system.
CO3	Implement DSP functions using ARM processor.
CO4	To work on modules like stepper motor.
CO5	To verify and understand interfacing units.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

1. Write a simple program for arithmetic operations – addition, subtraction, multiplication and division of 16 – bit number. (8086 Program)

2. Write a simple program for string operations like string concatenation, swapping. Write a program for interfacing LCD with 8086 and display a message.

3. Write a program for performing simple arithmetic operations. (8051 Programming)

4. Write a simple program for flashing LEDs using software delays, timers and interrupts. Write a program for interfacing Seven Segment Display and LCD with 8051 and display messages.

- 5. Write a program for interfacing Keypad with 8051 and display keypad input on LCD.
- 6. Write a program for square waveform generation, with different frequencies and duty cycles.
- 7. Write a program for serial communication through UART using polling and interrupt methods.
- 8. Write a program for interfacing ADC 0804 with 8051.
- 9. Write a program for Pulse Width Modulation using on-chip PWM and analog I/O modules.
- 10. Write a program for interfacing Seven Segment Display and LCD to ARM processor.
- 11. Write a program to interface ARM processor with PC using Tera Term.
- 12. Write a program to generate various waveforms
- 13. Write a program for flashing LEDs using timers and interrupts.

Semester V

Name of The Course	Control Systems
Course Code	BEEE3002

Prerequisite	Signals and Systems				
Corequisite					
Antirequisite					
		L	Т	Р	C
		3	0	0	3

Course Objectives:

- To introduce the components and their representation of control systems
- To learn various methods for analyzing the time response, frequency response and stability of the systems.
- To learn the various approach for the state variable analysis.

Course Outcomes

CO1	Identify the various control system components and their representations.	
CO2	Analyze the various time domain parameters	
CO3	Analysis the various frequency response plots and its system.	
CO4	Apply the concepts of various system stability criterions.	
CO5	Design various transfer functions of digital control system using state variable models.	
CO6	To perform stability analysis of non linear control systems.	

Unit-1 Introduction 8 hours	
Control System: Terminology and Basic Structure-Feed forward and Feedback control theoryElect	rical and
Mechanical Transfer Function Models-Block diagram Models-Signal flow graphs models-DC and A	AC servo
Systems-Synchronous -Multivariable control system	
Unit-2 Transient response8 hours	
Transient response-steady state response-Measures of performance of the standard first order and second	ond order
system-effect on an additional zero and an additional pole-steady error constant and system- type num	nber-PID
control-Analytical design for PD, PI, PID control systems	
Unit-3Closed loop frequency response 8 hours	
Closed loop frequency response-Performance specification in frequency domain-Frequency response-	ponse of
standard second order system- Bode Plot - Polar Plot- Nyquist plots-Design of compensators using Bo	ode plots-
Cascade lead compensation-Cascade lag compensation-Cascade lag-lead compensation	
Unit-4 Concept of stability 8 hours	
Concept of stability-Bounded - Input Bounded - Output stability-Routh stability criterion-Relative	stability-
Root locus concept-Guidelines for sketching root locus-Nyquist stability criterion.	
Unit-5State variable representation8 hours	
State variable representation-Conversion of state variable models to transfer functions-Conversion of	f transfer
functions to state variable models-Solution of state equations-Concepts of Controllability and Observed	rvability-
Stability of linear systems-Equivalence between transfer function and state variable representation	ons-State
variable analysis of digital control system-Digital control design using state feedback.	
Unit-6 Non linear Systems 8 hours	
Effects of zeros, minimum and non-minimum phase systems. Linearization of nonlinear systems. Ap	plication
of basic filter design to Navigation and Movement. Stability Analysis of non linear control systems.	

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Text Book (s)

1. M.Gopal, —Control System – Principles and Designl, Tata McGraw Hill, 4th Edition, 2012.

Reference Book (s)

1. K. Ogata, Modern Control Engineering', 5th edition, PHI, 2012. 3. S.K.Bhattacharya, Control System Engineering, 3rd Edition, Pearson, 2013.

2. Benjamin.C.Kuo, —Automatic control systems, Prentice Hall of India, 7th Edition, 1995.

Name of The Course	EM Waves				
Course Code	BEE01T3001				
Prerequisite	Electromagnetic Fields				
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. To introduce the basic mathematical concepts related to electromagnetic vector fields.
- **2.** To impart knowledge on the concepts of electrostatics, electric potential, energy density and their applications.
- **3.** To impart knowledge on the concepts of magnetostatics, magnetic flux density, scalar and vector potential and its applications.
- 4. To impart knowledge on the concepts of Faraday's law, induced emf and Maxwell's equations.
- 5. To impart knowledge on the concepts of Concepts of electromagnetic waves and Transmission lines.

Course Outcomes

CO1	Analyze transmission lines and estimate voltage and current at any point on transmission line for different load conditions.
CO2	Provide solution to real life plane wave problems for various boundary conditions.
CO3	Analyze the field equations for the wave propagation in special cases such as lossy and low loss dielectric media.
CO4	Visualize TE and TM mode patterns of field distributions in a rectangular wave-guide.
CO5	Understand and analyze radiation by antennas.
CO6	Explicate the recent advances in theory and applications of EM waves

Unit-1 Transmission Lines	8 hours	
	0 0 0	

Introduction, Concept of distributed elements, Equations	
impedance transformation, Lossless and low-loss transm	
line, Analysis of transmission line in terms of admittan	ces, Transmission line calculations with the
help of Smith chart, Applications of transmission line, Ir	npedance matching using transmission lines.
Unit-2 Maxwell's Equations	8 hours
Basic quantities of Electromagnetics, Basic laws of	Electromagnetics: Gauss's law, Ampere's
Circuital law, Faraday's law of Electromagnetic induction	on. Maxwell's equations, Surface charge and
surface current, Boundary conditions at media interface.	
Unit-3 Uniform Plane	8 hours
WaveHomogeneous unbound medium, Wave equation f	or time harmonic fields, Solution of the wave
equation, Uniform plane wave, Wave polarization, Wave	re propagation in conducting medium, Phase
velocity of a wave, Power flow and Poynting vector.	
Unit-4 Plane Waves at Media Interface	8 hours
Plane wave in arbitrary direction, Plane wave at diele	ctric interface, Reflection and refraction of
waves at dielectric interface, Total internal reflection, W	ave polarization at media interface, Brewster
angle, Fields and power flow at media interface, Lossy	media interface, Reflection from conducting
boundary.	
Unit-5 Waveguides 8 hours	
Parallel plane waveguide: Transverse Electric (TE) mo	de, transverse Magnetic(TM) mode, Cut-off
frequency, Phase velocity and dispersion. Transverse	Electromagnetic (TEM) mode, Analysis of
waveguide-general approach, Rectangular waveguides.	
Unit 6 Recent Trends 5 hours	
Novel Waveguide technologies and its future systems.	
Text Book / Reference :	
1 R K Shevgeonker "Flectromagnetic Wayes" Tata M	Crow Hill 2005

- 1. R. K. Shevgaonkar, "Electromagnetic Waves", Tata McGraw Hill, 2005.
- 2. D. K. Cheng, "Field and Wave Electromagnetics", Addison-Wesley, 1989.
- 3. M. N.O. Sadiku, "Elements of Electromagnetics", Oxford University Press, 2007.
- 4. C. A. Balanis, "Advanced Engineering Electromagnetics", John Wiley & Sons, 2012.
- 5. C. A. Balanis, "Antenna Theory: Analysis and Design", John Wiley & Sons, 2005.

Name of The Course	Digital Signal Processing	
Course Code	BECE3020	
Prerequisite	Signals and systems	
Corequisite	Signals and systems	
Antirequisite		
	L T P	С
		3

Course Objectives

- 1. To learn discrete fourier transform, properties of DFT and its application to linear filtering
- 2. To understand the characteristics of digital filters, design digital IIR and FIR filters and apply these filters to filter undesirable signals in various frequency bands
- 3. To understand the effects of finite precision representation on digital filters
- 4. To understand the fundamental concepts of multi rate signal processing and its applications

5. To introduce the concepts of adaptive filters and its application to communication engineering Course Outcomes

CO1	Apply digital signal processing fundamentals and Acquire the knowledge of representation of
	discrete-time signals in the frequency domain, using z-transform and discrete Fourier transform.
CO2	Design and Analyze FIR filters with desired frequency responses.

CO3	Design and Analyze IIR filters with desired frequency responses.
CO4	Realize FIR/IIR Filter structure and analyze the effects quantization errors in analog to digital
	conversion of signals
CO5	Understand architecture of DSP Processors, Compressive sensing, Multirate Signal Processing and
	their applications in real-world problems
CO6	Apply signal processing techniques to solve real time problems

Text Book (s)

1. John G. Proakis& Dimitris G.Manolakis, —Digital Signal Processing – Principles, Algorithms & Applications^I, Fourth Edition, Pearson Education / Prentice Hall, 2007. (UNIT I – V)

Reference Book (s)

1. Emmanuel C. Ifeachor& Barrie. W. Jervis, —Digital Signal Processing^{II}, Second Edition, Pearson Education / Prentice Hall, 2002.

2. A. V. Oppenheim, R.W. Schafer and J.R. Buck, —Discrete-Time Signal Processingl, 8th Indian Reprint, Pearson, 2004.

3. Sanjit K. Mitra, —Digital Signal Processing – A Computer Based Approach^{II}, Tata Mc Graw Hill, 2007.

4. Andreas Antoniou, —Digital Signal Processing|, Tata Mc Graw Hill, 2006.

Unit-1 Introduction	8 hours				
Discrete and Fast Fourier Transforms: Introduction to	DSP, DTFT, Relationship between DFT and				
other transforms DFT, Properties of DFT, Circular Co	other transforms DFT, Properties of DFT, Circular Convolution, DFT as a Linear Transformation,				
Fast Fourier Transform, Computing an Inverse DFT by	doing a Direct DFT. Review of z transform				
and inverse Z transform.	C				
Unit-2Finite Impulse Response Filters	8 hours				
Finite Impulse Response Filters:- Magnitude and pha	ase response of a digital filters, Frequency				
response of linear phase FIR filters, Design Techniques					
Unit-3Infinite Impulse Response Filters	8 hours				
Infinite Impulse Response Filters:-IIR filter Design	by Approximation of Derivatives, Impulse				
Invariant Method, Bilinear Transformation, Butterwor	th filters, Chebyshev Filters and Frequency				
Transformation.					
Unit-4Realization of Digital Filters	8 hours				
Realization of Digital Filters: Basic Structures for IIR	Systems, Basic Structures for FIR system.				
Effects of Finite Word Length in Digital Filters: Introduction, Rounding and Truncation Errors,					
Quantization effects in analog to digital conversion of signals					
Unit-5 Multi Rate Signal Processing 8 hours	<u> </u>				
Introduction to wavelets, Multirate Signal Processi	ng, Sampling, Sampling rate conversion,				
introduction to compressive sensing.					
Unit 6 DSP Processors 5 hours					
Architecture of DSP Processors & applications: Ha	arward architecture, pipelining, Multiplier-				
accumulator (MAC) hardware, architectures of fix					
processors. Applications					

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Communication Engineering Lab				
Course					
Course Code	BEE01P3004				
Prerequisite					
Co-requisite					
Anti-requisite					
	L	_]	Г	Р	С
	0) ()	2	1

Course Objectives

- 1. To practice the basic theories of Analog communication system and experiments as it is a key analysis tool of engineering design.
- 2. To give a specific design problem to the students, which after completion they will verify.

Course Outcomes

CO1	Generate AM and FM signals and evaluate their performance.
CO2	Perform signal sampling by determining the sampling rates for baseband
02	signals and reconstruct the signals.
CO3	Generate digital modulation signals for ASK, PSK and FSK and
005	perform their detection.
CO4	Simulate MSK, DPSK, QPSK and DEPSK schemes and estimate their
04	BER.
CO5	Study and analyse about communication.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

1. Fourier Synthesis

2. AM Transmitter & Receiver

- 3. FM Transmitter & Receiver
- 4. AM/FM Radio Receiver
- 5. Analog signal sampling & Reconstruction
- 6. Generation & Detection of PAM/PWM/PPM
- 7. Generation & Detection of PCM
- 8. Generation & Detection of DM/SIGMA DELTA/ ADM

- 9. Baseband digital data transmission
- 10. Data conditioning & Reconditioning
- 11. Generation & Detection of BPSK/DPSK/DEPSK
- 12. Simulation of digital modulation schemes.

Semester VI

Name of The Course	Advanced Communication Systems				
Course Code	BEE01T3005				
Prerequisite	Analog and Digital Communication				
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

The student will learn and understand

- 1. Analog and digital communication systems, and their design parameters
- 2. Role of Digital Modulation and encoding techniques in different application.
- 3. the concept of Spread Spectrum techniques and Multiple Access Techniques.
- 4. The features and architectures used in 4G and 5G communication

Course Outcomes

CO1	To analyze the design parameters of analog and Digital communication systems
CO2	To apply the different modulation and encoding techniques to according to the need of
	application.
CO3	To apply spread spectrum techniques to secure communication in network.
CO4	To analyse the noise in coherent receiver and understand diversity techniques.
CO5	To understand the Emerging Trends in Communication including 4G, WiMax, and 5G
CO6	Explain and address the challenges in communication networks.

Unit-1 Introduction 8 hours
Introduction to different communications systems and their applications, Mathematical Models of
Communication Channel, Designing parameters of analog and digital communication systems.
Unit-2 Digital Modulation Techniques 8 hours
Digital Modulation Techniques, BPSK, QPSK, Temporal waveform encoders, Multi carrier
modulation schemes, OFDM, Wavelet based OFDM, QAM
Unit-3 Multiple Access techniques 8 hours
Introduction, Generation of PN Sequences, Properties of PN Sequences DS and FH spread spectrum,
CDMA system based on FH and DS spread spectrum signals, Applications, Introduction to Multiple
Access Techniques
Unit-4Coherent Systems and Diversity Techniques: 8 hours

Coherent receiver, Homodyne and heterodyne detection, noise in coherent receiver, Fading, Diversity					
Techniques, Quality of service (Qo	S)				
Unit-5 Introduction to 4G:	8 hours				
Status and Key Technologies,4G	WIRELESS SYSTEM FEATURES, 4G Network Structure,				
protocol stack architecture, WIMAX System Architecture, Limitation of 4G.					
Unit-6 Evolution towards 5G	8 hours				
Evolution towards 5G. Challenges in 5G Networks, Emerging Trends in 5G Networks					

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Suggested Reading

1. Andrew J Viterbi, "CDMA Principles of spread spectrum communications", Addition Wesley, (1995).

J S Lee and L E Miller, "CDMA systems engineering handbook", Artech House, (1998).
 Marvin K Simon, Jim K Omura, Robert A Scholtz, Bary Klevit, "Spread Spectrum Communications", (1995).

Sergio Verdu, "Multiuser Detection", Cambridge University Press, (1998).
 Andrew S Tanenbaum, "Computer Networks", Prentice Hall of India.

6. J.G.Proakis," Digital Communication (4/e)", McGraw-Hill, 2001

7. S. Haykin, "Communication systems (4/e)", John Wiley, 2001

8. B.P. Lathi, Zhi Ding, "Modern Digital and Analog Communication Systems (4/e)", Oxford university Press, 2010

Name of The	VLSI Design				
Course					
Course Code	BECE3013				
Pre-requisite	Semiconductor Devices, Integrated Circuits, Digital Design				
Co-requisite					
Anti-requisite					
	L	Т	Р	С	
	3	0	0	3	

Course Objectives:

- 1. To bring both Circuits and System views on design together.
- **2.** Study the fundamental concepts and structures of designing digital VLSI systems include CMOS devices and circuits.
- **3.** Understand standard CMOS fabrication processes, CMOS design rules, static and dynamic logic structures, interconnect analysis.
- 4. It offers a profound understanding of the design of complex digital VLSI circuits, computer aided simulation and synthesis tool for hardware design.

Course Outcomes

CO1	Utilize the subject knowledge in specifying the technological problems for evolving cellular technology.
CO2	Be able to use mathematical methods and circuit analysis models in analysis of CMOS digital electronics circuits, including logic components and their interconnect.
CO3	Have an understanding of the characteristics of CMOS circuit construction and the comparison between different state-of-the-art CMOS technologies and processes.
CO4	Be able to design and solve complex problems.
CO5	Be able to complete a significant VLSI design project having a set of objective criteria and design constraints.
CO6	Design and analyse architectures and functional blocks.

Unit-1 Integrated Circuit: Fabrication And Characteristics 7 hours

Integrated circuit technology, basic monolithic integrated circuits, epitaxial growth, Masking and etching, diffusion of impurities, transistors for monolithic circuits, monolithic diodes, Integrated resistors, Integrated capacitors and inductors, monolithic circuit layout, additional isolation methods, LSI and MSI, the metal semiconductor contacts.

Unit-2 Introduction to MOS Transistor 8 Hours

The Metal Oxide Semiconductor (MOS) Structure, The MOS System under External Bias, Structure and Operation of MOS, Transistor (MOSFET), MOSFET Current-Voltage Characteristics, MOSFET Scaling and Small-Geometry Effects, MOSFET Capacitances, Numerical and spice simulations.

Unit-3MOS Inverters: Static and Switching Characteristic, Interconnect Effects10 HoursIntroduction, Resistive-Load Inverter, Inverters with n-Type MOSFET Load, CMOS Inverter, Delay-Time
Definitions, Calculation of Delay Times, Inverter Design with Delay Constraints, Estimation of Interconnect
Parasitics, Calculation of Interconnect Delay, Switching Power Dissipation of CMOS Inverters, Numerical and
spice simulations

Unit-4 Combinational and Sequential MOS Logic Circuits 7 Hours

Introduction, Basic Principles of Pass Transistor Circuits, Voltage Bootstrapping, Synchronous Dynamic Circuit Techniques, High-Performance Dynamic CMOS Circuits, Introduction, MOS Logic Circuits with Depletion nMOS Loads, CMOS Logic Circuits, Complex Logic Circuits, CMOS Transmission Gates (Pass Gates), Introduction, Behavior of Bistable Elements, The SR Latch Circuit, Clocked Latch and Flip-Flop Circuits, CMOS D-Latch and Edge-Triggered Flip-Flop

Unit-5 Memories and VLSI Design Methodologies 7 Hours

Introduction, Read-Only Memory (ROM) Circuits, Static Read-Write Memory (SRAM) Circuits, Dynamic Read-Write Memory (DRAM) Circuits Introduction, VLSI Design Flow, Design Hierarchy, Concepts of Regularity, Modularity and Locality, VLSI Design Styles, Design Quality, Packaging Technology, Computer-Aided Design Technology

UNIT 6 IMPLEMENTATION STRATEGIES 6

Full custom and Semi custom design, Standard cell design and cell libraries, FPGA building block architectures, FPGA interconnect routing procedures.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks	
20	30	50	100	

Suggested Reading

1. S.M.Sze, "VLSI technology", 2nd Edition, Tata McGraw Hill Education, 2003, ISBN 9780070582910

- 2. Sung-Mo Kang & Yusuf Leblebici, "CMOS Digital
- 3. Integrated Circuits Analysis and Design", 3rd Edition, Tata McGraw-Hill, New Delhi, 2003.
- 4. N. Weste and K. Eshranghian, "Principles of CMOS VLSI Design", Addison Wesley, 1998.
- 5. Jacob Backer, Harry W. Li and David E. Boyce, "CMOS Circuit Design, Layout and Simulation ", Prentice Hall of India, 1998.
- 6. L.Glaser and D. Dobberpuhl, "The Design and Analysis of VLSI, Circuits", Addison Wesley 1993.
- 7. Randel& Geiger, "VLSI Analog and Digital Circuit Design Techniques" McGraw-Hill, 1990.
- 8. John P. Uyemura, "Introduction to VLSI Circuits and Systems," John Wiley & Sons, ,Inc, 2002.

Name of The	VLSI and Embedde	ed Sy	yster	ns Lab
Course		-		
Course Code	BEE01P3009			
Prerequisite				
Co-requisite				
Anti-requisite				
	L	Т	Р	С
	0	0	2	1

Part-A: VLSI Lab Course Objective:

- 1. To design and draw the internal structure of the various digital integrated circuits
- **2.** To develop VHDL/Verilog HDL source code, perform simulation using relevant simulator and analyze the obtained simulation results using necessary synthesizer.
- **3.** To verify the logical operations of the digital ICs (Hardware) in the laboratory.

Course Outcomes

CO1	Design and draw the internal structure of the various digital integrated circuits
CO2	Develop VHDL/Verilog HDL source code, perform simulation using relevant simulator
002	andanalyze the obtained simulation results using necessary synthesizer.
CO3	Understand serial communication, port RTOS on microcontroller.
CO4	Use embedded C for reading data from port pins.
CO5	Understand the interfacing of data I/O devices with microcontroller.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

VHDL/ Verilog HDL

- 1. Realization of Logic Gates.
- 2. 3- to 8Decoder- 74138.

3.8 x 1 Multiplexer-74151 and 2 x 4 De-multiplexer-74155.

- 4. 4-Bit Comparator-7485.
- 5. D Flip-Flop-7474.
- 6. Decade counter-7490.
- 7. Shift registers-7495.
- 8. ALU Design.

Part-B: Embedded Systems Lab

1.Write a program to toggle all the led to port and with some time delay using ARM7 PO1, PO2 PSO1

2 .Write a program to interface LCD with ARM7 PO1, PO2 PSO1

- 3 .Write a program to interface 4*4 matrix keypad with ARM7
- 4 .Write a program for interfacing LED and PWM and to verify the output in the ARM7
- 5 .Write a program to interface Stepper motor with ARM7

6 .Write a program for interfacing of DC motor with ARM7 PO1, PO2, PO3 PSO1 7 Write a program to study and characteristics of the programmable gain amplifier (PGA)

8 .Write a Program realization of low pass, high pass and band pass filters and their characteristics

9 .Write a program to interface ADC and DAC with

10. Digital function implementation using digital blocks A. Counter for blinking LED B. PWW C. Digital buffer and digital inverter

11 .Write a program to verify Timer operation in different modes

12 .Write a Program to interface stepper motor with PSOC

Semester VII

Name of The Course	Data Communication and Networking				
Course Code	BEE01T4002				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Outcomes

CO1	Understand and explain the concept of Data Communication and networks, layered
	architectureand theirapplications.
CO2	Differentiate between Analog and Digital Signals, Guided and Unguided Media
CO3	Understand the data communication link considering elementary concepts of data link layer
	protocols for error detection and correction.
CO4	Understand the data flow in network layer and differentiate between unicast and multicast
	routing protocols.

CO5	Estimate the congestion control mechanism to improve quality of services in networking
	applications
CO6	Understand and analyzes the security issues in network

Course Content:

Unit-1 Introduction 8 hours				
Introduction to Data Communication, Network Criteria, Physical Structures, Net	twork Models,			
Categories of Networks, Protocols and Standards, The OSI Model, TCP/IP Protocol su	uit, Addressing			
Unit-2 Physical Layer and Media 8 hours				
Analog and Digital Signals, Transmission Impairments, Multiplexing, Guided and Un	nguided Media,			
Circuit-Switched Networks, Datagram Networks, Virtual-Circuit Networks, Structure	e of Switch.			
Unit-3 : Data Link Layer 8 hours				
Introduction, Types of Errors, Detection Versus Corrections, Block Coding, Framing, 2				
Control, Multiple Access, CSMA, CSMA/CD, CSMA/CA, IEEE Standards, Dat				
Physical Layer, MAC Sublayer, IEEE 802.11, Blue Tooth, Passive Hubs, Repeaters	, Active Hubs,			
Bridges, Routers, Two Layer Switches, Three Layer Switches				
Unit-4 Network Layer 8 hours				
IPv4 Addressing, IPv6 Addressing, Address Mapping, Delivering, Forwarding, U	nicast Routing			
Protocols, Multicast Routing Protocols				
Unit-5 Transport Layer 8 hours				
Process-to-Process Delivery, User Datagram Protocol (UDP), TCP, Data Traffie	c, Congestion,			
Congestion Control, QoS in Switched Networks				
Unit-6 Security 3 hours				
Symmetric-Key Cryptography, Asymmetric-Key Cryptography, Security Services				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Suggested Reading

Name of The	Communication Netw	vorks	Lab	
Course				
Course Code	BEE01P4002			
Prerequisite				
Co-requisite				
Anti-requisite				
	L	, Τ	Р	С
	0	0	2	1

Course Objectives

- **1.** To understand the working principle of various communication protocols.
- **2.** To analyze the various routing algorithms.

3. To know the concept of data transfer between nodes.

Course Outcomes

CO1	Understand fundamental underlying principles of computer networking	
CO2	Understand details and functionality of layered network architecture.	
CO3	Apply mathematical foundations to solve computational problems in computer networking	
CO4	Analyze performance of various communication protocols.	
CO5	Compare routing algorithms and Practice packet /file transmission between nodes.	
Continuous Assessment Pattern		

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

1. PC to PC Communication Parallel Communication using 8 bit parallel cable Serial communication using RS 232C

2. Ethernet LAN protocol: To create scenario and study the performance of CSMA/CD protocol through simulation

3. Token bus and token ring protocols: To create scenario and study the performance of token bus and token ring protocols through simulation

4. Wireless LAN protocols: To create scenario and study the performance of network with CSMA / CA protocol and compare with CSMA/CD protocols.

5. Implementation and study of stop and wait protocol

6. Implementation and study of Goback-N and selective repeat protocols

- 7. Implementation of distance vector routing algorithm
- 8. Implementation of Link state routing algorithm
- 9. Implementation of Data encryption and decryption
- 10. Transfer of files from PC to PC using Windows / Unix socket processing

Elective Baskets

1. Communication and Networking

Name of The Course	Satellite Communication
Course Code	BECE3103
Prerequisite	Analog and Digital Communication
Co-requisite	
Anti-requisite	

	L	Т	Р	С
	3	0	0	3

Course Objectives

Satellite Communication Systems provide vital and economical fixed and mobile communication services over very large coverage areas of land, sea and air. In this course, you will learn the fundamentals and the techniques for the design and analysis of satellite communication systems.

Course Outcomes

CO1	Explain the fundamentals of satellite communication systems		
CO2	Design a satellite communication link under specified characteristics.		
CO3	Explain the modulation and multiplexing techniques in satellite communication.		
CO4	Describe propagation effects and their impact on satellite-earth links		
CO5	Demonstrate the working of satellite based systems.		
CO6	To conduct a simulation-based design project requiring some independent reading, programming		

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I:Basic Knowledge:. 6 Hours	
Elements of Satellite Communication Orbital mechanics look	angle and orbit determination, launches & launch
vehicle, orbital effects, Geostationary Orbit	
Unit II: Satellite subsystems 10 Hours	
Sub Systems: Satellite subsystems, attitude and orbit control	systems TTC&M communication subsystem
• •	• • •
satellite antenna satellite link design: basic transmission th	
downlink design, uplink design, satellite systems using small	earth station, design for specified C/N.
Unit III:Different modulation schemes: 8 Hours	
Modulation and multiplexing techniques for satellite links: F	
FM video transmission, digital transmission, digital modulation	tion and demodulation, TDM. Multiple access
techniques.	*
Unit IV. Emer control for divital actallity links, 9 Harres	

Unit IV: Error control for digital satellite links: 8 Hours

Error control for digital satellite links: error detection and correction, channel capacity, error control coding schemes. Propagation effects and their impact on satellite-earth links: attenuation and depolarization, atmospheric absorption, rain, cloud and ice effects etc.

Unit V: Introduction of various satellite systems 8 Hours

Introduction of various satellite systems: VSAT, low earth orbit and non-geostationary, direct broadcast satellite television and radio, satellite navigation and the global positioning systems.

Unit VI Satellite Applications

6 hours

Satellite Applications: Satellite mobile services, VSAT, GPS, Radarsat, Direct broadcast satellites (DBS)-Direct to home Broadcast (DTH)

Suggested Reading

- 1. Satellite Communications / Dennis Roddy / McGraw-Hill (T)
- 2. Satellite Communications / Pratt, Bostian, Allnutt / John Wiley & Sons. (T)
- 3. Digital Satellite Communications/ Tri T. Ha./ McGraw-Hill. (R)

Name of The Course	Principles of Secure Communication				
Course Code	EEC505				
Prerequisite	Digital communication system				
Corequisite	Digital communication system				
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 1. To understand the communication systems and various methods of communication system.
- **2.** To understand the ways to provide security to communication systems.

Course Outcomes

CO1	Understanding of the various types of spread spectrum techniques for secure communication.
CO2	Slow and fast frequency hopping, performance of FHSS in AWGN Channel.
CO3	Analyze the various cryptographic techniques and Apply the Encryption standards like DES, AES.
CO4	Understanding the principle of Block Cipher and Encryption Standards.
CO5	Knowing current network authentication applications, PKI, Web security and their vulnerabilities
	that are exploited by intentional and unintentional attacks.
CO6	Understand password management

Course Content

Unit-1 Introduction8 hoursModel of Spread Spectrum digital communication system, direct sequence spread spectrum signal,
error rate, performance of the decoder, processing gain and jamming margin, uncoded DSSS signals,
applications of DSSS signals in anti-jamming, Code division multiple access and multipath channels,
effect of pulsed interference on DSSS systems, Generation of PN sequences using m sequence and
Gold sequences, narrowband interference in DSSS systems, acquisition and tracking of DSSS
system.

Unit-2

Basic concepts of Frequency Hopping, slow and fast frequency hopping, performance of FHSS in AWGN Channel, FHSS in CDMA system, Time hopping and hybrid Spread spectrum system, acquisition and tracking of FH SS systems.

Unit-3

Classical encryption techniques, Symmetric cipher model, cryptography and cryptanalysts, Substitution techniques, transposition techniques.

Unit-4

Block cipher principle, data encryption standard (DES), strength of DES, differential and linear cryptanalysts, block cipher design principles, Finite fields, simplified advanced encryption standard (S-AES), multiple encryption and triple DES, Block cipher modes of operation, stream ciphers and RC4 algorithm.

Unit-5

Prime numbers, Fermat and Euler's theorem, Chinese remainder theorem, discrete algorithms, principles of public key cryptosystems, RSA algorithm, key management Diffie-Hellman key exchange, message authentication requirements and functions.

Unit-6

Intruders: Intrusion techniques, Intrusion detection, Statistical anomaly detection, Rule based intrusion detection, Distributed intrusion detection, Honey pot, Intrusion detection exchange format. password management: Password protection, password selection strategies.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Suggested Reading

1. Digital Communication by Simon Haykin, Wiley.1 st edition ISBN 978-1-1185-4405-1,

2. Cryptography and Network Security by W. Stallings 5th Ed., PHI ISBN-10: 0136097049 ISBN-13: 978-0136097044.

3. Cryptography and secure Communications by M.Y. Rhee, Mc Graw Hill, ISBN-10: 0071125027; ISBN-13: 978-0071125024.

4. Communication System Security by LidongChen, Guang Gong, ISBN 9781439840368-CAT# K11870.

Name of The Course	Microwave Engineering				
Course Code	BECE3006				
Prerequisite	Electromagnetic field theory				
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- **1.** Concept of scattering parameters used to characterize devices and system behavior.
- 2. The high frequency behavior of circuit and network elements as well as the analysis and the design of active and passive microwave devices.

Course Content:

CO1	Illustrate the basic concepts of microwave transmission lines.
CO2	Identify and use microwave guides and components.
CO3	Apply the conceptual knowledge of microwave solid state technology and traveling wave t
	techniques
CO4	Distinguish between microwave solid state and technology and traveling wave tube techniqu
CO5	Demonstrate and evaluate the microwave measurement techniques.
CO6	Analyze the application of Microwaves in various fields
Unit-1 Intro	duction 8 hours
Microwave	frequency, Applications of Microwave, microwave transmission line, Introduction to
Micro strip	Fransmission line (TL), Coupled TL, Strip TL, Coupled Strip Line, Coplanar TL.
Unit-2Micro	wave waveguides and components 8 hours
Rectangular	Wave Guide: Field Components, TE, TM Modes, Dominant (TE10) mode, Power
Transmissio	n, Power losses, Excitation of modes, Circular Waveguides:
TE, TM mo	odes, Microwave cavities (Resonators), Scattering matrix- The transmission matrix,
	rowave devices: Microwave Hybrid Circuits, E Plane Tee, H plane Tee and Magic Tee
, Terminatio	ns, Attenuators, Phase Shifters, Directional Couplers: Two Hole directional couplers, S
	Directional coupler, Hybrid Couplers, Isolators, Circulators.
	wave waveguides and components 8 hours
•	Wave Guide: Field Components, TE, TM Modes, Dominant (TE10) mode, Power
	n, Power losses, Excitation of modes, Circular Waveguides:
	odes, Microwave cavities (Resonators), Scattering matrix- The transmission matrix,
	rowave devices: Microwave Hybrid Circuits, E Plane Tee, H plane Tee and Magic Tee
	ns, Attenuators, Phase Shifters, Directional Couplers: Two Hole directional couplers, S
	Directional coupler, Hybrid Couplers, Isolators, Circulators.
	wave linear-beam tubes (O TYPE) and microwave crossed-field tubes 8 hours
•	eentrant Cavities, Velocity-Modulation Process, Bunching Process, Output Power and
	ng, Multicavity Klystron Amplifiers, Beam-Current Density, Output Current Output
	Wo-Cavity Klystron, Reflex Klystrons, Velocity Modulation, Power Output and
•	Helix Traveling-Wave Tubes (TWTs), Slow-Wave structures, Amplification Process,
	Current, Axial Electric Field, Wave Modes, Gain Consideration, Microwave Crossed-
	s , Magnetron Oscillators, Cylindrical Magnetron, Coaxial Magnetron, Tunable
	Backward wave Oscillators wave Measurements 8 hours
	oduction, Microwave Measurements devices: Slotted line carriage, Tunable detectors, er, microwave power measurements techniques, frequency measurement, wavelength
	ts, Impedance and Refection coefficient measurements, VSWR, Insertion and
	measurements: Power ratio method, RF substitution method, VSWR measurements
(Low and H	
	gn) lications of Microwava 6 hours

Unit-6 Applications of Microwave 6 hours

Introduction to the applications of Microwave in communication, Remote Sensing, Spectroscopy.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End	Term	Test	Total Marks
		(ETE)			
20	30	50			100

Suggested Reading

1.D.M.Pozar, "Microwave engineering", John Wiley, 3/e, 2005

2.Samuel Y.Liao, "Microwave Devices and Circuits", 3/e, PHI, New Delhi, 1987.

3.ober.E.Collin, "Foundations of Microwave Engineering", John Wiley, 3/e, 2001

4. Annapurna Dasand S, K.Das, "Microwave Engineering", Tata Mc Graw-Hill, New Delhi, 2000

5. R.Chatterjee, "Microwave Engineering", Affiliated East west Press PVT Ltd, 2001

6. O.P.Gandhi, "Microwave Engineering", Pergamon Press, NY, 1983

Name of The Course	Mobile Computing				
Course Code					
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

This course introduces the fundamental concepts and principles in mobile computing technology. This course includes wireless networking, GSM & GPRS technology, data management, routing algorithm and security issues in mobile computing. The course provides opportunities for the students to understand and analyze the functions of various components associated with the above technologies, the major techniques involved, and networks & systems issues for the design and implementation of mobile computing systems and applications. This course also provides an opportunity for students to understand the key components and technologies involved and to gain hands-on experiences in building mobile applications.

Course Outcomes

CO1	Apply the knowledge of wireless and mobile communications systems
CO2	Examine the MAC issues and demonstrate wireless networking principles, for various
	applications
CO3	Describe GSM architecture, operation and services offered by GSM networks

CO4	Understand GPRS architecture, operation and services offered by GPRS networks		
CO5	Analyze the performance of various routing protocols and security issues associated with		
	mobile computing		
COG			

CO6 Security Issues and Recent Trends

Reference Books:

- 1. Jochen Schiller, *Mobile Communications*, Second Edition, Pearson Education, 2003.
- 2. Asoke K Talukder and Roopa R. Yavagal, *Mobile Computing Technology, Applicationsand Service Creation*; TMH Pub., New Delhi, 2006
- 3. C D M Cordeiro, D. P. Agarwal, *Adhoc and Sensor Networks: Theory and applications*, World Scientific, 2006.

Course Content:

Unit-1 Introduction	8
hours	
Introduction of mobile computing, overview of wireless telephony: cellular location management: HLR-VLR, hierarchical, handoffs, channel allocation systems, Multiple access techniques like Frequency division multiple access	in cellular (FDMA),
Time division multiple access (TDMA), Code division multiple access (CDM division multiple access (SDMA).	A), Space
Unit-2 Wireless Networking hours	8
Wireless Networking, Wireless LAN Overview: MAC issues, IEEE 802.11, Bl Wireless multiple access protocols, TCP over wireless, Wireless applicati broadcasting, Mobile IP, WAP: Architecture, protocol stack, application envi- applications.	ons, data
Unit-3 GSM hours	8
GSM Architecture, GSM Entities ,Call Routing in GSM, GSM Addre Identifiers, Network Aspects in GSM , GSM Frequency Allocation, Authentic Security, Mobile Computing over SMS, Short Message (SMS) , Value Addee through SMS, Accessing the SMS Bearer	cation and
Unit-4 GPRS	8 hours
GPRS andpacket Architecture GPRS Network Architecture, GPRS Operations, Data Services in GPRS, Application for GPRS, Limitation Billing and Charging in GPRS, MMS, GPRS. Applications, Spread –	of GPRS,
Technology, Data management and various issues in mobile computing envir	-
Unit-5 Routing Protocols	8 hours
Routing Protocols: Adhoc Network Routing Protocols, Destination Sequenced	
Vector Algorithm, Cluster Based Gateway Switch Routing, Dynamic Source	
Adhoc on-demand Routing, Location Aided Routing, Zonal Routing Algorith	
Unit 6- Security Issues and Recent Trends	
Mobile Computing Security Issues, Authentication, Encryption, Cryptograp	hic Tools:
Hash, Message Authentication Code (MAC), Digital Signature, Certificat	e. Secure
Socket Layer (SSL).Recent trends on mobile computing and future networks	5

Name of The	Mobile Ad Hoc Networks	
Course		
Course Code	BECE3204	
Pre-requisite	Wireless Communication	
Co-requisite		
Anti-requisite		
	L T P C	
	3 0 0 3	

Course Objectives:

- 1. To gain an in-depth understanding the concepts of wireless ad-hoc networks.
- 2. To learn and understand the current and emerging trends in Wireless Networks.
- 3. Design ad-hoc network for the heterogeneous environment
- **4.** "Hands-on experience in designing and implementing ad hoc network functionality using network simulation tools and Pocket PCs"

Course Outcomes

CO1	Explain the architecture, organization and operation of ad-hoc networks
CO2	Construct ad-hoc network anywhere on temporary basis
CO3	Design ad-hoc network for the heterogeneous environment
CO4	Have an understanding of the principles of mobile ad hoc networks (MANETs)
CO5	Distinguish between infrastructure-based networks
CO6	Explain 5G technologies

Text Book (s)

- "C. Siva Ram Murthy and B. S. Manoj, "Ad Hoc Wireless Networks: Architectures and Protocols", 1st Edition, Prentice Hall, PTR, 2006, ISBN 9788131706886"
- C. K. Toh, "Ad Hoc Mobile Wireless Networks: Protocols and Systems", 1st Edition, Pearson, 2007, ISBN 9788131715109
- 3. Mobile Ad Hoc Networking by Stefano Basagni ,Marco Conti , Silvia Giordano , Ivan Stojmenovic
- 4. Mobile and Wireless Communication Networks by Guy Pujolle IFIP 19th World Computer Congress

Reference Book (s)

- 1. "Charles E. Perkins, "Ad Hoc Networking", 1st Edition, Pearson, 2008, ISBN 9788131720967"
- 2. Mohammed Ilyas, "The Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems", 1st Edition, CRC press, 2004, ISBN 9780849319686.
- **3.** "Mobile Ad-hoc and Sensor Networks: Second International Conference, MSN 2006, Hong Kong, China, December 13-15, 2006, Proceedings"

4. Mobile Agents in Networking and Distributed Computing by Jiannong Cao, Sajal Kumar

Unit-1 Introduction to Wireless Ad Hoc Networks 9 hours

Introduction to cellular and ad hoc wireless networks, applications of ad hoc networks, issues in ad hoc wireless networks - medium access scheme, routing, multicasting, transport layer protocols, pricing scheme, quality of service provisioning, self organization, security, address and security discovery, energy management, scalability, deployment considerations, ad hoc wireless Internet.

Unit-2Medium Access Control Protocol 9 Hours

Issues in Designing a MAC Protocol for ad hoc wireless networks, design goals of a MAC Protocol for Ad Hoc Wireless Networks, Classification of MAC Protocols, Contention based Protocols, Contention based Protocols with Reservation mechanism, Contention Based MAC Protocols with Scheduling Mechanisms, Other MAC protocols.

Unit-3 Routing Protocol

9 Hours

Design issues and classification, Table-driven, On-demand and Hybrid routing protocols, Routing protocols with efficient flooding mechanisms, Hierarchical and power-aware routing protocols.

Unit-4Multicasting Protocol 8 Hours

"Design issues and operation, Architecture Reference Model, classification, Tree-based and Mesh-Based Protocols, Energy-Efficient Multicasting, Multicasting with Quality of Service Guarantee. Quality of Service: Issues and challenges in providing QoS, Classification of QoSsolutions."

Unit-5Energy Management 6 Hours

Need, classification of battery management schemes, Transmission power management schemes, System power management schemes.

Unit 6 Recent Trends and Technologies

New Generation Technology for Best QOS and 5G Technology.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Information Theory	and	Codi	ng
Course				
Course Code				
Pre-requisite	Analog and Digital C	Com	muni	cation
Co-requisite				
Anti-requisite				
	L	Т	Р	С
	3	0	0	3

Course Objectives:

The student will be able

1. To understand the fundamental concept of entropy and information as they are used in communications.

- **2.** To identify the implications and consequences of fundamental theories and laws of information theory and coding with reference to the application in modern communication and computer systems.
- **3.** To design different encoders using the different coding schemes like Huffman Coding, Shannaon Fano Coding, Cyclic codes, etc.,

Course Outcomes

CO1	Understand the concept of information and entropy
CO2	To design different encoders using the different coding schemes
CO3	Apply error control techniques
CO4	To calculate syndrome using cylic code
CO5	To apply compression techniques to text and images.
CO6	Model the Entropy, Joint Entropy and Conditional Entropy, Relative Entropy and Mutual
	Information, Relationship Between Entropy and Mutual Information

Text Book (s)

- 5. "C. Siva Ram Murthy and B. S. Manoj, "Ad Hoc Wireless Networks: Architectures and Protocols", 1st Edition, Prentice Hall, PTR, 2006, ISBN 9788131706886"
- 6. C. K. Toh, "Ad Hoc Mobile Wireless Networks: Protocols and Systems", 1st Edition, Pearson, 2007, ISBN 9788131715109
- 7. Mobile Ad Hoc Networking by Stefano Basagni ,Marco Conti , Silvia Giordano , Ivan Stojmenovic
- 8. Mobile and Wireless Communication Networks by Guy Pujolle IFIP 19th World Computer Congress

Reference Book (s)

- 5. "Charles E. Perkins, "Ad Hoc Networking", 1st Edition, Pearson, 2008, ISBN 9788131720967"
- **6.** Mohammed Ilyas, "The Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems", 1st Edition, CRC press, 2004, ISBN 9780849319686.
- 7. "Mobile Ad-hoc and Sensor Networks: Second International Conference, MSN 2006, Hong Kong, China, December 13-15, 2006, Proceedings"
- 8. Mobile Agents in Networking and Distributed Computing by Jiannong Cao, Sajal Kumar

Unit-1 Basics of information theory 9 hours

Basics of information theory: Information, Entropy, Information rate, Joint and conditional entropies, Mutual information - Discrete memoryless channels ,BSC, BEC, Channel capacity, Shannon limit.

Unit-2 Techniques of coding 9 Hours

Techniques of coding: classification of codes, Kraft McMillan inequality, Source coding theorem, Shannon-Fano coding, Huffman coding, Extended Huffman coding, Line coding.

Unit-3 Error control coding

9 Hours

Error control coding: block and cyclic codes: Definitions and Principles: Hamming weight, Hamming distance, Minimum distance decoding - Single parity codes, Hamming codes, Repetition codes - Linear block codes

Unit-4Cyclic codes

8 Hours

Cyclic codes - Syndrome calculation, Encoder and decoder, CRC, Convolutional codes: Introduction, code tree, trellis, state diagram, Encoding ,Decoding

Unit-5Compression Techniques 6 Hours

Principles, Text compression, Static Huffman Coding, Dynamic Huffman coding, Arithmetic coding, Image Compression, Graphics Interchange format, Tagged Image File Format, Introduction to JPEG standards. Unit 6 Application of coding techniques in data compression, audio and Video Coding.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	Wireless Sensor Networks				
Course Code	BECE3203				
Pre-requisite	Computer Networks				
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 1. To identify communication protocols employed in WSNs
- 2. To explain usefulness of OSI model for Communication System Design
- **3.** To select the appropriate technology to implement a WSN.
- 4. To design a WSN

Course Outcomes

CO1	Know Basics challenges and technologies in Wireless Sensors Network.
CO2	Understand Various Architectures and Protocols of Wireless network.
CO3	Know Various Topology and Tools of Wireless Network.
CO4	Analyze the problems related to sensor networks.
CO5	Different communication protocols and their usefulness in different applications

Text Book (s)

- Holger Karl & Andreas Willig, "" Protocols And Architectures for Wireless Sensor Networks"", John Wiley, 2005"
- 2. "Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach"", Elsevier, 2007"
- 3. Yang, Shuang-Hua, "Wireless Sensor Networks"
- 4. Fahmy, Hossam Mahmoud Ahmad, "Wireless Sensor Networks"

Reference Book (s)

- 1. "KazemSohraby, Daniel Minoli, &TaiebZnati, "Wireless Sensor Networks- Technology, Protocols, And Applications", John Wiley, 2007"
- 2. Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003
- 3. "Wireless Sensor Networks: Technology, Protocols and Applications" by KazemSohrab
- 4. "Fundamentals of Wireless Sensor Networks: Theory and Practice (WSE)" by WaltenegusDargie and Christian Poellabauer"

Unit-1 Overview Of Wireless Sensor Networks 4 hours

Overview of Wireless Sensor Networks, Challenges for Wireless Sensor Networks, Enabling Technologies For Wireless Sensor

Unit-2 Architectures 9 Hours

"Single-Node Architecture - Hardware Components, Energy Consumption of Sensor Nodes, Operating Systems and Execution Environments, Network Architecture - Sensor Network Scenarios, Optimization Goals and Figures of Merit, Gateway Concepts."

Unit-3 Networking Sensors 9 hours

"Physical Layer and Transceiver Design Considerations, MAC Protocols for Wireless Sensor Networks, Low Duty Cycle Protocols And Wakeup Concepts - S-MAC, The Mediation Device Protocol, Wakeup Radio Concepts, Address and Name Management, Assignment of MAC Addresses, Routing Protocols- Energy-Efficient Routing, Geographic Routing."

Unit-4 Infrastructure Establishment 9 hours

"Topology Control, Clustering, Time Synchronization, Localization and Positioning, Sensor Tasking and Control."

Unit-5 Sensor Network Platforms And Tools 9 Hours

"Sensor Node Hardware – Berkeley Motes, Programming Challenges, Node-level software platforms, Node-level Simulators, State-centric programming."

Unit 6 Applications of WSN 8 hours

Applications of WSN: WSN Applications - Home Control – Building Automation - Industrial Automation - Medical Applications - Reconfigurable Sensor Networks - Highway Monitoring - Military Applications - Civil and Environmental Engineering Applications - Wildfire Instrumentation - Habitat Monitoring - Nanoscopic Sensor Applications – Case Study: IEEE 802.15.4 LR-WPANs Standard - Target detection and tracking - Contour/edge detection - Field sampling.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Optical Communication		
Course			
Course Code	BECE3016		
Pre-requisite	Optoelectronics, Electromagnetic Field Theory		
Co-requisite			
Anti-requisite			
	L T P C		
	3 0 0 3		

Course Objectives:

- 1. Discuss the technology developments in Optical Communication with major emphasis on related theory/analysis of technical characteristics of Optical Fibre/Components, Systems and Network nodes to enable the design and selection of proper Functional modules/Building blocks intended for practical network application
- 2. Impart practical network knowledge based on Optical Communication Network Evolution viz. SONET in terms of Network Elements/Architecture, Network Management,Protection(Reliability),Synchronization
- **3.** Introduce all- optical signal processing based on Optical components and related network functions based on Multi wavelength Optical layers, with Assignment& Routing algorithms along with associated Network architecture. Introduce advanced topics on Photonic packet switching, Optical Transport Network(OTN).

Course Outcomes

CO1	Recall basic laws of optical physics. Distinguish between the various modes of operation of Optical fibers. Identify the various causes for signal degradation. Calculate the various types of losses occurring in transmission of energy.
CO2	Categorize the types of sources of light on basis of physical construction and principle of operation and describe the various phenomenon involved in the conversion of electrical energy into light energy.
CO3	Explain the operation of optical receiver. Identify the various effects introducing noise in the system and evaluate the performance of digital receiver by calculating the probability of error.
CO4	Define and apply the Wavelength Division Multiplexing. (WDM) principles and concepts.
CO5	Discuss the basic applications of optical amplifiers like Erbium Doped Fiber Amplifier (EDFA). Look into the widely used networks like SONET/SDH.
CO6	Understand the practically used optical networks

Text Book (s)

- 1. Gerd Keiser, "Optical Fiber Communication" McGraw -Hill International, Singapore, 3rd edition, 2000
- 2. Rajiv Ramaswami, Kumar N. Sivaranjan, "Optical Networks A practical perspective", 2nd edition, Elsevier, 2004

Reference Book (s)

- 1. Djafar K. Mynbaev, Lowell L. Scheiner, "Fiber-Optic Communications Technology", 1st edition, Pearson Education, 2001
- 2. John Powers, "An Introduction to Fiber optic Systems", 2nd edition, IrwinMcGraw Hill, 1999
- 3. J.Gowar, "Optical Communication System", 2nd edition, Prentice Hall of India, 2001

Unit-1 Introduction to Optical Fiber Communication 9 hours

Introduction, Historical development, general system, advantages, disadvantages, and applications of optical fiber communication. Fiber materials, Photonic Crystal Fibers. Spectral characteristics. Optical Fiber wave guide: Structure, Single and Multimode operation; Attenuation, Material and wave guide dispersion

Unit-2 Optical Sources and Transmission Characteristics of Optical Fibers 9 Hours

Light Emitting Diode; principle, structures, power and efficiency, coupling to fibers. Laser diodes; principle, double hetero structure, gain and index guiding, distributed lasers. Attenuation, absorption, scattering losses, bending loss, dispersion, Intra model dispersion, Inter model dispersion

Unit-3 Optical Detectors and Optical Receiver 7 Hours

Photo detectors, Photo detector noise, Response time, double hetero junction structure, Photo diodes, comparison of photo detectors. Optical Receiver Operation, eye diagrams, signal to noise ratio

Unit-4 Point-to-point link and Wavelength Division Multiplexing 7 hours

Building blocks; Multiplexing; Intensity Modulation/Direct Detection system; Principle of Regeneration; WDM link, Optical amplifiers; EDFA, SOA, Raman amplifier, Fabry-Perot filters. Dispersion compensation and management, Link analysis and Bit-Error-Rate calculation.

Unit-5 WDM Concepts and Optical Network 8 Hours

LAN, MAN, WAN; Topologies: bus, star, ring; WDM concepts, overview of WDM operation principles, WDM standards, Ethernet; FDDI; Telecom networking: SDH/SONET. Different forms of access networks: Telephony; ISDN; Cable TV; Broadcast and Switched Networks; HFC networks; FTTC and FTTH networks; All optical networks

Unit 6 Practical Optical Networks 6hours

Intelligent Optical Network (ION), FDDI, FTTH, Business -Drivers for Next Generation Optical Networks.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

2. VLSI Basket

Name of The	Digital System design using VHDL
Course	
Course Code	BECE3104
Prerequisite	Digital Design
Co-requisite	
Anti-requisite	
	L T P C
	3 0 0 3

Course Objectives

1.To gain an in-depth understanding of VHDL and to realize different circuits using it both sequential and combinational

2. To learn the concept of memories and how they are designed using VHDL.

3. To gain an understanding of applications of VHDL in PLDs and Field Programmable Logic Arrays (FPGAs).

Course Outcomes

CO1	Explain VHDL as a programming language.
CO2	Design the combinational and sequential logic circuits using VHDL.
CO3	Design Programmable logic devices(PLDs) and Networks of Arithmetic operations.
CO4	Gain proficiency with VHDL software package and utilize software package to solve problems on a wide range of digital logic circuits.
CO5	Explain VHDL as a programming language.
CO6	Illustrate the latest trends adapted in Digital System Design

Continuous Assessment Pattern:

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I:Introduction	7	Hours	

Introduction to Hardware Description Languages (HDL) And HDL Based Design, VHDL- Variables, Signals And Constants, Arrays, VHDL Operators, VHDL Functions, VHDL Procedures, Packages And Libraries, VHDL Description Of Combinational Networks, Modeling Flip-Flops Using VHDL, VHDL Models For A Multiplexer, Compilation And Simulation Of VHDL Code, Modeling A Sequential Machine, VHDL Model For A Counter.

Unit II: VHDL Synthesis and Models 8 Hours

Attributes, Transport and Inertial delays, Operator overloading, Multivalued logic and signal resolution, IEEE-1164 standard logic, Generics, Generate statements, Synthesis of VHDL code, Synthesis examples, Files and TEXTIO. Introduction to data path and control path synthesis.

Unit III:Digital Design with State Machine Charts 7 Hours

State machine charts, Derivation of SM charts, Realization of SM charts. Implementation of the dice game, Alternative realization for SM charts using microprogramming, Linked state machines, Asynchronous state machine based design.

Unit IV: Programmable Logic devices (PLDs): 9Hours

Designing with programmable logic devices: Read-only memories (ROM, EPROM, EEPROM/FLASH), Programmable logic arrays (PLAs), Programmable array logic (PLAs), Other sequential programmable logic devices (PLDs), Design of a keypad scanner. Design of networks for arithmetic operations: Design of a serial adder with accumulator, State graphs for control networks, Design of a binary multiplier, Multiplication of signed binary numbers, and Design of a binary divider.

Unit V:Field Programmable Gate Arrays (FPGA) 8 Hours

"Xilinx 3000 series FPGAs, Designing with FPGAs, Xilinx 4000 series FPGAs, using a one-hot state assignment, Altera complexprogrammable logicdevices (CPLDs), Altera FELX 10K series COLDs. Representation of floating-point numbers, Floating-point multiplication, Other floating-point operations."

Unit-6 Latest Trends in Digital System Design 7 Hours

Deep Learning with INT8 optimization on Xilinx Devices, Xilinx ISE Design Suite - FPGA, Complex programmable logic devices (CPLDs), Altera FELX 10K series CPLDs. Representation of floating-point numbers, Floating-point multiplication, Other floating-point operations"

3. IoT Basket

Name of The Course	Introduction to IoT and its Applications				
Course Code	BECE4501				
Prerequisite	Microprocessor and Microcontrollers				
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand the concepts of Internet of Things and develop IoT based systems for various applications.

Course Outcomes

CO1	Understand the concepts of Internet of Things
CO2	Analyze basic protocols in wireless sensor network
CO3	Realize various domain specific IoT applications and be able to analyse their performance
CO4	Implement basic IoT applications using embedded platform

Continuous Assessment Pattern

SCHOOL OF ELECTRICAL, ELECTRONICS AND COMMUNICATION ENGINEERING

CO5	Recognise the various data acquisition units and Actuators and their effective utilization in developing IoT Architectrures.
CO6	Recognize the latest trends in IoT based system development

Text Books & Reference Books:

- 1. RajkumarBuyya, Amir VahidDastjerdi, "Internet of Things Principles and Paradigms " Copyright © 2016 Elsevier Inc.
- ArshdeepBahga, Vijay Madisetti, "Internet of Things A hands-on approach", Universities Press, 2015.
 Manoel Carlos Ramon, "Intel® Galileo and Intel® Galileo Gen
- 3. API Features and Arduino Projects for Linux Programmers", Apress, 2014.
- 4. Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014.

Course Content:

Unit-1 I	Introduction to IoT	7 hours			
Vision, Io7	The Internet of Things Today, Time for Convergence, Towards the IoT Universe, Internet of Things Vision, IoT Strategic Research and Innovation Directions, IoT Applications, Future Internet				
0	ies, Infrastructure, Networks and Communication, Proc				
•	Trust, Device Level Energy Issues, IoT Related, Standa	rdization, Recommendations on			
Research 7	l'opics.				
Unit-2 N	etwork & Communication aspects	7 hours			
Backgrour	nd/Related Work – OpenIoT Architecture for IoT/Cloud	l Convergence - Scheduling Process			
	ervices Lifecycle - Scheduling and Resource Managemer	nt - Validating Applications and Use			
Cases - Fu	ture Research Directions				
Unit-3 Ch	allenges in IoT	7 hours			
Introducti	on - Background and Related Work - Device/Cloud Col	llaboration Framework - Powerful			
Smart Mo	bile Devices - Runtime Adaptation Engine - Privacy-Pro	otection Solution - Applications of			
Device/Clo	oud Collaboration - Context - Aware Proactive Suggesti	on - Semantic QA Cache - Image and			
Speech Re	cognition Future Work				
Unit-4 Do	main specific applications of IoT	7 hours			
		ivating Scenario - Definitions and			
Characteri	istics Reference Architecture - Applications - Researc	ch Directions and Enablers			
Commerci	al Products - Case Study				
Unit-5 De	eveloping IoT based Systems	7 hours			
Introduction	on - Scenario - Architecture Overview- Sensors - The G	ateway - Data Transmission			
Unit 6 Re	ecent Trends in IoT 7 Hours				
Introduction	on of Blockchain, Big data, SaaS(Software- As-a-Service	e), IoT based Smart Homes, Smart			
Cities, IoT	based Healthcare systems.				

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Automation and Robotics				
Course Code	EEC501				
Pre-requisite	IoT, Electronic System Design				
Co-requisite					
Anti-requisite					
		L	Т	Р	C
		3	0	0	3

Course Objectives:

- 1. To provide the student with basic knowledge and skills associated with robot control.
- **2.** Demonstrate an ability to apply spatial transformation to obtain forward kinematics equation of robot manipulators.
- 3. Demonstrate an ability to perform kinematics and inverse kinematics analysis of robot systems.
- 4. Demonstrate knowledge of robot controllers.
- 5. To develop the student's knowledge in various robot structures and their workspace.

Course Outcomes

CO1	Explain Basic Robotic model & its applications.
CO2	Differentiate types of control and the standardization for some robotic system. K4
CO3	Critically evaluate robots for particular applications.
CO4	Analyze particular industrial applications and evaluate possible solutions in terms of automated dedicated/flexible) or mixed manual/automated systems.
CO5	Realize the design problem and preliminary consideration of Industrial automation.

Text Book (s)

- 1. Mikell P Grover et. al. "Industrial Robots: Technology, Programming and Applications", 2nd Edition, Tata McGraw Hill, 1980, ISBN 9781259006210.
- 2. Robert J. Schilling, "Fundamentals of Robotics-Analysis and Control", PHI Learning, 2009, ISBN 9788120310476 (Unit-II and Unit-III)

Reference Book (s)

1. K.S. Fu, Ralph Gonzalez, C.S.G. Lee, "Robotics: control, sensing, vision and Intelligence", 1st Edition, TataMcgraw-Hill, 2008, ISBN 9780070265103

Unit-1INTRODUCTION ROBOTICS

9 hours

Robotics – Basic components – Classification – Performance characteristics – Actuators- Electric actuator-DC motor horse power calculation, magneto-astrictive hydraulic and pneumatic actuators. Sensors and vision systems: Different types of robot transducers and sensors – Tactile sensors – Proximity and range sensors –ultrasonic sensor-touch sensors-slip sensors-sensor calibration- vision systems.

Unit-2ROBOT CONTROL

8 Hours

Control of robot manipulators- state equations-constant solutions-linear feedback systems-single axis PID control- PD gravity control- computed torque control- variable structure control- Impedance control.

Unit-3END EFFECTORS 8 Hours

End effectors and tools- types – Mechanical grippers – Vacuum cups – Magnetic grippers – Robot end effectors interface, work space analysis work envelope-workspace fixtures-pick and place operation-continuous path motion-interpolated motion-straight line motion.

Unit-4ROBOT MOTION ANALYSIS 7 Hours

Robot motion analysis and control: Manipulator kinematics –forward and inverse kinematics- arm equation-link coordinates-Homogeneous transformations and rotations and Robot dynamics

Unit-5ROBOT APPLICATIONS 6 Hours

Industrial and Non industrial robots, Robots for welding, painting and assembly – Remote Controlled robots – Robots for nuclear, thermal and chemical plants – Industrial automation – Typical examples of automated industries

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

4. Signal Processing Basket

Name of The	Neural Networks and Fuzzy Control				
Course					
Course Code	EEC506				
Pre-requisite	Control Systems				
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

1. Get the exposure to Artificial Neural Networks & Fuzzy Logic.

- 2. Understand the importance of tolerance of imprecision and uncertainty for design of robust &low cost intelligent machines
- **3.** Explore the functional components of neural network classifiers or controllers, and the functional components of fuzzy logic classifiers or controllers
- **4.** Develop and implement a basic trainable neural network or a fuzzy logic system for a typical control, computing application or biomedical application

Course Outcomes

CO1	Identify and describe Fuzzy Logic and Artificial Neural Network techniques in building intelligent machines.
CO2	Apply Artificial Neural Network & amp; Fuzzy Logic models to handle uncertainty and solve engineering problems.
CO3	Understanding of fuzzy relation rule and aggregations
CO4	Understand concept of classical and fuzzy sets, fuzzification and defuzzification
CO5	Recognize the feasibility of applying a Neuro-Fuzzy model for a particular problem
CO6	Effectively use modern software tools to solve real life problems using a soft computing approach and evaluate various soft computing approaches for a given problem.

Unit-1Introduction to Artificial Neural Network9 hours

Artificial neural networks and their biological motivation – Terminology – Models of neuron –Topology – characteristics of artificial neural networks – types of activation functions – learning methods – error correction learning – Hebbian learning – Perceptron – XOR Problem –Perceptron learning rule convergence theorem – Adaline.

Unit-2Feed-forward and Recurrent Neural Networks12 Hours

"Architecture: perceptron model, solution, single layer artificial neural network, multilayer perceptron model; back propogation learning methods, effect of learning rule co-efficient ;back propagation algorithm, factors affecting backpropagation training, applications; Recurrent neural networks: Linear auto associator – Bidirectional associative memory – Hopfield neural network."

Unit-3Fuzzy Logic & Fuzzy Sets 9 Hours

Introduction to Fuzzy Logic, Classical and Fuzzy Sets, Membership Function, Membership Grade, Universe of Discourse, Linguistic Variables, Operations on Fuzzy Sets: Intersections, Unions, Negation, Product, Difference, Properties of Classical set and Fuzzy sets, Fuzzy vs Probability, Fuzzy Arithmetic, Fuzzy Numbers.

Unit-4Fuzzy Relations & Aggregations 9 Hours

Essential Elements of Fuzzy Systems, Classical Inference Rule, Classical Implications and Fuzzy Implications, Crisp Relation and Fuzzy Relations, Composition of fuzzy relations, Cylindrical Extension and Projection. Fuzzy IF-THEN rules, Inference: Scaling and Clipping Method, Aggregation, Fuzzy rule based Model: Mamdani Model, TSK model, Fuzzy Propositions, De-fuzzification: MOM, COA

Unit-5Fuzzy Optimization and Neuro Fuzzy Systems 6 Hours

Fuzzy optimization –one-dimensional optimization. Introduction of Neuro-Fuzzy Systems, Architecture of Neuro Fuzzy Networks.

Unit VI:Recent trends and Applications 5 hours

Recent trends in Soft computing, Neuro-Fuzzy Systems, SVM, Application of Fuzzy Logic in Medicine, Economics, Industry etc.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Suggested reading

Text Book (s)

- 1. Ross, Timothy J. Fuzzy logic with engineering applications. John Wiley & Sons, 2009
- 2. Yegnanarayana, B. Artificial neural networks. PHI Learning Pvt. Ltd., 2004
- **3.** Stamatios V. Kartalopoulos, Understanding Neural Networks and Fuzzy Logic: Basic Concepts and Applications 1st Edition
- 4. S. Rajasekaran, Neural Networks, Fuzzy Systems and Evolutionary Algorithms: Synthesis and Applications.
- 5. Aaron M. Tenenbaum, YedidyahLangsam and Moshe J. Augenstein "Data Structures Using C and C++", PHI, 1996."
- **6.** Jean Paul Trembley and Paul G. Sorenson, "An Introduction to Data Structures with applications", McGraw Hill, 2007.
- 7. "Kosko, B, "Neural Networks and Fuzzy Systems: A Dynamical Approach to Machine Intelligence", PrenticeHall, NewDelhi, 2004"
- "Timothy J Ross, "Fuzzy Logic with Engineering Applications", John Willey and Sons, West Sussex, England, 2005."

Name of The Course	Soft Computing				
Course Code	BECE4401				
Pre-requisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Outcomes

CO1	Identify and describe soft computing techniques and their roles in building intelligent machines
CO2	To understand the fundamental theory and concepts of neural networks, Identify different neural network architectures, algorithms, applications and their limitations
CO3	Understand appropriate learning rules for each of the architectures and learn several neural network paradigms and its applications

CO4	Comprehend the fuzzy logic and reasoning to handle uncertainty and solve engineering problems, genetic algorithms to combinatorial optimization problems and neural networks to pattern classification
	and regression problems
CO5	Understand the concepts of fuzzy sets, knowledge representation using fuzzy rules, approximate
	reasoning, fuzzy inference systems, and fuzzy logic
CO6	Effectively use modern software tools to solve real life problems using a soft computing approach and
	evaluate various soft computing approaches for a given problem.

Course Overview & Objectives

This course will cover fundamental concepts used in Soft computing. The concepts of Fuzzy logic (FL) will be covered first, followed by Artificial Neural Networks (ANNs) and optimization techniques using Genetic Algorithm (GA). Applications of Soft Computing techniques to solve a number of real life problems will be covered to have hands on practices.

Course Content

Unit I: Introduction to Artificial Neural Network 9 hours
Introduction Soft computing, Soft vs Hard computing, Techniques in Soft Computing, overview of biological
Neuro-system, Artificial neural networks, characteristics and terminology of ANN, Models of neuron,
Topology, types of activation functions; Perceptron: XOR Problem, Perception learning rule convergence
theorem; Adaline.
Unit II: Feedforward and Recurrent Neural Networks 9 hours
Architecture of neural network: single layer artificial neural network, multilayer ANN, Learning, Types of
Learning: Supervised, Unsupervised and Reinforcement Learning, Perceptron learning Algorithm, back
propagation learning methods, back propagation algorithm, factors affecting backpropagation training,
applications; Recurrent neural networks: Linear auto associator, Bi-directional associative memory – Hopfield
neural network, K mean Clustering Algorithm
Unit III: Fuzzy Logic & Fuzzy Sets 8 hours
Introduction to Fuzzy Logic, Classical and Fuzzy Sets, Membership Function, Membership Grade, Universe of
Discourse, Linguistic Variables, Operations on Fuzzy Sets: Intersections, Unions, Negation, Product,
Difference, Properties of Classical set and Fuzzy sets, Fuzzy vs Probability, Fuzzy Arithmetic, Fuzzy Numbers.
Unit IV: Fuzzy Relations & Aggregations 9 hours
Essential Elements of Fuzzy Systems, Classical Inference Rule, Classical Implications and Fuzzy Implications,
Crisp Relation and Fuzzy Relations, Composition of fuzzy relations, Cylindrical Extension and Projection.
Fuzzy IF-THEN rules, Inference: Scaling and Clipping Method, Aggregation, Fuzzy rule-based Model:
Mamdani Model, TSK mode, Defuzzification: MOM, COA
Unit V: Genetic algorithm: 9 hours
Genetic Algorithm: An Overview, Implementation of GAfundamentals, basic genetic concepts, working
principle, Population initialization, Fitness function, encoding, Operators of GA: Selection,
Crossover/Recombination, Mutations, Mutation Operators, Applications Areas of GA
Unit VI:Recent trends and Applications 5 hours
Recent trends in Soft computing, Neuro-Fuzzy Systems, SVM, Application of Fuzzy Logic in Medicine,
Economics, Industry etc.

Text Books

- 1. Ross, Timothy J. *Fuzzy logic with engineering applications*. John Wiley & Sons, 2009.
- 2. Yegnanarayana, B. Artificial neural networks. PHI Learning Pvt. Ltd., 2004.
- 3. Goldberg, David E., and John H. Holland. *Genetic algorithms in Search, Optimization & Machine Learning*. Pearson Education ,2009

Reference Books

- 1. Zurada, Jacek M. Introduction to artificial neural systems, West St. Paul, 1992.
- 2. Hagan, Martin T., Howard B. Demuth, and Mark H. Beale. *Neural network design*. Boston: Pws Pub., 1996.
- 3. Haykin, Simon. *Neural networks: a comprehensive foundation*. Prentice Hall PTR, 1994.
- 4. Passino, Kevin M., and Stephen Yurkovich. *Fuzzy control*. Vol. 42. Menlo Park, CA: Addison-Wesley, 1998.

Program: B.Tech. Electrical Engineering

Scheme: 2019-2020

Vision

To be known globally as a premier Department offering value-based education in Electrical Engineering through interdisciplinary research and innovation.

Mission

- To provide high quality education in the field of *Electrical Engineering*.
- Establish state-of-the-art facilities for design and simulation.
- To provide effective solution to the industries in Energy and allied areas through research and consultancy.
- Immunize the students with knowledge and experience in their field of specialization to contribute in the making of professional leaders.

Program Educational Objectives Graduate shall

PEO1: Develop skills and proficiency in core areas of Electrical and related multidisciplinary Engineering fundamentals.

PEO2: Demonstrate technical competence to tackle problems in the field of industry using emerging technologies, innovation and entrepreneur skill.

PEO3: Pursue higher education, research and development in electrical engineering and allied areas of science and technology.

Program Specific Outcome

PSO1: Demonstrate their knowledge in analysis and design of industrial drives for utilizing renewable energy sources.

PSO1: Develop sustainable solutions for electrical engineering problems using Machine Learning, Artificial Intelligence and IoT.

Program Outcomes

- Engineering Knowledge : Apply the knowledge of Mathematics, Science, and Engineering fundamentals, and an engineering specialization to solution of complex engineering problems
- Problem analysis : Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences
- Design/development of solutions : Design of solutions for complex engineering problems and design of system components or processes that meet the specified needs with appropriate considerations of public health and safety, and cultural, societal, and environmental considerations
- Conduct investigations of complex problems : Use research based methods including design of experiments, analysis and interpretation of data and synthesis of information leading to logical conclusions
- Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling complex engineering activities with an understanding of limitations
- The engineer and society : Apply reasoning within the contextual knowledge to access societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice

- Environment and sustainability : Understand the impact of the professional engineering solutions in the societal and environmental contexts, and demonstrate the knowledge of, and the need for sustainable developments
- Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice
- Individual and team work : Function effectively as an individual independently and as a member or leader in diverse teams, and in multidisciplinary settings
- Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large such give and receive clear instructions
- Project management and finance : Demonstrate knowledge and understanding of engineering management principles and apply those to one's own work as a member and leader of a team to manage projects in multidisciplinary environments
- Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

Curriculum

		Semester 1							
S1.	Course Code	Name of the Course					Assess	sment Pa	ttern
No	Course Code		L	Т	Р	С	IA	MTE	ETE
1	BMA101	Mathematics-1 (Multivariable Calculus)	3	1	0	3	20	30	50
2	BMA151	Exploration with CAS-I	0	0	2	1	50		50
3	BHS101	Professional Communication	2	0	0	2	20	30	50
4	BCS101	Fundamentals of Computer Programing	3	0	0	3	20	30	50
5	BCS151	FundamentalsofComputerPrograming Lab - 11	0	0	2	1	50		50
6	BPH101	Engineering Physics	3	0	0	3	20	30	50
7	BPH151	Engineering Physics Lab	0	0	2	1	50		50
8	BME101	Elements of Mechanical Engineering	3	0	0	3	20	30	50
9	BME151	Workshop Practice	0	0	4	2	50		50
10						19			
		Total		1					
		Semester II							
S1	Course Codee	Name of the Course					Assess	sment Pa	ttern
No	Course Couce		L	Т	Р	С	IA	MTE	ETE
	BMA201	Mathematics-II (Matrices and	3	1	0	3	20	30	50
	BMA251	Differential Equations) Exploration with CAS-II	0	0	2	1	50		50
	BHS251	Professional Communication Lab	0	0	2	1	50		50
	BCS251	Fundamentals of Computer Programming Lab - 2	0	0	2	1	50		50
	BCH101	Engineering Chemistry	3	0	0	3	20	30	50
	BCH151	Engineering Chemistry Lab	0	0	2	1	50		50
	BEC101	Basic Electrical and Electronics Engineering	3	0	0	3	20	30	50
	BEC151	Basic Electrical and Electronics Engineering Lab	0	0	2	1	50		50
	BOC251	Engineering Clinic-1	0	0	2	1	50		50
	BLE101	Psychology and Sociology	2	0	0	2	20	30	50
				İ		Ì			
		Total		1		1			
		Semester III			-	<u> </u>		·	·
S1	Course Code	Name of the Course					1	sment Pa	
No			L	Т	Р	С	IA	MTE	ETE
1	BECE2010	Digital Electronics	3	0	0	3	20	30	50
2	MATH2001	Functions of complex variables and Transforms	3	0	0	3	20	30	50
3	BECE2012	Electromagnetic Field Theory	3	0	0	3	20	30	50
4	BTEE2006	Electrical Machine-1	3	0	0	3	20	30	50

5	BTEE2002	Network Analysis and Synthesis	3	0	0	3	20	30	50	
6	BECE2016	Signals and Systems	3	0	0	3	20	30	50	
7	BEE02T2003	Design and Engineering	2	0	0	2	20	30	50	
,	DELIGETEOOS	Network Analysis and Synthesis	0	0	2	1		50		
8	BTEE2003	Lab	Ŭ	0	-	-	50		50	
9	BEE02P2003	Engineering Clinic-1	0	0	2	1	50		50	
		English Proficiency and Aptitude								
10	SLBT2021	Building - 3	0	0	4	2	50	-	50	
11	BTEE2007	Electrical Machine Lab-1	0	0	2	1	50		50	
		Environmental Science and	2	0	0	0	20	30	50	
12		Engineering (Mandatory Audit								
	ENVS1004	Course)								
		Total				25				
	1	Semester IV								
Sl	Course Code	Name of the Course		r				sment Pa		
No			L	Т	Р	С	IA	MTE	ETE	
1	MATH2004	Probability and Stochastic	3	0	0	3	20	30	50	
2	DEFE2002	Processes	2	0	0	2	20	20	50	
2	BEEE3002	Control Systems	3	0	0	3	20	30	50	
3	BECE2015	Electronic Devices and Circuits	3	0	0	3	20	30	50	
4	BTEE2008	Fundamentals of Power Systems	3	0	0	3	20	30	50	
5	BTEE3015	Power Plant Engineering	3	0	0	3	20	30	50	
6	BEEE2001	Electrical Measurement and	3	0	0	3	20	30	50	
		Instrumentation								
7	BEE02P2007	Engineering Clinic-2 (IOT based	0	0	2	1	50		50	
		Tinker CAD)								
8	DEE00D2010	Electronic Devices and Circuits	0	0	0	0 2	1	50		50
	BEE02P2010	Lab								
9	BEE02P2009	Measurement and Control Systems	0	0	2	1	50		50	
10	DEE00D0000	Lab	0	0	2	1	50		50	
10	BEE02P2008	Logical and Critical Reasoning	0	0	2	1	50		50	
		Total Semester V				22				
Sl							Assess	sment Pa	ttern	
No	Course Code	Name of the Course	L	Т	Р	C	IA	MTE	ETE	
	DECE2004	Microcontroller and Embedded								
1	BECE3004	system	3	0	0	3	20	30	50	
2	BTEE3004	Electrical Machine-2	3	0	0	3	20	30	50	
3	BTEE3009	Power System Analysis	3	0	0	3	20	30	50	
4	BTEE3011	Power Electronics	3	0	0	3	20	30	50	
5	****	Program Elective-I	3	0	0	3	20	30	50	
6	****	Program Elective-II	2	0	0	2	20	30	50	
_	DEE02D2001	Engineering Clinic-3(Industrial				1				
7	BEE02P3001	Internship)	0	0	0 2	1	50		50	
0	DEE02D2002	Effective Leadership and	0	0		1	50		50	
8	BEE02P3002	Decission Making Skills	0	0	2	1	50		50	
L		-							i	

9	BECE3005	Microcontroller and Embedded Systems Lab	0	0	2	1	50		50
10	BEE01T3003	Database Management System	0	0	2	1	50		50
11	BEE02T3004	Finance for Electrical Engineers	2	0	0	1	20	30	50
12	BTEE3005	Electrical Machine Lab-2	0	0	2	1	50		50
		Total				23			
		Semester VI	1						
S1	Course Code	Name of the Course	т	T	D	C		sment Pa	
No 1	SLBT3002	Campus to Corporate program	L 0	T 0	P 4	C 2	IA 50	MTE	ETE 50
2	BEE02T3005	High Voltage Engineering	3	0		3	20	30	50
3	BEE02T3006	Power System protection	3	0	0	3	20	30	50
4	BTEE4005	Professional Ethics and Values	2	0	0	0	20	30	50
5	*****	Program Elective-III	3	0	0	3	20	30	50
6	****	Program Elective-IV	3	0	0	3	20	30	50
7	BTEE4013	Electrical Machine Design	3	0	0	3	20	30	50
8	BEE02P3008	Design and Innovation Project	0	0	2	1	50	50	50
9	BEE02P3007	Power System protection Lab	0	0	2	1	50		50
	GERN1001/JAP	Forign Language - 1 (German,	-	-			50		20
10	A1001/FREN10 01	Japneese, French) *any one	0	0	2	0	50		50
11	BEE02P3008	Machine Learning Using Python Programming	0	0	2	1	50		50
		Total				20			
		Semester VII							
S1	Course Code	Name of the Course	т	T	D	C		sment Pa	
No		Smart Grid and Energy	L	Т	Р	С	IA	MTE	ETE
1	BEEE4001	management	3	0	0	3	20	30	50
2	****	Program Elective-V	3	0	0	3			
3	****	Program Elective-VI	3	0	0	3			
4	****	Open Elective-1	3	0	0	3	20	30	50
5	****	Open Elective-2	3	0	0	3	20	30	50
6	BEE02T4001	Electrical Design, Estimation and Energy Audit	3	0	0	3	20	30	50
7	BTEE3008	PLC/SCADA Lab	0	0	2	1	50		50
8	BEE03P4003	Industrial Internship	0	0	0	0	50		50
9	BEE02P4005	Technical Seminar	0	0	2	0	50		50
10	BEE02P4002	Capstone Design Phase-I	0	0	10	2	50		50
	GERN/JAPA/F	Forign Language - 2 (German,					50		50
11	REN 1002	Japneese, French) *Optional	0	0	2	0	50		50
		Total				21			
01		Semester VIII					Α		Dattarr
Sl No	Course Code	Name of the Course	L	Т	Р	С	Asse IA	essment I MTE	ETE
1	BEE02P4003	Capstone Design phase - II	0	0	18	6	50		50
2	BEE02P4004	Industrial Internship & Technical Seminar	0	0	0	6	50		50

Total

List of Program Electives

12

Control Engineering

Sl	Course Code	Name of the Electives					Assessment Pattern			
No	Course Coue	Name of the Electives	L	Т	Р	С	IA	MTE	ETE	
1	BTEE3019	Advanced Control System	3	0	0	3	20	30	50	
2	BTEE3020	Industrial Automation and Control	3	0	0	3	20	30	50	
3	BEE02T5001	Industrial Instrumentation and	3	0	0	3	20	30	50	
5	DEE0213001	Automation		0	0	5			30	
4	BEEE5005	Power System Operation and Control	3	0	0	3	20	30	50	
5	BEEE5004	Digital Control	3	0	0	3	20	30	50	
6	BEE03T5002	Automation and Robotics	3	0	0	3	20	30	50	

Power Engineering

Sl	Course Code	Name of the Elective					Assessment Pattern			
No	Course Code		L	Т	Р	С	IA	MTE	ETE	
1	BEE03T5011	Power System Equipments	3	0	0	3	20	30	50	
2	BTEE3023	Power Quality	3	0	0	3	20	30	50	
3	BTEE4001	Electric Drives	3	0	0	3	20	30	50	
4	BTEE4010	FACTS and HVDC	3	0	0	3	20	30	50	
5	BEE02T5003	Electrical and Hybrid Vehicle	3	0	0	3	20	30	50	
6	BTEE4009	Power System Deregulation	3	0	0	3	20	30	50	

Energy Engineering

S1	Course Code	Name of the Elective					Assessment Pattern			
No			L	Т	Р	С	IA	MTE	ETE	
1	BEEE2018	Non-conventional Energy Resources	3	0	0	3	20	30	50	
2	BTEE4011	Energy Assessment and Audit	3	0	0	3	20	30	50	
3	BTEE5102	Utilization of Electrical Energy and Traction System	3	0	0	3	20	30	50	
4	BEE03T5010	Power Electronics applications in Renewable Energy	3	0	0	3	20	30	50	
5	BTEE5202	Special Electrical Machine	3	0	0	3	20	30	50	
6	BEE02T5004	Energy Modelling Simulation Using MATLab	3	0	0	3	20	30	50	

Processing and Computing Techniques

S1 No	Course Code	Name of the Elective					Assessment Pattern			
INO			L	Т	Р	С	IA	MTE	ETE	
1	BTEE4012	Machine learning	3	0	0	3	20	30	50	
2	BEE02T5005	Image Processing using MATLab	3	0	0	3	20	30	50	

3	BEE02T5006	Introduction to Scilab and its applications	3	0	0	3	20	30	50
4	BEE02T5008	Human Computer Interface	3	0	0	3	20	30	50
5	BECE3020	Digital Signal Processing	3	0	0	3	20	30	50
6	BECE4401	Soft Computing	3	0	0	3	20	30	50
7	BTEE4015	Neural Networks and Fuzzy Control	3	0	0	3	20	30	50
8	BEE02T5007	Neural Networks and Deep Learning Algorithms	3	0	0	3	20	30	50

	List of Open elective (Engineering courses) Proposed										
	Basket 1										
Sl. No.	Course Code	Course Title					Asso	essment I	Pattern		
		Basket 1	L	Т	Р	С	IA	MTE	ETE		
1	BOE601	Human Computer Interface	3	0	0	3	20	50	100		
2	BOE602	Introduction to cyber Physical Systems	3	0	0	3	20	50	100		
3	BOE603	Selected Topics in Signal Processing	3	0	0	3	20	50	100		
4	BOE604	Selected Topics in Communication Engineering	3	0	0	3	20	50	100		
5	BOE605	Autonomous Vehicles	3	0	0	3	20	50	100		
6	BOE606	Data Science	3	0	0	3	20	50	100		
7	BOE607	Computer Vision	3	0	0	3	20	50	100		
8	BOE608	Artificial Intelligence	3	0	0	3	20	50	100		
9	BOE609	Cyber Security	3	0	0	3	20	50	100		
10	BOE610	Energy Management	3	0	0	3	20	50	100		
11	BOE611	Estimation and Costing	3	0	0	3	20	50	100		
12	BOE612	Data Envelopment Analysis	3	0	0	3	20	50	100		
13	BOE613	Operation Management	3	0	0	3	20	50	100		
14	BOE614	Construction Engineering	3	0	0	3	20	50	100		
16	BOE615	Disaster Management	3	0	0	3	20	50	100		
16	BOE616	Bioinformatics	3	0	0	3	20	50	100		
		Basket-2									
1	BOE701	Remote Sensing and GIS	3	0	0	3	20	50	100		
2	BOE702	Automotive Electronics	3	0	0	3	20	50	100		
3	BOE703	Sensors & Actuators	3	0	0	3	20	50	100		
4	BOE704	IoT and Smart Cities	3	0	0	3	20	50	100		

5	BOE705	Web Design and Management	3	0	0	3	20	50	100
6	BOE706	Principles of Telemedicine	3	0	0	3	20	50	100
7	BOE707	Mobile Application Development	3	0	0	3	20	50	100
8	BOE708	Business Analytics	3	0	0	3	20	50	100
9	BOE709	Cloud Computing	3	0	0	3	20	50	100
10	BOE710	Block Chain	3	0	0	3	20	50	100
11	BOE711	Augmented / Virtual Reality	3	0	0	3	20	50	100
12	BOE712	Digital Forensics	3	0	0	3	20	50	100
13	BOE713	Operations Research	3	0	0	3	20	50	100
14	BOE714	Renewable Energy	3	0	0	3	20	50	100
15	BOE715	Interior Design	3	0	0	3	20	50	100
16	BOE716	Landscaping	3	0	0	3	20	50	100
17	BOE717	Biology for Engineers	3	0	0	3	20	50	100

Detailed Syllabus

Semester 3

Name of The Course	Electromagnetic Field Theory				
Course Code	BECE2012				
Pre-requisite	Engineering Ma	them	natics	5	
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- To gain conceptual and basic mathematical understanding of electric and magnetic fields in free space and in materials
- To understand the coupling between electric and magnetic fields through Faraday's law, displacement current and Maxwell's equations
- To understand wave propagation in lossless and in lossy media
- To be able to solve problems based on the above concepts

Course Outcomes:

	Apply coordinate systems and transformation
CO1	techniques to solve problems on
	Electromagnetic Field Theory
CO2	Apply the concept of static electric field and
002	solve problems on boundary value problems.
	Analyze the concept of static magnetic field
CO3	and solve problems using Biot - Savart's Law,
	Ampere's circuit law, Maxwell's equation.
CO4	Understands magnetic forces, magnetic
04	dipole and magnetic boundary conditions.
	Understands the time-varying
CO5	Electromagnetic Field and derivation of
	Maxwell's equations.
CO6	Understand the application of
000	Electromagnetism in Daily Life

Reference Books

- 1. Principles of Electromagnetics N. O. Sadiku, Oxford University Press Inc
- 2. Engineering Electromagnetics W H Hayt, J A Buck, McGraw Hill Education
- 3. Electromagnetic Waves, R.K. Shevgaonkar, Tata McGraw Hill India, 2005
- 4. Electromagnetics with Applications, Kraus and Fleish, Edition McGraw Hill International Editions, Fifth Edition, 1999Syllabus

 Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – Applications UNIT II: STATIC MAGNETIC FIELDS 8Hours The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields – 	Course Content:
Introduction to Co- ordinate System – Rectangular – Cylindrical and Spherical Co- ordinate System – Introduction to line, Surface and Volume Integrals – Definition of Curl, Divergence and Gradient – Meaning of Stokes theorem and Divergence theorem Coulomb's Law in Vector Form – Definition of Electric Field Intensity – Principle of Superposition – Electric Field due to discrete charges – Electric field due to continuous charge distribution – Electric Field due to charges distributed uniformly on an infinite and finite line – Electric Field on the axis of a uniformly charged circular disc – Electric Field due to an infinite uniformly charged sheet.Electric Scalar Potential – Relationship between potential and electric field – Potential due to infinite uniformly charged line – Potential due to electrical dipole – Electric Flux Desnity – Gauss Law – Proof of Gauss Law – Applications – UNIT II: STATIC MAGNETIC FIELDS 8Hours – The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Ampere's circuital law and simple applications. Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – <td>UNIT I STATIC ELECTRIC FIELDS</td>	UNIT I STATIC ELECTRIC FIELDS
ordinate System – Rectangular – Cylindrical and Spherical Co- ordinate System – Introduction to line, Surface and Volume Integrals – Definition of Curl, Divergence and Gradient – Meaning of Stokes theorem and Divergence theorem Coulomb's Law in Vector Form – Definition of Electric Field Intensity – Principle of Superposition – Electric Field due to discrete charges – Electric field due to continuous charge distributed uniformly on an infinite and finite line – Electric Field on the axis of a uniformly charged circular disc – Electric Field due to an infinite uniformly charged sheet.Electric Scalar Potential – Relationship between potential and electric field – Potential due to infinite uniformly charged line – Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – <u>Applications</u> UNIT II: STATIC MAGNETIC FIELDS <u>8Hours</u> The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Magnetic flux density The Lorentz force equation for a moving charge and applications. Magnetic flux density The Lorentz force on a wire carrying a current I – Magnetic FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric Polarization of mutual inductance – simple examples. Energy density in magnetic fields – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	9 Hours
Cylindrical and Spherical Co- ordinate System – Introduction to line, Surface and Volume Integrals – Definition of Curl, Divergence and Gradient – Meaning of Stokes theorem and Divergence theorem Coulomb's Law in Vector Form – Definition of Electric Field Intensity – Principle of Superposition – Electric Field due to discrete charges – Electric field due to continuous charge distributed uniformly on an infinite and finite line – Electric Field on the axis of a uniformly charged circular disc – Electric Field due to an infinite uniformly charged sheet.Electric Scalar Potential – Relationship between potential and electric field – Potential due to infinite uniformly charged line – Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – Applications UNIT II: STATIC MAGNETIC FIELDS 8Hours The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic flud density The Lorentz force equation for a moving charge and applications. Magnetic flux density The Lorentz force on a wire carrying a current I – Magnetic field – Torque on a loop carrying a current I – Magnetic field – Torque on a loop carrying a current I – Magnetic FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric polarization of on the and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	Introduction to Co-
Cylindrical and Spherical Co-ordinate System – Introduction to line, Surface and Volume Integrals – Definition of Curl, Divergence and Gradient – Meaning of Stokes theorem and Divergence theorem Coulomb's Law in Vector Form – Definition of Electric Field Intensity – Principle of Superposition – Electric Field due to discrete charges – Electric field due to continuous charge distributed uniformly on an infinite and finite line – Electric Field on the axis of a uniformly charged circular disc – Electric Field due to an infinite uniformly charged sheet.Electric Scalar Potential – Relationship between potential and electric field – Potential due to infinite uniformly charged line – Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – Applications UNIT II: STATIC MAGNETIC FIELDS 8Hours The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Magnetic field intensity The Lorentz force equation for a moving charge and applications. Magnetic flux density The Lorentz force on a wire carrying a current I – Magnetic FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric Polarization of of current Jenitor of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	ordinate System – Rectangular –
Introduction to line, Surface and Volume Integrals – Definition of Curl, Divergence and Gradient – Meaning of Stokes theorem and Divergence theorem Coulomb's Law in Vector Form – Definition of Electric Field Intensity – Principle of Superposition – Electric Field due to discrete charges – Electric field due to continuous charge distributed uniformly on an infinite and finite line – Electric Field on the axis of a uniformly charged circular disc – Electric Field due to an infinite uniformly charged sheet. Electric Scalar Potential – Relationship between potential and electric field – Potential due to infinite uniformly charged line – Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – Applications UNIT II: STATIC MAGNETIC FIELDS 8Hours The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I – Magnetic FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric rourrent – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
 Definition of Curl, Divergence and Gradient – Meaning of Stokes theorem and Divergence theorem Coulomb's Law in Vector Form – Definition of Electric Field Intensity – Principle of Superposition – Electric Field due to discrete charges – Electric field due to continuous charge distributed uniformly on an infinite and finite line – Electric Field on the axis of a uniformly charged circular disc – Electric Field due to an infinite uniformly charged sheet. Electric Scalar Potential – Relationship between potential and electric field – Potential due to infinite uniformly charged line – Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – Applications UNIT II: STATIC MAGNETIC FIELDS 8Hours The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I – Magnetic FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields – 	
Meaning of Stokes theorem and Divergence theorem Coulomb's Law in Vector Form – Definition of Electric Field Intensity – Principle of Superposition – Electric Field due to discrete charges – Electric field due to continuous charge distribution – Electric Field due to charges distributed uniformly on an infinite and finite line – Electric Field on the axis of a uniformly charged circular disc – Electric Field due to an infinite uniformly charged sheet. Electric Scalar Potential – Relationship between potential and electric field – Potential due to infinite uniformly charged line – Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – <u>Applications</u> UNIT II: STATIC MAGNETIC FIELDS 8Hours The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I – Magnetic FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
theorem Coulomb's Law in Vector Form – Definition of Electric Field Intensity – Principle of Superposition – Electric Field due to discrete charges – Electric field due to continuous charge distributed uniformly on an infinite and finite line – Electric Field on the axis of a uniformly charged circular disc – Electric Field due to an infinite uniformly charged sheet.Electric Scalar Potential – Relationship between potential and electric field – Potential due to infinite uniformly charged line – Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – <u>Applications</u> UNIT II: STATIC MAGNETIC FIELDS <u>8Hours</u> The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I – Magnetic FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric rourent – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
Superposition – Electric Field due to discrete charges – Electric field due to continuous charge distributed uniformly on an infinite and finite line – Electric Field on the axis of a uniformly charged circular disc – Electric Field due to an infinite uniformly charged sheet.Electric Scalar Potential – Relationship between potential and electric field – Potential due to infinite uniformly charged line – Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – <u>Applications</u> UNIT II: STATIC MAGNETIC FIELDS 8Hours The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I – Magnetic Field II: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
Superposition – Electric Field due to discrete charges – Electric field due to continuous charge distributed uniformly on an infinite and finite line – Electric Field on the axis of a uniformly charged circular disc – Electric Field due to an infinite uniformly charged sheet.Electric Scalar Potential – Relationship between potential and electric field – Potential due to infinite uniformly charged line – Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – <u>Applications</u> UNIT II: STATIC MAGNETIC FIELDS 8Hours The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I – Magnetic Field II: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	Definition of Electric Field Intensity – Principle of
charges – Electric field due to continuous charge distribution – Electric Field due to charges distributed uniformly on an infinite and finite line – Electric Field on the axis of a uniformly charged circular disc – Electric Field due to an infinite uniformly charged sheet.Electric Scalar Potential – Relationship between potential and electric field – Potential due to infinite uniformly charged line – Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – Applications UNIT II: STATIC MAGNETIC FIELDS 8Hours The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
distribution – Electric Field due to charges distributed uniformly on an infinite and finite line – Electric Field on the axis of a uniformly charged circular disc – Electric Field due to an infinite uniformly charged sheet.Electric Scalar Potential – Relationship between potential and electric field – Potential due to infinite uniformly charged line – Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – Applications UNIT II: STATIC MAGNETIC FIELDS 8Hours The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
distributed uniformly on an infinite and finite line – Electric Field on the axis of a uniformly charged circular disc – Electric Field due to an infinite uniformly charged sheet.Electric Scalar Potential – Relationship between potential and electric field – Potential due to infinite uniformly charged line – Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – Applications UNIT II: STATIC MAGNETIC FIELDS 8Hours The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I – Magnetic Field II: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
 Electric Field on the axis of a uniformly charged circular disc – Electric Field due to an infinite uniformly charged sheet. Electric Scalar Potential Relationship between potential and electric field Potential due to infinite uniformly charged line Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – Applications UNIT II: STATIC MAGNETIC FIELDS 8Hours The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials-Definition of Capacitance – Capacitance of various geometries using Laplace's equation–Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields – 	
circular disc – Electric Field due to an infinite uniformly charged sheet.Electric Scalar Potential – Relationship between potential and electric field – Potential due to infinite uniformly charged line – Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – <u>Applications</u> UNIT II: STATIC MAGNETIC FIELDS <u>8Hours</u> The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
 Relationship between potential and electric field Potential due to infinite uniformly charged line Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – Applications UNIT II: STATIC MAGNETIC FIELDS 8Hours The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields – 	
 Relationship between potential and electric field Potential due to infinite uniformly charged line Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – Applications UNIT II: STATIC MAGNETIC FIELDS 8Hours The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields – 	
 Potential due to infinite uniformly charged line Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – Applications UNIT II: STATIC MAGNETIC FIELDS 8Hours The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials-Definition of Capacitance – Capacitance of various geometries using Laplace's equation–Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields – 	
 Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – Applications UNIT II: STATIC MAGNETIC FIELDS 8Hours The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields – 	- Potential due to infinite uniformly charged line
Density – Gauss Law – Proof of Gauss Law – Applications UNIT II: STATIC MAGNETIC FIELDS 8Hours The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	- Potential due to electrical dipole - Electric Flux
ApplicationsUNIT II:STATIC MAGNETIC FIELDS8HoursThe Biot-Savart Law in vector form – MagneticField intensity due to a finite and infinitewire carrying a current I –Magnetic field intensity on the axis of a circular and rectangular loop carrying a current I –Ampere's circuital law and simple applications.Magnetic flux density The Lorentz force equationfor a moving charge and applications, Force on awire carrying a current I placed in a magnetic field– Torque on a loop carrying a current I – Magneticmoment – Magnetic Vector Potential.UNIT III:ELECTRIC AND MAGNETICFIELDS IN MATERIALS 9 HoursPoisson's and Laplace's equation – ElectricPolarization-Nature of dielectric materials-Definition of Capacitance – Capacitance ofvarious geometries using Laplace's equation-Electrostatic energy and energy density –Boundary conditions for electric fields – Electriccurrent – Current density – point form of ohm'slaw – continuity equation for current.Definition of mutual inductance – simpleexamples. Energy density in magnetic fields –	Density - Gauss Law - Proof of Gauss Law -
8Hours The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	Applications
The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	UNIT II: STATIC MAGNETIC FIELDS
Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	8Hours
wire carrying a current I – Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	The Biot-Savart Law in vector form – Magnetic
Magnetic field intensity on the axis of a circ ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	Field intensity due to a finite and infinite
ular and rectangular loop carrying a current I – Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
Ampere's circuital law and simple applications. Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
Magnetic flux density The Lorentz force equation for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
for a moving charge and applications, Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
 wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields – 	
 Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials-Definition of Capacitance – Capacitance of various geometries using Laplace's equation–Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields – 	
moment – Magnetic Vector Potential. UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
UNIT III: ELECTRIC AND MAGNETIC FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
FIELDS IN MATERIALS 9 Hours Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	moment – Magnetic Vector Potential.
Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
Poisson's and Laplace's equation – Electric Polarization-Nature of dielectric materials- Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	FIELDS IN MATERIALS 9 Hours
Definition of Capacitance – Capacitance of various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	Poisson's and Laplace's equation – Electric
various geometries using Laplace's equation– Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
Electrostatic energy and energy density – Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
Boundary conditions for electric fields – Electric current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
current – Current density – point form of ohm's law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	
 law – continuity equation for current.Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields – 	
of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –	current – Current density – point form of ohm's
 Definition of mutual inductance – simple examples. Energy density in magnetic fields – 	
examples. Energy density in magnetic fields –	
	–
Nature of magnetic materials – magnetization and	
	Nature of magnetic materials – magnetization and
permeability – magnetic boundary conditions	permeability – magnetic boundary conditions

UNT IV: TIME VARYING ELECTRIC AND
MAGNETIC FIELDS 8 Hours
Faraday's law – Maxwell's Second Equation in
integral form from Faraday's Law - Equation
expressed in point form.Displacement current -
Ampere's circuital law in integral form -
Modified form of Ampere's circuital law as
Maxwell's first equation in integral form -
Equation expressed in point form. Maxwell's four
equations in integral form and differential
form.Poynting Vector and the flow of power -
Power flow in a co-axial cable –
Instantaneous Average and Complex Poynting
Vector.
UNIT V: ELECTRO MAGNETIC WAVES
9 Hours
Derivation of Wave Equation - Uniform Plane
Waves - Maxwell's equation in Phasor form -
Wave equation in Phasor form – Plane waves in
free space and in a homogenous material.
Wave equation for a conducting medium

Wave equation for a conducting medium – Plane waves in lossy dielectrics –Propagation in good conductors – Skin effect. Linear, Elliptical and circular polarization – Reflection of Plane Wave from a conductor – normal incidence – Reflection of Plane Waves by a perfect dielectric – normal and oblique incidence. Dependence on Polarization, Brewster angle.

UNIT VI Applications of Electromagnetism

Household Application, Industrial Application, Magnetic Levitation Trains, Communication System, medical Systems

Continuous Assessment Pattern

Internal Assessment	Mid	End	
	Term	Term	Total
	Test	Test	Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The	Network A	naly	sis	8	and
Course	Synthesis				
Course Code	BTEE2002				
Prerequisite	Basic Ele	ctric	al	8	ind
	Electronics En	gine	ering	5	
Corequisite	Signals and sy	stem	s		
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 4. To learn the concepts of network analysis in electrical and electronics engineering.
- 5. To learn linear circuit analysis, graph theory and network theorems.
- 6. Analyze two port networks using Z, Y, ABCD and h parameters

Course Outcomes

CO1	Apply the knowledge of graph theory with
	basic circuital laws and simplify the
	network using reduction techniques
CO2	Analyze the circuit using Kirchhoff's law
	and Network simplification theorems
CO3	Infer and evaluate transient response,
	Steady state response, network functions
CO4	Evaluate two-port network parameters and
	explain the inter-relationship among
	parameters for network analysis.
CO5	Synthesize one port network using Foster
	and Cauer Forms and
CO6	Examine active filter configurations for
	possible applications in network theory.

Text Book (s)

- 1. M.E. Van Valkenburg, "Network Analysis", Prentice Hall of India
- 2. A C.L Wadhwa, "Network Analysis and Synthesis" New Age International Publishers, 2007,
- 3. D.RoyChoudhary, "Networks and Systems" Wiley Eastern Ltd.
- 4. A.Chakrabarti, "Circuit Theory" DhanpatRai& Co
- 5. M.E. Van Valkenburg, "An Introduction to Modern Network Synthesis", Wiley Eastern Ltd.

Reference Book (s)

- 1. Hayt, W., Engineering Circuit Analysis, Tata McGraw□Hill (2006)
- 2. Hussain, A., Networks and Systems, CBS Publications (2004).
- 3. Sudhakar, A., Circuits and Networks, Tata McGraw□Hill (2006).
- 4. Suresh Kumar, K.S. Electrical circuits and Networks, Pearson Education, (2009).

6

Course Content:

Unit-1GraphTheory hours

Graph of a Network, definitions, tree, co tree, link, basic loop and basic cut set,Incidence matrix, cut set matrix, Tie set matrix Duality, Loop and Nodal methods of analysis.

Unit-2Network Theorems (Applications to ac
Super-position theorem, Thevenin's theorem,
Norton's theorem, maximum power transfer
theorem, Reciprocity theorem.
Millman'stheorem, compensation theorem,
Tellegen's theorem.
Unit-3Network Functions and Transient analysis
11 hours
Transform Impedances Network functions of one
port and two port networks, concept of poles and
zeros, properties of driving point and transfer
functions, time response and stability from pole
zero plot, transient analysis of ac & dc systems.
Unit-4Two Port Networks
10 hours
Characterization of LTI two port networks ZY,
ABCD and h parameters, reciprocity and
symmetry. Inter-relationships between the
parameters, inter-connections of two port
networks, T & II Representation.
Unit-5Network Synthesis & Filters
9 hours
Positive real function; definition and properties;
properties of LC, RC and RL driving point
functions, synthesis of LC, RC and RL driving
point immittance functions using Foster and Cauer
first and second forms. Image parameters and
characteristics impedance,
Unit-6 Filters
Passive and active filter fundamentals, low pass,
high pass, (constant K type) filters, and
introduction to active filters.

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Test	Term	Marks
(IA)	(MTE)	Test	
		(ETE)	
20	30	50	100

Name of The	Network Analysis and
Course	Synthesis Lab
Course Code	BTEE2003
Prerequisite	Basic Electrical Engineering
	lab
Corequisite	
Antirequisite	
	L T P C
	0 0 2 1

Course Objectives:

After the completion of course the students will 1. To introduce the concept of circuit elements lumped circuits, circuit laws and reduction.

- 2. To study the transient response of series and parallel A.C. circuits.
- 3. To study the concept of coupled circuits and two port networks.
- 4. To study the two port networks.

Course Outcomes

CO1	To introduce the concept of circuit elements
001	lumped circuits, circuit laws and reduction.
CO2	To study the transient response of series and
	parallel A.C. circuits.
CO3	To study the concept of coupled circuits and
	two port networks.
CO4	To study the two port networks.
CO5	To introduce the concept of short circuit and
	open circuit.

Network Analysis and Synthesis Lab

Thevenin's theorem in a.c.
Norton's theorem in a.c.
Superposition theorem in a.c.
the Maximum Power Transfer
tion of Z-parameters of a two-port
and determination of y-parameters
el connected two-port network.
tion of h-parameters of a two-port
and determination of ABCD-
s of a cascade interconnected two-
rk.
tion of characteristics impedance
netrical T-network using \hat{S}/C and
C C

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam (ETE)	Marks
(IA)	(MTE)		
50	-	50	100

Name of The	Electrical Machine-I				
Course					
Course Code	BTEE2006				
Prerequisite	Basic Electrical Engineering			g	
Corequisite					
Antirequisite	te				
L T P C					С
		3	0	0	3

Course Objectives:

- 1. To acquaint the students with the principle of operation and performance of transformers and DC machines.
- 2. To familiarize students with the parameter estimation of electrical machines
- 3. To learn the mathematical models and equations related to electrical machines.

Course Outcomes

CO1	Apply the knowledge of circuit analysis and electromagnetic principles of electric		
	machines		
CO2	Analyse the electrical machines		
	performance.		
CO3	Test and estimate the parameter of the		
	electrical machine.		
CO4	Analysis the numerical problems		
	associated with transformer and DC		
	machines.		
CO5	Make use of application of the subject		
	topic with industries and day to day life		
CO6	Understand of the special purpose		
	transformer for measurement and its		
	application		

Text Book (s)

- 1. I.J. Nagrath& D.P. Kothari, "Electrical Machines", Tata McGraw Hill.
- 2. P S Bimbhra, "Generalized Theory of Electrical Machines", Khana Publisher.
- 3. P S Bimbhra, "Electrical Machinery", Khana Publisher.

Reference Book (s)

- 1. A. E. Fitzgerald, C. Kingsley, and S. D. Umans, *Electric Machinery*, 6th ed., New York: McGraw-Hill, 2003.
- 2. Vincent Del Toro, "Electrical Machine and Power System", PHI.

Course Content:

Unit-1Introduction Flow of Energy in Electromechanical Devices, Magnetic Circuit, Analogy b/w Electric and magnetic Ckt, B-H Curve, Hysteresis and eddy current losses, Mutual Coupling with dot convention, Energy in magnetic systems(defining energy & Co-energy), Singly Excited Systems and Doubly excited Systems, Generated emf in machines; torque in machines with cylindrical air gap.

Unit-2 Single Phase Transformer

Construction- Core and Shell type, Basic principle of Operation, Phasor diagram, efficiency and voltage regulation, all day efficiency. Testing of Transformers: O.C. and S.C. tests, Sumpner's test, polarity test. Auto Transformer: Single phase and three phase auto transformers, volt-amp, relation, efficiency, merits & demerits and applications. Unit-3 Three Phase Transformers Construction, three phase transformer phasor groups and their connections, open delta connection, choice of transformers for three phase circuits, three phase to 2 phase, 6 phase or 12 phase connections, and their applications, parallel operation and load sharing of single phase and three phase transformers, excitation phenomenon and harmonics in transformers, three winding transformers. Unit-4 D.C. Machines Construction of DC Machines, Armature winding, Emf and torque equation, Armature Reaction, Commutation, Interpoles and Compensating Windings, Methods of improving commutation, Performance Characteristics of D.C. generators, Voltage Regulation, Parallel operation of DC generator (shunt, series and compound machine).

Unit-5 D.C. Machines (Contd.)

Performance Characteristics of D.C. motors, Starting of D.C. motors; 3 point and 4 point starters, Speed control of D.C. motors: Field Control , armature control and Voltage Control (Ward Lenonard method); Efficiency and Testing of D.C. machines (Hopkinson's and Swinburn's Test), Electric braking

Unit 6: Special Purpose Transformer

Instrument Transformer Current Transformer and Potential Transformer, Earthing Transformer

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The	Electrical Machine-I lab				
Course					
Course Code	BTEE2007				
Prerequisite	Basic Electrical Engineering				
	lab		-		_
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

After the completion of course the students will

- 1. This lab gives the chance to get friendship with Electrical machines.
- 2. To acquaint the students with the principle of operation and performance of transformers and DC machines.
- 3. To familiarize the students with the parameter estimation of electrical machines.
- 4. To compare the mathematical models and equations related to electrical machines.
- 5. The lab instills in the students the awareness and practice of safety.

Course Outcomes

CO1	Apply the knowledge of circuit analysis				
	and electromagnetic principles for the				
	physical operation of electric machines.				
CO2	Analysis the electrical machine				
	performance through experiments.				
CO3	Estimate the parameter of the transformer,				
	DC machines.				
CO4	Test the transformer, DC machines with				
	various loads.				
CO5	Make use of application of the subject				
	topic with industries and day to day life.				

List	of	Experiments	of	Electrical
Mach	nine -	-I		

	Machine –1				
1	Efficiency and regulation of single phase				
	transformer by Sumpner's back to back				
	test.				
2	Efficiency of DC shunt motor by				
	Swinburne's test				
3	Open circuit and short circuit test on single				
	phase transformer.				
4	3-phase to 2-phase conversion with two				
	single phase transformers by Scott				
	connection.				
5	Speed control of DC motor by Armature				
	and Field Control.				
6	Load characteristics of DC shunt generator				
	and plot load voltage Vs load current.				
7	Magnetization characteristics of DC shunt				
	generator.				
8	Losses and efficiency of DC machine by				
	Hopkinson's test.				
9	Load characteristics of DC compound				
	generator and plot load voltage Vs load				
	current.				
	•				

Internal Mid End **Total Marks** Assessment Term Term (IA)Exam Exam (MTE) (ETE) 50 100 50 _

Name of The	Signals and System	ıs			
Course					
Course Code	BECE2016				
Pre-requisite	Engineering Mathematics				
Co-requisite					
Anti-requisite					
_		L	Т	Р	С
		3	0	0	3

Course Objectives:

This subject is about the mathematical representation of signals and systems. The most important representations we introduce involve the *frequency domain* – a different way of looking at signals and systems, and a complement to the time-domain viewpoint. Indeed engineers and scientists often think of signals in terms of frequency content, and systems in terms of their effect on the frequency content of the input signal. Some of the associated mathematical concepts and manipulations involved are challenging, but the mathematics leads to a new way of looking at the world.

Course Outcomes:

	Outcomes.			
CO1	Understand various types of signals, classify,			
	analyze and perform various operations on			
	them.			
CO2	Classify the systems and realize their responses			
CO3	Analyze the response of continuous time			
	systems using Fourier transforms			
CO4	Use Laplace and Z transform techniques as tool			
	for System analysis			
CO5	Analyze the continuous and discrete time			
	system functions			
CO6	Understand the application of Sampling			
	Theorem, Multirate Signal Processing and their			
	applications in real-world problems			
	•			

Text Book:

- 1. P. Ramakrishna Rao, 'Signal and Systems' 2008 Ed., Tata McGraw Hill, New Delhi, ISBN 1259083349, 9781259083341
- 2. Signals and Systems by Oppenheim &WilskyMillman

Continuous Assessment Pattern

Course Content:

Unit-1 Introduct 8 hours	tion
Signals and systems as seen in everyday life,	and
in various branches of engineering and scien	
Types of signals and their representation	
continuous-time/discrete-time, periodic/n	
periodic, even/odd, energy/power, determinis	stic/
random, one dimensional/ multidimensio	nal·
Basic Signals: unit impulse, unit step, unit ra	
exponential, rectangular pulse, sinusoi	
operations on continuous-time and discrete-t	
signals (including transformations of independent	
variables)	icin
Unit-2 Classification of Syste	ma
8 hours	ems
Classification, linearity, time-invariance	and
causality, impulse response, characterization	
linear time-invariant (LTI) systems, unit san	
response, convolution summation, step response	
of discrete time systems, stability, convolu-	
integral, co-relations, signal energy and energy	
spectral density, signal power and power spec	urai
density, properties of power spectral density. Unit-3 Fourier Series and Transfor	
8 hours	ms
Continuous-time Fourier series: Periodic sign	nala
	and
trigonometric FS representation of perio	
signals, convergence, FS of standard period	
signals, salient properties of Fourier ser	
Definition, conditions of existence of	
properties, magnitude and phase spec	
Parseval's theorem, Inverse FT, Discrete t	
Fourier transform (DTFT), inverse DT	
convergence, properties and theore Comparison between continuous time FT	
DTFT.	anu
Unit-4 Laplace Transforms and Z Transfor	rme
8 hours	
One-sided LT of some common signals, impor	
theorems and properties of LT, inverse	
solutions of differential equations using	
Bilateral LT, Regions of convergence (ROC), G	
sided and Bilateral Z-transforms, ZT of so	ome
common signals, ROC, Properties and theore	ms,
solution of difference equations using one-si	
ZT, s- to z-plane mapping	
Unit-5 Analysis of LTI syste	ems
8 hours	
Analysis of first order and second order syste	ms.
continuous-time (CT) system analysis using	
system functions of CT systems, poles and ze	
block diagram representations; discrete-t	
system functions, block diagram representat	
system runetions, block magrani representat	ion,

illustration of the concepts of system bandwidth and rise time through the analysis of a first order CT low pass filter

Unit -6: **Multirate Signal Processing** 8 hours Sampling and data reconstruction process, Multirate Signal Processing, Sampling, Sampling rate conversion, introduction to compressive sensing.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Design and Engineering				
Course Code BEE02T2003				
Antirequisite				
	L	Т	Р	С
	2	0	0	2
			BEE02T2003	BEE02T2003

Course Objectives:

The purpose of this course is to excite the student on creative and innovative design and its significance, aware of the processes involved in design, understand the interesting interaction of various segments of humanities, sciences and engineering in the evolution of a design and get an exposure as to how to engineer a design.

Course Outcomes

Able to appreciate the different elements				
involved in good designs and to apply				
them in practice when called for.				
To understand the production based on the				
market demand				
Aware of the product oriented and user				
oriented aspects that make the design a				
success.				
Will be capable to think of innovative				
designs incorporating different segments				
of knowledge gained in the course				
Students will have a broader perspective of				
design covering function, cost,				
environmental sensitivity, safety and other				
factors other than engineering analysis.				
Will be able to design the Product centred				
and user centred design.				

Text Book (s)

- Balmer, R. T., Keat, W. D., Wise, G., and Kosky, P., Exploring Engineering, Third Edition: An Introduction to Engineering and Design – [Part 3 – Chapters 17 to 27], ISBN13: 978-0124158917 ISBN-10: 0124158919
- Dym, C. L., Little, P. and Orwin, E. J., Engineering Design – A Project based introduction – Wiley, ISBN-978-1-118-32458-5
- Eastman, C. M. (Ed.), Design for X Concurrent engineering imperatives, 1996, XI, 489 p. ISBN 978-94-011-3985-4 Springer
- Haik, Y. And Shahin, M. T., Engineering Design Process, Cengage Learning, ISBN-13: 978-0-495-66816-9
- Pahl, G., Beitz, W., Feldhusen, J. and Grote, K. H., Engineering Design: A Systematic Approach, 3rd ed. 2007, XXI, 617p., ISBN 978-1-84628-319-2
- 6. Voland, G., Engineering by Design, ISBN 978-93-325-3505-3, Pearson India

Reference Book (s)

- 1. E-Book (Free download): http://opim.wharton.upenn.edu/~ulrich/designb ook.html
- .http://www2.warwick.ac.uk/fac/sci/wmg/ftmsc /modules/modulelist/peuss/designforx/design_f or_x_notes_section_5.pdf

Course Content:

Unit I:Introduction to design 11 lecture hours Design and its objectives; Design constraints, Design functions, Design means and Design from; Role of Science, Engineering and Technology in design; Engineering as a business proposition; Functional and Strength Designs. Design form, function and strength. How to initiate creative designs? Initiating the thinking process for designing a product of daily use. Need identification; Problem Statement; Unit II: Market Survey

Market survey customer requirements; Design attributes and objectives; Ideation; Brain storming approaches; arriving at solutions; Closing on to the Design needs.

Unit III: Design process 9 lecture hours Design process- Different stages in design and their significance; Defining the design space; Analogies and "thinking outside of the box"; Quality function deployment-meeting what the customer wants; Evaluation and choosing of a design. Design Communication; Realization of the concept into a configuration, drawing and model. Concept of "Complex is Simple". Design for function and strength. Design detailing-Material selection, Design visualization- Solid modelling; Detailed 2D drawings; Tolerancing; Use of standard items in design; Research needs in design; Energy needs of the design, both in its realization and in the applications.

Unit IV: Prototype 8 lecture hours Prototyping- rapid prototyping; testing and evaluation of design; Design modifications; Freezing the design; Cost analysis Engineering the design – From prototype to product. Planning; Scheduling; Supply chains; inventory; handling; manufacturing/construction operations; storage; packaging; shipping; marketing; feed-back on design

Unit V: Design Monitoring 7 lecture hours Design for "X"; covering quality, reliability, safety, manufacturing/construction, assembly, maintenance, logistics, handling; disassembly; recycling; re-engineering etc. List out the design requirements(x) for designing a rocket shell of 3 meter diameter and 8 meter length.

Unit VI: Design Attributes 4 lecture hours

Product centred and user centred design. Product centred attributes and user centred attributes. Bringing the two closer.

Continuous Assessment Pattern

Internal	Mid	End	Total	
Assessment	Term	Term	Marks	
(IA)	Exam	Exam		
	(MTE)	(ETE)		
20	30	50	100	

Semester 4

Name of The	Control systems				
Course					
Course Code	BEEE3002				
Prerequisite	Signals and Systems				
Corequisite	None				
Antirequisite	None				
L T P			Р	С	
		3	0	0	3

Course Objectives:

- 1. To understand and develop the Mathematical Modelingof dynamic systems using classical and state-space techniques.
- 2. To apply analytical /graphical techniques in time/frequency domain to determine stability.

3. To understand and use applications of feedback control theory to a variety of real world problems.

Course Outcomes

CO1	Understand mathematics modeling of			
	control systems sand solve it using transfer			
	function, block diagram and signal flow			
	diagram reduction techniques.			
CO2	Design and analyze control system			
	engineering problems in time response of			
	first and second order systems.			
CO3	Analyze the concept and stability of servo			
	systems using algebraic stability criteria			
	with necessary conditions.			
CO4	Understand and analyze the stability			
	analysis using the polar, inverse polar,			
	Bode, and Nyquist stability criterion of			
	control systems			
CO5	Understand and design of lead, lag and			
	lead-lag compensator of the control			
	process in time and frequency domains.			
CO6	Analysis of the state space systems and its			
	application			

Text Book (s)

- 1. Nagrath& Gopal, "Control System Engineering", 4th Edition, New age International
- 2. K. Ogata, "Modern Control Engineering", Prentice Hall of India.

Reference Book (s)

- 1. B.C. Kuo&FaridGolnaraghi, "Automatic Control System" Wiley IndiaLtd, 2008.
- 2. D.RoyChoudhary, "Modern Control Engineering", Prentice Hall of India.

Course Content:

Unit-1Introduction Feedback Control: Open loop and closed control system, servomechanism, Physical examples. Transfer functions of linear time-invariant systems, Block diagram algebra, and Signal flow graph, Mason's gain formula Reduction of parameter variation and effects of disturbance by using negative feedback.

Unit-2

Standard test signals, time response of first and second order systems, time response specifications, steady state errors and error constants. Design specifications of second order systems: Error analysis. P, PI, PD, PID controllers, design considerations for higher order systems, performance indices.

Unit-3
Concept of Stability. Routh-Hurwitz Criteria.
Relative Stability analysis, Routh-Hurwitz criteria
and limitations, root locus concepts, construction
of root locus. Design of controllers using root-
locus. Pole placement with state feedback,
controllability.
Unit-4
Frequency response, correlation between time and
frequency responses, polar and inverse polar plots,
Bode plots Stability in Frequency Domain:
Nyquist stability criterion, assessment of relative
stability: gain margin and phase margin, constant
M&N circles.
Unit-5
Application of Proportional, Integral and
Derivative Controllers, Lead and Lag
compensation in designs in time domain and
frequency domain. Review of state variable
technique:
Unit -6
Pavian of state variable technique conversion of

Review of state variable technique, conversion of state variable model to transfer function model and vice-versa, diagonalization, Controllability and observability and their testing.

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam Exam		Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The	Electronics	Dev	ices	6	and
Course	Circuits				
Course Code	BECE2015				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 1. Apply concepts of semiconductor devices to design and analyze circuits.
- 2. To prepare students to know the characteristics of different semiconductor devices.

Course Outcomes

CO1	Realize the transistor biasing methods and	
	Design analog electronic circuits using	
	discrete components	

CO2	Design common amplifier circuits and			
	analyze the amplitude and frequency			
	responses			
CO3	Design various analog circuits to analyze			
	their responses			
CO4	Understand the principle of operation of			
	different Oscillator circuits.			
CO5	Understand the principle of operation of			
	various amplifier circuits			
CO6	Understand the recent trends and practical			
	applications of electronic devices			

Text Book (s)

1. Jacob. Millman, Christos C.Halkias, 'Electronic Devices and Circuits', 2nd Edition, Tata McGraw Hill Publishing Limited, New Delhi, 2008, ISBN 0070634637, 9780070634633

2. David A.Bell, 'Electronic Devices and Circuits', Prentice Hall of India Private Limited, New Delhi, 2003, ISBN 013253147X, 9780132531474

Reference Book (s)

1.Theodre F. Boghert, 'Electronic Devices & Circuits',6th Edition, Pearson Education 2004 ISBN 8177588877, 9788177588873.

2. Ben G. Streetman and Sanjay Banerjee, 'Solid State Electronic Devices', 6th Edition, PHI 2009, ISBN 0132454793, 9780132454797

Course Content:

Course Content:
Unit-1 Introduction 8
hours
BJT and BJT Biasing .Hybrid models of CE, CB,
CC, configurations – Study of the effect of emitter
by- pass condenser at low frequencies - Hybrid -
π common emitter transistor model – hybrid π
conductance and capacitance - CE short circuit
current gain - current gain with resistive load -
gain bandwidth product – Study of the effect of un
bypassed emitter resister on amplifier
performance, Cascode amplifier. HF & LF
compensation of RC coupled amplifier.
Multistage Amplifiers.
Unit-2FET and FET Biasing8 hours
FET and FET Biasing. FET Amplifiers: Common
source, Common gate and Common drain
Amplifiers - problems. Small signal analysis of
FET Amplifiers. High Frequency analysis of FET
Amplifiers, VMOS & CMOS Concepts.
Unit-3Feedback amplifiers 8 hours
The feedback concept – Transfer gain with
feedback - general characteristics and advantages
of negative feedback- analysis of voltage series,
Voltage shunt, current series and current shunt
feedback amplifiers - Study of the effect of

Negative feedback on Gain, Bandwidth, Noise, Distortion, Input and Output impedances with the help of Block Schematic and Mathematical Expressions Unit-4Oscillators 8 hours Sinusoidal oscillators -phase shift oscillator -Wien bridge oscillator - Hartley oscillator -Colpits oscillator – frequency stability, inclusive of design, Crystal oscillators. Unit-5Tuned amplifiers 8 hours Characteristics of Tuned amplifiers – Analysis of Single tuned, Doubled tuned and stagger tuned amplifiers, Gain – bandwidth product – High frequency effect - neutralization. Power Amplifiers: Classification of amplifiers – class A large signal amplifiers - second harmonic distortion - higher order harmonic generations computation of Harmonic distortion Transformer coupled audio power amplifier efficiency - push - pull amplifier - class B amplifier - class AB operation - Push-Pull circuit with Transistors of Complimentary Symmetry. Unit-6 Recent trends and Application 8 hours Trend of Energy Saving in Electronic Devices. Application of oscillators- springs and damping, shock absorber in cars, Pendulum

Continuous Assessment Pattern

Internal	Mid	End	Total	
Assessment	Term	Term	Marks	
(IA)	Test	Test		
	(MTE)	(ETE)		
20	30	50	100	

Name of The	Fundamental of Power systems				
Course					
Course Code	BTEE2008				
Prerequisite Basic Electrical					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 1. To develop solid foundation for further study of power system courses.
- 2. To develop the analytical skills for solving problems related to power system.
- 3. To familiarize students of the basics of power system components, transmission

parameters and losses in the transmission line etc.

Course Outcomes

Course	Outcomes
CO1	Exposure to the modeling of individual
	power system components like
	transmission lines and generators
CO2	To understand the overhead transmission
	line parameters importance and its
	calculation procedure
CO3	Analyze the overhead transmission line
	performance
CO4	Analyze the corona phenomena,
	interference and insulator application and
	transmission lines
CO5	Apply the knowledge of transmission line
	design in analysis of mechanical strength
	of the towers.
CO6	Estimate EHVC and HVDC transmission
	line parameters and their neutral
	grounding

Text Book (s)

- 1. C. L. Wadhwa, "Electrical Power Systems" New age international Ltd. Third Edition
- 2. AsfaqHussain, "'Power System", CBS Publishers and Distributors.

Reference Book (s)

- 1. W. D. Stevenson, "Element of Power System Analysis", McGraw Hill
- 2. B. R. Gupta, "Power System Analysis and Design" Third Edition, S. Chand & Co.

Course Content:

Unit-1	Power	System	Components	
6 hours			_	
Single 1	ine Diagran	n of Pow	er system Brief	
description	on of power s	ystem Elem	ents: Synchronous	
machine,	transformer,	transmissi	on line, bus bar,	
circuit bro	eaker and isol	lator Calcula	ation of single and	
Three ph	ase Power C	hoice of tra	nsmission voltage	
Transmis	sion line type	s of conduc	tors and resistance	
Skin effe	et Proximity e	effect Kelvir	n's law	
Unit-2:	Over He	ead Tran	smission Lines	
6 hours				
Calculation	Calculation of inductance single phase, three phase			
and doub	and double circuit Transmission line			
Calculation	on of capacita	ance single	phase, three phase	
and doub	le circuit Trar	nsmission lii	ne	
Unit-3: O	ver Head Tra	nsmission L	ines Performance	
Transmis	sion line clas	sification F	Representation and	
performation	nce of short T	ransmission	line	
Represen	itation and pe	rformance o	f medium nominal	
T and No	minal Pi Tra	nsmission lin	ne Representation	

and performance of long Transmission line Surge
impedance loading Ferranti effect
Unit: 4 Corona and Interference
9 hours
Phenomenon of corona and its formation Calculation
of potential gradient Corona loss, factors affecting
corona and methods of reducing corona Electrostatic
and electromagnetic interference with
communication lines Type of insulators and their
applications Potential distribution over a string of
insulators String efficiency and Methods of
equalizing the potential
Unit-5 Mechanical Design of transmission line
9 hours
Catenary curve of transmission line Sag and tension
Affect due to ice and wind on sag, Types of insulated
cables and its construction Dielectric stress and
Insulation resistance
Capacitance measurement of a single phase and three
phase cables Dielectric loss and loss triangle
Unit-6 Neutral grounding and HVDC/HVAC
9 hours
Necessity and its methods of neutral grounding
Earthing transformer and Grounding practices.
Design consideration of EHV transmission lines
Choice of voltage Number of circuits Conductor
configuration Insulation design and Selection of
ground wires Introduction to EHV AC and HVDC
transmission Their comparison Use of bundle
conductors Kinds of DC links Use of HVDC system
in AC transmission system
•

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Name of	The	Power Plant En	gine	eri	ng	
Course			-		-	
Course Code		BTEE3015				
Prerequisite						
Corequisite						
Antirequisite	;					
			L	Т	Р	C
			3	0	0	3

Course Objectives:

Power plant engineering or power station engineering is a division of power engineering, and is defined as the engineering and technology

required for the production of central station electric power. The field is focused on the generation of power for industries and communities, not for household power production. The field is an interdisciplinary field, using the theoretical base of both mechanical and electrical engineering. The engineering aspect of power plant management has evolved with technology and has become progressively more complicated. The introduction of nuclear technologies have allowed power to be created in more ways and on a larger scale than was previously possible.

Course Outcomes

CO1	Analyze different types of steam cycles and estimate efficiencies in a steam power
	plant.
CO2	Understand the basic components of coal
	base thermal power plants.
CO3	Define the performance characteristics and
	components of such power plants.
CO4	Estimate different efficiencies associated
	with power generation system systems.
CO5	Calculate present worth depreciation and
	cost of different types of power plants.
CO6	Estimate the cost of producing power per
	kW.

Text/ Reference Books:

- 1. S.N. Singh, "Electric Power Generation, Transmission& distribution." PHI Learning.
- 2. John Twideu and Tony Weir, "Renewal Energy Resources" BSP Publications, 2006.
- 3. Power system Voltage stability C.W. Taylor, Mc. Graw Hill, 1994.
- 4. D.S. Chauhan,"Non-conventional Energy Resources" New Age International.

Syllabus

Unit-I	Coal based Thermal 5 Hours			
	Power Plants			
Rankine cy	cle - improvisations, Layout of modern			
coal power	plant, Super Critical Boilers, FBC			
Boilers, Tu	rbines, Condensers, Steam & Heat rate,			
Unit II	Component of Thermal 5 Hours			
	Power Plant			
Subsystems	Subsystems of thermal power plants – Fuel and			
ash handli	ash handling, Draught system, Feed water			
treatment.	Binary Cycles and Cogeneration			
systems.				
Unit-III	Diesel, Gas Turbine and 7 Hours			
	Combined Cycle Power			
	Plants			

Otto, Diesel, Dual & Brayton Cycle - Analysis			
&Optimisation. Components of Diesel and Gas			
Turbine por	wer plants. Combined C	ycle Power	
Plants. Integ	grated Gasifier based Com	bined Cycle	
systems.		-	
Unit-IV	Nuclear Power Plants	8 Hours	
Basics of	Nuclear Engineering, I	Layout and	
subsystems	of Nuclear Power Plants,	Working of	
Nuclear Rea	actors : Boiling Water Read	ctor (BWR),	
Pressurized	Water Reactor (PWR), CANada	
Deuterium-	Uranium reactor (CAND	U), Breeder,	
Gas Cooled	and Liquid Metal Coole	ed Reactors.	
Safety meas	sures for Nuclear Power pl	ants.	
Unit-V	Power from Renewable	8 Hours	
	Energy		
	ctric Power Plants - Cl		
Typical La	ayout and associated	components	
including T	urbines. Principle, Const	ruction and	
	Wind, Tidal, Solar Ph		
(SPV), Sola	r Thermal, Geo Thermal,	Biogas and	
Fuel Cell po	ower systems.		
Unit-VI	Energy, Economic and	7 Hours	
	Environmental issues of		
	Power Plants		
Power tariff	f types, Load distribution	parameters,	
load curve, Comparison of site selection criteria,			
relative merits & demerits, Capital & Operating			
Cost of different power plants. Pollution control			
technologies including Waste Disposal Options			
for Coal and Nuclear Power Plants.			

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Electrical Measurements and				
Course	Instrumentation				
Course Code	BEEE2001				
Prerequisite	Basic Electrical and				
	Electronics Engineering				
Corequisite EMFT					
Antirequisite					
	L T P	С			
	3 0 0	3			

Course Objectives:

1. To know the necessity of different measuring instruments and their design principle

- 2. To understand the working principle of different measuring instruments and technical solutions to handle different errors.
- 3. To learn the architecture and working principle of advanced measuring instrument and their applications.

Course Outcomes

CO1	Apply physical principles to study the construction and working principle of different analog instruments and analyze the errors takes place in measurements.(K3- Apply)
CO2	Apply the physical principle to study the working of instrument transformers and measurement of speed, frequency and power factor. (K3- Apply)
CO3	Model the solar and wind energy system for standalone and grid integration system. (Apply-KL-3)
CO4	Demonstrate the principle of operation of other renewable energy sources(ocean thermal, geo-thermal and micro hydro power) also importance of its role. (Understanding-KL-2)
CO5	Understand the basic working principle of digital instruments. (Understanding-KL-2)
CO6	Examine the waveforms using analyzers and oscilloscopes. (K3- Apply)

Text Book (s)

- 1. A Course in Electrical and Electronics Measurement and Instrumentation, "A K Shawney", Publisher: Dhanpat Rai & Co
- 2. Electrical Measurements and Measuring Instruments, E.W Golding, F.C Widdis, Publisher: Reem Publications
- 3. Electronic Instrumentation and Measurements- David A Bell, Oxford University Press, 2006

Reference Book (s)

- 1. Basic Electrical Measurements: M B Stout
- 2. Electronic Instrumentation: H S Kalsi, Tata-Mc-Graw Hill Publication, Second Edition.

Course Content:

Unit-1Philosophy of Measurement & Analog					
Measurement of Electrical Quantities					
9 hours					
Unit& dimensions, standards, Errors,					
Characteristics of Instruments and measurement					
system, basics of statistical analysis. PMMC					
instrument, DC ammeter, DC voltmeter, Ohm					
meter, Moving Iron instrument, Electrodynamic					

Wattmeter, errors and remedies, Three Phase Wattmeter, Power in three phase system, Energy meter.
Unit-2Measurement: Instrument Transformer 6 hours
Instrument Transformer and their applications in the extension of instrument range, Introduction to measurement of speed, frequency and power factor.
Unit-3Measurement of Parameters
9 hours Different methods of measuring low, medium and high resistances, measurement of inductance & capacitance with the help of AC Bridges- Wheatstone, Kelvin, Maxwell, Hay's, Anderson, Owen, Heaviside, Campbell, Schering, Wien bridges, Wagner Earthing device, Q Meter.
Unit-4AC Potentiometer & Magnetic
Measurement7 hoursPolar type & Co-ordinate type AC potentiometers, application of AC Potentiometers in electrical measurement. Ballistic Galvanometer, Flux meter.Unit-5DigitalMeasurement of Electrical Quantities 5 hours
Concept of digital measurement, Digital voltmeter, Frequency meter, Power Analyzer and Harmonics Analyzer, Electronic Multimeter. Unit-6 Cathode Ray Oscilloscope 5 hours
CRT, wave form display, time base, dual trace oscilloscope, Measurement of voltage, frequency and phase by CRO, Oscilloscope probes, Sampling Oscilloscope, DSO, DSO applications.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term	Total Marks
(IA)	(MTE)	Test (ETE)	Truins
20	30	50	100

Semester 5

Name of The	Microcontroller and			
Course	Embedded Systems			
Course Code	BECE3004			
Prerequisite				
Co-requisite				
Anti-requisite				
	L T P C			
	3 0 0 3			

Course Objectives

Microcontrollers are the most useful electronic chips which are used to design and develop processor and computer based automatic smart electronics systems for home and industry application. Students learn CPU architecture, memory management, bus concepts, bus arbitration techniques, interfacing of systems using AD/DA, serial I/O devices, interrupt control devices, including design, construction, and testing of dedicated microcontroller systems.

Course Outcomes

CO1	Demonstrate the internal organization and operation of microcontrollers.				
CO2	Analyse the design issues in the embedded system.				
CO3	Design Microcontroller based application.				
CO4	Program 8051 for application specific solution.				
CO5	Analyse the different programming methods for controller and their issues.				
CO6	Illustrate the latest trends adapted in designing microcontroller based system				

Course Content:

Unit I: Introduction 08 Hours
IntroductiontoMicroprocessors,Microcontrollers and system design – Assemblyand High-Level language programming – SystemDevelopment Environment: assembler, compilerand integrated development environment.Unit II: 8051 Microcontroller08 Hours
Introduction to single chip Microcontrollers,8051- architecture – 8051 assembly language programming, addressing modes – Instruction sets- interrupts, timers and serial communication. Unit III: Embedded applications 08 Hours
Programming the interrupts, timers and serial communication – system design with 8051. Application of Microcontrollers in data acquisition systems, process control, signal processing, data communication and distributed computing and networking Unit IV: Embedded programming 08
Hours Programming in Assembly Language (ALP) Vs. High level language – C program elements, Macros and Functions – Use of pointers– use of function calls – NULL pointers – multiple

function calls in a cyclic order in the main					
function pointers – C program compilers – Cross					
compiler – optimization of memory codes.					
Unit V: Embedded System design 08					
Hours					
Introduction, Embedded System project					
management – Embedded system design and Co-					
Design Issues in System Development process –					
Design cycle in the development phase for an					
embedded system – Uses of Target system or its					
emulator and In-Circuit Emulator					

Unit VI: Recent trends in Micro controller

Machine learning on tiny ML processor, introduction of mixed signal processor, DMA architecture

Suggested Reading.

1. Mohammad Ali Mazidi and Janice GillispieMaszidi "The 8051 Microcontroller andEmbedded Systems" Pearson education, 2003, ISBN- 9788131710265, 2ndEdition

2. Kenneth J. Ayla, "The 8051 Micro controller", Thomson learning, 3rd edition, 2004,ISBN-140186158X

3. Alan Clements, "Principles of Computer Hardware", OxfordUniversity Press, 3rd Edition,2003, ISBN-9780198564539

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Name of The Course	Electrical Machine-II				
Course Code	BTEE3004				
Prerequisite					
Co-requisite	Co-requisite				
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. To acquaint the students with the principle of operation and performance of AC machines.
- 2. To familiarize students with the parameter estimation of electrical machines.
- 3. To learn the mathematical models and equations related to electrical machines.
- 4. To familiarize students with the other special machines.

Course Outcomes

CO1	Apply the knowledge of circuit analysis and electromagnetic principles of three- phase Induction Motor.				
CO2	Analysis the numerical problems and performance associated with AC machines.				
CO3	Make use of application of the single phase IM with industries and day to day life.				
CO4	Use special machine for different application.				
CO5	Analysis the demanding and conventional Alternator performance.				
CO6	Test and estimate the parameter of the Synchronous Motor.				

Course Content:

Unit I: Three phase Induction Machine – I 08				
Hours				
Constructional features, Rotating magnetic field,				
Principle of operation Phasor diagram, equivalent				
circuit, torque and power equations, Torque- slip				
characteristics, no load & blocked rotor tests,				
efficiency, Induction generator: Generator action,				
methods of excitation & applications.				
Unit II:Three phase Induction Machine- II 08				
Hours				
110010				
Starting, Deep bar and double cage rotors, Speed				
Control (with and without emf injection in rotor				
circuit.), Electrical braking, operation on				
unbalanced supply voltage, effect of slot				
harmonics and space harmonics, merits, demerits				
and introduction of linear induction motor.				
Unit III: Single phase Induction Motor 08				
Hours				
Double revolving field theory, Equivalent circuit,				
No load and blocked rotor tests, Starting methods				
of Single phase Induction Motor,				
Unit IV: Fractional Motors				

Repulsion motor, other Motors: Universal motor, Hysteresis motor, stepper motors, switched reluctance motor, BLDC, brushless dc motor Unit V: Synchronous Machine I 08 Hours

Constructional features, EMF Equation, Armature winding, Winding coefficients, equivalent circuit and phasor diagram, Armature reaction, O. C. & S. C. tests, Voltage Regulation using Synchronous Impedance Method, MMF Method, Potier's Triangle Method, Parallel Operation of synchronous generators, operation on infinite bus, synchronizing power and torque co-efficient.

Unit V: Synchronous Machine II 08 Hours

Two Reaction Theory, Power flow equations of cylindrical and salient pole machines, operating characteristics. Synchronous Motor: Starting methods, Effect of varying field current at different loads, V- Curves, concepts of synchronous machine reactance, Synchronizing, Electrical braking, Hunting & damping, synchronous condenser.

Suggested Reading

- 1. I.J. Nagrath& D.P. Kothari, "Electrical Machines", Tata McGraw Hill.
- 2. P S Bimbhra, "Generalized Theory of Electrical Machines", Khana Publisher.
- 3. P S Bimbhra, "Electrical Machinery", Khana Publisher.
- 4. Theodre F. Boghert, 'Electronic Devices & Circuits',6th Edition, Pearson Education 2004.
- Ben G. Streetman and Sanjay Banerjee, 'Solid State Electronic Devices', 6th Edition, PHI 2009, ISBN 0132454793, 9780132454797

Internal Assessment	Mid Term Exam	End Term	Total Marks
(IA)	(MTE)	Exam	ivia KS
		(ETE)	
20	30	50	100

Name of The	Power System Analysis				
Course					
Course Code	BTEE3009				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. Modeling and solution on digital computers is the only practical approach to systems analysis and planning studies for modern day power system with its large size, complex and integrated nature.

2. This course has been designed to fulfill this need by integrating the basic principles of power system analysis illustrated through the simplest system structure with analysis techniques for practical size systems.

3. The digital computer being an indispensable tool for power system analysis, computational algorithms for various system studies such as load flow, fault level analysis, stability etc have been included in the syllabus. Students should be encouraged to build computer programs for these studies using algorithms provided.

Course Outcomes

CO1	Understand fundamental concepts relating to the analysis of electrical power systems
CO2	Understand the fault condition inside transmission line and the generating system.
CO3	Analyse of load flow equations and representation of power system components
CO4	Understand the importance of power swing equation in power system stability
CO5	Apply the knowledge in power system stability analysis during abnormal conditions.
CO6	Understand the basic concepts of travelling waves over transmission lines.

Course Content:

Unit I: Representation of Power Sys	tem
Components	
08 Hours	
Synchronous machines, Transform	ers,
Transmission lines, One line diagram, Impeda	ince
and reactance diagram, per unit Syst	em.
Symmetrical components: Symmetri	rical
Components of unbalanced phasors, power	r in
terms of symmetrical components, seque	ence
impedances and sequence networks. Symmetr	rical
fault analysis, Transient in R-L series circ	cuit,
calculation of 3-phase short circuit current	and
reactance of synchronous machine, inte	rnal

voltage of loaded machines under transient conditions. Unit II: Unsymmetrical faults 08 Hours Analysis of single line to ground fault, line-to-line fault and Double Line to ground fault on an unloaded generators and power system network with and without fault impedance. Formation of Z-bus using singular transformation and algorithm, computer method for short circuit calculations. Unit III: Load Flow Analysis 08 Hours Introduction, bus classifications, nodal admittance matrix (bus y), development of load flow equations, load flow solution using Gauss Siedel and Newton-Raphson method, approximation to N-R method, line flow equations and fast decoupled method, Comparison of load flow methods. Unit IV: Power System Stability-1 08 Hours Stability and Stability limit, Steady state stability study, derivation of Swing equation, transient stability studies by equal area criterion, Unit V: Power System Stability-2 08 Hours Synchronizing power coefficient, critical clearing angle and critical clearing time. Factors affecting steady state and transient stability and methods of improvement. Unit VI: **Traveling Waves** 08 Hours Wave equation for uniform Transmission lines, velocity of propagation, surge impedance, reflection and transmission of traveling waves under different line loadings. Bewlay's lattice diagram, protection of equipment's and line against traveling waves.

Suggested Reading

- 1. C. L. Wadhwa, "Electrical Power Systems" New age international Ltd. Third Edition.
- 2. Asfaq Hussain, "Power System", CBS Publishers and Distributors.
- 3. H.Saadat, Power System Analysis, Tata McGraw-Hill Publishing Company Limited, Edition 2008.
- 4. W. D. Stevenson, "Element of Power System Analysis", McGraw Hill.
- 5. B. R. Gupta, "Power System Analysis and Design" Third Edition, S. Chand & Co.

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam	Total Marks
	(11112)	(ETE)	
20	30	50	100

Name of The	Power Electronics				
Course					
Course Code	BTEE3011				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. The field of power electronics encompasses the application of fundamental concepts in several disciplines: electronic devices and circuits, variable speed drives and control systems.

2. The use of electric cars, electric trains and electric subway trains can substantially reduce urban pollution problems.

3. Students learn power electronics devices like thristors, MOSFET, IGBT, GTO etc., various phase controlled single phase and three phase rectifiers with performance factors, dual converters, principle of dc to dc conversion, class A,B,C,D,E,F choppers, commutation techniques, comprehensive treatment of dc to ac inverters, ac voltage converters and cycloconverters.

Course Outcomes

	Understand the operation of switching
CO1	power devices eg. thyristors, transistors
	and TRIAC.
CO2	Implement configurations of thyristor
02	based choppers.
	Apply and develop configurations of
CO3	thyristor based Single phase controlled
	rectifiers
	Apply and develop configurations of
CO4	thyristor based Three phase controlled
	rectifiers
	Apply and develop configurations of
CO5	thyristor based ac voltage controllers,
	cycloconverters
	Implement different configurations of
CO6	thyristor based inverters.
	· · · · · · · · · · · · · · · · · · ·

Course Content:

Unit I: Power semiconductor Devices 08 Hours

Introduction, Characteristics and specifications of switches. Power Diodes. Power Transistors: Operation. Steady state and switching characteristic, Power MOSFETs: Operation and characteristics, Insulated Gate Bipolar transistor: structure, working, latch-up, characteristics, Operation, charateristics, Thyristors: twotransistor model, Turn-on methods, Switching Rating characteristic. and protection, Commutation techniques of thyristor, Series and parallel operation of thyristors, Gate turn off thyristor. Unit II: DC-DC Converters 08 Hours Principles of step-down chopper, step down chopper with R-L load Principle of step-up chopper, and operation with RL load, classification of choppers, Buck, Boost and Buck-Boost converter. Unit III: Single Phase Controlled Converters 05 Hours Single-phase half wave converter with R, RL and RLE loads, Effect of freewheeling diode, Performance parameters, Single-phase full wave

Performance parameters, Single-phase full wave converter, midpoint and bridge converter, Effect of source inductance on single-phase converter, Single phase dual converter,

Unit IV: Three Phase Controlled Converters05 Hours

Three phase half wave converter with R and RL loads, Three-phase full converter, Performance parameters, Effect of source inductance on three-phase converters, Three-phase dual converter.

Unit IV: AC Voltage Controllers 08 Hours

Principle of on-off and phase control, Singlephase two SCRs in anti parallel with R and RL load, Triac with R and RL load, Three-phase ac voltage controllers, Cycloconverters: Basic principle of operation, Single phase to single phase, three-phase to single-phase cycloconverters, Three phase to three phase cycloconverters Unit V: Inverters 08 Hours

Single phase voltage source inverter, Three-phase bridge inverters, 180 degree conduction, 120 degree conduction, Voltage control of inverters,

Pulse-width modulated inverters, Harmonics reduction techniques, Single phase and three phase current source inverters.

Suggested Reading

- M. H. Rashid," Power Electronics: Circuits, Devices & Applications", Prentice Hall of India, Ltd. 3rd Edition, 2004.
- 2. V. R. Moorthy, "Power Electronics: Devices, Circuits and Industrial Applications" Oxford, University Press, 2007.
- 3. M. D. Singh & K. B. Khanchandani, "Power Electronics", Tata McGraw Hill Publishing Company, 1989.
- 4. M. S. Jamil Asghar, "Power Electronics" Prentice Hall of India Ltd., 2004.
- 5. Chakrabarti& Rai, "Fundamentals of Power Electronics &Drives" Dhanpat Rai & Sons.

Continuous Assessment Pattern

Internal Assessment	Mid Term Exam	End Term	Total Marks
(IA)	(MTE)	Exam (ETE)	
20	30	50	100

Name of The	Finance for E	lectr	ical		
Course	Engineers				
Course Code	BEE02T3004				
Prerequisite					
Co-requisite					
Anti-requisite					
-		L	Т	Р	С
		3	0	0	3

Course Objectives

- For any developing country, innovation, entrepreneurship and intellectual property rights hold the key to the entry in the league of developed countries. Equipped with the scientific knowledge and the right training, the engineer is an important building block of a nation.
- Economics and its impact on science and technology have to be well understood by the engineers to ensure success of any technological venture.

Course Outcomes

CO1	Understand basics of industrial finance
	and economy.
CO2	Analyze the various concept of cost.
CO3	Analyze the market types and lay supply
CO4	Apply various technique to build budget
	for electrical project.
CO5	Analyze various financial techniques.
CO6	Understand the basic financial installation cost of renewable power plant

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Course Content:

Unit I: Introduction 08 Hours
Various Definition of Economics, Nature of Economics problem, relation between science, engineering, technology & economics, Meaning of demand, law of demand, elasticity of demand, practical importance & applications of the concept of elasticity of demand. Unit II: Capital Budgeting 08 Hours
Meaning of production and factor of production – Land, Labour, Capital, Entrepreneur & organizations – their characteristics, law of variable proportion, return to scale,Cost Analysis- various concept of cost, cost function, short & long run cost, concept of revenue, break-even analysis. Unit III: Management of Working Capital 08 Hours
Meaning of market-type of market-perfect competition, Monopoly, Oligopoly, Monopolistic competition (Main feature of these market) Meaning of supply and law of supply; Role of demand & supply in price determination imperfect competition.Unit IV:Budgeting Control Technique 08 Hours
Concepts of Budget, budgeting and budgetary control, Objectives, Functions, Uses, Advantages,

Limitations; Master Budget and Report.

Unit V: Financial management 08
Hours
Financial management: Financial management, accounting concepts. Financial statement analysis. Financial investment analysis. Financial decisions. Managing components of working capital investment & financing decisions.
Unit VI: Renewable Power Plant
Analysis of installation cost based on rating of

Suggested Reading

Renewable power plant

- 1. Financial Management and Accounting P. K. Jain, S. Chand & Co.
- 2. Modern micro economic theory H.L. Ahuja, S.Chand.
- 3. Advance economic theory M.L. Jhingan, Konark publication.
- 4. Engineering economics Sullivan, Wicks, Koelling Pearsons.
- 5. Financial management by Rajiv shrivastava and Anil Mishra Oxford publication

Name of The	Electrical Machine-II lab
Course	
Course Code	BTEE3005
Prerequisite	Electrical Machine-I and
	BEEE Lab
Corequisite	
Antirequisite	
	L T P C
	0 0 2 1

Course Objectives:

After the completion of course the students will

- 1. This lab gives the chance to get friendship with Electrical machines.
- 2. To acquaint the students with the principle of operation and performance of AC machines.
- 3. To familiarize the students with the parameter estimation of AC machines.
- 4. To compare the mathematical models and equations related to AC machines.
- 5. The lab instills in the students the awareness and practice of safety.

Course Outcomes

CO1	Apply the knowledge of circuit analysis
001	and electromagnetic principles for the
	e i i
	physical operation of Single and three
	phase Induction machines and three phase
	Synchronous machines.
CO2	Analysis the AC machines performance
	through experiments
CO3	Estimate the parameter of the Induction
	machines and Synchronous machines
CO4	Test Induction and Synchronous machines
	with various loads
CO5	Make use of application of the subject
	topic with industries and day to day life

List of Experiments:

1	Perform no load and blocked rotor test on a
	single phase induction motor.
2	Determine performance characteristic of a
	three phase squirrel cage induction motor.
3	No load and blocked rotor test on three phase
	induction motor.
4	Load test on three phase squirrel cage
	induction motor.
5	Break test on three phase induction motor.
6	Separation of no load losses of three phase
	induction motor.
7	Perform open and short circuit test on a 3-
	phase alternator
8	Regulation of a three phase alternator by ZPF
	and ASA method.
9	Determination of Xd and Xq of a Salent pole
	synchronous machine.
10	Determine the characteristic of field current
	with armature current of the synchronous
	machine

Continuous Assessment Pattern

Internal	Mid Ter	m End Term	Total
Assessmen	Exam	Exam	Marks
t (IA)	(MTE)	(ETE)	
50	-	50	100

Name of The	Microcontroller and Embedded						
Course	Systems Lab						
Course Code	BECE3005						
Prerequisite	Digital Electronics						
Corequisite							
Antirequisite							
	L T P C						
	0 0 2 1						

Course Objectives:

To Introduce ALP concepts, features and Coding methods

1. Write ALP for arithmetic and logical operations in 8051

- 2. Differentiate Serial and Parallel Interface
- 3. Interface different I/Os with Microcontroller

Course Outcomes:

After the completion of course the students will
--

CO1	Demonstrate ability to handle arithmetic
	operations using assembly language
	programming
CO2	Demonstrate ability to handle logical
	operations using assembly language
	programming
CO3	Demonstrate ability to handle string
	instructions using assembly language
	programming
CO4	Demonstrate ability to handle sorting
	operations and using assembly language
	programming
CO5	Develop microcontroller based designs of
	Real Time Systems.

List of Experiments:

1	Basic arithmetic and Logical operations
2	Code conversion, decimal arithmetic and
	Matrix operations.
3	Square and Cube program, Find 2's
	complement of a number
4	Unpacked BCD to ASCII
5	Counters and Time Delay Peripherals and
	Interfacing Experiments
6	Traffic light controller
7	Stepper motor control
8	Digital clock
9	Key board and Display
10	Serial interface and Parallel interface
11	A/D and D/A interface and Waveform
	Generation 8051 kits

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total	
Assessment	Exam	Exam	Marks	
(IA)	(MTE)	(ETE)		
50	-	50	100	

Semester 6

Name	of	The	High Voltage Engineering
Course			
Course	Code		BEE02T3005

Prerequisite				
Co-requisite				
Anti-requisite				
	L	Т	Р	С
	3	0	0	3

Course Objectives

- 1. The course imparts knowledge about voltage break down of solid, liquid and gaseous materials used in electrical engineering field.
- 2. Students will learn generation of high voltages and currents.
- 3. Students will learn the measurement and testing of high voltages and currents.

Course Outcomes

CO1	Understand the significance high voltage
	engineering and its implementation in
	power System
CO2	Overcome upon the challenges associated
	with generation and measurement of high
	voltages and currents
CO3	To analyze Generation of High Voltages
	and Currents drivers and its benefits.
CO4	To analyze measurement of High Voltages
	and Currents drivers and its benefits
CO5	Understand about Non-Destructive
	Testing Sources.
CO6	Understand about the High Voltage
	Testing.

Course Content:

Unit I: Break Down In Gases 08 Hours
Ionization processes, Townsend's criterion,
breakdown in electronegative gases, time lags for
breakdown, streamer theory, Paschen's law, break
down in non-uniform field, breakdown in vacuum.
Unit II: Break Down In Liquid Dielectrics 08
Hours
Classification of liquid dielectric, characteristic of
liquid dielectric, breakdown in pure liquid and
commercial liquid. Break Down In Solid
Dielectrics: Intrinsic breakdown,
electromechanical breakdown, breakdown of
solid, dielectric in practice, breakdown in
composite dielectrics.
Unit III: Generation of High Voltages and
Currents 05 Hours

Generation of high direct current voltages, generation of high alternating voltages, generation of impulse voltages, generation of impulse currents, tripping and control of impulse generators.
Unit IV: Measurement of High Voltages and Currents 05 Hours
Measurement of high direct current voltages, measurement of high alternating and impulse voltages, measurement of high direct, alternating and impulse currents, Cathode Ray Oscillographs for impulse voltage and current measurements, factor, partial discharge measurements. Unit V: Non-Destructive Testing 07 Hours
Measurement of direct current resistively, measurement of dielectric constant and loss.
Unit VI: High Voltage Testing08 Hours Testing of insulators and bushings, testing of isolators and circuit breakers, testing of cables, testing of transformers, testing of surge arresters, radio interference measurements.

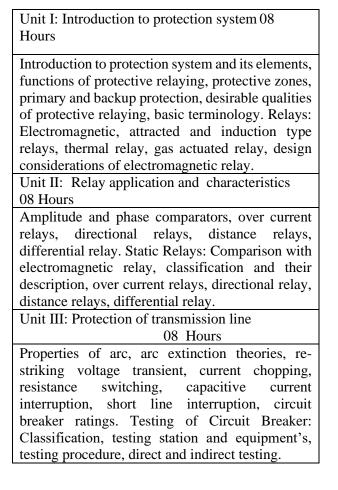
Suggested Reading

- 1. M. S. Naidu and V. Kamaraju, "High Voltage Engineering, Tata Mc-Graw Hill
- 2. Subir Ray,' An Introduction to High Voltage Engineering' Prentice Hall of India.
- 3. E. Kuffel and W. S. Zacngal, High Voltage Engineering", Pergamon Press.
- 4. M. P. Chaurasia , "High Voltage Engineering", Khanna Publishers.
- 5. R. S. Jha, "High Voltage Engineering", DhanpatRai& sons.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The	Power System Protection				
Course					
Course Code	BEE02T3006)			
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3


Course Objectives

- 1. To introduce the students the principles of different protection schemes.
- 2. To develop students with an understanding of the characteristics, advantages and defects of different protection methods.
- 3. To prepare the students to design/coordinate protection schemes for given requirements.

Course Outcomes

CO1	Illustrate the principle of switchgear and protection schemes.
CO2	Choose right relays or circuit breakers for protection of electrical equipments
CO3	Design the ratings for relays or circuit breakers according to the requirement.
CO4	Understand the differential protection scheme and its application in protection of alternator and transformer
CO5	Examine protection of power system with various protection relays
CO6	Discuss about operation of circuit breakers.

Course Content:

Unit IV: Differential Protection 05 hours

Types of fault on transformers and motors, and its differential protection scheme

Unit V: Circuit Breaking Hours

05

Properties of arc, arc extinction theories, restriking voltage transient, current chopping, resistance switching, capacitive current interruption, short line interruption, circuit breaker ratings. Testing Of Circuit Breaker: Classification, testing station and equipment's, testing procedure, direct and indirect testing. Unit VI: Apparatus protection

08 Hours Circuit Breaker: Operating modes, selection of circuit breakers, constructional features and operation of Bulk Oil, Minimum Oil, Air Blast, SF6, Vacuum and d. c. circuit breakers.Types of

faults on alternator, stator and rotor protection, Types of fault on transformers and motors

Suggested Reading

- 1. S. S. Rao, "Switchgear and Protection", Khanna Publishers.
- 2. B. Ravindranath and M. Chander, Power system Protection and Switchgear, Wiley Eastern Ltd.
- 3. Y. G. Paithankar and S R Bhide, "Fundamentals of Power System Protection", Prentice Hall of India.
- 4. T.S.M Rao, "Power System Protection: Static Relays with Microprocessor Applications", Tata Macgraw Hill.

Continuous Assessment Pattern

Internal Assessment	Mid Term Exam	End Term	Total Marks
(IA)	(MTE)	Exam	iviai K5
		(ETE)	
20	30	50	100

Name of The	Electrical N	Electrical Machine Design			
Course					
Course Code	BTEE4013				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

The goal of this course is to provide advanced knowledge and understanding about the construction and design of the electrical machines. The course provides to the students the basis and the methodologies to a correct design of the electrical machines (transformers, rotating AC machines and DC machines). Innovative tools and techniques will be used for the design optimization of the electrical machine for industrial, automotive and aerospace applications. The applying knowledge and understanding capabilities will allow at the graduate to approach the problem linked to the design of the electrical machines.

Course Outcomes

CO1	Identify different components, parameters, materials, equations used in designing for electric machines and transformers.
CO2	Understand the dimension designing of transformer components based on equation and cooling methods.
CO3	Concepts of Induction motor and solve the problems related to design.
CO4	understand the design of various parts of DC machines
CO5	design concepts of synchronous machines and know about
CO5	Apply the computer aided design on an electrical machine.

Course Content:

Unit I: Introduction08 Hours Basic design principles and approaches, Electrical Engineering Materials, Choice of specific Magnetic and electric loading, output equations and output coefficients, Main dimensions. Ratings, Heating, cooling and temperature rise, Standard specification. Unit II: Transformer 08 Hours Output Equation, Main Dimensions, Magnetic circuit, core construction and design, winding types, insulation, Loss allocation and estimation, Reactance, Temperature rise and method of cooling. Unit III: Induction Machine 08 Hours Output Equation, Main Dimensions, 3 phase: Rating specifications, length of air gap, standard

frame sizes, choice of specific loadings, Design of stator windings, Rotor design – slots and

Unit IV:DC machine08 HoursOutput Equation, Main Dimensions, Magnetic circuit and Magnetization curve, Selection of poles, Design of armature, Commutator and brushes, performance prediction.Unit V: Synchronous Machine 08 HoursOutput Equation, Main Dimensions, choice of specific loadings, Magnetization characteristic, Armature design, Field winding design, Design of damper winding.Unit VI: Computer assisted designComputer assisted design of transformer,	windings, calculations of equivalent circuit parameters. Operating characteristics.
circuit and Magnetization curve, Selection of poles, Design of armature, Commutator and brushes, performance prediction. Unit V: Synchronous Machine 08 Hours Output Equation, Main Dimensions, choice of specific loadings, Magnetization characteristic, Armature design, Field winding design, Design of damper winding. Unit VI: Computer assisted design	Unit IV: DC machine 08 Hours
specific loadings, Magnetization characteristic, Armature design, Field winding design, Design of damper winding. Unit VI: Computer assisted design	circuit and Magnetization curve, Selection of poles, Design of armature, Commutator and brushes, performance prediction.
Computer assisted design of transformer,	specific loadings, Magnetization characteristic, Armature design, Field winding design, Design of damper winding.
Induction, dc and synchronous machines.	

Suggested Reading

- 1. A K Sawhney; A Course in Electrical Machine Design; Dhanpat Rai & Co.
- 2. Clayton A E & Hancock N N : The Performance and Design of Direct Current Machines ; CBS Publishers and Distributors
- 3. "DESIGN OF ROTATING ELECTRICAL MACHINES", JUHA PYRHONEN, TAPANI JOKINEN.
- 4. "PM MOTOR TECHNOLOGY: DESIGN AND APPLICATIONS", J.F. GIERAS, M. WING.

Continuous Assessment Pattern

Internal Assessment	Mid Term Exam	End Term	Total Marks
(IA)	(MTE)	Exam	
20	30	(ETE) 50	100

Semester 7

Name of	Smart Grid and Energy Management
The Course	
Course	BEEE4001
Code	
Prerequisite	Power System Analysis and Power
	Electronics
Corequisite	
Antirequisit	
e	

	L	Т	Р	C
	3	0	0	3

Course Objectives:

A smart grid is an electrical grid which includes a variety of operational and energy measures including smart meters, smart appliances, renewable energy resources, and energy efficient resources. Electronic power conditioning and control of the production and distribution of electricity are important aspects of the smart grid.

- 1. To make use of the Smart grid with the coming future.
- 2. To analyze the global policies about the smart grid.
- 3. To develop and design the Advanced Metering infrastructure (AMI).
- 4. To estimate the Power Quality issues of Grid connected Renewable Energy Sources.

Course Outcomes

CO1	To learn about the Evolution of Electric
	Grid, Concept, Definitions and Need for
	Smart Grid.
CO2	Understand about the International
	policies in Smart Grid, Diverse
	perspectives from experts and global
	Smart Grid initiatives
CO3	To analyze Advanced Metering
	infrastructure (AMI) drivers and its
	benefits.
CO4	Understand about the Power Quality issues
	of Grid connected Renewable Energy
	Sources.
CO5	Understand about the IP based Protocols,
	Basics of Web Service and CLOUD
	Computing to make Smart Grids smarter.
CO6	To analyze the conventional grid
	integrated with renewable energy sources

Text/ Reference Books:

- 1. A. S boyer, SCADA:supervisory Control and Data Acquisition, The Instrumentation system and Automation Society,4 th Edition 2009.
- 2. Vehbi C. Güngör, Dilan Sahin, TaskinKocak, SalihErgüt, ConcettinaBuccella, Carlo Cecati, and Hancke: Smart Grid Gerhard P. Technologies-Communication Technologies Standards and IEEE Transactions on Industrial Informatics, Vol. 7, No. 4, November 2011.

- 3. Xi Fang, SatyajayantMisra, GuoliangXue, and Dejun Yang: Smart Grid – The New and Improved Power Grid- A Survey, IEEE Transaction on Smart Grids.
- 4. Stuart Borlase: Smart Grid-Infrastructure, Technology and Solutions, CRC Press.
- 5. B.G. Liptac Instrument Engineering Handbook,Volume 3:process Software and Digital Networks,CRC Press, 4 th Edition 2011.

Syllabus

Syllabus	
Unit-I	Introduction to Smart 8 Hours Grid
Evolution of	of Electric Grid, Concept, Definitions
and Need	for Smart Grid, Smart grid drivers,
	opportunities, challenges and benefits
	between conventional & Smart Grid,
	Resilient & Self-Healing Grid, Present
	nt & International policies in Smart
	arse perspectives from experts and
	rt Grid initiatives.
Unit-II	Smart Grid 8 Hours
omt n	Technologies
Technology	Drivers, Smart energy resources,
	ations, Substation Automation, Feeder
	, Wide area monitoring, Protection
	rol, Distribution Systems: DMS,
	ontrol, Fault Detection, Isolation and
	toration, Outage management, High-
	Distribution Transformers, Phase
	ansformers, Plug in Hybrid Electric
Vehicles (P	÷ ;
Unit-III	Smart Meters and 8 Hours
	Advanced Metering
	Infrastructure
Introduction	n to Smart Meters, Advanced Metering
infrastructu	re (AMI) drivers and benefits, AMI
protocols, s	tandards and initiatives, AMI needs in
the smart g	rid, Phasor Measurement Unit (PMU),
Intelligent	Electronic Devices (IED) & their
application	for monitoring & protection.
Unit-IV	Power Quality 06 Hours
	Management in Smart
	Grid
	lity & EMC in Smart Grid, Power
Quality Co	nditioners for Smart Grid, Web based
	ity monitoring, Power Quality Audit
Unit-V	High Performance 07 Hours
	Computing for Smart
	Grid Applications
Local Area	Network (LAN), House Area Network
	de Area Network (WAN), Broad band
	line (BPL), IP based Protocols, Basics
	, , ,

of Web Service and CLOUD Computing to make							
Smart Grid	Smart Grids smarter, Cyber Security for Smart						
Grid.							
UnitVI	Integration	with	04 Hours				
	renewable	energy					
	sources						
Power Quality issues of Grid connected							
Renewable Energy Sources,							

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Electrical Design, Estim Energy Audit	ati	on	an	d
Course Code	BEE02T4001				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Energy Audit is the key to a systematic approach for decision-making in the area of energy management. The effective use of energy to maximize profits (minimize costs) and enhance competitive positions, it is necessary to conserve energy. Hence it is necessary to study energy auditing methods and energy saving opportunities in electrical system.

Course Objectives

On completion of the following units of syllabus contents, the students must be able to

- Draw conventional symbols for various electricalinstallations.
- To quote the relevant IE rules for a given electrical installation, earthingand clearance of service lines.
- Familiarize the types of wiring.
- List the points to be considered for selectionwiring.
- Determine the size of wire for internalwiring.
- Explain the necessity and types of earthing.
- Estimate the quantity of materials required forearthing.

- Differentiate between neutral and earthwire.
- Estimate the quantity of materials required for domestic and industrialwiring.
- Explain the concept and types of Energy of energyaudit.
- Explain the energy saving opportunities in Transformer, Induction motor, lighting and DG system.
- Explain the roll of power factor controller in energy saving system.
- Explain the roll of sensors in energy saving system.
- Explain the energy efficient technologies in electrical system.

Course Outcomes

CO1	Identification of different types of
	electrical symbols and various electrical
	wiring systems
CO2	Identification of needs earthing and its
	procedure.
CO3	Illustrate the estimation of components
	required for Industrial and Domestic
	application
CO4	Understand energy audit and energy
	management system
CO5	Identify the types of tariff that are benefit
	for consumers and methods of improving
	power factor
CO6	Understand different technologies used
	for Energy efficient Technologies in
	Electrical System

Text Books:

- 1. K.B.Raina&S.K.Battacharya, Electrical Design Estimating And Costing, New age International
- 2. General Aspect Of Energy Management And Energy Audit, Bureau of energy efficiency, New Delhi
- 3. Energy Efficiency In Electrical Utilities, ,Bureau of energy efficiency, New Delhi
- Reference books:
- 1. Surjit Singh, Electrical Design Estimating and Costing, Dhanpat Rai & Company
- 2. Surjit Singh, Electrical Engineering Design and Drawing, Dhanpat Rai & Company

Syllabus

Unit-I	System of	Internal	8 Hours		
	Wiring and E	Earthing			
Need of electrical symbols – List of symbols –					
Brief stu	dy of importa	nt Indian	Electricity		

Rules 1956 - Methods of representation for wiring diagrams - Looping back system and Joint box system and tree system of wiring -Types of internal wiring – Service connection (Overhead and Underground) - Protection of electrical installation against overload, short circuit and earth fault – protection against electric shock - Effects of electric shock -Recommended first aid for electric shock -Treatment for electric shock - Construction and working of ELCB - Overview of Busbar, Trunking and Cable tray. Unit-II Earthing 6 hours System Necessity – General requirements of Earthing – Earthing and Soil Resistivity – Earth electrodes - Methods of earthing- Plate earthing - Pipe earthing - Rod earthing - Soil Resistivity -Methods of improving earth resistance - Size of earth continuity conductor - Difference between Neutral and Earth Wires. Safety signs showing type of PPE to be worn, Prohibition Signs, Warning Signs, Mandatory Signs, Advisory or Safe ConditionSigns and 07 Hours Unit-III Domestic Industrial Estimation General requirements of electrical installations for Residential, Commercial and Industrial -Lighting and power sub- circuits – Diversity factor for sub circuits - Location of outlets, control switches, main board and distribution boards - Permissible voltage drops and size of wires - Steps to be followed in preparing electrical estimate. Estimate the quantity of material required in Electrical Installation for 1. Small residential building/Flat 2. Factory Lightingscheme **3**. Computer centre having 10 computers, a/c unit, UPS, light and fan. 4. Street Light service having 12 lamp lightfitting 5. Workshop with one number of 3Φ , 15hpinductionmotor. 6. Small Workshop with 3 or 4Machines. Unit-IV Energy Audit 8 Hours Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-Understanding energy costs, Bench marking, Energy performance. Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel energy substitution, Energy and audit

Instruments.

Name of The	PLC/SCADA LAB
Course	
Course Code	BEEE3008
Prerequisite	
Corequisite	
Antirequisite	
	L T P C
	0 0 2 1

Course Objectives: Students will be able to design and program basic PLC circuits for entrylevel PLC applications. Students will be able to design and program a small, automated l production line. Apply the knowledge of PLC/SCADA in engineering specialization to the solution of complex engineering problems.

Students are trained for to create ladder diagrams from process control descriptions. Students work in team to formulate solution for Electrical System using hardware and software tools. Students understand PLC functions, Data Handling Function, apply PLC Timers and Counters for the control of industrial processes.

Course Outcomes

Identify different components of PLC.
Understand working of PLC, I/O modules of
PLC
Able to create ladder diagrams from process
control descriptions.
Ability to apply PLC timers and counters for
the control of industrial processes
Able to use different types PLC functions,
Data Handling Function.

Text/ Reference Books:

- 1. Programmable Logic Controllers Principle and Applications by John W Webb and Ronald A Reiss Filth edition, PHI
- 2. Programmable Logic Controllers Programming Method and Applications by JR Hackworth and ED Hackworth — Jr-Pearson, 2004.
- List of Experiments
 - 1. Study hardware and software used in PLC
 - 2. To study PLC Input and output symbols
 - 3. Implementation of Logic Gates
 - 4. Implementation of DOL starter
 - 5. Implementation of on-delay timer
 - 6. Implementation of off-delay timer
 - 7. Implementation of up-down counter
 - 8. Implementation of PLC Arithmetic Instructions
 - 9. Implementation of PID Controller

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of	The	Technical Seminar	r			
Course						
Course Code		BEE02P4005				
Prerequisite						
Corequisite						
Antirequisite						
			L	Т	Р	С
			0	0	2	0

Course Objectives:

Objective

- To develop institute-industry interaction
- To know the industry practices
- To understand cutting edge technology in the chosen area

Course Outcomes

CO1	Identify the Literature Survey
CO2	Do the Formulation of the Problem /
	Project
CO3	Do Mathematical Modeling and do
	Programs in MATLAB / PSPICE.
CO4	Do compilations / Simulation and
	Synthesis.
CO5	Do testing and write Dissertations/Reports.

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of	Capstone Design	Pha	ase –I		
The Course					
Course	BEE02P4002				
Code					
Prerequisite					
Corequisite					
Antirequisit					
e					
		L	Т	Р	С
		0	0	10	2

Course Objectives:

- Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Work in team to formulate solution for Electrical System using hardware or software tools.
- Analyze & research about the work to be implemented with resources available from internet & other sources.
- Work collaboratively to plan and execute project work or research to advance the scientific basis, technologies or practices within the Electrical Engineering discipline.

Course Outcomes

course	Outcomes				
CO1	Develop creative solutions to problems and conceive innovative approaches in				
	developing and designing of electrical				
	system.				
CO2	Prepare high quality engineering				
	documents and present a clear and				
	coherent presentation of these to a range of				
	technical and nontechnical audiences.				
CO3	Acquire and evaluate research regarding				
	new knowledge development within the				
	electronic engineering discipline and its				
	social, cultural, environmental and legal				
	context.				
CO4	Demonstrate a responsible, ethical and				
	professional attitude regarding the role of				
	engineers in society, including situations				
	involving potentially adverse				
	environmental and cultural impacts.				
CO5	Work collaboratively to plan and execute				
	project work or research to advance the				

scientific	basis,	technologies	or practices
within	the	Electrical	Engineering
discipline	•		

Continuous Assessment Pattern

Commuous Historisment Futtern						
Internal	Mid	End	Total			
Assessment	Term	Term	Marks			
(IA)	Test	Test				
	(MTE)	(ETE)				
20	30	50	100			

Semester 8

Name of	The	Capstone Design Phase-II				
Course						
Course Code		BEE02P4003				
Prerequisite						
Corequisite						
Antirequisite						
		L T P C				
		0 0 18 6				

Course Objectives:

- Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Work in team to formulate solution for Electrical System using hardware or software tools.
- Analyze & research about the work to be implemented with resources available from internet & other sources.
- Work collaboratively to plan and execute project work or research to advance the scientific basis, technologies or practices within the Electrical Engineering discipline.

Course Outcomes

CO1	Identify project goals and constraints
CO2	Acquire knowledge about the project
	through previous works in the current field
CO3	Formulate the methodologies to obtain
	experimental results
CO4	Plan for the resource requirements
CO5	Obtain the experimental results based on
	the methodologies formulated.

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of	Industrial Internship & Technical
The Course	Seminar
Course	BEE02P4004
Code	
Prerequisite	
Corequisite	
Antirequisit	
e	
	Ц Т Р С
	0 0 0 6

Course Objectives:

Objective

50

- To develop institute-industry interaction
- To know the industry practices
- To understand cutting edge technology in the chosen area

Course Outcomes

001	Identify the Literature Survey						
CO1	Identify the Literature Survey						
CO2	Do the	Do the Formulation of the Problem /					
	Project						
CO3	Do Ma	thematical	Modeling	and do			
	Program	s in MATLA	AB / PSPICE	Ξ.			
CO4	Do compilations / Simulation and						
	Synthesis.						
CO5	Do testir	Do testing and write Dissertations/Reports.					
Continu	uous Asse	ssment Patte	ern				
Intern	Internal Mid End Total						
Asses	sment	Term	Term	Marks			
(IA)		Test	Test				
		(MTE)	(ETE)				

50

100

Basket- (Control Engineering)

Name of	The	Advanced Control System				
Course						
Course Code	BTEE3019					
Prerequisite		Control System				
Co-requisite	Signal Systems					
Anti-requisite						
		L	Т	Р	С	
		3	0	0	3	

Course Objectives

- 1. Introduce the fundamentals and concepts of Control systems
- 2. Understanding and predicting system behavior in state space and non-linear systems.
- 3. Design and analysis of closed loop control systems.

4. Analyse higher order control systems with appropriate state space models.

Course Outcomes

CO1	Apply linear algebra to complex real world problems in order to obtain models that are expressed using state space equations.
CO2	Understand the basic Canonical Forms in state space domain.
CO3	Analyze the system behavior based on the mathematical model of that system where the model may be expressed in state-space domain
CO4	Design and analysis of closed loop control systems.
CO5	Design controllers using the concept of state feedback and pole placement technique.
CO6	Write a report that effectively communicates the results of an analysis or design.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam	Total Marks
		(ETE)	
50	-	50	100

Course Content:

Unit I: State Space Analysis of Control Systems

8 Hours

State Variables; State-Space Representation of Electrical and Mechanical and Electromechanical Systems; State Space Representation of Nth Order Linear Differential Equation; Transformation to Phase Variable Canonical Form; Relationship Between State Equations and Transfer Functions; Characteristic Equation; Eigen Values and Eigen Vectors;

Unit II: Canonical Form

Transformation to Diagonal Canonical Form; Jordan Canonical Form; Controllability Canonical Form; Observabilty Canonical Form; Decomposition of Transfer Function-Direct, Cascade and Parallel Decomposition; State Diagram; Solution of the Time-Invariant State Equation; State Transition Matrix and its

Properties; Transfer Matrix; Transfer Matrix of Closed Loop systems.

Unit III: Controllability and Observability
8 Hours
Concept of Controllability and Observability;
Kalman's Theorems on Controllability; and
Observability, Alternative Tests (Gilbert's
Method) of Controllability and Observability;
Principle of Duality; Relationship among
Controllability, Observability and Transfer
Function. Unit IV: State feedback controller 8
Hours
Design of state feedback controller using pole
placement technique, Ackerman's formula.
Unit V: Lyapunov Stability Analysis 8
Hours
Stability of Equilibrium State in the Sense of
Liapunov; Graphical Representation of Stability;
Asymptotic Stability and Instability; Sign-
Definiteness of Scalar Function; Second Method
of Liapunov; Stability Analysis of Linear
Systems; Krasovski's Theorem; Liapunov
Function Based on Variable Gradient Method.
Unit VI: Describing Function Analysis of
Nonlinear Control System and Phase Plane
Analysis 8 Hours
Introduction to Nonlinear Systems, Describing
Functions for Common Types of Nonlinearities,
Describing Function Analysis, Stability and Limit
Cycles, ntroduction : Analytical Methods for
constructing Trajectories, Classification of
Singular Points; Limit Cycles; Phase-Place
Analysis of Linear control system.

Suggested Reading

- 1. Nagrath and Gopal, "Control System Engineering", 4th Edition, New age International.
- 2. K. Ogata, "Modern Control Engineering", Prentice Hall of India.
- 3. B.C. Kuoand FaridGolnaraghi, "Automatic Control System" Wiley India Ltd, 2008.
- 4. D.RoyChoudhary, "Modern Control Engineering", Prentice Hall of India.
- Norman S. Nise, Control System Engineering 4th edition, Wiley Publishing Co.
- 6. E Slotine, Weiping Li, Applied Nonlinear Control, Prentice-Hall.

7. R.T. Stefani, B.Shahian, C.J.Savant and G.H. Hostetter, "Design of Feedback Control Systems"Oxford University Press.

Name of The	Industrial A	utor	nati	on	and
Course	Control				
Course Code	BTEE3020				
Prerequisite Control System					
Co-requisite	Power System Analysis				
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. This course introduces the various types of controllers and their principles
- 2. Knowledge of sequence control, PLCs and Ladder logic is also imparted
- 3. Applications of industrial automation systems including identification of system requirements, equipment integration, motors, controllers, and sensors.
- 4. Coverage of set-up, maintenance, and testing of the automated system

Course Outcomes

CO1	Describe the properties and applications of
	open- and closed-loop process control
COI	systems and distinguish between their
	dynamics.
	Summarize the operation of the different
CO2	controller modes and their practical
02	limitations; determine their response to
	standard inputs.
	Understand the open loop and closed loop
CO3	transient response using Ziegler-Nichols
	method. Frequency response method.
	Outline the criteria determining the
CO4	selection of control valves for specific
	purposes.
	Explain various special control structures
CO5	in process control.
	Identify the applications of PLC's to
	industrial processes and design PLC
CO6	programs to solve sequential control
	problems.
	problems.

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	

50 -

50

100

Course Content:

Unit I: Process Dynamics 8 Hours
Dynamic Elements in Control Loops, Open- and closed-loop properties of processes; Process lags; Dead-time; Stability of control systems; Block diagrams and process line diagrams to explain the operation of control systems. Dynamic behaviors of first order, second order, and higher order systems. Interacting and non-interacting systems. Unit II: Controller Principles 5 Hours
Processcharacteristics.Controlsystemparameters.Discontinuous,continuous,andcomposite modes of control action (P, PI, PD &PID).Analog and Digital Controllers,Generalfeatures.Electroniccontrollers,pneumaticcontrollers and hydraulic controllers, and Designconsiderations.UnitIII:ProcessloopTuning5HoursForcessloopTuning
Open loop transient response method. Ziegler- Nichols method. Frequency response method.
Unit IV: Control Valves 7 Hours
Valve types and characteristics; Factors influencing valve selection; Valve sizing; Valve petitioners; Installed systems: control valve characteristics, pipe pressure drops and pump characteristics.
Unit V: Special Control Structures 7 Hours
Feed forward and Ratio Control, Predictive Control, Control of Systems with Inverse Response Special Control Structures : Cascade Control, Overriding Control, Selective Control, Split Range Control.Unit VI:Introduction to Sequence Control, PLCs
8 Hours Discrete state process control, characteristics of the system, discrete state variables, process specifications and event sequence description, ladder diagram – ladder diagram elements and examples, programmable controller – relay sequencers, programmable logic controller, architecture, operation and programming, types of PLC.

Suggested Reading

- 1. Process Control Instrumentation Technology, C. D. Johnson, Prentice Hall, (2002).
- 2. M. Gopal, Control Systems Principles & Design, 2nd Edition, TMH, 2002.
- 3. Bela G. Liptak, Process Control, Instrument Engineer's Handbook, 3rd Edition, Chilton Book
- 4. Company, 1970.
- 5. D.RoyChoudhary, "Modern Control Engineering", Prentice Hall of India.
- 6. George Stephenopoulos, Chemical Process Control, PHI, 1999.
- 7. Kirk and Rimbol, Instrumentation, D.B. Taraporewala Sons and Co. Pvt. Ltd., 1996
- Douglas M. Considine, Process/Industrial Instruments and Control Handbook, 4thEdition,McGraw Hill International Edition, 1974.
- 9. Introduction to Programmable Logic Controllers, G. Dunning, Delmar Thomson Learning, 2002

Name of The	Industrial Instrumentation and					
Course	Automation					
Course Code	BEE02T5001					
Prerequisite	Electrical Instrumentation					
Co-requisite						
Anti-requisite						
	L T P C					
	3 0 0 3					

Course Objectives

1. To impart knowledge about Industrial instrumentation and automation

Course Outcomes

CO1	Select instruments and transducers for various physical variables
CO2	Design various signal conditioning systems for transducers.
CO3	Analyze dynamic responses of various systems.
CO4	Get the concepts of virtual instrumentation
CO5	Understand the programming realization of SCADA
CO6	Understand the programming realization of PLC

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam	Total Marks
50		(ETE)	100
50	-	50	100

Course Content:

Unit I: Introduction 8 Hours	
e in the production of the burgers	s. er cs
HoursDisplace measurement: Resistance potentiometeCapacitive and Inductive. Capacitive differentiapressure measurement Torsional, shearing stressand rotating shaft Torque measurement usinstrain gauge. Flow measurement :Hotwiranemometer, constant resistance Constant currertype Eddy current sensors, Variable reluctancetachometers Phase measurement :Analog andigital phase detectors Nano InstrumentationUnit III: Signal conditioning8 Hour	al ss g re nt ce d d
Signal conditioning circuits-Instrumentatio amplifiersUnbalanced bridge. Bridge linearizatio using op amp Precision rectifiers, Log amplifiers Charge amplifiers, Isolation amplifier, Switche capacitor circuits, Phase sensitive detectors, Nois problem in instrumentation and its minimization Unit IV: Micro Electromechanical system (MEMS) 8 Hours	on s, ed se
Advantages and Applications, MEMS micr sensors and actuators, Manufacturing process Bulk micro machining and surfac micromachining, MEMS accelerometers Virtua instrumentation system: architecture of virtua instruments – Virtual instruments and traditiona instruments – concepts of graphical programming Unit V: SCADA 5Hours	s: xe al al g.
Introduction to Timer/Counters, Exercises base on Timers, Counters. Basic concepts of SCADA DCS and CNC Unit VI: PLC 5Hours	
Introduction to Sequence Control, PLCs Working, Specifications of PLC Onboard/Inline/Remote IO's, Comparison of PLC & PC, Relay Ladder Logic- PLC Programming realization of AND, OR logic, concept of latching	С 3-

Suggested Reading

- 1. Curtis D Johnson ," Process Control Instrumentation Technology", PHI, 1986
- 2. Doeblin E.O, 'Measurement Systems: Application and Design, Fourth Edition, McGraw Hill, Newyork, 1992
- DVS. Murty, 'Transducers and Instrumentation' Second Edition, PHI Learning Pvt Ltd New Delhi ,2013
- 4. MadhuchhandaMitra, SamarjitSengupta, 'Programmable Logic Controllers and Industrial Automation An Introduction', Penram International Publishing (India) Pvt Ltd., 2009
- 5. Mickell. P. Groover 'Automation, Production and computer integrated manufacturing' Prentice Hall of India, 1992
- 6. Patranabis, D., 'Principles of Industrial Instrumentation', Second Edition Tata McGraw Hill Publishing Co. Ltd.. New Delhi
- 7. Robert B. Northrop, 'Introduction to instrumentation and measurements', CRC, Taylor and Francis 2005.

Name of The	Power System Operation and					
Course	Control	-				
Course Code	BEEE5005					
Prerequisite	Power System Analysis					
Co-requisite	Fundamentals of Power					
	System					
Anti-requisite						
		L	Т	Р	С	
		3	0	0	3	

Course Objectives

- **1.** Introduce the fundamentals concepts of operation of Modern power systems.
- **2.** Understand various Load driving parameters and various forecasting methods.
- **3.** Introduce the concepts of Unit Commitment and Online economic dispatch.
- **4.** Understand and analyze control relationship between real power vs frequency and reactive power vs voltage.

Course Outcomes

CO1	Identify various load driving parameters and review various forecasting methods for efficient power system operation			
CO2	Analyze the relationship between various power system variables in terms of mathematical modeling			

CO 2	Model the steady state and dynamic					
CO3	performance of power system control.					
	Apply the knowledge of Unit					
CO4	Commitment and economic Dispatch to					
C04	solve numerical problems based on real					
	time situations.					
Explain various functional aspec						
CO5	SCADA/ECC along with various					
	operating states of power system.					
C06	Understand the application of power					
006	System estimation					

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	-	50	100

Course Content:

Unit I: Introduction 8 Hours	
System load – variation, load characteristics – load curves and load-duration curves, load factor diversity factor, load forecasting, simple techniques of forecasting, basics of power system operation and control, reserve margin, load frequency control, voltage control.	, e 1
	3
Speed governing mechanism and modelling speed-load characteristics, load sharing, contro area concept, LFC control of a single-area system static and dynamic analysis, integration or economic dispatch control with LFC, two-area system – modelling – static analysis or uncontrolled case, tie line with frequency bias control of two-area system.	1 , f a f
Unit III: Economic Load Dispatch8 Hours	
Economic dispatch problem – cost of generation incremental cost curve, co-ordination equations solution by direct method and λ- iteration method unit Commitment problem – constraints, solution methods – Priority-list methods – forward dynamic programming approach (Numerica problems only in priority-list method using full load average production cost). Unit IV: Reactive Power – Voltage Control8 Hours	, 1 1 1 -
Reactive power control, excitation systems - modelling, static and dynamic analysis, stability	-

compensation, generation and absorption of reactive power, relation between voltage, power and reactive power at a node, method of voltage control, tap changing transformers, tap setting of OLTC transformer and MVAR injection of switched capacitors. Unit V: Computer control of power systems 8 Hours Need of computer control of power systems, concept of energy control centre (or) load dispatch centre and the functions, system monitoring, data acquisition and control, system hardware configuration,

Unit VI Power System Estimation

SCADA and EMS functions, network topology, state estimation, security analysis and control, operating states (Normal, alert, emergency, inextremis and restorative).

Suggested Reading

- 1. Allen. J. Wood and Bruce F. Wollenberg, "Power Generation, Operation and Control", John Wiley & Sons, Inc., 2003.
- 2. D.P. Kothari and I.J. Nagrath, "Modern Power System Analysis", Third Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.
- 3. Chakrabarti&Halder, "Power System Analysis: Operation and Control", PHI, 2004 Edition.
- 4. L.L. Grigsby, "The Electric Power Engineering, Hand Book", CRC Press & IEEE Press, 2001.
- 5. Olle. I. Elgerd, "Electric Energy Systems theory: An introduction", Tata McGraw Hill Publishing Company Ltd. New Delhi, Second Edition 2003.

Name of T	he	Digital Cor	ntro	ol		
Course						
Course Code		BEEE5004				
Prerequisite	Control System					
Co-requisite	Advanced Control System					
Anti-requisite						
		L	Т	Р	С	
		3	0	0	3	

Course Objectives

- **1.** The purpose of this course is to provide basic concepts of Digital control systems.
- **2.** The main goal of the course is to teach the students how to select and design digital controller for different systems.

- **3.** This course is also to learn microprocessors and microcontrollers based digital control systems.
- **4.** This also provides knowledge of effect of quantization on signals in digital control systems.

Course Outcome

CO1	Analyze and design SISO systems through Z-transform.
CO2	Analyze and design of MIMO systems through state space analysis.
CO3	Understand the Controller design using transformation techniques.
CO4	Analyze system's stability.
CO5	Discuss Microprocessor and DSP based control.
CO6	Discuss the quantization effect on the digital control system

Continuous Assessment Pattern

Internal Assessment	Mid Term Exam	End Term	Total Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	-	50	100

Course Content:

Unit I: Introduction	8
Hours	
Overview of design approaches, contin versus digital control, sampling process, effe sampling rate. Calculus of difference equat Z-transform. Signal flow graphs.	ct of
Unit II: Design of State space systems Hours	8
Controllability, Observability, Discretizatio continuous transfer functions; Digital properties.	n of filter
Unit III: Controller design using transformatechniques	
Z-plane specifications. Design in the w dom PID controller. Deadbeat controller. Root L design.	
Unit IV: State space methods Hours	8
Pole placement design, stabilization and stabilizing controllers. Observer design. Inf time optimal regulator, Stability and trackir SD systems.	inite
	lours
Limit cycles and dither. Sample rate reduct Multi-rate sampled data system and state	

studies. Des	sign of digital controller using fast
output samp	ling.
Unit VI:	Microprocessor and DSP control
8 Hours	-

Mechanization of control algorithms. Iterative computation via parallel, direct, canonical, cascade realization; Effects of computing time. Systems with time delay. Case studies

Suggested Reading

- 1. K. Ogata, "Discrete-time control sytems", PHI, 2005.
- **2.** B.C. Kuo, "Digital Control System", Oxford University press, 1995
- 3. Norman S. Nise," Control systems Engineering", John Wiley and Sons, 4th Edition, 2004.
- **4.** G. F. Franklin, J. David Powell and MichealWorkman, "Digital Control of Dynamic Systems", Pearson Education, 3rd Edition, 2003.
- 5. M.Gopal, "Digital Control Engineering", New Age Publishers, 2008.

Name of	The	Automation and Robotics				cs
Course						
Course Code BEE03T5002						
Prerequisite	Control Systems					
Co-requisite						
Anti-requisite						
		L	Т	Р	С	
		3	0	0	3	

Course Objectives

1. To identify potential areas for automation and justify need for automation.

Course Outcomes

CO1	Select suitable major control components required to automate a process or an activity
CO2	Study the various parts of robots and fields of robotics.
CO3	Understand the fundamentals of automated assembly systems
CO4	Study the various kinematics and inverse kinematics of robots.
CO5	Study the control of robots for some specific applications.
CO6	Design real time robotics systems.

SCHOOL OF ELECTRICAL, ELECTRONICS AND School of ECMANNICATION ENGINEERING

ng Internal Assessment	Mid Term Exam	End Term	Total Marks
(IA)	(MTE)	Exam (ETE)	
50	-	50	100

Course Content:

Unit I:	Introduction	8 Hours

Basic elements of an automated system, advanced automation functions, levels of automation, process industries versus discrete manufacturing industries, continuous versus discrete control, computer process control. Hardware components for automation and process control, sensors, actuators, analog to digital converters, digital to analog converters, input/output devices for discrete data. Unit II: Automated Production lines 1 8 Hours Fundamentals of automated production lines,

Fundamentals of automated production lines, application of automated production lines, analysis of transfer lines, automated assembly systems,

Unit III: Automated Production lines 2

Fundamentals of automated assembly systems, quantitative analysis of assembly systems, automatic identification methods, barcode technology, radio frequency identification, other AIDC technologies

Unit IV: Industrial Robotics 8 Hours

Robotic configuration, robot anatomy and related attributes, robot control systems, end effectors, sensors in robotics, industrial robot applications, robot accuracy and repeatability, different types of robotics, various generations of robots, degrees of freedom – Asimov's laws of robotics dynamic stabilization of robots.

Unit V: Spatial descriptions and transformations8 Hours

Positions, orientations, and frames. Mappings: Changing descriptions from frame to frame. **Operators:** translations. rotations and transformations. transformation arithmetic transform equations, transformation of free vectors computational considerations. manipulator Kinematics, link description, linkconnection description, actuator space joint space and Cartesian space

Unit VI: Robot programming 8 Hours Introduction, levels of robot programming, requirements of robot programming language, problems pertaining to robot programming languages, offline programming systems, central issues in OLP systems, automating subtasks in OLP systems, simple programs on robot applications

Suggested Reading

- 1. Automation, Production systems, and computer integrated manufacturing-MikellP.Groover 3rd edition, Pearson 2009
- 2. Industrial Robotics-Groover, Weiss, Nagel, McGraw Hill International, 2nd edition, 2012

Basket- (Power Engineering)

Name of T Course	Гhe	Power System Equipme	ent	s		
Course Code		BTEE3017				
Prerequisite						
Corequisite						
Antirequisite						
			L	Т	Р	С
			3	0	0	3

Course Objectives:

Power Engineering is concerned with the generation, transmission, distribution and utilization of electrical energy. Large power systems are interconnected physical networks of many different types of equipment and apparatus: synchronous generators for generating electricity, power transformers for changing the voltage levels, overhead transmission lines, underground cables, metering and control equipment, switchgear for connection/disconnection, high-voltage insulators, etc. Because of operating conditions (different voltage and power levels) each equipment type in turn comprises many different designs.

Course Outcomes

CO1	Identify various designs of transmission line and overhead line
CO2	Explain various Substation equipments Protection & Control theories

CO3	Explain various necessities of power system earthing
CO4	Identify various basic concepts about Surge Protection & Insulation Co- ordination
CO5	Identify various basic concepts about Insulation Co-ordination
CO6	Introduce reliability of transmission & distribution Systems

Text/ Reference Books:

- 1. Power System Analysis & Design by B.R. Gupta –S.Chand.
- Sub Station Design and Equipment Gupta &Satnam (Dhanpat Rai & Sons).
- 3. Transmission & Distribution Westinghouse.
- 4. P. Gill, Electrical Power Equipment Maintenance and Testing, 2nd ed., CRC Press, 2008.
- 5. F. Kussy, and J. Warren, Design Fundamentals for Low Voltage Distribution and Control, Marcel Dekker, 1987.
- 6. Syllabus

0. Sylla	idus						
Unit-I	Transmission Line Design & Overhead Line Design	8 Hours					
Types of Insulator, String Efficiency, Improvement of voltage distribution, Improvement of String Efficiency, Line Supports, Types of Steel Towers, Cross Arms, Equivalent span, Conductor configurations, Spacing & Clearance, Sag & Tension calculations, Erection conditions, Factors affecting Sag, Sag Template, Catenary, Vibration of conductors & prevention, Selection of conductor size, Cross arm, No. Of circuits, Selection of ground wire.							
Unit-II	Electrical Substation &Earthing	8 Hours					
Types of Substation, Layout and Bus Bar schemes, Voltage level, Substation equipments Protection & Control Substation Earthing, Tolerance limits of body currents, Soil resistivity, Earth resistance, Tolerable & Actual Step & Touch Voltages, Design of EarthingGrid, Tower Footing Resistance, Measurement of soil & earth resistivity							
Unit-III	Power System Earthing	6 Hours					

Ground versus isolated neutral, Solidly and effectively grounded system Resistance and Impedance Grounding, Resonant Grounding, Reactance Grounding, Voltage Transformer Grounding, Zigzag Transformer Grounding, Grounding practice, Effect of grounding on system over voltages & protection over voltage and over voltage phenomenon in isolated and grounded neutral system. Unit-IV Surge Protection 5 Hours External and Internal over voltages mechanism of lighting discharge, wave shapes of stroke current line design based on direct stroke, over voltage protection, earth wire Rod gap T.F.R., Expulsion tube, surge diverter. Unit-V Insulation Co-5Hours ordination General idea, Selection of B.I.L., International recommendation, Selection of arrester rating, Coordination of protector devices with apparatus insulation Unit-VI Reliability of 7 Hours Transmission & **Distribution Systems** Definition, Outage, Bath Tub Curve, Two State Model, Failure & Repair Rate, Probability Density Function, Probabilities of Survival & Failure, Mean Time to Failure, Mean Down Time, Reliability of Series & Parallel Systems, Two-State Fluctuating Enviornment, Approximate Method, Reliability Planning, Preparation of Reliability Models.

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	Power Quality
Course Code	BTEE3023
Prerequisite	
Corequisite	
Antirequisite	

L	Т	Р	С
3	0	0	3

Course Objectives:

- 1. To understand the various power quality issues
- 2. To understand the concept of power and power factor in single phase and three phase systems supplying non linearloads
- 3. To understand the active compensation techniques used for power factor correction.
- 4. To understand the active compensation techniques used for load voltage regulation.

Course Outcomes

CO	Toacquireanin-
1	depthknowledgeonvariouspowerqualityissu
	eslikevoltage sag, interruption and
	harmonics.
CO	To learn about various aspects of power
2	quality measurements and power quality
CO	Ability to understand and analyze power
3	system operation, stability, control and
	protection.
CO	Introduce the importance of grounding on
4	power quality.
CO	Learn to apply appropriate solution
5	techniques for power quality mitigation
	based on the type of problem.
CO	Illustrate the latest trends adapted in power
6	quality improvements.

Text Book (s)

1.Eswald.F.Fudis and M.A.S.Masoum, "Power Quality in Power System and Electrical Machines," Elseviar Academic Press, 2013.

2.R. Dugan, M. McGranahan, S. Santoso, W. Beaty, Electric Power Systems Quality, 2nd Edition (McGraw-Hill,

New York, NY, 2002).

Reference Book (s)

1. Heydt, Electric Power Quality, Stars in a Circle Publications, 1991. (optional)

2. Handbook of power quality, editor: Angelo Baggini, John Wiley & Sons, 2008.

Unit I:

Power and Voltage Quality: General, classes of Power Quality Problems, Power quality terms, Power frequency variations, the power quality evaluation procedure. formula, sensitivity, Reduction of effect of parameter variation and disturbance by using negative feedback. Unit II: Voltage sags and Interruptions: Sources of sags and Interruptions, Estimating Voltage sag performance. Fundamental Principles of Protection, Solutions at the end-user level, Evaluating Ride-through Alternatives, Motor-Starting Sags. Unit III: Fundamentals of Harmonics: Harmonic distortion, Voltage versus Current distortion, Harmonic indexes. Harmonic sources from commercial loads, Harmonic sources from industrial loads, Locating Harmonic sources, System response characteristics, Effects of Harmonic Distortion. Considerations. Unit IV : Distributed Generation and Power Quality: Resurgence of DG, DG Technologies, Interface to the Utility System, Power Quality Issues, Operating Conflicts, DG on distribution Networks, Sitting DG distributed Generation, Interconnection standards. Unit V: Wiring and Grounding: Recourses, Definitions, Reasons for Grounding, Typical wiring and grounding problems, Solution to wiring and grounding problems. Unit VI: Recent Technologies Recent trends and technologies using to improve the power quality

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	WIAIKS
20	30	50	100

Name of The	Electric Drives						
Course							
Course Code	BEEE4001	BEEE4001					
Prerequisite	Power Electronics						
Corequisite							
Antirequisite							
		L	Т	Р	С		
		3	0	0	3		

Course Objectives:

- 1. To introduce the electric drives fundamentals including speed torque curves of motor and load, types of load.
- 2. To determine stability of drive system and select motor rating for any particular duty of application.

Course Outcomes

CO1	Demonstrate the basic of drive system and					
	different types of loads.					
CO2	Understand the motor dynamics and the					
	rating of motor for different condition of					
	load.					
CO3	Analyse the types of breaking and select					
	appropriate breaking to the working					
	environment.					
CO4	Analyse power circuit topology and					
	control mechanism to control the speed of					
	DC motor.					
CO5	Apply various types of control mechanism					
	to employ for variable speed drives.					
CO6	Illustrate the latest trends adapted in					
	Electrical drives					

Text Book (s)

- 1. G.K. Dubey, "Fundamentals of Electric Drives", Narosa publishing House
- 2. S.K.Pillai, "A First Course on Electric Drives", New Age International.

Reference Book (s)

- 1. M.Chilkin, "Electric Drives", Mir Publishers, Moscow.
- 2. N.K. De and Prashant K. Sen, "Electric Drives", Prentice Hall of India Ltd

Course Content:

Unit-1Fundamentals of Electric Drive						
8 hours						
Electric Drives and its parts, advantages of electric						
drives, Classification of electric drives, Speed-						
torque conventions and multi-quadrant operations,						
Constant torque and constant power operation,						
Types of load, Load torque: components, nature						
and classification.						
Unit-2Dynamics of Electric Drive						
8 hours						
Dynamics of motor-load combination, Steady						
state stability of Electric Drive, Transient stability						
of electric Drive, Selection of Motor Power rating,						
Thermal model of motor for heating and cooling,						
classes of motor duty, determination of motor						
power rating for continuous duty, short time duty						
and intermittent duty, Load equalization						

Unit-3Electric Braking				
8 hours				
Purpose and types of electric braking, braking of				
dc, three phase induction and synchronous motors				
Dynamics During Starting and Braking:				
Calculation of acceleration time and energy loss				
during starting of dc shunt and three phase				
induction motors, methods of reducing energy loss				
during starting, Energy relations during braking,				
dynamics during braking.				
Unit-4Power Electronic Control of DC Drives				
8 hours				
Single phase and three phase controlled converter				
fed separately excited dc motor drives (continuous				
conduction only), dual converter fed separately				
excited dc motor drive, rectifier control of dc				
series motor. Supply harmonics, power factor and				
ripples in motor current, Chopper control of				
separately excited dc motor and dc series motor.				
Unit-5Power Electronic Control of AC Drives				
8 hours				
Three Phase induction Motor Drive: Static				
Voltage control scheme, static frequency control				
scheme (VSI, CSI, and cycloconverter based)				
static rotor resistance and slip power recovery				
control schemes. Three Phase Synchronous				
motor: Self-controlled schemes. Special Drives:				
Switched Reluctance motor, Brushless dc motor				
Unit 6: Recent Technologies				
Recent trends and technologies using in electrical				
drives.				

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Exam	Exam	
	(MTE)	(ETE)	
20	30	50	100

Name of	The	FACTS and HVDC					
Course							
Course Code	BTEE4010						
Prerequisite							
Corequisite							
Antirequisite							
			L	Т	Р	С	
			3	0	0	3	

Course Objectives:

- 1. Apply concepts of transmission in HVDC Transmission
- 2. To prepare students to know the role of HVDC systems

Course Outcomes

CO1	Identify significance of DC over AC
	transmission system, types and application
	of HVDC links in practical power systems
CO2	To Analyze different converters viz.3,6
	and 12 pulse converter
CO3	To Analyze AC/DC system interactions
	and know the operation and control of
	various MTDC systems.
CO4	Model AC/DC system and apply
	protection for HVDC system against
	transient overvoltage and over currents
CO5	To estimate Improvement of voltage
	stability
CO6	Illustrate the latest trends adapted in
	HVDC.

Text Book (s)

1. HVDC transmission by Adamson and Hingorani.

2. H.V.D.C.Transmission by J.Arillaga : Peter Peregrinus ltd., London UK 1983.

Reference Book (s)

- Direct current Transmission, by . E.W. Kimbark ,Wiely Inter Science – NewYork. EHV-AC & HVDC transmission Engg. Practice" by S.Rao, Khanna Publishers.
- 2. B. R. Gupta, "Power System Analysis and Design" Third Edition, S. Chand & Co.

Unit I: H.V.D.C. Transmission6 lecture hours

H.V.D.C. Transmission: General considerations, Power Handling Capabilities of HVDC Lines, Basic Conversion principles, static converter configuration. Static Power Converters: 3-pulse, 6-pulse and 12-pulse converters, converter station and Terminal equipment, commutation process, Rectifier and inverter operation, equivalent circuit for converter – special features of converter transformers.

Unit II:

Harmonics in HVDC Systems, Harmonic elimination, AC and DC filters. Control of HVDC Converters and systems: constant current, constant extinction angle and constant Ignition angle control, DC power flow control.

Unit III:

Interaction between HV AC and DC systems – Voltage interaction, Harmonic instability problems and DC power modulation. Multiterminal DC links and systems; series, parallel and series parallel systems, their operation and control. Unit IV : FACTS Introduction

The concept of flexible AC transmission - reactive power control in electrical power transmission
lines, uncompensated transmission line - series
and shunt compensation. Overview of FACTS
devices - Static Var Compensator (SVC) -
Thyristor Switched Series capacitor (TCSC) -
Unified Power Flow controller (UPFC).
Unit V: 7 lecture hours
Voltage control by STATIC VAR
COMPENSATOR (SVC), THYRISTOR
CONTROLLED SERIES CAPACITOR(TCSC)
And Static Synchronous Compensator
(STATCOM): advantages of slope in dynamic
characteristics, influence of SVC on system
voltage. Applications: enhancement of transient
stability and steady state, power transfer.
Unit VI: Recent Technologies
Recent trends and technologies using in HVDC.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The	Electrical and Hybrid vehicle			le	
Course					
Course Code	BEE02T5003				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 1. To understand the electrical vehicle
- 2. To understand the hybrid vehicle

Course Outcomes

CO1 Understand basics of battery technology.

CO2 Understand scheme of HEV and full electric vehicle.

CO3 Analyse need of different motor drives for electric vehicle.

CO4 Apply new topologies to electric vehicle.

CO5 Evaluate performance parameters of electric vehicle.

CO6 Understand recent industrial power electronic applications for electric vehicle.

Text Books:

1. Sandeep Dharmeja, Electric Vehicle Battery Systems, 1st Edition, Newnes, 2001

2. K.T.Chau, Zheng Wang, Chaos in Electrical Drive Systems: Analysis, Control & Applications, 1st Edition, John Wiley and Sons, 2011

Reference Books:

1. Chung Chow Chan, K.T.Chau, Modern Electric Vehicle Technology, 1st Edition, Oxford University Press, 2001

2. Springer Books, Electrical Vehicle Integration into Modern Power Networks

3. A.T.P.So George C.Barney waterstones.com, International Journal of Elevator Engineering, United Kingdom

4. John Lowry, John Wiley and Sons, Electrical Vehicle Technology Explained-James Larminie, 1st Edition, 2003

Electric ve	hicles (EV) development, past, present
and future vehicles.	, comparison with IC engine driven
Unit II: Sto	rage Units
	fuel cells, ultracapacitors. Power
	in EV. Different types of motors used in
	eir torque-speed characteristics, motor
control tech	
Unit III:	
10	lecture hours
High per	formance and efficiency-optimized
control, se	ensorless control. Electric vehicles
modeling a	nd their Characteristics.
Unit IV : E	lectric drive-trains
Basic conc	ept of electric traction - introduction to
	ctric drive-train topologies - power flow
control in	electric drive-train topologies - fuel
efficiency a	inalysis
Unit V: Hy	brid Electric Vehicle
Fuel cell	Vehicles, Hybrid Electric Vehicles
(HEV), ser	ies, parallel and series-parallel (split)
systems,	
Unit VI: Re	ecent Technologies
Recent indu	strial power electronic applications.
Advanced t	opic on the subject
Continuous .	Assessment Pattern
Internal	Mid Term End Term

	sessment i utte	111	
Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	Marks
20	30	50	100

Name of The	Power System Deregulation				1
Course					
Course Code	BTEE4009				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 1. To understand the restructuring of electrical power systems
- 2. To understand the marketing in power sector

Course Outcomes

~~ .	
CO1	To provide in-depth understanding
	of operation of deregulated
	electricity market systems.
CO2	To Understand the Fundamentals of
	Economics
CO3	To examine topical issues in electrici
	ty markets and how these are handle
	d world-wide in various markets.
CO4	To train the students to analyze vari
	ous types of electricity market operat
	ional and control issues under
	congestion management.
CO5	To understand the operation
	of ancillary
CO6	To learn
	different pricing mechanism and
	power trading in restructured power
	system

Text Book (s)

1. L.Philipson and H. Lee Willis, "Understanding Electric Utilities and Deregulation", Marcel Dekker 1998

2. KankarBhattacharya , Math Bollen and J.E. Daadler, "Operation of restructured Power Systems," Kluwer 2001

3. M. Shahidepour and M. Alomoush, "Restructured Electrical Power Systems", Marcel Dekker 2001

 Steven Stoft, "Power System Economics: Designing Markets for Electricity", IEEE Press 2002
 AshikurBhuiya, "Power System Deregulation: Loss Sharing in Bilateral Contracts and Generator Profit Maximization", VDM Publishing 2008

6. Daniel S. Kirschen, Goran Strbac, "Fundamentals of Power System Economics", WILEY 2004

Unit I: Restructuring Of Power Industry:

An Introduction: Introduction, reasons and objectives of restructuring/ deregulation of power industry, restructuring process, issues involved in restructuring/ deregulation.

Unit II: Fundamentals of Economics

Introduction, consumer behavior, supplier behavior, market equilibrium, short-run and longrun costs, various costs of production, perfectly competitive market

Unit III: Philosphy of market models:9 lecture hours

Introduction to philosophy of market models, market models based on contractual arrangements, comparison of various market models, electricity as a commodity market architecture

Transmission Unit IV: congestion management: 10 lecture hours Introduction, classification of congestion management methods, calculation of atc (available transfer capability), non-market methods, nodal inter-zonal/ pricing, intra-zonal congestion management, price area congestion management, capacity alleviation method

Name of	The	Non-Convent	iona	al	Ener	gy
Course		Resources				
Course Code		BEEE2018				
Pre-requisite		Power system	l			
Co-requisite						
Anti-requisite						
			L	Т	Р	С
			3	0	0	3

Course Objectives:

- 1. To have an overview of non-conventional energy sources.
- 2. To understand the need of alternate sources of energy.

Course Outcomes

CO1	Understand the different types of
	renewable energy sources and their
	utilities
CO2	Design models for generating energy
	through alternate energy sources (with the
	help of additional learning)
CO3	To understand the practical limitation and
	hence steps for continuous improvement
	through research.
CO4	Apply genetic algorithms to optimization
	problems

Unit V : Electricity market evolution:8 lecture hours US and European electricity market evolution, PJM, NEMMCO, ERCOT, NORDIC Markets, comparison of power markets, towards standard market design (SMD) Unit VI: Reforms in Indian power sector:7 lecture hours Introduction, framework for Indian power sector, reform initiatives in India. The Electricity Act 2002

reform initiatives in India, The Electricity Act 2003, availability based tariff (ABT), open access issues, power exchange

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Basket-(Energy Engineering)

CO5	Design models for generating energy through alternate energy sources (with the help of additional learning)
CO6	Apply the fundamentals of energy systems in real time applications

Text Book (s)

- 1. 1. Renewable energy technologies R. Ramesh, Narosa Publication
- 2. Non-conventional Energy Systems Mittal, Wheelers Publication.

Reference Book (s)

- 3. John F Walker &Jekins. N, Wind Energy Technology., John Wiley and Sons, chichester, UK, 1997.
- 4. Van Overstra ,Mertens, R.P, Physics, Technology and use of Photovoltaics, Adam Hilger, Bristol, 1996.

Course Content:

Course Content.	
Unit I:Energy Scenario:	6
lecture hours	
Classification of Energy Sources, Energy resources,	urces
(Conventional and nonconventional), Energy nee	ds of

COMMONICATION ENGINEERING					
India, and energy consumption patterns. Worldwide	Internal	Mid Term	End Term	m 1	
Potentials of these sources. Energy efficiency and	Assessment	Exam	Exam	Total	
energy security. Energy and its environmental impacts.	(IA)	(MTE)	(ETE)	Marks	
Global environmental concern, Kyoto Protocol,	20	30	50	100	
Concept of Clean Development Mechanism (CDM)		•	•		
and Prototype Carbon Funds(PCF). Factors favoring					
and against renewable energy sources, IRP.	Name of T	he Energy Ass	sessment and A	Audit	
	Course				
Unit II: Solar Energy 9 lecture	Course Code	BTEE4011			
hours	Pre-requisite				
Solar thermal Systems: Types of collectors, Collection	Co-requisite				
systems, efficiency calculations, applications. Photo	Anti-requisite				
voltaic (PV) technology: Present status, - solar cells,		I	L T P	C	
cell technologies, characteristics of PV systems,			3 0 0		
equivalent circuit, array design, building integrated	Course Objectiv	es:			
PV system, its components , sizing and economics.	5	nave an overview	w of energy au	dit.	
Peak power operation. Standalone and grid interactive		understand the	0.		
systems.		essment.		25	
Unit III: Wind Energy10lecture	Course Outcom	es			
hours	CO1 To prepare th	e students for su	ccessful career	in the energy	indus
Wind speed and power relation, power extracted from		in the academic		•••	maa
wind, wind distribution and wind speed predictions.	U				
Wind power systems: system components, Types of	CO2 Toproducegr				
Turbine, Turbine rating, Choice of generators, turbine	addressing th	e present and po	tential future	energy problen	ns
rating, electrical load matching, Variable speed	CO3 To produce	energy professio	onals, who are	e sensitive to.	and
operation, maximum power operation, control		l who can apply			
systems, system design features, stand alone and grid					
connected operation.Unit IV :Other energy sources8lecture	CO4 Acquaintance	e with conservat	ion of energy a	and its manage	ement
8		0			
hours Biomass – various resources, energy contents,	CO5 Identify the s	ource of conser	vation of energy	gy and energy	plani
technological advancements, conversion of biomass in	CO6 Know-How o	f anarou officia	nt maahinami	votoma onorg	u logi
other form of energy – solid, liquid and gases.		or energy entitles	in machinery s	ystems, energ	y 1083
Gasifiers, Biomass fired boilers, Cofiring, Generation					
from municipal solid waste, Issues in harnessing these	Text Book (s)				
sources. Hydro energy – feasibility of small, mini and	1. Albert Thu	mann, Handbool	k of energy eng	gineering	
micro hydel plants scheme layout economics. Tidal					
and wave energy, Geothermal and Ocean-thermal		nBrownandShir	levHanse		
energy conversion. (OTEC) systems – schemes,	2.0 411105 *** 1150	GradeEnergyAu			
feasibility and viability.		cainPublishers,N			
Unit V: Energy storage and hybrid system	2000	······································			
configurations 7 lecture hours					
Energy storage: Battery – types, equivalent circuit,		, "Reliability 1		Electric	
performance characteristics, battery design, charging		" John Wiley, 1	980.		
and charge regulators. Battery management. Fly					
wheel-energy relations, components, benefits over		(S)			
battery. Fuel Cell energy storage systems. Ultra	1 Roy Billinto	on and Ronald A	llan Pitam· R	eliability	
Capacitors.	•	Power Systems,			
Unit VI: Application of NCES		•			
Grid integration of hybrid system, fuel cell integration		ight and Ma			
in hybrid vehicles	methods and A	Applications, Jol	nn Wiley, 1992	2.	
	~ ~				

Continuous Assessment Pattern

Course Content: Unit I: Energy Auditing

111

COMMUNICA			
0,	t, Detailed	Energy A	udit
Methodology, Implementing Energy Efficiency Measures, Detailed Project Report (DPR),			
Measurement & Verification.			
Unit II: Electri		0. 71	
Electricity Tar	Management, iff, Distribution p Survey, Power Quality, actricalDistribution	Power Fac on Transform Cable Los Energy Audi ionSystemand	ctor, ners, sses, ting Tra
Unit III: Electric	cal Motors		
Introduction,Ty calMotor,Motor ,Power Factor	Loading,Energy	EfficiencyMo	otors
Idle Running of Application of V	of Motors, Effic Variable Freque	cient Belt Dri ncy Drive (VI	ves,
Effect of Power Unit IV :Pumpin		on Motors	
		Curves System	nCu
Introduction,PumpPerformanceCurves,SystemCu rve,PumpPerformanceAssessment,Flow,Balance, Control Valve Operation (Throtiling), By-pass Valve Operation, Optimum Pipe Sizing, Impeller Trimming, Reducing Number of Stages, Variable			nce, pass eller
Speed Operation,. Unit V: Pumping System-2			
Unit V: Pumpin	g System-2		
Energy Auditing & Approach for Pumping System, ENCON OpportunitiesinPumpingSystem,DemoofEnergyE			
fficiencyPractic	esinPumpLabor	atory	
Unit VI: Air H 7 lectur		stribution Sys	stem
		m Design	Fan
Introduction, Ducting System Design, Fan Discharge and Inlet System, Filter Losses, Coil Losses, Fan Efficiency,			
ExcessAirFlow,ConstantAirVolume(CAV)versus VariableAirVolume(VAV),AirDistributionandBa			
lancing, Fresh Air Control, Energy Auditing Approach in Air Handling & Distribution System,			
Continuous Asse	ssment Pattern		
Internal		End Term	T. (1
Assessment (IA)	Mid Term Exam (MTE)	Exam (ETE)	Total Marks
20	30	50	100
			•

Name of The	Utilization of Electrical
Course	Energy & Traction System
Course Code	BTEE5102

Prerequisite				
Corequisite				
Antirequisite				
	L	Т	Р	С
	3	0	0	3

Course Objectives:

- 1. To develop the lighting schemes.
- 2. To develop the analytical skills for electric heating.

Course Outcomes

CO1	Understand with the process and application of electrical energy utilization system
CO2	Identify effective electrical system with
	various applications prospective.
CO3	Analyse effective control scheme with
	different electrical appliances.
CO4	Solve problems in the subject of utilization of electrical energy and traction system.
CO5	Design an effective control structure and save energy in utilization of electrical energy and traction system.
CO6	Understand the advancement in in traction system

Text Book (s)

1. H. Pratab. "Art & Science of Electric Energy's" Dhanpat Rai & Sons.

2. G.K. Dubey, "Fundamentals of electric drives" Narosa Publishing house

Reference Book (s)

1. Pratab."Modern electric traction" Dhanpat Rai & Sons. \square

2. C.L. Wadhwa,"Generation, Distribution and Utilization of Electrical Energy, "New Age International Publishers.

Course Content:

Unit I: ELECTRIC HEATING

Advantage & methods of electric heating, resistance heating, electric arc heating, induction heating, dielectric heating.
Unit II: ELECTRIC WELDING 9 lecture hours
Electric arc welding, electric resistance welding, electric welding control, electrolyte process: principle of electro deposition, laws of electrolysis, application of electrolysis.

Unit III: ILLUMINATION	Referen
10 lecture hours	1. Tit
Various definition, laws of Illumination, requirement of	Johnso
good lighting, design of indoor lighting & outdoor	and Re
lighting system, refrigeration system, domestic	2. Title
refrigerator, water cooler, types of air conditioning,	B.H.Kl
window air conditioner.	Compa
Unit IV : ELECTRIC TRACTION – I	
8 lecture hours	Unit I
Types of electric traction, system of track electrification, traction mechanics-types of services, speed time curve and its simplification, average and schedule speeds, tractive effort specific energy consumption, mechanics of train movement, coefficient of adhesion and its influence.	Envir impacenvir envir study wind
Unit V: ELECTRIC TRACTION – II 7 lecture hours	system
Salient features of traction drives, series-parallel control	Unit Conve
of dc traction drives (bridge traction) and energy saving,	Revie

power electronic control of dc & ac traction drives, diesel electric traction.

Unit VI: Recent Trends

Recent advancement in traction system

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	Marks
20	30	50	100

Name of The	e Power electronics application				
Course	in renewable enrgy				
Course Code	BEE03T5010				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

To provide knowledge about various renewable energy technologies, their potential and applications **Course Outcomes**

Text Books:

1. Title Power Electronics Hand book Author Rashid .M. H Publisher Academic press Edition 2001 and Reprints

2. Title Non-conventional energy sources Author Rai. G.D Publisher Khanna publishes Edition 1993 and Reprints

3. Title Solar energy utilization Author Rai. G.D Publisher Khanna publishes Edition 1993 and Reprints

ence Books:

tle Wind energy system Author Gray, L. on Publisher prentice hall linc Edition 1995 eprints 161

le Non-conventional Energy sources Author han Publisher Tata McGraw-hill Publishing any, New Delhi Edition 2nd Edition

I: Introduction :

ironmental aspects of electric energy conversion: acts of renewable energy generation on ronment (cost-GHG Emission) - Qualitative y of different renewable energy resources: Solar, l, ocean, Biomass, Fuel cell, Hydrogen energy ems and hybrid renewable energy systems.

II: Electrical Machines for Renewable Energy version :

Review of reference theory fundamentals-principle of operation and analysis: IG, PMSG, SCIG and DFIG. Unit III : Power Converters :

Solar: Block diagram of solar photo voltaic system -Principle of operation: line commutated converters (inversion-mode) - Boost and buck-boost convertersselection Of inverter, battery sizing, array sizing. Wind: three phase AC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers. PWM Inverters. Inverters-matrix Grid Interactive converters.

Unit IV : Analysis of Wind Energy Systems :

Stand alone operation of fixed and variable speed wind energy conversion systems and solar system-Grid connection Issues -Grid integrated PMSG and SCIG Based WECS Grid Integrated solar system

Unit V: Analysis of PV Systems

solar system-Grid connection Issues -Grid integrated, Wind and PV solar hybrid system

Unit VI: Hybrid Renewable Energy Systems :

Need for Hybrid SystemsRange and type of Hybrid systems- Case studies of Wind-PV Maximum Power Point Tracking (MPPT).

Continuous Assessment Pattern

Internal Assessment	Mid Term Exam	End Term Exam	Total
(IA)	(MTE)	(ETE)	Marks
20	30	50	100

Name of	f The	Special Electrical Machines
Course		
Course Cod	le	BTEE5202
Prerequisite	•	
Corequisite		
Antirequisi	te	

L	Т	Р	С
3	0	0	3

Course Objectives:

- 1. To understand the various machines
- 2. To understand the concept of special electrical machines and applications

Course Outcomes

CO1	Apply the knowledge of Commutator motors and circuits analysis of FHP Universal Commutator motors
CO2	Make use of application of the BLDC Motors with industries and day to day life
CO3	Analysis the demanding and appropriate drive performance for the Stepper motor.
CO4	Analysis the numerical problems associated with FHP Synchronous Motors
CO5	Test and estimate the parameter of the Special machine. Analysis the demanding and appropriate drive performance for the specific purpose.
CO6	Test and estimate the parameter of the LIM.

Text Book (s)

1. P.C. Sen, "Principles of Electric Machines and Power Electronics", 2nd Edition, Wiley India Ltd. 2007

2. E. Openshaw Taylor, "The Performance and Design of AC Commutator Motors", Wheeler Publishing, 1997

3. R. Krishnan, "Switched Reluctance Motor Drives", 1st Edition, CRC Press. 2001

Unit I: FHP Universal Commutator motors:

Principle of operation and performance characteristics of universal commutator motor without and with compensating windings, phasor diagrams and expressions for power and torque, speed-torque characteristics with DC and AC excitations.

Unit II: Introduction to Brushless DC Motor Drives (BLDC)

Salient features of various permanent magnet materials- B-H- Loop and demagnetization characteristics, Comparison of BLDC Vs conventional, BLDC Vs Synchronous motor, BLDC Vs induction motor. Operating principle of BLDC- Principle of hall sensor - unipolar BLDC and Bi-polar BLDC. Unit III: Stepper motors: Introduction, Multi-stack variable-reluctance stepping motors, Principles of operation , Aspects of design, Single stack variable-reluctance stepping motors, Hybrid stepping motors, Comparison of motor types, design of drive circuits, torque/rotor position characteristics. Unit IV : Servomotors:

DC and AC servomotors, transfer function analysis, Synchronous

Unit V: Switched Motor Reluctance Drives

Introduction, Poles, phase and windings, Static torque production, Partition of energy and effects of saturation, Dynamic torque production, Converter circuits, Current regulation, Commutation, torque – speed characteristics, Shaft position sensing.

Unit VI: Linear Induction motors

Basic principle of operation and types. Field analysis & Propulsion force; equivalent circuit

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Basket- (Processing and Computing Techniques)

Name of	The	Machine le	arni	ng		
Course						
Course Code		BTEE4012	,			
Prerequisite		Python				
Co-requisite						
Anti-requisite						
			L	Т	Р	С
			3	0	0	3

Course Objectives

- 1. Get the exposure to Artificial Neural Networks & Fuzzy Logic.
- 2. Understand the importance of tolerance of imprecision and uncertainty for design of robust &low cost intelligent machines.
- 3. Explore the functional components of neural network classifiers or controllers, and the functional components of fuzzy logic classifiers or controllers.
- 4. Develop and implement a basic trainable neural network or a fuzzy logic system for a typical control, computing application or biomedical application.

Course Outcomes

CO1	Identify and describe Fuzzy Logic and Artificial Neural Network techniques in
	building intelligent machines.
CO2	Understand setup and solve typical machine learning problems, by implementation or by using simulation tools.
CO3	Design supervised learning models.
CO4	Design unsupervised learning models.
CO5	Understand the Convolution neural networks.
CO6	Develop machine learning algorithms for an application.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

Hours	
Data acquisition, pre-processing, featur	e
extraction and processing, featur	e
ranking/selection, feature reduction, mode	21
learning, evaluation, deployment. Matrix algebra	ι,
Bayes theory	
Unit II: Supervised Learning	8
Hours	
Decision trees, Inductive bias, Classification	ı,
Regression, Perceptron, Tree learning algorithms	5.
Unit III: Unsupervised Learning	8
Hours	
Clustering, K-means algorithm, Univariate linea	r
modeling function, Cost function and it	
minimization, Logistic regression, Softma	x
regression.	
Unit IV: Neural Networks	6
Hours	
Artificial neurons, Gradients and bac	k
propagation, Gradient decent,	
Unit V: Convolution neural networks	6
Hours	
Continuous convolution, discrete convolution	ı,
pooling. Recurrent neural networks. Deep neura	ıl
networks	
Unit VI: Advanced topi	с
6 Hours	
Development of an application of machin	e
learning in field of electrical engineering	

Suggested Reading

- 1. Ross, Timothy J. Fuzzy logic with engineering applications. John Wiley & Sons, 2009.
- 2. Yegnanarayana, B. Artificial neural networks. PHI Learning Pvt. Ltd., 2004.
- Stamatios V. Kartalopoulos, Understanding Neural Networks and Fuzzy Logic: Basic Concepts and Applications 1st Edition.
- 4. S. Rajasekaran, Neural Networks, Fuzzy Systems and Evolutionary Algorithms: Synthesis and Applications.
- Aaron M. Tenenbaum, YedidyahLangsam and Moshe J. Augenstein "Data Structures Using C and C++", PHI, 1996.
- 6. Jean Paul Trembley and Paul G. Sorenson, "An Introduction to Data Structures with applications", McGraw Hill, 2007.
- 7. Kosko, B, "Neural Networks and Fuzzy Systems: A Dynamical Approach to Machine Intelligence", PrenticeHall, NewDelhi, 2004.
- 8. Timothy J Ross, "Fuzzy Logic with Engineering Applications", John Willey and Sons, West Sussex, England, 2005.

Name of The	Digital Signal Processing	
Course		
Course Code	BECE2020	
Prerequisite	Signals and Systems	
Co-requisite	Network Theory	
Anti-requisite		
	L T P C	
	3 0 0 3	

Course Objectives

- 1. Introduce to discrete time signal processing and characterization of random signals, filter design techniques, and imperfections caused by finite word length.
- 2. Learn how design FIR and IIR filters.
- 3. Learn the theory of digital signal processing and digital filter design, including hands-on experience with important techniques involving digital filter design and digital simulation experiments.
- 4. Introduce the fundamental principles and techniques of digital signal processing for understanding and designing new digital signal processing systems and for continued learning.

Course Outcomes

course	outeome	5		
CO1	Apply fundame	digital entals.	signal	processing

CO2	Comprehend if a DT system is linear, time-invariant, causal, and memory-less, High Pass, Low Pass, All Pass and able to apply Z and inverse Z transform on DT signal.
CO3	Acquire the knowledge of representation of discrete-time signals in the frequency domain, using DFT and FFT.
CO4	Design FIR and IIR filters to meet the specific magnitude and phase requirements.
CO5	Understand the concept of linear prediction and spectrum estimation.
CO6	Understand the concept of advance processor

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

Unit I: Sampling of Continuous Time Signals 8 Hours

Sampling and reconstruction of signals, frequency domain representation of sampling, discrete time processing of continuous time signals, continuous time processing of discrete time signals, changing the sampling rate using discrete time processing, multi rate signal processing, digital processing of analog signals, over sampling and noise shaping in A/D and D/A conversion.

Unit II: Sampling of Continuous Time Signals 8 Hours

Sampling and reconstruction of signals, frequency domain representation of sampling, discrete time processing of continuous time signals, continuous time processing of discrete time signals, changing the sampling rate using discrete time processing, multi rate signal processing, digital processing of analog signals, over sampling and noise shaping in A/D and D/A conversion.

Unit III: Transform Analysis of LTI Systems 8 Hours

Frequency response of LTI systems, system functions, frequency response for rational system functions, magnitude-phase relationship, all pass systems, minimum phase systems, and linear systems with generalized linear phase Overview of finite precision numerical effects, effects of

coefficient quantization, Effects of round-off
noise in digital filters, zero-input limit cycles in
fixed point realizations of IIR digital filters.
Unit IV: Filter Design Techniques 8
Hours
Design of D-T IIR filters from continuous – time
filters, design of FIR filters by windowing, Kaiser
Window method, optimum approximations of FIR
filters, FIR equiripple approximation.
Unit V: Fourier analysis of Signals Using DFT
8 Hours
DFT analysis of sinusoidal signals, time-
dependent Fourier transforms: Block convolution,
Fourier analysis of non – stationary and stationary
random signals, spectrum analysis of random
signals using estimates of the autocorrelation
sequence.
Unit VI: Recent Trends in DSP
Unit vi: Recent Hends in DSP
DSP architecture, Memory organization,
Simulation

Suggested Reading

- 1. Oppenheim A.V., Schafer, Ronald W. & Buck, John R., "Discrete Time Signal processing",Pearson Education, 2nd Edition.
- 2. Proakis J. G. and Manolakis D. G., "Digital Signal Processing: Principles, Algorithms And Applications", Pearson Education, 4rd Ed., 2007.
- 3. Ramesh P., "Digital Signal Processing", SciTech Publication, 41FL Ed., 2008.
- 4. MitraSanjit K., "Digital Signal Processing: A Computer Based Approach", 3rd Ed., Tata McGraw-Hill, 2008.
- Lawrence R. Rabiner, Bernard Gold, "Theory and Application of Digital SignalProcessing", PHI 2001.
- Shaliwahan S., Vallavaraj A. and Gnanapriya C., "Digital Signal Processing", Tata McGraw-Hill, 2nd Ed., 2000.

Name of The	Neural Networks and Fuzzy				
Course	Control				
Course Code	BTEE4015				
Prerequisite	Control System				
Co-requisite	Advanced Control System				
Anti-requisite					
	L T P C				
	3 0 0 3				

- 1. The objective of this course is to present sufficient background in both fuzzy and neural network so that students in future can pursue advanced soft computing methodologies.
- 2. This course combines knowledge, techniques, and methodologies from various sources, using techniques from neural networks and fuzzy set theory, as an extension, the course uses the Neuro Fuzzy models for the complex engineering problems.

Course Outcomes

	Identify and describe Eveny Logic and
	Identify and describe Fuzzy Logic and
CO1	Artificial Neural Network techniques in
	building intelligent machines.
	Apply Artificial Neural Network & amp;
CO2	Fuzzy Logic models to handle uncertainty
	and solve engineering problems
CO3	Understand the feed forward and
COS	Recurrent neural networks cocept.
CO4	Understanding of fuzzy relation rule and
C04	aggregations.
CO5	Understand concept of classical and fuzzy
005	sets, fuzzification and defuzzification.
	Recognize the feasibility of applying a
CO6	Neuro-Fuzzy model for a particular
	problem.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

Unit I: Introduction	8
Hours	
Artificial neural networks and their biolog	gical
motivation – Terminology – Models of neuro	on –
Topology – characteristics of artificial ne	ural
networks – types of activation functions – lear	ning
methods - error correction learning - Heb	bian
learning – Perceptron – XOR Problen	1 –
Perceptron learning rule convergence theore	m –
Adaline.	
Unit II: Feed forward Neural Netw	orks
8 Hours	
Architecture: perceptron model, solution, si	ngle
layer artificial neural network, multil	0
perceptron model; back propogation lear	ning
methods, effect of learning rule co-efficient ;	0

propagation algorithm, factors affecting backpropagation training, applications;

Unit III: Recurrent Neural Networks

Recurrent neural networks: Linear auto associator – Bi-directional associative memory – Hopfield neural network. Unit IV: Fuzzy Logic & Fuzzy Sets 8

Unit IV: Fuzzy Logic & Fuzzy Sets Hours

Introduction to Fuzzy Logic, Classical and Fuzzy Sets, Membership Function ,Membership Grade, Universe of Discourse, Linguistic Variables, Operations on Fuzzy Sets: Intersections, Unions, Negation, Product, Difference, Properties of Classical set and Fuzzy sets, Fuzzy vs Probability, Fuzzy Arithmetic, Fuzzy Numbers.

Unit V: Fuzzy Relations & Aggregations 8 Hours

Essential Elements of Fuzzy Systems, Classical Inference Rule, Classical Implications and Fuzzy Implications, Crisp Relation and Fuzzy Relations, Composition of fuzzy relations, Cylindrical Extension and Projection. Fuzzy IF-THEN rules, Inference: Scaling and Clipping Method, Aggregation, Fuzzy rule based Model: Mamdani Model, TSK model, Fuzzy Propositions, Defuzzification: MOM, COA Fuzzy Optimization and Neuro Unit VI: Fuzzv Systems 8 Hours Fuzzy optimization -one-dimensional optimization. Introduction of Neuro-Fuzzy Systems, Architecture of Neuro Fuzzy Networks.

- 1. Ross, Timothy J. Fuzzy logic with engineering applications. John Wiley & Sons, 2009.
- 2. Yegnanarayana, B. Artificial neural networks. PHI Learning Pvt. Ltd., 2004.
- 3. Stamatios V. Kartalopoulos, Understanding Neural Networks and Fuzzy Logic: Basic Concepts and Applications 1st Edition.
- 4. S. Rajasekaran, Neural Networks, Fuzzy Systems and Evolutionary Algorithms: Synthesis and Applications.
- Aaron M. Tenenbaum, YedidyahLangsam and Moshe J. Augenstein "Data Structures Using C and C++", PHI, 1996.
- 6. Jean Paul Trembley and Paul G. Sorenson, "An Introduction to Data Structures with applications", McGraw Hill, 2007.

- 7. Kosko, B, "Neural Networks and Fuzzy Systems: A Dynamical Approach to Machine Intelligence", PrenticeHall, NewDelhi, 2004.
- 8. Timothy J Ross, "Fuzzy Logic with Engineering Applications", John Willey and Sons, West Sussex, England, 2005.

Name of The	Soft Computing				
Course					
Course Code	BECE4401				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. Introduce the fundamentals of Soft Computing.
- 2. Apply Computing models to solve problems.
- 3. Get the exposure of soft computing, especially evolutionary computation, fuzzy logic, GA and neural networks
- 4. Become expert in calculating and comparing complexities of various searching and sorting algorithms.

Course Outcomes

CO1	Identify and describe Soft-Computing techniques and their roles in building intelligent machines
	Apply Soft – Computing models &
CO2	reasoning to handle uncertainty and solve
	engineering problems.
	6 61
	Recognize the feasibility of applying a soft
CO3	computing methodology for a particular
	problem
	1
CO4	Apply genetic algorithms to optimization
004	problems
	Identify the importance of tolerance of
CO5	5 1
COS	imprecision and uncertainty for design of
	robust &low cost intelligent machines.
	Understand the recent development in
CO6	electrical engineering using soft
200	e e e
	computing

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	

50	-	50	100	
Contraction Construction				

Course Content:

Unit I: Artificial Neural Networks 8 Hours
Introduction, model of neuron, activation functions, important terminologies of ANN, Hebb's learning, Supervised learning, Unsupervised learning, reinforcement learning, Adaline, Perceptron, Back propagation networks, Adaptive Resonance Theory, Associative Memories, Applications.
Unit II: Fuzzy Logic & Fuzzy Sets 8 Hours
Introduction to Fuzzy Logic, Classical and Fuzzy Sets, Membership Function ,Membership Grade, Universe of Discourse, Linguistic Variables, Operations on Fuzzy Sets: Intersections, Unions, Negation, Product, Difference, Properties of Classical set and Fuzzy sets, Fuzzy vs Probability, Fuzzy Arithmetic, Fuzzy Numbers Unit III: Fuzzy Relations & Aggregations 8
Unit III: Fuzzy Relations & Aggregations 8 Hours
Essential Elements of Fuzzy Systems, Classical Inference Rule, Classical Implications and Fuzzy Implications, Crisp Relation and Fuzzy Relations, Composition of fuzzy relations, Cylindrical Extension and Projection. Fuzzy IF-THEN rules, Inference: Scaling and Clipping Method, Aggregation, Fuzzy rule based Model: Mamdani Model, TSK model, Fuzzy Propositions, De- fuzzification: MOM, COA
Unit IV: Neuro-Fuzzy Systems 8 Hours
Introduction of Neuro-Fuzzy Systems, Architecture of Neuro Fuzzy Networks. Application of Fuzzy Logic: Medicine, Economics, Industry etc.
Unit V: Genetic algorithm 8 Hours
Genetic Algorithm: An Overview, GA in problem solving, Implementation of GA fundamentals, basic concepts, working principle, encoding, fitness function, reproduction, Genetic modelling: Inheritance operator, crossover, inversion & deletion, mutation operator, Bitwise operator, Generational Cycle, Convergence of GA, Applications & advances in GA, Differences & similarities between GA & other traditional method.
Unit VI: Recent development using soft computing
Recent development in electrical engineering using soft computing

- 1. Ross, Timothy J. Fuzzy logic with engineering applications. John Wiley & Sons, 2009.
- 2. Yegnanarayana, B. Artificial neural networks. PHI Learning Pvt. Ltd., 2004.
- 3. Zurada, Jacek M. Introduction to artificial neural systems, West St. Paul, 1992.
- 4. Hagan, Martin T., Howard B. Demuth, and Mark H. Beale. Neural network design. Boston: Pws
- 5. Pub., 1996.
- Haykin, Simon. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.

Name of	Neural Networks and Deep
The Course	Learning Algorithms
Course	BEE0275007
Code	
Prerequisit	Python/Javascript/Java/C++/Matla
e	b)
Co-	
requisite	
Anti-	
requisite	
	L T P C
	3 0 0 3

Course Objectives

1. Introduce major deep learning algorithms, the problem settings, and their applications to solve real world problems.

Course Outcomes

CO1	Use the backpropagation algorithm to calculate weight gradients in a feed forward neural network by hand
CO2	Understand the motivation for different neural network architectures and select the appropriate architecture for a given problem
CO3	Write a neural network from scratch in using PyTorch in Python, train it 119ntil convergence and test its performance given a dataset.
CO4	Understand how neural networks fit into the more general framework of machine learning, and what their limitations and advantages are in this context.
CO5	Implement deep learning algorithms and solve real-world problems.

CO6	Apply the deep learning techniques for data analysis.	
	data analysis.	

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	-	50	100
Course Conten	it:		

Unit I: Introduction 8 Hours
Various paradigms of earning problems,
Perspectives and Issues in deep learning
framework, review of fundamental learning
techniques
Unit II: Feedforward neural network 5 Hours
Artificial Neural Network, activation function,
multi-layer neural network.
Unit III: Training Neural Network and
Conditional Random Field
8 Hours
Risk minimization, loss function,
backpropagation, regularization, model selection,
and optimization. Linear chain, partition function,
Markov network, Belief propagation, Training
CRFs, Hidden Markov Model, Entropy.
Unit IV: Probabilistic Neural Network 5
Hours
Hopfield Net, Boltzman machine, RBMs,
Sigmoid net, Autoencoders.
Unit V: Deep Learning and Its tools
12 Hours
Deep Feed Forward network, regularizations,
training deep models, dropouts, Convolutional
Neural Network, Recurrent Neural Network,
Deep Belief Network.Object recognition, sparse
coding, computer vision, natural language
processing.
Deep Learning Tools: Caffe, Theano, Torch.
Unit VI: Demonstrate deep learning algorithm
Apply the deep learning techniques for data
analysis in electrical engineering

- 1. Goodfellow, I., Bengio,Y., and Courville, A., Deep Learning, MIT Press, 2016..
- 2. Bishop, C. ,M., Pattern Recognition and Machine Learning, Springer, 2006.
- 3. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.

- 4. Golub, G.,H., and Van Loan,C.,F., Matrix Computations, JHU Press, 2013.
- 5. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.
- 6. Ravindran, K. M. Ragsdell , and G. V. Reklaitis , ENGINEERING OPTIMIZATION: Methods and Applications , John Wiley & Sons, Inc. , 2016..
- 7. Antoniou, W. S. Lu, PRACTICAL OPTIMIZATION Algorithms and Engineering Applications, Springer , 2007.

Name of The	Human Computer Interface
Course	
Course Code	BEE02T5008
Prerequisite	Knowledge of C programming
	language/UNIX
Co-requisite	
Anti-requisite	
	L T P C
	3 0 0 3

Course Objectives

- 1. This course provides an introduction to and overview of the field of human-computer interaction (HCI).
- 2. HCI is an interdisciplinary field that integrates theories and methodologies from computer science, psychology, design, and many other areas.
- 3. Course readings will span current theory and practice in interface specification, design and evaluation, as well as current and classic research papers in HCI.
- 4. Students will work on both individual assignments and a team project to design, implement and evaluate computer interfaces.

|--|

CO1	Describe and apply user-centered design methods to conduct formative and	
COI	summative evaluations.	
CO2	Explain and apply core theories and models from the field of HCI.	
CO3	Design and implement useful, usable, and	
005	engaging graphical computer interfaces.	
CO4	Discuss and critique research in the field of HCI.	
	Describe special considerations in	
CO5	designing user interfaces for wellness.	
C06	Develop Human Computer Interface	
006	applications	

Internal Assessment	Mid Term Exam	End Term	Total Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	-	50	100
Course Content:			

Course Content:

Unit I: Introduction	8 Hours
Introduction and history of HCI, Proje	ect overview.
IRB, UCD, Usability principles.	
* * *	
Unit II: Design	6 Hours
Human abilities, Predictive	
Understanding users, request gat	hering, task
analysis, DOET.	-
Unit III: Graphics Design	6 Hours
Graphics Design, Handling errors and	d help.
Unit IV: Prototype	6 Hours
Prototyping and UI software, User	models and
Predictive models.	
Unit V: Universal esiign	6Hours
Universal design, Information	Isualization,
Embodied agents, CSCW, Ubicom.	
Unit VI: Application of Humar	n Computer
Interface	1
Case Study related to Human Compu	ter Interface

Suggested Reading

- 1. Interaction Design: Beyond Human-Computer Interaction, Fourth Edition by Preece, Sharp & Rogers (2015).
- 2. About Face: The Essentials of Interaction Design, Fourth Edition by Cooper, Reimann, Cronin, &Noessel (2014).

Name of The Course	Introduction to Scilab and its applications
Course Code	BEE0275006
Prerequisite	MATLAB
Co-requisite	
Anti-requisite	
	L T P C
	3 0 0 3

Course Objectives

1. Scilab can help a student focus on the procedure for solving a problem instead of spending time and energy developing a matrix algebra library.

Continuous Assessment Pattern

- 2. In fact, it is a calculator that is capable of matrix algebra computations.
- 3. Once the student is sure of having mastered the steps, they can be converted into functions and whole problems can be solved by simply calling a few functions.
- 4. Scilab is an invaluable tool as solved problems need not be restricted to simple examples to suit hand calculations.

Course Outcomes

CO1	To aware the students about SCILAB software environment.
CO2	Students will understand the basics of SCILAB software and its data class.
CO3	The course contents will enable the students to learn basic SCILAB programming for engineering application
CO4	Differentiate between Scilab and MATLAB
CO5	SCILAB Simulink for simulation, analysis and design of the system
CO6	Develop real time system for society needs.

Continuous Assessment Pattern

Mid Term	End	Total
Exam	Term	Marks
(MTE)	Exam	
	(ETE)	
-	50	100
	Exam	Exam Term (MTE) Exam

Course Content:

Unit I: Introduction 8
Hours
About SCILAB/MATLAB, SCILAB/MATLAB
System, Starting and Quitting
SCILAB/MATLAB, Entering Matrices sum and
transpose, subscripts, colon Operator, magic
Function
Unit II: Working with matrices 8
Hours
Generating Matrices, The load Function, M-Files,
Concatenation, Deleting Rows and Columns,
Linear Algebra, Arrays Multivariate Data, Scalar

Expansion, Logical Subscripting, find Function,
Variables Numbers, Operators Functions,
Expressions.
Unit III: Command Window and Graphics8
Hours
The format Function, Suppressing Output,
Entering Long Statements, Command Line
Editing, Plotting Process, Editing Process,
Preparing Graphs, Basic Plotting Functions, Mesh
& Surface Plot, and Image Reading & Writing,
Printing graphics.
Unit IV: Flow Control and data structure 8 Hours
If, else, and else if, switch and case, for, while,
continue, break try – catch, return,
Multidimensional Arrays, Cell Arrays, Characters
and Text, Structures
Unit V: Scripts and Functions 8
Hours
Scripts, Functions, Global Variables, Passing
String Arguments to Functions, eval Function,
Function Handles, Vectorization, Pre allocation.
Unit VI: Application
Application of the Scilab in renewable energy

- 1. Introduction to SCILAB by RachnaVerma and Arvind Verma.
- 2. SCILAB—A Beginner's Approach by Anil Kumar Verma.
- 3. MATLAB & Its Applications in Engineering By: Raj Kumar Bansal, Ashok Kumar Goel, Manoj Kumar Sharma.
- 4. A Guide to MATLAB: For Beginners & Experienced Users By: Kevin
- 5. R. Coombes, John E. Osborn, Garrett J. Stuck

Program: B. Tech in Electrical & Electronics Engineering

Scheme: 2019-2020

Vision

To be known globally as a premier Department offering value based education in Electrical and Electronics Engineering inculcating the spirit of interdisciplinary research and innovation.

Mission

- Create a strong foundation on fundamentals in the areas of Electrical and Electronics Engineering through outcome based teaching learning process.
- Establish state-of-the-art facilities for design and simulation.
- Provide opportunities to students to work on real world problems and develop sustainable ethical solutions.
- Involve the students in group activities, including those of professional bodies to develop leadership and communication skills.

Program Educational Objectives Graduate shall

PEO-1: Electrical and Electronics Engineering graduates will have successful careers in core engineering, academia, research organizations.

PEO-2: The graduates will be well prepared to adapt usage of modern tools & amp; emerging technologies and contribute to interdisciplinary research with innovative practices.

PEO-3: The graduates will be academically prepared to become leaders in their organizations, become professional engineers, as necessary, and will contribute effectively to the growth and development of their organization.

PEO-4: The graduates will engage in professional activities with ethical practices in the field of Electrical Engineering to enhance their own stature and simultaneously contribute to the profession and society at large.

Program Specific Outcome

PSO1: Electrical and Electronics Engineering students will be able to apply their knowledge for developing reliable electrical circuits and systems with proper protection.

PSO2: Electrical and Electronics Engineering students will be able to develop software based design and analysis of systems using MATLAB, SIMPOWER, PLC/SCADA etc

PSO 3: Creative design to produce and maintain quality of power supply and use of suitable instruments for energy audit and calibration.

Program Outcomes

- Engineering Knowledge : Apply the knowledge of Mathematics, Science, and Engineering fundamentals, and an engineering specialization to solution of complex engineering problems
- Problem analysis : Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences
- Design/development of solutions : Design of solutions for complex engineering problems and design of system components or processes that meet the specified needs with appropriate considerations of public health and safety, and cultural, societal, and environmental considerations
- Conduct investigations of complex problems : Use research based methods including design of experiments, analysis and interpretation of data and synthesis of information leading to logical conclusions
- Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling complex engineering activities with an understanding of limitations
- The engineer and society : Apply reasoning within the contextual knowledge to access societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice

- Environment and sustainability : Understand the impact of the professional engineering solutions in the societal and environmental contexts, and demonstrate the knowledge of, and the need for sustainable developments
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice
- Individual and team work : Function effectively as an individual independently and as a member or leader in diverse teams, and in multidisciplinary settings
- Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large such give and receive clear instructions
- Project management and finance : Demonstrate knowledge and understanding of engineering management principles and apply those to one's own work as a member and leader of a team to manage projects in multidisciplinary environments
- Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

Curriculum

		Semester 1							
S1.	Course Code	Name of the Course					Asses	sment Pa	ttern
No	Course Coue		L	Т	Р	С	IA	MTE	ETE
1	BMA101	Mathematics-1 (Multivariable Calculus)	3	1	0	3	20	30	50
2	BMA151	Exploration with CAS-I	0	0	2	1	50		50
3	BHS101	Professional Communication	2	0	0	2	20	30	50
4	BCS101	Fundamentals of Computer Programing	3	0	0	3	20	30	50
5	BCS151	FundamentalsofComputerPrograming Lab - 11	0	0	2	1	50		50
6	BPH101	Engineering Physics	3	0	0	3	20	30	50
7	BPH151	Engineering Physics Lab	0	0	2	1	50		50
8	BME101	Elements of Mechanical Engineering	3	0	0	3	20	30	50
9	BME151	Workshop Practice	0	0	4	2	50		50
10		^				19			
		Total							
	I	Semester II					•	1	1
Sl	Course Codee	Name of the Course					Assessment Pat		ttern
No	Course Couce		L	Т	Р	С	IA	MTE	ETE
	BMA201	Mathematics-II (Matrices and	3	1	0	3	20	30	50
	BMA251	Differential Equations) Exploration with CAS-II	0	0	2	1	50		50
	BHS251	Professional Communication Lab	0	0	2	1	50		50
	BCS251	Fundamentals of Computer Programming Lab - 2	0	0	2	1	50		50
	BCH101	Engineering Chemistry	3	0	0	3	20	30	50
	BCH151	Engineering Chemistry Lab	0	0	2	1	50		50
	BEC101	Basic Electrical and Electronics Engineering	3	0	0	3	20	30	50
	BEC151	Basic Electrical and Electronics Engineering Lab	0	0	2	1	50		50
	BOC251	Engineering Clinic-1	0	0	2	1	50		50
	BLE101	Psychology and Sociology	2	0	0	2	20	30	50
		Total							
~		Semester III	1						
Sl No	Course Code	Name of the Course	L	Т	Р	C	Asses: IA	sment Pa MTE	ttern ETE
1	BECE2010	Digital Electronics	3	0	0	3	20	30	50
2	MATH2001	Functions of complex variables and Transforms	3	0	0	3	20	30	50
3	BECE2012	Electromagnetic Field Theory	3	0	0	3	20	30	50
4	BTEE2006	Electrical Machine-1	3	0	0	3	20	30	50

5	BTEE2002	Network Analysis and Synthesis	3	0	0	3	20	30	50
	BIEE2002 BECE2016	Signals and Systems	3	0	0	3	20	30	50
6	BEE02T2003		2	0	0	2	20	30	50
7	DEE0212005	Design and Engineering Network Analysis and Synthesis	0	0	2	2 1	20	50	30
8	BTEE2003	Lab	0	0	2	1	50		50
9	BEE02P2003	Engineering Clinic-1	0	0	2	1	50		50
9	DEE02F 2003	English Proficiency and Aptitude	0	0	2	1	30		30
10	SLBT2021	Building - 3	0	0	4	2	50	-	50
11	BTEE2007	Electrical Machine Lab-1	0	0	2	1	50		50
11	DILL2007	Environmental Science and	2	0	0	0	20	30	50
12		Engineering (Mandatory Audit	-	Ŭ	Ŭ	Ŭ	20	50	20
12	ENVS1004	Course)							
	LITTBIOOP	Total				25			
		Semester IV				23			
S1	Course Code	Name of the Course					Asses	sment Pa	ttern
No	Course Code		L	Т	Р	С	IA	MTE	ETE
1	MATH2004	Probability and Stochastic	3	0	0	3	20	30	50
		Processes		Ĩ			20	50	50
2	BEEE3002	Control Systems	3	0	0	3	20	30	50
3	BECE2015	Electronic Devices and Circuits	3	0	0	3	20	30	50
4	BTEE2008	Fundamentals of Power Systems	3	0	0	3	20	30	50
5	BTEE3015	Power Plant Engineering	3	0	0	3	20	30	50
6	BEEE2001	Electrical Measurement and Instrumentation	3	0	0	3	20	30	50
7	BEE02P2007	Engineering Clinic-2 (IOT based Tinker CAD)	0	0	2	1	50		50
8	BEE02P2010	Electronic Devices and Circuits Lab	0	0	2	1	50		50
9	BEE02P2009	Measurement and Control Systems Lab	0	0	2	1	50		50
10	BEE02P2008	Logical and Critical Reasoning	0	0	2	1	50		50
		Total				22			
		Semester V							
Sl	Course Code	Name of the Course				~		sment Pa	1
No			L	T	P	С	IA	MTE	ETE
1	BECE3004	Microcontroller and Embedded system	3	0	0	3	20	30	50
2	BTEE3004	Electrical Machine-2	3	0	0	3	20	30	50
3	BTEE3009	Power System Analysis	3	0	0	3	20	30	50
4	BTEE3011	Power Electronics	3	0	0	3	20	30	50
5	****	Program Elective-I	3	0	0	3	20	30	50
6	BEE03T3001	Engineering Economics and Management	3	0	0	3	20	30	50
7	BEE02P3001	Engineering Clinic-3(Industrial Internship)	0	0	2	1	50		50
8	BEE02P3002	Effective Leadership and Decission Making Skills	0	0	2	1	50		50

9	BECE3005	Microcontroller and Embedded	0	0	2	1	50		50
10	BTEE3002	Systems Lab Power Electronics Lab	0	0	2	1	50		50
10	BIEE02T3004	Finance for Electrical Engineers	2	0	2	1	50	20	50
11	BTEE3005	Electrical Machine Lab-2	0	0	2		20	30	50
12	BIEE3005	Total	0	0	2	1 24	50		50
		Semester VI				24			
S1	~ ~ .						Assess	sment Pa	ttern
No	Course Code	Name of the Course	L	Т	Р	C	IA	MTE	ETE
1	SLBT3002	Campus to Corporate program	0	0	4	2	50		50
2	BECE3020	Digital Signal Processing	3	0	0	3	20	30	50
3	BEE02T3006	Power System protection	3	0	0	3	20	30	50
4	BTEE4005	Professional Ethics and Values	2	0	0	0	20	30	50
5	*****	Program Elective-II	3	0	0	3	20	30	50
6	*****	Program Elective-III	3	0	0	3	20	30	50
7	*****	Open Elective -1	3	0	0	3	20	30	50
8	BEE02P3008	Design and Innovation Project	0	0	2	1	50		50
9	BEE02P3007	Power System protection Lab	0	0	2	1	50		50
10	GERN1001/JAP	Forign Language - 1 (German,	0	0	2	0			
	A1001/FREN10	Japneese, French) *any one					50		50
	01								
		Total				19			
	1	Semester VII							
S1 No	Course Code	Name of the Course	L	Т	Р	C	Assess IA	sment Pa MTE	ttern ETE
INU		Smart Grid and Energy	L	1	r	C	IA	NITE	EIE
1	BEEE4001	management	3	0	0	3	20	30	50
-	DELLIGOT	management		0	0	3	1		
2	****	Program Elective-IV	3						
2	*******	Program Elective-IV Program Elective-V	3		-	-			
2 3	****	Program Elective-V	3 3	0	0	3			
3		Program Elective-V Non-Conventional Energy	3	0	0	3	20	30	50
	****	Program Elective-V Non-Conventional Energy Resources			-	-			
3	******** BEEE2018 ******	Program Elective-V Non-Conventional Energy	3 3	0	0	3	20	30	50
3	******* BEEE2018 ******* BTEE4001	Program Elective-V Non-Conventional Energy Resources Open Elective-2 Electric Drive	3 3 3	0 0 0	0 0 0 0	3 3 3 3	20 20		50 50
3 4 5	******** BEEE2018 ******	Program Elective-V Non-Conventional Energy Resources Open Elective-2 Electric Drive PLC/SCADA Lab	3 3 3 3	0 0 0 0	0 0 0 0	3 3 3 3	20	30	50
3 4 5 6	******* BEEE2018 ******* BTEE4001 BTEE3008	Program Elective-V Non-Conventional Energy Resources Open Elective-2 Electric Drive	3 3 3 3 0	0 0 0 0 0	0 0 0 0 2	3 3 3 3 1	20 20 50	30	50 50 50
3 4 5 6 7	******** BEEE2018 ******* BTEE4001 BTEE3008 BEE03P4003	Program Elective-V Non-Conventional Energy Resources Open Elective-2 Electric Drive PLC/SCADA Lab Industrial Internship	3 3 3 3 0 0	0 0 0 0 0 0 0	0 0 0 0 2 0	3 3 3 3 1 0	20 20 50 50	30	50 50 50 50 50
3 4 5 6 7 8	******** BEEE2018 ******* BTEE4001 BTEE3008 BEE03P4003 BEE02P4005	Program Elective-VNon-Conventional EnergyResourcesOpen Elective-2Electric DrivePLC/SCADA LabIndustrial InternshipTechnical SeminarCapstone Design Phase-I	3 3 3 3 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 2 0 2 2	3 3 3 3 1 0 0	20 20 50 50 50 50	30	50 50 50 50 50 50 50
3 4 5 6 7 8	******** BEEE2018 ******* BTEE4001 BTEE3008 BEE03P4003 BEE02P4005 BEE02P4002	Program Elective-VNon-Conventional EnergyResourcesOpen Elective-2Electric DrivePLC/SCADA LabIndustrial InternshipTechnical Seminar	3 3 3 3 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 2 0 2 2	3 3 3 3 1 0 0	20 20 50 50 50	30	50 50 50 50 50 50
3 4 5 6 7 8 9	******** BEEE2018 ******* BTEE4001 BTEE3008 BEE03P4003 BEE02P4005 BEE02P4002 GERN/JAPA/F	Program Elective-VNon-Conventional EnergyResourcesOpen Elective-2Electric DrivePLC/SCADA LabIndustrial InternshipTechnical SeminarCapstone Design Phase-IForign Language - 2 (German,	3 3 3 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 2 0 2 10	3 3 3 1 0 0 2	20 20 50 50 50 50	30	50 50 50 50 50 50 50
3 4 5 6 7 8 9 10	******** BEEE2018 ******* BTEE4001 BTEE3008 BEE03P4003 BEE02P4005 BEE02P4002 GERN/JAPA/F	Program Elective-VNon-Conventional EnergyResourcesOpen Elective-2Electric DrivePLC/SCADA LabIndustrial InternshipTechnical SeminarCapstone Design Phase-IForign Language - 2 (German,Japneese, French) *Optional	3 3 3 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 2 0 2 10	3 3 3 3 1 0 0 2 0	20 20 50 50 50 50 50	30 30	50 50 50 50 50 50 50 50
3 4 5 6 7 8 9 10 51	******** BEEE2018 ******* BTEE4001 BTEE3008 BEE03P4003 BEE02P4005 BEE02P4002 GERN/JAPA/F REN 1002	Program Elective-V Non-Conventional Energy Resources Open Elective-2 Electric Drive PLC/SCADA Lab Industrial Internship Technical Seminar Capstone Design Phase-I Forign Language - 2 (German, Japneese, French) *Optional Total	3 3 3 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 2 0 2 10 2	3 3 3 1 0 0 2 0 21	20 20 50 50 50 50 50 50 4sse	30 30	50 50 50 50 50 50 50 20 Pattern
3 4 5 6 7 8 9 10 10 SI No	******** BEEE2018 ******* BTEE4001 BTEE3008 BEE03P4003 BEE02P4005 BEE02P4002 GERN/JAPA/F REN 1002 Course Code	Program Elective-V Non-Conventional Energy Resources Open Elective-2 Electric Drive PLC/SCADA Lab Industrial Internship Technical Seminar Capstone Design Phase-I Forign Language - 2 (German, Japneese, French) *Optional Total Semester VII Name of the Course	3 3 3 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 2 0 2 10 2 10 2 P	3 3 3 1 0 0 2 2 0 21 21	20 20 50 50 50 50 50 50 4sse IA	30 30	50 50 50 50 50 50 50 50 Pattern ETE
3 4 5 6 7 8 9 10 51	******** BEEE2018 ******* BTEE4001 BTEE3008 BEE03P4003 BEE02P4005 BEE02P4002 GERN/JAPA/F REN 1002	Program Elective-V Non-Conventional Energy Resources Open Elective-2 Electric Drive PLC/SCADA Lab Industrial Internship Technical Seminar Capstone Design Phase-I Forign Language - 2 (German, Japneese, French) *Optional Total Semester VII Name of the Course Capstone Design phase - II	3 3 3 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 2 0 2 10 2	3 3 3 1 0 0 2 0 21	20 20 50 50 50 50 50 50 4sse	30 30	50 50 50 50 50 50 50 20 Pattern
3 4 5 6 7 8 9 10 10 Sl No 1	******* BEEE2018 ******* BTEE4001 BTEE3008 BEE03P4003 BEE02P4005 BEE02P4002 GERN/JAPA/F REN 1002 Course Code BEE02P4003	Program Elective-V Non-Conventional Energy Resources Open Elective-2 Electric Drive PLC/SCADA Lab Industrial Internship Technical Seminar Capstone Design Phase-I Forign Language - 2 (German, Japneese, French) *Optional Total Semester VII Name of the Course Capstone Design phase - II Industrial Internship & Technical	3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 0	0 0 0 2 0 2 10 2 10 2 10 10 2 18	3 3 3 1 0 0 2 2 0 21 21 C 6	20 20 50 50 50 50 50 50 4sse IA	30 30	50 50 50 50 50 50 50 50 Pattern ETE
3 4 5 6 7 8 9 10 10 SI No	******** BEEE2018 ******* BTEE4001 BTEE3008 BEE03P4003 BEE02P4005 BEE02P4002 GERN/JAPA/F REN 1002 Course Code	Program Elective-V Non-Conventional Energy Resources Open Elective-2 Electric Drive PLC/SCADA Lab Industrial Internship Technical Seminar Capstone Design Phase-I Forign Language - 2 (German, Japneese, French) *Optional Total Semester VII Name of the Course Capstone Design phase - II	3 3 3 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 2 0 2 10 2 10 2 P	3 3 3 1 0 0 2 2 0 21 21	20 20 50 50 50 50 50 50 4 S50 4 S50	30 30	50 50 50 50 50 50 50 50 Pattern ETE 50

List of Program Electives

Control Engineering

Sl	Course Code	Name of the Electives					Assess	sment Pa	ttern
No	Course Coue	Name of the Electives	L	Т	Р	С	IA	MTE	ETE
1	BTEE3019	Advanced Control System	3	0	0	3	20	30	50
2	BTEE3020	Industrial Automation and Control	3	0	0	3	20	30	50
3	BEE02T5001	Industrial Instrumentation and Automation	3	0	0	3	20	30	50
4	BEEE5005	Power System Operation and Control	3	0	0	3	20	30	50
5	BEEE5004	Digital Control	3	0	0	3	20	30	50
6	BEE03T5002	Automation and Robotics	3	0	0	3	20	30	50

Power Engineering

Sl	Course Code	Name of the Elective					Assess	sment Pa	ttern
No	Course Code	Iname of the Elective	L	Т	Р	С	IA	MTE	ETE
1	BEE03T5011	Power System Equipments	3	0	0	3	20	30	50
2	BTEE3023	Power Quality	3	0	0	3	20	30	50
3	BTEE4010	FACTS and HVDC	3	0	0	3	20	30	50
4	BEE02T5003	Electrical and Hybrid Vehicle	3	0	0	3	20	30	50
5	BTEE4009	Power System Deregulation	3	0	0	3	20	30	50
6	BEE02T3005	High Voltage Engineering	3	0	0	3	20	30	50

Energy Engineering

S1	Course Code	Name of the Elective					Assessment Pattern		
No			L	Т	Р	С	IA	MTE	ETE
1	BTEE4011	Energy Assessment and Audit	3	0	0	3	20	30	50
		Utilization of Electrical					20	30	50
2	BTEE5102	Energy and Traction System	3	0	0	3	20	50	30
		Power Electronics							
		applications in Renewable					20	30	50
3	BEE03T5010	Energy	3	0	0	3			
4	BTEE5202	Special Electrical Machine	3	0	0	3	20	30	50
		Energy Modelling Simulation					20	20	50
5	BEE02T5004	Using MATLab	3	0	0	3	20	30	50
		Electrical Design, Estimation					20	20	50
6	BEE02T4001	and Energy Audit	3	0	0	3	20	30	50

S1	Course Code	Name of the Elective					Assess	sment Pa	ttern
No			L	Т	Р	С	IA	MTE	ETE
1	BEE03T5001	Introduction to IoT and its Applications	3	0	0	3	20	30	50
2	BEE03T5002	Automation and Robotics	3	0	0	3	20	30	50
3	BEE03T5003	Deep Learning Algorithms	3	0	0	3	20	30	50
4	BEE03T5004	Object Oriented Programming	3	0	0	3	20	30	50
5	BEE03T5005	Virtual Reality	3	0	0	3	20	30	50
6	BEE03T5006	Raspberry Pi and its applications	3	0	0	3	20	30	50
7	BEE03T5007	Introduction to Arduino programming and its applications	3	0	0	3	20	30	50
8	BEE03T5008	Cloud Computing	3	0	0	3	20	30	50
9	BEE03T5009	Python Programming							

		List of Open elective (Engineering courses) Proposed								
		Basket 1								
Sl. No.	Course Code	Course Title					Ass	Assessment Pattern		
		Basket 1	L	Т	Р	С	IA	MTE	ETE	
1	BOE601	Human Computer Interface	3	0	0	3	20	50	100	
2	BOE602	Introduction to cyber Physical Systems	3	0	0	3	20	50	100	
3	BOE603	Selected Topics in Signal Processing	3	0	0	3	20	50	100	
4	BOE604	Selected Topics in Communication Engineering	3	0	0	3	20	50	100	
5	BOE605	Autonomous Vehicles	3	0	0	3	20	50	100	
6	BOE606	Data Science	3	0	0	3	20	50	100	
7	BOE607	Computer Vision	3	0	0	3	20	50	100	
8	BOE608	Artificial Intelligence	3	0	0	3	20	50	100	
9	BOE609	Cyber Security	3	0	0	3	20	50	100	
10	BOE610	Energy Management	3	0	0	3	20	50	100	
11	BOE611	Estimation and Costing	3	0	0	3	20	50	100	
12	BOE612	Data Envelopment Analysis	3	0	0	3	20	50	100	
13	BOE613	Operation Management	3	0	0	3	20	50	100	
14	BOE614	Construction Engineering	3	0	0	3	20	50	100	
16	BOE615	Disaster Management	3	0	0	3	20	50	100	

16	BOE616	Bioinformatics	3	0	0	3	20	50	100
		Basket-2							
1	BOE701	Remote Sensing and GIS	3	0	0	3	20	50	100
2	BOE702	Automotive Electronics	3	0	0	3	20	50	100
3	BOE703	Sensors & Actuators	3	0	0	3	20	50	100
4	BOE704	IoT and Smart Cities	3	0	0	3	20	50	100
5	BOE705	Web Design and Management	3	0	0	3	20	50	100
6	BOE706	Principles of Telemedicine	3	0	0	3	20	50	100
7	BOE707	Mobile Application Development	3	0	0	3	20	50	100
8	BOE708	Business Analytics	3	0	0	3	20	50	100
9	BOE709	Cloud Computing	3	0	0	3	20	50	100
10	BOE710	Block Chain	3	0	0	3	20	50	100
11	BOE711	Augmented / Virtual Reality	3	0	0	3	20	50	100
12	BOE712	Digital Forensics	3	0	0	3	20	50	100
13	BOE713	Operations Research	3	0	0	3	20	50	100
14	BOE714	Renewable Energy	3	0	0	3	20	50	100
15	BOE715	Interior Design	3	0	0	3	20	50	100
16	BOE716	Landscaping	3	0	0	3	20	50	100
17	BOE717	Biology for Engineers	3	0	0	3	20	50	100

Detailed Syllabus

Semester III

Name of The	Digital Electro	onic	s		
Course					
Course Code	BECE2010				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. To present the Digital fundamentals, Boolean algebra and its applications in digital systems
- 2. To familiarize with the design of various combinational digital circuits using logic gates
- 3. To introduce the analysis and design procedures for synchronous and asynchronous sequential circuits
- 4. To explain the various semiconductor memories and related technology
- 5. To introduce the electronic circuits involved in the making of logic gates

Course Outcomes

CO1	Design and analyze combinational logic
COI	circuits
	Design & analyze modular combinational
CO2	circuits with MUX/DEMUX, Decoder,
	Encoder
CO3	Understand Logic Families and Design
COS	memories
CO4	Design & analyze synchronous sequential
04	logic circuits
CO5	Use HDL & appropriate EDA tools for
05	digital logic design and simulation

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Course Content:

Unit-1 Introduction	8
hours	

Logic Simplification and Combinational Logic Design: Review of Boolean Algebra and De
Design: Review of Boolean Algebra and De
Morgan's Theorem, SOP & POS forms,
Canonical forms, Karnaugh maps up to 6
variables, Binary codes, Code Conversion.
Unit-2MSI devices 8
hours
MSI devices like Comparators, Multiplexers,
Encoder, Decoder, Driver & Multiplexed
Display, Half and Full Adders, Subtractors,
Serial and Parallel Adders, BCD Adder, Barrel
shifter and ALU.
Unit-3Sequential Logic Design 8
hours
Sequential Logic Design: Building blocks like S-
R, JK and Master-Slave JK FF, Edge triggered FF,
Ripple and Synchronous counters, Shift registers,
Finite state machines, Design of synchronous
FSM, Algorithmic State Machines charts.
Designing synchronous circuits like Pulse train
generator, Pseudo Random Binary Sequence
generator, Clock generation.
Unit-4Logic Families and Semiconductor
Memories 8 hours
Logic Families and Semiconductor Memories:
TTL NAND gate, Specifications, Noise margin,
Propagation delay, fan-in, fan-out, Tristate TTL,
ECL, CMOS families and their interfacing,
Memory elements, Concept of Programmable
logic devices like FPGA. Logic implementation
using Programmable Devices.
Unit-5 VLSI Design flow 8 hours
VLSI Design flow: Design entry: Schematic, FSM
& HDL, different modeling styles in VHDL, Data
types and objects, Dataflow, Behavioral and
Structural Modeling, Synthesis and Simulation
VHDL constructs and codes for combinational
and sequential circuits.

Suggested Reading

1. R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009.

2. Douglas Perry, "VHDL", Tata McGraw Hill, 4th edition, 2002.

3. W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd edition ,2006.

4. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989
5. Charles Roth, "Digital System Design using VHDL", Tata McGraw Hill 2nd edition 2012.

Name of The	Electromagnetic Field Theory				
Course					
Course Code	BECE2012				
Pre-requisite	Engineering Mathematics				
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 1. To gain conceptual and basic mathematical understanding of electric and magnetic fields in free space and in materials
- 2. To understand the coupling between electric and magnetic fields through Faraday's law, displacement current and Maxwell's equations
- 3. To understand wave propagation in lossless and in lossy media
- 4. To be able to solve problems based on the above concepts

Course Outcomes:

	Apply coordinate systems and transformation
CO1	techniques to solve problems on
	Electromagnetic Field Theory
CO2	Apply the concept of static electric field and
02	solve problems on boundary value problems.
	Analyze the concept of static magnetic field
CO3	and solve problems using Biot - Savart's Law,
	Ampere's circuit law, Maxwell's equation.
CO4	Understands magnetic forces, magnetic
004	dipole and magnetic boundary conditions.
	Understands the time-varying
CO5	Electromagnetic Field and derivation of
	Maxwell's equations.
COC	Understand the application of
CO6	Electromagnetism in Daily Life

Reference Books

- 1. Principles of Electromagnetics N. O. Sadiku, Oxford University Press Inc
- 2. Engineering Electromagnetics W H Hayt, J A Buck, McGraw Hill Education
- 3. Electromagnetic Waves, R.K. Shevgaonkar, Tata McGraw Hill India, 2005
- 4. Electromagnetics with Applications, Kraus and Fleish, Edition McGraw Hill International Editions, Fifth Edition, 1999Syllabus

Course Content:

UNIT	Ι	STATIC	ELECTRIC	FIELDS
9 Hours				

Introduction	to	Co-
ordinate	System	– Rectangular –
Cylindrical and		ordinate System –
		Volume Integrals
		ce and Gradient –
		and Divergence
U U		Vector Form –
		nsity – Principle of
		due to discrete
		continuous charge
distribution _	Flectric Field	due to charges
		nite and finite line
		uniformly charged
		due to an infinite
	-	ic Scalar Potential
		and electric field
		ormly charged line
		ole – Electric Flux
•	ss Law – Proof	f of Gauss Law –
Applications		
UNIT II: S	STATIC MAG	NETIC FIELDS
8Hours		
The Biot-Savar	t Law in vector	form – Magnetic
Field intensity	due to a fi	nite and infinite
wire carryi	ng a cu	urrent I –
Magnetic field	intensity on th	he axis of a circ
		ying a current I –
Ampere's circu	ital law and sin	nple applications.
Magnetic flux d	ensity The Lore	entz force equation
for a moving cl	narge and applic	ations, Force on a
		in a magnetic field
		Irrent I – Magnetic
-	netic Vector Pot	5
		ID MAGNETIC
FIELDS IN MA	TERIALS	9 Hours
		ation – Electric
	ture of diel	
		Capacitance of
		place's equation-
	energy and er	
		c fields – Electric
		int form of ohm's
		current.Definition
		oops and solenoids actance – simple
		magnetic fields –
		magnetization and
	nagnetic bounda	ELECTRIC AND
MAGNETIC FI		
		cond Equation in
		Law – Equation
		integral form
Ampere's circ	uital law in	integral form –

Modified form of Ampere's circuital law as Maxwell's first equation in integral form – Equation expressed in point form. Maxwell's four equations in integral form and differential form.Poynting Vector and the flow of power – Power flow in a co-axial cable – Instantaneous Average and Complex Poynting Vector.

UNIT V: ELECTRO MAGNETIC WAVES 9 Hours

Derivation of Wave Equation – Uniform Plane Waves – Maxwell's equation in Phasor form – Wave equation in Phasor form – Plane waves in free space and in a homogenous material. Wave equation for a conducting medium – Plane waves in lossy dielectrics –Propagation in good conductors – Skin effect. Linear, Elliptical and circular polarization – Reflection of Plane Wave from a conductor – normal incidence – Reflection of Plane Waves by a perfect dielectric – normal and oblique incidence. Dependence on Polarization, Brewster angle.

UNIT VI Applications of Electromagnetism

Household Application, Industrial Application, Magnetic Levitation Trains, Communication System, medical Systems

Continuous Assessment Pattern

Internal	Mid	End	
Assessment	Term	Term	Total
	Test	Test	Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The	Network A	naly	sis	8	and
Course	Synthesis				
Course Code	BTEE2002				
Prerequisite	Basic Ele	ctric	al	6	and
-	Electronics En	ginee	ering	5	
Corequisite	Signals and systems				
Antirequisite					
_		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 7. To learn the concepts of network analysis in electrical and electronics engineering.
- 8. To learn linear circuit analysis, graph theory and network theorems.
- 9. Analyze two port networks using Z, Y, ABCD and h parameters

CO1	Apply the knowledge of graph theory with
	basic circuital laws and simplify the network using reduction techniques
CO2	Analyze the circuit using Kirchhoff's law and Network simplification theorems
CO3	Infer and evaluate transient response, Steady state response, network functions
CO4	Evaluate two-port network parameters and explain the inter-relationship among parameters for network analysis.
CO5	Synthesize one port network using Foster and Cauer Forms and
CO6	Examine active filter configurations for possible applications in network theory.

Text Book (s)

- 6. M.E. Van Valkenburg, "Network Analysis", Prentice Hall of India
- 7. A C.L Wadhwa, "Network Analysis and Synthesis" New Age International Publishers, 2007,
- 8. D.RoyChoudhary, "Networks and Systems" Wiley Eastern Ltd.
- 9. A.Chakrabarti, "Circuit Theory" DhanpatRai& Co
- M.E. Van Valkenburg, "An Introduction to Modern Network Synthesis", Wiley Eastern Ltd.

Reference Book (s)

- 5. Hayt, W., Engineering Circuit Analysis, Tata McGraw □ Hill (2006)
- 6. Hussain, A., Networks and Systems, CBS Publications (2004).
- 8. Suresh Kumar, K.S. Electrical circuits and Networks, Pearson Education, (2009).

Course Content:

Unit-1GraphTheory 6
hours
Graph of a Network, definitions, tree, co tree,
link, basic loop and basic cut set, Incidence matrix,
cut set matrix, Tie set matrix Duality, Loop and
Nodal methods of analysis.
Unit-2Network Theorems (Applications to ac
networks) 9 hours
Super-position theorem, Thevenin's theorem,
Norton's theorem, maximum power transfer
theorem, Reciprocity theorem.
Millman'stheorem, compensation theorem,
Tellegen's theorem.
Unit-3Network Functions and Transient analysis
11 hours

Transform Impedar	nces Network	functions of one		
port and two port networks, concept of poles and				
zeros, properties o	of driving po	oint and transfer		
functions, time res	•	•		
zero plot, transient	analysis of ac	& dc systems.		
Unit-4Two	Port	Networks		
10 hours				
Characterization of	f LTI two po	ort networks ZY,		
ABCD and h		· ·		
symmetry. Inter-	·			
parameters, inter-		^		
networks, T & Π R	epresentation			
Unit-5Network	Synthesis	& Filters		
9 hours				
Positive real functi				
properties of LC, RC and RL driving point				
functions, synthesis of LC, RC and RL driving				
point immittance functions using Foster and Cauer				
first and second forms. Image parameters and				
characteristics impe	edance,			
Unit-6 Filters				
Passive and active		·		
high pass, (cons	• •	be) filters, and		
introduction to activ	ve filters.			

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of	The	Electrical Machine-I				
Course						
Course Code		BTEE2006				
Prerequisite		Basic		El	ectri	cal
-		Engineering	r,			
Corequisite						
Antirequisite						
			L	Т	Р	С
			3	0	0	3

Course Objectives:

- 4. To acquaint the students with the principle of operation and performance of transformers and DC machines.
- 5. To familiarize students with the parameter estimation of electrical machines
- 6. To learn the mathematical models and equations related to electrical machines.

Course Outcomes

CO1	Apply the knowledge of circuit analysis		
	and electromagnetic principles of electric		
	machines		
CO2	Analyse the electrical machines		
	performance.		
CO3	Test and estimate the parameter of the		
	electrical machine.		
CO4	Analysis the numerical problems		
	associated with transformer and DC		
	machines.		
CO5	Make use of application of the subject		
	topic with industries and day to day life		
CO6	Understand of the special purpose		
	transformer for measurement and its		
	application		

Text Book (s)

- 4. I.J. Nagrath& D.P. Kothari, "Electrical Machines", Tata McGraw Hill.
- 5. P S Bimbhra, "Generalized Theory of Electrical Machines", Khana Publisher.
- 6. P S Bimbhra, "Electrical Machinery", Khana Publisher.

Reference Book (s)

- 3. A. E. Fitzgerald, C. Kingsley, and S. D. Umans, *Electric Machinery*, 6th ed., New York: McGraw-Hill, 2003.
- 4. Vincent Del Toro, "Electrical Machine and Power System", PHI.

Course Content:

Unit-Introduction
Flow of Energy in Electromechanical Devices,
Magnetic Circuit, Analogy b/w Electric and
magnetic Ckt, B-H Curve, Hysteresis and eddy
current losses, Mutual Coupling with dot
convention, Energy in magnetic systems(defining
energy & Co-energy), Singly Excited Systems and
Doubly excited Systems, Generated emf in
machines; torque in machines with cylindrical air
gap.

Unit-2 Single Phase Transformer

Construction- Core and Shell type, Basic principle of Operation, Phasor diagram, efficiency and voltage regulation, all day efficiency. Testing of Transformers: O.C. and S.C. tests, Sumpner's test, polarity test. Auto Transformer: Single phase and three phase auto transformers, volt-amp, relation, efficiency, merits & demerits and applications. Unit-3 Three Phase Transformers

Construction, three phase transformer phasor groups
and their connections, open delta connection, choice
of transformers for three phase circuits, three phase
to 2 phase, 6 phase or 12 phase connections, and
their applications, parallel operation and load
sharing of single phase and three phase transformers,
excitation phenomenon and harmonics in
transformers, three winding transformers.
Unit-4 D.C. Machines
Construction of DC Machines, Armature winding,
Emf and torque equation, Armature Reaction,
Commutation, Interpoles and Compensating
Windings, Methods of improving commutation,
Performance Characteristics of D.C. generators,
Voltage Regulation, Parallel operation of DC
generator (shunt, series and compound machine).
Unit-5 D.C. Machines (Contd.)
Performance Characteristics of D.C. motors,
Starting of D.C. motors ; 3 point and 4 point starters,
Speed control of D.C. motors: Field Control ,
armature control and Voltage Control (Ward
Lenonard method); Efficiency and Testing of D.C.
machines (Hopkinson's and Swinburn's Test),
Electric braking
Unit 6: Special Purpose Transformer
Instrument Transformer Current Transformer and
Potential Transformer, Earthing Transformer

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The	Electrical Machine-I lab				
Course					
Course Code	BTEE2007				
Prerequisite	Basic Electrical Engineering				
_	lab				
Corequisite					
Antirequisite					
	L T P C				
	0 0 2 1				

Course Objectives:

After the completion of course the students will

- 6. This lab gives the chance to get friendship with Electrical machines.
- 7. To acquaint the students with the principle of operation and performance of transformers and DC machines.

- 8. To familiarize the students with the parameter estimation of electrical machines.
- 9. To compare the mathematical models and equations related to electrical machines.
- 10. The lab instills in the students the awareness and practice of safety.

Course Outcomes

CO1	Apply the knowledge of circuit analysis		
	and electromagnetic principles for the		
	physical operation of electric machines.		
CO2	Analysis the electrical machine		
	performance through experiments.		
CO3	Estimate the parameter of the transformer,		
	DC machines.		
CO4	Test the transformer, DC machines with		
	various loads.		
CO5	Make use of application of the subject		
	topic with industries and day to day life.		

List of Experiments of Electrical Machine –I

1	Efficiency and regulation of single phase transformer by Sumpner's back to back
	test.
2	Efficiency of DC shunt motor by
	Swinburne's test
3	Open circuit and short circuit test on single
	phase transformer.
4	3-phase to 2-phase conversion with two
	single phase transformers by Scott
	connection.
5	Speed control of DC motor by Armature
	and Field Control.
6	Load characteristics of DC shunt generator
	and plot load voltage Vs load current.
7	Magnetization characteristics of DC shunt
	generator.
8	Losses and efficiency of DC machine by
	Hopkinson's test.
9	Load characteristics of DC compound
	generator and plot load voltage Vs load
	current.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Name of The	Network	Analy	vsis	8	and
Course	Synthesis Lab				
Course Code	BTEE2003				
Prerequisite	Basic Electri	cal H	Engi	neer	ing
	lab		-		-
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

After the completion of course the students will

- 5. To introduce the concept of circuit elements lumped circuits, circuit laws and reduction.
- 6. To study the transient response of series and parallel A.C. circuits.
- 7. To study the concept of coupled circuits and two port networks.
- 8. To study the two port networks.

Course Outcomes

CO1	To introduce the concept of circuit elements
	lumped circuits, circuit laws and reduction.
CO2	To study the transient response of series and
	parallel A.C. circuits.
CO3	To study the concept of coupled circuits and
	two port networks.
CO4	To study the two port networks.
CO5	To introduce the concept of short circuit and
	open circuit.

Network Analysis and Synthesis Lab

	The work T marybis and Synthesis East
1	To verify Thevenin's theorem in a.c.
2	To verify Norton's theorem in a.c.
3	To verify Superposition theorem in a.c.
4	To verify the Maximum Power Transfer
	Theorem.
5	Determination of Z-parameters of a two-port
	network.
6	To verify and determination of y-parameters
	of a parallel connected two-port network.
7	Determination of h-parameters of a two-port
	network.
8	To verify and determination of ABCD-
	parameters of a cascade interconnected two-
	port network.
9	Determination of characteristics impedance
	of a symmetrical T-network using S/C and
	O/C test.

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam (ETE)	Marks
(IA)	(MTE)		
50	-	50	100

Name of The	Signals and Systems				
Course					
Course Code	BECE2016				
Pre-requisite	Engineering Mathematics				
Co-requisite					
Anti-requisite					
L T P C					
		3	0	0	3

Course Objectives:

This subject is about the mathematical representation of signals and systems. The most important representations we introduce involve the *frequency domain* – a different way of looking at signals and systems, and a complement to the time-domain viewpoint. Indeed engineers and scientists often think of signals in terms of frequency content, and systems in terms of their effect on the frequency content of the input signal. Some of the associated mathematical concepts and manipulations involved are challenging, but the mathematics leads to a new way of looking at the world.

Course Outcomes:

CO1	Understand various types of signals, classify,
	analyze and perform various operations on
	them.
CO2	Classify the systems and realize their responses
CO3	Analyze the response of continuous time systems using Fourier transforms
CO4	Use Laplace and Z transform techniques as tool
	for System analysis
CO5	Analyze the continuous and discrete time
	system functions
CO6	Understand the application of Sampling
	Theorem, Multirate Signal Processing and their
	applications in real-world problems

Text Book:

- 3. P. Ramakrishna Rao, 'Signal and Systems' 2008 Ed., Tata McGraw Hill, New Delhi, ISBN 1259083349, 9781259083341
- 4. Signals and Systems by Oppenheim & Wilsky Millman

Course Content:

Unit-1	Introduction
8 hours	

Signals and systems as seen in everyday life, and in various branches of engineering and science. Types of signals and their representations: continuous-time/discrete-time, periodic/nonperiodic, even/odd, energy/power, deterministic/ random, one dimensional/ multidimensional; Basic Signals: unit impulse, unit step, unit ramp, exponential, rectangular pulse, sinusoidal; operations on continuous-time and discrete-time signals (including transformations of independent variables) Unit-2 Classification of **Systems** 8 hours Classification, linearity, time-invariance and causality, impulse response, characterization of linear time-invariant (LTI) systems, unit sample response, convolution summation, step response of discrete time systems, stability, convolution integral, co-relations, signal energy and energy spectral density, signal power and power spectral density, properties of power spectral density. Unit-3 Fourier Series and Transforms 8 hours Continuous-time Fourier series: Periodic signals properties, exponential and their and trigonometric FS representation of periodic signals, convergence, FS of standard periodic signals, salient properties of Fourier series, Definition, conditions of existence of FT. properties, magnitude and phase spectra. Parseval's theorem, Inverse FT, Discrete time Fourier transform (DTFT), inverse DTFT, properties convergence, and theorems, Comparison between continuous time FT and DTFT. **Unit-4 Laplace Transforms and Z Transforms** 6 hours One-sided LT of some common signals, important theorems and properties of LT, inverse LT, solutions of differential equations using LT, Bilateral LT, Regions of convergence (ROC), One sided and Bilateral Z-transforms, ZT of some common signals, ROC, Properties and theorems, solution of difference equations using one-sided ZT, s- to z-plane mapping Unit-5 Analysis of LTI systems 6 hours Analysis of first order and second order systems, continuous-time (CT) system analysis using LT, system functions of CT systems, poles and zeros, block diagram representations; discrete-time system functions, block diagram representation, illustration of the concepts of system bandwidth

and rise time through the analysis of a first order CT low pass filter

Unit -6: **Multirate Signal Processing** 6 hours Sampling and data reconstruction process, Multirate Signal Processing, Sampling, Sampling rate conversion, introduction to compressive sensing.

Continuous Assessment Pattern

Intornal	Mid	End	
Internal Assessment	Term	Term	Total
	Test	Test	Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Design and Engineering				
Course Code BEE02T2003				
	L	Т	Р	С
	2	0	0	2
				BEE02T2003

Course Objectives:

The purpose of this course is to excite the student on creative and innovative design and its significance, aware of the processes involved in design, understand the interesting interaction of various segments of humanities, sciences and engineering in the evolution of a design and get an exposure as to how to engineer a design.

Course Outcomes

Course	Outcomes			
CO1	Able to appreciate the different elements			
	involved in good designs and to apply			
	them in practice when called for.			
CO2	To understand the production based on the			
	market demand			
CO3	Aware of the product oriented and user			
	oriented aspects that make the design a			
	success.			
CO4	Will be capable to think of innovative			
	designs incorporating different segments			
	of knowledge gained in the course			
CO5	Students will have a broader perspective of			
	design covering function, cost,			
	environmental sensitivity, safety and other			
	factors other than engineering analysis.			
CO6	Will be able to design the Product centred			
	and user centred design.			

Text Book (s)

- Balmer, R. T., Keat, W. D., Wise, G., and Kosky, P., Exploring Engineering, Third Edition: An Introduction to Engineering and Design - [Part 3 - Chapters 17 to 27], ISBN13: 978-0124158917 ISBN-10: 0124158919
- Dym, C. L., Little, P. and Orwin, E. J., Engineering Design - A Project based introduction - Wiley, ISBN-978-1-118-32458-5
- Eastman, C. M. (Ed.), Design for X Concurrent engineering imperatives, 1996, XI, 489 p. ISBN 978-94-011-3985-4 Springer
- Haik, Y. And Shahin, M. T., Engineering Design Process, Cengage Learning, ISBN-13: 978-0-495-66816-9
- Pahl, G., Beitz, W., Feldhusen, J. and Grote, K. H., Engineering Design: A Systematic Approach, 3rd ed. 2007, XXI, 617p., ISBN 978-1-84628-319-2
- 6. Voland, G., Engineering by Design, ISBN 978-93-325-3505-3, Pearson India

Reference Book (s)

- 1. E-Book (Free download): <u>http://opim.wharton.upenn.edu/~ulrich/desi</u> <u>gnbook.html</u>
- .http://www2.warwick.ac.uk/fac/sci/wmg/ftmsc /modules/modulelist/peuss/designforx/design_f or_x_notes_section_5.pdf

Course Content:

Unit I:Introduction to design 11 lecture hours Design and its objectives; Design constraints, Design functions, Design means and Design from; Role of Science, Engineering and Technology in design; Engineering as a business proposition; Functional and Strength Designs. Design form, function and strength. How to initiate creative designs? Initiating the thinking process for designing a product of daily use. Need identification; Problem Statement;

Unit II: Market Survey

Market survey customer requirements; Design attributes and objectives; Ideation; Brain storming approaches; arriving at solutions; Closing on to the Design needs.

Unit III: Design process 9 lecture hours Design process- Different stages in design and their significance; Defining the design space; Analogies and "thinking outside of the box"; Quality function deployment-meeting what the customer wants; Evaluation and choosing of a design. Design Communication; Realization of the concept into a configuration, drawing and model. Concept of "Complex is Simple". Design for function and strength. Design detailing-Material selection, Design visualization- Solid modelling; Detailed 2D drawings; Tolerancing; Use of standard items in design; Research needs in design; Energy needs of the design, both in its realization and in the applications.

Unit IV: Prototype 8 lecture hours Prototyping- rapid prototyping; testing and evaluation of design; Design modifications; Freezing the design; Cost analysis Engineering the design – From prototype to product. Planning; Scheduling; Supply chains; inventory; handling; manufacturing/construction operations; storage; packaging; shipping; marketing; feed-back on design

Unit V: Design Monitoring 7 lecture hours Design for "X"; covering quality, reliability, safety, manufacturing/construction, assembly, maintenance, logistics, handling; disassembly; recycling; re-engineering etc. List out the design requirements(x) for designing a rocket shell of 3 meter diameter and 8 meter length. Unit VI: Design Attributes 4 lecture

Unit VI: Design Attributes hours

Product centred and user centred design. Product centred attributes and user centred attributes. Bringing the two closer.

Continuous Assessment Pattern

Internal	Mid	End	Total		
Assessment	Term	Term	Marks		
(IA)	Exam	Exam			
	(MTE)	(ETE)			
20	30	50	100		

Semester IV

Name of The	Control systems				
Course					
Course Code BEEE3002					
Prerequisite	Signals and Systems				
Corequisite	None				
Antirequisite	None				
		L	Т	Р	С
		3	0	0	3

- 4. To understand and develop the Mathematical Modelingof dynamic systems using classical and state-space techniques.
- 5. To apply analytical /graphical techniques in time/frequency domain to determine stability.

6. To understand and use applications of feedback control theory to a variety of real world problems.

Course Outcomes

CO1	Understand mathematics modeling of control systems sand solve it using transfer function, block diagram and signal flow
	diagram reduction techniques.
CO2	Design and analyze control system
	engineering problems in time response of
	first and second order systems.
CO3	Analyze the concept and stability of servo
	systems using algebraic stability criteria
	with necessary conditions.
CO4	Understand and analyze the stability
	analysis using the polar, inverse polar,
	Bode, and Nyquist stability criterion of control systems
CO5	Understand and design of lead, lag and
	lead-lag compensator of the control
	process in time and frequency domains.
CO6	Analysis of the state space systems and its
	application

Text Book (s)

- 3. Nagrath& Gopal, "Control System Engineering", 4th Edition, New age International
- 4. K. Ogata, "Modern Control Engineering", Prentice Hall of India.

Reference Book (s)

- 3. B.C. Kuo& Farid Golnaraghi, "Automatic Control System" Wiley IndiaLtd, 2008.
- 4. D.Roy Choudhary, "Modern Control Engineering", Prentice Hall of India.

Course Content:

Unit-3

Course Content.
Unit-1Introduction
Feedback Control: Open loop and closed control
system, servomechanism, Physical examples.
Transfer functions of linear time-invariant
systems, Block diagram algebra, and Signal flow
graph, Mason's gain formula Reduction of
parameter variation and effects of disturbance by
using negative feedback.
Unit-2
Standard test signals, time response of first and
second order systems, time response
specifications, steady state errors and error
constants. Design specifications of second order
systems: Error analysis. P, PI, PD, PID
controllers, design considerations for higher order
systems, performance indices.

Concept of Stability. Routh-Hurwitz Criteria. Relative Stability analysis, Routh-Hurwitz criteria and limitations, root locus concepts, construction of root locus. Design of controllers using rootlocus. Pole placement with state feedback, controllability.

Unit-4

Frequency response, correlation between time and frequency responses, polar and inverse polar plots, Bode plots Stability in Frequency Domain: Nyquist stability criterion, assessment of relative stability: gain margin and phase margin, constant M&N circles.

Unit-5

Application of Proportional, Integral and Derivative Controllers, Lead and Lag compensation in designs in time domain and frequency domain. Review of state variable technique:

Unit -6

Review of state variable technique, conversion of state variable model to transfer function model and vice-versa, diagonalization, Controllability and observability and their testing.

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The	Electronics	Dev	ices	6	and
Course	Circuits				
Course Code	BECE2015				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 1. Apply concepts of semiconductor devices to design and analyze circuits.
- 2. To prepare students to know the characteristics of different semiconductor devices.

Course Outcomes

CO1	Realize the transistor biasing methods and
	Design analog electronic circuits using
	discrete components
CO2	Design common amplifier circuits and
	analyze the amplitude and frequency
	responses

CO3	Design various analog circuits to analyze
	their responses
CO4	Understand the principle of operation of
	different Oscillator circuits.
CO5	Understand the principle of operation of
	various amplifier circuits
CO6	Understand the recent trends and practical
	applications of electronic devices

Text Book (s)

1. Jacob. Millman, Christos C.Halkias, 'Electronic Devices and Circuits', 2nd Edition, Tata McGraw Hill Publishing Limited, New Delhi, 2008, ISBN 0070634637, 9780070634633

2. David A.Bell, 'Electronic Devices and Circuits', Prentice Hall of India Private Limited, New Delhi, 2003, ISBN 013253147X, 9780132531474

Reference Book (s)

1.Theodre F. Boghert, 'Electronic Devices & Circuits',6th Edition, Pearson Education 2004 ISBN 8177588877, 9788177588873.

2. Ben G. Streetman and Sanjay Banerjee, 'Solid State Electronic Devices', 6th Edition, PHI 2009, ISBN 0132454793, 9780132454797

Course Content:

Unit-1 Introduction
8 hours
BJT and BJT Biasing .Hybrid models of CE, CB,
CC, configurations – Study of the effect of emitter
by- pass condenser at low frequencies - Hybrid –
π common emitter transistor model – hybrid π
conductance and capacitance - CE short circuit
current gain – current gain with resistive load –
gain bandwidth product – Study of the effect of un
bypassed emitter resister on amplifier
performance, Cascode amplifier. HF & LF
compensation of RC coupled amplifier.
Multistage Amplifiers.
Unit-2FET and FET Biasing 8 hours
FET and FET Biasing. FET Amplifiers: Common
source, Common gate and Common drain
Amplifiers – problems. Small signal analysis of
FET Amplifiers. High Frequency analysis of FET
Amplifiers, VMOS & CMOS Concepts.
Unit-3Feedback amplifiers 8 hours
The feedback concept – Transfer gain with
feedback – general characteristics and advantages
of negative feedback- analysis of voltage series,
Voltage shunt, current series and current shunt
feedback amplifiers - Study of the effect of
Negative feedback on Gain, Bandwidth, Noise,
Distortion, Input and Output impedances with the

help of Block Schematic and Mathematical
help of block Schematic and Mathematical
Expressions
Unit-4Oscillators 8 hours
Sinusoidal oscillators -phase shift oscillator -
Wien bridge oscillator - Hartley oscillator -
Colpits oscillator – frequency stability, inclusive
of design, Crystal oscillators.
Unit-5Tuned amplifiers 8 hours
Characteristics of Tuned amplifiers – Analysis of
Single tuned, Doubled tuned and stagger tuned
amplifiers, Gain – bandwidth product – High
frequency effect – neutralization. Power
Amplifiers: Classification of amplifiers – class A
large signal amplifiers – second harmonic
distortion – higher order harmonic generations –
computation of Harmonic distortion -
Transformer coupled audio power amplifier –
efficiency – push - pull amplifier – class B
amplifier – class AB operation – Push-Pull circuit
with Transistors of Complimentary Symmetry.
Unit-6 Recent trends and Application 8 hours
Trend of Energy Saving in Electronic Devices,
Application of oscillators- springs and damping,
shock absorber in cars, Pendulum

Continuous Assessment Pattern

Internal	Mid	End	Total		
Assessment	Term	Term	Marks		
(IA)	Test	Test			
	(MTE)	(ETE)			
20	30	50	100		

Name of The Course	Fundamental of Power systems				
Course Code	BTEE2008				
Prerequisite	equisite Basic Electrical				
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

- 4. To develop solid foundation for further study of power system courses.
- 5. To develop the analytical skills for solving problems related to power system.
- 6. To familiarize students of the basics of power system components, transmission parameters and losses in the transmission line etc.

Course Outcomes

CO1	Exposure to the modeling of individual					
	power system components like					
	transmission lines and generators					
CO2	To understand the overhead transmission					
	line parameters importance and its					
	calculation procedure					
CO3	Analyze the overhead transmission line					
	performance					
CO4	Analyze the corona phenomena,					
	interference and insulator application and					
	transmission lines					
CO5	Apply the knowledge of transmission line					
	design in analysis of mechanical strength					
	of the towers.					
CO6	Estimate EHVC and HVDC transmission					
	line parameters and their neutral					
	grounding					

Text Book (s)

- 1. C. L. Wadhwa, "Electrical Power Systems" New age international Ltd. Third Edition
- 2. AsfaqHussain, "Power System", CBS Publishers and Distributors.

Reference Book (s)

- 1. W. D. Stevenson, "Element of Power System Analysis", McGraw Hill
- 2. B. R. Gupta, "Power System Analysis and Design" Third Edition, S. Chand & Co.

Course Content:

	• • • • •						
Unit-1	Power	System	Comp	onents			
6 hours							
Single line	e Diagram	of Power	system	Brief			
description	of power sy	stem Elemen	nts: Synch	ronous			
machine, t	machine, transformer, transmission line, bus bar,						
circuit brea	ker and isol	ator Calculat	ion of sing	gle and			
Three phas	e Power Ch	noice of trans	smission v	voltage			
Transmissio	on line types	s of conducto	rs and res	istance			
Skin effect	Proximity e	ffect Kelvin'	s law				
Unit-2:	Over He	ad Transı	nission	Lines			
6 hours							
Calculation	of inductar	nce single ph	ase, three	phase			
and double	circuit Tran	smission line	;				
Calculation	of capacita	nce single pl	nase, three	phase			
and double	circuit Tran	smission line	;	_			
Unit-3: Ove	er Head Trai	nsmission Lii	nes Perfor	mance			
Transmission line classification Representation and							
performance of short Transmission line							
Representation and performance of medium nominal							
T and Nom	inal Pi Tran	smission line	e Represe	ntation			

and performance of long Transm	ission line Surge
impedance loading Ferranti effect	-
Unit: 4 Corona and	Interference
9 hours	
Phenomenon of corona and its form	nation Calculation
of potential gradient Corona loss,	factors affecting
corona and methods of reducing co	rona Electrostatic
and electromagnetic inter	ference with
communication lines Type of ins	
applications Potential distribution	over a string of
insulators String efficiency ar	nd Methods of
equalizing the potential	
Unit-5 Mechanical Design of t	ransmission line
9 hours	
Catenary curve of transmission line	
Affect due to ice and wind on sag, 7	
cables and its construction Diel	ectric stress and
Insulation resistance	
Capacitance measurement of a sing	
phase cables Dielectric loss and los	
Unit-6 Neutral grounding and	HVDC/HVAC
9 hours	
Necessity and its methods of n	
Earthing transformer and Groundin	
Design consideration of EHV tr	
Choice of voltage Number of ci	
configuration Insulation design a	
ground wires Introduction to EHV	
transmission Their comparison	
conductors Kinds of DC links Use in AC transmission system	of n v DC system

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Name of	The	Power Plant Engineering				
Course						
Course Code		BTEE3015				
Prerequisite						
Corequisite						
Antirequisite						
			L	Т	Р	C
			3	0	0	3

Power plant engineering or power station engineering is a division of power engineering, and is defined as the engineering and technology required for the production of central station electric power. The field is focused on the generation of power for industries and communities, not for household power production. The field is an interdisciplinary field, using the theoretical base of both mechanical and electrical engineering. The engineering aspect of power plant management has evolved with technology and has become progressively more complicated. The introduction of nuclear technology and the progression of other existing technologies have allowed power to be created in more ways and on a larger scale than was previously possible.

Course Outcomes

CO1	Analyze different types of steam cycles and estimate efficiencies in a steam power plant.
CO2	Understand the basic components of coal base thermal power plants.
CO3	Define the performance characteristics and components of such power plants.
CO4	Estimate different efficiencies associated with power generation system systems.
CO5	Calculate present worth depreciation and cost of different types of power plants.
CO6	Estimate the cost of producing power per kW.

Text/ Reference Books:

- 5. S.N. Singh, "Electric Power Generation, Transmission& distribution." PHI Learning.
- 6. John Twideu and Tony Weir, "Renewal Energy Resources" BSP Publications, 2006.
- 7. Power system Voltage stability C.W. Taylor, Mc. Graw Hill, 1994.
- 8. D.S. Chauhan,"Non-conventional Energy Resources" New Age International.

Syllabus

by nuous					
Unit-I	Coal based Thermal 5 Hours				
	Power Plants				
Rankine cy	cle - improvisations, Layout of modern				
coal power	coal power plant, Super Critical Boilers, FBC				
Boilers, Tu	rbines, Condensers, Steam & Heat rate,				
Unit II	Component of Thermal 5 Hours				
	Power Plant				
Subsystems of thermal power plants – Fuel and					
ash handling, Draught system, Feed water					
treatment. Binary Cycles and Cogeneration					
systems.	-				

	1			
Unit-III	Diesel, Gas Turbine and	7 Hours		
	Combined Cycle Power			
	Plants			
Otto, Diese	el, Dual & Brayton Cycle	e - Analysis		
&Optimisa	tion. Components of Dies	sel and Gas		
Turbine po	ower plants. Combined C	ycle Power		
Plants. Inte	grated Gasifier based Com	bined Cycle		
systems.				
Unit-IV	Nuclear Power Plants	8 Hours		
Basics of	Nuclear Engineering, I	Layout and		
subsystems	of Nuclear Power Plants,	Working of		
Nuclear Re	actors : Boiling Water Read	ctor (BWR),		
Pressurized	Water Reactor (PWR), CANada		
Deuterium	Uranium reactor (CAND	U), Breeder,		
Gas Coole	d and Liquid Metal Coole	ed Reactors.		
Safety mea	sures for Nuclear Power pl			
Unit-V	Power from Renewable	8 Hours		
	Energy			
	ctric Power Plants - Cl			
	ayout and associated			
	Furbines. Principle, Const			
Ų	f Wind, Tidal, Solar Ph			
	ar Thermal, Geo Thermal,	Biogas and		
	ower systems.	1		
Unit-VI	Energy, Economic and	7 Hours		
	Environmental issues of			
	Power Plants			
Power tariff types, Load distribution parameters,				
load curve, Comparison of site selection criteria,				
relative merits & demerits, Capital & Operating				
Cost of different power plants. Pollution control				
	technologies including Waste Disposal Options			
for Coal and Nuclear Power Plants.				

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Electrical Measurements and			
Course	Instrumentation			
Course Code	BEEE2001			
Prerequisite	Basic Electrical and			
	Electronics Engineering			
Corequisite	EMFT			
Antirequisite				
	L T P C			
	3 0 0 3			

- 4. To know the necessity of different measuring instruments and their design principle
- 5. To understand the working principle of different measuring instruments and technical solutions to handle different errors.
- 6. To learn the architecture and working principle of advanced measuring instrument and their applications.

Course Outcomes

	Outcomes				
CO1	Apply physical principles to study the				
	construction and working principle of				
	different analog instruments and analyze				
	the errors takes place in measurements.(
	K3- Apply)				
CO2	Apply the physical principle to study the				
	working of instrument transformers and				
	measurement of speed, frequency and				
	power factor. (K3- Apply)				
CO3	Model the solar and wind energy system				
	for standalone and grid integration system.				
	(Apply-KL-3)				
CO4	Demonstrate the principle of operation of				
	other renewable energy sources(ocean				
	thermal, geo-thermal and micro hydro				
	power) also importance of its role.				
	(Understanding-KL-2)				
CO5	Understand the basic working principle of				
	digital instruments. (Understanding-KL-2)				
CO6	Examine the waveforms using analyzers				
	and oscilloscopes. (K3- Apply)				

Text Book (s)

- 4. A Course in Electrical and Electronics Measurement and Instrumentation, "A K Shawney", Publisher: Dhanpat Rai & Co
- 5. Electrical Measurements and Measuring Instruments, E.W Golding, F.C Widdis, Publisher: Reem Publications
- 6. Electronic Instrumentation and Measurements- David A Bell, Oxford University Press, 2006

Reference Book (s)

- 9. Basic Electrical Measurements: M B Stout
- 10. Electronic Instrumentation: H S Kalsi, Tata-Mc-Graw Hill Publication, Second Edition.

Course Content:

Unit-1Philosophy of Measurement of 9 hours	÷
Unit& dimensions Characteristics of Inst	

system, basics of statistical analysis. PMMC
instrument, DC ammeter, DC voltmeter, Ohm
meter, Moving Iron instrument, Electrodynamic
Wattmeter, errors and remedies, Three Phase
Wattmeter, Power in three phase system, Energy
meter.
Unit-2Measurement: Instrument Transformer
6 hours
Instrument Transformer and their applications in
the extension of instrument range, Introduction to
measurement of speed, frequency and power
factor.
Unit-3Measurement of Parameters
9 hours
Different methods of measuring low, medium and
high resistances, measurement of inductance &
capacitance with the help of AC Bridges-
Wheatstone, Kelvin, Maxwell, Hay's, Anderson,
Owen, Heaviside, Campbell, Schering, Wien
bridges, Wagner Earthing device, Q Meter.
Unit-4AC Potentiometer & Magnetic
Measurement 7 hours
Polar type & Co-ordinate type AC potentiometers,
application of AC Potentiometers in electrical
measurement. Ballistic Galvanometer, Flux meter.
Unit-5Digital Measurement of Electrical
Quantities 5 hours
Concept of digital measurement, Digital
voltmeter, Frequency meter, Power Analyzer and
Harmonics Analyzer, Electronic Multimeter.
Unit-6 Cathode Ray Oscilloscope 5 hours
CRT, wave form display, time base, dual trace
oscilloscope, Measurement of voltage, frequency

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessme	ent Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Semester V

Name of The	e Microcontroller				and
Course	Embedded Systems				
Course Code	BECE3004				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

Microcontrollers are the most useful electronic chips which are used to design and develop processor and computer based automatic smart electronics systems for home and industry application. Students learn CPU architecture, memory management, bus concepts, bus arbitration techniques, interfacing of systems using AD/DA, serial I/O devices, interrupt control devices, including design, construction, and testing of dedicated microcontroller systems.

Course Outcomes

CO1	Demonstrate the internal organization and operation of microcontrollers.		
CO2	Analyse the design issues in the embedded system.		
CO3	Design Microcontroller based application.		
CO4	Program 8051 for application specific solution.		
CO5	Analyse the different programming methods for controller and their issues.		
CO6	Illustrate the latest trends adapted in designing microcontroller based system		

Course Content:

Unit I: Introduction 08 Hours		
IntroductiontoMicroprocessors,Microcontrollers and system design – Assemblyand High-Level language programming – SystemDevelopment Environment: assembler, compilerand integrated development environment.Unit II: 8051 Microcontroller08 Hours		
Introduction to single chip Microcontrollers,8051- architecture – 8051 assembly language programming, addressing modes – Instruction sets- interrupts, timers and serial communication. Unit III: Embedded applications 08 Hours		
Programming the interrupts, timers and serial communication – system design with 8051. Application of Microcontrollers in data acquisition systems, process control, signal processing, data communication and distributed computing and networking		
Unit IV: Embedded programming 08 Hours		
Programming in Assembly Language (ALP) Vs. High level language – C program elements, Macros and Functions – Use of pointers– use of function calls – NULL pointers – multiple		

function calls in a cyclic order in the **main function** pointers –C program compilers – Cross compiler – optimization of memory codes. Unit V: Embedded System design 08 Hours Introduction, Embedded System project management – Embedded System design and Co-Design Issues in System Development process – Design cycle in the development phase for an embedded system – Uses of Target system or its emulator and In-Circuit Emulator

Unit VI: Recent trends in Micro controller

Machine learning on tiny ML processor, introduction of mixed signal processor, DMA architecture

Suggested Reading.

1. Mohammad Ali Mazidi and Janice GillispieMaszidi "The 8051 Microcontroller andEmbedded Systems" Pearson education, 2003, ISBN- 9788131710265, 2ndEdition

2. Kenneth J. Ayla, "The 8051 Micro controller", Thomson learning, 3rd edition, 2004,ISBN-140186158X

3. Alan Clements, "Principles of Computer Hardware", OxfordUniversity Press, 3rd Edition,2003, ISBN-9780198564539

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Name of The Course	Electrical Mac	chine	e-II		
Course Code	BTEE3004				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 5. To acquaint the students with the principle of operation and performance of AC machines.
- 6. To familiarize students with the parameter estimation of electrical machines.
- 7. To learn the mathematical models and equations related to electrical machines.
- 8. To familiarize students with the other special machines.

Course Outcomes

CO1	Apply the knowledge of circuit analysis and electromagnetic principles of three- phase Induction Motor.		
CO2	Analysis the numerical problems and performance associated with AC machines.		
CO3	Make use of application of the single phase IM with industries and day to day life.		
CO4	Use special machine for different application.		
CO5	Analysis the demanding and conventional Alternator performance.		
CO6	Test and estimate the parameter of the Synchronous Motor.		

Course Content:

Unit I: Three phase Induction Machine – I 08
Hours
Constructional features, Rotating magnetic field,
Principle of operation Phasor diagram, equivalent
circuit, torque and power equations, Torque- slip
characteristics, no load & blocked rotor tests,
efficiency, Induction generator: Generator action,
methods of excitation & applications.
Unit II: Three phase Induction Machine- II 08
Hours
Starting, Deep bar and double cage rotors, Speed
Control (with and without emf injection in rotor
circuit.), Electrical braking, operation on
unbalanced supply voltage, effect of slot
harmonics and space harmonics, merits, demerits
and introduction of linear induction motor.
Unit III: Single phase Induction Motor 08
Hours
Double revolving field theory, Equivalent circuit,
No load and blocked rotor tests, Starting methods
of Single phase Induction Motor,
Unit IV: Fractional Motors

Repulsion motor, other Motors: Universal motor, Hysteresis motor, stepper motors, switched reluctance motor, BLDC, brushless dc motor Unit V: Synchronous Machine I 08 Hours Constructional features, EMF Equation, Armature winding, Winding coefficients, equivalent circuit and phasor diagram, Armature reaction, O. C. & S. C. tests, Voltage Regulation using Synchronous Impedance Method, MMF Method, Potier's Triangle Method, Parallel Operation of synchronous generators, operation on infinite bus, synchronizing power and torque co-efficient. Unit VI: Synchronous Machine II 08 Hours Two Reaction Theory, Power flow equations of cylindrical and salient pole machines, operating characteristics. Synchronous Motor: Starting methods, Effect of varying field current at different loads. V- Curves, concepts of

synchronous machine reactance, Synchronizing, Electrical braking, Hunting & damping, synchronous condenser.

Suggested Reading

- 1. I.J. Nagrath & D.P. Kothari, "Electrical Machines", Tata McGraw Hill.
- 2. P S Bimbhra, "Generalized Theory of Electrical Machines", Khana Publisher.
- 3. P S Bimbhra, "Electrical Machinery", Khana Publisher.
- 4. Theodre F. Boghert, 'Electronic Devices & Circuits',6th Edition, Pearson Education 2004.
- Ben G. Streetman and Sanjay Banerjee, 'Solid State Electronic Devices', 6th Edition, PHI 2009, ISBN 0132454793, 9780132454797

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Name of The Course	Power System Analysis
Course Code	BTEE3009
Prerequisite	
Co-requisite	

Anti-requisite				
	L	Т	Р	С
	3	0	0	3

Course Objectives

1. modeling and solution on digital computers is the only practical approach to systems analysis and planning studies for modern day power system with its large size, complex and integrated nature.

2. This course has been designed to fulfill this need by integrating the basic principles of power system analysis illustrated through the simplest system structure with analysis techniques for practical size systems.

3. The digital computer being an indispensable tool for power system analysis, computational algorithms for various system studies such as load flow, fault level analysis, stability etc have been included in the syllabus. Students should be encouraged to build computer programs for these studies using algorithms provided.

Course Outcomes

CO1	Understand fundamental concepts relating
	to the analysis of electrical power systems
	Understand the fault condition inside
CO2	transmission line and the generating
	system.
	Analyse of load flow equations and
CO3	representation of power system
	components
CO4	Understand the importance of power
04	swing equation in power system stability
	Apply the knowledge in power system
CO5	stability analysis during abnormal
	conditions.
CO6	Understand the basic concepts of
	travelling waves over transmission lines.

Course Content:

Unit I: Repre	esentation	of	Power	System
Components				
08 Hours				
Synchronous	machine	es,	Trans	sformers,
Transmission lin	Transmission lines, One line diagram, Impedance			
and reactance	diagram,	per	r unit	System.
Symmetrical	compone	ents:	Syn	nmetrical
Components of unbalanced phasors, power in				
terms of symr	netrical co	ompo	onents,	sequence

impedances and sequence networks. Symmetrical fault analysis, Transient in R-L series circuit, calculation of 3-phase short circuit current and reactance of synchronous machine, internal voltage of loaded machines under transient conditions. Unit II: Unsymmetrical faults 08 Hours Analysis of single line to ground fault, line-to-line fault and Double Line to ground fault on an unloaded generators and power system network with and without fault impedance. Formation of Z-bus using singular transformation and algorithm, computer method for short circuit calculations. Unit III: Load Flow Analysis 08 Hours Introduction, bus classifications, nodal admittance matrix (bus y), development of load flow equations, load flow solution using Gauss Siedel and Newton-Raphson method, approximation to N-R method, line flow equations and fast decoupled method, Comparison of load flow methods. Unit IV: Power System Stability-1 08 Hours Stability and Stability limit, Steady state stability study, derivation of Swing equation, transient stability studies by equal area criterion, Unit V: Power System Stability-2 08 Hours Synchronizing power coefficient, critical clearing angle and critical clearing time. Factors affecting steady state and transient stability and methods of improvement. Unit VI: Traveling Waves 08 Hours Wave equation for uniform Transmission lines, velocity of propagation, surge impedance, reflection and transmission of traveling waves under different line loadings. Bewlay's lattice diagram, protection of equipment's and line against traveling waves.

Suggested Reading

- 1. C. L. Wadhwa, "Electrical Power Systems" New age international Ltd. Third Edition.
- 2. Asfaq Hussain, "Power System", CBS Publishers and Distributors.
- 3. H.Saadat, Power System Analysis, Tata McGraw-Hill Publishing Company Limited, Edition 2008.
- 4. W. D. Stevenson, "Element of Power System Analysis", McGraw Hill.

5. B. R. Gupta, "Power System Analysis and Design" Third Edition, S. Chand & Co.

Continuous	Assessment Pattern
------------	--------------------

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Name of The	Power Electro	nics			
Course					
Course Code	BTEE3011				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. The field of power electronics encompasses the application of fundamental concepts in several disciplines: electronic devices and circuits, variable speed drives and control systems.

2. The use of electric cars, electric trains and electric subway trains can substantially reduce urban pollution problems.

3. Students learn power electronics devices like thristors, MOSFET, IGBT, GTO etc., various phase controlled single phase and three phase rectifiers with performance factors, dual converters, principle of dc to dc conversion, class A,B,C,D,E,F choppers, commutation techniques, comprehensive treatment of dc to ac inverters, ac voltage converters and cycloconverters.

Course Outcomes

CO1	Understand the operation of switching power devices eg. thyristors, transistors and TRIAC.
CO2	Implement configurations of thyristor based choppers.
CO3	Apply and develop configurations of thyristor based Single phase controlled rectifiers
CO4	Apply and develop configurations of thyristor based Three phase controlled rectifiers

CO5	Apply and develop configurations of thyristor based ac voltage controllers, cycloconverters
CO6	Implement different configurations of thyristor based inverters.

Course Content:

Unit I: Power semiconductor Devices 08 Hours
Introduction, Characteristics and specifications of switches, Power Diodes, Power Transistors: Operation. Steady state and switching characteristic, Power MOSFETs: Operation and characteristics, Insulated Gate Bipolar transistor: structure, working, latch-up, characteristics, Thyristors: Operation, charateristics, two- transistor model, Turn-on methods, Switching characteristic, Rating and protection, Commutation techniques of thyristor, Series and parallel operation of thyristors, Gate turn off thyristor.
Unit II: DC-DC Converters 08 Hours
Principles of step-down chopper, step down chopper with R-L load Principle of step-up chopper, and operation with RL load, classification of choppers, Buck, Boost and Buck- Boost converter.
Unit III: Single Phase Controlled Converters 05 Hours
Single-phase half wave converter with R, RL and RLE loads, Effect of freewheeling diode, Performance parameters, Single-phase full wave converter, midpoint and bridge converter, Effect of source inductance on single-phase converter, Single phase dual converter, Unit IV: Three Phase Controlled Converters05 Hours
Three phase half wave converter with R and RL loads, Three-phase full converter, Performance parameters, Effect of source inductance on three- phase converters, Three-phase dual converter. Unit IV: AC Voltage Controllers 08
Hours
Principle of on-off and phase control, Single- phase two SCRs in anti parallel with R and RL load, Triac with R and RL load, Three-phase ac voltage controllers, Cycloconverters: Basic principle of operation, Single phase to single phase, three-phase to single-phase cycloconverters, Three phase to three phase

cycloconverters

Unit V: Inverters	08 Hours			
Single phase voltage source inverter, 7	Three-phase			
bridge inverters, 180 degree conduction, 120				
degree conduction, Voltage control of inverters,				
Pulse-width modulated inverters, Harmonics				
reduction techniques, Single phase	and three			
phase current source inverters.				

Suggested Reading

- M. H. Rashid," Power Electronics: Circuits, Devices & Applications", Prentice Hall of India, Ltd. 3rd Edition, 2004.
- V. R. Moorthy, "Power Electronics: Devices, Circuits and Industrial Applications" Oxford, University Press, 2007.
- 8. M. D. Singh & K. B. Khanchandani, "Power Electronics", Tata McGraw Hill Publishing Company, 1989.
- 9. M. S. Jamil Asghar, "Power Electronics" Prentice Hall of India Ltd., 2004.
- 10. Chakrabarti & Rai, "Fundamentals of Power Electronics &Drives" Dhanpat Rai & Sons.

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Name of The	Finance for E	lectr	ical		
ourse	Engineers				
Course Code	BEE02T3004				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

• For any developing country, innovation, entrepreneurship and intellectual property rights hold the key to the entry in the league of developed countries. Equipped with the scientific knowledge and the right training, the engineer is an important building block of a nation. • Economics and its impact on science and technology have to be well understood by the engineers to ensure success of any technological venture.

Course Outcomes

CO1	Understand basics of industrial finance
	and economy.
CO2	Analyze the various concept of cost.
CO3	Analyze the market types and lay supply
CO4	Apply various technique to build budget
	for electrical project.
CO5	Analyze various financial techniques.
CO6	Understand the basic financial installation cost of renewable power plant

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Course Content:

Unit I: Introduction 08 Hours
Various Definition of Economics, Nature of Economics problem, relation between science, engineering, technology & economics, Meaning of demand, law of demand, elasticity of demand, practical importance & applications of the concept of elasticity of demand.
Unit II: Capital Budgeting 08
Hours
Meaning of production and factor of production – Land, Labour, Capital, Entrepreneur & organizations – their characteristics, law of variable proportion, return to scale,Cost Analysis- various concept of cost, cost function, short & long run cost, concept of revenue, break-even analysis.
Unit III: Management of Working Capital 08 Hours
Meaning of market-type of market-perfect competition, Monopoly, Oligopoly, Monopolistic competition (Main feature of these market) Meaning of supply and law of supply; Role of

demand & supply in price determination imperfect	
competition.	

Unit IV: Budgeting Control Technique 08 Hours

Concepts of Budget, budgeting and budgetary control, Objectives, Functions, Uses, Advantages, Limitations; Master Budget and Report. Unit V: Financial management 08

Unit V: Financial management

Hours

Financial management: Financial management, accounting concepts. Financial statement analysis. Financial investment analysis. Financial decisions. Managing components of working capital investment & financing decisions.

Unit VI: Renewable Power Plant

Analysis of installation cost based on rating of Renewable power plant

Suggested Reading

- Financial Management and Accounting P. K. Jain, S. Chand & Co.
- 2. Modern micro economic theory H.L. Ahuja, S.Chand.
- 3. Advance economic theory M.L. Jhingan, Konark publication.
- 4. Engineering economics Sullivan, Wicks, Koelling Pearsons.
- 5. Financial management by Rajiv shrivastava and Anil Mishra Oxford publication

Name of The	Electrical Machine-II lab				
Course					
Course Code	BTEE3005				
Prerequisite	Electrical Machine-I and			and	
	BEEE Lab				
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

After the completion of course the students will

- 1. This lab gives the chance to get friendship with Electrical machines.
- 2. To acquaint the students with the principle of operation and performance of AC machines.

- 3. To familiarize the students with the parameter estimation of AC machines.
- 4. To compare the mathematical models and equations related to AC machines.
- 5. The lab instills in the students the awareness and practice of safety.

Course Outcomes

CO1	Apply the knowledge of circuit analysis
	and electromagnetic principles for the
	physical operation of Single and three
	phase Induction machines and three phase
	Synchronous machines.
CO2	Analysis the AC machines performance
	through experiments
CO3	Estimate the parameter of the Induction
	machines and Synchronous machines
CO4	Test Induction and Synchronous machines
	with various loads
CO5	Make use of application of the subject
	topic with industries and day to day life

List of Experiments:

1	Perform no load and blocked rotor test on a
	single phase induction motor.
2	Determine performance characteristic of a
	three phase squirrel cage induction motor.
3	No load and blocked rotor test on three phase
	induction motor.
4	Load test on three phase squirrel cage
	induction motor.
5	Break test on three phase induction motor.
6	Separation of no load losses of three phase
	induction motor.
7	Perform open and short circuit test on a 3-
	phase alternator
8	Regulation of a three phase alternator by ZPF
	and ASA method.
9	Determination of Xd and Xq of a Salent pole
	synchronous machine.
10	Determine the characteristic of field current
	with armature current of the synchronous
	machine
	•

Internal	Mid Term	End Term	Total
Assessmen	Exam	Exam	Marks
t (IA)	(MTE)	(ETE)	
50	-	50	100

Name of The Course	Microcontroller and Embedded Systems Lab
Course Code	BECE3005

Prerequisite	Digital Electronics				
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

To Introduce ALP concepts, features and Coding methods

1. Write ALP for arithmetic and logical operations in 8051

2. Differentiate Serial and Parallel Interface

3. Interface different I/Os with Microcontroller

Course Outcomes:

After the completion of course the students will

1
Demonstrate ability to handle arithmetic
operations using assembly language
programming
Demonstrate ability to handle logical
operations using assembly language
programming
Demonstrate ability to handle string
instructions using assembly language
programming
Demonstrate ability to handle sorting
operations and using assembly language
programming
Develop microcontroller based designs of
Real Time Systems.

List of Experiments:

Basic arithmetic and Logical operations				
Code conversion, decimal arithmetic and				
Matrix operations.				
Square and Cube program, Find 2's				
complement of a number				
Unpacked BCD to ASCII				
*				
Counters and Time Delay Peripherals and				
Interfacing Experiments				
Traffic light controller				
Stepper motor control				
Digital clock				
Key board and Display				
Serial interface and Parallel interface				
A/D and D/A interface and Waveform				
Generation 8051 kits				

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	
50	-	50	100

Semester VI

Name of The	Digital Signal Processing				
Course					
Course Code	BECE2020				
Prerequisite	Signals and Systems				
Co-requisite	Network Theory				
Anti-requisite					
L T P C			С		
3 0 0 3			3		

Course Objectives

- 5. Introduce to discrete time signal processing and characterization of random signals, filter design techniques, and imperfections caused by finite word length.
- 6. Learn how design FIR and IIR filters.
- 7. Learn the theory of digital signal processing and digital filter design, including hands-on experience with important techniques involving digital filter design and digital simulation experiments.
- 8. Introduce the fundamental principles and techniques of digital signal processing for understanding and designing new digital signal processing systems and for continued learning.

Course Outcomes

000000	Outcomes		
CO1	Apply digital signal processing fundamentals.		
CO2	Comprehend if a DT system is linear, time-invariant, causal, and memory-less, High Pass, Low Pass, All Pass and able to apply Z and inverse Z transform on DT signal.		
CO3	Acquire the knowledge of representation of discrete-time signals in the frequency domain, using DFT and FFT.		
CO4	Design FIR and IIR filters to meet the specific magnitude and phase requirements.		
CO5	Understand the concept of linear prediction and spectrum estimation.		
CO6	Understand the concept of advance processor		

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

Unit I: Sampling of Continuous Time Signals 8 Hours Sampling and reconstruction of signals, frequency domain representation of sampling, discrete time processing of continuous time signals, continuous time processing of discrete time signals, changing the sampling rate using discrete time processing, multi rate signal processing, digital processing of analog signals, over sampling and noise shaping in A/D and D/A conversion. Unit II: Sampling of Continuous Time Signals 8 Hours Sampling and reconstruction of signals, frequency domain representation of sampling, discrete time processing of continuous time signals, continuous time processing of discrete time signals, changing the sampling rate using discrete time processing, multi rate signal processing, digital processing of analog signals, over sampling and noise shaping in A/D and D/A conversion. Unit III: Transform Analysis of LTI Systems 8 Hours Frequency response of LTI systems, system functions, frequency response for rational system functions, magnitude-phase relationship, all pass systems, minimum phase systems, and linear systems with generalized linear phase Overview of finite precision numerical effects, effects of coefficient quantization, Effects of round-off noise in digital filters, zero-input limit cycles in fixed point realizations of IIR digital filters. Unit IV: Filter Design Techniques 8 Hours Design of D-T IIR filters from continuous – time filters, design of FIR filters by windowing, Kaiser Window method, optimum approximations of FIR filters, FIR equiripple approximation. Unit V: Fourier analysis of Signals Using DFT 8 Hours DFT analysis of sinusoidal signals, timedependent Fourier transforms: Block convolution, Fourier analysis of non – stationary and stationary random signals, spectrum analysis of random signals using estimates of the autocorrelation sequence.

Unit VI: Recent Trends in DSP					
DSP Simula	architecture, ation	Memory	organization,		

Suggested Reading

- 1. Oppenheim A.V., Schafer, Ronald W. & Buck, John R., "Discrete Time Signal processing",Pearson Education , 2nd Edition.
- Proakis J. G. and Manolakis D. G., "Digital Signal Processing: Principles, Algorithms And Applications", Pearson Education, 4rd Ed., 2007.
- 3. Ramesh P., "Digital Signal Processing", SciTech Publication, 41FL Ed., 2008.
- 4. Mitra Sanjit K., "Digital Signal Processing: A Computer Based Approach", 3rd Ed., Tata McGraw-Hill, 2008.
- 5. Lawrence R. Rabiner, Bernard Gold, "Theory and Application of Digital SignalProcessing", PHI 2001.
- Shaliwahan S., Vallavaraj A. and Gnanapriya C., "Digital Signal Processing", Tata McGraw-Hill, 2nd Ed., 2000.

Name of The	Power System Protection				
Course					
Course Code	BEE02T3006				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 4. To introduce the students the principles of different protection schemes.
- 5. To develop students with an understanding of the characteristics, advantages and defects of different protection methods.
- 6. To prepare the students to design/coordinate protection schemes for given requirements.

Course Outcomes

CO1	Illustrate the principle of switchgear and protection schemes.
CO2	Choose right relays or circuit breakers for protection of electrical equipments
CO3	Design the ratings for relays or circuit breakers according to the requirement.

	Understand the differential protection
CO4	scheme and its application in protection of
	alternator and transformer
CO5	Examine protection of power system with
COS	various protection relays
C06	Discuss about operation of circuit
000	breakers.

Course Content:

Unit Is Introduction to protection system 08
Unit I: Introduction to protection system 08 Hours
nouis
Introduction to protection system and its elements,
functions of protective relaying, protective zones,
primary and backup protection, desirable qualities
of protective relaying, basic terminology. Relays:
Electromagnetic, attracted and induction type
relays, thermal relay, gas actuated relay, design
considerations of electromagnetic relay.
Unit II: Relay application and characteristics
08 Hours
Amplitude and phase comparators, over current
relays, directional relays, distance relays,
differential relay. Static Relays: Comparison with
electromagnetic relay, classification and their
description, over current relays, directional relay,
distance relays, differential relay.
Unit III: Protection of transmission line
08 Hours
Properties of arc, arc extinction theories, re-
striking voltage transient, current chopping,
resistance switching, capacitive current
interruption, short line interruption, circuit
breaker ratings. Testing of Circuit Breaker:
Classification, testing station and equipment's,
testing procedure, direct and indirect testing.
Unit IV: Differential Protection 05 hours
Types of fault on transformers and motors, and its
differential protection scheme
Unit V: Circuit Breaking 05
Hours
Properties of arc, arc extinction theories, re-
striking voltage transient, current chopping,
resistance switching, capacitive current
interruption, short line interruption, circuit
breaker ratings. Testing Of Circuit Breaker:
Classification, testing station and equipment's,
testing procedure, direct and indirect testing.
Unit VI: Apparatus protection
08 Hours

Circuit Breaker: Operating modes, selection of circuit breakers, constructional features and operation of Bulk Oil, Minimum Oil, Air Blast, SF6, Vacuum and d. c. circuit breakers.Types of faults on alternator, stator and rotor protection, Types of fault on transformers and motors

Suggested Reading

- 1. S. S. Rao, "Switchgear and Protection", Khanna Publishers.
- 2. B. Ravindranath and M. Chander, Power system Protection and Switchgear, Wiley Eastern Ltd.
- 3. Y. G. Paithankar and S R Bhide, "Fundamentals of Power System Protection", Prentice Hall of India.
- 4. T.S.M Rao, "Power System Protection: Static Relays with Microprocessor Applications", Tata Macgraw Hill.

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Semester VII

Name of	Smart Grid and Energy Ma	ana	gen	nent	
The Course					
Course	BEEE4001				
Code					
Prerequisite	Power System Analysis	an	d F	Powe	er
	Electronics				
Corequisite					
Antirequisit					
e					
L T P					С
	3 0 0 3				

Course Objectives:

A smart grid is an electrical grid which includes a variety of operational and energy measures including smart meters, smart appliances, renewable energy resources, and energy efficient resources. Electronic power conditioning and control of the production and distribution of electricity are important aspects of the smart grid.

- 1. To make use of the Smart grid with the coming future.
- 2. To analyze the global policies about the smart grid.

- 3. To develop and design the Advanced Metering infrastructure (AMI).
- 4. To estimate the Power Quality issues of Grid connected Renewable Energy Sources.

Course Outcomes

CO1	To learn about the Evolution of Electric				
	Grid, Concept, Definitions and Need for				
	Smart Grid.				
CO2	Understand about the International				
	policies in Smart Grid, Diverse				
	perspectives from experts and global				
	Smart Grid initiatives				
CO3	To analyze Advanced Metering				
	infrastructure (AMI) drivers and its				
	benefits.				
CO4	Understand about the Power Quality issues				
	of Grid connected Renewable Energy				
	Sources.				
CO5	Understand about the IP based Protocols,				
	Basics of Web Service and CLOUD				
	Computing to make Smart Grids smarter.				
CO6	To analyze the conventional grid				
	integrated with renewable energy sources				

Text/ Reference Books:

- 1. A. S boyer, SCADA:supervisory Control and Data Acquisition, The Instrumentation system and Automation Society,4 th Edition 2009.
- Vehbi C. Güngör, Dilan Sahin, Taskin Kocak, Salih Ergüt, Concettina Buccella, Carlo Cecati, and Gerhard P. Hancke: Smart Grid Technologies- Communication Technologies and Standards IEEE Transactions on Industrial Informatics, Vol. 7, No. 4, November 2011.
- 3. Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang: Smart Grid – The New and Improved Power Grid- A Survey, IEEE Transaction on Smart Grids.
- 4. Stuart Borlase: Smart Grid-Infrastructure, Technology and Solutions, CRC Press.
- 5. B.G. Liptac Instrument Engineering Handbook,Volume 3:process Software and Digital Networks,CRC Press, 4 th Edition 2011.

Syllabus

Unit-I	Introduction to Smart Grid	8 Hours			
Evolution of Electric Grid, Concept, Definitions and Need for Smart Grid, Smart grid drivers, functions, opportunities, challenges and benefits					

Concept of development	between conventional & Smart Grid, Resilient & Self-Healing Grid, Present at & International policies in Smart erse perspectives from experts and
	rt Grid initiatives.
	Smart Grid 8 Hours
Omt-n	Technologies
TT 1 1	
	Drivers, Smart energy resources,
	ations, Substation Automation, Feeder
	n, Wide area monitoring, Protection
and Cont	rol, Distribution Systems: DMS,
Volt/Var co	ontrol, Fault Detection, Isolation and
service res	toration, Outage management, High-
Efficiency	Distribution Transformers, Phase
	ansformers, Plug in Hybrid Electric
Vehicles (P	
Unit-III	Smart Meters and 8 Hours
	Advanced Metering
	Infrastructure
Introduction	n to Smart Meters, Advanced Metering
infrastructu	re (AMI) drivers and benefits, AMI
	tandards and initiatives, AMI needs in
·	rid, Phasor Measurement Unit (PMU),
	Electronic Devices (IED) & their
-	for monitoring & protection.
Unit-IV	
Unit-Iv	Power Quality 06 Hours
	Management in Smart
	Grid
	lity & EMC in Smart Grid, Power
Quality Co	nditioners for Smart Grid, Web based
Power Qua	lity monitoring, Power Quality Audit
	High Performance 07 Hours
	Computing for Smart
	Grid Applications
Local Area	
	Network (LAN), House Area Network
· · · · · · · · · · · · · · · · · · ·	de Area Network (WAN), Broad band
	line (BPL), IP based Protocols, Basics
	vice and CLOUD Computing to make
Smart Grid Grid.	s smarter, Cyber Security for Smart
UnitVI	Integration with 04 Hours
	e
	0.7
	sources
-	ality issues of Grid connected
Renewable	Energy Sources,

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of	The	Non-Convent	iona	ul I	Ene	rgy
Course		Resources				
Course Code		BEEE2018				
Pre-requisite		Power system	1			
Co-requisite						
Anti-requisite						
L T P C					С	
		3	0	0	3	

Course Objectives:

- 3. To have an overview of non-conventional energy sources.
- 4. To understand the need of alternate sources of energy.

Course Outcomes

000000	Outcomes				
CO1	Understand the different types of				
	renewable energy sources and their				
	utilities				
CO2	Design models for generating energy				
	through alternate energy sources (with the				
	help of additional learning)				
CO3	To understand the practical limitation and				
	hence steps for continuous improvement				
	through research.				
CO4	Apply genetic algorithms to optimization				
	problems				
CO5	Design models for generating energy				
	through alternate energy sources (with the				
	help of additional learning)				
CO6	Apply the fundamentals of energy systems				
	in real time applications				

Text Book (s)

- 1. 1. Renewable energy technologies R. Ramesh, Narosa Publication
- 2. Non-conventional Energy Systems Mittal, Wheelers Publication.

Reference Book (s)

- 1. John F Walker &Jekins. N, Wind Energy Technology., John Wiley and Sons, chichester, UK, 1997.
- 2. Van Overstra ,Mertens, R.P, Physics, Technology and use of Photovoltaics, Adam Hilger, Bristol, 1996.

Course Content:

Unit I:Energy Scenario: 6
lecture hours
Classification of Energy Sources, Energy resources
(Conventional and nonconventional), Energy needs of
India, and energy consumption patterns. Worldwide
Potentials of these sources. Energy efficiency and

energy security. Energy and its environmental impacts. Global environmental concern, Kyoto Protocol, Concept of Clean Development Mechanism (CDM) and Prototype Carbon Funds(PCF). Factors favoring and against renewable energy sources, IRP. Unit II: Solar Energy 9 lecture hours Solar thermal Systems: Types of collectors, Collection systems, efficiency calculations, applications. Photo voltaic (PV) technology: Present status, - solar cells, cell technologies, characteristics of PV systems, equivalent circuit, array design, building integrated PV system, its components, sizing and economics. Peak power operation. Standalone and grid interactive systems. Unit III: Wind Energy 10 lecture hours Wind speed and power relation, power extracted from wind, wind distribution and wind speed predictions. Wind power systems: system components, Types of Turbine, Turbine rating, Choice of generators, turbine rating, electrical load matching, Variable speed operation, maximum power operation, control systems, system design features, stand alone and grid connected operation. Unit IV :Other energy sources 8 lecture hours Biomass - various resources, energy contents, technological advancements, conversion of biomass in other form of energy - solid, liquid and gases. Gasifiers, Biomass fired boilers, Cofiring, Generation from municipal solid waste, Issues in harnessing these sources. Hydro energy – feasibility of small, mini and micro hydel plants scheme layout economics. Tidal and wave energy, Geothermal and Ocean-thermal energy conversion. (OTEC) systems - schemes, feasibility and viability. Unit V: Energy storage and hybrid system 7 lecture hours configurations Energy storage: Battery - types, equivalent circuit, performance characteristics, battery design, charging and charge regulators. Battery management. Fly wheel-energy relations, components, benefits over battery. Fuel Cell energy storage systems. Ultra Capacitors. Unit VI: Application of NCES Grid integration of hybrid system, fuel cell integration in hybrid vehicles

Continuous 1 1850			
Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	Warks

30

50

100

Name of The	Electric Drives			
Course				
Course Code	BTEE4001			
Prerequisite	Power Electronics			
Corequisite				
Antirequisite				
	L	Т	Р	С
	3	0	0	3

Course Objectives:

- 3. To introduce the electric drives fundamentals including speed torque curves of motor and load, types of load.
- 4. To determine stability of drive system and select motor rating for any particular duty of application.

Course Outcomes

CO1	Demonstrate the basic of drive system and			
	different types of loads.			
CO2	Understand the motor dynamics and the			
	rating of motor for different condition of			
	load.			
CO3	Analyse the types of breaking and select			
	appropriate breaking to the working			
	environment.			
CO4	Analyse power circuit topology and			
	control mechanism to control the speed of			
	DC motor.			
CO5	Apply various types of control mechanism			
	to employ for variable speed drives.			
CO6	Illustrate the latest trends adapted in			
	Electrical drives			

Text Book (s)

- 3. G.K. Dubey, "Fundamentals of Electric Drives", Narosa publishing House
- 4. S.K.Pillai, "A First Course on Electric Drives", New Age International.

Reference Book (s)

- 3. M.Chilkin, "Electric Drives", Mir Publishers, Moscow.
- 4. N.K. De and Prashant K. Sen, "Electric Drives", Prentice Hall of India Ltd

Course Content:

Unit-1Fundamentals of Electric Drive 8 hours

Electric Drives and its parts, advantages of electric drives, Classification of electric drives, Speedtorque conventions and multi-quadrant operations,

Constant torque and constant power operation,
Types of load, Load torque: components, nature
and classification.
Unit-2Dynamics of Electric Drive
8 hours
Dynamics of motor-load combination, Steady
state stability of Electric Drive, Transient stability
of electric Drive, Selection of Motor Power rating,
Thermal model of motor for heating and cooling,
classes of motor duty, determination of motor
power rating for continuous duty, short time duty
and intermittent duty, Load equalization
Unit-3Electric Braking
8 hours
Purpose and types of electric braking, braking of
dc, three phase induction and synchronous motors
Dynamics During Starting and Braking:
Calculation of acceleration time and energy loss
during starting of dc shunt and three phase
induction motors, methods of reducing energy loss
during starting, Energy relations during braking,
dynamics during braking.
Unit-4Power Electronic Control of DC Drives
8 hours
Single phase and three phase controlled converter
fed separately excited dc motor drives (continuous
conduction only), dual converter fed separately
excited dc motor drive, rectifier control of dc
series motor. Supply harmonics, power factor and
ripples in motor current, Chopper control of
separately excited dc motor and dc series motor.
Unit-5Power Electronic Control of AC Drives
8 hours
Three Phase induction Motor Drive: Static
Voltage control scheme, static frequency control
scheme (VSI, CSI, and cycloconverter based)
static rotor resistance and slip power recovery
control schemes. Three Phase Synchronous
motor: Self-controlled schemes. Special Drives:
Switched Reluctance motor, Brushless dc motor
Unit 6: Recent Technologies
Recent trends and technologies using in electrical
drives.

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Exam	Exam	
	(MTE)	(ETE)	
20	30	50	100

Name of The	PLC/SCADA LAB
Course	

Course Code	BEEE3008				
Prerequisite					
Corequisite					
Antirequisite					
	·	L	T	P	C
		0	0	2	1

Course Objectives: Students will be able to design and program basic PLC circuits for entrylevel PLC applications. Students will be able to design and program a small, automated l production line. Apply the knowledge of PLC/SCADA in engineering specialization to the solution of complex engineering problems.

Students are trained for to create ladder diagrams from process control descriptions. Students work in team to formulate solution for Electrical System using hardware and software tools. Students understand PLC functions, Data Handling Function, apply PLC Timers and Counters for the control of industrial processes.

Course Outcomes

CO1	Identify different components of PLC.
CO2	Understand working of PLC, I/O modules of
	PLC
CO3	Able to create ladder diagrams from process
	control descriptions.
CO4	
	the control of industrial processes
CO5	Able to use different types PLC functions,
	Data Handling Function.

Text/ Reference Books:

- 3. Programmable Logic Controllers Principle and Applications by John W Webb and Ronald A Reiss Filth edition, PHI
- Programmable Logic Controllers Programming Method and Applications by JR Hackworth and ED Hackworth — Jr-Pearson, 2004.

List of Experiments

- 10. Study hardware and software used in PLC
- 11. To study PLC Input and output symbols
- 12. Implementation of Logic Gates
- 13. Implementation of DOL starter
- 14. Implementation of on-delay timer
- **15**. Implementation of off-delay timer
- 16. Implementation of up-down counter
- 17. Implementation of PLC Arithmetic Instructions
- 18. Implementation of PID Controller

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of Course	The	Technical Seminar
Course Code		BEE02P4005
Prerequisite		
Corequisite		
Antirequisite		
		L T P C
		0 0 2 0

Course Objectives:

Objective

- To develop institute-industry interaction
- To know the industry practices
- To understand cutting edge technology in the chosen area

Course Outcomes

CO1	Identify the Literature Survey
CO2	Do the Formulation of the Problem /
	Project
CO3	
	Programs in MATLAB / PSPICE.
CO4	Do compilations / Simulation and
	Synthesis.
CO5	Do testing and write Dissertations/Reports.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of	Capstone Design Phase –I
The Course	
Course	BEE02P4002
Code	
Prerequisite	
Corequisite	
Antirequisit	
e	
	L T P C
	0 0 10 2

Course Objectives:

- Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Work in team to formulate solution for Electrical System using hardware or software tools.
- Analyze & research about the work to be implemented with resources available from internet & other sources.
- Work collaboratively to plan and execute project work or research to advance the scientific basis, technologies or practices within the Electrical Engineering discipline.

Course Outcomes

a a í	
CO1	Develop creative solutions to problems and conceive innovative approaches in developing and designing of electrical system.
000	
CO2	Prepare high quality engineering documents and present a clear and coherent presentation of these to a range of technical and nontechnical audiences.
CO3	Acquire and evaluate research regarding new knowledge development within the electronic engineering discipline and its social, cultural, environmental and legal context.
CO4	Demonstrate a responsible, ethical and professional attitude regarding the role of engineers in society, including situations involving potentially adverse environmental and cultural impacts.
CO5	Work collaboratively to plan and execute project work or research to advance the scientific basis, technologies or practices within the Electrical Engineering discipline.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Semester VIII

Name of The	Capstone Design Phase-II
Course	
Course Code	BEE02P4003
Prerequisite	
Corequisite	
Antirequisite	

L	Т	Р	С
0	0	18	6

Course Objectives:

- Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Work in team to formulate solution for Electrical System using hardware or software tools.
- Analyze & research about the work to be implemented with resources available from internet & other sources.
- Work collaboratively to plan and execute project work or research to advance the scientific basis, technologies or practices within the Electrical Engineering discipline.

Course Outcomes

CO1	Identify project goals and constraints
CO2	Acquire knowledge about the project
	through previous works in the current field
CO3	Formulate the methodologies to obtain
	experimental results
CO4	Plan for the resource requirements
CO5	Obtain the experimental results based on
	the methodologies formulated.

Continuous Assessment Pattern

Internal	Mid	End	Total		
Assessment	Term	Term	Marks		
(IA)	Test	Test			
	(MTE)	(ETE)			
20	30	50	100		

Name of	Industrial Internship & Technical
The Course	Seminar
Course	BEE02P4004
Code	
Prerequisite	
Corequisite	
Antirequisit	
e	
	Ц Т Р С
	0 0 0 6

Course Objectives:

Objective

- To develop institute-industry interaction
- To know the industry practices
- To understand cutting edge technology in the chosen area

Course Outcomes

CO1 Identify the Literature Survey

CO2	Do the	Formulation	n of the F	Problem /		
	Project					
CO3	Do Ma	athematical	Modeling	and do		
	Program	s in MATLA	AB / PSPICE	Ξ.		
CO4	Do co	mpilations	/ Simulat	tion and		
	Synthesi	Synthesis.				
CO5	Do testing and write Dissertations/Reports.					
Continu	Continuous Assessment Pattern					
Intern	Internal Mid End Total					
Assessment		Term	Term	Marks		
(IA)		Test	Test			
		(MTE)	(ETE)			
50			50	100		

Basket- (Control Engineering)

Name of	The	Advanced Control System			tem	
Course						
Course Code		BTEE301	9			
Prerequisite		Control System				
Co-requisite		Signal Systems				
Anti-requisite	isite					
			L	Т	Р	С
			3	0	0	3

Course Objectives

- 1. Introduce the fundamentals and concepts of Control systems
- 2. Understanding and predicting system behavior in state space and non-linear systems.
- 3. Design and analysis of closed loop control systems.
- 4. Analyse higher order control systems with appropriate state space models.

Course Outcomes

r	-			
	Apply linear algebra to complex real world			
CO1	problems in order to obtain models that are			
	expressed using state space equations.			
CO2	Understand the basic Canonical Forms in			
02	state space domain.			
	Analyze the system behavior based on the			
CO3	mathematical model of that system where			
COS	the model may be expressed in state-space			
domain				
CO4	Design and analysis of closed loop control			
systems.				
	Design controllers using the concept of			
CO5	state feedback and pole placement			
technique.				

	Write	а	report	that	effectively
CO6	commu	nicat	es the rest	ults of a	n analysis or
	design.				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

Unit I: State Space Analysis of Control Systems

8 Hours

State Variables; State-Space Representation of Electrical and Mechanical and Electromechanical Systems; State Space Representation of Nth Order Linear Differential Equation; Transformation to Phase Variable Canonical Form; Relationship Between State Equations and Transfer Functions; Characteristic Equation; Eigen Values and Eigen Vectors;

Unit II: Canonical Form

Transformation to Diagonal Canonical Form; Jordan Canonical Form; Controllability Canonical Observabilty Canonical Form: Form: Decomposition of Transfer Function-Direct, Cascade and Parallel Decomposition; State Diagram; Solution of the Time-Invariant State Equation; State Transition Matrix and its Properties; Transfer Matrix; Transfer Matrix of Closed Loop systems. Unit III: Controllability and Observability 8 Hours Concept of Controllability and Observability;

Kalman's Theorems on Controllability; and Observability, Alternative Tests (Gilbert's Method) of Controllability and Observability; Principle of Duality; Relationship among Controllability, Observability and Transfer Function.

Unit IV: State feedback controller Hours

Design of state feedback controller using pole placement technique, Ackerman's formula.

8

Unit V: Lyapunov Stability Analysis 8 Hours

Stability of Equilibrium State in the Sense of Liapunov; Graphical Representation of Stability; Asymptotic Stability and Instability; Sign-Definiteness of Scalar Function; Second Method of Liapunov; Stability Analysis of Linear Systems; Krasovski's Theorem; Liapunov Function Based on Variable Gradient Method. Unit VI: Describing Function Analysis of Nonlinear Control System and Phase Plane Analysis 8 Hours Introduction to Nonlinear Systems, Describing Functions for Common Types of Nonlinearities, Describing Function Analysis, Stability and Limit Cycles, ntroduction : Analytical Methods for constructing Trajectories, Classification of Singular Points; Limit Cycles; Phase-Place Analysis of Linear control system.

Suggested Reading

- 1. Nagrath and Gopal, "Control System Engineering", 4th Edition, New age International.
- 2. K. Ogata, "Modern Control Engineering", Prentice Hall of India.
- 3. B.C. Kuoand FaridGolnaraghi, "Automatic Control System" Wiley India Ltd, 2008.
- 4. D.RoyChoudhary, "Modern Control Engineering", Prentice Hall of India.
- Norman S. Nise, Control System Engineering 4th edition, Wiley Publishing Co.
- 6. E Slotine, Weiping Li, Applied Nonlinear Control, Prentice-Hall.
- 7. R.T. Stefani, B.Shahian, C.J.Savant and G.H. Hostetter, "Design of Feedback Control Systems"Oxford University Press.

Name of The	Industrial Automation and			
Course	Control			
Course Code	BTEE3020			
Prerequisite	Control System			
Co-requisite	Power System Analysis			
Anti-requisite				
	L T P C			
	3 0 0 3			

Course Objectives

- 1. This course introduces the various types of controllers and their principles
- 2. Knowledge of sequence control, PLCs and Ladder logic is also imparted

- 3. Applications of industrial automation systems including identification of system requirements, equipment integration, motors, controllers, and sensors.
- 4. Coverage of set-up, maintenance, and testing of the automated system

Course Outcomes

CO1	Describe the properties and applications of open- and closed-loop process control systems and distinguish between their dynamics.
CO2	Summarize the operation of the different controller modes and their practical limitations; determine their response to standard inputs.
CO3	Understand the open loop and closed loop transient response using Ziegler-Nichols method. Frequency response method.
CO4	Outline the criteria determining the selection of control valves for specific purposes.
CO5	Explain various special control structures in process control.
CO6	Identify the applications of PLC's to industrial processes and design PLC programs to solve sequential control problems.

Continuous Assessment Pattern

	Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
ĺ	50	-	50	100

Course Content:

Unit I: Process Dynamics 8			
Hours			
Dynamic Elements in Control Loops, Open- and			
closed-loop properties of processes; Process lags;			
Dead-time; Stability of control systems; Block			
diagrams and process line diagrams to explain the			
operation of control systems. Dynamic behaviors			
of first order, second order, and higher order			
systems. Interacting and non-interacting systems.			
Unit II: Controller Principles 5 Hours			
Process characteristics. Control system			
parameters. Discontinuous, continuous, and			
composite modes of control action (P, PI, PD &			
PID). Analog and Digital Controllers, General			

features. Electronic controllers, pneumatic controllers and hydraulic controllers, and Design considerations.
Unit III: Process loop Tuning 5 Hours
Open loop transient response method. Ziegler- Nichols method. Frequency response method.
Unit IV: Control Valves 7 Hours
Valve types and characteristics; Factors influencing valve selection; Valve sizing; Valve petitioners; Installed systems: control valve characteristics, pipe pressure drops and pump characteristics. Unit V: Special Control Structures 7 Hours
1
Feed forward and Ratio Control, Predictive Control, Control of Systems with Inverse Response Special Control Structures : Cascade Control, Overriding Control, Selective Control, Split Range Control.
Unit VI: Introduction to Sequence Control, PLCs & Relay Ladder 8 Hours
Discrete state process control, characteristics of the system, discrete state variables, process specifications and event sequence description, ladder diagram – ladder diagram elements and examples, programmable controller – relay sequencers, programmable logic controller, architecture, operation and programming, types of PLC.

Suggested Reading

- 1. Process Control Instrumentation Technology, C. D. Johnson, Prentice Hall, (2002).
- 2. M. Gopal, Control Systems Principles & Design, 2nd Edition, TMH, 2002.
- 3. Bela G. Liptak, Process Control, Instrument Engineer's Handbook, 3rd Edition, Chilton Book
- 4. Company, 1970.
- 5. D.RoyChoudhary, "Modern Control Engineering", Prentice Hall of India.
- 6. George Stephenopoulos, Chemical Process Control, PHI, 1999.
- 7. Kirk and Rimbol, Instrumentation, D.B. Taraporewala Sons and Co. Pvt. Ltd., 1996
- 8. Douglas M. Considine, Process/Industrial Instruments and Control Handbook,

4thEdition,McGraw Hill International Edition, 1974.

9. Introduction to Programmable Logic Controllers, G. Dunning, Delmar Thomson Learning, 2002

Name of The	Industrial Instrumentation and				
Course	Automation	Automation			
Course Code	BEE02T5001				
Prerequisite	Electrical Instrumentation				
Co-requisite					
Anti-requisite					
L T P C			С		
3 0 0 3				3	

Course Objectives

1. To impart knowledge about Industrial instrumentation and automation

Course Outcomes

CO1	Select instruments and transducers for various physical variables
CO2	Design various signal conditioning systems for transducers.
CO3	Analyze dynamic responses of various systems.
CO4	Get the concepts of virtual instrumentation
CO5	Understand the programming realization of SCADA
CO6	Understand the programming realization of PLC

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	-	50	100

Course Content:

Unit I: Introduction 8 Hours

Introduction to Process Control - block diagram of process control loop, definition of elements. Sensor time response - first and second order responses. Review of Transducers: Characteristics and Choice of transducer-factors influencing choice of transducer. Unit II: Applications of Transducers 8

Unit II: Applications of Transducers Hours

Displace measurement: Resistance potentiometer, Capacitive and Inductive. Capacitive differential

pressure measurement Torsional, shearing stress and rotating shaft Torque measurement using strain gauge. Flow measurement :Hotwire anemometer, constant resistance Constant current type Eddy current sensors, Variable reluctance tachometers Phase measurement :Analog and digital phase detectors Nano Instrumentation Unit III: Signal conditioning 8 Hours	
Signal conditioning circuits-Instrumentation amplifiersUnbalanced bridge. Bridge linearization using op amp Precision rectifiers, Log amplifiers, Charge amplifiers, Isolation amplifier, Switched capacitor circuits, Phase sensitive detectors, Noise problem in instrumentation and its minimization. Unit IV: Micro Electromechanical system (MEMS) 8 Hours	
Advantages and Applications, MEMS micro sensors and actuators, Manufacturing process: Bulk micro machining and surface micromachining, MEMS accelerometers Virtual instrumentation system: architecture of virtual instruments – Virtual instruments and traditional instruments – concepts of graphical programming. Unit V: SCADA 5Hours	_
Introduction to Timer/Counters, Exercises based on Timers, Counters. Basic concepts of SCADA, DCS and CNC Unit VI: PLC 5Hours	
Introduction to Sequence Control, PLCs - Working, Specifications of PLC Onboard/Inline/Remote IO's, Comparison of PLC & PC, Relay Ladder Logic- PLC Programming- realization of AND, OR logic, concept of latching,	

Suggested Reading

- 1. Curtis D Johnson ," Process Control Instrumentation Technology", PHI, 1986
- 2. Doeblin E.O, 'Measurement Systems: Application and Design, Fourth Edition, McGraw Hill, Newyork, 1992
- DVS. Murty, 'Transducers and Instrumentation' Second Edition, PHI Learning Pvt Ltd New Delhi ,2013
- 4. MadhuchhandaMitra, SamarjitSengupta, 'Programmable Logic Controllers and Industrial Automation An Introduction', Penram International Publishing (India) Pvt Ltd., 2009
- 5. Mickell. P. Groover 'Automation, Production and computer integrated manufacturing' Prentice Hall of India, 1992

- 6. Patranabis, D., 'Principles of Industrial Instrumentation', Second Edition Tata McGraw Hill Publishing Co. Ltd.. New Delhi
- 7. Robert B. Northrop, 'Introduction to instrumentation and measurements', CRC, Taylor and Francis 2005.

Name of The	Power System Operation and				
Course	Control				
Course Code	BEEE5005				
Prerequisite	Power System Analysis				
Co-requisite	Fundamentals of Power			ower	
	System				
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

- **1.** Introduce the fundamentals concepts of operation of Modern power systems.
- **2.** Understand various Load driving parameters and various forecasting methods.
- **3.** Introduce the concepts of Unit Commitment and Online economic dispatch.
- **4.** Understand and analyze control relationship between real power vs frequency and reactive power vs voltage.

Course Outcomes

ntify various load driving parameters					
review various forecasting methods					
for efficient power system operation					
alyze the relationship between various					
ver system variables in terms of					
hematical modeling					
del the steady state and dynamic					
formance of power system control.					
oly the knowledge of Unit					
nmitment and economic Dispatch to					
ve numerical problems based on real					
e situations.					
blain various functional aspects of					
ADA/ECC along with various					
operating states of power system.					
lerstand the application of power					
tem estimation					

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	

_

50

50

100

Course Content:

Unit I: Introduction	8
Hours System load – variation, load character load curves and load-duration curves, load diversity factor, load forecasting, techniques of forecasting, basics of power operation and control, reserve margin frequency control, voltage control. Unit II: Real Power – Frequency Control Hours Speed governing mechanism and more speed-load characteristics, load sharing, area concept, LFC control of a single-area static and dynamic analysis, integrat economic dispatch control with LFC, tw system – modelling – static analy uncontrolled case, tie line with frequency control of two-area system. Unit III: Economic Load Dispatch8 Hours Economic dispatch problem – cost of generation incremental cost curve, co-ordination equivalent solution by direct method and λ- iteration r	istics – I factor, simple system , load- 8 delling, control system, ion of wo-area rsis of cy bias seration, uations, nethod,
solution by direct method and λ- iteration r unit Commitment problem – constraints, s methods – Priority-list methods – f dynamic programming approach (Nu problems only in priority-list method usin load average production cost). Unit IV: Reactive Power – Voltage C Hours	solution forward merical ng full-
Reactive power control, excitation syst modelling, static and dynamic analysis, s compensation, generation and absorpt reactive power, relation between voltage, and reactive power at a node, method of control, tap changing transformers, tap se OLTC transformer and MVAR inject switched capacitors.	tability ion of power voltage tting of
Unit V: Computer control of power system Hours Need of computer control of power sy concept of energy control centre (or) load d centre and the functions, system monitorin	ystems, lispatch
SCADA and EMS functions, network to state estimation, security analysis and o	

operating states (Normal, alert, emergency, inextremis and restorative).

Suggested Reading

- 1. Allen. J. Wood and Bruce F. Wollenberg, "Power Generation, Operation and Control", John Wiley & Sons, Inc., 2003.
- D.P. Kothari and I.J. Nagrath, "Modern Power System Analysis", Third Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.
- 3. Chakrabarti&Halder, "Power System Analysis: Operation and Control", PHI, 2004 Edition.
- 4. L.L. Grigsby, "The Electric Power Engineering, Hand Book", CRC Press & IEEE Press, 2001.
- 5. Olle. I. Elgerd, "Electric Energy Systems theory: An introduction", Tata McGraw Hill Publishing Company Ltd. New Delhi, Second Edition 2003.

Name of	The	Digital Co	ontro	ol		
Course		-				
Course Code		BEEE500	4			
Prerequisite		Control S	ystei	n		
Co-requisite		Advanced	l Coi	ntrol	l Sys	stem
Anti-requisite						
			L	Т	Р	С
			3	0	0	3

Course Objectives

- **1.** The purpose of this course is to provide basic concepts of Digital control systems.
- **2.** The main goal of the course is to teach the students how to select and design digital controller for different systems.
- **3.** This course is also to learn microprocessors and microcontrollers based digital control systems.
- **4.** This also provides knowledge of effect of quantization on signals in digital control systems.

Course Outcome

CO1	Analyze and design SISO systems through			
COI	Z-transform.			
CO2	Analyze and design of MIMO systems			
002	through state space analysis.			
CO3	Understand the Controller design using			
COS	transformation techniques.			
CO4	Analyze system's stability.			
CO5	Discuss Microprocessor and DSP based			
COS	control.			
COC	Discuss the quantization effect on the			
CO6	digital control system			

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

Unit I: Introduction 8 Hours
Overview of design approaches, continuous versus digital control, sampling process, effect of sampling rate. Calculus of difference equations. Z-transform. Signal flow graphs.
Unit II: Design of State space systems 8 Hours
Controllability, Observability, Discretization of continuous transfer functions; Digital filter properties.
Unit III: Controller design using transformation techniques
Z-plane specifications. Design in the w domain. PID controller. Deadbeat controller. Root Locus design.
Unit IV: State space methods 8 Hours
Pole placement design, stabilization and all stabilizing controllers. Observer design. Infinite time optimal regulator, Stability and tracking in SD systems.
Unit V: Quantization effects 8 Hours
Limit cycles and dither. Sample rate reduction. Multi-rate sampled data system and stability studies. Design of digital controller using fast output sampling.
Unit VI: Microprocessor and DSP control 8 Hours
Mechanization of control algorithms. Iterative computation via parallel, direct, canonical, cascade realization; Effects of computing time. Systems with time delay. Case studies

Suggested Reading

- 1. K. Ogata, "Discrete-time control sytems", PHI, 2005.
- **2.** B.C. Kuo, "Digital Control System", Oxford University press, 1995
- 3. Norman S. Nise," Control systems Engineering", John Wiley and Sons, 4th Edition, 2004.

- **4.** G. F. Franklin, J. David Powell and MichealWorkman, "Digital Control of Dynamic Systems", Pearson Education, 3rd Edition, 2003.
- **5.** M.Gopal, "Digital Control Engineering", New Age Publishers, 2008.

Name of	The	Automation and Robotics			cs	
Course						
Course Code		BEE03T50	02			
Prerequisite		Control Systems				
Co-requisite						
Anti-requisite						
			L	Т	Р	С
			3	0	0	3

Course Objectives

1. To identify potential areas for automation and justify need for automation.

Course Outcomes

CO1	Select suitable major control components required to automate a process or an activity
CO2	Study the various parts of robots and fields of robotics.
CO3	Understand the fundamentals of automated assembly systems
CO4	Study the various kinematics and inverse kinematics of robots.
CO5	Study the control of robots for some specific applications.
CO6	Design real time robotics systems.

Continuous Assessment Pattern

Internal Assessment	Mid Term Exam	End Term	Total Marks
(IA)	(MTE)	Exam (ETE)	
50	-	50	100

Course Content:

Unit I: Introduction

8 Hours

Basic elements of an automated system, advanced automation functions, levels of automation, process industries versus discrete manufacturing industries, continuous versus discrete control, computer process control. Hardware components for automation and process control, sensors, actuators, analog to digital converters, digital to analog converters, input/output devices for discrete data.

COMMUNICATION ENGINEERING
Unit II: Automated Production lines 1 8
Hours
Fundamentals of automated production lines,
application of automated production lines,
analysis of transfer lines, automated assembly
systems,
Unit III: Automated Production lines 2
Fundamentals of automated assembly systems,
quantitative analysis of assembly systems,
automatic identification methods, barcode
technology, radio frequency identification, other
AIDC technologies
Unit IV: Industrial Robotics 8 Hours
Robotic configuration, robot anatomy and related
attributes, robot control systems, end effectors,
sensors in robotics, industrial robot applications,
robot accuracy and repeatability, different types of
robotics, various generations of robots, degrees of
freedom – Asimov's laws of robotics dynamic
stabilization of robots.
Unit V: Spatial descriptions and transformations8
Hours
Positions, orientations, and frames. Mappings:
Changing descriptions from frame to frame.
Operators: translations, rotations and
transformations, transformation arithmetic
transform equations, transformation of free
vectors computational considerations,
manipulator Kinematics, link description, link-
connection description, actuator space joint space
and Cartesian space
Unit VI: Robot programming 8 Hours
Introduction, levels of robot programming,
requirements of robot programming language,
problems pertaining to robot programming
languages, offline programming systems, central

Suggested Reading

- 1. Automation, Production systems, and computer integrated manufacturing-MikellP.Groover 3rd edition, Pearson 2009
- 2. Industrial Robotics-Groover, Weiss, Nagel, McGraw Hill International, 2nd edition, 2012

Basket- (Power Engineering)

Name of The Course	Power System Equipments			
Course Code	BTEE3017			
Prerequisite				
Corequisite				
Antirequisite				
	L T P C			
	3 0 0 3			

Course Objectives:

Power Engineering is concerned with the generation, transmission, distribution and utilization of electrical energy. Large power systems are interconnected physical networks of many different types of equipment and apparatus: synchronous generators for generating electricity, power transformers for changing the voltage levels, overhead transmission lines, underground cables, metering and control equipment, switchgear for connection/disconnection, high-voltage insulators, etc. Because of operating conditions (different voltage and power levels) each equipment type in turn comprises many different designs.

Course Outcomes

CO1	Identify various designs of transmission line and overhead line
CO2	Explain various Substation equipments Protection & Control theories
CO3	Explain various necessities of power system earthing
CO4	Identify various basic concepts about Surge Protection & Insulation Co- ordination
CO5	Identify various basic concepts about Insulation Co-ordination
CO6	Introduce reliability of transmission & distribution Systems

Text/ Reference Books:

- 1. Power System Analysis & Design by B.R. Gupta –S.Chand.
- Sub Station Design and Equipment Gupta & Satnam (Dhanpat Rai & Sons).
- 3. Transmission & Distribution Westinghouse.

- 4. P. Gill, Electrical Power Equipment Maintenance and Testing, 2nd ed., CRC Press, 2008.
- 5. F. Kussy, and J. Warren, Design Fundamentals for Low Voltage Distribution and Control, Marcel Dekker, 1987.
- 6. Syllabus

6. Sylla	ibus			
Unit-I	Transmission Line Design & Overhead Line Design	8 Hours		
Improveme Improveme Types of S span, Con Clearance, conditions, Catenary, V Selection o	-	, Equivalent Spacing & ns, Erection g Template, prevention,		
Unit-II	Electrical Substation &Earthing	8 Hours		
Types of Substation, Layout and Bus Bar schemes, Voltage level, Substation equipments Protection & Control Substation Earthing, Tolerance limits of body currents, Soil resistivity, Earth resistance, Tolerable & Actual Step & Touch Voltages, Design of EarthingGrid, Tower Footing Resistance, Measurement of soil & earth resistivity				
Unit-III	Power System Earthing	6 Hours		
effectively Impedance Reactance Grounding, Grounding system ove and over v	ersus isolated neutral, S grounded system Res Grounding, Resonant Grounding, Voltage Zigzag Transformer practice, Effect of gr voltages & protection of voltage phenomenon in is eutral system.	istance and Grounding, Transformer Grounding, ounding on over voltage		
Unit-IV	Surge Protection	5 Hours		
External and Internal over voltages mechanism of lighting discharge, wave shapes of stroke current line design based on direct stroke, over voltage protection, earth wire Rod gap T.F.R., Expulsion tube, surge diverter.				
Unit-V	Insulation Co- ordination	5Hours		

General idea, Selection of B.I.L., International recommendation, Selection of arrester rating, Coordination of protector devices with apparatus insulation

Unit-VI	Reliability	of	7 Hours
	Transmission	&	
	Distribution System	ns	

Definition, Outage, Bath Tub Curve, Two State Model, Failure & Repair Rate, Probability Density Function, Probabilities of Survival & Failure, Mean Time to Failure, Mean Down Time, Reliability of Series & Parallel Systems, Two-State Fluctuating Enviornment, Approximate Method, Reliability Planning, Preparation of Reliability Models.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	Power Qu	ality			
Course Code	BTEE3023				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 1. To understand the various power quality issues
- 2. To understand the concept of power and power factor in single phase and three phase systems supplying non linearloads
- 3. To understand the active compensation techniques used for power factor correction.
- 4. To understand the active compensation techniques used for load voltage regulation.

Course Outcomes

CO	Toacquireanin-
1	depthknowledgeonvariouspowerqualityissu
	eslikevoltage sag, interruption and
	harmonics.
CO	To learn about various aspects of power
2	quality measurements and power quality

CO	Ability to understand and analyze power
3	system operation, stability, control and
	protection.
CO	Introduce the importance of grounding on
4	power quality.
CO	Learn to apply appropriate solution
5	techniques for power quality mitigation
	based on the type of problem.
CO	Illustrate the latest trends adapted in power
6	quality improvements.

Text Book (s)

1.Eswald.F.Fudis and M.A.S.Masoum, "Power Quality in Power System and Electrical Machines," Elseviar

Academic Press, 2013.

2.R. Dugan, M. McGranahan, S. Santoso, W. Beaty, Electric Power Systems Quality, 2nd Edition (McGraw-Hill, New York, NY, 2002).

Reference Book (s)

1. Heydt, Electric Power Quality, Stars in a Circle Publications, 1991. (optional)

2. Handbook of power quality, editor: Angelo Baggini, John Wiley & Sons, 2008.

* *		-	
	nit	•	
U	mι	1.	

Power and Voltage Quality: General, classes of Power Quality Problems, Power quality terms, Power frequency variations, the power quality evaluation procedure. formula, sensitivity, Reduction of effect of parameter variation and disturbance by using negative feedback. Unit II:

Voltage sags and Interruptions: Sources of sags and Interruptions, Estimating Voltage sag performance. Fundamental Principles of Protection, Solutions at the end-user level, Evaluating Ride-through Alternatives, Motor-Starting Sags.

Unit III: Fundamentals of Harmonics: Harmonic distortion, Voltage versus Current distortion, Harmonic indexes, Harmonic sources from commercial loads, Harmonic sources from industrial loads, Locating Harmonic sources, System response characteristics, Effects of Harmonic Distortion. Considerations. Unit IV : Distributed Generation and Power Quality: Resurgence of DG, DG Technologies, Interface to the Utility System, Power Quality Issues, Operating Conflicts, DG on distribution Networks, Sitting DG distributed Generation, Interconnection standards. Unit V: Wiring and Grounding: Recourses, Definitions, Reasons for Grounding, Typical wiring and grounding problems, Solution to wiring and grounding problems. Unit VI: Recent Technologies

Recent trends and technologies using to improve the power quality

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	IVIALKS
20	30	50	100

Name of The Course	FACTS and H	VDO	2		
Course Code	BTEE4010				
Prerequisite					
Corequisite					
Antirequisite					
L T P C					С
		3	0	0	3

Course Objectives:

- 3. Apply concepts of transmission in HVDC Transmission
- 4. To prepare students to know the role of HVDC systems

Course Outcomes

CO1	Identify significance of DC over AC				
	transmission system, types and application				
	of HVDC links in practical power systems				
CO2	To Analyze different converters viz.3,6				
	and 12 pulse converter				
CO3	To Analyze AC/DC system interactions				
	and know the operation and control of				
	various MTDC systems.				
CO4	Model AC/DC system and apply				
	protection for HVDC system against				
	transient overvoltage and over currents				
CO5	To estimate Improvement of voltage				
	stability				
CO6	Illustrate the latest trends adapted in				
	HVDC.				

Text Book (s)

 HVDC transmission by Adamson and Hingorani.
 H.V.D.C.Transmission by J.Arillaga : Peter Peregrinus ltd., London UK 1983. Reference Book (s)

- Direct current Transmission, by . E.W. Kimbark, Wiely Inter Science – NewYork. EHV-AC & HVDC transmission Engg. Practice" by S.Rao, Khanna Publishers.
- 4. B. R. Gupta, "Power System Analysis and Design" Third Edition, S. Chand & Co.

Unit I: H.V.D.C. Transmission**6 lecture hours**

H.V.D.C. Transmission: General considerations, Power Handling Capabilities of HVDC Lines, Basic Conversion principles, static converter configuration. Static Power Converters: 3-pulse, 6-pulse and 12-pulse converters, converter station and Terminal equipment, commutation process, Rectifier and inverter operation, equivalent circuit for converter – special features of converter transformers.

Unit II:

Harmonics in HVDC Systems, Harmonic elimination, AC and DC filters. Control of HVDC Converters and systems: constant current, constant extinction angle and constant Ignition angle control, DC power flow control.

Unit III:

Interaction between HV AC and DC systems – Voltage interaction, Harmonic instability problems and DC power modulation. Multiterminal DC links and systems; series, parallel and series parallel systems, their operation and control. Unit IV : FACTS Introduction

The concept of flexible AC transmission - reactive power control in electrical power transmission lines, uncompensated transmission line – series and shunt compensation. Overview of FACTS devices - Static Var Compensator (SVC) – Thyristor Switched Series capacitor (TCSC) – Unified Power Flow controller (UPFC).

Unit V: 7 lecture hours

bv STATIC VAR Voltage control COMPENSATOR (SVC), THYRISTOR CONTROLLED SERIES CAPACITOR(TCSC) Synchronous And Compensator Static (STATCOM): advantages of slope in dynamic characteristics, influence of SVC on system voltage. Applications: enhancement of transient stability and steady state, power transfer.

Unit VI: Recent Technologies

Recent trends and technologies using in HVDC.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The	Electrical and Hybrid vehicle				
Course					
Course Code BEE02T5003					
Prerequisite					
Corequisite					
Antirequisite					
-		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 3. To understand the electrical vehicle
- 4. To understand the hybrid vehicle

Course Outcomes

CO1 Understand basics of battery technology.

CO2 Understand scheme of HEV and full electric vehicle.

CO3 Analyse need of different motor drives for electric vehicle.

CO4 Apply new topologies to electric vehicle.

CO5 Evaluate performance parameters of electric vehicle.

CO6 Understand recent industrial power electronic applications for electric vehicle.

Text Books:

1. Sandeep Dharmeja, Electric Vehicle Battery Systems, 1st Edition, Newnes, 2001

2. K.T.Chau, Zheng Wang, Chaos in Electrical Drive Systems: Analysis, Control & Applications, 1st Edition, John Wiley and Sons, 2011

Reference Books:

1. Chung Chow Chan, K.T.Chau, Modern Electric Vehicle Technology, 1st Edition, Oxford University Press, 2001

2. Springer Books, Electrical Vehicle Integration into Modern Power Networks

3. A.T.P.So George C.Barney waterstones.com, International Journal of Elevator Engineering, United Kingdom

4. John Lowry, John Wiley and Sons, Electrical Vehicle Technology Explained-James Larminie, 1st Edition, 2003

Unit I: Introduction to Electric Vehicles

	Electric vehicles (EV) development, past, present and future, comparison with IC engine driven vehicles					
Unit II: Storage Units						
Ratteries	fuel	colle	ultra	ana	citors	Dower

Batteries, fuel cells, ultracapacitors. Power converters in EV. Different types of motors used in EV and their torque-speed characteristics, motor control techniques,

Unit III: Vehicle Control

High performance and efficiency-optimized control, sensorless control. Electric vehicles modeling and their Characteristics.

Unit IV : Electric drive-trains

Basic concept of electric traction - introduction to various electric drive-train topologies - power flow control in electric drive-train topologies - fuel efficiency analysis

Unit V: Hybrid Electric Vehicle

Fuel cell Vehicles, Hybrid Electric Vehicles (HEV), series, parallel and series-parallel (split) systems,

Unit VI: Recent Technologies

Recent industrial power electronic applications. Advanced topic on the subject

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam	Exam	Marks
(IA)	(MTE)	(ETE)	Marks
20	30	50	100

Name of The	Power System Deregulation				
Course					
Course Code BTEE4009					
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 3. To understand the restructuring of electrical power systems
- 4. To understand the marketing in power sector

Course Outcomes

CO1	To provide in-depth	n understanding
	of operation of	deregulated
	electricity market syste	ems.

CO2	To Understand the Fundamentals of				
	Economics				
CO3	To examine topical issues in electrici				
	ty markets and how these are handle				
	d world-wide in various markets.				
CO4	To train the students to analyze vari				
	ous types of electricity market operat				
	ional and control issues under				
	congestion management.				
CO5	To understand the operation				
	of ancillary				
CO6	To learn				
	different pricing mechanism and				
	power trading in restructured power				
	system				

Text Book (s)

1. L.Philipson and H. Lee Willis, "Understanding Electric Utilities and Deregulation", Marcel Dekker 1998

2. Kankar Bhattacharya , Math Bollen and J.E. Daadler, "Operation of restructured Power Systems," Kluwer 2001

3. M. Shahidepour and M. Alomoush, "Restructured Electrical Power Systems", Marcel Dekker 2001

 Steven Stoft, "Power System Economics: Designing Markets for Electricity", IEEE Press 2002
 Ashikur Bhuiya, "Power System Deregulation: Loss Sharing in Bilateral Contracts and Generator Profit Maximization", VDM Publishing 2008

6. Daniel S. Kirschen, Goran Strbac, "Fundamentals of Power System Economics", WILEY 2004

Unit I: Restructuring Of Power Industry:

An Introduction: Introduction, reasons and objectives of restructuring/ deregulation of power industry, restructuring process, issues involved in restructuring/ deregulation.

Unit II: Fundamentals of Economics

Introduction, consumer behavior, supplier behavior, market equilibrium, short-run and longrun costs, various costs of production, perfectly competitive market Unit III: Philosphy of market models:9 lecture hours

Introduction to philosophy of market models, market models based on contractual arrangements, comparison of various market models, electricity as a commodity market architecture

Unit IV:	Transmission	congestion
management:1	0 lecture hours	

Introduction, classification of congestion
management methods, calculation of atc (available
transfer capability), non-market methods, nodal
pricing, inter-zonal/ intra-zonal congestion
management, price area congestion management,
capacity alleviation method
Unit V : Electricity market evolution:8 lecture hours
US and European electricity market evolution, PJM,
NEMMCO, ERCOT, NORDIC Markets,
comparison of power markets, towards standard
market design (SMD)
Unit VI: Reforms in Indian power sector:7 lecture

Unit VI: Reforms in Indian power sector:7 lecture hours

Introduction, framework for Indian power sector, reform initiatives in India, The Electricity Act 2003, availability based tariff (ABT), open access issues, power exchange

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	(ETE) 50	100

Name of The	High Voltage Engineering				
Course					
Course Code	BEE02T3005				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. The course imparts knowledge about voltage break down of solid, liquid and gaseous materials used in electrical engineering field.
- 2. Students will learn generation of high voltages and currents.
- 3. Students will learn the measurement and testing of high voltages and currents.

Course Outcomes

CO1	Understand the significance high voltage engineering and its implementation in power System		
CO2	Overcome upon the challenges associated with generation and measurement of high voltages and currents		

CO3	To analyze Generation of High Voltages and Currents drivers and its benefits.			
CO4	To analyze measurement of High Voltages			
	and Currents drivers and its benefits			
CO5	Understand about Non-Destructive			
	Testing Sources.			
CO6	Understand about the High Voltage			
	Testing.			

Course Content:

Course Content.
Unit I: Break Down In Gases 08 Hours
Ionization processes, Townsend's criterion, breakdown in electronegative gases, time lags for breakdown, streamer theory, Paschen's law, break
down in non-uniform field, breakdown in vacuum. Unit II: Break Down In Liquid Dielectrics 08 Hours
Classification of liquid dielectric, characteristic of liquid dielectric, breakdown in pure liquid and commercial liquid. Break Down In Solid Dielectrics: Intrinsic breakdown, electromechanical breakdown, breakdown of solid, dielectric in practice, breakdown in composite dielectrics.
Unit III: Generation of High Voltages and Currents 05 Hours
Generation of high direct current voltages, generation of high alternating voltages, generation of impulse voltages, generation of impulse currents, tripping and control of impulse generators.
Unit IV: Measurement of High Voltages and Currents 05 Hours
Measurement of high direct current voltages, measurement of high alternating and impulse voltages, measurement of high direct, alternating and impulse currents, Cathode Ray Oscillographs for impulse voltage and current measurements, factor, partial discharge measurements. Unit V: Non-Destructive Testing 07 Hours
Measurement of direct current resistively, measurement of dielectric constant and loss.
Unit VI:High Voltage Testing08 HoursTesting of insulators and bushings, testing of isolators and circuit breakers, testing of cables, testing of transformers, testing of surge arresters, radio interference measurements.
Suggested Reading

1. M. S. Naidu and V. Kamaraju, "High Voltage Engineering, Tata Mc-Graw Hill

- 2. Subir Ray,' An Introduction to High Voltage Engineering' Prentice Hall of India.
- 3. E. Kuffel and W. S. Zacngal, High Voltage Engineering", Pergamon Press.
- 4. M. P. Chaurasia , "High Voltage Engineering", Khanna Publishers. 5. R. S. Jha, "High Voltage Engineering",
- DhanpatRai& sons.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam	Total Marks
(IA) 20	30	(ETE) 50	100

Basket- (Energy Engineering)

Name of The	Energy	Ass	essn	nent	8	and
Course	Audit					
Course Code	BTEE401	11				
Pre-requisite						
Co-requisite						
Anti-requisite						
			L	Т	Р	С
			3	0	0	3

Course Objectives:

- 1. To have an overview of energy audit.
- 2. To understand the need of energy assessment.

Course Outcomes

CO1	To prepare the students for successful career in the energy industry; energy regulation and management agencies; and in the academic and R &D institutions.
CO2	Toproducegraduatesstronginenergyresources, technologiesandmanagementfundamentals,an dcapablein addressing the present and potential future energy problems
CO3	To produce energy professionals, who are sensitive to, and well aware of, the energy issues and concerns ,and who can apply their specialized knowledge for the sustainable energy management.
CO4	Acquaintance with conservation of energy and its management.
CO5	Identify the source of conservation of energy and energy planning, and energy economics.
CO6	Know-How of energy efficient machinery systems, energy losses and their management

Text Book (s)

Albert Thumann, Handbook of energy engineering ,"AbeBooks ,1979

JamesWilsonBrownandShirleyHansen,,, InvestmentGradeEnergyAudit",Gordan &BreachScain Publishers, November 2000

Endreni, J., "Reliability modelling in Electric Power System" John Wiley, 1980.

Reference Book (s)

Roy Billinton and Ronald Allan Pitam: Reliability Evaluation of Power Systems, 1996

Wheel Wright and Makridakis: Forecasting methods and Applications, John Wiley, 1992.

Course Content:
Unit I: Energy Auditing
Introduction, Scope of Energy Audit, Types of Energy Audit, Detailed Energy Audit Methodology, Implementing Energy Efficiency Measures, Detailed Project Report (DPR), Measurement & Verification.
Unit II: Electrical System
Introduction, Main Components of Electrical System, Load Management, Power Factor, Electricity Tariff, Distribution Transformers, Voltage Drop Survey, Cable Losses, Inverter/UPS, Power Quality, Energy Auditing ApproachforElectricalDistributionSystemandTra nsformers,ENCONOpportunitiesinElectricalSyst em.
Unit III: Electrical Motors
Introduction, Typesof Motors, Selectionofan Electri cal Motor, Motor Loading, Energy Efficiency Motors , Power Factor Correction for Motors, Avoiding Idle Running of Motors, Efficient Belt Drives, Application of Variable Frequency Drive (VFD), Effect of Power Supply Quality on Motors
Unit IV :Pumping system-1
Introduction,PumpPerformanceCurves,SystemCu rve,PumpPerformanceAssessment,Flow,Balance, Control Valve Operation (Throtiling), By-pass Valve Operation, Optimum Pipe Sizing, Impeller Trimming, Reducing Number of Stages, Variable Speed Operation,.
Unit V: Pumping System-2
Energy Auditing & Approach for Pumping System, ENCON OpportunitiesinPumpingSystem,DemoofEnergyE fficiencyPracticesinPumpLaboratory Unit VI: Air Handling and Distribution System
7 lecture hours
Introduction, Ducting System Design, Fan Discharge and Inlet System, Filter Losses, Coil Losses, Fan Efficiency, ExcessAirFlow,ConstantAirVolume(CAV)versus VariableAirVolume(VAV),AirDistributionandBa lancing, Fresh Air Control, Energy Auditing Approach in Air Handling & Distribution System,

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
--------------------------------	---------------------------	---------------------------	----------------

20	30

50

100

Name of The	Utilization	of	El	ectri	cal
Course	Energy & Trac	ction	Sys	stem	
Course Code	BTEE5102				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 3. To develop the lighting schemes.
- 4. To develop the analytical skills for electric heating.

Course Outcomes

CO1	Understand with the process and
	application of electrical energy utilization
	system
CO2	Identify effective electrical system with
	various applications prospective.
CO3	Analyse effective control scheme with
	different electrical appliances.
CO4	Solve problems in the subject of utilization
	of electrical energy and traction system.
CO5	Design an effective control structure and
	save energy in utilization of electrical
	energy and traction system.
CO6	Understand the advancement in in traction
	system

Text Book (s)

1. H. Pratab. "Art & Science of Electric Energy's" Dhanpat Rai & Sons.

2. G.K. Dubey, "Fundamentals of electric drives" Narosa Publishing house

Reference Book (s)

1. Pratab."Modern electric traction" Dhanpat Rai & Sons. \square

2. C.L. Wadhwa,"Generation, Distribution and Utilization of Electrical Energy, "New Age International Publishers.

Course Content:

Unit I: ELECTRIC HEATINGAdvantage & methods of electric heating, resistance
heating, electric arc heating, induction heating,
dielectric heating.Unit II: ELECTRIC WELDING9 lecture
hours

Electric arc welding, electric resistance welding, electric welding control, electrolyte process: principle of electro deposition, laws of electrolysis, application of electrolysis.

Unit III: ILLUMINATION

10 lecture hours Various definition, laws of Illumination, requirement of good lighting, design of indoor lighting & outdoor lighting system, refrigeration system, domestic refrigerator, water cooler, types of air conditioning, window air conditioner.

Unit IV : ELECTRIC TRACTION – I

8 lecture hours

Types of electric traction, system of track electrification, traction mechanics-types of services, speed time curve and its simplification, average and schedule speeds, tractive effort specific energy consumption, mechanics of train movement,

coefficient of adhesion and its influence.

Unit V: ELECTRIC TRACTION – II 7 lecture hours

Salient features of traction drives, series-parallel control of dc traction drives (bridge traction) and energy saving, power electronic control of dc & ac traction drives, diesel electric traction. Unit VI: Recent Trends

Recent advancement in traction system

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTF)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The Power electronics application	
Course	in renewable energy
Course Code	BEE03T5010
Prerequisite	
Corequisite	
Antirequisite	
	L T P C
	3 0 0 3

Course Objectives:

To provide knowledge about various renewable energy technologies, their potential and applications Course Outcomes

Text Books:

1. Title Power Electronics Hand book Author Rashid .M. H Publisher Academic press Edition 2001 and Reprints

2. Title Non-conventional energy sources Author Rai. G.D Publisher Khanna publishes Edition 1993 and Reprints

3. Title Solar energy utilization Author Rai. G.D Publisher Khanna publishes Edition 1993 and Reprints

Reference Books:

1. Title Wind energy system Author Gray, L. Johnson Publisher prentice hall linc Edition 1995 and Reprints 161

2. Title Non-conventional Energy sources Author B.H.Khan Publisher Tata McGraw-hill Publishing Company, New Delhi Edition 2nd Edition

Unit I: Introduction :

Environmental aspects of electric energy conversion: impacts of renewable energy generation on environment (cost-GHG Emission) - Qualitative study of different renewable energy resources: Solar, wind, ocean, Biomass, Fuel cell, Hydrogen energy systems and hybrid renewable energy systems.

Unit II: Electrical Machines for Renewable Energy Conversion :

Review of reference theory fundamentals-principle of operation and analysis: IG, PMSG, SCIG and DFIG.

Unit III : Power Converters :

Solar: Block diagram of solar photo voltaic system -Principle of operation: line commutated converters (inversion-mode) - Boost and buck-boost convertersselection Of inverter, battery sizing, array sizing. Wind: three phase AC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers, PWM Inverters, Grid Interactive Inverters-matrix converters.

Unit IV : Analysis of Wind Energy Systems :

Stand alone operation of fixed and variable speed wind energy conversion systems and solar system-Grid connection Issues -Grid integrated PMSG and SCIG Based WECS Grid Integrated solar system

Unit V: Analysis of PV Systems

solar system-Grid connection Issues -Grid integrated, Wind and PV solar hybrid system

Unit VI: Hybrid Renewable Energy Systems :

Need for Hybrid SystemsRange and type of Hybrid systems- Case studies of Wind-PV Maximum Power Point Tracking (MPPT).

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of	The	Special Electr	rical	Mao	chine	es
Course						
Course Code	e	BTEE5202				
Prerequisite						
Corequisite						
Antirequisit	e					
			L	Т	Р	С
			3	0	0	3

Course Objectives:

- 3. To understand the various machines
- 4. To understand the concept of special electrical machines and applications

Course Outcomes

CO1	Apply the knowledge of Commutator
	motors and circuits analysis of FHP
	Universal Commutator motors
CO2	Make use of application of the BLDC
	Motors with industries and day to day life
CO3	Analysis the demanding and appropriate
	drive performance for the Stepper motor.
CO4	Analysis the numerical problems
	associated with FHP Synchronous Motors
CO5	Test and estimate the parameter of the
	Special machine. Analysis the demanding
	and appropriate drive performance for the
	specific purpose.
CO6	Test and estimate the parameter of the
	LIM.

Text Book (s)

1. P.C. Sen, "Principles of Electric Machines and Power Electronics", 2nd Edition, Wiley India Ltd. 2007

2. E. Openshaw Taylor, "The Performance and Design of AC Commutator Motors", Wheeler Publishing, 1997

3. R. Krishnan, "Switched Reluctance Motor Drives", 1st Edition, CRC Press. 2001

Unit I: FHP Universal Commutator motors:

Principle of operation and performance characteristics of universal commutator motor without and with compensating windings, phasor diagrams and expressions for power and torque, speed-torque characteristics with DC and AC excitations.

Unit II: Introduction to Brushless DC Motor Drives (BLDC)

Salient features of various permanent magnet
materials- B-H- Loop and demagnetization
characteristics, Comparison of BLDC Vs
conventional, BLDC Vs Synchronous motor,
BLDC Vs induction motor. Operating principle of
BLDC- Principle of hall sensor - unipolar BLDC
and Bi-polar BLDC.
Unit III: Stepper motors:
Introduction, Multi-stack variable-reluctance
stepping motors, Principles of operation, Aspects
of design, Single stack variable-reluctance stepping
motors, Hybrid stepping motors, Comparison of
motor types, design of drive circuits, torque/rotor
position characteristics.
Unit IV : Servomotors:
DC and AC servomotors, transfer function analysis,
Synchronous
Unit V: Switched Motor Reluctance Drives
Introduction, Poles, phase and windings, Static
torque production, Partition of energy and effects of
saturation, Dynamic torque production, Converter
circuits, Current regulation, Commutation, torque -
speed characteristics, Shaft position sensing.
Unit VI: Linear Induction motors
Basic principle of operation and types. Field
analysis & Propulsion force; equivalent circuit

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The Course	Electrical Design, Estimation and Energy Audit
Course Code	BEE02T4001
Prerequisite	
Corequisite	
Antirequisite	
	L T P C
	3 0 0 3

Energy Audit is the key to a systematic approach for decision-making in the area of energy management. The effective use of energy to maximize profits (minimize costs) and enhance competitive positions, it is necessary to conserve energy. Hence it is necessary to study energy auditing methods and energy saving opportunities in electrical system.

Course Objectives

On completion of the following units of syllabus contents, the students must be able to

- Draw conventional symbols for various electricalinstallations.
- To quote the relevant IE rules for a given electrical installation, earthing and clearance of service lines.
- Familiarize the types of wiring.
- List the points to be considered for selectionwiring.
- Determine the size of wire for internalwiring.
- Explain the necessity and types of earthing.
- Estimate the quantity of materials required forearthing.
- Differentiate between neutral and earthwire.
- Estimate the quantity of materials required for domestic and industrialwiring.
- Explain the concept and types of Energy of energyaudit.
- Explain the energy saving opportunities in Transformer, Induction motor, lighting and DGsystem.
- Explain the roll of power factor controller in energy savingsystem.
- Explain the roll of sensors in energy savingsystem.
- Explain the energy efficient technologies in electricalsystem.

Course Outcomes

CO1	Identification of different types of
	electrical symbols, need of earthing and
	various electrical wiring systems
CO2	Illustrate the estimation of components
	required for Industrial and Domestic
	application
CO3	Understand energy audit and energy
	management system
CO4	Identify the types of tariff that are benefit
	for consumers and methods of improving
	power factor
CO5	Understand different technologies used
	for Energy efficient Technologies in
	Electrical System

Text Books:

- 1. K.B.Raina& S.K.Battacharya, Electrical Design Estimating And Costing, New age International
- 2. General Aspect Of Energy Management And Energy Audit, Bureau of energy efficiency,

New Delhi

3. Energy Efficiency In Electrical Utilities, Bureau of energy efficiency, New Delhi

Reference books:

- 3. Surjit Singh, Electrical Design Estimating and Costing, Dhanpat Rai & Company
- 4. Surjit Singh, Electrical Engineering Design and Drawing, Dhanpat Rai & Company

Syllabus

Synadus				
Unit-I	System of Internal 8 Hours Wiring and Earthing			
Need of e	lectrical symbols – List of symbols –			
Priof stu	dy of important Indian Electricity			
Differ stu	ay of important indian Electricity			
	56 - Methods of representation for			
	agrams – Looping back system and			
	system and tree system of wiring -			
Types of	internal wiring – Service connection (
Overhead	and Underground) - Protection of			
	installation against overload, short			
	nd earth fault – protection against			
electric s	hock - Effects of electric shock -			
Recomme	ended first aid for electric shock -			
Treatmen	t for electric shock - Construction and			
	of ELCB – Overview of Busbar,			
U	and Cable tray.			
Necessity	– General requirements of Earthing –			
Earthing a	and Soil Resistivity – Earth electrodes			
- Method	s of earthing - Plate earthing - Pipe			
	- Rod earthing – Soil Resistivity –			
	of improving earth resistance - Size of			
	inuity conductor - Difference between			
	Neutral and Earth Wires. Safety signs showing type of PPE to be worn,			
	n Signs, Warning Signs, Mandatory visory or Safe ConditionSigns.			
Unit-II	Domestic and 8 Hours			
	Industrial Estimation			
	equirements of electrical installations			
	ential, Commercial and Industrial -			
Lighting	and power sub- circuits - Diversity			
factor for	sub circuits - Location of outlets,			
control s	witches, main board and distribution			
	Permissible voltage drops and size of			
	Steps to be followed in preparing			
	electrical estimate.			
	the quantity of material required in			
Electrical Installation for				
7. Smal	residential building/Flat			
	ry Lightingscheme			
	puter centre having 10 computers, a/c			
-	S, light and fan.			
	-			
	t Light service having 12 lamp			
lightf	nung			

	shop with one number of 3Φ , $15hp$		
induc	tionmotor.		
12. Small	Workshop with 3 or 4Machines.		
Unit-III	Energy Audit 8 Hours		
Definition	h, Energy audit- need, Types of energy		
audit, En	ergy management (audit) approach-		
Understar	ding energy costs, Bench marking,		
Energy p	erformance, Matching energy use to		
	ent, Maximizing system efficiencies,		
Optimizin	g the input energy requirements, Fuel		
and ene	ergy substitution, Energy audit		
Instrumen			
Unit-IV	Energy Management 8 Hours		
	of Electrical System		
Electricity	billing, Electrical load management		
and maxir	num demand control, Power factor		
	ent and its benefit, Selection and		
	capacitors, Performance assessment of		
PF capaci	tors, Distribution and transformer		
losses.			
Unit-V	Energy efficient 8 Hours		
	Technologies in		
	Electrical System		
Maximum	demand controllers, Automatic power		
	factor controllers, Energy efficient motors, Soft		
	starters with energy saver, Variable speed drives,		
	icient transformers, Electronic ballast,		
	Occupancy sensors, Energy efficient lighting		
	controls, Energy saving potential of each		
technology			

Basket-4 (IOT)

Name of	The	Automation	n and	l Ro	boti	cs
Course						
Course Code		BEE03T50	02			
Prerequisite		Control Sys	stem	S		
Co-requisite						
Anti-requisite						
		L	Т	Р	С	
			3	0	0	3

Course Objectives

1. To identify potential areas for automation and justify need for automation.

Course Outcomes

CO1	Select suitable major control components required to automate a process or an activity
CO2	Study the various parts of robots and fields of robotics.

CO3	Understand the fundamentals of					
	automated assembly systems					
CO4	Study the various kinematics and inverse					
	kinematics of robots.					
CO5	Study the control of robots for some					
	specific applications.					
CO6	Design real time robotics systems.					

Continuous Assessment Pattern

Internal Assessment	Mid Term Exam	End Term	Total Marks
(IA)	(MTE)	Exam	
		(ETE)	
50	-	50	100

Course Content:

Unit I: Introduction 8 Hours
Basic elements of an automated system, advanced automation functions, levels of automation, process industries versus discrete manufacturing industries, continuous versus discrete control, computer process control. Hardware components for automation and process control, sensors, actuators, analog to digital converters, digital to analog converters, input/output devices for discrete data.
Unit II: Automated Production lines 1 8 Hours
Fundamentals of automated production lines, application of automated production lines, analysis of transfer lines, automated assembly systems,
Unit III: Automated Production lines 2
Fundamentals of automated assembly systems, quantitative analysis of assembly systems, automatic identification methods, barcode technology, radio frequency identification, other AIDC technologies
Unit IV: Industrial Robotics 8 Hours
Robotic configuration, robot anatomy and related attributes, robot control systems, end effectors,

sensors in robotics, industrial robot applications, robot accuracy and repeatability, different types of robotics, various generations of robots, degrees of freedom – Asimov's laws of robotics dynamic stabilization of robots.

Unit V: Spatial descriptions and transformations8 Hours

Positions, orientations, and frames. Mappings: Changing descriptions from frame to frame. Operators: translations. rotations and transformations, transformation arithmetic transform equations, transformation of free vectors computational considerations, manipulator Kinematics, link description, linkconnection description, actuator space joint space and Cartesian space

Unit VI: Robot programming 8 Hours Introduction, levels of robot programming, requirements of robot programming language, problems pertaining to robot programming languages, offline programming systems, central issues in OLP systems, automating subtasks in OLP systems, simple programs on robot applications

Suggested Reading

- 1. Automation, Production systems, and computer integrated manufacturing-MikellP.Groover 3rd edition, Pearson 2009
- Industrial Robotics-Groover, Weiss, Nagel, McGraw Hill International, 2nd edition, 2012

School of Electrical, Electronics and Communication Engineering

Program: M. Tech VLSI Design

Scheme: 2019-2020

Curriculum

		Semes	ter 1						
Sl.	Course				Assessment Pattern				
No	Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1	MATH5001	Advanced Numerical & Statistical Methods	3	1	0	4	20	30	50
2	MVLS5020	Advanced Digital System Design		0	0	3	20	30	50
3	MVLS5021	Advanced VLSI Design	3	0	0	3	20	30	50
4	MVLS5004	Analog Filter Design	3	0	0	3	20	30	50
5	MVLS****	Program Elective 1	3	0	0	3	20	30	50
6	MVLS5019	Advanced Digital System Design Lab	0	0	2	1	50	-	50
7	MVLS5022	Advance VLSI Design Lab	0	0	2	1	50	-	50
		Total	15	1	4	18			
					-			I	
		Semes	ter II						
Sl	Course	Name of the Course					Assessment Pattern		
No	Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1	CENG5001	Professional and Communication skills	0	0	4	2	20	30	50
2	MVLS5007	DSP for VLSI	3	0	0	3	20	30	50
3	MVLS5008	VLSI Testing and fault Tolerance	3	0	0	3	20	30	50
4	MVLS5009	ASIC Design and FPGAs	3	0	0	3	20	30	50
5	MVLS****	Program Elective 2	3	0	0	3	20	30	50
6	MVLS****	Program Elective 3	3	0	0	3	20	30	50
7	MVLS5012	ASIC Design Lab	0	0	2	1	50	-	50
8	MVLS5013	DSP for VLSI Lab	0	0	2	1	50	-	50
		Total	15	0	8	19			
SI	Course	Semest	er III				A 22022-0-0-0	Dottour	
No	Course Code	Name of the Course	L	T P C		Assessment IA	MTE	ETE	
1	MVLS6001	Embedded System Design	<u> </u>	1 0	r	<u> </u>	20	<u>30</u>	<u>ETE</u> 50
2	MVLS****	Program Elective 4	3	0	0	3	20	30	<u> </u>
3	MVLS****	Program Elective 5	3	0	0	3	20	<u> </u>	50
4	MVLS6004	Embedded System Lab	0	0	2	<u> </u>	50	-	<u> </u>
5	MVLS9997	Research Seminar	0	0	$\frac{2}{2}$	1	50	-	50
6	MVLS9998	Capstone Design- 1	0	0	10	5	50	-	50
		Total	9	0	14	16		-	20
Semester IV									
SI	Course	Name of the Course	<u> </u>		-	<i></i>	Assessment	1	
No	Code		L	T	P	C	IA	MTE	ETE
1	MVLS9999	Capstone Design- 2	0	0	30	15	50	-	50
1		Total	0	0	30	15			

Programme Elective

Sl. No.	Course Code	Course Title		Т	Р	С
1	MVLS5003	Advanced VLSI Technology 3		0	0	3
2	MVLS5005	MOS Device Modelling	3	0	0	3
3	MVLS5010	Advanced Digital VLSI Design	3	0	0	3
3	MVLS5011	Low power VLSI Design	3	0	0	3
4	MVLS5014	Sensor Technology and MEMS	3	0	0	3
7	MVLS5015	Nano-Electronics	3	0	0	3
8	MVLS5016	Design of Semiconductor Memories	3	0	0	3
9	MVLS5017	Advanced Analog VLSI Design	3	0	0	3
10	MVLS5018	Reconfigurable Computing	3	0	0	3
11	MVLS6002	Physical Design Automation	3	0	0	3
12	MVLS6003	System-on-Chip Design	3	0	0	3
13	MVLS6005	Packaging and Interconnect Analysis	3	0	0	3
14	MVLS6006	EMI and EMC in System Design	3	0	0	3
15	MVLS6007	DSP Architecture	3	0	0	3
16	MVLS6008	Mixed Signal IC Design	3	0	0	3

Detailed Syllabus

Name of The Course	Advanced Numerical & Statistical Methods				
Course Code	MATH5001				
Prerequisite	Matrices and Calculus				
		L	Т	Р	С
		3	1	0	4

Course Objectives: To introduce the applications and trade off of various advanced methods used to solve a wide variety of engineering problems dealing with algebraic and differential equation that are often encountered in engineering and cannot be solved by analytical methods along with the introduction of design of experiment.

Course Outcomes

CO1	Do numerical integration for various problems
CO2	Do interpolation using various interpolation techniques.
CO3	Understand the Ordinary & Partial Differential equations and their solutions.
CO4	Do numerical integration
CO5	Use wavelets and their applications

Text Book (s)

- 1. Numerical Method : E. Balagurusamy , Tata McGraw Hill Publication.
- 2. Applied Numerical Analysis : Curtis F. Gerald and Patrick O. Wheatley Pearson Education Ltd.

Reference Book (s)

- 1. Numerical Methods for Scientific and Engineering computation: M.K Jain, S.R.K Iyengar and R.K Jain, New age International Publishers.
- 2. Statistical Methods : S.P. Gupta, Sultan Chand and Sons
- 3. Introduction to Mathematical Statistics: A.M. Mood, F. Graybil and D.C.Boes, Mc Graw Hill Publication.

Unit-1	System of Equations	8	
		hours	
Solution	of system of linear equations- Direct Methods- Gauss elimination - Pivoting	, Partial	
and Tot	al Pivoting, Triangular factorization method using Crout LU decomposition,		
Cholesk	y method, Iterative Method- Gauss-Seidel and Jacobi method, ill conditioned	matrix	
Solution	of system of non linear equation- Newton Raphson and Modified Newton Ra	phson	
Method	Iterative methods.		
Unit-2	Interpolation and Approximation 8		
		hours	
Lagrang	ge, Spline and Hermite interpolation, Approximations, Error of approximatio	n,	
Norms f	or discrete and continuous data, Least square approximation.		
Unit-3	Numerical Integration	8	
		hours	
Newton	Newton Cotes closed Quadrature, Gauss Legendre Quadrature, Multiple Integration.		
Unit-4	Numerical Solution of Differential Equations	8	
		hours	

Finite Difference Schemes, Numerical solution of Ordinary differential equation using Modified Euler's method, Runge-Kutta method of 2nd, 3rd and 4th orders, Predictor-Corrector method, Solution of Laplace's and Poisson's equations by Liebmann's method, Solution of one dimensional time dependent heat flow.

Unit-5	Probability and statistics	8	
		hours	
Review	of concept of probability, Random Variables, Continuous and discrete dist	ribution	
function	function, moments and moments generating functions, Binomial, Poisson, Negative Binomial,		
Geometr	Geometric and Hyper-geometric Distributions, Uniform, Normal, Exponential, Gamma and		
Beta dist	Beta distributions. Point and Interval estimation, Testing of Hypothesis (t-test and chi square		
test), An	test), Analysis of variance and Introduction of Design of experiments.		

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Advanced Digital System Design				
Course Code	MVLS5020				
Prerequisite	Digital Electronics				
		L	Т	Р	С
		3	0	0	3

Course Objectives:.

This course describes about the logic design techniques using simple combinational and sequential circuits to FPGAs, CPLDs.

Course Outcomes

CO1	Understand the Basics of MOS transistor Theory
CO2	Understand the Device Modeling techniques using CAD and analyze the parameters
	which degrades the functionality of MOS Devices
CO3	Design Complex CMOS Circuits
CO4	Understand and design various combinational and Sequential Circuits using CMOS
	Transistors
CO5	Perform Data Path Operations using CMOS Circuits

Text Book (s):

- 1. T.R. Padmanabhan, B Bala Tripura Sundari, Design Through Verilog HDL, Wiley 2009.
- 2. Zainalabdien Navabi, Verliog Digital System Design, TMH, 2nd Edition.
- 3. Fundamentals of Digital Logic with Verilog Design Stephen Brown, Zvonkoc Vranesic, TMH, 2nd Edition.

Reference Book (s)

1. Advanced Digital Logic Design using Verilog, State Machines & Synthesis for FPGA - Sunggu Lee, Cengage Learning, 2012.

- 2. Verilog HDL Samir Palnitkar, 2nd Edition, Pearson Education, 2009.
- 3. Advanced Digital Design with Verilog HDL Michel D. Ciletti, PHI,2009.

Unit-1 Overview of Verilog HDL	10 hours	
Introduction to VerilLog HDL: Verilog as HDL, Levels of Design Description, Concurrency,		
Simulation and Synthesis, Function Verification, System Tasks, Programming Language		
Interface, Module, Simulation and Synthesis Tools		
Language Constructs and Conventions: Introduction, Keywords, Identifiers,	White Space,	
Characters, Comments, Numbers, Strings, Logic Values, Strengths, Data T	ypes, Scalars	
and Vectors, Parameters, Operators.		
Unit-2 Modeling Concepts -I	8 hours	
Gate Level Modeling: Introduction, AND Gate Primitive, Module Structure,	Other Gate	
Primitives, Illustrative Examples, Tristate Gates, Array of Instances of Prim		
of Flip-Flops with Gate Primitives, Delay, Strengths and Construction Resolution	<i>,</i> 0	
Types, Design of Basic Circuit.		
Types, Design of Dusie en cuit		
Modeling at Dataflow Level: Introduction, Continuous Assignment Structur	e Delavs	
and Continuous Assignments, Assignment to Vector, Operators.	c, Delays	
and Continuous Assignments, Assignment to vector, Operators.		
	I	
Unit-3 Modeling Concepts -II	8 hours	
Behavioural Modeling: Introduction, Operations and Assignments, Function	al Bi furcation,	
'Initial' Construct, Assignments with Delays, 'Wait Construct, Multiple Alwa	ays Block,	
Designs at Behavioural Level, Blocking and Non-Blocking Assignments, The	'Case'	
Statement, Simulation Flow, 'If' an 'if-Else' Constructs, 'Assign- De-Assign'	Constructs,	
'Repeat' Construct, for loop, 'The Disable' Construct, 'While Loop', Forever Loop, Parallel		
Blocks, Force-Release, Construct, Event.	-	
Unit-4 Modeling Concepts -III	8 hours	
Switch Level Modeling: Basic Transistor Switches, CMOS Switches, Bi Direct	ctional	
Gates, Time Delays with Switch Primitives, Instantiation with 'Strengths' an		
Strength Contention with Trireg Nets.		
System Tasks, Functions and Compiler Directives: Parameters, Path Delays,	Module	
Parameters. System Tasks and Functions, File Based Tasks and Functions, C		
Directives, Hierarchical Access, User Defined Primitives	, omputer	
Unit-5 Sequential Circuits and Test-benches	8 hours	
Sequential en cuits and rest beneficis	0 110013	
Sequential Circuit Description: Sequential Models - Feedback Model, Capac	itive Model	
Implicit Model, Basic Memory Components, Functional Register, Static Machine Coding,		
Sequential Synthesis.	nne Counig,	
Components Test and Verifications Test Darch Combinational Circuits Tes	sting	
Components Test and Verification: Test Bench - Combinational Circuits Testing,		
Sequential Circuit Testing, Test Bench Techniques, Design Verification, Assertion		
Verification.		

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Advanced VLSI Design		
Course Code	MVLS5021		
Prerequisite	Basic knowledge of semiconductors and its devices		
		Р	С
	3 0	0	3

Course Objectives:.

This course is designed to impart the knowledge of VLSI designing methodologies. The mathematical approach in dealing with the designing aspects enables the students to understand the subject in a better way.

Course Outcomes

CO1	Understand the Basics of MOS and Bipolar Transistor Amplifiers
CO2	Illustrate current mirrors and analyse the performance of various amplifiers with
	active loads
CO3	Desaign of Various MOS transistor powered operational Amplifiers
CO4	Understand and design various oscillators and Conveter circuits using CMOS
	Transistors
CO5	Understand the concepts of Switched Capacitor Filters

Text Book (s)

- 1. N. Weste and K. Eshranghian, "Principles of CMOS VLSI Design", Addison Wesley, 1998.
- 2. Jacob Backer, Harry W. Li and David E. Boyce, "CMOS Circuit Design, Layout and Simulation ", Prentice Hall of India, 1998..
- 3. L.Glaser and D. Dobberpuhl, "The Design and Analysis of VLSI, Circuits", Addison Wesley 1993.

Reference Book (s)

- 1. Randel & Geiger, "VLSI Analog and Digital Circuit Design Techniques" McGraw-Hill,1990.
- 2. William M. Penny, Lillian Lau, "MOS Integrated Circuits- Theory, Fabrication, Design

and System Applications of MOS LSI", Van Nostrand Reihold Company..

3. Sung Ms Kang, Yusuf Lablebici, "CMOS Digital Integrated Circuits Analysis & Design",

Tata Mc-Graw Hill.

Unit-1	MOSFETs Fundamentals	9 hours	
Introduc	Introduction To MOS Circuits: MOS Transistors, MOS Transistor Switches, CMOS		
Logic, C	Logic, Circuit and System Representations, MOS Transistor Theory - Introduction		
MOS Device Design Equations, The Complementary CMOS Inverter-DC			
Charact	Characteristics, Static Load MOS Inverters, The Differential Inverter, The		
Transmission Gate, The Tri State Inverter, Bipolar Devices			
Unit-2	Circuit Characterization And Performance Estimation	8 hours	

Resistance Estimation Capacitance Estimation, Inductance, Switching Characteristics CMOSGate Transistor Sizing, Power Dissipation, Sizing Routing Conductors, Charge Sharing, Design Margining, and Reliability.

Unit-3 CMOS Circuits	8 hours	
CMOS Circuit And Logic Design: CMOS Logic Gate Design, Basic Physical Design		
of Simple Gate, CMOS Logic Structures, Clocking Strategies, I/O Structures, Low		
Power Design. Basic operation of CMOS inverter, detailed analysis of its noise marg	gin	
propagation delay, power dissipation concept of layout & area, layout optimization	& area	
estimation for a single as well as combinational logic circuits.		
Unit-4 Systems Design And Design Method	8 hours	
Design Strategies CMOS Chip Design Options, Design Methods, Design Capture To	ools,	
Design Verification Tools, Design Economics, Data Sheets, CMOS Testing - Manufa	acturing	
Test Principles, Design Strategies for Test, Chip Level Test Techniques, System Lev	el Test	
Techniques, Layout Design for Improved Testability.		
Unit-5 CMOS Sub System Design 8 hours		
Data Path Operations-Addition/Subtraction, Parity Generators, Comparators, Zero/One		
Detectors, Binary Counters, ALUs, Multiplication, Shifters, Memory Elements, Control-FSM,		
Control Logic Implementation.		

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Analog Filter Design				
Course Code	MVLS5004				
Prerequisite	Analog Signal Processing				
		L	Т	Р	С
		3	0	0	3

Course Objectives: Analog circuits are essential in interfacing and building amplifiers and low

pass filters. This course introduces design methods for CMOS an

alog filter circuit.

Course Outcomes

CO1	Acquire a basic knowledge of filters and their characteristics.
CO2	Develop the ability to analyze and design analog filter circuits.
CO3	Learn noise modeling of CMOS analog circuits
CO4	Analysis of Butterworth and Chebyshev filters.
CO5	Design analog filter using recent active building block(CFOA, OTRA, CDTA, etc.)

Text Book (s)

- 1. Sedra and K. C. Smith, "Microelectronic Circuits", Oxford.
- 2. G. Daryanani, "Principles of Active Network Synthesis & Design", John Wiley & Sons **Reference Book (s)**
 - 1. Design of Analog Filters, Van Valkenburg, Oxford.

TT •4 4		0.1
Unit-1	Basic Concepts	8 hours
	Types, Specifications and Transfer functions; Circuit elements and scaling	; OP-AMP:
integrat	pr model & basic circuits; Bode plots.	
Unit-2	Design and analysis of First & Second order Filters	8 hours
First or	der: Bilinear transfer functions, Passive Realization, Active realization,	Realization
with Boo	le plots; Second order: Design parameters (ω and Q), Second order circuit	
Unit-3	Synthesis Techniques	8 hours
Biquad	Topology: Tow Thomas, KHN, Sallen-Key, Single Amplifier Biquad usin	ng Multiple
feedback	x Topology; Inductance Simulation, General impedance converter (GIC) a	nd FDNR.
Unit-4	Approximation Theory	8 hours
Butterw	orth: Ideal low pass filter, Butterworth response & pole locations, low	pass filter
specifica	tions; Chebyshev: Chebyshev polynomial, magnitude response, location of	Chebyshev
poles.		
Unit-5	Study of Filter building blocks & recent trends	8 hours
Current	mode building blocks and tunable filters using OTA, Current conveyors (CCI, CCII),
CFOA,	OTRA etc. and recent trends.	

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	PROFESSIONAL AND COMMUNICATION SKILL				
Course Code	CENG5001				
Prerequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives:.

To develop the professional and communication skills of learners in a technical environment.

To enable the students to acquire functional and technical writing skills.

To acquire state-of-the-art presentation skills in order to present technical topics to both technical and non-technical audience.

Course Outcomes

CO1	The learners will be able to exhibit their language proficiency and skill in <i>Describing</i>
	Technology.
CO2	The learners will be able to exhibit their language proficiency and skill in
	Investigating and designing using Technology.
CO3	Exhibit their language proficiency and skill in Technical Writing and Syntax.
CO4	Exhibit their language proficiency and skill in Technical Resume and Company
	Profile Presentation.
CO5	Exhibit their language proficiency and skill in Pie chart, Bar chart, Line graphs:
	analysis and interpretation

Text Books and Softwares:

- 1. English Vocabulary in Use Advanced, McCarthy & Felicity, CUP, 2003
- 2. Sky Pronunciation CD-ROM
- 3. Cambridge Advanced Learner's Dictionary CD-ROM

4. English Master : Grammar

Reference Book (s)

- Writing, Researching, Communicating, Keith et al, Tata McGraw-Hill, 1989
 Advanced English Grammar, Martin, CUP, 2006

Course Content:

Unit-1 Basics of	f Communication	8 hours
Functional Language	Basic structures- Tense agreement, Prepositional phrases	
	Techno-words : Basic Concepts 62, 63	
	Pronunciation : sounds of syllables: Past tense & plural endir	igs
Technical Expression	Organizational techniques in technical writing	
_	Guided writing: Paragraph Writing, Note Making	
Presentation Skills	Techniques of presentation (general topic: speech without vis	sual aids)
	Listening to speeches and comprehending	
Graphical Skills	Flow chart: Process and Functional description	
Unit-2		8 hours
Functional Language	Basic structures- Voice, Conditionals	
	Techno-words : Basic Concepts 64,65,67	
	Pronunciation : Word Stress: two syllable words	
Technical Expression	Mechanics of Technical Writing and Syntax	
	Guided writing: Letter and email	
Presentation Skills	Interpersonal Communication Skills	
	Writing techniques for Power point presentation, Group Dise	cussion
Graphical Skills	Technical Illustrations and Instructions	
Unit-3		8 hours
Functional Language	Basic structures- Modal Verbs and Phrasal verbs	
	Techno-words : Basic Concepts 68,69,70,71	
	Pronunciation : Word Stress: compound words	
Technical Expression	Mechanics of Technical Writing and Syntax	
	Guided writing: Technical Description	
Presentation Skills	Career advancement: Technical Resume and Company Profi	le
	Presentation and Group Discussion	
Graphical Skills	Pie chart, Bar chart, Line graphs: analysis and interpretation	
Unit-4		8 hours
Functional Language	Basic structures- Modal Verbs and Phrasal verbs	1 07
	Techno-words : Basic Concepts 72,73,74, Functional vocabu	llary 87
	Pronunciation : Sentence Stress	
Technical Expression	Guided and Free writing: Abstract and Technical articles	
Presentation Skills	Nuances of Presentation to a Technical audience	
Graphical Skills	Oral Presentation of graphical representation	

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	DSP for VLSI				
Course Code	MVLS5007				
Prerequisite	DSP				
		L	Т	Р	С
		3	0	0	3

Course Objectives:

To design and analysis of DSP systems at chip level design

Design the different digital filters with efficient ways using VLSI.

Course Outcomes

CO1	To understand theory of different filters and algorithms
CO2	understand theory of multirate DSP, solve numerical problems and write algorithms
CO3	understand theory of prediction and solution of normal equations
CO4	know applications of DSP at block level.
CO5	understand theory of adaptive filters and algorithms

Text Book (s)

1. Parhi, K.K., VLSI Digital Signal Processing Systems: Design and Implementation, John Wiley (2007).

2. Oppenheim, A.V. and Schafer, R.W., Discrete-Time Signal Processing, Prentice Hall (2009) 2nd ed

Reference Book (s)

1. Mitra, S.K., Digital Signal Processing. A Computer Based Approach, McGraw Hill (2007)3rd ed.

2. Wanhammar, L., DSP Integrated Circuits, Academic Press (1999).2005, ISBN: 978-0131543188.

Unit-1 Introduction to DSP Systems	8 hours			
Introduction to DSP Systems, Iteration bound, Data Flow graphs (DFGs) representation,				
Loop Bound, Iteration rate, Critical loop, Critical path, Area-Speed-Power trade-o	ffs,			
Algorithms for computing iteration bound, Pipelining of FIR Digital Filters, Paralle	el			
Processing, Pipelining and Parallel Processing for low power				
Unit-2 Algorithmic Transformations	8 hours			
Retiming Definitions and properties, Retiming Techniques, Clock period minimization	tion,			
Unfolding, An algorithm for unfolding, Critical path, Applications of unfolding, Sa	mple			
period reduction, Folding, Folding order, Folding Factor, register minimization tec	hniques,			
register minimization in folded architecture, Forward Backward Register Allocation	n			
technique, folding of multi-rate systems, Folding Bi-quad filters, Retiming for foldi	technique, folding of multi-rate systems, Folding Bi-quad filters, Retiming for folding.			
Unit-3 Systolic Architecture Design and Fast Convolution	8 hours			
Unit-3Systolic Architecture Design and Fast ConvolutionIntroduction, system array design methodology, FIR systolic arrays, , Systolic Design				
v 8	gn for			
Introduction, system array design methodology, FIR systolic arrays, , Systolic Desig	gn for			
Introduction, system array design methodology, FIR systolic arrays, , Systolic Designation space representations containing delays Systolic architecture design methodology, I	gn for Design			
Introduction, system array design methodology, FIR systolic arrays, , Systolic Designation space representations containing delays Systolic architecture design methodology, I examples of systolic architectures, selection of scheduling vector, matrix-matrix	gn for Design -Toom			
Introduction, system array design methodology, FIR systolic arrays, , Systolic Designspace representations containing delays Systolic architecture design methodology, I examples of systolic architectures, selection of scheduling vector, matrix-matrix multiplication and 2-D systolic array design, Hardware Utilization efficiency, Cook	gn for Design -Toom			
Introduction, system array design methodology, FIR systolic arrays, , Systolic Designspace representations containing delays Systolic architecture design methodology, I examples of systolic architectures, selection of scheduling vector, matrix-matrix multiplication and 2-D systolic array design, Hardware Utilization efficiency, Cook Algorithm, Wniograd Algorithm, Iterated Convolution, Cyclic Convolution, Design	gn for Design -Toom			
Introduction, system array design methodology, FIR systolic arrays, , Systolic Designspace representations containing delays Systolic architecture design methodology, I examples of systolic architectures, selection of scheduling vector, matrix-matrix multiplication and 2-D systolic array design, Hardware Utilization efficiency, Cook Algorithm, Wniograd Algorithm, Iterated Convolution, Cyclic Convolution, Design convolution algorithm by inspection.	gn for Design - Toom 1 of fast 8 hours			
Introduction, system array design methodology, FIR systolic arrays, , Systolic Designspace representations containing delays Systolic architecture design methodology, I examples of systolic architectures, selection of scheduling vector, matrix-matrix multiplication and 2-D systolic array design, Hardware Utilization efficiency, Cook Algorithm, Wniograd Algorithm, Iterated Convolution, Cyclic Convolution, Design convolution algorithm by inspection. Unit-4 Algorithm Strength Reduction in filter	gn for Design - Toom 1 of fast 8 hours			

Introduction, pipelining in 1st order IIR digital filters, pipelining in higher order IIR digital filters, parallel processing for IIR filters, combined pipelining and parallel processing for IIR filters, low power IIR Filter Design using pipelining and parallel processing, pipelined adaptive digital filters.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	VLSI Testing and Fault Tolerance				
Course Code	MVLS5008				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives: This course deals with basics of testing and fault diagnosis in IC design. The combinational and sequential circuits are tested with various test patterns. Self checking circuits and algorithms are also discussed.

Course Outcomes

CO1	Understand various testing techniques.
CO2	Various physical faults and their modelling
CO3	Various self test circuits and test algorithms
CO4	Know fault diagnosis methods for combinational and sequential circuits
CO5	Verify increasingly complex designs more efficiently and effectively.

Unit-1	Physical Fault Modeling And Basics Of Testing	8 hours			
Physical Faults and their modelling, Stuck at Faults, Bridging Faults, Fault collapsing, Fault					
Simulati	on, Deductive, Parallel, and Concurrent Fault Simulation, Introduction to	Testing			
Unit-2	Test Generation For Combinational And Sequential Circuits	8 hours			
Determi	nistic and Weighted Random Test Pattern Generation, Test generation for				
combina	tional logic circuits, Testable combinational logic circuit design, Test gener	ation for			
sequenti	al circuits, design of testable sequential circuits.				
Unit-3	Design For Testability	8 hours			
Design f	or Testability, Ad-hoc design, Generic scan based design, Classical scan bas	ed design			
,System	level DFT approaches, Time Frame Expansion, Controllability and Observ	ability			
Scan De	sign, Boundary Scan for Board Level Testing	-			
Unit-4	Self Test And Test Algorithms	8 hours			
Built-In	Built-In Self Test and Totally Self checking circuits, Test pattern generation for BIST,				
Circular	BIST, BIST Architectures, Testable Memory Design -Permanent, Intermit	ttent and			
Pattern	Sensitive Faults, Marching Tests, Test algorithms , Test generation for Eml	oedded			
RAMs.					
Unit-5	Fault Diagnosis	8 hours			
Logic Level Diagnosis, Diagnosis by UUT reduction, Fault Diagnosis for Combinational					
Circuits, Self-checking design, System Level Diagnosis, Concept of Redundancy, Spatial					
Redunda	ancy, Time Redundancy, Error Correction Codes, Reconfiguration Technic	lues,			
Yield M	odelling, Reliability and effective area utilization.				

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	ASIC Design and FPGA				
Course Code	MVLS5009				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives: This course deals with the concepts of ASIC design, ASIC Construction and design using Xilinx

Course Outcomes

CO1	Define the basic concepts of ASIC design and Verilog HDL
CO2	Express the details of programmable ASICs and FPGAs technologies from ACTEL,
	ALTERA and XILINX
CO3	Practice writing the Dataflow and Behavioral models of digital circuits for simulation
	and synthesis using ASICs and FPGAs
CO4	Testing and Verification of Register Transfer Level (RTL) models of Digital Circuits
	using ASICs and FPGAs.
CO5	Simulate and Synthesize using Xilinx family FPGA

Text Book (s):

1. M.J.S .Smith, - " Application - Specific Integrated Circuits " - Addison - Wesley

Longman Inc., 1997

 R. B. Reese, M A Thornton, "Introduction to Logic Syntehsis Using Verilog HDL," Morgan & Claypool Publishers, 2006

Reference Book (s)

- 1. Skahill, Kevin," VHDL for Programmable Logic", Addison-Wesley, 1996
- 2. John F. Wakherly, "Digital Design: Principles and Practices", 2nd Edn 1994,

Prentice Hall International Edn

3. Charles W. Mckay, "Digital Circuits a proportion for microprocessors", Prentice Hall International Edition.

Unit-1	Introduction To ASIC and HDL	8 hours		
Introduction To ASICS, CMOS Logic And ASIC Library Design, Types of ASICs - Design flow -				
CMOS t	CMOS transistors CMOS Design rules - Combinational Logic Cell – Sequential logic cell - Data			
path log	path logic cell - Transistors as Resistors - Transistor Parasitic Capacitance- Logical effort -			
Library	Library cell design - Library architecture.			
Review of	f VHDL/Verilog: Entities and architectures			
	-			

Unit-2 Programmabl	e ASICS	8 hours		
Programmable Asics, Programmable ASIC Logic Cells And Programmable ASIC I/O Cells				
Anti fuse - static RAM -	EPROM and EEPROM technology - PRE	P benchmarks - Actel ACT -		
Xilinx LCA - Altera FL	EX - Altera MAX DC & AC inputs and ou	tputs -		
Clock & Power inputs -	Xilinx I/O blocks			
Unit-3		8 hours		
Programmabl	e ASIC Interconnect & Software			
Programmable ASIC In	terconnect, Programmable ASIC Design S	oftware And Low		
Level Design Entry Acte	el ACT -Xilinx LCA - Xilinx EPLD - Altera	MAX 5000 and 7000 - Altera		
MAX 9000				
- Altera FLEX - Design	systems - Logic Synthesis - Half gate ASIC	-Schematic entry -		
Low level design langua	ge - PLA tools - EDIF- CFI design represented by the second s	ntation		
Unit-4 ASIC Constru	ction & FPGA partitioning	8 hours		
ASIC Construction, Flo	or Planning, Placement And Routing,Syste	em partition - FPGA		
partitioning - partitionin	ng methods - floor planning - placement - p	ohysical design flow - global		
routing - detailed routin	g - special routing -circuit extraction - DR	С.		
Unit-5 Design using X	Kilinx	8 hours		
Design using Xilinx fam	ily FPGA			

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Embedded Systems Design				
Course Code	MVLS6001				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

This course deals introduction to Embedded Computing, embedded Processors, RTOS Design and Simulation.

Course Outcomes

CO1	understand the basic of Embedded System Design.
CO2	visualize the role of CISC & amp; RISC in processor operation.
CO3	differentiate between embedded processor and other general-purpose processors and
	how to use them in specific application
CO4	understand RTOS – basics and relevance in embedded system.
CO5	list Issues involved in embedded system design

Text Book (s)

- 1. Wayne Wolf, "Computers as Components: Principles of Embedded Computing System Design", Morgan Kaufman Publishers.
- 2. Jane.W.S. Liu, "Real-Time systems", Pearson Education Asia.
- 3. Heath, S., Embedded Systems Design, Elsevier Science (2003).

Reference Book (s)

1. C. M. Krishna and K. G. Shin, "Real-Time Systems", McGraw-Hill, 1997

- 2. Frank Vahid and Tony Givargis, "Embedded System Design: A Unified Hardware/Software Introduction", John Wiley & Sons.
- 3. Fisher, J.A., Faraboschi, P. and Young, C., Embedded Computing A VLIW
- 4. Approach to Architecture, Compilers and Tools, Morgan Kaufman (2005).

Course Content:

Unit-1 Embedded Processing	8 hours	
Introduction to Embedded Computing, Difference between Embedded and General-		
Computing, Characterizing Embedded Computing, Design Philosophies, RISC, CISC		
versus superscalar, VLIW versus DSP Processors, Role of the Compiler, Architectur		
structures, The data path, Registers and Clusters, Memory Architecture, Branch arc	,	
Speculation and prediction, Prediction in the embedded domain, Register File Design	ı, Pipeline	
Design, the control unit, control registers		
Unit-2 Embedded Processors	8 hours	
Embedded Computers, Characteristics of Embedded Computing Applications, and C		
in Embedded Computing system design. ARM architecture, Embedded Cores, Soft a		
Cores, Architecture of Configurable Microblaze soft core, Instruction set, Stacks and	l	
Subroutines, Microblaze Assembly Programming, Input-Output interfacing, GPIO,		
interfacing, Peripherals, DDR Memory, SDRAM, Microblaze interrupts, Timers, Ex	ceptions,	
Bus Interfacing, DMA, On-chip Peripheral bus (OPB), OPB Arbitration, OPB DMA		
Unit-3 Networks	8 hours	
Distributed Embedded Architecture- Hardware and Software Architectures, Networ	ks for	
embedded systems- I2C, CAN Bus, SHARC link supports, Ethernet, Myrinet, Intern	et,	
Network-Based design- Communication Analysis, system performance Analysis, Har	dware	
platform design, Allocation and scheduling, Design Example: Elevator Controller.		
Unit-4 RTOS and Application Design	8 hours	
Programming embedded systems in assembly and C – Meeting real time constraints	–Multi-state	
systems and function sequences. Embedded software development tools -Emulators	and	
debuggers. Embedded Matlab, Embedded JAVA, Embedded C extensions, Real time	operating	
systems, Embedded RTOS, Real time process scheduling, structure of real time oper-	ating	
system, Memory management in Embedded operating system. File systems in Embed	lded	
devices, Different types of locks, Semaphores, Application studies with Vxworks, Mo	ntavista	
Linux etc.		
Unit-5 System Design Techniques and Simulation	8 hours	
Design Methodologies, Requirement Analysis, Specification, System Analysis and A		
Design, Quality Assurance. System-on-a-Chip (SoC), IP Blocks and Design Reuse, Processor		
Cores and SoC, Non-programmable accelerators, reconfigurable logic, multiprocessing on a chip,		
symmetric multiprocessing, heterogeneous multiprocessing, use of simulators,		
Loaders, Linkers, locators, assemblers, Libraries, post run optimizer, debugger	rs, profiling	
techniques, binary utilities, linker script, system simulation.		

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Advanced VLSI Technology				
Course Code	MVLS5003				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:.

A course in VLSI semiconductor devices, to give knowledge about modern CMOS technology, crystal growth, fabrication, and basic properties of silicon wafers. It will focus on lithography, thermal oxidation, (Si/Si)2, interface, dopant diffusion, ion implantation, thin film deposition, etching, and back-end technology

Course Outcomes

CO1	Understand various IC fabrication techniques.
CO2	Have knowledge of fabrication of various semiconductor components.
CO3	Understand fundamentals of different deposition techniques for thin film deposition.
CO4	Learn basics of lithography and application of different lithographic technologies in
	IC fabrication processes.
CO5	Understand etching and metallization process and its significance in IC fabrication
	process.

Text Book (s)

1. W. Wolf, "Modern VLSI design", 4th Edition, PHI Learning, 2009, ISBN 9788120338241.

2. S.M.Sze, "VLSI technology", 2nd Edition, Tata Mc Graw Hill Education, 2003, ISBN 9780070582910

Reference Book (s)

Douglas Pucknell, "Basic VLSI design", 3rd Edition, PHI Learning, 2011, ISBN 9788120309869 1.

List 1 IC Falsier from Taska also in	01		
Unit-1 IC Fabrication Technologies	8 hours		
Process steps in IC fabrication Crystal growth and wafer preparation- Czochrals	-		
apparatus- silicon shaping, slicing and polishing- Diffusion of impurities- physical	l		
mechanism- Fick's I and II law of diffusion- Diffusion profiles- complementary (e	rfc) error		
function- Gaussian profile- Ion implantation- Annealing process- Oxidation proce	ess-		
Lithography- Photolithography, Fine line lithography, electron beam and x-ray li	thography-		
Chemical vapour deposition- epitaxial growth- reactors- metallisation- patterning	g- wire		
bonding and packaging – Comparison.			
Unit-2 Fabrication of Semiconductor Devices	8 hours		
Monolithic components Isolation of components- junction isolation and dielectric	isolation-		
Transistor fabrication- buried layer- impurity profile- parasitic effects- monolithi	c diodes-		
schottky diodes and transistors- FET structures- JFET- MOSFET- PMOS and N	MOS,		
control of threshold voltage (Vth)- silicon gate technology- Monolithic resistors- si	heet		
resistance and resistor design- resistors in diffused regions- MOS resistors- mono			
capacitors- junction and MOS structures- IC crossovers and vias			
Unit-3 CMOS Technology	8 hours		
CMOS technology Metal gate and silicon gate- oxide isolation- Twin well process- Latch up-			
BiCMOS technology- fabrication steps- circuit design process- stick diagrams- design rules-			
Capacitance of layers- Delay- Driving large capacitance loads- Wiring capacitance- Basic			
circuit concepts- scaling of MOS structures- scaling factors- effects of miniaturization.			
Unit-4 CMOS Logic Systems	8 hours		

Subsystem design and layout- Simple logic circuits- inverter, NAND gates, BiCMOS circuit,		
NOR gates, CMOS logic systems – bus lines- arrangements- power dissipation- power supply		
rail distribution- subsystem design process- design of a 4 bit and 8 bit shifter.		
Unit-5 GaAs Fabrication	8 hours	
Gallium Arsenide Technology Sub-micro CMOS technology- Crystal structure- Doping		
process- Channeling effect- MESFET- GaAs fabrication- Device modeling.		

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	MOS Device Modelling
Course Code	MVLS5005
Prerequisite	
	L T P C
	3 0 0 3

Course Objectives:.

This course deals with fundamentals of semiconductor devices, which are undergraduate level, will be reviewed and distributed-constant circuit models will be also provided. Then, in-depth modeling of MOS transistors will be introduced using the textbook. This helps you design VLSIs using the deep sub-micron CMOS in the near future

Course Outcomes

CO1	Explain basic concept of semiconductor devices
CO2	Design CMOS VLSI chips
CO3	model, analyze and design different types of MOS devices
CO4	Learn Parameter Measurement
CO5	Forecast the future direction of VLSI technologies

Text Book (s)

1. Tsividis, Y., "Operation and Modeling of the MOS Transistor", 2nd ed., Oxford University Press, 2008.

2. Sze, S.M., "Physics of Semiconductor Devices", John Wiley, 2008.

Reference Book (s)

1. Muller, R.S., Kamins, "T.I., and Chan, M., Device Electronics for Integrated Circuits", 3rd ed., John Wiley, 2007.

2. Taur, Y. and Ning, T.H., "Fundamentals of Modern VLSI Devices", Cambridge University Press, 2009. Course Content:

Unit-1	Semiconductor and Quantum Mechanics Fundamentals	8 hours	
Poisson	Poisson and Continuity Equations, Recombination, Equilibrium carrier concentrations		
electron	electron statistics, density of states, effective mass, bandgap narrowing), Review of PN and		
MS diod	MS diodes. Basic Quantum Mechanics, Crystal symmetry and band structure, 2D/1D density		
of states	of states, Tunneling		
Unit-2	Modeling and Simulation of Carrier Transport and MOS Capacitors	8 hours	
Carrier Scattering (impurity, phonon, carriercarrier, remote/interface), Boltzmann			
Transport Equation, Drift-diffusion. Modes of operation (accumulation, depletion,			

strong/weak inversion), Capacitance versus voltage, Gated diode, Non-ideal effects (poly depletion, surface charges), High field effects (tunneling, breakdown).		
Unit-3	MOSFET Modeling	8 hours
Introdu	ction Interior Layer, MOS Transistor Current, Threshold Voltage, Tempera	ature
Short C	hannel and Narrow Width Effect, Models for Enhancement, Depletion Type	3
MOSFET, CMOS Models in SPICE, Long Channel MOSFET Devices, Short Channel		
MOSFE	T Devices.	

Unit-4 Parameter Measurement 8 hours General Methods, Specific Bipolar Measurement, Depletion Capacitance, Series Resistances, Early Effect, Gummel Plots, MOSFET: Long and Short Channel Parameters, Statistical Modeling of Bipolar and MOS Transistors. 8 hours

Advanced Device Technology Unit-5

SOI, SiGe, strained Si, Alternative oxide/gate materials, Alternative geometries (raised source/drain, dual gate, vertical, FinFET), Memory Devices (DRAM, Flash). Sub-micron and Deep sub-micron Device Modeling.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Advanced Digital VLSI Design				
Course Code	MVLS5010				
Prerequisite					
		L	Т	P	С

Course Objectives:

This course deals with the concepts of MOS transistor, Modelling of MOS transistor, CMOS, Latches and Registers.

Course Outcomes

CO1	understand the concepts of MOS devices
CO2	model MOS transistor
CO3	Design latches and registers
CO4	Design data paths
CO5	Understand memory control elements

Text Book (s):

- 1. Jan.M.Rabaey., Anitha Chandrakasan Borivoje Nikolic, "Digital Integrated Circuits", Second Edition
- 2. Neil H.E Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design", 2nd Edition, Addition Wesley, 1998

Reference Book (s):

1. Sung-Mo Kang, Yusuf Leblebici, "CMOS Digital IC- Analysis and Design", 3rd Edition, Tata McGraw Hill publication

Course Content:

Unit-1 MOS Transistor	8 hours		
MOS Transistor-Introduction to MOS device, MOS Transistor under static co	onditions-		
threshold voltage-Resistive operation-saturation region -channel length modulation-velocity			
saturation-Hot carrier effect-drain current Vs voltage charts - sub threshold co	onduction -		
equivalent resistance-MOS structure capacitance-Design A logic sates using NM	MOS and		
PMOS and CMOS devices-Stick Diagram.			
Unit-2 Modelling of MOS Transistor	8 hours		
Modeling of MOS Transistor using PSPICE-Introduction - Basic Concepts-LE	VEL1-		
LEVEL2-LEVEL3 modeling technique-various model comparison. Static CMC			
Evaluating the Robustness of CMOS Inverter. Performance of CMOS inverter			
Behavior-computing the capacitance-propagation delay sizing inverter for perf	formance-		
sizing a chain of invertors - Dynamic power consumption-static consumption			
Unit-3 CMOS	8 hours		
Static CMOS design-complementary CMOS - static properties- complementary	y CMOS		
design-Power consumption in CMOS logic gates-dynamic or glitching transitio	ns - Design		
techniques to reduce switching activity - Radioed logic-DC VSL - pass transiste	or logic -		
Differential pass transistor logic -Sizing of level restorer-Sizing in pass transist	or-Dynamic		
CMOS design-Basic principles - Domino logic-optimization of Domino logic-NI	PCMOS-logic		
style selection -Designing logic for reduced supply voltages			
Unit-4 Latches & Registers	8 hours		
Timing metrics for sequential circuit -latches Vs registers -static latches and re			
Bistability principle - multiplexer based latches-master slave edge triggered reg			
ideal clock signals-low voltage static latches-static SR flip flop - Dynamic latche			
registers-C2MOS register - Dual edge registers-True single phase clocked registers-pipelining			
to optimize sequential circuit latch Vs register based pipelines-non-Bistable sequential circuit-			
Schmitt trigger-mono stable -Astable -sequential circuit - choosing a clocking strategy.			
Unit-5 Data Path Operations	8 hours		
Data Path Operations Addition/Subtraction - Comparators- Zero/One Detectors- Binary			
Counters- ALUs- Multiplication- Shifters- Memory elements- control : Finite-S	State Machines.		

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Low power VLSI Design				
Course Code	MVLS5011				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives: This course deals with issues and models to design low-power VLSI circuits, fundamentals of power dissipation in microelectronic devices, will be able to estimate power dissipation due to switching, short circuit.

Course Outcomes

CO1	analyze and design low-power VLSI circuits using different circuit technologies and
	design levels.
CO2	design chips used for battery-powered systems

CO3design high-performance circuits not exceeding power limitsCO4Design and test of low-voltage CMOS circuits.CO5Learn architecture level estimation and synthesis

Text Book (s)

- 1. Roy, K. and Prasad, Sharat C., "Low Power CMOS VLSI: Circuit Design", John Wiley, 2009.
- 2. Chandrakasan, A.P. and Broderson, R.W., "Low Power Digital CMOS Design", Kluwer, 1995.

Reference Book (s)

- 1. Rabaey, J.M. and Pedram, M., "Low Power Design Methodologies", Springer 1996.
- 2. Yeo, K.S. and Roy K., Low Voltage, "Low Power VLSI Subsystems", McGraw Hill, 2004.
- 3. Sanchez-Sinencio, E. and Andreou, A.G., "Low-Voltage/Low-Power Integrated

Course Content:

Unit-1	Low Power Microelectronics	8 hours			
Retrospect and Prospect, Fundamentals of power dissipation in microelectronic devices,					
Estimati	Estimation of power dissipation due to switching, short circuit, subthreshold leakage, and diode				
leakage	currents.				
Unit-2	Device & Technology Impact on Low Power	8 hours			
Dynami	c dissipation in CMOS, Transistor sizing & gate oxide thickness, Impact of	ftechnology			
Scaling,	Technology & Device innovation.				
Unit-3	Simulation Power and Probabilistic power analysis	8 hours			
SPICE of	ircuit simulators, gate level logic simulation, capacitive power estimation	, static state			
power, g	ate level capacitance estimation, architecture level analysis, data correlat	ion analysis			
in DSP	systems. Monte Carlo simulation. Random logic signals, probability &	frequency,			
probabi	listic power analysis techniques, signal entropy.				
Unit-4	Low Voltage Technologies and Circuits	8 hours			
Thresho	ld Voltage Scaling and Control, Multiple Threshold CMOS (MTCMOS), Substrate			
Bias Co	ntrolled Variable Threshold CMOS, Testing Issues: Design and test of	low-voltage			
CMOS circuits.					
Unit-5	Algorithm and architectural level methodologies	8 hours			
Introduction, design flow, algorithmic level analysis and optimization, Architectural level					
estimation and synthesis.					

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Sensor Technology and MEMS				
Course Code	MVLS5014				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Description:

This course deals with study of different Sensors and MEMS technology

Course Outcomes

CO1	Understand working of sensors
CO2	know microsystems and MEMES
CO3	Know materials used for MEMS
CO4	Understand fabrication process
CO5	Know design process of microsystem

Text Book (s):

1. Integrated Sensors, Microp-actuators and micro-systems (MEMS): K.D. (Guest

Editor), Special Issue of proceedings of IEEE, Vol. 86, No.8, August 1998

2. RF MEMS: Theory, Design, and Technology: Gabriel M. Rebeiz, Wiley, 2003.

Reference Book (s)

1. Fundamentals of Microfabrication : Marc Madou, CRC Press, 1997.

Course Content:

Unit-1	Overview of Sensors	8 hours			
Classifica	Classification of physical sensors, Integrated, Intelligent, or Smart sensors, Sensor Principles				
and Exar	nples : Thermal sensors, Electrical Sensors, Mechanical Sensors, Chemi	cal and			
Biosenso	rs, Case study on strain sensors, Temperature sensors, Pressure sensors,	Humidity			
sensors, A	Accelerometers, Gyroscopes , RF MEMS Switch, phase shifter, and small	rt sensors.			
Unit-2	Microsystems	8 hours			
MEMS a	nd Microsystems, Microsystems and microelectronics, Microsystems and	d			
miniatur	ization, Working principle of micro system, Micro sensors, Micro actuat	ors, MEMS			
with Mic	ro actuators				
Unit-3	Materials For MEMS	8 hours			
Substrate	e and wafer, silicon as a substrate material, silicon compound, silicon Pie	zo-resistors,			
Gallium	Arsenide, quartz, Piezoelectric crystals, polymers and packaging Materi	als.			
Unit-4	Fabrication Process	8 hours			
Photolith	ography, Ion implantation, Oxidation, Chemical vapor deposition (CVE), Physical			
vapor de	position, Deposition by Epitaxy, Etching.Manufacturing Process - Bulk				
Microma	chining, Surface Micromachining, LIGA Process				
Unit-5	Micro system Design	8 hours			
Design co	Design consideration, process design, Mechanical design, Mechanical design using MEMS.				
Mechanical packaging of Microsystems, Microsystems packaging, interfacing in					
Microsystems packaging, packaging technology, selection of packaging materials, signal					
mapping and transduction. MEMS for RF Applications: Need for RF MEMS components in					
commun	communications, space and defense applications				

Internal Assessment	Mid Term Test	End Term Test	Total	Marl	KS	
(IA)	(MTE)	(ETE)				
20	30	50	100			
Name of The Course	Nano-Electronics					
Course Code	MVLS5015					
Prerequisite						
			L	Т	P	С
			3	0	0	3

Course Objectives:.

1. Understand the fundamental forces controlling the dynamic and static response of materials at the Nanoscale.

- 2. To have comprehensive understanding of state-of-the-art Nano-fabrication methods.
- 3. To have knowledge of processing conditions to functional nanomaterials.
- 4. To scalable system for the continuous production of nanomaterials.
- 5. To understand the state-of-the-art characterization methods for nanomaterials.

Course Outcomes

CO1	Understand the fundamental forces controlling the dynamic and static response of
	materials at the Nano-scale
CO2	To demonstrate a comprehensive understanding of state-of-the-art Nano-fabrication
	method
CO3	To determine and evaluate processing conditions to functional nanomaterials.
CO4	Design and analyse scalable system for the continuous production of nanomaterials.
CO5	Understand the state-of-the-art characterization methods for nanomaterials.

Text Book (s):

1. Nanoelectronics & Nanosystems: From Transistor to Molecular & Quantum Devices: Karl Goser, Jan Dienstuhl.

Reference Book (s)

- 1. Rainer Waser (Ed.), Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, Wiley-VCH, 2003
- 2. Microfabrication by Marc Madaon, CRC Press

Unit-1 Introduction to nanoelectronics				
Recent past, the present and its challenges, Future, Overview of basic Nanoelectronics, Physics				
of solid state, Structure - Energy band - Quantum mechanics.				
Unit-2 Fundamentals of Nanoelectronics	8 hours			
Fundamentals of logic devices:- Requirements, dynamic properties, threshold ga	tes, physical			
limits to computations, concepts of logic devices:- classifications , two terminal de	evices, field			
effect devices, coulomb blockade devices, spintronics , quantum cellular automat	a – quantum			
computing ; performance of information processing systems;- basic binary opera	tions,			
measure of performance processing capability of biological neurons, performance	e estimation			
for the human brain. Ultimate computation:- power dissipation limit - dissipatio	n in			
reversible computation – the ultimate computer.				
Unit-3 Molecular Electronics Components	8 hours			
Characterization of switches and complex molecular devices, polyphenylene base	ed Molecular			
rectifying diode switches. Technologies, Single Electron Devices, Quantum Mech	anical			
Tunnel Devices, Quantum Dots & Quantum wires.				
Unit-4 Nanocomputers	8 hours			
Nanoelectronic & Nanocomputer architectures and nanotechnology: Introductio	n to			
nanoelectronic and nanocomputers, Quantum DOT cellular Automata (QCA), S	ingle electron			
circuits, molecular circuits Nanocomputer Architecture.				
Unit-5 Silicon MOSFETs & Quantum Transport Devices	8 hours			
Silicon MOSFETS - Novel materials and alternate concepts:- fundamentals of MOSFET				
Devices, scaling rules, silicon-dioxide based gate dielectrics, metal gates, junctions & contacts,				
advanced MOSFET concents. Quantum transport devices based on research tun	advanced MOSFET concepts, Quantum transport devices based on resonant tunneling:-			

Electron tunneling, resonant tunneling diodes – resonant tunneling devices; Single electron devices for logic applications:- Single electron devices – applications of single electron devices to logic circuits.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Design of Semiconductor Memories				
Course Code	MVLS5016				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:.

- 1. Comprehend the concept of memory structures, reliability and radiation effects.
- 2. Have a knowledge on Memory fault modelling, Testing and design for fault tolerance.

Course Outcomes

CO1	Select architecture and design semiconductor memory circuits and subsystems.
CO2	Know non-volatile memory architecture
CO3	Identify various fault models, modes and mechanisms in semiconductor memories and
	their testing procedures.
CO4	Understand reliability issues and RAM failures
CO5	Know about packaging technologies of memory

Text Book (s)

- 1. Ashok K. Sharma, "Semiconductor Memories Technology, Testing and Reliability", Prentice-Hall of india Private Limited, New Delhi, 1997.
- 2. Tegze P. Haraszti," CMOS Memory Circuits", Kluwer Academic Publishers, 2001

Reference Book (s)

- 1. Betty Prince, "Emerging Memories: Technologies and Trends", Kluwer academic publishers, 2002
- 2. Kiyoo Itoh, "VLSI memory chip design", Springer International Edition

Unit-1	RAM Technologies	8 Hours	
Static Ra	Static Random Access Memories: SRAM Cell Structures-MOS SRAM Architecture-MOS		
SRAM (Cell and Peripheral Circuit Operation-Bipolar SRAM Technologies- SOI T	echnology-	
Advance	d SRAM Architectures and Technologies-Application Specific SRAM- Dy	namic	
Random	Random Access Memories: DRAM Technology Development-CMOS DRAMs-DRAMs Cell		
Theory a	Theory and Advanced Cell Structures -BiCMOS, DRAMs-Soft Error Failures in DRAMs-		
Advance	Advanced DRAM Designs and Architecture-Application, Specific DRAMs.		
Unit-2	Nonvolatile Memories	8 hours	

Masked Read-Only Memories (ROMs)-High Density ROMs-PROMs-Bipolar PROMs-			
CMOS, PROMs-Erasable (UV) - EPROM-Floating-GateEPROM Cell-One-Time			
Programmable (OTP) EPROMs-EEPROM-EEPROM Technology And Arcitecture-			
Nonvolatile SRAM-Flash Memories (EPROMs or EEPROM)-Advanced Flash Memory			
Architecture			
Unit-3Memory Fault Modelling, Testing and design for Fault Tolerance8 hours			
RAM Fault Modeling, Electrical Testing, Pseudo Random Testing-Megabit DRAM Testing-			
Nonvolatile Memory Modeling and Testing-IDDQ Fault Modeling and Testing- Application			
Specific Memory Testing			
Unit-4 Reliability and Radiation Effects 8 hours			
General Reliability Issues-RAM Failure Modes and Mechanism-Nonvolatile Memory			
Reliability-Reliability Modeling and Failure Rate Prediction-Design for Reliability-			
Reliability Test Structures-Reliability Screening and Qualification. RAM Fault Modeling,			
Electrical Testing, Psuedo Random Testing-Megabit DRAM Testing-Nonvolatile Memory			
Modeling and Testing-IDDQ Fault Modeling and Testing-Application Specific Memory			
Testing.			
Unit-5 Packaging Technologies 8 hours			
Radiation Effects-Single Event Phenomenon (SEP)-Radiation Hardening Techniques-			
Radiation Hardening Process and Design Issues-Radiation Hardened Memory			
Characteristics-Radiation Hardness Assurance and Testing - Radiation Dosimetry-Water			
Level Radiation Testing and Test Structures. Ferroelectric Random Access Memories			
(FRAMs)-Gallium Arsenide (GaAs) FRAMs-Analog Memories-Magnetoresistive. Random			
Access Memories (MRAMs) -Experimental Memory Devices. Memory Hybrids and MCMs			
(2D)-Memory Stacks and MCMs (3D)-Memory MCM Testing and Reliability Issues-			
Memory Cards-High Density Memory Packaging Future Directions.			

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Advanced Analog VLSI Design				
Course Code	MVLS5017				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- Recognize transistor amplifiers.
 Design multistage MOS amplifiers.

Course Outcomes

CO1	demonstrate the use of analog circuit analysis techniques to analyze the operation and
	behavior of various analog integrated circuits.
CO2	demonstrate their knowledge by designing analog circuits.
CO3	compute the gain, power, and bandwidth of analog circuits.
CO4	Understand the concept of different parameters like gain, power, and bandwidth.
CO5	understand the Switched capacitor circuits and data converters.

Text Book (s)

1. Paul B Gray and Robert G Meyer, "Analysis and Design of Analog Integrated Circuits".

2. D. A. Johns and Martin, Analog Integrated Circuit Design, John Wiley, 1997. **Reference Book (s)**

1. R Gregorian and G C Temes, Analog MOS Integrated Circuits for Signal Processing, John Wiley, 1986.

2.R L Geiger, P E Allen and N R Strader, VLSI Design Techniques for Analog & Digital Circuits, McGraw Hill, 1990.

Course Content:

Unit-1 MOS & BJT Transistor Amplifiers	8 hours			
Single transistor Amplifiers stages: Common Emitter, Common base, Common Collector,				
Common Drain, Common Gate & Common Source Amplifiers	,			
Multiple Transistor Amplifier stages: CC-CE, CC-CC, & Darlington configur	ation,			
Cascode configuration, Active Cascode. Differential Amplifiers: Differential p	air & DC			
transfer characteristics.				
Unit-2 Current Mirrors, Active Loads & References	8 hours			
Current Mirrors: Simple current mirror, Cascode current mirrors Widlar cu	rrent mirror,			
Wilson Current mirror, etc. Active loads, Voltage & current references. Analy	ysis of			
Differential Amplifier with active load, supply and temperature independent h	biasing			
techniques, Frequency Response,				
Unit-3 Operational Amplifier	8 hours			
Applications of operational Amplifier, theory and Design; Definition of Perfor	mance			
Characteristics; Design of two stage MOS Operational Amplifier, two stage M	IOS			
operational Amplifier with cascodes, MOS telescopic-cascode operational amp	olifiers,MOS			
Folded-cascode operational amplifiers, Bipolar operational amplifiers. Freque	ency response			
& compensation				
Unit-4 Nonlinear Analog Circuits	8 hours			
Analysis of four quadrant and variable Tran conductance multiplier, Voltage controlled				
oscillator, Comparators, Analog Buffers, Source Follower and Other Structures. Phase				
Locked Techniques; Phase Locked Loops (PLL), closed loop analysis of PLL. Digital-to-				
Analog (D/A) and Analog-to-Digital (A/D) Converters				
Unit-5OTA & Switched Capacitor filters8 hours				
OTA Amplifiers. Switched Capacitor Circuits and Switched Capacitor Filters.				

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Physical Design Automation				
Course Code	MVLS6002				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:.

1. Learn automation process used in VLSI system design

2. Understand various physical design CAD tools and designing algorithm.

Course Outcomes

CO1	know automation process for VLSI System design.
CO2	Understanding of fundamentals for various physical design CAD tools.
CO3	Know floor-planning and PIN assignment
CO4	Learn to implement different routing algorithms
CO5	Develop and enhance the existing algorithms and computational techniques for
	physical automation

Text Book (s)

1. Sung Kyu Lim, Practical Problems for VLSI Physical Design Automation, Springer Publications

2. Majid Sarrafzadeh and C. K. Wong, An Introduction to VLSI Physical Design, McGraw Hill, 1996

Reference Book (s)

1.Computer Aided Logical Design with Emphasis on VLSI – Hill & Peterson, Wiley, 1993.

2. Naveed Sherwani, Algorithms for VLSI Physical Design Automation, Springer Publications.

3. Modern VLSI Design: Systems on silicon – Wayne Wolf, Pearson Education Asia, 2nd

Unit-1	Data Structures and Basic Algorithms	8 hours			
Basic Ter	Basic Terminology, Complexity Issues and NP-hardness, Basic Algorithms, Basic Data				
Structure	es, Graph Algorithms for Physical design.				
Unit-2	Partitioning	8 hours			
Problem	Formulation, Classification of Partitioning Algorithms, Group Migration				
Algorith	ns, Simulated Annealing and Evolution, Other Partitioning Algorithms.				
Performa	ance Driven Partitioning				
Unit-3	Floorplanning and Pin Assignment	8 hours			
Floorplan	nning, Chip planning, Pin Assignment. Global Routing: Problem Formulat	ion,			
Classifica	ation of Global Routing, Maze Routing Algorithms, Line-Probe Algorithms	s, Shortest			
Path Based Algorithms, Steiner Tree based Algorithms Integer Programming Based					
Approac	h, Performance Driven Routing.				
Unit-4	Detailed Routing	8 hours			
Problem	Formulation, Classification of Routing Algorithms, Single-Layer Routing				
Algorith	ns, Two-Layer Channel Routing Algorithms, Three-Layer Channel Routin	ıg			
Algorith	ns, Multi-Layer Channel Routing Algorithms, Switchbox Routing Algorith	ims			
Unit-5	Over-the-Cell Routing and Via Minimization	8 hours			
Over-the	-cell Routing, Via Minimization. Clock and Power Routing: Clock Routing	, Power			
and Ground Routing. Compaction: Problem Formulation, Classification of Compaction					
Algorith	ns, One-Dimensional Compaction, Two-Dimensional Compaction				

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
20	30	50	100

Name of The Course	System-on-Chip Design
Course Code	MVLS6003
Prerequisite	

Course Objectives:.

- 1. Apply concepts of semiconductor devices to design and analyze circuits.
- 2. To prepare students to know the characteristics of different semiconductor devices.
- 3. Apply fundamentals of semiconductor devices in electronics projects in circuit design, evaluation and analysis.
- 4. Explain the fundamental principles necessary for the analysis and design of analog integrated circuits at transistor level.

Course Outcomes

CO1	Define the hardware and software structures used to implement and model inter-
	component communication in System on Chip.
CO2	Describe the details of subsystem components like Adders, Multipliers and ALUs etc.
CO3	Practice writing the Behavioral models of digital circuits for simulation and synthesis
	using SystemC, including transactional modelling.
CO4	Learn Testing and Verification of system level designs using SystemC.
CO5	Simulate and Synthesize using SystemC.

Text Book (s)

- 1. Wolf, W., "Modern VLSI Design: System-on-chip Design", 3rd ed., Prentice Hall 2002.
- 2. Lin, S. Y.L., "Essential Issues in SOC Design: Designing Complex Systems-On-Chip", Springer ,2006.
- 3. D. Black, J. Donovan, B. Bunton, A. Keist, "SystemC: From the Ground Up", Second Edition, Springer, 2010.

Reference Book (s)

- 1. Asheden, P.J. and Mermet J., "System-on-Chip Methodologies and Design Languages", Kluwer Academic, 2002.
- 2. Erbas, C., "System-Level Modelling and Design Space Exploration for Multiprocessor Embedded System-on-Chip Architectures", Amsterdam University Press, 2007.

Unit-1	Introduction to SOC Design/Overview	8 hours			
Introduc	Introduction, Integrated Circuit Manufacturing, CMOS Technology, Integrated Circuit				
Design T	echniques, Fabrication Processes, Transistors, Wires and Vias, Design Ru	les Layout			
Design a	nd Tools				
Unit-2	SoC Architecture Design	8 hours			
Introduc	Introduction, Front-end chip design, Back-end chip design, Integration platforms and SoC				
Design, l	Design, Function Architecture Co-design, Designing Communication Networks, System Level				
Power E	Power Estimation and Modeling, Transaction Level Modeling, Design Space Exploration,				
Software design in SoCs.					
Unit-3	Basic SoC Subsystem Design	8 hours			

Introduction. Subsystem Design Principles. Combinational Shifters. Adders. ALUs. Multipliers. High-Density Memory. Field-Programmable Gate Arrays. Programmable Logic Arrays.				
Unit-4	High level HDL for SoC Design- SystemC	8 hours		
Introduc	Introduction of SystemC, Transaction-Level Modeling (TLM) and Electronic System-Level			
(ESL) la	(ESL) languages, SystemC Class Concepts for Hardware, Overview of SystemC Components.			
Unit-5	Unit-5SoC Design and Test Optimization8 hours			
Design methodologies for SoC, Noise and signal integrity analysis, System Integration issues				
for SoC, SoC Test Scheduling and Test Integration, SoC Test Resource partition.				

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Reconfigurable Computing				
Course Code	MVLS5018				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:.

Understand concept of Reconfigurable Computing and their applications

Course Outcomes

CO1	Understand parallelism and pipelining concepts, the design aspects and challenges.
CO2	Evaluate the issues in vector and array processors.
CO3	Study and analyze the high performance scalable multithreaded and multiprocessor
CO4	Know Reconfigurable Design
CO5	know Reconfigurable Devices application

Text Book (s)

1 C. Maxfield, The Design Warrior's Guide to FPGAs, Newnes, 2004, ISBN: 978-0750676045

2 M. Gokhale and P. Graham, Reconfigurable Computing: Accelerating Computation with Field-Programmable Gate Arrays, Springer, 2005, ISBN: 978-0-387-26105-8.

3 C. Bobda, Introduction to Reconfigurable Computing: Architectures, Algorithms and Applications, Springer, 2007, ISBN: 978-1402060885.

Reference Book (s)

1. P. Lysaght and W. Rosenstiel (eds.), New Algorithms, Architectures and Applications for Reconfigurable Computing, Springer, 2005, ISBN: 978-1402031274.

2. D. Pellerin and S. Thibault, Practical FPGA Programming in C, Prentice-Hall, 2005, ISBN: 978-0131543188.

3. W. Wolf, FPGA-based System Design, Prentice-Hall, 2004, ISBN: 0-13-142461-0.

4. R. Cofer and B. Harding, Rapid System Prototyping with FPGAs: Accelerating the Design Process, Newnes, 2005, ISBN: 978-0750678667.

Course Content:

Unit-1 Introduction of RC 8 hours Reconfigurable Computing Basics, Reconfigurable Computing Hardware Components, Custom Computing, Machine Overview, Comparison of Computing Machines, Interconnects, Delays in VLSI Structures, control path and data path, logic minimization. Interconnects, Delays in VLSI Structures, control path and data path, logic minimization. Unit-2 FPGA Architectures 8 hours Introduction, Technology-independent optimization, FPGA Mapping, FPGA Partitioning and Placement, Routing, Computing Elements, LUT's, LUT Mapping, ALU and CLB's, Retiming, Multi-FPGA Partitioning, Logic Emulation, Power Reduction Techniques for FPGAs. Unit-3 RC Architectures 8 hours Device characteristics, The Systolic Model, Fine-grained architecture, Coarse-grained architecture, Comparison of different architectures, Function-Unit Architectures, Logic Emulation Architectures, Programming Reconfigurable Computers, Logic Cell and Data path Mapping, Hardware/Software Co-design, Systolic Loop Transformations, Software Pipelining, MATRIX and RaPiD, Module Generators. 8 hours Unit-4 Reconfigurable Design 8 hours Temporal portioning algorithms, Online temporal placement, Device space management, Binding Time and Programming Styles, Overheads, Data Density, Data BW, Function density, Function diversity, Interconnect methods, Contexts, Context switching; Area calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic Reconfigurable Coprocessors, Reconfigurable Memory Security, Reconfigurable Weather			
Custom Computing, Machine Overview, Comparison of Computing Machines, Interconnects, Delays in VLSI Structures, control path and data path, logic minimization. Interconnects, Delays in VLSI Structures, control path and data path, logic minimization. Unit-2 FPGA Architectures 8 hours Introduction, Technology-independent optimization, FPGA Mapping, FPGA Partitioning and Placement, Routing, Computing Elements, LUT's, LUT Mapping, ALU and CLB's, Retiming, Multi-FPGA Partitioning, Logic Emulation, Power Reduction Techniques for FPGAs. Unit-3 RC Architectures 8 hours Device characteristics, The Systolic Model, Fine-grained architecture, Coarse-grained architecture, Comparison of different architectures, Function-Unit Architectures, Logic Emulation Architectures, Programming Reconfigurable Computers, Logic Cell and Data path Mapping, Hardware/Software Co-design, Systolic Loop Transformations, Software Pipelining, MATRIX and RaPiD, Module Generators. 8 hours Unit-4 Reconfigurable Design 8 hours Temporal portioning algorithms, Online temporal placement, Device space management, Binding Time and Programming Styles, Overheads, Data Density, Data BW, Function density, Function diversity, Interconnect methods, Contexts, Context switching; Area calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic Reconfiguration design. Unit-5 RC Applications 8 hours			
Delays in VLSI Structures, control path and data path, logic minimization.Unit-2FPGA Architectures8 hoursIntroduction, Technology-independent optimization, FPGA Mapping, FPGA Partitioning and Placement, Routing, Computing Elements, LUT's, LUT Mapping, ALU and CLB's, Retiming, Multi-FPGA Partitioning, Logic Emulation, Power Reduction Techniques for FPGAs.Unit-3RC Architectures8 hoursDevice characteristics, The Systolic Model, Fine-grained architecture, Coarse-grained architecture, Comparison of different architectures, Function-Unit Architectures, Logic Emulation Architectures, Programming Reconfigurable Computers, Logic Cell and Data path Mapping, Hardware/Software Co-design, Systolic Loop Transformations, Software Pipelining, MATRIX and RaPiD, Module Generators.8 hoursUnit-4Reconfigurable Design8 hoursTemporal portioning algorithms, Online temporal placement, Device space management, Binding Time and Programming Styles, Overheads, Data Density, Data BW, Function density, Function diversity, Interconnect methods, Contexts, Context switching; Area calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic Reconfiguration design.8 hours	Reconfigurable Computing Basics, Reconfigurable Computing Hardware Components,		
Unit-2FPGA Architectures8 hoursIntroduction, Technology-independent optimization, FPGA Mapping, FPGA Partitioning and Placement, Routing, Computing Elements, LUT's, LUT Mapping, ALU and CLB's, Retiming, Multi-FPGA Partitioning, Logic Emulation, Power Reduction Techniques for FPGAs.Unit-3RC Architectures8 hoursDevice characteristics, The Systolic Model, Fine-grained architecture, Coarse-grained architecture, Comparison of different architectures, Function-Unit Architectures, Logic Emulation Architectures, Programming Reconfigurable Computers, Logic Cell and Data path Mapping, Hardware/Software Co-design, Systolic Loop Transformations, Software Pipelining, MATRIX and RaPiD, Module Generators.8 hoursUnit-4Reconfigurable Design8 hoursTemporal portioning algorithms, Online temporal placement, Device space management, Binding Time and Programming Styles, Overheads, Data Density, Data BW, Function density, Function diversity, Interconnect methods, Contexts, Context switching; Area calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic Reconfiguration design.8 hoursUnit-5RC Applications8 hours	Custom Computing, Machine Overview, Comparison of Computing Machines, In	nterconnects,	
Introduction, Technology-independent optimization, FPGA Mapping, FPGA Partitioning and Placement, Routing, Computing Elements, LUT's, LUT Mapping, ALU and CLB's, Retiming, Multi-FPGA Partitioning, Logic Emulation, Power Reduction Techniques for FPGAs.Unit-3RC Architectures8 hoursDevice characteristics, The Systolic Model, Fine-grained architecture, Coarse-grained architecture, Comparison of different architectures, Function-Unit Architectures, Logic Emulation Architectures, Programming Reconfigurable Computers, Logic Cell and Data path Mapping, Hardware/Software Co-design, Systolic Loop Transformations, Software Pipelining, MATRIX and RaPiD, Module Generators. Unit-48 hoursUnit-4Reconfigurable Design8 hoursTemporal portioning algorithms, Online temporal placement, Device space management, Binding Time and Programming Styles, Overheads, Data Density, Data BW, Function density, Function diversity, Interconnect methods, Contexts, Context switching; Area calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic Reconfiguration design.8 hours	Delays in VLSI Structures, control path and data path, logic minimization.		
Placement, Routing, Computing Elements, LUT's, LUT Mapping, ALU and CLB's, Retiming, Multi-FPGA Partitioning, Logic Emulation, Power Reduction Techniques for FPGAs. Unit-3 RC Architectures Secondary 8 hours Device characteristics, The Systolic Model, Fine-grained architecture, Coarse-grained architecture, Comparison of different architectures, Function-Unit Architectures, Logic Emulation Architectures, Programming Reconfigurable Computers, Logic Cell and Data path Mapping, Hardware/Software Co-design, Systolic Loop Transformations, Software Pipelining, MATRIX and RaPiD, Module Generators. Unit-4 Reconfigurable Design Temporal portioning algorithms, Online temporal placement, Device space management, Binding Time and Programming Styles, Overheads, Data Density, Data BW, Function density, Function diversity, Interconnect methods, Contexts, Context switching; Area calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic Reconfiguration design. 8 hours	Unit-2 FPGA Architectures	8 hours	
Retiming, Multi-FPGA Partitioning, Logic Emulation, Power Reduction Techniques for FPGAs.Unit-3RC Architectures8 hoursDevice characteristics, The Systolic Model, Fine-grained architecture, Coarse-grained architecture, Comparison of different architectures, Function-Unit Architectures, Logic Emulation Architectures, Programming Reconfigurable Computers, Logic Cell and Data path Mapping, Hardware/Software Co-design, Systolic Loop Transformations, Software Pipelining, MATRIX and RaPiD, Module Generators.8 hoursUnit-4Reconfigurable Design8 hoursTemporal portioning algorithms, Online temporal placement, Device space management, Binding Time and Programming Styles, Overheads, Data Density, Data BW, Function density, Function diversity, Interconnect methods, Contexts, Context switching; Area calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic Reconfiguration design.8 hoursUnit-5RC Applications8 hours	Introduction, Technology-independent optimization, FPGA Mapping, FPGA Par	titioning and	
Retiming, Multi-FPGA Partitioning, Logic Emulation, Power Reduction Techniques for FPGAs.Unit-3RC Architectures8 hoursDevice characteristics, The Systolic Model, Fine-grained architecture, Coarse-grained architecture, Comparison of different architectures, Function-Unit Architectures, Logic Emulation Architectures, Programming Reconfigurable Computers, Logic Cell and Data path Mapping, Hardware/Software Co-design, Systolic Loop Transformations, Software Pipelining, MATRIX and RaPiD, Module Generators.8 hoursUnit-4Reconfigurable Design8 hoursTemporal portioning algorithms, Online temporal placement, Device space management, Binding Time and Programming Styles, Overheads, Data Density, Data BW, Function density, Function diversity, Interconnect methods, Contexts, Context switching; Area calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic Reconfiguration design.8 hoursUnit-5RC Applications8 hours	Placement, Routing, Computing Elements, LUT's, LUT Mapping, ALU and CLE	3's,	
Unit-3RC Architectures8 hoursDevice characteristics, The Systolic Model, Fine-grained architecture, Coarse-grained architecture, Comparison of different architectures, Function-Unit Architectures, Logic Emulation Architectures, Programming Reconfigurable Computers, Logic Cell and Data path Mapping, Hardware/Software Co-design, Systolic Loop Transformations, Software Pipelining, MATRIX and RaPiD, Module Generators.Note: Note: Note			
Device characteristics, The Systolic Model, Fine-grained architecture, Coarse-grained architecture, Comparison of different architectures, Function-Unit Architectures, Logic Emulation Architectures, Programming Reconfigurable Computers, Logic Cell and Data path Mapping, Hardware/Software Co-design, Systolic Loop Transformations, Software Pipelining, MATRIX and RaPiD, Module Generators.Unit-4Reconfigurable Design8 hoursTemporal portioning algorithms, Online temporal placement, Device space management, Binding Time and Programming Styles, Overheads, Data Density, Data BW, Function density, Function diversity, Interconnect methods, Contexts, Context switching; Area calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic Reconfiguration design.8 hoursUnit-5RC Applications8 hours	FPGAs.		
architecture, Comparison of different architectures, Function-Unit Architectures, Logic Emulation Architectures, Programming Reconfigurable Computers, Logic Cell and Data path Mapping, Hardware/Software Co-design, Systolic Loop Transformations, Software Pipelining, MATRIX and RaPiD, Module Generators. Unit-4 Reconfigurable Design 8 hours Temporal portioning algorithms, Online temporal placement, Device space management, Binding Time and Programming Styles, Overheads, Data Density, Data BW, Function density, Function diversity, Interconnect methods, Contexts, Context switching; Area calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic Reconfiguration design. Unit-5 RC Applications 8 hours	Unit-3 RC Architectures	8 hours	
Emulation Architectures, Programming Reconfigurable Computers, Logic Cell and Data path Mapping, Hardware/Software Co-design, Systolic Loop Transformations, Software Pipelining, MATRIX and RaPiD, Module Generators.Unit-4Reconfigurable Design8 hoursTemporal portioning algorithms, Online temporal placement, Device space management, Binding Time and Programming Styles, Overheads, Data Density, Data BW, Function density, Function diversity, Interconnect methods, Contexts, Context switching; Area calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic Reconfiguration design.8 hoursUnit-5RC Applications8 hours	Device characteristics, The Systolic Model, Fine-grained architecture, Coarse-gra	ained	
Emulation Architectures, Programming Reconfigurable Computers, Logic Cell and Data path Mapping, Hardware/Software Co-design, Systolic Loop Transformations, Software Pipelining, MATRIX and RaPiD, Module Generators.Unit-4Reconfigurable Design8 hoursTemporal portioning algorithms, Online temporal placement, Device space management, Binding Time and Programming Styles, Overheads, Data Density, Data BW, Function density, Function diversity, Interconnect methods, Contexts, Context switching; Area calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic Reconfiguration design.8 hoursUnit-5RC Applications8 hours	architecture, Comparison of different architectures, Function-Unit Architectures	, Logic	
path Mapping, Hardware/Software Co-design, Systolic Loop Transformations, SoftwarePipelining, MATRIX and RaPiD, Module Generators.8 hoursUnit-4Reconfigurable Design8 hoursTemporal portioning algorithms, Online temporal placement, Device space management, Binding Time and Programming Styles, Overheads, Data Density, Data BW, Function density, Function diversity, Interconnect methods, Contexts, Context switching; Area calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic Reconfiguration design.8 hoursUnit-5RC Applications8 hours			
Pipelining, MATRIX and RaPiD, Module Generators. 8 hours Unit-4 Reconfigurable Design 8 hours Temporal portioning algorithms, Online temporal placement, Device space management, Binding Time and Programming Styles, Overheads, Data Density, Data BW, Function density, Function diversity, Interconnect methods, Contexts, Context switching; Area calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic Reconfiguration design. Unit-5 RC Applications 8 hours	path Mapping, Hardware/Software Co-design, Systolic Loop Transformations, S	oftware	
Temporal portioning algorithms, Online temporal placement, Device space management,Binding Time and Programming Styles, Overheads, Data Density, Data BW, Functiondensity, Function diversity, Interconnect methods, Contexts, Context switching; Areacalculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design andDynamic Reconfiguration design.Unit-5RC Applications8 hours			
Binding Time and Programming Styles, Overheads, Data Density, Data BW, Function density, Function diversity, Interconnect methods, Contexts, Context switching; Area calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic Reconfiguration design.Unit-5RC Applications8 hours	Unit-4 Reconfigurable Design	8 hours	
density, Function diversity, Interconnect methods, Contexts, Context switching; Area calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic Reconfiguration design.Unit-5RC Applications8 hours	Temporal portioning algorithms, Online temporal placement, Device space mana	gement,	
calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic Reconfiguration design.Unit-5RC Applications8 hours	Binding Time and Programming Styles, Overheads, Data Density, Data BW, Fun	ction	
Dynamic Reconfiguration design.Unit-5RC Applications8 hours	density, Function diversity, Interconnect methods, Contexts, Context switching; A	Area	
Unit-5 RC Applications 8 hours	calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable	design and	
	Dynamic Reconfiguration design.		
Reconfigurable Coprocessors, Reconfigurable Memory Security, Reconfigurable Weather	Unit-5 RC Applications	8 hours	
	Reconfigurable Coprocessors, Reconfigurable Memory Security, Reconfigurable	Weather	
Radar Data Processing, Dynamically Reconfigurable Adaptive Viterbi Decoder, High Speed			
Data Acquisition System for Space Applications.		~ •	

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Packaging and Interconnect Analysis				
Course Code	MVLS6005				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives: Analysis and design for high-performance interconnects at both IC and packaging levels, including interconnect modeling, delay modeling for devices and interconnects, timing-driven placement, interconnect topology construction, buffer insertion, device and wire sizing, clock network design, thermal modeling, analysis, and thermal-based placement

Course Outcomes

CO1	understand problems in modeling and design of high-performance VLSI
CO2	Learn delay calculations
CO3	Optimize interconnection and topology
CO4	Know clock design for interconnection

CO5 Demonstrate thermal modelling and analysis

Text Book (s)

- 1. M. Celik, L. Pileggi, A. Odabasioglu, IC Interconnect Analysis, Kluwer Academic Publishers, 2002.
- C. K. Cheng, J. Lillis, S. Lin, N. Chang, Interconnect Analysis and Synthesis, John Wiley & Sons, Inc. 2000.

Reference Book (s)

1.J. M. Rabaey, A. Chandrakasan, B. Nikoli´c, Digital Integrated Circuits A Design Perspective, Pearson Education, Inc. 2003

2. N. Menezes, L. Pileggi, Analyzing On-chip Interconnect Effects, Chapter 16 in Design of High-Performance Microprocessor Circuits, IEEE Press, 2001.

3. H. B. Bakoglu, Circuits, Interconnects, and Packaging for VLSI, Addison-Wesley Publishing Company, 1990

Course Content:

Unit-1 Introduction	8 hours
Introduction, Functions of an electronic packages, Brief history of electronic	e packaging,
Packaging Hierarchy, Challenges of Interconnect Design, Modeling of VLS	Interconnects,
Laplace transform, Elmore delay model, Moment Computation, Asymptotic	e waveform
evaluation, Pade via Lanczos and transmission line modeling.	
Unit-2 Delay Calculation	8 hours
Delay calculating: Devices modeling, R(L)C Delay Calculation. Overview of	
and Optimization Techniques. Delay Budgeting, Net-based Timing-driven P	lacement, and
Path-base Timing-driven Placement.	
Unit-3 Device , Topology and Interconnect Optimization	8 hours
Transistor Ordering, Device Sizing, and Buffer Insertion. Topology Optimiz	ation: Wirelength
Minimization, Pathlength Minimization, and Delay Minimization.	
Interconnect Sizing: Local Refinement-based, Dynamic Programming-based	l, Sensitivity-
based, and Mathematical Programming. Simultaneous Device and Intercon	nect Sizing,
Simultaneous Topology Construction, Buffer Insertion, Buffer Sizing, and In	nterconnect
Sizing.	
Unit-4 Clock Design and Noise Modeling	8 hours
Clock Network Design: Zero-Skew, Bounded-Skew, Buffer and Wire Optim	ization, Non-Tree
Routing, and Clock Schedule.	
Noise Modeling, Avoiding and Control: Simultaneous Switching Noise, Refle	-
Coupling Noise, Power/Ground Design, Topology Selection, Optimal Termin	
Permutation, Layer Assignment, Buffer Insertion, and Interconnect Sizing a	and Spacing
Unit-5 Thermal Modeling and Analysis	8 hours
Thermal Modeling, Analysis, and Thermal-aware Design: Compact Therma	l Modeling,
Electro-thermal Simulation, Thermal Characterization of Stacked Dies, and	Thermal Based
Placement	

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	EMI and EMC in System Design				
Course Code	MVLS6006				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:.

Understand basics of electro-magnetic Interference and describes the concepts of its effects in system designing. The EMI measurements, EMI Control methods and Standards

Course Outcomes

CO1	Understand basic concept of electro-magnetic Interference.
CO2	Know methods for EMI measurements
CO3	Learn EMC standards and regulations
CO4	Understands control methods and fixes
CO5	Design EMC and interconnection

Course Content:

Unit-1 Basic Concepts	8 hours		
History and concept of EMI, Definition of EMI and EMC with examples, Classifica	ation of		
EMI/EMC, Units of Parameters, Sources of EMI, EMI coupling modes, ESD Phenomena and			
effects, Transient phenomena and suppression, Electro magnetic environment, Pra			
experiences and concerns, frequency spectrum conservations, mechanisms of EMI			
generation, EMI testing, Methods of elimination of EMI			
Unit-2 EMI Measurements	8 hours		
Basic principles of RE, CE, RS and CS measurements, EMI measuring instrument	S-		
Antennas, LISN, Feed through capacitor, current probe, EMC analyzer and detect	tion		
technique open area site, shielded anechoic chamber, TEM cell, Natural and mann	nade		
sources of EMI/EMC: Sources of Electromagnetic noise, typical noise paths, mode	s of noise		
coupling, designing for EM compatibility, lightening discharge, electro static disch	arge		
(ESD), electro magnetic pulse (EMP).			
Unit-3 EMC Standard and Regulations	8 hours		
National and International standardizing organizations- FCC, CISPR, ANSI, DOI), IEC,		
CENEEC, FCC CE and RE standards, CISPR, CE and RE Standards, IEC/EN, C	S		
standards, Frequency assignment - spectrum conversation, Components for EMC	and EMC		
Standards: Choice of capacitors, inductors, transformers and resistors.			
Unit-4 EMI Control Methods and Fixes	8 hours		
Grounding, Bonding, Filtering, EMI gasket, Isolation transformer, opto isolator, S	0		
and Bonding: effectiveness of shielding, near and far fields / impedances, methods	• /		
total loss due to absorption and reflection effects, composite absorption and reflect			
for electric fields / magnetic fields, magnetic materials as a shield, shield discontinu			
and holes, seams and joints, conductive gaskets, Electrical Bonding, Shape and Material for			
Bond straps.			
Unit-5 EMC Design and Interconnection Techniques	8 hours		
Cable routing and connection, Component selection and mounting, PCB design- Trace			
routing, Impedance control, decoupling, Zoning and grounding, Grounding and Cabling:			
Safety and signal grounds, low and high frequency grounding methods, grounding of			
amplifiers and cable shields, isolation, neutralizing transformers, shield grounding at high			
frequencies, digital grounding, types of cables, mechanism of EMI emission / coupl	ing in		
cables			

Internal Assessment	Mid Term Test	End Term Test	To	tal N	I ark	s	
(IA)	(MTE)	(ETE)					
20	30	50	100)			
Name of The Course	DSP Architecture						
Course Code							
Prerequisite							
				L	Т	Р	С
				3	0	0	3

Course Objectives:.

Identify and formalize architectural level characterization of P-DSP hardware

Ability to design, programming (assembly and C), and testing code using Code Composer

Studio environment

Deployment of DSP hardware for Control, Audio and Video Signal processing

applications

Understanding of major areas and challenges in DSP based embedded systems

Course Outcomes

CO1	Understand the hardware and software structures used to implement digital signal
	processing.
CO2	Describe the details of Architectures For Programmable DSP Devices.
CO3	Describe Programmable Digital Signal Processors TMS320C54XX addressing modes,
	control unit and its operation.
CO4	Implement basic DSP algorithms like FIR and IIR digtal filters.
CO5	Describe interfacing of memory and input output peripherals to programmable DSP
	devices

Text Book (s)

1. B Venkataramani and M Bhaskar "Digital Signal Processors", TMH, 2002.

2. Peter Pirsch "Architectures for Digital Signal Processing", John Weily, 2007.

3. Avatar Singh and S. Srinivasan, "Digital Signal Processing", Thomson Learning, 2004

Reference Book (s)

1. Lars Wanhammer, "DSP Integrated Circuits", 1999 Academic press, New York

2.A.V.Oppenheim et.al, "Discrete-time Signal Processing", Pearson Education, 2000.

3. Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital signal processing – A practical approach", Second Edition, Pearson Education, Asia.

4.Keshab K.Parhi, "VLSI Digital Signal Processing Systems design and Implementation", John Wiley & Sons, 1999.

Unit-1	Introduction to Digital Signal Processing	8 hours
--------	---	---------

Introduction, A Digital Signal-Processing System, The Sampling Process, Discrete Time							
Sequences, Typical DSP Algorithms (Discrete Fourier Transform (DFT) and Fa	ast Fourier						
Transform (FFT), Least Mean Square(LMS)). Representation of Signal Process							
Algorithms, Signal-Flow, Data-Flow graphs, Digital Filters, Decimation and Interpolation,							
Analysis and Design Tool for DSP Systems.							
Unit-2 Architectures For Programmable DSP Devices	8 hours						
Basic Architectural features, DSP Computational Building Blocks, Bus Archite	cture and						
Memory, Data Addressing Capabilities, Address Generation Unit, Programma	bility and						
Program Execution, Speed Issues, Features for External interfacing.							
Unit-3 Programmable Digital Signal Processors	8 hours						
Commercial Digital signal-processing Devices, Data Addressing modes of TMS	320C54XX						
DSPs, Data Addressing modes of TMS320C54XX Processors, Memory space of							
TMS320C54XX Processors, Program Control, TMS320C54XX instructions and	d						
Programming, On-Chip peripherals, Interrupts of TMS320C54XX processors,	Pipeline						
Operation of TMS320C54XX Processors.							
Unit-4 Implementation Of Basic DSP Algorithms	8 hours						
The Q-notation, FIR Filters, IIR Filters, interpolation Filters, Decimation filter	s, PID						
Controller, Adaptive Filters. Implementation of FFT algorithms.							
Unit-5 Interfacing Memory And I/O Peripherals To Programmable Dsp	8 hours						
Devices							
Memory space organization, External bus interfacing signals, Memory interfac	· ·						
interface, Programmed I/O, Interrupts and I/O, Direct memory access (DMA).							
Multichannel buffered serial port (McBSP), McBSP Programming, a CODEC	interface						
circuit, CODEC programming, A CODEC-DSP interface example.							

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	MIXED SIGNAL IC DESIGN				
Course Code	MVLS6008				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:.

Understand basics of Data Converters and describes the concepts of modulator, filters to improve SN and SPICE modeling

Course Outcomes

CO1	Understand basic concept of ADC, DAC
CO2	Learn SNR improvement methods
CO3	Know noise shaping data converters
CO4	Design data converters
CO5	Design various filters

Text Book (s)

- 1. R. J. Baker, CMOS Mixed Signal Cicuit Design, Wiley/IEEE, 2002.
- 2. Handkiewicz, Mixed-Signal Systems : A Guide to CMOS Circuit Design, Wiley-IEEE, 2002.
- 3. Razavi, Principles of Data Conversion System Design, IEEE Press, 1995

Reference Book (s)

- 1. E. Sanchez-Sinencio and A. G. Andreou, Low-Voltage/Low-Power Integrated Circuits and Systems: Low-Voltage Mixed-Signal Circuits, IEEE, 1999.
- 2. Y. Tsividis, Mixed Analog-Digital VLSI Devices and Technology, MH, 1996.
- 3. S. Rabii and B. A. Wooley, Design of Low-Voltage Low-Power Sigma-Delta Modulators, Kluwer, 1998.
- 4. P. G. A. Jespers, Integrated Converters : D-A and A-D Architectures, Analysis and
- 5. Simulation, OUP, 2001.
- 6. R. Van de Plassche, Integrated Analog-to-Digital and Digital-to-Analog Converters Kluwer, 1994.

Course Content:

Unit-1	Data Converters	8 hours
Data Co	nverters: Introduction, Characteristic Parameters, Basic DAC and ADC	
Architec	tures. Sampling and Aliasing, SPICE models for DACs and ADCs, Quan	tization
Noise.		
Unit-2	Data Converters SNR	8 hours
Clock Ji	tter, Improving SNR using Averaging, decimating filters for ADC's, Inte	rpolating
filters fo	r DAC's, Band pass and high pass Sinc filters, using feedback to improve	e SNR.
Unit-3	Noise Shaping Data Converters	8 hours
Noise Sh	aping data converters: SPICE model, First order noise shaping, First or	der Noise
	, - Digital first order NS Modulators, Modulation Noise, Decimating and	
1 U	f a NS Modulator, Analog Sync filter using SPICE, Analog Implementat	0
	S Modulator, Feedback DAC, Forward modulator, op-amp. Second orde	
Shaping		
~ PB		
Unit-4	Implementing Data Converters	8 hours
Impleme	enting data converters: R-2R topologies for DAC's – Current mode, volta	ige mode.
	ng current mode DAC, topologies without an op-amp, effects of op-amp	
	enting ADC's- Implementing S/H,Cyclic ADC, Pipeline ADC using 1.5 bit	±
	r error averaging, comparator placement, clock generation, offsets and a	
	es, Layout of Pipelined ADC's.	iter nati ve
topologi	s, Layout of Tipelinea ADC 5.	
Unit-5	Filters	8 hours
	s filters, active RC integrators, Effect of parameters of Integrator, MOS	
	ors, transconductance-C integrator, discrete time integrators. Filtering to	
0	transfer function and biquadratic transfer function	Poineres
Sinnear	nansivi tanenvii ana viguaatane nansivi tanenvii	

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	RESEARCH SEMINAR				
Course Code	MVLS9997				
Prerequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

- 1. To make literature survey for various recently emerging technologies.
- 2. To select any topic of interest and to review the related literature in detail.
- 3. To compare and analysis the various topologies for the selected topic of interest.
- 4. To conclude the advantage, drawbacks and future scope of the technique.

Course Outcomes

CO1	Get familiar with the recently advanced techniques.
CO2	Get detailed information about the topic of interest.
CO3	Know how to do literature survey.
CO4	Develop the interest in research in area of VLSI Design

Text Book (s)

Depending upon the area of interest student may choose any text book of relevant field

Internal Assessment (IA)	End Term Test (ETE)(Presentaion)	Total Marks
50	50	100

School of Electrical, Electronics and Communication Engineering

Program: M. Tech. Communication Engineering

Scheme: 2019-2020

Curriculum

		Semest	er 1						
Sl.	Course						Assessment	Pattern	
No	Code	Name of the Course	L	Т	Р	С	IA	MTE	ЕТЕ
1	MATH5001	Advanced Numerical & Statistical Methods	3	1	0	4	20	30	50
2	MCEN5002	Information Theory and Coding (PC)	3	0	0	3	20	30	50
3	****	Program Elective 1	3	0	0	3	20	30	50
4	****	Program Elective 2	3	0	0	3	20	30	50
5	MCEN5018	Advanced Digital Signal Processing (PC)	3	0	0	3	20	30	50
6	MCEN5005	Advanced Digital Signal Processing Lab (PC)	0	0	2	1	50	-	50
7	MCEN5006	Information Theory and Coding Lab (PC)	0	0	2	1	50	-	50
		Total	15	1	4	18			
		Semest	er II						
Sl	Course	Name of the Course	Name of the Course				Assessment		
No	Code		L	Т	Р	С	IA	MTE	ETE
1	CENG5001	Professional and Communication skills (UC)	0	0	4	2	20	30	50
2	MCEN5020	Optical Communication (PC)	3	0	0	3	20	30	50
3	****	Program Elective 3	3	0	0	3	20	30	50
4	****	Program Elective 4	3	0	0	3	20	30	50
5	MCEN5021	Mobile and Wireless Communication (PC)	3	0	0	3	20	30	50
6	MCEN5011	Digital Communication System Design (PC)	3	0	0	3	20	30	50
7	MCEN5012	Digital Communication System Design Lab (PC)	0	0	2	1	50	-	50
8	MCEN5013	Optical Communication Lab (PC)	0	0	2	1	50	-	50
		Total Semeste	15 er III	0	8	19			
Sl	Course	Name of the Course					Assessment		
No	Code		L	Т	Р	С	IA	MTE	ETE
1	MCEN6009	Data Communication Networks (PC)	3	0	0	3	20	30	50
2	****	Program Elective 5	3	0	0	3	20	30	50
3	****	Program Elective 6	3	0	0	3	20	30	50
4	MCEN9997	Research Seminar (PC)	0	0	2	2	50	-	50

5	MCEN9998	Capstone Design-1 (PC)	0	0	10	5	50	-	50
		Total	9	0	12	16			
Semester IV									
Sl No	Course Code	Name of the Course	Т	Т	Р	C	Assessment		FTF
INO	Code		L		r	С	IA	MTE	ETE
1	MCEN9999	Capstone Design-2 (PC)	0	0	30	15	50	-	50

Programme Elective

SI. No.	Course Code	Course Title	L	Т	Р	С
1	MCEN5003	Advanced Radiation Systems	3	0	0	3
2	MCEN5008	Advanced Satellite Communication	3	0	0	3
3	MCEN5009	Mobile Ad Hoc Networks	3	0	0	3
4	MCEN6001	Advanced Digital Image Processing	3	0	0	3
5	MCEN5014	Network Security	3	0	0	3
6	MCEN5015	RF System Design	3	0	0	3
7	MCEN5016	Fiber Optic Communication Networks	3	0	0	3
8	MCEN5017	RF MEMS	3	0	0	3
9	MCEN6005	Communication ICs and Design	3	0	0	3
10	MCEN6006	Embedded System Design	3	0	0	3
11	MCEN6007	Spread Spectrum Techniques	3	0	0	3
12	MCEN5019	Wireless Sensor Networks	3	0	0	3
13	MCEN6011	Introduction to IoT and Architecture	3	0	0	3
14	MCEN6012	Error Control Coding	3	0	0	3

Detailed Syllabus

Name of The Course	Advanced Numerical & Statistical Methods				
Course Code	MATH5001				
Prerequisite	Matrices and Calculus				
		L	Т	Р	С
		3	1	0	4

Course Objectives: To introduce the applications and trade off of various advanced methods used to solve a wide variety of engineering problems dealing with algebraic and differential equation that are often encountered in engineering and cannot be solved by analytical methods along with the introduction of design of experiment.

Course Outcomes

CO1	Do numerical integration for various problems
CO2	Do interpolation using various interpolation techniques.
CO3	Understand the Ordinary & Partial Differential equations and their solutions.
CO4	Do numerical integration
CO5	Use wavelets and their applications

Text Book (s)

- 3. Numerical Method : E. Balagurusamy, Tata McGraw Hill Publication.
- 4. Applied Numerical Analysis : Curtis F. Gerald and Patrick O. Wheatley Pearson Education Ltd.

Reference Book (s)

- 4. Numerical Methods for Scientific and Engineering computation: M.K Jain, S.R.K Iyengar and R.K Jain, New age International Publishers.
- 5. Statistical Methods : S.P. Gupta, Sultan Chand and Sons
- 6. Introduction to Mathematical Statistics: A.M. Mood, F. Graybil and D.C.Boes, Mc Graw Hill Publication.

Unit-1	System of Equations	8 hours				
Solution of system of linear equations- Direct Methods- Gauss elimination – Pivoting, Partial						
and Total Pivoting, Triangular factorization method using Crout LU decomposition,						
Cholesky method, Iterative Method- Gauss-Seidel and Jacobi method, ill conditioned matrix						
Solution	Solution of system of non linear equation- Newton Raphson and Modified Newton Raphson					
Method. Iterative methods.						
Unit-2	Interpolation and Approximation	8 hours				
Lagrang	Lagrange, Spline and Hermite interpolation, Approximations, Error of approximation,					
Norms for discrete and continuous data, Least square approximation.						
Unit-3	Numerical Integration	8 hours				
Newton Cotes closed Quadrature, Gauss Legendre Quadrature, Multiple Integration.						
Unit-4	Numerical Solution of Differential Equations	8 hours				
Finite Difference Schemes, Numerical solution of Ordinary differential equation using						
Modified Euler's method, Runge-Kutta method of 2nd, 3rd and 4th orders, Predictor-						
Corrector method, Solution of Laplace's and Poisson's equations by Liebmann's method,						
Solution of one dimensional time dependent heat flow.						
Unit-5	Probability and statistics	8 hours				

Review of concept of probability, Random Variables, Continuous and discrete distribution function, moments and moments generating functions, Binomial, Poisson, Negative Binomial, Geometric and Hyper-geometric Distributions, Uniform, Normal, Exponential, Gamma and Beta distributions. Point and Interval estimation, Testing of Hypothesis (t-test and chi square test), Analysis of variance and Introduction of Design of experiments.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Information Theory and Coding				
Course Code	MCEN5002				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. To understand the fundamental concept of entropy and information as they are used in communications.
- 2. To enhance knowledge of probabilities, entropy, measures of information.
- 5. To identify the implications and consequences of fundamental theories and laws of information theory and coding with reference to the application in modern communication and computer systems.
- 6. To design different encoders using the different coding schemes like Huffman Coding, Shannaon Fano Coding, Cyclic codes, etc.,

Course Outcomes

CO1	Calculate the information content of a random variable from its probability
	distribution.
CO2	Relate the joint, conditional, and marginal entropies of variables in terms of their
	coupled probabilities.
CO3	Define channel capacities and properties using Shannon's Theorems.
CO4	Construct efficient codes for data on imperfect communication channels.
CO5	Generalize the discrete concepts to continuous signals on continuous channels.

Text Book (s):

1. Andrew J, Viterbi " *Principles of Digital Communication and Coding*", McGraw-Hill, 1996.

2. Ranjan Bose, "Information Theory, Coding and Cryptography", TMH Publication, 2003.

Reference Book (s)

- 1. Andrea Goldsmith, "Wireless Communications", Cambridge University Press, 2005.
- 2. Saro Glisic , Advanced Wireless Communications 4G technologies, Wiley & Sons.
- 3. Stephen G.Wilson, "Digital Modulation & Coding", Prientice-Hall Inc. 1996.

4. Daniel J.Costello ,"Error-Control Coding", Pearson Education Inc.2004.

5. John G.Proakis, "Digital Communication", 4th edition, McGraw Hill.

Course content:

Unit-1	Introduction to Information Theory	10 hours			
Informa	Information theory and statistics. Method of types. Stein's lemma. AEP. Information capacity				
	of networks. Slepian-Wolf theorem. Optimal investment and information theory.				
Universa	Universal portfolios and universal data compression. Maximum entropy and Burg's theorem				
Unit-2	Introduction to Coding Theory	8 hours			
An overv	An overview – A frame work for Digital Communications-Concepts of Information theory for				
	Alphabets-Information source and Entropy: Entropy for Discrete Rando				
Shannon	's noiseless coding theorem, Mutual information and Channel capacity, in	nformation			
measure	s for continuous random variables				
Unit-3	Linear Block Codes and Convolution Codes	8 hours			
	inear Block Codes, The generator matrix and the parity check matrix. Ex				
	ock codes. Cyclic codes. Hard Decision Decoding-Probability of error for				
	•				
	Decoding for AWGN, Soft Decision Decoding- Probability of error for So	Dit Decision			
	g for AWGN. Non-Linear Block codes-Reed Solomon code.	. .			
	tion, Encoder Basic structures-Code characterization: Trellis Diagrams-M				
	od Decoding-Viterbi algorithm-Distance properties of Convolutional code				
-	nput channels-Intersymbol Interference channels-Coding for Intersymbo	l			
	ence channels.				
Unit-4	Space Time Codes	8 hours			
	model-Independent fade coefficients, Design criteria for Rayleigh Space-				
	Code Construction-Reconfiguration efficiency of Space-Time coding. Spa				
	odes for frequency selective channels-Coding gain properties-Diversity ga	in			
	properties-Space-time trellis code design.				
Unit-5	Cryptography	8 hours			
Security issues, private key encryption algorithms-stream ciphers, Shannon"s theory,					
Introduction to number theory-modular arithmetic, public key encryption algorithms-					
	Hellman-public key distribution scheme, RSA public key distribution cryp	oto			
system;	Message authentication, hashing functions, Digital signatures.				

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Advanced Digital Signal Processing					
Course Code	MCEN5018					
Prerequisite						
		Ι		Т	Р	С
		3	3	0	0	3

Course Objectives:

This course examines the fundamentals of detection and estimation for signal processing. It will help the students to implement new algorithms for signal processing applications in frequency, time and mixed domains. **Course Outcomes**

CO1	Learn Multirate signal processing.
CO2	Design digital filters.
CO3	Know signal processing application in frequency and time
CO4	Understand FFT and power estimation
CO5	Learn DSP Processors and its application

Text Book (s)

- 1. Steven W. Smith, "Digital Signal Processing: A Practical Guide for Engineers and Scientists", Elsevier, 2003.
- 2. John G. Proakis, "Digital Signal Processing Principles, Algorithms and Applications",

4th edition, PHI 2007.

Reference Book (s)

1. Lawrence R. Rabiner, Bernard Gold, "Theory and Application of Digital Signal Processing", PHI 2001.

2. Roberto Cristi "Modern Digital Signal Processing", Thomson Brooks/Cole, 2004

Course content:

Unit-1	Introduction to Modern Digital Signal Processing	8 hours		
Introduction to Modern Digital Signal Processing: Signals, systems and signal processing				
	uous & discrete an overview), time domain and frequency domain analys			
-	ng and reconstruction of signals, Concepts of Two dimensional, Mu	ilti-rate and		
adaptiv	e signal processing.			
		-		
Unit-2	Design of Filters	8 hours		
Design	of digital filters, moving average filters, adaptive filters and Filter banks	•		
Unit-3	Fast Fourier Transform	8 hours		
Discret	e and fast Fourier transform algorithms, Power spectrum estimation			
Unit-4	Introduction to Digital signal Processors	8 hours		
Introdu	ction to Digital signal Processors: Fixed and Floating Point Processor	rs, Complex		
	rs – fixed and floating point representation. Applications: Application	ns of Digital		
Signal Processing to Speech & Audio coding and processing				
Unit-5Design and implementation example8 hours				
	An IIR and FIR audio filters - Modelling in MATLAB - Analog measurement on DSP			
Systems	s, Fixed and floating Point Realization impacts.			

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	PROFESSIONAL AND COMMUNICATION SKILL				
COURSE CODE	CENG5001				
Prerequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives:.

To develop the professional and communication skills of learners in a technical environment. To enable the students to acquire functional and technical writing skills.

219

To acquire state-of-the-art presentation skills in order to present technical topics to both technical and non-technical audience.

Course Outcomes

CO1	The learners will be able to exhibit their language proficiency and skill in <i>Describing</i>
	Technology.
CO2	The learners will be able to exhibit their language proficiency and skill in
	Investigating and designing using Technology.
CO3	Exhibit their language proficiency and skill in Technical Writing and Syntax.
CO4	Exhibit their language proficiency and skill in Technical Resume and Company
	Profile Presentation.
CO5	Exhibit their language proficiency and skill in Pie chart, Bar chart, Line graphs:
	analysis and interpretation

Text Books and Softwares:

- 1. English Vocabulary in Use Advanced, McCarthy & Felicity, CUP, 2003
- 2. Sky Pronunciation CD-ROM
- 3. Cambridge Advanced Learner's Dictionary CD-ROM
- 4. English Master : Grammar

Reference Book (s)

- 1. Writing, Researching, Communicating, Keith et al, Tata McGraw-Hill, 1989
- 2. Advanced English Grammar, Martin, CUP, 2006

Unit-1 Basics o	f Communication	8 hours		
Functional Language	Basic structures- Tense agreement, Prepositional phrases			
	Techno-words : Basic Concepts 62, 63			
	Pronunciation : sounds of syllables: Past tense & plural endir	igs		
Technical Expression	Organizational techniques in technical writing			
	Guided writing: Paragraph Writing, Note Making			
Presentation Skills	Techniques of presentation (general topic: speech without vis	sual aids)		
	Listening to speeches and comprehending			
Graphical Skills	Flow chart: Process and Functional description			
Unit-2		8 hours		
Functional Language	Basic structures- Voice, Conditionals			
	Techno-words : Basic Concepts 64,65,67			
	Pronunciation : Word Stress: two syllable words			
Technical Expression	Mechanics of Technical Writing and Syntax			
	Guided writing: Letter and email			
Presentation Skills	Interpersonal Communication Skills			
	Writing techniques for Power point presentation, Group Dise	cussion		
Graphical Skills	Technical Illustrations and Instructions			
Unit-3		8 hours		
Functional Language	Basic structures- Modal Verbs and Phrasal verbs			
	Techno-words : Basic Concepts 68,69,70,71			
	Pronunciation : Word Stress: compound words			
Technical Expression	Mechanics of Technical Writing and Syntax			
Guided writing: Technical Description				
Presentation Skills	Career advancement: Technical Resume and Company Profi	le		
	Presentation and Group Discussion			
Graphical Skills	Pie chart, Bar chart, Line graphs: analysis and interpretation			

Г

Unit-4			8 hours
Functional La	nguage	Basic structures- Modal Verbs and Phrasal verbs	
		Techno-words : Basic Concepts 72,73,74, Functional vocabu	lary 87
		Pronunciation : Sentence Stress	
Technical Expression		Guided and Free writing: Abstract and Technical articles	
Presentation Skills		Nuances of Presentation to a Technical audience	
Graphical Ski	ills	Oral Presentation of graphical representation	

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Optical Communication				
Course Code	MCEN5020				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:.

To prepare the students understand the various process and subsystems involved in the optical communication.

To enable the students appreciate the different multiplexing technologies in the fiber optic communication.

To design optical communication systems to serve a defined purpose

Course Outcomes

CO1	understand the various process and subsystems involved in the optical communication.
CO2	Understand multiplexing techniques
CO3	To understand the different kind of losses, signal distortion, SM fibers.
CO4	Know the various optical sources, materials and fiber splicing
CO5	Know the fiber optical receivers and noise performance in photo detector.

Text Book (s)

1. R. Ramaswami & K.N. Sivarajan, Morgan Kaufmann," Optical Networks A practical Perspective", 2nd Edition, Pearson Education, 2000.

2. Govind P. Agrawal, "Fiber-Optic Communication Systems", 3rd Ed., John Wiley & Sons 2003.

Reference Book (s)

- 1. Gerd Keiser, "Optical Fiber Communications" McGraw-Hill, 3rd Edition, 2000.
- 2. Thomas E. Stern and Krishna Bala, "Multiwavelength Optical Networks A Layered Approach", Addison Wesley, 1996

Unit-1 In	ntroduction	8 hours
-----------	-------------	---------

Optical and Photonic Device Technology: Attenuation and dispersion, Chirp, Dis	persion			
Management, Couplers, Isolators, Circulators, Multiplexers and Filters, EDFA, Raman				
Amplifier, SOA, SRA, Active and Passive Optical Switches, Optical Cross Connects,				
Wavelength Selective Cross Connects, Wavelength Converters, Optical Time Don	nain			
Reflectometry (OTDR), Optical Spectrum Analysers (OSA), WDM and Filters: die	electric,			
AWG and Fiber Bragg Grating (FBG) devices, Nonlinear optical fibers.				
Unit-2 Optical Modulators	8 hours			
Phenomenological theory of nonlinearities. Optics of anisotropic media. Harmoni	ic			
generation, mixing and parametric effects. Two-photon absorption, saturated abs	sorption and			
nonlinear refraction. Rayleigh, Brillouin and Raman scattering. Self-focusing and				
modulation. Self-induced transparency Solitons. Optical switching, Electro-Optic	Effect and			
Acousto-Optic effects. EO and AO modulators				
Unit-3 Detection and receiver design 8 hours				
Receiver Sensitivity – Bit-Error Rate, Eye Pattern, Minimum received power, Qu	antum limit			
of photo detection; Receiver Design – Front End, Linear channel, Decision circuit	t, Integrated			
Receivers; Noise in detection Circuit – Shot Noise, Thermal noise; Concept of Carrier to				
Noise Analysis				
Unit-4 Network Architectures and Topologies	8 hours			
The End To End Transmission Path, Loss And Dispersion Budgets in Network Designing, Optical Signal Flow And Constraints, Design of STAR, BUS, MESH and RING Topologies,				
Static Multipoint Networks: The Broadcast Star, Multiplexing and Mult				
Schemes: TWDM/MA, Sub carriers, CDMA, Capacity Allocation for	Dedicated			
Connections, Demand Assigned Connections.				
Unit-5Optical Networks Architecture8 hours				
Optical Networks Architecture, SONET/SDH Optical Network, WDM Optical N				
Wavelength Routed Optical Network, Routing Algorithms, Network Monitoring				
Management, Fault and Security Management, Routing Protocols, Intelligent Op				
Network (ION), FDDI, FTTH, Business Drivers for Next Generation-Optical Net	works,			
Coherent Optical Communication Systems and Design Requirements				

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Mobile and Wireless Communication				
Course Code	MCEN5021				
Prerequisite	Signals and Systems, Modulation Theory, Digital	Con	ımu	nicat	ion
		L	Т	Р	C
		3	0	0	3

Course Objectives:.

- 1. To understand the basic cellular system concepts.
- 2. To have an insight into the various propagation models and the speech coders used in mobile communication.
- 3. To understand the multiple access techniques and interference education techniques in mobile communication.

Course Outcomes

CO1 Understand 2G and 3G Wireless networks

CO2	Have a knowledge in Channel coding and Diversity	
CO3	Understand various Modulation techniques for Mobile Radio.	
CO4	Classify multiple access techniques in mobile communication.	
CO5	Outline cellular mobile communication standards.	

Text Book (s)

- 1. K.Feher, Wireless digital communications, PHI, New Delhi, 1999.
- 2. T.S.Rappaport, Wireless digital communications; Principles and practice, Prentice H NJ, 1996.

Reference Book (s)

- 1. W.C.Y.Lee, Mobile communications Engineering: Theory And Applications, Second Edition, McGraw Hill, New York.1998.
- 2. Schiller, Mobile Communications; Pearson Education Asia Ltd., 2000.

Course content:

Unit-1	Introduction to Wireless Mobile Communications	8 hours			
History	History and evolution of mobile radio systems. Types of mobile wireless services/systems-				
Cellula	Cellular, WLL, Paging, Satellite systems, Standards, Future trends in personal wireless				
systems					
Unit-2	Cellular Concept and System Design Fundamentals	8 hours			
Cellula	r concept and frequency reuse, Multiple Access Schemes, channel assign	ment and			
handof	f, Interference and system capacity, Trunking and Erlang capacity calcu	lations.			
Unit-3	Mobile radio Propagation	8 hours			
	vave propagation issues in personal wireless systems, Propagation model				
	Multipath fading and Base band impulse respond models, parameters of mobile				
multipath channels, Antenna systems in mobile radio.					
Unit-4	Modulation and Signal Processing	8 hours			
Overvie	ew analog and digital modulation techniques, Performance of various mo	odulation			
techniq	ues-Spectral efficiency, Error-rate, Power Amplification, Equalizing Ral	ke			
receiver	r concepts, Diversity and space-time processing, Speech coding and chan	nel			
coding.					
Unit-5System Examples and Design Issues8 hours					
Multipl	Multiple Access Techniques-FDMA, TDMA and CDMA systems, operational systems,				
Wireles	Wireless networking, design issues in personal wireless systems				

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total N	Aark	s	
(IA)	(MTE)	(ETE)				
20	30	50	100			
Name of The Course	Digital Communica	ation System Design				
Course Code	MCEN5011					
Prerequisite						
			L	Т	Р	С
			3	0	0	3

Course Objectives:

To understand the building blocks of digital communication system. To prepare mathematical background for communication signal analysis. To understand and analyse the signal flow in a digital communication system. To

analyse error performance of a digital communication system in presence of noise and other interferences

Course Outcomes

CO1	Understand basics of digital communication systems.
CO2	Design various digital communication modulators demodulators.
CO3	interpret optimum receivers and matched filter receivers
CO4	summarize phase and carrier estimation methods.
CO5	Analyze Performance of spread spectrum communication system.

Text Book (s)

- 1. Simon Haykin, "Digital Communications", John Wiley & Sons, 2004.
- 2. John proakis, "Digital Communications",4th Edition, McGraw Hill,.

Reference Book (s)

- 1. Bernard Sklar, "Modern Digital Communication Techniques Fundamental and applications", , Pearson Education, 2009.
- 2. Marvin K. Simon, Jim K. Omura, Robert A. Scholtz, Barry K. Levitt ,"Spread

spectrum communications Handbook",McGraw-Hill,2002

- 3. Ha.H.Nguyen, Ed Shwedyk, "A First Course in Digital Communications", Cambridge University Press, 2009.
- 4. Dennis Silage, "Digital Communication Systems using MATLAB and Simulink", Bookstand Publishing, 2009.
- 5. Marvin K. Simon, Hinedi Sami, Lindsay William C., "Digital Communication Techniques: Signal Design and Detection", PHI

Unit-1	Introduction to Digital Communication Systems	8 hours		
	Building blocks of Digital Communication System- Source Coders, Channel Coders,			
	tion concepts, Noise Sources and detection of known signals in noise, Pr			
	Channel decoders, Sources decoders, Correlation receiver, Concept of Ma	tched filter,		
Overall	system performance analysis.			
Unit-2	Sampling, Quantization and Coding	8 hours		
	ng in 1-D, 2-D and 3-D, Ideal sampling, Natural Sampling, Flat Samp			
	techniques. Various Sample and Hold designs, Quantizers- Quantization			
	tation of quantization error for linear and non-linear quantizers like A			
	npanders, Effect on Noise Spectrum, Error free quantizers like MAX qua			
iaw con	ipunders, Effect on Moise Spectrum, Effor free quantizers fike Mirrir qu			
Unit-3	Delta Modulation	8 hours		
	lodulator (DM), Adaptive Delta Modulators (ADM) Codecs, DPCM - The			
Practic	al design of DPCM Codecs, effect of predictors, Computation of quantiz	ation error,		
Delta M	Iodulator-Demodulators - Design concepts, Adaptive Delta Modulation a	nd its design		
aspects				
Unit-4	Shift Keying Techniques	8 hours		
Concep	ts of ASK, PSK, FSK, Q-PSK, PSK, QAM, QAM Modems, M-ASK, M-P	SK, M-FSK		
Modem	s, Techniques of coherent modulation and demodulation, Design of mat	ched filters,		

System	design aspects, Intersymbol Interference, Eye Pattern.			
Unit-5	Spread Spectrum Concepts	8 hours		
Spread	Spread Spectrum Systems - Concepts of DS and FH systems, Spectral Pictures, Process			
Gain ar	Gain and Jamming Margin, Concepts of coders and decoders in each case, suppressed			
carrier modulation and coherent detection techniques.				

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Data Communication Networking				
Course Code	MCEN6009				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

To impart the students a thorough exposure to the layered architecture of communication network and to analyse the protocols adopted for traffic management, routing and QOS provisioning.

Course Outcomes

CO1	Understand basic computer network technology, OSI and TCP/IP model		
CO2	Analyze wireless transmission, multiplexing, switching, error detection and		
	corrections		
CO3	Differentiate among data link protocol, MAC protocols and their applications		
CO4	Understands the design issues associated with Network layer, Routing algorithms and		
	Congestion control algorithms		
CO5	Analyze the design issues transport layer, connection management and network		
	securities		

Text Book (s)

- 1. J Frauzon "Computer Communication and Networks".
- 2. W. Stallings, "Data and computer communication", PHI.

Reference Book (s)

1. A.S. Tanenbaum, "Computer Networks", PHI.

Unit-1	Introduction	8 hours		
Introduc	Introduction – Network Hardware – Software – Reference Models – OSI and TCP/IP models			
– Examp	le networks: Internet, ATM, Ethernet and Wireless LANs - Physical lay	er –		
Theoreti	Theoretical basis for data communication - guided transmission media			
Unit-2	Wireless Transmission	8 hours		
Wireless	Wireless transmission - Communication Satellites – Telephones structure –local loop, trunks			
and mult	and multiplexing, switching. Data link layer: Design issues – error detection and correction.			
Unit-3	Data Link	8 hours		

Element	Elementary data link protocols - sliding window protocols - Data Link Layer in the Internet -			
Medium	Medium Access Layer – Channel Allocation Problem – Multiple Access Protocols.			
Unit-4	Network Layer	8 hours		
Network	Network layer - design issues - Routing algorithms - Congestion control algorithms - IP			
protocol	protocol – IP Address – Internet Control Protocol.			
Unit-5	Transport Layer	8 hours		
Transpo	Transport layer - design issues - Connection management - Addressing, Establishing &			
Releasing a connection – Simple Transport Protocol – Internet Transport Protocol (TCP) -				
Network	Network Security: Cryptography.			

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total N	Aark	s	
(IA)	(MTE)	(ETE)				
20	30	50	100			
Name of The Course	Advanced Radiation Systems					
Course Code	MCEN5003					
Prerequisite	Microwave Enginee	ring				
			L	Т	P	С
			3	0	0	3

Course Objectives:.

To understand antenna radiation and its parameters. Design different types of antennas.

Course Outcomes

CO1	understand Antenna parameters and theory associated
CO2	Ability to design antenna for various applications
CO3	Knowledge of modern antenna design
CO4	Able to design microstrip antenna
CO5	Able to compare various microstrip antennas parameters

Text Book (s)

1.Balanis.A, "Antenna Theory Analysis and Design", 3rd edition, John Wiley and Sons, New York, 2010.

2. Kraus.J.D., "Antennas for all applications" 3rd edition, TMH, 2010.

Reference Book (s)

- 1. Collin.R.E. and Zucker.F.,"Antenna Theory", Mc Graw Hill, New York, 1996.
- 2. R.S.Elliot, "Antenna Theory and Design", IEEE Press, John Wiley, 2005

Unit-1	Basic Concepts of Radiation	8 hours	
Radiatio	Radiation Mechanism – single wire, Double wire, dipole, Current distribution of thin wire		
antenna,	Basic antenna parameters, Vector magnetic potential, Impedance conce	pt-Balanced	
to Unbal	anced transformer, Power radiated from Half wave dipole antenna.		
Unit-2	Antenna Parameters	8 hours	
amplitud	linear arrays- Uniform spacing and amplitude, Uniform spacing and no le, current distribution and directivity, Phased arrays, Continuous apert synthesis techniques.		
Unit-3	Radiation from Apertures	8 hours	

Field equivalence principle, Rectangular and circular apertures, Uniform distribution on an		
infinite ground plane, Babinet's principle, Geometrical theory of diffraction, Horn antenna -		
E-plane,H- plane and Pyramidal types, Parabolic Reflector antenna.		
Unit-4 Micro Strip Antennas	8 hours	
Radiation mechanisms, Feeding methods, Rectangular patch, Circular patch, Input impedance of patch antenna, Circular polarization, Microstrip dipole, Microstrip arrays.		
Unit-5 Antennas and Measurements	8 hours	
Modern Antennas: EBG antennas, UWB antennas, Smart Antennas, Terrahertz antennas. Antenna measurements: Antenna range, Radiation patterns, Gain, Directivity, Impedance and polarization measurements.		

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Advanced Satellite Communication				
Course Code	MCEN5008				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:.

This course describes multiplexing and multiple access techniques used in Satellite communication. The satellite link design is also discussed. GPS

and applications of satellite communication are covered in this course.

Course Outcomes

CO1	Discuss various multiplexing and multiple access techniques.
CO2	Design satellite uplink and downlink in various conditions.
CO3	Understand GPS concepts.
CO4	Compare competitive satellite services
CO5	Understand satellite access techniques

Text Book (s)

1. Wilbur L. Pritchard, H.G. Suyderhoud ,Robert A.Nelson, Satellite Communication Systems Engineering, Prentice Hall, New Jersey, 2006.

2. Timothy Pratt and Charles W.Bostain, Satellite Communications, John Wiley and Sons, 2003.

Reference Book (s)

1. D.Roddy, Satellite Communication, McGrawHill, 2006.

- 2. Tri T Ha, Digital Satellite Communication, McGrawHill,1990.
- 3. B.N.Agarwal, Design of Geosynchronous Spacecraft, Prentice Hall, 1993.

Unit-1	Introduction to Satellite Communication	8 hours	
Satellite	e Systems, Orbital description and Orbital mechanics of LEO, MEO and	GSO,	
Placem	Placement of a Satellite in a GSO, Satellite – description of different Communication		
subsyst	ems, Bandwidth allocation.		

Unit-2	Multiplexing and Multiple Access Techniques	8 hours
Differer	nt modulation and Multiplexing Schemes, Multiple Access Tecl	hniques – FDMA,
TDMA,	CDMA, and DAMA, Coding Schemes	• · ·
Unit-3	Satellite Link Design	8 hours
Basic l	ink analysis, Interference analysis, Rain induced attenuation a	nd
interfe	rence, Ionospheric characteristics, Link Design with and with	out frequency
reuse.		1 0
reuse.		
Unit-4	Global Positioning System	8 hours
Unit-4	Global Positioning System and Satellite Navigation, GPS Position Location Principles, GI	
Unit-4 Radio		PS Receivers and
Unit-4 Radio	and Satellite Navigation, GPS Position Location Principles, GI	PS Receivers and
Unit-4 Radio Codes, Unit-5	and Satellite Navigation, GPS Position Location Principles, GI Satellite Signal Acquisition, GPS Receiver Operation and Diff Applications	PS Receivers and ferential GPS. 8 hours
Unit-4 Radio Codes, Unit-5 Satellit	and Satellite Navigation, GPS Position Location Principles, GI Satellite Signal Acquisition, GPS Receiver Operation and Diff	PS Receivers and ferential GPS. 8 hours AT, mobile satellite

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Mobile Ad Hoc Networks				
Course Code	MCEN5009				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives: This course introduces literature on wireless and ad-hoc networks. It exposes fundamental issues in designing and analyzing Wireless and ad-hoc network.

Course Outcomes

CO1	Explain the characteristics features, wireless channels and mobility models of mobile
	Adhoc networks.
CO2	Summarize the protocols used at the MAC layer and scheduling mechanisms.
CO3	Compare and analyze types of routing protocols used for unicast and multicast routing.
CO4	Examine the network security solution and routing mechanism.
CO5	evaluate the energy management schemes and Quality of service solution in ad hoc
	networks

Text Book (s)

1.C.Siva ram murthy, B.S. Manoj, "Ad hoc wireless networks-Architectures and protocols" Pearson Education, 2005

2. Stefano Basagni, Marco Conti, "Mobile ad hoc networking", Wiely interscience 2004

Reference Book (s)

3. Charles E.Perkins ,"Ad hoc networking", Addison Wesley,2001 **Course content:**

Unit-1Ad Hoc Wireless Networks8 hoursIntroduction to cellular and ad hoc wireless networks, applications of ad hoc networks,

issues in ad hoc wireless networks – medium access scheme, routing, multicasting, transport		
layer protocols, pricing scheme, quality of service provisioning, self organization, security, add		
and security discovery, energy management, scalability, deployment considerations,		
ad hoc wireless Internet.		
Unit-2 MAC Protocol	8 hours	
Issues in Designing a MAC Protocol for ad hoc wireless networks, design goals o	f a MAC	
Protocol for Ad Hoc Wireless Networks, Classification of MAC Protocols, Conte	ention based	
Protocols, Contention based Protocols with Reservation mechanism, Contention	Based MAC	
Protocols with Scheduling Mechanisms, Other MAC protocols.		
Unit-3 Routing Protocol	8 hours	
Design issues and classification, Table-driven, On-demand and Hybrid routing p	protocols,	
Routing protocols with efficient flooding mechanisms, Hierarchical and power-a	ware routing	
protocols.		
Unit-4 Multicasting Protocol	8 hours	
Design issues and operation, Architecture Reference Model, classification, Tree-	based and Mes	
Based Protocols, Energy-Efficient Multicasting, Multicasting with Quality of Ser	vice Guarante	
Application Dependent Multicast Routing.		
Quality of Service: Issues and challenges in providing QoS, Classification of QoS solutions,		
MAC layer solutions, Network layer solutions, QoS frameworks, Network security issues.		
Unit-5 Energy Management	8 hours	
Need, classification of battery management schemes, Transmission power	management	
schemes, System power management schemes.	-	
Wireless Sensor Networks: Architecture, Data dissemination, Date gathering, MAC protocols,		
location discovery, Quality of a sensor network.		
· · · · · · · · · · · · · · · · · · ·		

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Advanced Digital Image Processing				
Course Code	MCEN6001				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives: To introduce the fundamentals of visual information, representation of 2-D and 3-D information, enhancement of information, retrieval of information, and various colour models.

Course Outcomes

CO1	Students will be able to describe and Interpret basic elements of Digital Image Processing,
	Analyze the need and suitability of transforms in image processing applications
CO2	Design and implement filters for image enhancement in spatial domain and frequency domain
	for real time applications and apply image restoration algorithms
CO3	Segment and Extract features from images for analysis and recognition
CO4	Perform Wavelet analysis on images
CO5	Interpret Still and Video compression algorithms

Text Book (s)

1.Digital Image Processing/ Gonzalez and Woods/ Pearson Education 2008/Third Edition

2. Fundamentals of Digital Image Processing/ A.K. Jain/ PHI Indian Edition

3. Digital Image Processing using MATLAB/ Gonzalez, Woods, and Eddins/ Mc Graw Hill Second/ 2013

Reference Book (s)

1.Digital Image Processing/ K.R. Castleman/ Pearson 2014

2. Digital Image Processing Algorithms and Applications/I. Pitas/John Wiley 2002

3. Image Processing, Analysis, and Machine Vision/Milan Sonka, Vaclav Hlavac, Roger Boyale/ Cengage Learning 4th Edition

Course content:

Unit-1 Introduction 8 hours
Need for DIP- Fundamental steps in DIP – Elements of visual perception -Image sensing and
Acquisition – Image Sampling and Quantization – Imaging geometry, discrete image
mathematical characterization, Two dimensional Fourier Transform- Properties – Fast
Fourier Transform – Inverse FFT Discrete cosine transform and KL transformDiscrete
Short time Fourier Transform
Unit-2 8 hours
Image enhancement in spatial domain: Gray-level transformations, histogram equalization,
spatial filters- averaging, order statistics; Edge detection: first and second derivative filters,
Sobel, Canny, Laplacian and Laplacian-of Gaussion masks; Image filtering in frequency
domain: Smoothing and sharpening filtering in frequency domain, ideal and Butterworth
filters, homomorphic filtering;
Image restoration: Degradation/ restoration process, noise models, restoration in presence of
noise-only spatial filtering, linear position-invariant degradations, estimating the degradation
function, inverse filtering, Wiener filtering, constrained least squares filtering
Unit-3 8 hours
Detection of discontinuities – Edge linking and Boundary detection- ThresholdingEdge
based segmentation-Region based Segmentation- matching-Advanced optimal border and
surface detection- Use of motion in segmentation. Image Morphology – Boundary
descriptors- Regional descriptors.
Unit-4 8 hours
Wavelets and Multi-resolution image processing- Uncertainty principles of
FourierTransform, Time frequency localization, continuous wavelet transforms, wavelet
bases and multi-resolution analysis, wavelets and Subband filter banks, wavelet packets.
Unit-5 8 hours
Image Compression-Redundancy-inter-pixel and psycho-visual; Losslesscompression –
predictive, entropy; Lossy compression-predictive and transform coding; Discrete Cosine
Transform; Still image compression standards–JPEG and JPEG-2000.
Fundamentals of Video Coding-Inter-frame redundancy, motion estimationtechniques – full-
search, fast search strategies, forward and backward motion prediction, frame classification -
I, P and B; Video sequence hierarchy–Group of pictures, frames, slices, macro-blocks and
blocks; Elements of a video encoder and decoder; Video coding standards – MPEG and
H.26X.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Network Security				
Course Code	MCEN5014				
Prerequisite					
		L	Т	P	С
		3	0	0	3

Course Objectives: This course introduces various techniques used to provide security of networks. The data encryption and decryption methods are also discussed.

Course Outcomes

CO1	identify some of the factors driving the need for network security
CO2	identify and classify particular examples of attacks
CO3	define the terms vulnerability, threat and attack
CO4	identify physical points of vulnerability in simple networks
CO5	compare and contrast symmetric and asymmetric encryption systems and their
	vulnerability to attack, and explain the characteristics of hybrid systems.

Text Book (s)

1. William Stallings, Cryptography and Network Security: Principles and Standards, PrenticeHall India, 3rd Edition, 2003

Reference Book (s)

- 1. Charlie Kaufman, Radia Perlman and Mike Speciner, Network Security: Private Communication in a public world, Prentice Hall India, 2nd Edition, 2002
- 2. Man Young Rhee, "Internet Security", JohnWiley & Sons, 2003.
- **3.** Pfleeger & Pfleeger, "Security in Computing", Pearson Education, 3rd Edition, 2003.

Unit-1	Introduction	8 hours
Attacks,	Services- Mechanisms - Conventional Encryption - Classical and Mod	ern
Techniq	ues – Encryption Algorithms – Confidentiality.	
Unit-2	Public Key Encryption	8 hours
RSA – E	lliptic Curve cryptography – Number Theory Concepts.	
	1	-
Unit-3	Message Authentication	8 hours
Hash Fu	nctions, Hash and Mac algorithms– Digest Functions – Digital Signatur	es –
Authenti	ication Protocols.	
Unit-4	Network Security Practice	8 hours
IP Secur	ity overview, architecture, authentication header, security payload and	key
manager	nent–Web Security: secure socket layer, transport layer security, secure	e electronic
transacti	ion, dual signature.	
Unit-5	System Security	8 hours
Intruder	rs, viruses, worms, Fire Walls, Trusted systems: antivirus techniques and	d digital
immune	systems	

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	RF System Design	
Course Code	MCEN5015	
Prerequisite		
		С
		3

Course Objectives: This Course introduces physics of CMOS. The impedance matching and design of amplifiers, oscillators are also discussed.

Course Outcomes

CO1	Understand basics of CMOS physics.
CO2	Perform impedance matching in RF circuits.
CO3	Design RF amplifiers, Oscillators and Mixers.
CO4	Describe analog and digital modulation techniques and modulation schemes
CO5	Understand and describe mathematically the relationship between baseband signals
	and bandpass signals

Text Book (s)

- 1. T.Lee, "Design of CMOS RF Integrated Circuits", Cambridge, 2004
- 2. B.Razavi, "RF Microelectronics", Pearson Education, 1997

Reference Book (s)

- 1. D.M.Pozar, "Microwave Engineering", John Wiley, 2005.
- 2. B.Razavi, "Design of Analog CMOS Integrated Circuits", McGraw Hill, 2001.

TT •4 4		0.1			
Unit-1					
CMOS: Introduction to MOSFET Physics – Noise: Thermal, shot, flicker, popcorn noise					
Transcei	Transceiver Specifications: Two port Noise theory, Noise Figure, Sensitivity, SFDR, Phase				
noise - S	pecification distribution over a communication link. Transceiver Archite	ectures:			
Receiver	: Homodyne, Heterodyne, Image reject, Low IF Architectures - Transm	itter: Direct			
upconve	rsion, Two step upconversion				
Unit-2	Impedance Matching and Amplifiers	8 hours			
S-param	eters with Smith chart – Passive IC components - Impedance matching				
network	s Amplifiers: Common Gate, Common Source Amplifiers – OC Time co	nstants in			
bandwid	th estimation and enhancement – High frequency amplifier design. Low	Noise			
Amplifie	rs: Power match and Noise match – Single ended and Differential LNAs	_			
Termina	ted with Resistors and Source Degeneration LNAs.				
Unit-3	Feedback Systems and Power Amplifiers	8 hours			
Feedbac	Feedback Systems: Stability of feedback systems: Gain and phase margin, Root-locus				
techniqu	techniques – Time and Frequency domain considerations – Compensation - Power				
Amplifiers: General model – Types – Linearisation Techniques – Efficiency boosting					
techniques					
Unit-4					

PLL: Linearised Model – Noise properties – Phase detectors – Loop filters and Charge			
Pumps. Frequency Synthesizers: Integer-N frequency synthesizers – Direct Digital Frequency			
Synthesizers			
Unit-5 Mixers and Oscillators 8 hours			
Mixer: characteristics – Non-linear based mixers: Quadratic mixers – Multiplier based			
mixers: Single balanced and double balanced mixers – subsampling mixers			
Oscillators: Describing Functions, Colpitts oscillators – Resonators – Tuned Oscillators –			
Negative resistance oscillators – Phase noise.			

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Fiber Optic Communication Networks				
Course Code	MCEN5016				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives: This course provides insight on light wave networks. It emphasizes on methodology for optical network design and analysis.

Course Outcomes

CO1	Distinguish Step Index, Graded index fibers and compute mode volume.
CO2	Explain the Transmission Characteristics of fiber and Manufacturing techniques of
	fiber/cable.
CO3	Classify the construction and characteristics of optical sources and detectors.
CO4	Discuss splicing techniques, passive optical components and explain noise in optical
	system.
CO5	Design short haul and long haul Analog/ Digital optical communication system and
	explain advanced optical transmission systems

Text Book (s)

- 1. R. Ramaswami & K.N. Sivarajan, Morgan Kaufmann," Optical Networks A practical Perspective", 2nd Edition, Pearson Education, 2000.
- 2. Govind P. Agrawal, "Fiber-Optic Communication Systems", 3rd Ed., John Wiley & Sons 2003.

Reference Book (s)

- 1. Gerd Keiser, "Optical Fiber Communications" McGraw-Hill, 3rd Edition, 2000.
- 2. Thomas E. Stern and Krishna Bala, "Multiwavelength Optical Networks A Layered Approach", Addison Wesley, 1996.

Un	it-1	Network Elements	8 hours

Optical and Photonic Device Technology: Attenuation and dispersion, Chirp, Dispersion				
Management, Couplers, Isolators, Circulators, Multiplexers and Filters, EDFA, Raman				
Amplifier, SOA, SRA, Active and Passive Optical Switches, Optical Cross Conne	ects,			
Wavelength Selective Cross Connects, Wavelength Converters, Optical Time Do	main			
Reflectometry (OTDR), Optical Spectrum Analysers (OSA), WDM and Filters: di	electric,			
AWG and Fiber Bragg Grating (FBG) devices, Nonlinear optical fibers.				
Unit-2 Optical Modulators	8 hours			
Phenomenological theory of nonlinearities. Optics of anisotropic media. Harmon	ic			
generation, mixing and parametric effects. Two-photon absorption, saturated ab nonlinear refraction. Rayleigh, Brillouin and Raman scattering. Self-focusing an				
modulation. Self-induced transparency Solitons. Optical switching, Electro-Optic	c Effect and			
Acousto-Optic effects. EO and AO modulators.				
Unit-3 Detection and receiver design	8 hours			
Receiver Sensitivity – Bit-Error Rate, Eye Pattern, Minimum received power, Qu	uantum limit			
of photo detection; Receiver Design – Front End, Linear channel, Decision circuit, Integrated				
Receivers; Noise in detection Circuit – Shot Noise, Thermal noise; Concept of Carrier to				
Noise Analysis.				
Unit-4Network Architectures and Topologies8 hours				
The End To End Transmission Path, Loss And Dispersion Budgets in Network Designing,				
Optical Signal Flow And Constraints, Design of STAR, BUS, MESH and RING				
Static Multipoint Networks: The Broadcast Star, Multiplexing and Multiple Acc	ess Schemes:			
TWDM/MA, Sub carriers, CDMA, Capacity Allocation for Dedicated Connectio	ns, Demand			
Assigned Connections.				
Unit-5Optical Networks Architecture8 hours				
Optical Networks Architecture, SONET/SDH Optical Network, WDM Optical Networks,				
Wavelength Routed Optical Network, Routing Algorithms, Network Monitoring and				
Management, Fault and Security Management, Routing Protocols, Intelligent Op				
Network (ION), FDDI, FTTH, Business Drivers for Next Generation-Optical Networks,				
Coherent Optical Communication Systems and Design Requirements				

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	RF MEMS				
Course Code	MCEN5017				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

This course introduces various sensors, actuators and RF MEMS and it's applications.

Course Outcomes

CO1	Know various sensors, actuators and RF MEMS.
CO2	Design MEMS based circuit.
CO3	able to analyze different MEMS technologies
CO4	familiar with the micro machnied designs for the design of reconfigurable antennas.
CO5	Design circuit using RF MEMS

Text Book (s)

- 1. Hector J. De Los Santos, "RF MEMS Circuit Design for Wireless Communications", Artech House, 2002.
- 2. Vijay K. Varadan, K.J. Vinoy, K.A. Jose, "RF MEMS and their Applications", John Wiley and Sons, Ltd., 2002.

Reference Book (s)

1. Gabriel M. Rebeiz, "RF MEMS Theory, Design & Technology", Wiley, 2002.

Course Content:

Unit-1 7.	Introduction to Sensors, Actuators and Mathematical Models	8 hours			
Micro machin	es, micro systems, benefits, Scaling laws, nano machines. Classifica	tion of			
transducers: e	lectrostatic, piezoelectric, thermal sensing principles, SAW devices	•			
Unit-2 8.	Unit-28.Surface Bulk Micro Machining8 hours				
9. Overv	iew of silicon processes techniques, micro machining technique	es and special			
process for M	EMS, polymer MEMS, Recent advances in MEMS fabrication.				
Unit-3 RF	MEMS	8 hours			
10. Enable	ed circuit elements and models – RF/Microwave substrate prop	erties, Micro			
machined – er	hanced elements - capacitors, inductors, varactors, MEM switch -	- shunt MEM			
switch, low vo	ltage hinged MEM switch approaches, push-pull series switch, fol	lded – beam–			
springs suspe	nsion series switch, Resonators – transmission line planar resor	nators, cavity			
resonators, mi	cromechanical resonators, film bulk acoustics wave resonators, ME	MS modeling			
– mechanical	nodeling, electromagnetic modeling.				
Unit-4 Nov					
11. Enabled circuits – reconfigurable circuits – the resonant MEMS switch, capacitors,					
inductors, tur	able CPW resonator, MEMS microswitch arrays, Reconfigural	ole circuits –			
double – stud	l tuner, Nth-stub tuner, filters, resonator tuning system, massi	ively parallel			
switchable RF	front ends, true delay digital phase shifters, reconfigurable anten	nas – tunable			
dipole antenna	as, tunable microstrip patch-array antenna.				
Unit-5RF MEMS Based Circuit Design8 hours					
Phase shifters – fundamentals, X-Band RF MEMS phase shifter for phased array applications,					
Ka-Band RF MEMS phase shifter for radar systems applications, Film bulk acoustic wave					
filters – FBAR filter fundamentals, FBAR filter for PCS applications, RF MEMS filters – A					
	Ka-Band millimeter-wave Micro machined tunable filter, A High-Q 8 MHz MEM Resonators				
filter, RF ME	MS Oscillators – fundamentals, A 14GHz MEM Oscillator, A Ka	-Band Micro			
1	filter, RF MEMS Oscillators – fundamentals, A 14GHz MEM Oscillator, A Ka-Band Micro				
machined cavi	ity oscillator, A 2.4 GHz MEMS based voltage controlled oscillator	•			

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Communication ICs and Design				
Course Code	MCEN6005				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

This course discusses on integrated circuit design techniques, transceiver architectures and telecommunication ICs.

Course Outcomes

CO2 Understand the concept of Nonlinear elements CO3 Know communication ICs and their applications. CO4 Design transceiver CO5 Know various telecommunication IC	CO1	Design low noise RF amplifiers and Oscillators.
CO4 Design transceiver	CO2	Understand the concept of Nonlinear elements
	CO3	Know communication ICs and their applications.
CO5 Know various telecommunication IC	CO4	Design transceiver
	CO5	Know various telecommunication IC

Text Book (s)

1. D.M. Pozar. Microwave Engineering. 3rd Ed., N.Y., John Wiley & Sons, Inc., 2005.

2. Leon W. Couch. Digital and Analog Communication Systems . 6th Ed, Prentice Hall PTR, New Jersey, 2001.

Reference Book (s)

1 B. Sklar. Digital Communications. Fundamentals and Applications. 2nd Ed., Prentice Hall PTR, New Jersey, 2001

Unit-1	Introduction to RF IC design	8 hours			
Gain, de	cibels, impedance, levels. Nonlinearities and harmonic distortions. Inte	rmodulation,			
dynamic	range. Review of thermal noise. Noise models and circuit noise	calculations.			
Introduc	tion to low-noise amplifiers, Low-noise RF amplifiers structure. Relation	ship between			
power co	onsumption, gain, linearity and noise figure.	-			
Unit-2	Nonlinear Elements	8 hours			
Nonlinea	r elements, their characteristics and approximation methods. Harmoni	cs analysis of			
	ent in the nonlinear elements. Nonlinear resonant amplifiers and frequenc				
	rs: Up and down conversion mixers, single and double balanced mixers.				
Unit-3 Oscillators 8 hours					
Types of	oscillators. Feedback oscillator topologies. Resonant oscillators. Cryst	al oscillators.			
Small signal analysis of an oscillator. Short introduction to Voltage Controlled Oscillators					
(VCOs).					
Unit-4 Transceivers 8 hours					
Transcei	vers architectures. Transceivers functions and characteristics. Direct co	nversion and			
super he	terodyne receivers. Phase-locked loops: Phase-locked loops and freque	ncy synthesis.			
Basic building blocks of the PLL. PLL synthesizers for radio applications.					
Unit-5 Telecommunication ICs 8 hours					
PCM, CVSD codec, filters MODEMS, LAN chip sets, ISDN Codecs, Telephone subscriber					
circuits, line interface, switched capacitor, DSP chips. High speed decision circuits. MIC and					
	High speed DSP Chips. Fibre optic chips.				
Continuo	us Assessment Pattern				

Internal Assessment	Mid Term Test	End Term Test	Tota	Mar	ks	
(IA)	(MTE)	(ETE)				
20	30	50	100			
Name of The Course	Embedded System	Design				
Course Code	MCEN6006					
Prerequisite						
			Ι	Δ T	P	C
			3	0	0	3

Course Objectives: This course introduces basic concepts of embedded systems, their programming, multiprocessors & synchronization.

Course Outcomes

CO1	Critically explain the components of Embedded Processing
CO2	Evaluate the architecture and functioning of embedded processors
CO3	Understand the various communication links in embedded system
CO4	Demonstrate Knowledge of RTOS and Its applications
CO5	Design and simulate the embedded system

Text Book (s)

1. Raj Kamal, Embedded Systems Architecture, Programming and Design, Tata McGraw-Hill, New Delhi, 2003.

2. Wayne Wolf, Computers as Components: Principles of Embedded Computing System Design, Morgan Kaufman Publishers, 2001.

Reference Book (s)

1. Frank Vahid and Tony Givargi Embedded System Design: A Unified Hardware/Software Introduction, s, John Wiley & Sons, 2000.

3. John B Peatman, Design with PIC Microcontrollers, Prentice Hall of India, 2007

Unit I	Introduction to Embedded System	8 hours			
embedded system, and Memory Org systems. Memory	tem, processor, hardware unit, soft ware embedded into a system, Exa , OS services, Embedded Design life cycle; Modeling embedded system anization: Structural unit in as processor, processor selection for an y devices, memory selection for an embedded system, allocation of ts and blocks and memory map of a system. Direct memory accesses.	s Processor embedded			
Unit II	Devices and Buses for Device Networks	8 hours			
I/O devices, serial communication using FC, CAN devices, device drivers, parallel port device driver in a system, serial port device driver in a system, device driver for internal programmable timing devices, interrupt servicing mechanism, V context and periods for switching networked I/O devices using ISA, PCI deadline and interrupt latency and advanced buses.					
Unit III	Programming Concepts and embedded programming in C	8 hours			
000	vare development environment, Start up code or Boot loader, Abstract , build download debug process of firmware.	ion Layers,			
Unit IV	Single and Multiprocessor Systems	8 hours			
Program Modeling Concepts in Single and Multiprocessor Systems: software development process, modeling process for software analysis before software implementation, programming model for the event controlled or response time constrained real time programs, modeling of multiprocessor system.					
Unit V	Multiprocessing & Synchronization 8 hou	irs			
process in an app communications.	mmunication and Synchronization of Processors Tasks: and thread plication, problems of sharing data by multiple tasks and routines, in RTOS task scheduling models interrupt literacy and response times, p ng models, standardization of RTOS, list of basic functions, synchroniz	ter process erformance			

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Spread Spectrum Techniques				
Course Code	MCEN6007				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives: This course introduces the architecture and elements of spread-spectrum systems. It also explains characteristics of spread-spectrum signal waveforms, methods for spread-spectrum and CDMA system performance analysis.

Course Outcomes

CO1	Know concept of spread spectrum system.
CO2	Learn jamming performance of coded & encoded spread spectrum system
CO3	Understand theory & concept of W-CDMA
CO4	Apply their knowledge of communications technology to CDMA and wireless systems
CO5	Understand the methods for spread-spectrum and CDMA system performance
	analysis

Text Book (s)

- 1. Jack K Holmes, "Spread Spectrum Systems for GNSS and wireless communication" Artech house, London.
- 2. Roger L Peterson, Rodger E. Ziemer, David E. Borth, "Introduction to Spread Spectrum Communications", prentice Hall.

Reference Book (s)

- 1. Kiji Tachikawa,"W-CDMA mobile communication systems", John Wiley & Sons.
- 2.. J.Prokais, "Digital Communications", McGraw Hill.

Unit I	Introduction to spread spectrum systems	8 hours				
Introduction to Spread Spectrum Technique – Direct Sequence Spread Spectrum Systems, Frequency						
hopping Spread S	Spectrum Systems and Hybrid Spread Spectrum Systems-Time hoppin	ng Spread				
Spectrum Signals-	- Common Problems faced in Spread Spectrum Systems- Introduction to	OFDM -				
Introduction to UV	Introduction to UWB communication					
Unit II	Jamming performance of Uncoded Spread Spectrum Systems	8 hours				
Introduction-Jamr	ner types-BER performance in Broadband noise jamming, Partial bra	and noise				
jamming and Puls	sed jamming (DS/PSK, SFH/DPSK, SFH/PSK, JFH/MFSK, FFH/BFSI	K, Hybrid				
DS-SFS SS). BER performance in single tone and multi tone jamming.						
Unit III	Jamming performance of Coded Spread Spectrum Systems	8 hours				

Interleaver structures for coded systems- Jamming Performance analysis using Linear Block codes, Convolutional codes, Iteratively decode codes.

Unit IV	Introduction to W-CDMA	8 hours
Technologies -	W-CDMA – Basic W-CDMA transmission technologies, Link capa WCDMA Characteristics and Specifications- W-CDMA system arch e Standard – Design of W-CDMA Radio system – Quality of Servic	itecture- Radio
Unit V	Rake Receiver, Capacity Analysis & Power Control	8 hours

Multipath Effects (Delay Spread and Distortion) and Rake Receiver Approach; Capacity Analysis of Cellular CDMA Communication Systems; Power Control in CDMA Communication Systems, Interference Rejection for DS/SS

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Wireless Sensor Networks				
Course Code	MCEN5019				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- Learn Ad hoc network and Sensor Network fundamentals
- Understand the different routing protocols
- Have an in-depth knowledge on sensor network architecture and design issues
- Understand the transport layer and security issues possible in Ad hoc and Sensor networks
- Have an exposure to mote programming platforms and tools Course Outcomes

Course Outcomes

CO1	Analyze the knowledge of wireless sensor networks in various application areas.
CO2	Comprehend and analyze localization and tracking issues associated with WSN network.
CO3	Evaluate the performance of energy saving approaches used in MAC Protocols.
CO4	Understand and analyze various routing metrics and routing algorithms in WSN network
CO5	Apply the techniques used for sensor data gathering, data storage and data retrievals in WSN.

Text Book (s)

1.Networking Wireless Sensors: Bhaskar Krismachari, Cambridge University Press

2. Wireless Sensor Networks: Edited by C.S Raghavendra, Krishna M, Sivalingam, TaiebZnati,

Reference Book (s)

1. Wireless Sensor Networks: An Information Processing Approach- by Feng Zhao, Leonidas Guibas , Morgan Kaufmann Series in Networking 2004.

2. Wireless Sensor Networks: Technology, Protocols, and Applications: KazemSohraby, Daniel Minoli, TaiebZnati, Wiley Inter Science.

Unit I	Introduction	8 Hours
	or network protocols, architecture, and applications, simulation and expeatures of WSNs, research issues and trends.	erimental
Unit II	Existing Technologies	8 Hours
	802.11 – Types, Concepts of 802.16, Basics of 802.15.4, Bluetooth, an C layers – Applications.	nd UWB,
Unit III	Sensor Node Hardware and Software	8 Hours
	micaZ, telosB, cricket, Imote2, tmote, btnode, and Sun SPOT, Software, Contiki, and RetOS, Programming tools: C, nesC, Mate.	(OS):
Unit IV	Network Connectivity and Routing	8 Hours
	nt mechanisms, coverage issues, node discovery protocols, Data dissemin hop and cluster based protocols, routing.	ation and
Unit V	Energy Management 8 Hours	

Data dissemination; data storage, query processing, sensorWeb, sensorGrid, Energy preservation and efficiency, security challenges, fault-tolerance.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Introduction to IoT and Architecture				
Course Code	MCEN6011				
Prerequisite	ІоТ				
Corequisite	ІоТ				
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

To understand the basic concept of IoT and study the applications of IoT.

Course Outcomes

CO1	Understand the concepts of Internet of Things
CO2	Analyze basic protocols in wireless sensor network
CO3	Design IoT applications in different domain and be able to analyze their performance
CO4	Implement basic IoT applications on embedded platform
CO5	Analyze and design of academic project

Text Book (s)

1.Rajkumar Buyya, Amir Vahid Dastjerdi, "Internet of Things Principles and Paradigms " Copyright © 2016 Elsevier Inc.

2.Arshdeep Bahga, Vijay Madisetti, "Internet of Things – A hands-on approach", Universities Press, 2015. 2. Manoel Carlos Ramon, "Intel® Galileo and Intel® Galileo Gen

Reference Book (s)

1.API Features and Arduino Projects for Linux Programmers", Apress, 2014.

2.Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014.

Unit-1 Introduction	8 hours			
The Internet of Things Today, Time for Convergence, Towards the IoT Univ	erse, Internet of			
Things Vision, IoT Strategic Research and Innovation Directions, IoT Applications, Future				
Internet Technologies, Infrastructure, Networks and Communication, Processes, Data				
Management, Security, Privacy & Trust, Device Level Energy Issues, IoT Related,				
Standardization, Recommendations on Research Topics.	Standardization, Recommendations on Research Topics.			
Unit-2 8 hours				
Background/Related Work - OpenIoT Architecture for IoT/Cloud Converge	nce - Scheduling			
Process and IoT Services Lifecycle - Scheduling and Resource Management -	· Validating			
Applications and Use Cases - Future Research Directions				
Unit-3 8 hours				

Introduction - Background and Related Work - Device/Cloud Collaboration Framework -			
Powerful Smart Mobile Devices - Runtime Adaptation Engine - Privacy-Protection Solution -			
Applications of Device/Cloud Collaboration - Context - Aware Proactive Suggestion -			
Semantic QA Cache - Image and Speech Recognition Future Work			
Unit-4 8 hours			
Principles, Architectures, and Applications: Introduction - Motivating Scenario -			
Definitions and Characteristics Reference Architecture - Applications - Research			
Directions and Enablers Commercial Products - Case Study			
Unit-5 8 hours			
Introduction - Scenario Architecture Overview- Sensors - The Gateway - Summary - Data			
Transmission			

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Error Control Coding				
Course Code	MCEN6012				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Discuss the theory of Linear Block Codes their Encoding and Decoding Techniques as well their application in real World Scenarios.

Course Outcomes:

CO1	Be familiar with importance of error correction methods in data communication and
	storage.
CO2	Have gained experience of use of mathematical tools from groups and finite fields, in
	the design of codes and sequences.
CO3	Develop an ability to compare and contrast the strengths and weaknesses of various
	errors correcting code for a given application.
CO4	Develop and model different error correcting codes for appraise of reaching data rate
	to Shannon limit.
CO5	Demonstrate competence in analyzing and evaluating the practice of different error
	correcting coded in digital communication system

Text Book (s):

1. Gravano Salvatore, "Introduction to Error Control Codes", Oxford University Press, 1st Ed., 2007.

2. Bose Ranjan,"Information Theory, Coding and Cryptography", Tata McGraw-Hill, 1st Ed., 2007.

Reference Book (s)

1. Moon Tood K.,"Error Correction Coding - Mathematical Methods and Algorithms", Wiley- Interscience, 1st Ed., 2006.

2. Sklar Bernard, "Digital Communications - Fundamentals and Applications", Pearson Education-LPE, 2nd Ed., 2009.

3. Glover Lan and Grant Peter,&qout;Digital Communications", Pearson Education-LPE, 1st Ed., 2008.

Course Content:

Unit-1 Channel Capacity And Coding 8 hours Introduction, Channel Models, Channel Capacity, Channel Coding, Information Capacity Theorem, The Shannon Limit, Random Selection Of Codes, Hamming Distance, Few Points Of Information Theory. Unit-2 Block Codes 8 hours Unit-2 Block Codes 8 hours The Digital Communication Channel, Introduction To Block Codes, Single Parity Check Codes, Product Codes, Repetition Codes, Hamming Codes, Minimum Distance Of Block Codes, Soft - Decision Decoding, Automatic Repeat Request Schemes 8 hours Unit-3 Linear Codes 8 hours Definition of Linear Codes, Generator Matrices, The Standard Array, Parity - Check Matrices, Error Syndromes, Error Detection And Correction, Shortened And Extended Linear Codes 8 hours Unit-4 Cyclic Codes, Polynomials, Generator Polynomials, Encoding Cyclic Codes, Generator Of XN +1, Parity-Check Polynomials, Dual Cyclic Codes, Generator And Parity-Check Matrices Of Cyclic Codes. Unit-5 Convolution Codes 8 hours Convolution, Encoding Convolutional Codes, Generator Matrices For Convolutional Codes, Generator Polynomials For Convolutional Codes, Graphical Representation Of Convolutional Codes, The Viterbi Decoder.			r1	
Theorem, The Shannon Limit, Random Selection Of Codes, Hamming Distance, Few Points Of Information Theory. Unit-2 Block Codes 8 hours The Digital Communication Channel, Introduction To Block Codes, Single Parity Check Codes, Product Codes, Repetition Codes, Hamming Codes, Minimum Distance Of Block Codes, Soft - Decision Decoding, Automatic Repeat Request Schemes 8 hours Unit-3 Linear Codes 8 hours Definition of Linear Codes, Generator Matrices, The Standard Array, Parity - Check Matrices, Error Syndromes, Error Detection And Correction, Shortened And Extended Linear Codes 8 hours Definition Of Cyclic Codes, Polynomials, Generator Polynomials, Encoding Cyclic Codes, Decoding Cyclic Codes, Factors Of XN +1, Parity-Check Polynomials, Dual Cyclic Codes, Generator And Parity-Check Matrices Of Cyclic Codes. Unit-5 Convolution Codes 8 hours Convolution, Encoding Convolutional Codes, Generator Matrices For Convolutional Codes, Generator Polynomials Representation Of 8 hours	Unit-1	Channel Capacity And Coding	8 hours	
Information Theory. 8 hours Unit-2 Block Codes 8 hours The Digital Communication Channel, Introduction To Block Codes, Single Parity Check Codes, Product Codes, Repetition Codes, Hamming Codes, Minimum Distance Of Block Codes, Soft - Decision Decoding, Automatic Repeat Request Schemes 8 hours Unit-3 Linear Codes 8 hours Definition of Linear Codes, Generator Matrices, The Standard Array, Parity - Check Matrices, Error Syndromes, Error Detection And Correction, Shortened And Extended Linear Codes. 10nit-4 Cyclic Codes 8 hours Definition of Cyclic Codes, Factors Of XN +1, Parity-Check Polynomials, Encoding Cyclic Codes, Generator And Parity-Check Matrices Of Cyclic Codes. 8 hours Unit-5 Convolution Codes 8 hours Convolution, Encoding Convolutional Codes, Generator Matrices For Convolutional Codes, Graphical Representation Of 10 hours	Introduc	Introduction, Channel Models, Channel Capacity, Channel Coding, Information Capacity		
Unit-2Block Codes8 hoursThe Digital Communication Channel, Introduction To Block Codes, Single Parity Check Codes, Product Codes, Repetition Codes, Hamming Codes, Minimum Distance Of Block Codes, Soft - Decision Decoding, Automatic Repeat Request Schemes8 hoursUnit-3Linear Codes8 hoursDefinition of Linear Codes, Generator Matrices, The Standard Array, Parity - Check Matrices, Error Syndromes, Error Detection And Correction, Shortened And Extended Linear Codes.8 hoursUnit-4Cyclic Codes8 hoursDefinition of Cyclic Codes, Polynomials, Generator Polynomials, Encoding Cyclic Codes, Decoding Cyclic Codes, Factors Of XN +1, Parity-Check Polynomials, Dual Cyclic Codes, Generator And Parity-Check Matrices Of Cyclic Codes.8 hoursUnit-5Convolution Codes8 hoursConvolution, Encoding Convolutional Codes, Generator Matrices For Convolutional Codes, Generator Polynomials For Convolutional Codes, Graphical Representation Of	Theorem	n, The Shannon Limit, Random Selection Of Codes, Hamming Distance, I	Few Points Of	
The Digital Communication Channel, Introduction To Block Codes, Single Parity Check Codes, Product Codes, Repetition Codes, Hamming Codes, Minimum Distance Of Block Codes, Soft - Decision Decoding, Automatic Repeat Request Schemes Unit-3 Linear Codes 8 hours Definition of Linear Codes, Generator Matrices, The Standard Array, Parity - Check Matrices, Error Syndromes, Error Detection And Correction, Shortened And Extended Linear Codes. 8 hours Unit-4 Cyclic Codes 8 hours Definition Of Cyclic Codes, Polynomials, Generator Polynomials, Encoding Cyclic Codes, Decoding Cyclic Codes, Factors Of XN +1, Parity-Check Polynomials, Dual Cyclic Codes, Generator And Parity-Check Matrices Of Cyclic Codes. 8 hours Unit-5 Convolution Codes 8 hours Only 8 hours 8 hours	Informa	tion Theory.		
Codes, Product Codes, Repetition Codes, Hamming Codes, Minimum Distance Of Block Codes, Soft - Decision Decoding, Automatic Repeat Request Schemes Unit-3 Linear Codes Befinition of Linear Codes, Generator Matrices, The Standard Array, Parity - Check Matrices, Error Syndromes, Error Detection And Correction, Shortened And Extended Linear Codes. Unit-4 Cyclic Codes 8 hours Definition Of Cyclic Codes, Polynomials, Generator Polynomials, Encoding Cyclic Codes, Decoding Cyclic Codes, Factors Of XN +1, Parity-Check Polynomials, Dual Cyclic Codes, Generator And Parity-Check Matrices Of Cyclic Codes. Unit-5 Convolution Codes Shours 8 hours Convolution, Encoding Convolutional Codes, Generator Matrices For Convolutional Codes, Graphical Representation Of	Unit-2	Block Codes	8 hours	
Codes, Soft - Decision Decoding, Automatic Repeat Request SchemesUnit-3Linear Codes8 hoursDefinition of Linear Codes, Generator Matrices, The Standard Array, Parity - CheckMatrices, Error Syndromes, Error Detection And Correction, Shortened And ExtendedLinear Codes.Unit-4Cyclic CodesShoursDefinition Of Cyclic Codes, Polynomials, Generator Polynomials, Encoding Cyclic Codes, Decoding Cyclic Codes, Factors Of XN +1, Parity-Check Polynomials, Dual Cyclic Codes, Generator And Parity-Check Matrices Of Cyclic Codes.Unit-5Convolution CodesShoursShoursConvolution, Encoding Convolutional Codes, Generator Matrices For Convolutional Codes, Generator Polynomials For Convolutional Codes, Graphical Representation Of	The Digi	tal Communication Channel, Introduction To Block Codes, Single Parit	y Check	
Unit-3Linear Codes8 hoursDefinition of Linear Codes, Generator Matrices, The Standard Array, Parity - Check Matrices, Error Syndromes, Error Detection And Correction, Shortened And Extended Linear Codes.Init-4Unit-4Cyclic Codes8 hoursDefinition Of Cyclic Codes, Polynomials, Generator Polynomials, Encoding Cyclic Codes, Decoding Cyclic Codes, Factors Of XN +1, Parity-Check Polynomials, Dual Cyclic Codes, Generator And Parity-Check Matrices Of Cyclic Codes.8 hoursUnit-5Convolution Codes8 hoursConvolution, Encoding Convolutional Codes, Generator Matrices For Convolutional Codes, Generator Polynomials For Convolutional Codes, Graphical Representation Of	Codes, P	roduct Codes, Repetition Codes, Hamming Codes, Minimum Distance (Of Block	
Definition of Linear Codes, Generator Matrices, The Standard Array, Parity - CheckMatrices, Error Syndromes, Error Detection And Correction, Shortened And ExtendedLinear Codes.Unit-4Cyclic CodesShoursDefinition Of Cyclic Codes, Polynomials, Generator Polynomials, Encoding Cyclic Codes, Decoding Cyclic Codes, Factors Of XN +1, Parity-Check Polynomials, Dual Cyclic Codes, Generator And Parity-Check Matrices Of Cyclic Codes.Unit-5Convolution CodesShoursConvolution, Encoding Convolutional Codes, Generator Matrices For Convolutional Codes, Generator Polynomials For Convolutional Codes, Graphical Representation Of	Codes, S	oft - Decision Decoding, Automatic Repeat Request Schemes		
Matrices, Error Syndromes, Error Detection And Correction, Shortened And Extended Linear Codes. Unit-4 Cyclic Codes 8 hours Definition Of Cyclic Codes, Polynomials, Generator Polynomials, Encoding Cyclic Codes, Decoding Cyclic Codes, Factors Of XN +1, Parity-Check Polynomials, Dual Cyclic Codes, Generator And Parity-Check Matrices Of Cyclic Codes. 8 hours Unit-5 Convolution Codes 8 hours Convolution, Encoding Convolutional Codes, Generator Matrices For Convolutional Codes, Graphical Representation Of 9	Unit-3	Linear Codes	8 hours	
Linear Codes. 8 hours Unit-4 Cyclic Codes 8 hours Definition Of Cyclic Codes, Polynomials, Generator Polynomials, Encoding Cyclic Codes, Decoding Cyclic Codes, Factors Of XN +1, Parity-Check Polynomials, Dual Cyclic Codes, Generator And Parity-Check Matrices Of Cyclic Codes. 8 hours Unit-5 Convolution Codes 8 hours Convolution, Encoding Convolutional Codes, Generator Matrices For Convolutional Codes, Generator Polynomials For Convolutional Codes, Graphical Representation Of	Definition of Linear Codes, Generator Matrices, The Standard Array, Parity - Check			
Unit-4Cyclic Codes8 hoursDefinition Of Cyclic Codes, Polynomials, Generator Polynomials, Encoding Cyclic Codes, Decoding Cyclic Codes, Factors Of XN +1, Parity-Check Polynomials, Dual Cyclic Codes, Generator And Parity-Check Matrices Of Cyclic Codes.8 hoursUnit-5Convolution Codes8 hoursConvolution, Encoding Convolutional Codes, Generator Matrices For Convolutional Codes, Generator Polynomials For Convolutional Codes, Graphical Representation Of	Matrices, Error Syndromes, Error Detection And Correction, Shortened And Extended			
Definition Of Cyclic Codes, Polynomials, Generator Polynomials, Encoding Cyclic Codes, Decoding Cyclic Codes, Factors Of XN +1, Parity-Check Polynomials, Dual Cyclic Codes, Generator And Parity-Check Matrices Of Cyclic Codes.Unit-5Convolution Codes8 hoursConvolution, Encoding Convolutional Codes, Generator Matrices For Convolutional Codes, Generator Polynomials For Convolutional Codes, Graphical Representation Of	Linear (Codes.		
Decoding Cyclic Codes, Factors Of XN +1, Parity-Check Polynomials, Dual Cyclic Codes, Generator And Parity-Check Matrices Of Cyclic Codes. Unit-5 Convolution Codes 8 hours Convolution, Encoding Convolutional Codes, Generator Matrices For Convolutional Codes, Generator Polynomials For Convolutional Codes, Graphical Representation Of				
Generator And Parity-Check Matrices Of Cyclic Codes.Unit-5Convolution Codes8 hoursConvolution, Encoding Convolutional Codes, Generator Matrices For Convolutional Codes, Generator Polynomials For Convolutional Codes, Graphical Representation Of	Definit	ion Of Cyclic Codes, Polynomials, Generator Polynomials, Encoding Cy	clic Codes,	
Unit-5Convolution Codes8 hoursConvolution, Encoding Convolutional Codes, Generator Matrices For Convolutional Codes, Generator Polynomials For Convolutional Codes, Graphical Representation Of				
Convolution, Encoding Convolutional Codes, Generator Matrices For Convolutional Codes, Generator Polynomials For Convolutional Codes, Graphical Representation Of	Generator And Parity-Check Matrices Of Cyclic Codes.			
Codes, Generator Polynomials For Convolutional Codes, Graphical Representation Of	Unit-5	Convolution Codes	8 hours	
Convolutional Codes, The Viterbi Decoder.	Codes,	Generator Polynomials For Convolutional Codes, Graphical Represent	ation Of	
	Convol	utional Codes, The Viterbi Decoder.		

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100