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1. Introduction

The Stochastic Growth Model

Koen Vermeylen

1 Introduction

This article presents the stochastic growth model. The stochastic growth model
is a stochastic version of the neoclassical growth model with microfoundations,1

and provides the backbone of a lot of macroeconomic models that are used in
modern macroeconomic research. The most popular way to solve the stochastic
growth model, is to linearize the model around a steady state,2 and to solve the
linearized model with the method of undetermined coefficients. This solution
method is due to Campbell (1994).

The set-up of the stochastic growth model is given in the next section. Section 3
solves for the steady state, around which the model is linearized in section 4. The
linearized model is then solved in section 5. Section 6 shows how the economy
responds to stochastic shocks. Some concluding remarks are given in section 7.

2 The stochastic growth model

The representative firm Assume that the production side of the economy
is represented by a representative firm, which produces output according to a
Cobb-Douglas production function:

Yt = Kα
t (AtLt)1−α with 0 < α < 1 (1)

Y is aggregate output, K is the aggregate capital stock, L is aggregate labor
supply and A is a technology parameter. The subscript t denotes the time period.

The aggregate capital stock depends on aggregate investment I and the depreci-
ation rate δ:

Kt+1 = (1 − δ)Kt + It with 0 ≤ δ ≤ 1 (2)

1
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1The productivity parameter A follows a stochastic path with trend growth g and
an AR(1) stochastic component:

ln At = ln A∗
t + Ât

Ât = φAÂt−1 + εA,t with |φA| < 1 (3)

A∗
t = A∗

t−1(1 + g)

The stochastic shock εA,t is i.i.d. with mean zero.

The goods market always clears, such that the firm always sells its total pro-
duction. Taking current and future factor prices as given, the firm hires labor
and invests in its capital stock to maximize its current value. This leads to the
following first-order-conditions:3

(1 − α)
Yt

Lt
= wt (4)

1 = Et

[
1

1 + rt+1
α

Yt+1

Kt+1

]
+ Et

[
1 − δ

1 + rt+1

]
(5)

According to equation (4), the firm hires labor until the marginal product of
labor is equal to its marginal cost (which is the real wage w). Equation (5) shows
that the firm’s investment demand at time t is such that the marginal cost of
investment, 1, is equal to the expected discounted marginal product of capital at
time t + 1 plus the expected discounted value of the extra capital stock which is
left after depreciation at time t + 1.

The government The government consumes every period t an amount Gt,
which follows a stochastic path with trend growth g and an AR(1) stochastic
component:

ln Gt = ln G∗
t + Ĝt

Ĝt = φGĜt−1 + εG,t with |φG| < 1 (6)

G∗
t = G∗

t−1(1 + g)

The stochastic shock εG,t is i.i.d. with mean zero. εA and εG are uncorrelated
at all leads and lags. The government finances its consumption by issuing public
debt, subject to a transversality condition,4 and by raising lump-sum taxes.5 The
timing of taxation is irrelevant because of Ricardian Equivalence.6
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 The stochastic growth model

The representative household There is one representative household, who
derives utility from her current and future consumption:

Ut = Et

[ ∞∑
s=t

(
1

1 + ρ

)s−t

ln Cs

]
with ρ > 0 (7)

The parameter ρ is called the subjective discount rate.

Every period s, the household starts off with her assets Xs and receives interest
payments Xsrs. She also supplies L units of labor to the representative firm, and
therefore receives labor income wsL. Tax payments are lump-sum and amount to
Ts. She then decides how much she consumes, and how much assets she will hold
in her portfolio until period s + 1. This leads to her dynamic budget constraint:

Xs+1 = Xs(1 + rs) + wsL − Ts − Cs (8)

We need to make sure that the household does not incur ever increasing debts,
which she will never be able to pay back anymore. Under plausible assumptions,
this implies that over an infinitely long horizon the present discounted value of
the household’s assets must be zero:

lim
s→∞Et

[(
s∏

s′=t

1
1 + rs′

)
Xs+1

]
= 0 (9)

This equation is called the transversality condition.

The household then takes Xt and the current and expected values of r, w, and T

as given, and chooses her consumption path to maximize her utility (7) subject
to her dynamic budget constraint (8) and the transversality condition (9). This
leads to the following Euler equation:7

1
Cs

= Es

[
1 + rs+1

1 + ρ

1
Cs+1

]
(10)

Equilibrium Every period, the factor markets and the goods market clear. For
the labor market, we already implicitly assumed this by using the same notation
(L) for the representative household’s labor supply and the representative firm’s
labor demand. Equilibrium in the goods market requires that

Yt = Ct + It + Gt (11)

Equilibrium in the capital market follows then from Walras’ law.
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3 The steady state

Let us now derive the model’s balanced growth path (or steady state); variables
evaluated on the balanced growth path are denoted by a ∗.

To derive the balanced growth path, we assume that by sheer luck εA,t = Ât =
εG,t = Ĝt = 0, ∀t. The model then becomes a standard neoclassical growth
model, for which the solution is given by:8

Y ∗
t =

(
α

r∗ + δ

) α
1−α

A∗
t L (12)

K∗
t =

(
α

r∗ + δ

) 1
1−α

A∗
t L (13)

I∗t = (g + δ)
(

α

r∗ + δ

) 1
1−α

A∗
t L (14)

C∗
t =

[
1 − (g + δ)

α

r∗ + δ

] (
α

r∗ + δ

) α
1−α

A∗
t L − G∗

t (15)

w∗
t = (1 − α)

(
α

r∗ + δ

) α
1−α

A∗
t (16)

r∗ = (1 + ρ)(1 + g) − 1 (17)

4 Linearization around the balanced growth path

Let us now linearize the model presented in section 2 around the balanced growth
path derived in section 3. Loglinear deviations from the balanced growth path
are denoted by aˆ(so that X̂ = lnX − ln X∗).

Below are the loglinearized versions of the production function (1), the law of
motion of the capital stock (2), the first-order conditions (4) and (5), the Euler
equation (10) and the equilibrium condition (11):9

Ŷt = αK̂t + (1 − α)Ât (18)

K̂t+1 =
1 − δ

1 + g
K̂t +

g + δ

1 + g
Ît (19)

Ŷt = ŵt (20)

Et

[
rt+1 − r∗

1 + r∗

]
=

r∗ + δ

1 + r∗
[
Et(Ŷt+1) − Et(K̂t+1)

]
(21)
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equation (10) and the equilibrium condition (11):9

Ŷt = αK̂t + (1 − α)Ât (18)

K̂t+1 =
1 − δ

1 + g
K̂t +

g + δ

1 + g
Ît (19)

Ŷt = ŵt (20)

Et

[
rt+1 − r∗

1 + r∗

]
=

r∗ + δ

1 + r∗
[
Et(Ŷt+1) − Et(K̂t+1)

]
(21)

Ĉt = Et

[
Ĉt+1

]
− Et

[
rt+1 − r∗

1 + r∗

]
(22)

Ŷt =
C∗

t

Y ∗
t

Ĉt +
I∗t
Y ∗

t

Ît +
G∗

t

Y ∗
t

Ĝt (23)

The loglinearized laws of motion of A and G are given by equations (3) and (6):

Ât+1 = φAÂt + εA,t+1 (24)

Ĝt+1 = φGĜt + εG,t+1 (25)

5 Solution of the linearized model

I now solve the linearized model, which is described by equations (18) until (25).

First note that K̂t, Ât and Ĝt are known in the beginning of period t: K̂t depends
on past investment decisions, and Ât and Ĝt are determined by current and past
values of respectively εA and εG (which are exogenous). K̂t, Ât and Ĝt are
therefore called period t’s state variables. The values of the other variables in
period t are endogenous, however: investment and consumption are chosen by
the representative firm and the representative household in such a way that they
maximize their profits and utility (Ît and Ĉt are therefore called period t’s control
variables); the values of the interest rate and the wage are such that they clear
the capital and the labor market.

Solving the model requires that we express period t’s endogenous variables as
functions of period t’s state variables. The solution of Ĉt, for instance, therefore
looks as follows:

Ĉt = ϕCKK̂t + ϕCAÂt + ϕCGĜt (26)

The challenge now is to determine the ϕ-coefficients.

First substitute equation (26) in the Euler equation (22):

ϕCKK̂t + ϕCAÂt + ϕCGĜt

= Et

[
ϕCKK̂t+1 + ϕCAÂt+1 + ϕCGĜt+1

]
− Et

[
rt+1 − r∗

1 + r∗

]
(27)

Now eliminate Et[(rt+1−r∗)/(1+r∗)] with equation (21), and use equations (18),
(24) and (25) to eliminate Ŷt+1, Ât+1 and Ĝt+1 in the resulting expression. This
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First note that K̂t, Ât and Ĝt are known in the beginning of period t: K̂t depends
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leads to a relation between period t’s state variables, the ϕ-coefficients and K̂t+1:

ϕCKK̂t + ϕCAÂt + ϕCGĜt

=
(

ϕCK + (1 − α)
r∗ + δ

1 + r∗

)
K̂t+1 +

(
ϕCA − (1 − α)

r∗ + δ

1 + r∗

)
φAÂt + ϕCGφGĜt

(28)

We now derive a second relation between period t’s state variables, the ϕ-coefficients
and K̂t+1: rewrite the law of motion (19) by eliminating Ît with equation (23);
eliminate Ŷt and Ĉt in the resulting equation with the production function (18)
and expression (26); note that I∗ = K∗(g + δ); and note that (1 − δ)/(1 + g) +
(αY ∗

t )/(K∗
t (1 + g)) = (1 + r∗)/(1 + g). This yields:

K̂t+1 =
[
1 + r∗

1 + g
− C∗

K∗(1 + g)
ϕCK

]
K̂t

+
[
(1 − α)Y ∗

K∗(1 + g)
− C∗

K∗(1 + g)
ϕCA

]
Ât −

[
G∗

K∗(1 + g)
+

C∗

K∗(1 + g)
ϕCG

]
Ĝt

(29)

Substituting equation (29) in equation (28) to eliminate K̂t+1 yields:

ϕCKK̂t + ϕCAÂt + ϕCGĜt

=
[
ϕCK + (1 − α)

r∗ + δ

1 + r∗

] [
1 + r∗

1 + g
− C∗

K∗(1 + g)
ϕCK

]
K̂t

+
[
ϕCK + (1 − α)

r∗ + δ

1 + r∗

] [
(1 − α)Y ∗

K∗(1 + g)
− C∗

K∗(1 + g)
ϕCA

]
Ât

−
[
ϕCK + (1 − α)

r∗ + δ

1 + r∗

] [
G∗

K∗(1 + g)
+

C∗

K∗(1 + g)
ϕCG

]
Ĝt

+
(

ϕCA − (1 − α)
r∗ + δ

1 + r∗

)
φAÂt − ϕCGφGĜt (30)

As this equation must hold for all values of K̂t, Ât and Ĝt, we find the following
system of three equations and three unknowns:

ϕCK =
[
ϕCK + (1 − α)

r∗ + δ

1 + r∗

] [
1 + r∗

1 + g
− C∗

K∗(1 + g)
ϕCK

]
(31)

ϕCA =
[
ϕCK + (1 − α)

r∗ + δ

1 + r∗

] [
(1 − α)Y ∗

K∗(1 + g)
− C∗

K∗(1 + g)
ϕCA

]

+
(

ϕCA − (1 − α)
r∗ + δ

1 + r∗

)
φA (32)

ϕCG = −
[
ϕCK + (1 − α)

r∗ + δ

1 + r∗

] [
G∗

K∗(1 + g)
+

C∗

K∗(1 + g)
ϕCG

]
− ϕCGφG

(33)
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Now note that equation (31) is quadratic in ϕCK :

Q0 + Q1ϕCK + Q2ϕ
2
CK = 0 (34)

where Q0 = −(1 − α) r∗+δ
1+g , Q1 = (1 − α) r∗+δ

1+r∗
C∗

t
K∗

t (1+g) − r∗−g
1+g and Q2 = C∗

t
K∗

t (1+g)

This quadratic equation has two solutions:

ϕCK1,2 =
−Q1 ±

√
Q2

1 − 4Q0Q2

2Q2
(35)

It turns out that one of these two solutions yields a stable dynamic system, while
the other one yields an unstable dynamic system. This can be recognized as
follows.

Recall that there are three state variables in this economy: K, A and G. A

and G may undergo shocks that pull them away from their steady states, but
as |φA| and |φG| are less than one, equations (3) and (6) imply that they are
always expected to converge back to their steady state values. Let us now look
at the expected time path for K, which is described by equation (29). If K is not
at its steady state value (i.e. if K̂ �= 0), K is expected to converge back to its
steady state value if the absolute value of the coefficient of K̂t in equation (29),
1+r∗
1+g − C∗

K∗(1+g)ϕCK , is less than one; if |1+r∗
1+g − C∗

K∗(1+g)ϕCK | > 1, K̂ is expected to
increase - which means that K is expected to run away along an explosive path,
ever further away from its steady state.

Let us therefore evaluate the coefficient 1+r∗
1+g − C∗

K∗(1+g)ϕCK , which we call ϕKK .

Rewriting yields ϕCK = K∗
t (1+g)
C∗

t

(
1+r∗
1+g − ϕKK

)
. Substituting in the quadratic

equation (34) leads to a quadratic equation in ϕKK . Denote this quadratic equa-
tion as f(ϕKK) = 0, and note that f(0) > 0, f(1) < 0 and ∂f(ϕKK )2

∂2ϕKK
> 0. This

implies that the quadratic equation f(ϕKK) = 0 has one solution between 0 and
1, and another solution which is greater than 1. To ensure stable dynamics,10 we
retain the solution for ϕKK that is between 0 and 1; which means that of the two
solutions for ϕCK (given in equation (35)), we need to retain the largest one:

ϕCK =
−Q1 +

√
Q2

1 − 4Q0Q2

2Q2
(36)

Substituting in equations (32) and (33) yields then the solutions for ϕCA and
ϕCG:

ϕCA =

[
ϕCK + (1 − α) r∗+δ

1+r∗
]
(1 − α) Y ∗

K∗(1+g) − (1 − α) r∗+δ
1+r∗ φA

1 +
[
ϕCK + (1 − α) r∗+δ

1+r∗
]

C∗
K∗(1+g) − φA

(37)
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ϕCK1,2 =
−Q1 ±

√
Q2

1 − 4Q0Q2

2Q2
(35)

It turns out that one of these two solutions yields a stable dynamic system, while
the other one yields an unstable dynamic system. This can be recognized as
follows.

Recall that there are three state variables in this economy: K, A and G. A

and G may undergo shocks that pull them away from their steady states, but
as |φA| and |φG| are less than one, equations (3) and (6) imply that they are
always expected to converge back to their steady state values. Let us now look
at the expected time path for K, which is described by equation (29). If K is not
at its steady state value (i.e. if K̂ �= 0), K is expected to converge back to its
steady state value if the absolute value of the coefficient of K̂t in equation (29),
1+r∗
1+g − C∗

K∗(1+g)ϕCK , is less than one; if |1+r∗
1+g − C∗

K∗(1+g)ϕCK | > 1, K̂ is expected to
increase - which means that K is expected to run away along an explosive path,
ever further away from its steady state.

Let us therefore evaluate the coefficient 1+r∗
1+g − C∗

K∗(1+g)ϕCK , which we call ϕKK .

Rewriting yields ϕCK = K∗
t (1+g)
C∗

t

(
1+r∗
1+g − ϕKK

)
. Substituting in the quadratic

equation (34) leads to a quadratic equation in ϕKK . Denote this quadratic equa-
tion as f(ϕKK) = 0, and note that f(0) > 0, f(1) < 0 and ∂f(ϕKK )2

∂2ϕKK
> 0. This

implies that the quadratic equation f(ϕKK) = 0 has one solution between 0 and
1, and another solution which is greater than 1. To ensure stable dynamics,10 we
retain the solution for ϕKK that is between 0 and 1; which means that of the two
solutions for ϕCK (given in equation (35)), we need to retain the largest one:

ϕCK =
−Q1 +

√
Q2

1 − 4Q0Q2

2Q2
(36)

Substituting in equations (32) and (33) yields then the solutions for ϕCA and
ϕCG:

ϕCA =

[
ϕCK + (1 − α) r∗+δ

1+r∗
]
(1 − α) Y ∗

K∗(1+g) − (1 − α) r∗+δ
1+r∗ φA

1 +
[
ϕCK + (1 − α) r∗+δ

1+r∗
]

C∗
K∗(1+g) − φA

(37)

ϕCG = −
[
ϕCK + (1 − α) r∗+δ

1+r∗
]

G∗
K∗(1+g)

1 +
[
ϕCK + (1 − α) r∗+δ

1+r∗
]

C∗
K∗(1+g) − φG

(38)

We now have found all the ϕ-coefficients of equation (26), so we can compute
Ĉt from period t’s state variables K̂t, Ât and Ĝt. Once we know Ĉt, the other
endogenous variables can easily be found from equations (18), (19), (20), (21)
and (23). The values of the state variables in period t + 1 can be computed from
equation (29), and equations (3) and (6) (moved one period forward).

6 Impulse response functions

We now calibrate the model by assigning appropriate values to α, δ, ρ, A∗
t , G∗

t ,
φA, φG, g and L. Let us assume, for instance, that every period corresponds
to a quarter, and let us choose parameter values that mimic the U.S. economy:
α = 1/3, δ = 2.5%, φA = 0.5, φG = 0.5, and g = 0.5%; A∗

t and L are normalized
to 1; G∗

t is chosen such that G∗
t /Y ∗

t = 20%; and ρ is chosen such that r∗ = 1.5%.11

It is then straightforward to compute the balanced growth path: Y ∗
t = 2.9,

K∗
t = 24.1, I∗t = 0.7, C∗

t = 1.6 and w∗
t = 1.9 (while r∗ = 1.5% per construction).

Y ∗, K∗, I∗, C∗ and w∗ all grow at rate 0.5% per quarter, while r∗ remains
constant over time. Note that this parameterization yields an annual capital-
output-ratio of about 2, while C and I are about 55% and 25% of Y , respectively
- which seem reasonable numbers. Once we have computed the steady state, we
can use equations (36), (37) and (38) to compute the ϕ-coefficients. We are then
ready to trace out the economy’s reaction to shocks in A and G.

Consider first the effect of a technology shock in quarter 1. Suppose the economy
is initially moving along its balanced growth path (such that K̂s = Âs = Ĝs = 0
∀s < 1), when in quarter 1 it is suddenly hit by a technology shock εA,1 = 1.
From equation (3) follows then that Â1 = 1 as well, while equations (29) and
(6) imply that K̂1 = Ĝ1 = 0. Given these values for quarter 1’s state variables
and given the ϕ-coefficients, Ĉ1 can be computed from equation (26); the other
endogenous variables in quarter 1 follow from equations (18), (19), (20), (21)
and (23). Quarter 2’s state variables can then be computed from equations (28),
(3) and (6) - which leads to the values for quarter 2’s endogenous variables,
and quarter 3’s state variables. In this way, we can trace out the effect of the
technology shock into the infinite future.

Download free eBooks at bookboon.com



The Stochastic Growth Model

15 
 

6. Impulse response functions

 Impulse response functions

ϕCG = −
[
ϕCK + (1 − α) r∗+δ

1+r∗
]

G∗
K∗(1+g)

1 +
[
ϕCK + (1 − α) r∗+δ

1+r∗
]

C∗
K∗(1+g) − φG

(38)

We now have found all the ϕ-coefficients of equation (26), so we can compute
Ĉt from period t’s state variables K̂t, Ât and Ĝt. Once we know Ĉt, the other
endogenous variables can easily be found from equations (18), (19), (20), (21)
and (23). The values of the state variables in period t + 1 can be computed from
equation (29), and equations (3) and (6) (moved one period forward).

6 Impulse response functions

We now calibrate the model by assigning appropriate values to α, δ, ρ, A∗
t , G∗

t ,
φA, φG, g and L. Let us assume, for instance, that every period corresponds
to a quarter, and let us choose parameter values that mimic the U.S. economy:
α = 1/3, δ = 2.5%, φA = 0.5, φG = 0.5, and g = 0.5%; A∗

t and L are normalized
to 1; G∗

t is chosen such that G∗
t /Y ∗

t = 20%; and ρ is chosen such that r∗ = 1.5%.11

It is then straightforward to compute the balanced growth path: Y ∗
t = 2.9,

K∗
t = 24.1, I∗t = 0.7, C∗

t = 1.6 and w∗
t = 1.9 (while r∗ = 1.5% per construction).

Y ∗, K∗, I∗, C∗ and w∗ all grow at rate 0.5% per quarter, while r∗ remains
constant over time. Note that this parameterization yields an annual capital-
output-ratio of about 2, while C and I are about 55% and 25% of Y , respectively
- which seem reasonable numbers. Once we have computed the steady state, we
can use equations (36), (37) and (38) to compute the ϕ-coefficients. We are then
ready to trace out the economy’s reaction to shocks in A and G.

Consider first the effect of a technology shock in quarter 1. Suppose the economy
is initially moving along its balanced growth path (such that K̂s = Âs = Ĝs = 0
∀s < 1), when in quarter 1 it is suddenly hit by a technology shock εA,1 = 1.
From equation (3) follows then that Â1 = 1 as well, while equations (29) and
(6) imply that K̂1 = Ĝ1 = 0. Given these values for quarter 1’s state variables
and given the ϕ-coefficients, Ĉ1 can be computed from equation (26); the other
endogenous variables in quarter 1 follow from equations (18), (19), (20), (21)
and (23). Quarter 2’s state variables can then be computed from equations (28),
(3) and (6) - which leads to the values for quarter 2’s endogenous variables,
and quarter 3’s state variables. In this way, we can trace out the effect of the
technology shock into the infinite future.
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 Impulse response functions

Figure 1: Effect of a 1% shock in A ...
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 Impulse response functions

Figure 2: Effect of a 1% shock in G ...

−0.04

−0.03

−0.02

−0.01

0

0 4 8 12 16 20 24 28 32 36 40

in %

quarter

... on K̂

−0.015

−0.010

−0.005

0

0 4 8 12 16 20 24 28 32 36 40

in %

quarter

... on Ŷ
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 Impulse response functions

Figure 1 shows how the economy reacts during the first 40 quarters. Note that
Y jumps up in quarter 1, together with the technology shock. As a result, the
representative household increases her consumption, but as she wants to smooth
her consumption over time, C increases less than Y . Investment I therefore
initially increases more than Y . As I increases, the capital stock K gradually
increases as well after period 1. The expected rate of return, E(r), is at first higher
than on the balanced growth path (thanks to the technology shock). However,
as the technology shock dies out while the capital stock builds up, the expected
interest rate rapidly falls and even becomes negative after a few quarters. The real
wage w follows the time path of Y . Note that all variables eventually converge
back to their steady state values.

Consider now the effect of a shock in government expenditures in quarter 1.
Assume again that the economy is on a balanced growth path in quarter 0. In
quarter 1, however, the economy is hit by a shock in government expenditures
εG,1 = 1. From equation (3) follows then that Â1 = 1 as well, while equations
(29) and (6) imply that K̂1 = Ĝ1 = 0. Once we know the state variables in
quarter 1, we can compute the endogenous variables in quarter 1 and the state
variables for quarter 2 in the same way as in the case of a technology shock -
which leads to the values for quarter 2’s endogenous variables and quarter 3’s
state variables, and so on until the infinite future.

Figure 2 shows the economy’s reaction to a shock in government expenditures
during the first 40 quarters. As G increases, E(r) increases as well such that C

and I fall (to make sure that C+I+G remains equal to Y , which does not change
in quarter 1 as K̂1 = 0). As I falls, the capital stock K gradually decreases after
period 1, such that Y starts decreasing after period 1 as well. In the meantime,
however, the shock in G is dying out, so after a while E(r) decreases again. As a
result, C and I recover - and as I recovers, K and Y recover also. Note that the
real wage w again follows the time path of Y . Eventually, all variables converge
back to their steady state values.

7 Conclusions

This note presented the stochastic growth model, and solved the model by first
linearizing it around a steady state and by then solving the linearized model with
the method of undetermined coefficients.

Even though the stochastic growth model itself might bear little resemblance to

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

��������	
�����������
��������
���������
�����������
��������
����������������������������������

������������
������������������������������ �����	�����
	�
�����	������!���"�
	������������

�
	�

�����#$%����&'())%�*+������
	�
���,���������
�-

.�
��������������������
��������������

��������	
������


��	��������	
������


������������


����������


����������
�������


���������

 The Wake
the only emission we want to leave behind

http://www.mandieselturbo.com


The Stochastic Growth Model

19 
 

 Impulse response functions

Figure 1 shows how the economy reacts during the first 40 quarters. Note that
Y jumps up in quarter 1, together with the technology shock. As a result, the
representative household increases her consumption, but as she wants to smooth
her consumption over time, C increases less than Y . Investment I therefore
initially increases more than Y . As I increases, the capital stock K gradually
increases as well after period 1. The expected rate of return, E(r), is at first higher
than on the balanced growth path (thanks to the technology shock). However,
as the technology shock dies out while the capital stock builds up, the expected
interest rate rapidly falls and even becomes negative after a few quarters. The real
wage w follows the time path of Y . Note that all variables eventually converge
back to their steady state values.

Consider now the effect of a shock in government expenditures in quarter 1.
Assume again that the economy is on a balanced growth path in quarter 0. In
quarter 1, however, the economy is hit by a shock in government expenditures
εG,1 = 1. From equation (3) follows then that Â1 = 1 as well, while equations
(29) and (6) imply that K̂1 = Ĝ1 = 0. Once we know the state variables in
quarter 1, we can compute the endogenous variables in quarter 1 and the state
variables for quarter 2 in the same way as in the case of a technology shock -
which leads to the values for quarter 2’s endogenous variables and quarter 3’s
state variables, and so on until the infinite future.

Figure 2 shows the economy’s reaction to a shock in government expenditures
during the first 40 quarters. As G increases, E(r) increases as well such that C

and I fall (to make sure that C+I+G remains equal to Y , which does not change
in quarter 1 as K̂1 = 0). As I falls, the capital stock K gradually decreases after
period 1, such that Y starts decreasing after period 1 as well. In the meantime,
however, the shock in G is dying out, so after a while E(r) decreases again. As a
result, C and I recover - and as I recovers, K and Y recover also. Note that the
real wage w again follows the time path of Y . Eventually, all variables converge
back to their steady state values.

7 Conclusions

This note presented the stochastic growth model, and solved the model by first
linearizing it around a steady state and by then solving the linearized model with
the method of undetermined coefficients.

Even though the stochastic growth model itself might bear little resemblance to
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 Conclusions

Figure 1 shows how the economy reacts during the first 40 quarters. Note that
Y jumps up in quarter 1, together with the technology shock. As a result, the
representative household increases her consumption, but as she wants to smooth
her consumption over time, C increases less than Y . Investment I therefore
initially increases more than Y . As I increases, the capital stock K gradually
increases as well after period 1. The expected rate of return, E(r), is at first higher
than on the balanced growth path (thanks to the technology shock). However,
as the technology shock dies out while the capital stock builds up, the expected
interest rate rapidly falls and even becomes negative after a few quarters. The real
wage w follows the time path of Y . Note that all variables eventually converge
back to their steady state values.

Consider now the effect of a shock in government expenditures in quarter 1.
Assume again that the economy is on a balanced growth path in quarter 0. In
quarter 1, however, the economy is hit by a shock in government expenditures
εG,1 = 1. From equation (3) follows then that Â1 = 1 as well, while equations
(29) and (6) imply that K̂1 = Ĝ1 = 0. Once we know the state variables in
quarter 1, we can compute the endogenous variables in quarter 1 and the state
variables for quarter 2 in the same way as in the case of a technology shock -
which leads to the values for quarter 2’s endogenous variables and quarter 3’s
state variables, and so on until the infinite future.

Figure 2 shows the economy’s reaction to a shock in government expenditures
during the first 40 quarters. As G increases, E(r) increases as well such that C

and I fall (to make sure that C+I+G remains equal to Y , which does not change
in quarter 1 as K̂1 = 0). As I falls, the capital stock K gradually decreases after
period 1, such that Y starts decreasing after period 1 as well. In the meantime,
however, the shock in G is dying out, so after a while E(r) decreases again. As a
result, C and I recover - and as I recovers, K and Y recover also. Note that the
real wage w again follows the time path of Y . Eventually, all variables converge
back to their steady state values.

7 Conclusions

This note presented the stochastic growth model, and solved the model by first
linearizing it around a steady state and by then solving the linearized model with
the method of undetermined coefficients.

Even though the stochastic growth model itself might bear little resemblance to
the real world, it has proven to be a useful framework that can easily be extended
to account for a wide range of macroeconomic issues that are potentially impor-
tant. Kydland and Prescott (1982) introduced labor/leisure-substitution in the
stochastic growth model, which gave rise to the so-called real-business-cycle liter-
ature. Greenwood and Huffman (1991) and Baxter and King (1993) replaced the
lump-sum taxation by distortionary taxation, to study how taxes affect the be-
havior of firms and households. In the beginning of the 1990s, researchers started
introducing money and nominal rigidities in the model, which gave rise to New
Keynesian stochastic dynamic general equilibrium models that are now widely
used to study monetary policy - see Goodfriend and King (1997) for an overview.
Vermeylen (2006) shows how the representative household can be replaced by a
large number of households to study the effect of job insecurity on consumption
and saving in a general equilibrium setting.

1 Microfoundations means that the objectives of the economic agents are formulated ex-
plicitly, and that their behavior is derived by assuming that they always try to achieve
their objectives as well as they can.

2 A steady state is a condition in which a number of key variables are not changing. In the
stochastic growth model, these key variables are for instance the growth rate of aggregate
production, the interest rate and the capital-output-ratio.

3 See appendix A for derivations.
4 This means that the present discounted value of public debt in the distant future should

be equal to zero, such that public debt cannot keep on rising at a rate that is higher
than the interest rate. This guarantees that public debt is always equal to the present
discounted value of the government’s future primary surpluses.

5 Lump-sum taxes do not affect the first-order conditions of the firms and the households,
and therefore do not affect their behavior either.

6 Ricardian equivalence is the phenomenon that - given certain assumptions - it turns out
to be irrelevant whether the government finances its expenditures by issuing public debt
or by raising taxes. The reason for this is that given the time path of government expen-
ditures, every increase in public debt must sooner or later be matched by an increase in
taxes, such that the present discounted value of the taxes which a representative house-
hold has to pay is not affected by the way how the government finances its expenditures -
which implies that her current wealth and her consumption path are not affected either.

7 See appendix A for the derivation.
8 See appendix B for the derivation.
9 See appendix C for the derivations.

10 The solution with unstable dynamics not only does not make sense from an economic
point of view, it also violates the transversality conditions.

11 Note that these values imply that the annual depreciation rate, the annual growth rate
and the annual interest rate are about 10%, 2% and 6%, respectively.
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the real world, it has proven to be a useful framework that can easily be extended
to account for a wide range of macroeconomic issues that are potentially impor-
tant. Kydland and Prescott (1982) introduced labor/leisure-substitution in the
stochastic growth model, which gave rise to the so-called real-business-cycle liter-
ature. Greenwood and Huffman (1991) and Baxter and King (1993) replaced the
lump-sum taxation by distortionary taxation, to study how taxes affect the be-
havior of firms and households. In the beginning of the 1990s, researchers started
introducing money and nominal rigidities in the model, which gave rise to New
Keynesian stochastic dynamic general equilibrium models that are now widely
used to study monetary policy - see Goodfriend and King (1997) for an overview.
Vermeylen (2006) shows how the representative household can be replaced by a
large number of households to study the effect of job insecurity on consumption
and saving in a general equilibrium setting.

1 Microfoundations means that the objectives of the economic agents are formulated ex-
plicitly, and that their behavior is derived by assuming that they always try to achieve
their objectives as well as they can.

2 A steady state is a condition in which a number of key variables are not changing. In the
stochastic growth model, these key variables are for instance the growth rate of aggregate
production, the interest rate and the capital-output-ratio.

3 See appendix A for derivations.
4 This means that the present discounted value of public debt in the distant future should

be equal to zero, such that public debt cannot keep on rising at a rate that is higher
than the interest rate. This guarantees that public debt is always equal to the present
discounted value of the government’s future primary surpluses.

5 Lump-sum taxes do not affect the first-order conditions of the firms and the households,
and therefore do not affect their behavior either.

6 Ricardian equivalence is the phenomenon that - given certain assumptions - it turns out
to be irrelevant whether the government finances its expenditures by issuing public debt
or by raising taxes. The reason for this is that given the time path of government expen-
ditures, every increase in public debt must sooner or later be matched by an increase in
taxes, such that the present discounted value of the taxes which a representative house-
hold has to pay is not affected by the way how the government finances its expenditures -
which implies that her current wealth and her consumption path are not affected either.

7 See appendix A for the derivation.
8 See appendix B for the derivation.
9 See appendix C for the derivations.

10 The solution with unstable dynamics not only does not make sense from an economic
point of view, it also violates the transversality conditions.

11 Note that these values imply that the annual depreciation rate, the annual growth rate
and the annual interest rate are about 10%, 2% and 6%, respectively.
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Appendix A

A1. The maximization problem of the representative firm

The maximization problem of the firm can be rewritten as:

Vt(Kt) = max
{Lt,It}

{
Yt − wtLt − It + Et

[
1

1 + rt+1
Vt+1(Kt+1)

]}
(A.1)

s.t. Yt = Kα
t (AtLt)1−α

Kt+1 = (1 − δ)Kt + It

The first-order conditions for Lt, respectively It, are:

(1 − α)Kα
t A1−α

t L−α
t − wt = 0 (A.2)

−1 + Et

[
1

1 + rt+1

∂Vt+1(Kt+1)
∂Kt+1

]
= 0 (A.3)

In addition, the envelope theorem implies that

∂Vt(Kt)
∂Kt

= αKα−1
t (AtLt)1−α + Et

[
1

1 + rt+1

∂Vt+1(Kt+1)
∂Kt+1

]
(1 − δ) (A.4)

Substituting the production function in (A.2) gives equation (4):

(1 − α)
Yt

Lt
= wt

Substituting (A.3) in (A.4) yields:

∂Vt(Kt)
∂Kt

= αKα−1
t (AtLt)1−α + (1 − δ)

Moving one period forward, and substituting again in (A.3) gives:

−1 + Et

[
1

1 + rt+1

(
αKα−1

t+1 (At+1Lt+1)1−α + (1 − δ)
)]

= 0

Substituting the production function in the equation above and reshuffling leads to equa-
tion (5):

1 = Et

[
1

1 + rt+1
α

Yt+1

Kt+1

]
+ Et

[
1 − δ

1 + rt+1

]

A2. The maximization problem of the representative household

The maximization problem of the household can be rewritten as:

Ut(Xt) = max
{Ct}

{
ln Ct +

1
1 + ρ

Et [Ut+1(Xt+1)]
}

(A.5)

s.t. Xt+1 = Xt(1 + rt) + wtL − Tt − Ct
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Yt+1

Kt+1

]
+ Et

[
1 − δ

1 + rt+1

]

A2. The maximization problem of the representative household

The maximization problem of the household can be rewritten as:

Ut(Xt) = max
{Ct}

{
ln Ct +

1
1 + ρ

Et [Ut+1(Xt+1)]
}

(A.5)

s.t. Xt+1 = Xt(1 + rt) + wtL − Tt − Ct
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The first-order condition for Ct is:

1
Ct

− 1
1 + ρ

Et

[
∂Ut+1(Xt+1)

∂Xt+1

]
= 0 (A.6)

In addition, the envelope theorem implies that

∂Ut(Xt)
∂Xt

=
1

1 + ρ
Et

[
∂Ut+1(Xt+1)

∂Xt+1
(1 + rt)

]
(A.7)

Substituting (A.6) in (A.7) yields:

∂Ut(Xt)
∂Xt

= (1 + rt)
1
Ct

Moving one period forward, and substituting again in (A.6) gives the Euler equation
(10):

1
Ct

− Et

[
1 + rt+1

1 + ρ

1
Ct+1

]
= 0

Appendix B

If C grows at rate g, the Euler equation (10) implies that

C∗
s (1 + g) =

1 + r∗

1 + ρ
C∗

s

Rearranging gives then the gross real rate of return 1 + r∗:

1 + r∗ = (1 + g)(1 + ρ)

which immediately leads to equation (17).

Subsituting in the firm’s first-order condition (5) gives:

α
Y ∗

t+1

K∗
t+1

= r∗ + δ

Using the production function (1) to eliminate Y yields:

αK∗α−1
t+1 (At+1L)1−α = r∗ + δ

Rearranging gives then the value of K∗
t+1:

K∗
t+1 =

(
α

r∗ + δ

) 1
1−α

At+1L

which is equivalent to equation (13).

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

By 2020, wind could provide one-tenth of our planet’s 
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the 
world’s wind turbines. 

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our 
systems for on-line condition monitoring and automatic 
lubrication. We help make it more economical to create 
cleaner, cheaper energy out of thin air. 

By sharing our experience, expertise, and creativity, 
industries can boost performance beyond expectations. 

Therefore we need the best employees who can 
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering. 

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge


The Stochastic Growth Model

24 
 

Appendix B

 Appendix B

The first-order condition for Ct is:

1
Ct

− 1
1 + ρ

Et

[
∂Ut+1(Xt+1)

∂Xt+1

]
= 0 (A.6)

In addition, the envelope theorem implies that

∂Ut(Xt)
∂Xt

=
1

1 + ρ
Et

[
∂Ut+1(Xt+1)

∂Xt+1
(1 + rt)

]
(A.7)

Substituting (A.6) in (A.7) yields:

∂Ut(Xt)
∂Xt

= (1 + rt)
1
Ct

Moving one period forward, and substituting again in (A.6) gives the Euler equation
(10):

1
Ct

− Et

[
1 + rt+1

1 + ρ

1
Ct+1

]
= 0

Appendix B

If C grows at rate g, the Euler equation (10) implies that

C∗
s (1 + g) =

1 + r∗

1 + ρ
C∗

s

Rearranging gives then the gross real rate of return 1 + r∗:

1 + r∗ = (1 + g)(1 + ρ)

which immediately leads to equation (17).

Subsituting in the firm’s first-order condition (5) gives:

α
Y ∗

t+1

K∗
t+1

= r∗ + δ

Using the production function (1) to eliminate Y yields:

αK∗α−1
t+1 (At+1L)1−α = r∗ + δ

Rearranging gives then the value of K∗
t+1:

K∗
t+1 =

(
α

r∗ + δ

) 1
1−α

At+1L

which is equivalent to equation (13).
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Substituting in the production function (1) gives then equation (12):

Y ∗
t =

(
α

r∗ + δ

) α
1−α

AtL

Substituting (12) in the first-order condition (4) gives equation (16):

w∗
t = (1 − α)

(
α

r∗ + δ

) α
1−α

At

Substituting (13) in the law of motion (2) yields:
(

α

r∗ + δ

) 1
1−α

At+1L = (1 − δ)
(

α

r∗ + δ

) 1
1−α

AtL + I∗t

such that I∗t is given by:

I∗t =
(

α

r∗ + δ

) 1
1−α

At+1L − (1 − δ)
(

α

r∗ + δ

) 1
1−α

AtL

=
(

α

r∗ + δ

) 1
1−α

[(1 + g) − (1 − δ)] AtL

= (g + δ)
(

α

r∗ + δ

) 1
1−α

AtL

...which is equation (14).

Consumption C∗ can then be computed from the equilibrium condition in the goods
market:

C∗
t = Y ∗

t − I∗t − G∗
t

=
(

α

r∗ + δ

) α
1−α

AtL − (g + δ)
(

α

r∗ + δ

) 1
1−α

AtL − G∗
t

=
[
1 − α

g + δ

r∗ + δ

] (
α

r∗ + δ

) α
1−α

AtL − G∗
t

Now recall that on the balanced growth path, A and G grow at the rate of technological
progress g. The equation above then implies that C∗ also grows at the rate g, such that
our initial educated guess turns out to be correct.

Appendix C

C1. The linearized production function

The production function is given by equation (1):

Yt = Kα
t (AtLt)1−α
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Substituting in the production function (1) gives then equation (12):

Y ∗
t =

(
α

r∗ + δ

) α
1−α

AtL

Substituting (12) in the first-order condition (4) gives equation (16):

w∗
t = (1 − α)

(
α

r∗ + δ

) α
1−α

At

Substituting (13) in the law of motion (2) yields:
(

α

r∗ + δ

) 1
1−α

At+1L = (1 − δ)
(

α

r∗ + δ

) 1
1−α

AtL + I∗t

such that I∗t is given by:

I∗t =
(

α

r∗ + δ

) 1
1−α

At+1L − (1 − δ)
(

α

r∗ + δ

) 1
1−α

AtL

=
(

α

r∗ + δ

) 1
1−α

[(1 + g) − (1 − δ)] AtL

= (g + δ)
(

α

r∗ + δ

) 1
1−α

AtL

...which is equation (14).

Consumption C∗ can then be computed from the equilibrium condition in the goods
market:

C∗
t = Y ∗

t − I∗t − G∗
t

=
(

α

r∗ + δ

) α
1−α

AtL − (g + δ)
(

α

r∗ + δ

) 1
1−α

AtL − G∗
t

=
[
1 − α

g + δ

r∗ + δ

] (
α

r∗ + δ

) α
1−α

AtL − G∗
t

Now recall that on the balanced growth path, A and G grow at the rate of technological
progress g. The equation above then implies that C∗ also grows at the rate g, such that
our initial educated guess turns out to be correct.

Appendix C

C1. The linearized production function

The production function is given by equation (1):

Yt = Kα
t (AtLt)1−α

Taking logarithms of both sides of this equation, and subtracting from both sides their
values on the balanced growth path (taking into account that L̂t = 0), immediately yields
the linearized version of the production function:

ln Yt = α ln Kt + (1 − α) ln At + (1 − α) ln Lt

ln Yt − ln Y ∗
t = α(lnKt − ln K∗

t ) + (1 − α)(ln At − ln A∗
t ) + (1 − α)(ln Lt − ln L∗

t )
Ŷt = αK̂t + (1 − α)Ât

...which is equation (18).

C2. The linearized law of motion of the capital stock

The law of motion of the capital stock is given by equation (2):

Kt+1 = (1 − δ)Kt + It

Taking logarithms of both sides of this equation, and subtracting from both sides their
values on the balanced growth path, yields:

ln Kt+1 − ln K∗
t+1 = ln {(1 − δ)Kt + It} − ln K∗

t+1

Now take a first-order Taylor-approximation of the right-hand-side around lnKt = ln K∗
t

and ln It = ln I∗t :

ln Kt+1 − ln K∗
t+1 = ϕ1(ln Kt − ln K∗

t ) + ϕ2(ln It − ln I∗t )

K̂t+1 = ϕ1K̂t + ϕ2Ît (C.1)

where

ϕ1 =
(

∂ ln {(1 − δ)Kt + It}
∂ ln Kt

)∗

ϕ2 =
(

∂ ln {(1 − δ)Kt + It}
∂ ln It

)∗

ϕ1 and ϕ2 can be worked out as follows:

ϕ1 =
(

∂ ln {(1 − δ)Kt + It}
∂Kt

∂Kt

∂ ln Kt

)∗

=
(

1 − δ

(1 − δ)Kt + It
Kt

)∗

=
(

1 − δ

Kt+1
Kt

)∗

=
1 − δ

1 + g
...as Kt grows at rate g on the balanced growth path

ϕ2 =
(

∂ ln {(1 − δ)Kt + It}
∂It

∂It

∂ ln It

)∗
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Taking logarithms of both sides of this equation, and subtracting from both sides their
values on the balanced growth path (taking into account that L̂t = 0), immediately yields
the linearized version of the production function:

ln Yt = α ln Kt + (1 − α) ln At + (1 − α) ln Lt

ln Yt − ln Y ∗
t = α(lnKt − ln K∗

t ) + (1 − α)(ln At − ln A∗
t ) + (1 − α)(ln Lt − ln L∗

t )
Ŷt = αK̂t + (1 − α)Ât

...which is equation (18).

C2. The linearized law of motion of the capital stock

The law of motion of the capital stock is given by equation (2):

Kt+1 = (1 − δ)Kt + It

Taking logarithms of both sides of this equation, and subtracting from both sides their
values on the balanced growth path, yields:

ln Kt+1 − ln K∗
t+1 = ln {(1 − δ)Kt + It} − ln K∗

t+1

Now take a first-order Taylor-approximation of the right-hand-side around lnKt = ln K∗
t

and ln It = ln I∗t :

ln Kt+1 − ln K∗
t+1 = ϕ1(ln Kt − ln K∗

t ) + ϕ2(ln It − ln I∗t )

K̂t+1 = ϕ1K̂t + ϕ2Ît (C.1)

where

ϕ1 =
(

∂ ln {(1 − δ)Kt + It}
∂ ln Kt

)∗

ϕ2 =
(

∂ ln {(1 − δ)Kt + It}
∂ ln It

)∗

ϕ1 and ϕ2 can be worked out as follows:

ϕ1 =
(

∂ ln {(1 − δ)Kt + It}
∂Kt

∂Kt

∂ ln Kt

)∗

=
(

1 − δ

(1 − δ)Kt + It
Kt

)∗

=
(

1 − δ

Kt+1
Kt

)∗

=
1 − δ

1 + g
...as Kt grows at rate g on the balanced growth path

ϕ2 =
(

∂ ln {(1 − δ)Kt + It}
∂It

∂It

∂ ln It

)∗

=
(

1
(1 − δ)Kt + It

It

)∗

=
(

1
Kt+1

It

)∗

=
g + δ

1 + g
...as I∗t /K∗

t = g + δ and Kt grows at rate g on the balanced growth path

Substituting in equation (C.1) gives then the linearized law of motion for K:

K̂t+1 =
1 − δ

1 + g
K̂t +

g + δ

1 + g
Ît

...which is equation (19).

C3. The linearized first-order condition for the firm’s labor de-
mand

The first-order condition for the firm’s labor demand is given by equation (4):

(1 − α)
Yt

Lt
= wt

Taking logarithms of both sides of this equation, and subtracting from both sides their
values on the balanced growth path (taking into account that L̂t = 0), immediately yields
the linearized version of this first-order condition:

ln (1 − α) + lnYt − ln Lt = lnwt

(ln Yt − ln Y ∗
t ) − (ln Lt − ln L∗) = ln wt − ln w∗

t

Ŷt = ŵt

...which is equation (20).

C4. The linearized first-order condition for the firms’ capital de-
mand

The first-order condition for the firm’s capital demand is given by equation (5):

1 = Et[Zt+1] (C.2)

with Zt+1 = 1
1+rt+1

α Yt+1
Kt+1

+ 1−δ
1+rt+1

(C.3)

Now take a first-order Taylor-approximation of the right-hand-side of equation (C.3)
around lnYt+1 = ln Y ∗

t+1, lnKt+1 = ln K∗
t+1 and rt+1 = r∗:

Zt+1 = 1 + ϕ1(lnYt+1 − ln Y ∗
t+1) + ϕ2(lnKt+1 − ln K∗

t+1) + ϕ3(rt+1 − r∗)

= 1 + ϕ1Ŷt+1 + ϕ2K̂t+1 + ϕ3(rt+1 − r∗) (C.4)
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=
(

1
(1 − δ)Kt + It

It

)∗

=
(

1
Kt+1

It

)∗

=
g + δ

1 + g
...as I∗t /K∗

t = g + δ and Kt grows at rate g on the balanced growth path

Substituting in equation (C.1) gives then the linearized law of motion for K:

K̂t+1 =
1 − δ

1 + g
K̂t +

g + δ

1 + g
Ît

...which is equation (19).

C3. The linearized first-order condition for the firm’s labor de-
mand

The first-order condition for the firm’s labor demand is given by equation (4):

(1 − α)
Yt

Lt
= wt

Taking logarithms of both sides of this equation, and subtracting from both sides their
values on the balanced growth path (taking into account that L̂t = 0), immediately yields
the linearized version of this first-order condition:

ln (1 − α) + lnYt − ln Lt = lnwt

(ln Yt − ln Y ∗
t ) − (ln Lt − ln L∗) = ln wt − ln w∗

t

Ŷt = ŵt

...which is equation (20).

C4. The linearized first-order condition for the firms’ capital de-
mand

The first-order condition for the firm’s capital demand is given by equation (5):

1 = Et[Zt+1] (C.2)

with Zt+1 = 1
1+rt+1

α Yt+1
Kt+1

+ 1−δ
1+rt+1

(C.3)

Now take a first-order Taylor-approximation of the right-hand-side of equation (C.3)
around lnYt+1 = ln Y ∗

t+1, lnKt+1 = ln K∗
t+1 and rt+1 = r∗:

Zt+1 = 1 + ϕ1(lnYt+1 − ln Y ∗
t+1) + ϕ2(lnKt+1 − ln K∗

t+1) + ϕ3(rt+1 − r∗)

= 1 + ϕ1Ŷt+1 + ϕ2K̂t+1 + ϕ3(rt+1 − r∗) (C.4)

=
(

1
(1 − δ)Kt + It

It

)∗

=
(

1
Kt+1

It

)∗

=
g + δ

1 + g
...as I∗t /K∗

t = g + δ and Kt grows at rate g on the balanced growth path

Substituting in equation (C.1) gives then the linearized law of motion for K:

K̂t+1 =
1 − δ

1 + g
K̂t +

g + δ

1 + g
Ît

...which is equation (19).

C3. The linearized first-order condition for the firm’s labor de-
mand

The first-order condition for the firm’s labor demand is given by equation (4):

(1 − α)
Yt

Lt
= wt

Taking logarithms of both sides of this equation, and subtracting from both sides their
values on the balanced growth path (taking into account that L̂t = 0), immediately yields
the linearized version of this first-order condition:

ln (1 − α) + lnYt − ln Lt = lnwt

(ln Yt − ln Y ∗
t ) − (ln Lt − ln L∗) = ln wt − ln w∗

t

Ŷt = ŵt

...which is equation (20).

C4. The linearized first-order condition for the firms’ capital de-
mand

The first-order condition for the firm’s capital demand is given by equation (5):

1 = Et[Zt+1] (C.2)

with Zt+1 = 1
1+rt+1

α Yt+1
Kt+1

+ 1−δ
1+rt+1

(C.3)

Now take a first-order Taylor-approximation of the right-hand-side of equation (C.3)
around lnYt+1 = ln Y ∗

t+1, lnKt+1 = ln K∗
t+1 and rt+1 = r∗:

Zt+1 = 1 + ϕ1(lnYt+1 − ln Y ∗
t+1) + ϕ2(lnKt+1 − ln K∗

t+1) + ϕ3(rt+1 − r∗)

= 1 + ϕ1Ŷt+1 + ϕ2K̂t+1 + ϕ3(rt+1 − r∗) (C.4)
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where

ϕ1 =


∂

�
1

1+rt+1
α Yt+1

Kt+1
+ 1−δ

1+rt+1

�

∂ ln Yt+1




∗

ϕ2 =


∂

�
1

1+rt+1
α Yt+1

Kt+1
+ 1−δ

1+rt+1

�

∂ ln Kt+1




∗

ϕ3 =


∂

�
1

1+rt+1
α Yt+1

Kt+1
+ 1−δ

1+rt+1

�

∂rt+1




∗

ϕ1, ϕ2 and ϕ3 can be worked out as follows:

ϕ1 =


∂

�
1

1+rt+1
α Yt+1

Kt+1
+ 1−δ

1+rt+1

�

∂Yt+1

∂Yt+1

∂ ln Yt+1




∗

=
�

1
1 + rt+1

α
1

Kt+1
Yt+1

�∗

=
r∗ + δ

1 + r∗
...using the fact that αY ∗

t+1 = (r∗ + δ)K∗
t+1

ϕ2 =


∂

�
1

1+rt+1
α Yt+1

Kt+1
+ 1−δ

1+rt+1

�

∂Kt+1

∂Kt+1

∂ ln Kt+1




∗

= −
�

1
1 + rt+1

α
Yt+1

K2
t+1

Kt+1

�∗

= − r∗ + δ

1 + r∗
...using the fact that αY ∗

t+1 = (r∗ + δ)K∗
t+1

ϕ3 = −
�

1
(1 + rt+1)2

�
α

Yt+1

Kt+1
+ 1 − δ

��∗

= − 1
1 + r∗

(C.5)

Substituting in equation (C.4) gives then:

Zt+1 = 1 +
r∗ + δ

1 + r∗
Ŷt+1 − r∗ + δ

1 + r∗
K̂t+1 − rt+1 − r∗

1 + r∗

Substituting in equation (C.2) and rearranging, gives then equation (21):

Et

�
rt+1 − r∗

1 + r∗

�
=

r∗ + δ

1 + r∗
�
Et(Ŷt+1) − Et(K̂t+1)

�
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C5. The linearized Euler equation of the representative household

The Euler equation of the representative household is given by equation (10), which is
equivalent to:

1 = Et[Zt+1] (C.6)
with Zt+1 = 1+rt+1

1+ρ
Ct

Ct+1
(C.7)

Now take a first-order Taylor-approximation of the right-hand-side of equation (C.7)
around lnCt+1 = ln C∗

t+1, lnCt = ln C∗
t and rt+1 = r∗:

Zt+1 = 1 + ϕ1(ln Ct+1 − ln C∗
t+1) + ϕ2(lnCt − ln C∗

t ) + ϕ3(rt+1 − r∗)

= 1 + ϕ1Ĉt+1 + ϕ2Ĉt + ϕ3(rt+1 − r∗) (C.8)

where

ϕ1 =


∂

�
1+rt+1

1+ρ
Ct

Ct+1

�

∂ ln Ct+1




∗

ϕ2 =


∂

�
1+rt+1

1+ρ
Ct

Ct+1

�

∂ ln Ct




∗

ϕ3 =


∂

�
1+rt+1

1+ρ
Ct

Ct+1

�

∂rt+1




∗

ϕ1, ϕ2 and ϕ3 can be worked out as follows:

ϕ1 =


∂

�
1+rt+1

1+ρ
Ct

Ct+1

�

∂Ct+1

∂Ct+1

∂ ln Ct+1




∗

= −
�

1 + rt+1

1 + ρ

Ct

C2
t+1

Ct+1

�∗

= −1

ϕ2 =


∂

�
1+rt+1

1+ρ
Ct

Ct+1

�

∂Ct

∂Ct

∂ ln Ct




∗

=
�

1 + rt+1

1 + ρ

1
Ct+1

Ct

�∗

= 1

ϕ3 =
�

1
1 + ρ

Ct

Ct+1

�∗

=

� 1+rt+1
1+ρ

Ct

Ct+1

1 + rt+1

�∗
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=
1

1 + r∗

Substituting in equation (C.8) gives then:

Zt+1 = 1 − Ĉt+1 + Ĉt +
rt+1 − r∗

1 + r∗

Substituting in equation (C.6) and rearranging, gives then equation (22):

Ĉt = Et

[
Ĉt+1

]
− Et

[
rt+1 − r∗

1 + r∗

]

C6. The linearized equilibrium condition in the goods market

The equilibrium condition in the goods market is given by equation (11):

Yt = Ct + It + Gt

Taking logarithms of both sides of this equation, and subtracting from both sides their
values on the balanced growth path, yields:

ln Yt − ln Y ∗
t = ln (Ct + It + Gt) − ln Y ∗

t

Now take a first-order Taylor-approximation of the right-hand-side around lnCt = ln C∗
t ,

ln It = ln I∗t and lnGt = ln G∗
t :

ln Yt − ln Y ∗
t = ϕ1(ln Ct − ln C∗

t ) + ϕ2(ln It − ln I∗t ) + ϕ3(ln Gt − ln G∗
t )

Ŷt = ϕ1Ĉt + ϕ2Ît + ϕ3Ĝt (C.9)

where

ϕ1 =
(

∂ ln {Ct + It + Gt}
∂ ln Ct

)∗

ϕ2 =
(

∂ ln {Ct + It + Gt}
∂ ln It

)∗

ϕ3 =
(

∂ ln {Ct + It + Gt}
∂ ln Gt

)∗

ϕ1, ϕ2 and ϕ3 can be worked out as follows:

ϕ1 =
(

∂ ln {Ct + It + Gt}
∂Ct

∂Ct

∂ ln Ct

)∗

=
(

1
Ct + It + Gt

Ct

)∗

=
C∗

t

Y ∗
t
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=
1

1 + r∗

Substituting in equation (C.8) gives then:

Zt+1 = 1 − Ĉt+1 + Ĉt +
rt+1 − r∗

1 + r∗

Substituting in equation (C.6) and rearranging, gives then equation (22):

Ĉt = Et

[
Ĉt+1

]
− Et

[
rt+1 − r∗

1 + r∗

]

C6. The linearized equilibrium condition in the goods market

The equilibrium condition in the goods market is given by equation (11):

Yt = Ct + It + Gt

Taking logarithms of both sides of this equation, and subtracting from both sides their
values on the balanced growth path, yields:

ln Yt − ln Y ∗
t = ln (Ct + It + Gt) − ln Y ∗

t

Now take a first-order Taylor-approximation of the right-hand-side around lnCt = ln C∗
t ,

ln It = ln I∗t and lnGt = ln G∗
t :

ln Yt − ln Y ∗
t = ϕ1(ln Ct − ln C∗

t ) + ϕ2(ln It − ln I∗t ) + ϕ3(ln Gt − ln G∗
t )

Ŷt = ϕ1Ĉt + ϕ2Ît + ϕ3Ĝt (C.9)

where

ϕ1 =
(

∂ ln {Ct + It + Gt}
∂ ln Ct

)∗

ϕ2 =
(

∂ ln {Ct + It + Gt}
∂ ln It

)∗

ϕ3 =
(

∂ ln {Ct + It + Gt}
∂ ln Gt

)∗

ϕ1, ϕ2 and ϕ3 can be worked out as follows:

ϕ1 =
(

∂ ln {Ct + It + Gt}
∂Ct

∂Ct

∂ ln Ct

)∗

=
(

1
Ct + It + Gt

Ct

)∗

=
C∗

t

Y ∗
t
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ϕ2 =
(

∂ ln {Ct + It + Gt}
∂It

∂It

∂ ln It

)∗

=
(

1
Ct + It + Gt

It

)∗

=
I∗t
Y ∗

t

ϕ3 =
(

∂ ln {Ct + It + Gt}
∂Gt

∂Gt

∂ ln Gt

)∗

=
(

1
Ct + It + Gt

Gt

)∗

=
G∗

t

Y ∗
t

Substituting in equation (C.9) gives then the linearized equilibrium condition in the
goods market:

Ŷt =
C∗

t

Y ∗
t

Ĉt +
I∗t
Y ∗

t

Ît +
G∗

t

Y ∗
t

Ĝt
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