

# School of Electrical, Electronics and Communication Engineering

Program:B. Tech Electronics and communication engineering

Scheme: 2019 - 2023

# Curriculum

|     |        | Semester                                            | 1        |          |    |     |      |          | Semester 1 |  |  |  |  |  |  |  |  |
|-----|--------|-----------------------------------------------------|----------|----------|----|-----|------|----------|------------|--|--|--|--|--|--|--|--|
| Sl. | Course | Name of the Course                                  |          |          |    |     | Asse | ssment l | Pattern    |  |  |  |  |  |  |  |  |
| No  | Code   |                                                     | L        | T        | P  | C   | IA   | MTE      | ETE        |  |  |  |  |  |  |  |  |
| 1   | BMA101 | Mathematics-I (Multivariable Calculus)              | 3        | 1        | 0  | 3   | 20   | 50       | 100        |  |  |  |  |  |  |  |  |
| 2   | BMA151 | Exploration with CAS-I                              | 0        | 0        | 2  | 1   | 50   | -        | 50         |  |  |  |  |  |  |  |  |
| 3   | BHS101 | Professional Communication                          | 2        | 0        | 0  | 2   | 50   | -        | 50         |  |  |  |  |  |  |  |  |
| 4   | BCS101 | Fundamentals of Computer Programming                | 3        | 0        | 0  | 3   | 20   | 50       | 100        |  |  |  |  |  |  |  |  |
| 5   | BCS151 | Fundamentals of Computer<br>Programming Lab - 1     | 0        | 0        | 2  | 1   | 50   | -        | 50         |  |  |  |  |  |  |  |  |
| 6   | BPH101 | Engineering Physics                                 | 3        | 0        | 0  | 3   | 20   | 50       | 100        |  |  |  |  |  |  |  |  |
| 7   | BPH151 | Engineering Physics Lab                             | 0        | 0        | 2  | 1   |      |          |            |  |  |  |  |  |  |  |  |
| 8   | BME101 | Elements of Mechanical Engineering                  | 3        | 0        | 0  | 3   | 20   | 50       | 100        |  |  |  |  |  |  |  |  |
| 9   | BME151 | Workshop Practice                                   | 0        | 0        | 4  | 2   | 50   | -        | 50         |  |  |  |  |  |  |  |  |
|     |        | Total                                               | 14       | 1        | 10 | 19  |      |          |            |  |  |  |  |  |  |  |  |
|     |        | Semester II                                         |          |          |    |     |      |          |            |  |  |  |  |  |  |  |  |
| Sl  | Course | Name of the Course                                  |          | I I      |    | I ~ |      | ssment l |            |  |  |  |  |  |  |  |  |
| No  | Code   | 1 100000 00 00000                                   | L        | T        | P  | С   | IA   | MTE      | ETE        |  |  |  |  |  |  |  |  |
| 1   | BMA201 | Mathematics-I (Matrices and Differential Equations) | 3        | 1        | 0  | 3   | 20   | 50       | 100        |  |  |  |  |  |  |  |  |
| 2   | BMA251 | Exploration with CAS-II                             | 0        | 0        | 2  | 1   | 50   | -        | 50         |  |  |  |  |  |  |  |  |
| 3   | BHS251 | Professional Communication Lab                      | 0        | 0        | 2  | 1   | 50   | -        | 50         |  |  |  |  |  |  |  |  |
| 4   | BCS251 | Fundamentals of Computer<br>Programming Lab - 2     | 0        | 0        | 2  | 1   | 50   | -        | 50         |  |  |  |  |  |  |  |  |
| 5   | BOC251 | Engineering Clinic-1                                | 0        | 0        | 2  | 1   | 50   | -        | 50         |  |  |  |  |  |  |  |  |
| 6   | BLE101 | Psychology and Sociology                            | 2        | 0        | 0  | 2   | 20   | 50       | 100        |  |  |  |  |  |  |  |  |
| 7   | BCH101 | Engineering Chemistry                               | 3        | 0        | 0  | 3   | 20   | 50       | 100        |  |  |  |  |  |  |  |  |
| 8   | BCH151 | Engineering Chemistry Lab                           | 0        | 0        | 2  | 1   |      |          |            |  |  |  |  |  |  |  |  |
| 9   | BEC101 | Basic Electrical and Electronics<br>Engineering     | 3        | 0        | 0  | 3   | 20   | 50       | 100        |  |  |  |  |  |  |  |  |
| 10  | BEC151 | Basic Electrical and Electronics<br>Engineering Lab | 0        | 0        | 2  | 1   | 50   | -        | 50         |  |  |  |  |  |  |  |  |
|     |        | Total                                               | 11       | 1        | 12 | 19  |      |          |            |  |  |  |  |  |  |  |  |
|     |        | Semester III                                        | [        |          |    |     | Ι.   |          |            |  |  |  |  |  |  |  |  |
| Sl  | Course | Name of the Course                                  | <b>T</b> | <b>T</b> | D  |     |      | ssment l | 1          |  |  |  |  |  |  |  |  |
| No  | Code   | Functions of complex variables and                  | L        | T        | P  | C   | IA   | MTE      | ETE        |  |  |  |  |  |  |  |  |
| 1   | BMA201 | Transforms                                          | 3        | 0        | 0  | 3   | 20   | 50       | 100        |  |  |  |  |  |  |  |  |
| 2   | BEC301 | Electronic Devices and Circuits                     | 3        | 0        | 0  | 3   | 20   | 50       | 100        |  |  |  |  |  |  |  |  |
| 3   | BEC302 | Signals and Systems                                 | 3        | 0        | 0  | 3   | 20   | 50       | 100        |  |  |  |  |  |  |  |  |
| 4   | BEC303 | Electronic Engineering Materials                    | 3        | 0        | 0  | 3   | 20   | 50       | 100        |  |  |  |  |  |  |  |  |
| 5   | BEC304 | Digital System Design                               | 3        | 0        | 0  | 3   | 20   | 50       | 100        |  |  |  |  |  |  |  |  |
| 6   | BEC305 | Network Analysis and Synthesis                      | 3        | 0        | 0  | 3   | 20   | 50       | 100        |  |  |  |  |  |  |  |  |
| 7   | BEC306 | Design and Engineering                              | 2        | 0        | 0  | 2   | 20   | 50       | 100        |  |  |  |  |  |  |  |  |
| 8   | BEC351 | Digital System Design Lab                           | 0        | 0        | 2  | 1   | 50   | -        | 50         |  |  |  |  |  |  |  |  |
| 9   | BEC352 | Electronics Circuits Design and PCB<br>Lab          | 0        | 0        | 2  | 1   | 50   | -        | 50         |  |  |  |  |  |  |  |  |
| 10  | BOC351 | Engineering Clinic-2                                | 0        | 0        | 2  | 1   | 50   | -        | 50         |  |  |  |  |  |  |  |  |
| 11  | BLL351 | Managerial Communication                            | 0        | 0        | 2  | 1   | 50   | -        | 50         |  |  |  |  |  |  |  |  |

|    |            | Effectiveness Lab                               |    |   |     |     |       |          |         |  |  |  |
|----|------------|-------------------------------------------------|----|---|-----|-----|-------|----------|---------|--|--|--|
|    |            | Environmental Science and                       |    |   |     |     |       |          |         |  |  |  |
| 12 | BEN301     | Engineering (Mandatory                          | 2  | 0 | 0   | 0   | 20    | 50       | 100     |  |  |  |
| 12 | BENSOI     | Audit Course)                                   | _  |   | O   |     | 20    | 30       | 100     |  |  |  |
|    |            | Total                                           | 22 | 0 | 8   | 24  |       |          |         |  |  |  |
|    |            | Semester IV                                     |    |   |     | 1   |       |          |         |  |  |  |
| Sl | Course     | Name of the Course                              |    |   |     |     | Asses | ssment I | Pattern |  |  |  |
| No | Code       | Name of the Course                              | L  | T | P   | C   | IA    | MTE      | ETE     |  |  |  |
| 1  | BMA402     | Probability and Stochastic Processes            | 3  | 0 | 0   | 3   | 20    | 50       | 100     |  |  |  |
| 2  | BEC407     | Integrated Circuits                             | 3  | 0 | 0   | 3   | 20    | 50       | 100     |  |  |  |
| 3  | BEC408     | Electromagnetic Field Theory                    | 3  | 0 | 0   | 3   | 20    | 50       | 100     |  |  |  |
| 4  | BEC409     | Analog and Digital Communication                | 3  | 0 | 0   | 3   | 20    | 50       | 100     |  |  |  |
| 5  | BEC410     | Computer Architecture and                       | 3  | 0 | 0   | 3   | 20    | 50       | 100     |  |  |  |
| 3  | BEC-10     | Organization                                    |    | U | -   | 3   | 20    | 30       | 100     |  |  |  |
| 6  | BEC411     | Microprocessors and Micro-<br>Controllers       | 3  | 0 | 0   | 3   | 20    | 50       | 100     |  |  |  |
| 7  | BOC451     | Engineering Clinic-4                            | 0  | 0 | 2   | 1   | 50    | -        | 50      |  |  |  |
| 8  | BEC455     | Integrated Circuits Lab                         | 0  | 0 | 2   | 1   | 50    | -        | 50      |  |  |  |
| 9  | BLL452     | Logical and Critical Reasoning                  | 0  | 0 | 2   | 1   | 50    | -        | 50      |  |  |  |
| 10 | BEC456     | Microprocessor and Micro Controller<br>Lab      | 0  | 0 | 2   | 1   | 50    | -        | 50      |  |  |  |
|    |            | Total                                           | 18 | 0 | 8   | 22  |       |          |         |  |  |  |
|    | Semester V |                                                 |    |   |     |     |       |          |         |  |  |  |
| Sl | Course     | Name of the Course                              |    |   |     | ,   |       | ssment I |         |  |  |  |
| No | Code       |                                                 | L  | T | P   | C   | IA    | MTE      | ETE     |  |  |  |
| 1  | BEC501     | Control Systems                                 | 3  | 0 | 0   | 3   | 20    | 50       | 100     |  |  |  |
| 2  | BEC502     | EM Waves                                        | 3  | 0 | 0   | 3   | 20    | 50       | 100     |  |  |  |
| 3  | BEC503     | Object Oriented Programming and Data Structures | 3  | 0 | 0   | 3   | 20    | 50       | 100     |  |  |  |
| 4  | BEC504     | Digital Signal Processing                       | 3  | 0 | 0   | 3   | 20    | 50       | 100     |  |  |  |
| 5  |            | Program Elective-I                              | 3  | 0 | 0   | 3   | 20    | 50       | 100     |  |  |  |
| 6  | BSB501     | Engineering Economics and Management            | 3  | 0 | 0   | 3   | 20    | 50       | 100     |  |  |  |
| 7  | BOC551     | Engineering Clinic-5                            | 0  | 0 | 2   | 1   | 50    | -        | 50      |  |  |  |
| 8  | BLL551     | Effective Leadership and Decision Making Skills | 0  | 0 | 2   | 1   | 50    | -        | 50      |  |  |  |
| 9  | BEC551     | Digital Signal Processing Lab                   | 0  | 0 | 2   | 1   | 50    | -        | 50      |  |  |  |
| 10 | BEC552     | Communication Engineering Lab                   | 0  | 0 | 2   | 1   | 50    | -        | 50      |  |  |  |
| 11 | BEC553     | Industrial Internship                           | 0  | 0 | 0   | 1   | 50    | -        | 50      |  |  |  |
|    |            | Total                                           | 18 | 0 | 8   | 23  |       |          |         |  |  |  |
|    |            | Semester VI                                     | [  |   |     |     | 1 .   | _        | _       |  |  |  |
| Sl | Course     | Name of the Course                              | -  |   | -   | · ~ |       | ssment I |         |  |  |  |
| No | Code       |                                                 | L  | T | P   | C   | IA    | MTE      | ETE     |  |  |  |
| 1  | BLL601     | Campus to Corporate program                     | 3  | 0 | 0   | 3   | 50    | -        | 50      |  |  |  |
| 2  | BEC602     | Computer Networks                               | 3  | 0 | 0   | 3   | 20    | 50       | 100     |  |  |  |
| 3  | BEC603     | VLSI Design                                     | 3  | 0 | 0   | 3   | 20    | 50       | 100     |  |  |  |
| 4  | BHS601     | Professional Ethics and Human<br>Values         | 2  | 0 | 0   | 2   | 20    | 50       | 100     |  |  |  |
| 5  |            | Program Elective-II                             | 3  | 0 | 0   | 3   | 20    | 50       | 100     |  |  |  |
| 6  |            | Program Elective-III                            | 3  | 0 | 0   | 3   | 20    | 50       | 100     |  |  |  |
| 7  |            | Open Elective -1                                | 3  | 0 | 0   | 3   | 20    | 50       | 100     |  |  |  |
| 8  | BEC654     | Computer Network Lab                            | 0  | 0 | 2 2 | 1   | 50    | -        | 50      |  |  |  |
| 9  | BEC655     | Design and Innovation Project                   | 0  | 0 |     | 1   | 50    | _        | 50      |  |  |  |

| 10 | BLE601/B<br>LE602/BL<br>E603    | Foreign Language - 1 (German, Japanese, French) *Optional | 0  | 0 | 2  | 0  | 50   | -        | 50      |
|----|---------------------------------|-----------------------------------------------------------|----|---|----|----|------|----------|---------|
|    |                                 | Total                                                     | 20 | 0 | 6  | 22 |      |          |         |
|    |                                 |                                                           |    |   |    |    |      |          |         |
|    | Semester VII                    |                                                           |    |   |    |    |      |          |         |
| Sl | Course                          | Name of the Course                                        |    |   | 1  |    |      | ssment I |         |
| No | Code                            |                                                           | L  | T | P  | C  | IA   | MTE      | ETE     |
| 1  | BEC701                          | Embedded Systems                                          | 3  | 0 | 0  | 3  | 20   | 50       | 100     |
| 2  |                                 | Program Elective-IV                                       | 3  | 0 | 0  | 3  | 20   | 50       | 100     |
| 3  |                                 | Program Elective-V                                        | 3  | 0 | 0  | 3  | 20   | 50       | 100     |
| 4  |                                 | Open Elective-2                                           | 3  | 0 | 0  | 3  | 20   | 50       | 100     |
| 5  | BEC702                          | Advance Communication Systems                             | 3  | 0 | 0  | 3  | 20   | 50       | 100     |
| 6  | BEC751                          | VLSI and Embedded Systems Lab                             | 0  | 0 | 2  | 1  | 50   | -        | 50      |
| 7  | BEC752                          | Industrial Internship                                     | 0  | 0 | 0  | 1  | 50   | -        | 50      |
| 8  | BEC753                          | Technical Seminar                                         | 0  | 0 | 2  | 1  | 50   | -        | 50      |
| 9  | BEC754                          | Capstone Design - I                                       | 0  | 0 | 10 | 5  | 50   | -        | 50      |
| 10 | BLE701 /<br>BLE702 /<br>BLE 703 | Foreign Language - 2 (German, Japanese, French) *Optional | 0  | 0 | 2  | 0  | 50   | -        | 50      |
|    |                                 | Total                                                     | 15 | 0 | 16 | 23 |      |          |         |
|    |                                 | Semester VI                                               | [] |   |    |    |      |          |         |
| Sl | Course Name of the Course       |                                                           |    |   |    |    | Asse | ssment I | Pattern |
| No | Code                            | reame of the Course                                       | L  | T | P  | C  | IA   | MTE      | ETE     |
| 1  | BEC801                          | Capstone Design - II                                      | 0  | 0 | 18 | 9  | 50   | -        | 50      |
|    |                                 | Total                                                     | 0  | 0 | 18 | 9  |      |          |         |

# **List of Electives**

# Basket-1

| Sl | Course | Name of the Electives            |   |   |   |   | Assess | sment Pa | ttern |
|----|--------|----------------------------------|---|---|---|---|--------|----------|-------|
| No | Code   |                                  | L | T | P | C | IA     | MTE      | ETE   |
|    |        |                                  |   |   |   |   |        |          |       |
| 1  | EEC501 | Automation and Robotics          | 3 | 0 | 0 | 3 | 20     | 50       | 100   |
| 2  | EEC502 | Satellite Communication          | 3 | 0 | 0 | 3 | 20     | 50       | 100   |
| 3  | EEC503 | MEMS                             | 3 | 0 | 0 | 3 | 20     | 50       | 100   |
| 5  | EEC504 | Digital System Design using VHDL | 3 | 0 | 0 | 3 | 20     | 50       | 100   |

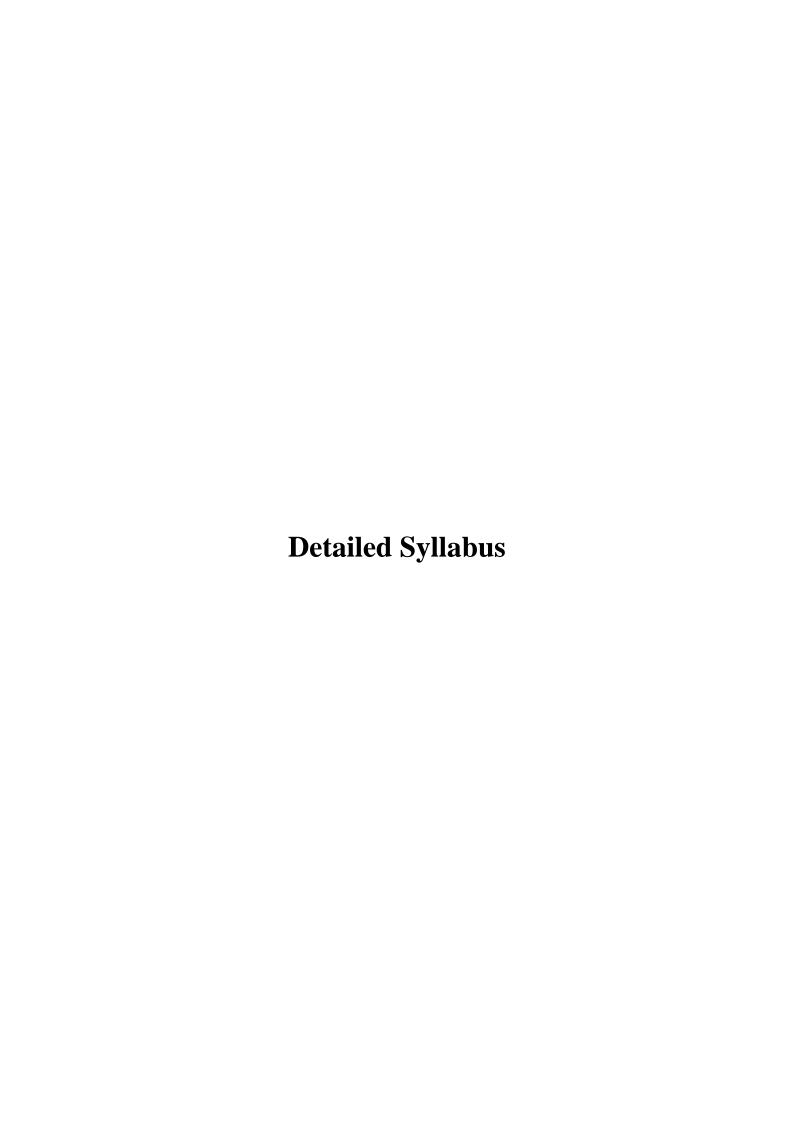
# Basket-2

| Sl | Course | Name of the Elective               |   |    |     |     | Assess | sment Pa | ittern |
|----|--------|------------------------------------|---|----|-----|-----|--------|----------|--------|
| No | Code   | $oxed{L} oxed{T} oxed{P} oxed{C}$  |   | IA | MTE | ETE |        |          |        |
|    |        |                                    |   |    |     |     |        |          |        |
| 1  | EEC505 | Principles of Secure Communication | 3 | 0  | 0   | 3   | 20     | 50       | 100    |
| 2  | EEC506 | Neural Networks and Fuzzy Control  | 3 | 0  | 0   | 3   | 20     | 50       | 100    |
| 3  | EEC507 | Wireless Sensor Networks           | 3 | 0  | 0   | 3   | 20     | 50       | 100    |
| 4  | EEC508 | Nano Science and Technology        | 3 | 0  | 0   | 3   | 20     | 50       | 100    |
| 5  | EEC509 | Mobile Ad Hoc Networks             | 3 | 0  | 0   | 3   | 20     | 50       | 100    |

# Basket-3

| Sl | Course | Name of the Elective             |   |   |   | Assess | ment Pattern |     |     |  |
|----|--------|----------------------------------|---|---|---|--------|--------------|-----|-----|--|
| No | Code   |                                  | L | T | P | C      | IA           | MTE | ETE |  |
| 1  | EEC510 | Digital Image Processing         | 3 | 0 | 0 | 3      | 20           | 50  | 100 |  |
| 2  | EEC511 | Information Theory and Coding    | 3 | 0 | 0 | 3      | 20           | 50  | 100 |  |
| 3  | EEC512 | Modern Digital Signal Processing | 3 | 0 | 0 | 3      | 20           | 50  | 100 |  |
| 4  | EEC513 | ASIC Design and FPGA             | 3 | 0 | 0 | 3      | 20           | 50  | 100 |  |

# Basket-4


| Sl | Course | Name of the Elective          |   |   |   | Assess | sment Pa | ttern |     |
|----|--------|-------------------------------|---|---|---|--------|----------|-------|-----|
| No | Code   |                               |   | T | P | C      | IA       | MTE   | ETE |
| 1  | EEC514 | Soft Computing                | 3 | 0 | 0 | 3      | 20       | 50    | 100 |
| 2  | EEC515 | Mobile Computing              | 3 | 0 | 0 | 3      | 20       | 50    | 100 |
| 3  | EEC516 | Microwave Engineering         | 3 | 0 | 0 | 3      | 20       | 50    | 100 |
| 4  | EEC517 | Biomedical engineering        | 3 | 0 | 0 | 3      | 20       | 50    | 100 |
| 5  | EEC518 | Radar Guidance and Navigation | 3 | 0 | 0 | 3      | 20       | 50    | 100 |

# Basket-5

| Sl | Course | Name of the Elective                     |   |   |   |   | Assess | sment Pa | ttern |
|----|--------|------------------------------------------|---|---|---|---|--------|----------|-------|
| No | Code   |                                          | L | T | P | C | IA     | MTE      | ETE   |
| 1  | EEC520 | Introduction to IoT and its Applications | 3 | 0 | 0 | 3 | 20     | 50       | 100   |
| 2  | EEC521 | Optical Communication                    | 3 | 0 | 0 | 3 | 20     | 50       | 100   |
| 3  | EEC522 | Mixed Signal Circuit Design              | 3 | 0 | 0 | 3 | 20     | 50       | 100   |
| 4  | EEC523 | Audio Visual Engineering                 | 3 | 0 | 0 | 3 | 20     | 50       | 100   |
| 5  | EEC524 | PLC/SCADA                                | 3 | 0 | 0 | 3 | 20     | 50       | 100   |

|       | List of Open elective (Engineering courses) Proposed |                                      |   |      |   |   |    |           |                |  |  |
|-------|------------------------------------------------------|--------------------------------------|---|------|---|---|----|-----------|----------------|--|--|
|       | Basket 1                                             |                                      |   |      |   |   |    |           |                |  |  |
| Sl.No | CourseCode                                           | CourseTitle                          |   | Asse |   |   |    | essment I | ssment Pattern |  |  |
| •     |                                                      |                                      | - |      | - |   | T. | 3.6000    | E              |  |  |
|       |                                                      |                                      | L | T    | P | C | IA | MTE       | ETE            |  |  |
| 1     | BOE601                                               | Human Computer Interface             | 3 | 0    | 0 | 3 | 20 | 50        | 100            |  |  |
| 2     | BOE602                                               | Introduction to cyber Physical       | 3 | 0    | 0 | 3 | 20 | 50        | 100            |  |  |
|       |                                                      | Systems                              |   |      |   |   |    |           |                |  |  |
| 3     | BOE603                                               | Selected Topics in Signal Processing | 3 | 0    | 0 | 3 | 20 | 50        | 100            |  |  |
| 4     | BOE604                                               | Selected Topics in Communication     | 3 | 0    | 0 | 3 | 20 | 50        | 100            |  |  |
|       |                                                      | Engineering                          |   |      |   |   |    |           |                |  |  |
| 5     | BOE605                                               | Autonomous Vehicles                  | 3 | 0    | 0 | 3 | 20 | 50        | 100            |  |  |
| 6     | BOE606                                               | Data Science                         | 3 | 0    | 0 | 3 | 20 | 50        | 100            |  |  |
| 7     | BOE607                                               | Computer Vision                      | 3 | 0    | 0 | 3 | 20 | 50        | 100            |  |  |
| 8     | BOE608                                               | Artificial Intelligence              | 3 | 0    | 0 | 3 | 20 | 50        | 100            |  |  |
| 9     | BOE609                                               | Cyber Security                       | 3 | 0    | 0 | 3 | 20 | 50        | 100            |  |  |
| 10    | BOE610                                               | Energy Management                    | 3 | 0    | 0 | 3 | 20 | 50        | 100            |  |  |
| 11    | BOE611                                               | Estimation and Costing               | 3 | 0    | 0 | 3 | 20 | 50        | 100            |  |  |
| 12    | BOE612                                               | Data Envelopment Analysis            | 3 | 0    | 0 | 3 | 20 | 50        | 100            |  |  |
| 13    | BOE613                                               | Operation Management                 | 3 | 0    | 0 | 3 | 20 | 50        | 100            |  |  |
| 14    | BOE614                                               | Construction Engineering             | 3 | 0    | 0 | 3 | 20 | 50        | 100            |  |  |

| 16 | BOE615 | Disaster Management            | 3 | 0 | 0 | 3 | 20 | 50 | 100 |
|----|--------|--------------------------------|---|---|---|---|----|----|-----|
| 16 | BOE616 | Bioinformatics                 | 3 | 0 | 0 | 3 | 20 | 50 | 100 |
|    |        | Basket-2                       |   |   |   |   |    |    |     |
| 1  | BOE701 | Remote Sensing and GIS         | 3 | 0 | 0 | 3 | 20 | 50 | 100 |
| 2  | BOE702 | Automotive Electronics         | 3 | 0 | 0 | 3 | 20 | 50 | 100 |
| 3  | BOE703 | Sensors & Actuators            | 3 | 0 | 0 | 3 | 20 | 50 | 100 |
| 4  | BOE704 | IoT and Smart Cities           | 3 | 0 | 0 | 3 | 20 | 50 | 100 |
| 5  | BOE705 | Web Design and Management      | 3 | 0 | 0 | 3 | 20 | 50 | 100 |
| 6  | BOE706 | Principles of Telemedicine     | 3 | 0 | 0 | 3 | 20 | 50 | 100 |
| 7  | BOE707 | Mobile Application Development | 3 | 0 | 0 | 3 | 20 | 50 | 100 |
| 8  | BOE708 | Business Analytics             | 3 | 0 | 0 | 3 | 20 | 50 | 100 |
| 9  | BOE709 | Cloud Computing                | 3 | 0 | 0 | 3 | 20 | 50 | 100 |
| 10 | BOE710 | Block Chain                    | 3 | 0 | 0 | 3 | 20 | 50 | 100 |
| 11 | BOE711 | Augmented / Virtual Reality    | 3 | 0 | 0 | 3 | 20 | 50 | 100 |
| 12 | BOE712 | Digital Forensics              | 3 | 0 | 0 | 3 | 20 | 50 | 100 |
| 13 | BOE713 | Operations Research            | 3 | 0 | 0 | 3 | 20 | 50 | 100 |
| 14 | BOE714 | Renewable Energy               | 3 | 0 | 0 | 3 | 20 | 50 | 100 |
| 15 | BOE715 | Interior Design                | 3 | 0 | 0 | 3 | 20 | 50 | 100 |
| 16 | BOE716 | Landscaping                    | 3 | 0 | 0 | 3 | 20 | 50 | 100 |
| 17 | BOE717 | Biology for Engineers          | 3 | 0 | 0 | 3 | 20 | 50 | 100 |



| Name of The Course | Basic Electrical and Electronics Engineering |   |   |   |   |
|--------------------|----------------------------------------------|---|---|---|---|
| Course Code        | BEC101                                       |   |   |   |   |
| Prerequisite       | Physics, Modern Physics                      |   |   |   |   |
| Corequisite        |                                              |   |   |   |   |
| Antirequisite      |                                              |   |   |   |   |
| _                  | ·                                            | L | T | P | C |
|                    |                                              | 3 | 0 | 0 | 3 |

To acquaint the students with the construction, theory and operation of the basic electronic devices such as PN junction diode, Bipolar and Field effect Transistors, Power control devices, LED, LCD and other Opto-electronic devices

#### **Course Outcomes**

| CO1 | Apply fundamental laws to analyze DC Circuits.                                          |
|-----|-----------------------------------------------------------------------------------------|
| CO2 | Outline the AC source and analyze the steady staeresponse of RL, RC and RLC phasors.    |
| CO3 | Summerize the Digital Number Systemand Boolean Algebra with small combinational circuit |
|     | design.                                                                                 |
| CO4 | Illustrate the operation and charecteristics of PN Junction Diode, BJT with application |
| CO5 | Demonstrate the commonly used Sensors and Transducers and their applications            |

# **Text Books**

- 1. D.P. Kothari and I.J. Nagrath, "Basic Electrical Engineering", Tata McGraw-Hill
- 2. V.Mittle, ArvindMittle, "Basic Electrical Engineering", McGraw Hill
- 3. Robert L.Boylestad, Louis Nashelsky, "Electronic Devices and Circuit Theory
- 4. A.P.Malvino, Donald Leach, "Digital Principles and Applications", Tata McGraw-Hill
- 5. D.Patranabi, "Sensors and Transducers", PHI

# **Reference Books**

- 1. D.C.Kulshreshtha,"Basic Electrical Engineering", Tata McGraw Hill
- 2. J. Edminister and M. Nahvi, "Electric Circuits", 3rd Edition, Tata McGraw-Hill
- 3. Jacob Millman, Christos C.Halkias, SatyabrataJit, "Electronics Devices and Circuits", Tata McGraw Hill
- 4. Morris Mano, "Digital Computer Design", PHI

#### **Course Content:**

| Unit I: Analysis of DC Circuit                                                                | 8 Hou                  | irs                      |  |  |  |
|-----------------------------------------------------------------------------------------------|------------------------|--------------------------|--|--|--|
| Ohm's law, Series and Parallel Circuit                                                        | s, Current and Voltage | division, Kirchoff's Law |  |  |  |
| (KCL&KVL), Star-Delta Transformation, N                                                       | odal Analysis.         |                          |  |  |  |
|                                                                                               | •                      |                          |  |  |  |
| Unit II: Analysis of AC Circuits                                                              |                        | 8 Hours                  |  |  |  |
| Alternating signals, Derivation of Root Mean Square (RMS) value, Average value, Peak or crest |                        |                          |  |  |  |
| factor Form factor                                                                            |                        | _                        |  |  |  |

Phasor representation of Pure Resistive, Pure Inductive, Pure Capacitive, R-L Series, R-C Series and R-L-C Series Circuits. Concept of lagging and leading power factor. Inductive and Capacitive reactance, CalculationofAC power.

**Unit III: Digital Systems** 

9 Hours

**Number System :** Decimal form, Binary form, Octal form, Hexadecimal form and their interconversions

**Logic Gates**: Basic logic gates and Universal gates. Realization of basic gates using Universal gates.

**Combinational logic circuitsdesign**: Boolean algebra, De-Morgan's law, SOP and POS form, Minimisation of logic circuits using Karnaugh Map. Design of Half adder and Full adder

## **Unit IV: Semiconductor Devices**

8 Hours

**Semiconductor:** Intrinsic & Extrinsic Semiconductors, PN Junction Diode – V-I Charecteristics of normal and ideal diode. Zener diode and its application as Voltage regulator, Avalanche and Zener breakdown

**Diode Applications**: Half Wave& Full Wave rectifiers, Filters

**Bipolar Junction Transistor (BJT):** Construction and working of BJT. Characteristics and uses of Common Emitter (CE) Configurations

# **Unit V: Transducers and Sensors**

4 Hours

Sensors and Transducers Definitions, Crieteria to choose a sensor, Basic requirements of a Sensor and Transducer, Classification of Sensors, Commonly used Sensors and Transducers, Analogue and Digital Sensors

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Electronic Devices and Circuits |   |   |   |   |
|--------------------|---------------------------------|---|---|---|---|
| Course Code        | BEC301                          |   |   |   |   |
| Prerequisite       | Physics, Modern Physics         |   |   |   |   |
| Corequisite        | Physics                         |   |   |   |   |
| Antirequisite      |                                 |   |   |   |   |
|                    |                                 | L | T | P | C |
|                    |                                 | 3 | 0 | 0 | 3 |

**Course Objectives:** To acquaint the students with the construction, theory and operation of the basic electronic devices such as PN junction diode, Bipolar and Field effect Transistors, Power control devices, LED, LCD and other Opto-electronic devices

#### **Course Outcomes**

| CO1 | Realize the transistor biasing methods and Design analog electronic circuits using discrete |
|-----|---------------------------------------------------------------------------------------------|
|     | components                                                                                  |
| CO2 | Design common amplifier circuits and analyze the amplitude and frequency responses          |
| CO3 | Design various analog circuits to analyze their responses                                   |
| CO4 | Understand the principle of operation of different Oscillator circuits.                     |
| CO5 | Understand the principle of operation of various amplifier circuits                         |

## Text Book (s):

- 1. Jacob. Millman, Christos C.Halkias, 'Electronic Devices and Circuits', Tata McGraw Hill Publishing Limited, New Delhi, 2008, ISBN 0070634556, 9780070634558.
- 2. Jacob Millman and C. Halkias, 'Integrated Electronics Analog and Digital Circuits and Systems', Tata Mc Graw Hill, 2001, ISBN 0074622455, 9780074622452
- 3. Electronic Devices & Circuits Theory Robert Boylestad and Louis Nashelsky, 10th EditionPrentice Hall, 2009, ISBN 0135026490, 9780135026496

# Reference Book (s):

- 1. Jacob Millman and Arvin Grabel, 'Microelectronics', McGraw Hill, 2001, ISBN 0074637363, 9780074637364.
- 2. Electronic Devices & Circuits David. A. Bell, 3rd Edition, Prentice Hall, 1986 ISBN 083591559X, 9780835915595

#### **Course Content:**

#### Unit-1 Introduction 8 hours

BJT and BJT Biasing .Hybrid models of CE, CB, CC, configurations – Study of the effect of emitter by- pass condenser at low frequencies - Hybrid –  $\pi$  common emitter transistor model – hybrid  $\pi$  conductance and capacitance – CE short circuit current gain – current gain with resistive load – gain bandwidth product – Study of the effect of un bypassed emitter resister on amplifier performance, Cascode amplifier. HF & LF compensation of RC coupled amplifier. Multistage Amplifiers.

# **Unit-2FET and FET Biasing8 hours**

FET and FET Biasing. FET Amplifiers: Common source, Common gate and Common drain Amplifiers – problems. Small signal analysis of FET Amplifiers. High Frequency analysis of FET Amplifiers, VMOS & CMOS Concepts.

# Unit-3Feedback amplifiers 8 hours

The feedback concept – Transfer gain with feedback – general characteristics and advantages of

negative feedback—analysis of voltage series, Voltage shunt, current series and current shunt feedback amplifiers—Study of the effect of Negative feedback on Gain, Bandwidth, Noise, Distortion, Input and Output impedances with the help of Block Schematic and Mathematical Expressions

Unit-4Oscillators 8 hours

Sinusoidal oscillators – phase shift oscillator – Wien bridge oscillator – Hartley oscillator – Colpits oscillator – frequency stability, inclusive of design, Crystal oscillators.

# **Unit-5Tuned amplifiers8 hours**

Characteristics of Tuned amplifiers – Analysis of Single tuned, Doubled tuned and stagger tuned amplifiers, Gain – bandwidth product – High frequency effect – neutralization. Power Amplifiers: Classification of amplifiers – class A large signal amplifiers – second harmonic distortion – higher order harmonic generations – computation of Harmonic distortion – Transformer coupled audio power amplifier – efficiency – push - pull amplifier – class B amplifier – class AB operation – Push-Pull circuit with Transistors of Complimentary Symmetry.

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Signals and Systems     |   |   |   |   |
|--------------------|-------------------------|---|---|---|---|
| Course Code        | BEC302                  |   |   |   |   |
| Prerequisite       | Engineering Mathematics |   |   |   |   |
| Corequisite        |                         |   |   |   |   |
| Antirequisite      |                         |   |   |   |   |
|                    |                         | L | T | P | C |
|                    |                         | 3 | 0 | 0 | 3 |

**Course Objectives:**To understand the basic properties of signal & systems • To know the methods of characterization of LTI systems in time domain • To analyze continuous time signals and system in the Fourier and Laplace domain • To analyze discrete time signals and system in the Fourier and Z transform domain

## **Course Outcomes**

| CO1 | Understand various types of signals, classify, analyze and perform various operations on them. |
|-----|------------------------------------------------------------------------------------------------|
| CO2 | Classify the systems and realize their responses                                               |
| CO3 | Analyze the response of continuous time systems using Fourier transforms                       |
| CO4 | Use Laplace and Z transform techniques as tool for System analysis                             |
| CO5 | Analyze the continuous and discrete time system functions                                      |

# Text Book (s)

- 1. Signals and Systems, Robert, TMH
- 2. Signals and Systems by Oppenheim & Wilsky

#### Reference Book (s)

- 1. P. Ramakrishna Rao, 'Signal and Systems' 2008 Ed., Tata McGraw Hill, New Delhi
- 2. Linear Signals and Systems by B. P. Lathi

## **Course Content:**

## Unit-1 Introduction 8 hours

Signals and systems as seen in everydaylife, and in various branches of engineering and science. Types of signals and their representations: continuous-time/discrete-time, periodic/non-periodic, even/odd, energy/power, deterministic/ random, one dimensional/ multidimensional; Basic Signals: unit impulse, unit step, unit ramp, exponential, rectangular pulse, sinusoidal; operations on continuous-time and discrete-time signals (including transformations of independent variables)

## **Unit-2 Classification of Systems**

8 hours

Classification, linearity, time-invariance and causality, impulse response, characterization of linear time-invariant (LTI) systems, unit sample response, convolution summation, step response of discrete time systems, stability, convolution integral, co-relations, signal energy and energy spectral density, signal power and power spectral density, properties of power spectral density.

# **Unit-3 Fourier Series and Transforms**

8 hours

Continuous-time Fourier series: Periodic signals and their properties, exponential and trigonometric FS representation of periodic signals, convergence, FS of standard periodic signals, salient properties of Fourier series, Definition, conditions of existence of FT, properties, magnitude and phase spectra, Parseval's theorem, Inverse FT, Discrete time Fourier transform (DTFT), inverse DTFT, convergence, properties and theorems, Comparison between continuous time FT and DTFT.

# **Unit-4 Laplace Transforms and Z Transforms**

8 hours

One-sided LT of some common signals, important theorems and properties of LT, inverse LT,

solutions of differential equations using LT, Bilateral LT, Regions of convergence (ROC), One sided and Bilateral Z-transforms, ZT of some common signals, ROC, Properties and theorems, solution of difference equations using one-sided ZT, s- to z-plane mapping

# **Unit-5** Analysis of LTI systems

8 hours

Analysis of first order and second order systems, continuous-time (CT) system analysis using LT, system functions of CT systems, poles and zeros, block diagram representations; discrete-time system functions, block diagram representation, illustration of the concepts of system bandwidth and rise time through the analysis of a first order CT low pass filter

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Electronic Engineering Materials |   |   |   |   |
|--------------------|----------------------------------|---|---|---|---|
| Course Code        | BEC303                           |   |   |   |   |
| Prerequisite       | Basic Physics                    |   |   |   |   |
| Corequisite        |                                  |   |   |   |   |
| Antirequisite      |                                  |   |   |   |   |
|                    |                                  | L | T | P | C |
|                    |                                  | 3 | 0 | 0 | 3 |

The purpose of this course is to develop comprehension of the rapidly changing technological scenario and the requisite expertise for appropriate selection of materials for specific engineering applications. To Understand electrical properties of materials, the properties and applications of semi conducting materials, general properties and applications of magnetic and dielectric materials, the behavior of materials on exposure to light, general properties and application of modern engineering and bio materials, and familiarized with the concepts of Nano Science and Technology.

#### **Course Outcomes**

The students will be able to

| CO1 | Understand the properties and applications of semi conducting materials               |  |
|-----|---------------------------------------------------------------------------------------|--|
| CO2 | Explain general properties and applications of magnetic and dielectric materials      |  |
| CO3 | Explain the behavior of materials on exposure to light                                |  |
| CO4 | To elucidate the properties and application of modern engineering and bio materials,  |  |
| CO5 | Demonstrate appropriate selection of materials for specific engineering applications. |  |

#### TEXT BOOKS

- 1. Kasap, S. O. (2006). Principles of electronic materials and devices. Boston: McGraw-Hill.
- 2. Van, V. L. H. (2008). Elements of materials science and engineering. Pearson.
- 3. Vijaya, M. S., & Rangarajan, G. (2004). *Materials science*. New Delhi: Tata McGraw-Hill.

# REFERENCE BOOKS

- 1. Hummel, R. E. (1992). *Electronic properties of materials*. Berlin: Springer-Verlag.
- 2. Raghavan, V. (2004). *Materials science and engineering: A first course*. New Delhi: Prentice-Hall of India.
- 3. Wadhwa, A. S., &Dhaliwal, H. S. (2008). *A textbook of engineering material and metallurgy*. New Delhi: University Science Press.
- 4. Bhat, S. V. (2002). Biomaterials. Boston, Mass. [u.a.: Kluwer Academic [u.a..
- 5. Wilson, M. (2004). *Nanotechnology: Basic science and emerging technologies*. Boca Raton: Chapman & Hall/CRC.

# **Unit-1 MECHANICAL PROPERTIES OF MATERIALS**

8 hours

Stress Strain diagram for different engineering materials – Ductile and brittle material – Tensile strength – Hardness – Impact strength – Fatigue – Creep – Fracture – Factors affecting mechanical properties.

# **Unit-2 ELECTRONIC AND PHOTONIC MATERIALS**

8 hours

Semiconductors- Intrinsic and Extrensic – Hall effect –Superconducting materials. Photonic materials: LED and LCD materials – Photo conducting materials – Nonlinear optical materials (elementary ideas) and their applications.

# Unit-3 DIELECTRIC AND MODERN ENGINEERING MATERIALS

8 hours

Dielectric materials: Various polarization mechanisms in dielectrics (elementary ideas) and their frequency and temperature dependence – Dielectric loss – Piezo electric and ferro electric materials and their applications.

# **Unit-4 MAGNETIC MATERIALS**

8 hours

Magnetic materials: Ferrites- perovskites, dia, para, ferro, ferri, antiferro - Giant Magneto Resistance (GMR).

# **Unit-5 BIO MATERIALS**

8 hours

Classification of biomaterials – Comparison of properties of some common biomaterials – Effects of physiological fluid on the properties of biomaterials – Biological responses (extra and intra vascular system) – Metallic, Ceramic and Polymeric implant materials

| Internal Assessment | Mid Term Test | <b>End Term Test</b> | Total Marks |
|---------------------|---------------|----------------------|-------------|
| (IA)                | (MTE)         | (ETE)                |             |
| 20                  | 30            | 50                   | 100         |

| Name of The Course | Digital System Design |   |   |   |   |
|--------------------|-----------------------|---|---|---|---|
| Course Code        | BEC304                |   |   |   |   |
| Prerequisite       | Number Systems        |   |   |   |   |
| Corequisite        |                       |   |   |   |   |
| Antirequisite      |                       |   |   |   |   |
|                    |                       | L | T | P | C |
|                    |                       | 3 | 0 | 0 | 3 |

- To present the Digital fundamentals, Boolean algebra and its applications in digital systems
- To familiarize with the design of various combinational digital circuits using logic gates
- To introduce the analysis and design procedures for synchronous and asynchronous sequential circuits
- To explain the various semiconductor memories and related technology
- To introduce the electronic circuits involved in the making of logic gates

## **Course Outcomes**

| CO1 | Design and analyze combinational logic circuits                                  |
|-----|----------------------------------------------------------------------------------|
| CO2 | Design & analyze modular combinational circuits with MUX/DEMUX, Decoder, Encoder |
| CO3 | Understand Logic Families and Design memories                                    |
| CO4 | Design & analyze synchronous sequential logic circuits                           |
| CO5 | Use HDL & appropriate EDA tools for digital logic design and simulation          |

# Text Book

- 1. R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009.
- 2. Douglas Perry, "VHDL", Tata McGraw Hill, 4th edition, 2002.
- 3. W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd edition ,2006.
- 4. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989
- 5. Charles Roth, "Digital System Design using VHDL", Tata McGraw Hill 2nd edition 2012.

# **Course Content:**

| Unit-1 Introduction                                                    | 8 hours                        |
|------------------------------------------------------------------------|--------------------------------|
| Logic Simplification and Combinational Logic Design: Review            | of Boolean Algebra and De      |
| Morgan's Theorem, SOP & POS forms, Canonical forms, Karnaugh           | maps up to 6 variables, Binary |
| codes, Code Conversion.                                                |                                |
| Unit-2MSI devices8 hours                                               |                                |
| MSI devices like Comparators, Multiplexers, Encoder, Decoder, Drive    | er & Multiplexed Display, Half |
| and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder, I | Barrel shifter and ALU.        |
| Unit-3Sequential Logic Design                                          | 8 hours                        |
| Sequential Logic Design: Building blocks like S-R, JK and Master-Sl    | ave JK FF, Edge triggered FF,  |
| Ripple and Synchronous counters Shift registers. Finite state machines | Design of synchronous FSM      |

Ripple and Synchronous counters, Shift registers, Finite state machines, Design of synchronous FSM, Algorithmic State Machines charts. Designing synchronous circuits like Pulse train generator, Pseudo Random Binary Sequence generator, Clock generation.

| Unit-4Logic Families and Semiconductor Memories | 8 hours |
|-------------------------------------------------|---------|
|-------------------------------------------------|---------|

Logic Families and Semiconductor Memories: TTL NAND gate, Specifications, Noise margin, Propagation delay, fan-in, fan-out, Tristate TTL, ECL, CMOS families and their interfacing, Memory elements, Concept of Programmable logic devices like FPGA. Logic implementation using Programmable Devices.

# Unit-5VLSI Design flow 8 hour

VLSI Design flow: Design entry: Schematic, FSM & HDL, different modeling styles in VHDL, Data types and objects, Dataflow, Behavioral and Structural Modeling, Synthesis and Simulation VHDL constructs and codes for combinational and sequential circuits.

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Network Analysis and Synthesis               |   |   |   |   |
|--------------------|----------------------------------------------|---|---|---|---|
| Course Code        | BEC305                                       |   |   |   |   |
| Pre-requisite      | Basic Electrical and Electronics Engineering |   |   |   |   |
| Co-requisite       |                                              |   |   |   |   |
| Anti-requisite     |                                              |   |   |   |   |
| _                  |                                              | L | T | P | C |
|                    |                                              | 3 | 0 | 0 | 3 |

- 1. To learn the concepts of network analysis in electrical and electronics engineering.
- 2. To learn linear circuit analysis, graph theory and network theorems.
- 3. Analyze two port networks using Z, Y, ABCD and h parametersa

#### **Course Outcomes:**

| CO1 | Apply network theorems for the analysis of electrical circuits                      |  |
|-----|-------------------------------------------------------------------------------------|--|
| CO2 | Obtain the transient response of electrical circuits                                |  |
| CO3 | Obtain the steady-state response of electrical circuits                             |  |
| CO4 | CO4 Analyze circuits in the sinusoidal steady-state (single-phase and three-phase). |  |
| CO5 | Analyze two port circuit behavior.                                                  |  |

#### **Text / Reference Books**

- 1. M. E. Van Valkenburg, "Network Analysis", Prentice Hall, 2006.
- 2. D. Roy Choudhury, "Networks and Systems", New Age International Publications, 1998.
- 3. W. H. Hayt and J. E. Kemmerly, "Engineering Circuit Analysis", McGraw Hill Education, 2013.
- 4. C. K. Alexander and M. N. O. Sadiku, "Electric Circuits", McGraw Hill Education, 2004.
- 5. K. V. V. Murthy and M. S. Kamath, "Basic Circuit Analysis", Jaico Publishers,
- 1999.A.Chakrabarti, "Circuit Theory" DhanpatRai& Co

# **Course Content:**

#### **Unit I: Network Theorems8 Hours**

Superposition theorem, Thevenin theorem, Norton theorem, Maximum power transfer theorem, Reciprocity theorem, Compensation theorem. Analysis with dependent current and voltage sources. Node and Mesh Analysis. Concept of duality and dual networks.

# Unit II: Solution of First and Second order networks 10 Hours

Solution of first and second order differential equations for Series and parallel R-L, R-C, RL-C circuits,initial and final conditions in network elements, forced and free response, time constants, steady state and transient state response.

#### Unit III: Sinusoidal steady state analysis 9 Hours

Representation of sine function as rotating phasor, phasor diagrams, impedances and admittances, AC circuit analysis, effective or RMS values, average power and complex power. Three-phase circuits. Mutual coupled circuits, Dot Convention in coupled circuits, Ideal Transformer.

# Unit IV : Electrical Circuit Analysis Using Laplace Transforms8 Hours

Review of Laplace Transform, Analysis of electrical circuits using Laplace Transform for standard inputs, convolution integral, inverse Laplace transform, transformed network with initial conditions. Transfer function representation. Poles and Zeros. Frequency response (magnitude and phase plots), series and parallel resonances

# Unit V: Two Port Network and Network Functions9 Hours

Two Port Networks, terminal pairs, relationship of two port variables, impedance parameters, admittance parameters, transmission parameters and hybrid parameters, interconnections of two port networks.

| Internal Assessment (IA) | (A) Mid Term Test (MTE) End Term Test (ETE) |    | Total Marks |
|--------------------------|---------------------------------------------|----|-------------|
| 20                       | 30                                          | 50 | 100         |

| Name of The Course | Design and Engineering |   |   |   |   |
|--------------------|------------------------|---|---|---|---|
| Course Code        | BEC306                 |   |   |   |   |
| Prerequisite       | Design and Innovation  |   |   |   |   |
| Corequisite        |                        |   |   |   |   |
| Antirequisite      |                        |   |   |   |   |
|                    |                        | L | T | P | C |
|                    |                        | 3 | 0 | 0 | 3 |

- 1. To excite the student on creative design and its significance;
- 2. To make the student aware of the processes involved in design;
- 3. To make the student understand the interesting interaction of various segments of humanities, sciences and engineering in the evolution of a design;
- 4. To get an exposure as to how to engineer a design.

#### **Course Outcomes**

| CO1 | Able to appreciate the different elements involved in good designs and to apply them in      |  |  |  |
|-----|----------------------------------------------------------------------------------------------|--|--|--|
|     | practice when called for.                                                                    |  |  |  |
| CO2 | O2 Aware of the product oriented and user oriented aspects that make the design a success.   |  |  |  |
| CO3 | Will be capable to think of innovative designs incorporating different segments of knowledge |  |  |  |
|     | gained in the course;                                                                        |  |  |  |
| CO4 | Students will have a broader perspective of design covering function, cost, environmental    |  |  |  |
|     | sensitivity, safety and other factors other than engineering analysis.                       |  |  |  |

# Text Book (s)

- 1. Balmer, R. T., Keat, W. D., Wise, G., and Kosky, P., Exploring Engineering, Third Edition: An Introduction to Engineering and Design [Part 3 Chapters 17 to 27], ISBN-13: 978-0124158917 ISBN-10: 0124158919
- 2. Dym, C. L., Little, P. and Orwin, E. J., Engineering Design A Project based introduction-Wiley, ISBN-978-1-118-32458-5
- 3. Eastman, C. M. (Ed.), Design for X Concurrent engineering imperatives, 1996, ISBN 978-94-011-3985-4 Springer

# Reference Book (s)

- Haik, Y. And Shahin, M. T., Engineering Design Process, Cengage Learning, ISBN-13:978-0-495-66816-9
- 2. Pahl, G., Beitz, W., Feldhusen, J. and Grote, K. H., Engineering Design: A Systematic46Approach, 3rd ed. 2007, XXI, 617p., ISBN 978-1-84628-319-2
- 3. Voland, G., Engineering by Design, ISBN 978-93-325-3505-3, Pearson India

## **Course Content:**

# Unit-1 Introduction 8 hours Design and its objectives; Design constraints, Design functions, Design means and Design from;

Role of Science, Engineering and Technology in design; Engineering as a business proposition; Functional and Strength Designs. Design form, function and strength;

# **Unit-2Design process 8 hours**

Design process- Different stages in design and their significance; Defining the design space; Analogies and "thinking outside of the box"; Quality function deployment-meeting what the customer wants; Evaluation and choosing of a design.

# **Unit-3Prototyping8 hours**

Prototyping- rapid prototyping; testing and evaluation of design; Design modifications; Freezing the design; Cost analysis. Engineering the Design – from prototype to product; Planning, Scheduling, Supply chains, Inventory, handling, manufacturing/ construction operations; storage, packaging, shipping, marketing, feedback on design.

# **Unit-4 Design Attributes**

8 hours

Product Centered and User Centered design, Product centered attributes and user centered attributes; Value engineering, concurrent engineering and reverse engineering in design; Culture based Design.

# **Unit-5 Modular Design**

8 hours

Modular Design, design optimization, Intelligent and autonomous products, User interfaces, communication between products; autonomous products, internet of things; human psychology and the advanced products. IPR, product liability.

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| (IA)                     | (NIIE)                 | (EIE)                  |             |
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Electronic Circuits Design and PCB lab |   |   |   |   |
|--------------------|----------------------------------------|---|---|---|---|
| Course Code        | BEC352                                 |   |   |   |   |
| Prerequisite       | BEEE Lab                               |   |   |   |   |
| Corequisite        |                                        |   |   |   |   |
| Antirequisite      |                                        |   |   |   |   |
|                    |                                        | L | T | P | C |
|                    |                                        | 0 | 0 | 2 | 1 |

- ☐ Study the Frequency response of CE, CB and CC Amplifier
- □ Learn the frequency response of CS Amplifiers
- Study the Transfer characteristics of differential amplifier
- Perform experiment to obtain the bandwidth of single stage and multistage amplifiers
- Perform SPICE simulation of Electronic Circuits

#### Course Outcomes

| CO1 | Design and Test rectifiers, filters and regulated power supplies              |  |
|-----|-------------------------------------------------------------------------------|--|
| CO2 | Design and Test BJT/JFET amplifiers.                                          |  |
| CO3 | Analyze the limitation in bandwidth of single stage and multi stage amplifier |  |
| CO4 | Measure CMRR in differential amplifier                                        |  |
| CO5 | Simulate and analyze amplifier circuits using PSpice                          |  |

# **List of Experiments**

- 1. Design of Regulated Power supplies
- 2. Frequency Response of CE, CB, CC and CS amplifiers
- 3. Darlington Amplifier
- 4. Differential Amplifiers Transfer characteristics, CMRR Measurement
- 5. Cascode and Cascade amplifiers
- 6. Determination of bandwidth of single stage and multistage amplifiers
- 7. Analysis of BJT with Fixed bias and Voltage divider bias using Spice
- 8. Analysis of FET, MOSFET with fixed bias, self-bias and voltage divider bias using simulation software like Spice
- 9. Analysis of Cascode and Cascade amplifiers using Spice
- 10. Analysis of Frequency Response of BJT and FET using Spice

| <b>Internal Assessment</b> | Mid Term Test | End Term Test | Total Marks |
|----------------------------|---------------|---------------|-------------|
| (IA)                       | (MTE)         | (ETE)         |             |
| 50                         | -             | 50            | 100         |

| Name of The Course | Engineering Clinic 2 |   |   |   |   |
|--------------------|----------------------|---|---|---|---|
| Course Code        | BOC351               |   |   |   |   |
| Prerequisite       | Nil                  |   |   |   |   |
| Corequisite        |                      |   |   |   |   |
| Antirequisite      |                      |   |   |   |   |
|                    |                      | L | T | P | C |
|                    |                      | 0 | 0 | 2 | 1 |

• To get hands on expertise of knowledge gained from the courses studied in class. Students will be introduced to the practice of engineering through application problems drawn from engineering disciplines chosen to amplify work drawn from supporting courses. It includes topics such as: technical communication formats; analytical tools; computer-based tools: introduction to design; engineering ethics; teamwork

#### **Course Outcomes**

|   |     | Will be able to understand measurement, Design systems for various Engineering      |
|---|-----|-------------------------------------------------------------------------------------|
| ( | CO1 | Applications,                                                                       |
|   |     | Develop Teamwork, Technical Problem Solving skills and ethics in Engineering design |

#### 1. Measurements

- Apply appropriate sensors and instrumentation to make measurements of physical quantities
- •Collect, analyze, and interpret data; form and support conclusions
- Know and apply measurement unit systems and conversions

## 2. Engineering Professions

- Understand the function of the members of a technology team
- Explain the functions of the Engineer
- Describe the engineering disciplines

#### 3. Teamwork

- Work effectively in teams with individual and joint accountability
- Assign roles, responsibilities and tasks
- Monitor progress, meet deadlines, integrate individual contributions into a final deliverable

## 4. Problem Solving

- Apply the Scientific Problem-Solving Method to solve engineering problems
- Present the problem and its solution in standard engineering format
- Demonstrate independent thought, creativity, critical thinking in real-world problem solving

#### 5. Communication

- Communicate effectively about laboratory work with a specific audience both orally and in writing Technical reports, memos, laboratory notebooks Graphical representation of data
- Appropriate use of significant figures; estimations Oral presentations
- Demonstrate appropriate and effective business communication skills via e-mail and oral communications with faculty.

# 6. Design Process

• Devise a system, component, or process using the Ten Step Design Process

# 7. Safety/ Professionalism /Ethics

• Recognize health, safety, and environmental issues related to technological processes and

deal with them responsibly

• Demonstrate high ethical standards in all academic activities and assignments, including data collection and reporting, reports, exams, and homework assignments.

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 50                       | -                      | 50                     | 100         |

| Name of The Course | Integrated Circuits |   |   |   |   |
|--------------------|---------------------|---|---|---|---|
| Course Code        | BEC407              |   |   |   |   |
| Prerequisite       | Analog electronics  |   |   |   |   |
| Corequisite        | Analog electronics  |   |   |   |   |
| Antirequisite      |                     |   |   |   |   |
|                    |                     | L | T | P | C |
|                    |                     | 3 | 0 | 0 | 3 |

**Course Objectives:** To introduce the basic building blocks of linear integrated circuits • To learn the linear and non-linear applications of operational amplifiers • To introduce the theory and applications of analog multipliers and PLL • To learn the theory of ADC and DAC • To introduce the concepts of waveform generation and introduce some special function ICs

#### **Course Outcomes**

| CO1             | Illustrate the AC, DC characteristics and compensation techniques of Operational Amplifier |
|-----------------|--------------------------------------------------------------------------------------------|
| CO <sub>2</sub> | Realize the applications of Operational Amplifiers                                         |
| CO3             | Clarify and Analyze the working of Analog Multipliers and PLL                              |
| CO4             | Classify and realize the working principle of various converter circuits using Op-Amps     |
| CO5             | Demonstrate the function of various signal generators and Waveform Shaping Circuits        |

#### Text Book (s)

- 1. Sergio Franco, "Design with operational amplifiers and analog integrated circuits ", McGraw Hill, 2002, ISBN 0070530440, 9780070530447
- 2. Ramakant A. Gayakwad, "OP AMP and Linear IC's ", 4th Edition, Prentice Hall, 2000, ISBN 0132808684, 9780132808682

#### Reference Book (s)

- 1. Botkar K.R., "Integrated Circuits", Khanna Publishers, 1996.
- 2. Taub and Schilling, "Digital Integrated Electronics", Tata McGraw-Hill Education, 2004, ISBN 0070265089, 9780070265080
- 3. Millman J. and Halkias C.C., "Integrated Electronics", McGraw Hill, 2001, ISBN 0074622455, 9780074622452Syllabus

# **Course Content:**

# Unit-1 Introduction 8 hours

Analysis of difference amplifiers, Monolithic IC operational amplifiers, specifications, frequency response of op-amp,, slew rate and methods of improving slew rate, Linear and Nonlinear Circuits using operational amplifiers and their analysis, Inverting and Non inverting Amplifiers.

# Unit-2

Differentiator, Integrator, Voltage to Current convertor, Low pass, high pass, band pass filters, comparator, Multi-vibrator and Schmitt trigger, Triangle wave generator, Precision rectifier, Log and Antilog amplifiers, Non-linear function generator, Sine wave Oscillators.

#### IInit\_3

Analysis of four quadrant and variable trans-conductance multipliers, Voltage controlled Oscillator, Closed loop analysis of PLL, Frequency synthesizers, Compander ICs.

# Unit-4

Analog switches, High speed sample and hold circuits and sample and hold IC's, Types of D/A converter- Current driven DAC, Switches for DAC, A/D converter, Flash, Single slope, Dual slope,

| Successive approximation, Voltage to Time and Voltage to frequency converters.              |  |  |  |
|---------------------------------------------------------------------------------------------|--|--|--|
| Unit-5                                                                                      |  |  |  |
| Wave shaping circuits, Multivibrator- Monostable&Bistable, Schmitt Trigger circuits, IC 555 |  |  |  |
| Timer, Application of IC 555, Switched capacitor filter, Frequency to Voltage converters.   |  |  |  |

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Electromagnetic Field Theory |   |   |   |   |
|--------------------|------------------------------|---|---|---|---|
| Course Code        | BEC408                       |   |   |   |   |
| Prerequisite       | Physics                      |   |   |   |   |
| Corequisite        | Physics                      |   |   |   |   |
| Antirequisite      |                              |   |   |   |   |
|                    |                              | L | T | P | C |
|                    |                              | 3 | 0 | 0 | 3 |

- To gain conceptual and basic mathematical understanding of electric and magnetic fields in free space and in materials
- To understand the coupling between electric and magnetic fields through Faraday's law, displacement current and Maxwell's equations
- To understand wave propagation in lossless and in lossy media
- To be able to solve problems based on the above concepts

## **Course Outcomes**

| CO1 | Apply coordinate systems and transformation techniques to solve problems on                |  |  |  |
|-----|--------------------------------------------------------------------------------------------|--|--|--|
|     | Electromagnetic Field Theory                                                               |  |  |  |
| CO2 | Apply the concept of static electric field and solve problems on boundary value problems.  |  |  |  |
| CO3 | Analyze the concept of static magnetic field and solve problems using Biot - Savart's Law, |  |  |  |
|     | Ampere's circuit law, Maxwell's equation.                                                  |  |  |  |
| CO4 | Understands magnetic forces, magnetic dipole and magnetic boundary conditions.             |  |  |  |
| CO5 | Understands the time-varying Electromagnetic Field and derivation of Maxwell's equations.  |  |  |  |

# Text Book (s)

- 1. Principles of Electromagnetics N. O. Sadiku, Oxford University Press Inc
- 2. Engineering Electromagnetics W H Hayt, J A Buck, McGraw Hill Education

## Reference Book (s)

- 1. Electromagnetic Waves, R.K. Shevgaonkar, Tata McGraw Hill India, 2005
- 2. Electromagnetics with Applications, Kraus and Fleish, Edition McGraw Hill International Editions, Fifth Edition, 1999Syllabus

## **Course Content:**

| Unit-1 Coordinate Systems and Transformation                             | 8 hours                           |
|--------------------------------------------------------------------------|-----------------------------------|
| Coordinate Systems and Transformation : Basics of Vectors: Addit         | tion, subtraction and             |
| multiplications; Cartesian, Cylindrical, Spherical transformation. V     | Vector calculus: Differential     |
| length, area and volume, line surface and volume integrals, Del ope      | erator, Gradient, Divergence of a |
| vector, Divergence theorem, Curl of a vector, Stokes's theorem, La       | aplacian of a scalar.             |
| Unit-2 Electrostatic fields                                              | 8 hours                           |
| Electrostatic fields: Coulombs law and field intensity, Electric field   | d due to charge distribution,     |
| Electric flux density, Gausses' Law- Maxwell's equation, Electric        | dipole and flux line, Energy      |
| density in electrostatic fields, Electric field in material space: Prope | erties of materials, convection   |
| and conduction currents, conductors, polarization in dielectrics, Di     | electric-constants, Continuity    |
| equation and relaxation time, boundary conditions, Electrostatic bo      | oundary value problems:           |
| Poisson's and Laplace's equations., Methods of Images.                   |                                   |
| Unit-3Magneto statics                                                    | 8 hours                           |

Magneto statics: Magneto-static fields, Biot - Savart's Law, Ampere's circuit law, Maxwell's equation, Application of ampere's law, Magnetic flux density- Maxwell's equation, Maxwell's equation for static fields, magnetic scalar and vector potential.

# Unit-4Magnetic forces

Magnetic forces: Materials and devices, Forces due to magnetic field, Magnetic torque and moment, a magnetic dipole. Magnetization in materials, Magnetic boundary conditions, Inductors and inductances, Magnetic energy.

8 hours

# **Unit-5**Time-varying Fields8 hours

Time-varying Fields: Maxwell's equation, Faraday's Law, transformer and motional electromotive forces, Displacement current, Maxwell's equation in final form, Power and the pointing vector. Basics of Transmission lines.

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Analog and Digital Communication           |   |   |   |   |
|--------------------|--------------------------------------------|---|---|---|---|
| Course Code        | BEC409                                     |   |   |   |   |
| Prerequisite       | Signals and Systems, Digital System Design |   |   |   |   |
| Corequisite        |                                            |   |   |   |   |
| Antirequisite      |                                            |   |   |   |   |
|                    |                                            | L | T | P | C |
|                    |                                            | 3 | 0 | 0 | 3 |

## **Course Outcomes**

| CO1 | Analyze and compare different analog modulation schemes for their efficiency and       |
|-----|----------------------------------------------------------------------------------------|
|     | bandwidth                                                                              |
| CO2 | Analyze the behavior of a communication system in presence of noise                    |
| CO3 | Investigate pulsed modulation system and analyze their system performance              |
| CO4 | Analyze different digital modulation schemes and can compute the bit error performance |

# **Text/Reference Books:**

Interference and Nyquist criterion.

- 1. Haykin S., "Communications Systems", John Wiley and Sons, 2001.
- 2. Proakis J. G. and Salehi M., "Communication Systems Engineering", Pearson Education, 2002.
- 3. Taub H. and Schilling D.L., "Principles of Communication Systems", Tata McGraw Hill, 2001.
- 4. Wozencraft J. M. and Jacobs I. M., "Principles of Communication Engineering", John Wiley, 1965.
- 5. Barry J. R., Lee E. A. and Messerschmitt D. G., "Digital Communication", Kluwer Academic Publishers, 2004.
- 6. Proakis J.G., "Digital Communications", 4th Edition, McGraw Hill, 2000

| Unit-1 Introduction Review of signals and systems8 hours                           |             |     |
|------------------------------------------------------------------------------------|-------------|-----|
| Review of signals and systems, Frequency domain representation of signals, Princip | ples of     |     |
| Amplitude Modulation Systems- DSB, SSB and VSB modulations. Angle Modulation       | ion,        |     |
| Representation of FM and PM signals, Spectral characteristics of angle modulated s | signals.    |     |
| Unit-2 Probability and random process                                              | 8 hours     |     |
| Review of probability and random process. Gaussian and white noise characteristic  | s, Noise in |     |
| amplitude modulation systems, Noise in Frequency modulation systems. Pr            | re-emphasis | and |
| Deemphasis, Threshold effect in angle modulation.                                  |             |     |
| Unit-3Pulse modulation 8 hours                                                     |             |     |
| Pulse modulation. Sampling process. Pulse Amplitude and Pulse code modulation      |             |     |
| (PCM), Differential pulse code modulation. Delta modulation, Noise considerations  | in PCM,     |     |
| Time Division multiplexing, Digital Multiplexers.                                  |             |     |
| Unit-4Elements of Detection Theory 8 hours                                         |             |     |
| Elements of Detection Theory, Optimum detection of signals in noise, Coherent con  | mmunication | 1   |

with waveforms- Probability of Error evaluations. Baseband Pulse Transmission- Inter symbol

# Unit-5Pass band Digital Modulation schemes 8 hours

Pass band Digital Modulation schemes- Phase Shift Keying, Frequency Shift Keying, Quadrature Amplitude Modulation, Continuous Phase Modulation and Minimum Shift Keying.

Digital Modulation tradeoffs. Optimum demodulation of digital signals over band-limited channels.

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Computer Architecture and Organization |   |   |   |   |
|--------------------|----------------------------------------|---|---|---|---|
| Course Code        | BEC410                                 |   |   |   |   |
| Prerequisite       | Computer Fundamentals                  |   |   |   |   |
| Corequisite        | Computer fundamentals                  |   |   |   |   |
| Antirequisite      |                                        |   |   |   |   |
| _                  |                                        | L | T | P | C |
|                    |                                        | 3 | 0 | 0 | 3 |

To make students understand the basic structure and operation of digital computer

- To familiarize with implementation of fixed point and floating-point arithmetic operations
- To study the design of data path unit and control unit for processor
- To understand the concept of various memories and interfacing
- To introduce the parallel processing technique

#### **Course Outcomes**

| CO1 | Describe data representation, instruction formats and the operation of a digital computer    |
|-----|----------------------------------------------------------------------------------------------|
| CO2 | Illustrate the fixed point and floating-point arithmetic for ALU operation                   |
| CO3 | Discuss about implementation schemes of control unit and pipeline performance                |
| CO4 | Explain the concept of various memories, interfacing and organization of multiple processors |
| CO5 | Discuss parallel processing technique and unconventional architectures                       |

# Text Book (s)

- 1. David A. Patterson and John L. Hennessey, —Computer Organization and Designl, Fifth edition, Morgan Kauffman / Elsevier, 2014. (UNIT I-V)
- 2. Miles J. Murdocca and Vincent P. Heuring, —Computer Architecture and Organization: An Integrated approach!, Second edition, Wiley India Pvt Ltd, 2015 (UNIT IV,V)

## Reference Book (s)

- 1. V. Carl Hamacher, Zvonko G. Varanesic and Safat G. Zaky, —Computer Organization—, Fifth edition, Mc Graw-Hill Education India Pvt Ltd, 2014.
- 2. William Stallings —Computer Organization and Architecturell, Seventh Edition, Pearson Education, 2006.
- 3. Govindarajalu, —Computer Architecture and Organization, Design Principles and Applications", Second edition, McGraw-Hill Education India Pvt Ltd, 2014.

## **Course Content:**

| Unit-1 Basics of a computer system                             | 8 hours                             |  |
|----------------------------------------------------------------|-------------------------------------|--|
| Basics of a computer system: Evolution, Ideas, Technology, P   | erformance, Power wall,             |  |
| Uniprocessors to Multiprocessors. Addressing and addressing    | modes. Instructions: Operations and |  |
| Operands, Representing instructions, Logical operations, contr | rol operations.                     |  |
| Unit-2Fixed and floating point Arithmetic 8 hours              |                                     |  |
| Fixed point Addition, Subtraction, Multiplication and Division | a. Floating Point arithmetic, High  |  |
| performance arithmetic, Subword parallelism                    |                                     |  |
| Unit-3 Logic design 8 hours                                    |                                     |  |

Introduction, Logic Design Conventions, Building a Datapath - A Simple Implementation scheme - An Overview of Pipelining - Pipelined Datapath and Control. Data Hazards: Forwarding versus Stalling, Control Hazards, Exceptions, Parallelism via Instructions.

# **Unit-4 Memory Organization 8 hours**

Memory hierarchy, Memory Chip Organization, Cache memory, Virtual memory. Parallel Bus Architectures, Internal Communication Methodologies, Serial Bus Architectures, Mass storage, Input and Output Devices.

# **Unit-5 Parallel Processing 8 hours**

Parallel processing architectures and challenges, Hardware multithreading, Multicore and shared memory multiprocessors, Introduction to Graphics Processing Units, Clusters and Warehouse scale computers - Introduction to Multiprocessor network topologies.

| Internal Assessment | Mid Term Test | End Term Test | Total Marks |
|---------------------|---------------|---------------|-------------|
| (IA)                | (MTE)         | (ETE)         |             |
| 20                  | 30            | 50            | 100         |

| Name of The Course | Microprocessors and Micro-Controllers |   |   |   |   |
|--------------------|---------------------------------------|---|---|---|---|
| Course Code        | BEC411                                |   |   |   |   |
| Prerequisite       | Digital electronics                   |   |   |   |   |
| Corequisite        | Digital electronics                   |   |   |   |   |
| Antirequisite      | _                                     |   |   |   |   |
| -                  | •                                     | L | T | P | C |
|                    |                                       | 3 | 0 | 0 | 3 |

To understand the Architecture of 8086 microprocessor.

- 1. To learn the design aspects of I/O and Memory Interfacing circuits.
- 2. To interface microprocessors with supporting chips.
- 3. To study the Architecture of 8051 microcontroller.
- 4. To design a microcontroller based system

#### **Course Outcomes**

| CO1 | Understand the architecture of 8086 microprocessor           |
|-----|--------------------------------------------------------------|
| CO2 | Understand and execute programs based on 8086 microprocessor |
| CO3 | Design Memory Interfacing circuits.                          |
| CO4 | Design and interface I/O circuits                            |
| CO5 | Design and implement 8051 microcontroller based systems.     |

## Text Book (s)

- 1. Yu-Cheng Liu, Glenn A.Gibson, —Microcomputer Systems: The 8086 / 8088 Family Architecture, Programming and Design|, Second Edition, Prentice Hall of India, 2007. (UNIT I- III)
- 2. Mohamed Ali Mazidi, Janice GillispieMazidi, RolinMcKinlay, —The 8051 Microcontroller and Embedded Systems: Using Assembly and Cl, Second Edition, Pearson education, 2011. (UNIT IV-V)

## Reference Book (s)

- 1. Doughlas V. Hall, —Microprocessors and Interfacing, Programming and Hardwarell, TMH, 2012
- 2. A.K.Ray,K.M.Bhurchandi, "Advanced Microprocessors and Peripherals" 3 rd edition, Tata McGrawHill, 2012 Syllabus

# **Course Content:**

| Unit-1 Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 hours                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Introduction to 8086 – Microprocessor architecture – Addressing mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | es - Instruction set and     |
| assembler directives – Assembly language programming – Modular Pro | ogramming - Linking and      |
| Relocation - Stacks - Procedures - Macros - Interrupts and interrupt se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rvice routines – Byte and    |
| String Manipulation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |
| Unit-28086 signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 hours                      |
| 8086 signals – Basic configurations – System bus timing –System designations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gn using 8086 – I/O          |
| programming – Introduction to Multiprogramming – System Bus Struc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ture – Multiprocessor        |
| configurations – Coprocessor, Closely coupled and loosely Coupled co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nfigurations – Introduction  |
| to advanced processors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |
| Unit-3Memory Interfacing and I/O interfacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 hours                      |
| Memory Interfacing and I/O interfacing - Parallel communication inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | face – Serial communication  |
| interface – D/A and A/D Interface - Timer – Keyboard /display control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ler – Interrupt controller – |

DMA controller – Programming and applications Case studies: Traffic Light control, LED display , LCD display, Keyboard display interface and Alarm Controller.

# **Unit-4**Architecture of 8051

8 hours

Architecture of 8051 – Special Function Registers(SFRs) - I/O Pins Ports and Circuits - Instruction set - Addressing modes - Assembly language programming.

**Unit-5**Programming 8051

8 hours

Programming 8051 Timers - Serial Port Programming - Interrupts Programming – LCD & Keyboard Interfacing - ADC, DAC & Sensor Interfacing - External Memory Interface- Stepper Motor and Waveform generation - Comparison of Microprocessor, Microcontroller, PIC and ARM processors

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Integrated Circuits Lab            |   |   |   |   |
|--------------------|------------------------------------|---|---|---|---|
| Course Code        | BEC455                             |   |   |   |   |
| Prerequisite       | Linear Integrated Circuits, Op-amp |   |   |   |   |
| Corequisite        | Analog electronics                 |   |   |   |   |
| Antirequisite      | -                                  |   |   |   |   |
| _                  | •                                  | L | T | P | C |
|                    |                                    | 0 | 0 | 2 | 2 |

To understand the basics of linear integrated circuits and available ICs

- 1. To understand the characteristics of the operational amplifier.
- 2. To apply operational amplifiers in linear and nonlinear applications.
- 3. To acquire the basic knowledge of special function IC.
- 4. To use SPICE software for circuit design

## **Course Outcomes**

| CO1             | Design amplifiers, oscillators, D-A converters using operational amplifiers                   |  |
|-----------------|-----------------------------------------------------------------------------------------------|--|
| CO <sub>2</sub> | Design filters using op-amp and performs an experiment on frequency response.                 |  |
| CO <sub>3</sub> | Analyze the working of PLL and describe its application as a frequency multiplier             |  |
| CO4             | Design DC power supply using ICs.                                                             |  |
| CO5             | Analyze the performance of filters, multivibrators, A/D converter and analog multiplier using |  |
|                 | SPICE.                                                                                        |  |

# **List of Experiments**

- 1. Inverting, Non inverting and differential amplifiers.
- 2. Integrator and Differentiator.
- 3. Instrumentation amplifier
- 4. Active low-pass, High-pass and band-pass filters.
- 5. Astable&Monostablemultivibrators using Op-amp
- 6. Schmitt Trigger using op-amp.
- 7. Phase shift and Wien bridge oscillators using Op-amp.
- 8. Astable and Monostablemultivibrators using NE555 Timer.
- 9. PLL characteristics and its use as Frequency Multiplier, Clock synchronization
- 10. DC power supply using LM317 and LM723.

# **USING SPICE:**

- 1. Active low-pass, High-pass and band-pass filters using Op-amp
- 2. Astable and Monostablemultivibrators using NE555 Timer.
- 3. A/D converter
- 4. Analog multiplier

| <b>Internal Assessment</b> | Mid Term Test | End Term Test | Total Marks |
|----------------------------|---------------|---------------|-------------|
| (IA)                       | (MTE)         | (ETE)         |             |
| 20                         |               | 30            | 50          |

| Name of The Course | Microprocessor and Micro Controller Lab              |   |   |   |   |
|--------------------|------------------------------------------------------|---|---|---|---|
| Course Code        | BEC456                                               |   |   |   |   |
| Prerequisite       | Digital electronics, Microprocessor, Microcontroller |   |   |   |   |
| Corequisite        | Digital electronics                                  |   |   |   |   |
| Antirequisite      |                                                      |   |   |   |   |
|                    | ·                                                    | L | T | P | C |
|                    |                                                      | 0 | 0 | 2 | 1 |

To Introduce ALP concepts, features and Coding methods

- 1. Write ALP for arithmetic and logical operations in 8086 and 8051
- 2. Differentiate Serial and Parallel Interface
- 3. Interface different I/Os with Microprocessors
- 4. Be familiar with MASM

# **Course Outcomes**

| CO1 | Demonstrate ability to handle arithmetic operations using assembly language programming in  |
|-----|---------------------------------------------------------------------------------------------|
|     | TASM and training boards                                                                    |
| CO2 | Demonstrate ability to handle logical operations using assembly language programming in     |
|     | TASM                                                                                        |
| CO3 | Demonstrate ability to handle string instructions using assembly language programming in    |
|     | TASM                                                                                        |
| CO4 | Demonstrate ability to handle sorting operations and using assembly language programming in |
|     | TASM                                                                                        |
| CO5 | To study parallel and serial communication using 8051 micro controller                      |

# LIST OF EXPERIMENTS:

8086 Programs using kits and MASM

- 1. Basic arithmetic and Logical operations
- 2. Move a data block without overlap
- 3. Code conversion, decimal arithmetic and Matrix operations.
- 4. Floating point operations, string manipulations, sorting and searching
- 5. Password checking, Print RAM size and system date
- 6. Counters and Time Delay Peripherals and Interfacing Experiments
- 7. Traffic light controller
- 8. Stepper motor control
- 9. Digital clock
- 10. Key board and Display
- 11. Printer status
- 12. Serial interface and Parallel interface

- 13. A/D and D/A interface and Waveform Generation 8051 Experiments using kits and MASM
- 14. Basic arithmetic and Logical operations
- 15. Square and Cube program, Find 2's complement of a number
- 16. Unpacked BCD to ASCII

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 50                       | -                      | 50                     | 100         |

| Name of The Course | Control Systems     |   |   |   |   |
|--------------------|---------------------|---|---|---|---|
| Course Code        | BEC501              |   |   |   |   |
| Prerequisite       | Signals and Systems |   |   |   |   |
| Corequisite        |                     |   |   |   |   |
| Antirequisite      |                     |   |   |   |   |
|                    |                     | L | T | P | C |
|                    |                     | 3 | 0 | 0 | 3 |

- To introduce the components and their representation of control systems
- To learn various methods for analyzing the time response, frequency response and stability of the systems.
- To learn the various approach for the state variable analysis.

### **Course Outcomes**

| CO1 | Identify the various control system components and their representations.                |
|-----|------------------------------------------------------------------------------------------|
| CO2 | Analyze the various time domain parameters                                               |
| CO3 | Analysis the various frequency response plots and its system.                            |
| CO4 | Apply the concepts of various system stability criterions.                               |
| CO5 | Design various transfer functions of digital control system using state variable models. |

### Text Book (s)

1. M.Gopal, —Control System – Principles and Design, Tata McGraw Hill, 4th Edition, 2012.

### Reference Book (s)

- 1. K. Ogata, \_Modern Control Engineering', 5th edition, PHI, 2012. 3. S.K.Bhattacharya, Control System Engineering, 3rd Edition, Pearson, 2013.
- 2. Benjamin.C.Kuo, —Automatic control systems, Prentice Hall of India, 7th Edition, 1995.

### **Course Content:**

# Unit-1 Introduction 8 hours Control System: Terminology and Basic Structure-Feed forward and Feedback control theoryElectrical and Mechanical Transfer Function Models-Block diagram Models-Signal flow graphs models-DC and AC servo Systems-Synchronous -Multivariable control system Unit-2 Transient response 8 hours

Transient response-steady state response-Measures of performance of the standard first order and second order system-effect on an additional zero and an additional pole-steady error constant and system- type number-PID control-Analytical design for PD, PI,PID control systems

### Unit-3Closed loop frequency response 8 hours

Closed loop frequency response-Performance specification in frequency domain-Frequency response of standard second order system- Bode Plot - Polar Plot- Nyquist plots-Design of compensators using Bode plots-Cascade lead compensation-Cascade lag compensation-Cascade lag-lead compensation

# Unit-4Concept of stability 8 hours

Concept of stability-Bounded - Input Bounded - Output stability-Routh stability criterion-Relative stability-Root locus concept-Guidelines for sketching root locus-Nyquist stability criterion.

# Unit-5State variable representation 8 hours

State variable representation-Conversion of state variable models to transfer functions-Conversion

of transfer functions to state variable models-Solution of state equations-Concepts of Controllability and Observability-Stability of linear systems-Equivalence between transfer function and state variable representations-State variable analysis of digital control system-Digital control design using state feedback.

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | EM Waves               |   |   |   |   |
|--------------------|------------------------|---|---|---|---|
| Course Code        | BEC502                 |   |   |   |   |
| Prerequisite       | Electromagnetic Fields |   |   |   |   |
| Corequisite        |                        |   |   |   |   |
| Antirequisite      |                        |   |   |   |   |
| _                  |                        | L | T | P | C |
|                    |                        | 3 | 0 | 0 | 3 |

To introduce the basic mathematical concepts related to electromagnetic vector fields. To impart knowledge on the concepts of electrostatics, electric potential, energy density and their applications. To impart knowledge on the concepts of magnetostatics, magnetic flux density, scalar and vector potential and its applications. To impart knowledge on the concepts of Faraday's law, induced emf and Maxwell's equations. To impart knowledge on the concepts of Concepts of electromagnetic waves and Transmission lines.

### Course Outcomes

| CO1 | Analyze transmission lines and estimate voltage and current at any point on transmission line for different load conditions. |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| CO2 | O2 Provide solution to real life plane wave problems for various boundary conditions.                                        |  |  |  |
| CO3 | Analyze the field equations for the wave propagation in special cases such as lossy and low loss dielectric media.           |  |  |  |
| CO4 | Visualize TE and TM mode patterns of field distributions in a rectangular wave-guide.                                        |  |  |  |
| CO5 | Understand and analyze radiation by antennas.                                                                                |  |  |  |

### Text Book / Reference:

- 1. R. K. Shevgaonkar, "Electromagnetic Waves", Tata McGraw Hill, 2005.
- 2. D. K. Cheng, "Field and Wave Electromagnetics", Addison-Wesley, 1989.
- 3. M. N.O. Sadiku, "Elements of Electromagnetics", Oxford University Press, 2007.
- 4. C. A. Balanis, "Advanced Engineering Electromagnetics", John Wiley & Sons, 2012.
- 5. C. A. Balanis, "Antenna Theory: Analysis and Design", John Wiley & Sons, 2005.

# **Course Content:**

### **Unit-1 Transmission Lines** 8 hours Introduction, Concept of distributed elements, Equations of voltage and current, Standing waves and impedance transformation, Lossless and low-loss transmission lines, Power transfer on a transmission line, Analysis of transmission line in terms of admittances, Transmission line calculations with the help of Smith chart, Applications of transmission line, Impedance matching using transmission lines. **Unit-2** Maxwell's Equations 8 hours Basic quantities of Electromagnetics, Basic laws of Electromagnetics: Gauss's law, Ampere's Circuital law, Faraday's law of Electromagnetic induction. Maxwell's equations, Surface charge and surface current, Boundary conditions at media interface. Unit-3 Uniform Plane 8 hours WaveHomogeneous unbound medium, Wave equation for time harmonic fields, Solution of the wave equation, Uniform plane wave, Wave polarization, Wave propagation in conducting medium, Phase velocity of a wave, Power flow and Poynting vector. Unit-4 Plane Waves at Media Interface 8 hours

Plane wave in arbitrary direction, Plane wave at dielectric interface, Reflection and refraction of waves at dielectric interface, Total internal reflection, Wave polarization at media interface, Brewster angle, Fields and power flow at media interface, Lossy media interface, Reflection from conducting boundary.

Unit-5 Waveguides 8 hours

Parallel plane waveguide: Transverse Electric (TE) mode, transverse Magnetic(TM) mode, Cut-off frequency, Phase velocity and dispersion. Transverse Electromagnetic (TEM) mode, Analysis of waveguide-general approach, Rectangular waveguides.

| Name of The Course | Digital Signal Processing |   |   |   |   |
|--------------------|---------------------------|---|---|---|---|
| Course Code        | BEC504                    |   |   |   |   |
| Prerequisite       | Signals and systems       |   |   |   |   |
| Corequisite        | Signals and systems       |   |   |   |   |
| Antirequisite      |                           |   |   |   |   |
|                    |                           | L | T | P | C |
|                    |                           | 3 | 0 | 0 | 3 |

- To learn discrete fourier transform, properties of DFT and its application to linear filtering
- To understand the characteristics of digital filters, design digital IIR and FIR filters and apply these filters to filter undesirable signals in various frequency bands
- To understand the effects of finite precision representation on digital filters
- To understand the fundamental concepts of multi rate signal processing and its applications
- To introduce the concepts of adaptive filters and its application to communication engineering
- Prerequisites

### **Course Outcomes**

| CO1 | Apply digital signal processing fundamentals and Acquire the knowledge of representation of       |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------|--|--|--|--|--|
|     | discrete-time signals in the frequency domain, using z-transform and discrete Fourier             |  |  |  |  |  |
|     | transform.                                                                                        |  |  |  |  |  |
| CO2 | Design and Analyze FIR filters with desired frequency responses.                                  |  |  |  |  |  |
| CO3 | Design and Analyze IIR filters with desired frequency responses.                                  |  |  |  |  |  |
| CO4 | Realize FIR/IIR Filter structure and analyze the effects quantization errors in analog to digital |  |  |  |  |  |
|     | conversion of signals                                                                             |  |  |  |  |  |
| CO5 | Understand architecture of DSP Processors, Compressive sensing, Multirate Signal Processing       |  |  |  |  |  |
|     | and their applications in real-world problems                                                     |  |  |  |  |  |

# Text Book (s)

1. John G. Proakis& Dimitris G.Manolakis, —Digital Signal Processing – Principles, Algorithms & Applications Fourth Edition, Pearson Education / Prentice Hall, 2007. (UNIT I – V)

# Reference Book (s)

- 1. Emmanuel C. Ifeachor& Barrie. W. Jervis, —Digital Signal Processing, Second Edition, Pearson Education / Prentice Hall, 2002.
- 2. A. V. Oppenheim, R.W. Schafer and J.R. Buck, —Discrete-Time Signal Processing, 8th Indian Reprint, Pearson, 2004.
- 3. Sanjit K. Mitra, —Digital Signal Processing A Computer Based Approachl, Tata Mc Graw Hill, 2007.
- 4. Andreas Antoniou, —Digital Signal Processing, Tata Mc Graw Hill, 2006.

# **Course Content:**

Unit-1 Introduction 8 hours

Discrete and Fast Fourier Transforms: Introduction to DSP, DTFT, Relationship between DFT and other transforms DFT, Properties of DFT, Circular Convolution, DFT as a Linear Transformation, Fast Fourier Transform, Computing an Inverse DFT by doing a Direct DFT. Review of z transform and inverse Z transform.

**Unit-2**Finite Impulse Response Filters

8 hours

Finite Impulse Response Filters:- Magnitude and phase response of a digital filters, Frequency response of linear phase FIR filters, Design Techniques for FIR filters.

**Unit-3**Infinite Impulse Response Filters

8 hours

Infinite Impulse Response Filters:-IIR filter Design by Approximation of Derivatives, Impulse Invariant Method, Bilinear Transformation, Butterworth filters, Chebyshev Filters and Frequency Transformation.

**Unit-4**Realization of Digital Filters

8 hours

Realization of Digital Filters: Basic Structures for IIR Systems, Basic Structures for FIR system. Effects of Finite Word Length in Digital Filters: Introduction, Rounding and Truncation Errors, Quantization effects in analog to digital conversion of signals

**Unit-5**Overview of TMS320

8 hours

Overview of TMS320 Family DSP Processors, Applications of DSP: Introduction, Applications of DSP in Biomedical Engineering, Voice processing, applications to RADAR, applications ti Image processing, Introduction to wavelets, wireless communication, Multirate Signal Processing, Sampling, Sampling rate conversion, introduction to compressive sensing.

| Internal Assessment | Mid Term Test | End Term Test | Total Marks |
|---------------------|---------------|---------------|-------------|
| (IA)                | (MTE)         | (ETE)         |             |
| 20                  | 30            | 50            | 100         |

| Name of The Course | Object Oriented Programming and Data Structures | Object Oriented Programming and Data Structures |   |   |   |  |
|--------------------|-------------------------------------------------|-------------------------------------------------|---|---|---|--|
| Course Code        | BEC503                                          |                                                 |   |   |   |  |
| Prerequisite       | Basic Programming                               | Basic Programming                               |   |   |   |  |
| Corequisite        |                                                 |                                                 |   |   |   |  |
| Antirequisite      |                                                 |                                                 |   |   |   |  |
|                    |                                                 | L                                               | T | P | C |  |
|                    |                                                 | 3                                               | 0 | 0 | 3 |  |

- To learn the features of C
- To learn the linear and non-linear data structures
- To explore the applications of linear and non-linear data structures
- To learn to represent data using graph data structure
- To learn the basic sorting and searching algorithms

### Course Outcomes

| CO1 | Implement linear and non-linear data structure operations using C              |  |  |  |
|-----|--------------------------------------------------------------------------------|--|--|--|
| CO2 | Suggest appropriate linear / non-linear data structure for any given data set. |  |  |  |
| CO3 | Apply hashing concepts for a given problem                                     |  |  |  |
| CO4 | Modify or suggest new data structure for an application                        |  |  |  |
| CO5 | Appropriately choose the sorting algorithm for an application                  |  |  |  |

### **TEXTBOOKS:**

- 1. Pradip Dey and Manas Ghosh, —Programming in C, Second Edition, Oxford University Press, 2011.
- 2. Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, —Fundamentals of Data Structures in C, Second Edition, University Press, 2008.

# **REFERENCES:**

- 1. Mark Allen Weiss, —Data Structures and Algorithm Analysis in C, Second Edition, Pearson Education.1996
- 2. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, —Data Structures and Algorithms, Pearson

Education, 1983.

- 3. Robert Kruse, C.L.Tondo, Bruce Leung, Shashi Mogalla, Data Structures and Program Design in C,Second Edition, Pearson Education, 2007
- 4. Jean-Paul Tremblay and Paul G. Sorenson, —An Introduction to Data Structures with Applications, Second Edition, Tata McGraw-Hill, 1991.

### **Course Content:**

# Unit-1 C PROGRAMMING BASICS 8 hours

Structure of a C program – compilation and linking processes – Constants, Variables – Data Types –Expressions using operators in C – Managing Input and Output operations – Decision Making and Branching – Looping statements. Arrays – Initialization – Declaration – One dimensional and Twodimensional arrays. Strings- String operations – String Arrays. Simple programs- sorting searching –matrix operations.

# Unit-2FUNCTIONS, POINTERS, STRUCTURES AND UNIONS

Functions – Pass by value – Pass by reference – Recursion – Pointers - Definition – Initialization – Pointers arithmetic. Structures and unions - definition – Structure within a structure - Union – Programs using structures and Unions – Storage classes, Pre-processor directives.

# **Unit-3**LINEAR DATA STRUCTURES

Trees – Binary Trees – Binary tree representation and traversals –Binary Search Trees – Applications of trees. Set representations – Union-Find operations. Graph and its representations – Graph Traversals.

# Unit-4NON-LINEAR DATA STRUCTURES

Realization of Digital Filters: Basic Structures for IIR Systems, Basic Structures for FIR system. Effects of Finite Word Length in Digital Filters: Introduction, Rounding and Truncation Errors, Quantization effects in analog to digital conversion of signals

# Unit-5SEARCHING AND SORTING ALGORITHMS

Linear Search – Binary Search. Bubble Sort, Insertion sort – Merge sort – Quick sort - Hash tables –Overflow handling. CO-PO Mapping

| <b>Internal Assessment</b> | Mid Term Test | End Term Test | Total Marks |
|----------------------------|---------------|---------------|-------------|
| (IA)                       | (MTE)         | (ETE)         |             |
| 20                         | 30            | 50            | 100         |

| Name of The Course | Computer Networks     |   |   |   |   |
|--------------------|-----------------------|---|---|---|---|
| Course Code        | BEC602                |   |   |   |   |
| Prerequisite       | Communication Systems |   |   |   |   |
| Corequisite        |                       |   |   |   |   |
| Antirequisite      |                       |   |   |   |   |
|                    |                       | L | T | P | C |
|                    |                       | 3 | 0 | 0 | 3 |

- To develop an understanding of modern network architectures from a design and performance perspective.
- To introduce the student to the major concepts involved in wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs).
- To provide an opportunity to do network programming
- To provide a WLAN measurement ideas.

### **Course Outcomes**

| CO1 | Explain the functions of the different layer of the OSI Protocol.                       |
|-----|-----------------------------------------------------------------------------------------|
|     | Draw the functional block diagram of wide-area networks (WANs), local area networks     |
| CO2 | (LANs)                                                                                  |
|     | and Wireless LANs (WLANs) describe the function of each block.                          |
|     | For a given requirement (small scale) of wide-area networks (WANs), local area networks |
| CO3 | (LANs)                                                                                  |
|     | and Wireless LANs (WLANs) design it based on the market available component             |
| CO4 | For a given problem related TCP/IP protocol developed the network programming.          |
|     | Configure DNS DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP,             |
| CO5 | SNMP,                                                                                   |
|     | Bluetooth, Firewalls using open source available software and tools.                    |

# Text Book:

- Data Communication and Networking, 4th Edition, Behrouz A. Forouzan, McGrawHill.
- Data and Computer Communication, 8th Edition, William Stallings, Pearson Prentice Hall India.
- Computer Networks, 8th Edition, Andrew S. Tanenbaum, Pearson New International Edition.
- Internetworking with TCP/IP, Volume 1, 6th Edition Douglas Comer, Prentice Hall of India.
- TCP/IP Illustrated, Volume 1, W. Richard Stevens, Addison-Wesley, United States of America.

### **Course Content:**

### **Unit-1 Data communication Components** 8 Hours Data communication Components: Representation of data and its flow Networks , Various Connection Topology, Protocols and Standards, OSI model, Transmission Media, LAN: Wired LAN, Wireless LANs, Connecting LAN and Virtual LAN, Techniques for Bandwidth utilization: Multiplexing – Frequency division, Time division and Wave division, Concepts on spread spectrum. **Unit-2 Data Link Layer and Medium Access Sub Layer** 8hours Data Link Layer and Medium Access Sub Layer: Error Detection and Error Correction – Fundamentals Block coding, Hamming Distance, CRC; Flow Control and Error control protocols -Stop and Wait, Go back – N ARQ, Selective Repeat ARQ, Sliding Window, Piggybacking, Random Access, Multiple access protocols -Pure ALOHA, Slotted ALOHA, CSMA/CD,CDMA/CA **Unit-3 Network Layer** 8hours Network Layer: Switching, Logical addressing – IPV4, IPV6; Address mapping – ARP, RARP, BOOTP and DHCP-Delivery, Forwarding and Unicast Routing protocols. **Unit-4 Transport Laver** 8hours Transport Layer: Process to Process Communication, User Datagram Protocol (UDP), Transmission Control Protocol (TCP), SCTP Congestion Control; Quality of Service, QoS improving techniques:

| Leaky Bucket and Token Bucket algori | ithm.                                                 |
|--------------------------------------|-------------------------------------------------------|
| Unit-5 Application Layer             | 8hours                                                |
| Application Layer: Domain Name Space | ce (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol |
| (FTP), WWW, HTTP, SNMP, Bluetoo      | th. Firewalls, Basic concepts of Cryptograph.         |

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Digital Signal Processing Lab                  |   |   |   |   |
|--------------------|------------------------------------------------|---|---|---|---|
| Course Code        | BEC551                                         |   |   |   |   |
| Prerequisite       | Digital signal processing, Signals and systems |   |   |   |   |
| Corequisite        | DSP, Signals and systems                       |   |   |   |   |
| Antirequisite      |                                                |   |   |   |   |
| _                  |                                                | L | T | P | C |
|                    |                                                | 0 | 0 | 2 | 1 |

- To perform basic signal processing operations such as Linear Convolution, Circular Convolution, Auto Correlation, Cross Correlation and Frequency analysis in MATLAB
- To implement FIR and IIR filters in MATLAB and DSP Processor
- To study the architecture of DSP processor

### **Course Outcomes**

| CO1 | Carryout basic signal processing operations                                            |
|-----|----------------------------------------------------------------------------------------|
| CO2 | Demonstrate their abilities towards MATLAB based implementation of various DSP systems |
| CO3 | Analyze the architecture of a DSP Processor                                            |
| CO4 | Design and Implement the FIR and IIR Filters in DSP Processor for performing filtering |
|     | operation over real-time signals                                                       |
| CO5 | Design a DSP system for various applications of DSP                                    |

### LIST OF EXPERIMENTS:

# MATLAB / EQUIVALENT SOFTWARE PACKAGE

- 1. Generation of elementary Discrete-Time sequences
- 2. Linear and Circular convolutions
- 3. Auto correlation and Cross Correlation
- 4. Frequency Analysis using DFT
- 5. Design of FIR filters (LPF/HPF/BPF/BSF) and demonstrates the filtering operation
- 6. Design of Butterworth and Chebyshev IIR filters (LPF/HPF/BPF/BSF) and demonstrate the filtering operations

# DSP PROCESSOR BASED IMPLEMENTATION

- 1. Study of architecture of Digital Signal Processor
- 2. Perform MAC operation using various addressing modes
- 3. Generation of various signals and random noise
- 4. Design and demonstration of FIR Filter for Low pass, High pass, Band pass and Band stop filtering
- 5. Design and demonstration of Butter worth and Chebyshev IIR Filters for Low pass, High pass, Band pass and Band stop filtering
- 6. Implement an Up-sampling and Down-sampling operation in DSP Processor

| Internal Assessment | Mid Term Test | End Term Test | Total Marks |
|---------------------|---------------|---------------|-------------|
| (IA)                | (MTE)         | (ETE)         |             |
| 50                  | -             | 50            | 100         |

| Name of The Course | Communication Engineering Lab    |   |   |   |   |
|--------------------|----------------------------------|---|---|---|---|
| Course Code        | BEC552                           |   |   |   |   |
| Prerequisite       | Analog and digital communication |   |   |   |   |
| Corequisite        | Communication systems            |   |   |   |   |
| Antirequisite      |                                  |   |   |   |   |
|                    |                                  | L | T | P | C |
|                    |                                  | 0 | 0 | 2 | 1 |

- To visualize the effects of sampling and TDM
- To Implement AM & FM modulation and demodulation
- To implement PCM & DM
- To simulate Digital Modulation schemes
- To simulate Error control coding schemes

### **Course Outcomes**

| CO1 | Simulate & validate the various functional modules of a communication system         |
|-----|--------------------------------------------------------------------------------------|
| CO2 | Demonstrate their knowledge in base band signaling schemes through implementation of |
|     | digital modulation schemes                                                           |
| CO3 | • Apply various channel coding schemes & demonstrate their capabilities towards the  |
|     | improvement of the noise performance of communication system                         |
| CO4 | Simulate end-to-end communication Link                                               |

### LIST OF EXPERIMENTS:

- 1. Signal Sampling and reconstruction
- 2. Time Division Multiplexing
- 3. AM Modulator and Demodulator
- 4. FM Modulator and Demodulator
- 5. Pulse Code Modulation and Demodulation
- 6. Delta Modulation and Demodulation
- 7. Line coding schemes
- 8. Simulation of ASK, FSK, and BPSK generation schemes
- 9. Simulation of DPSK, QPSK and QAM generation schemes
- 10. Simulation of signal constellations of BPSK, QPSK and QAM
- 11. Simulation of ASK, FSK and BPSK detection schemes
- 12. Simulation of Linear Block and Cyclic error control coding schemes
- 13. Simulation of Convolution coding scheme

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 50                       | -                      | 50                     | 100         |

| Name of The Course | Industrial Internship |   |   |   |   |
|--------------------|-----------------------|---|---|---|---|
| Course Code        | BEC553                |   |   |   |   |
| Prerequisite       |                       |   |   |   |   |
| Corequisite        |                       |   |   |   |   |
| Antirequisite      |                       |   |   |   |   |
|                    |                       | L | T | P | C |
|                    |                       | 0 | 0 | 2 | 1 |

- To develop institute-industry interaction
  To know the industry practices
  To understand cutting edge technology in the chosen area

# **Course Outcomes**

| CO1 | Exposure to industry practices                        |
|-----|-------------------------------------------------------|
| CO2 | Strengthened institute-industry relationship          |
| CO3 | Bridging academic knowledge with industry input       |
| CO4 | understand cutting edge technology in the chosen area |
| CO5 | Report Writing and Effective communication            |

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 50                       | -                      | 50                     | 100         |

| Name of The Course | VLSI Design                                          |   |   |   |   |
|--------------------|------------------------------------------------------|---|---|---|---|
| Course Code        | BEC603                                               |   |   |   |   |
| Prerequisite       | Digital electronics, Electronic devices and circuits |   |   |   |   |
| Corequisite        | EDC                                                  |   |   |   |   |
| Antirequisite      |                                                      |   |   |   |   |
|                    |                                                      | L | T | P | C |
|                    |                                                      | 3 | 0 | 0 | 3 |

- Study the fundamentals of CMOS circuits and its characteristics.
- Learn the design and realization of combinational & sequential digital circuits.
- Architectural choices and performance tradeoffs involved in designing and realizing the circuits in CMOS technology are discussed
- Learn the different FPGA architectures and testability of VLSI circuits

### **Course Outcomes**

| CO1 | Illustrate the basics of IC fabrication Processes                                          |
|-----|--------------------------------------------------------------------------------------------|
| CO2 | Understand the basic concepts of MOS Transistor and its operation, Scaling and CAD Design  |
| CO3 | Understand and Design various CMOS circuits and investigate the parameters which affects   |
|     | the performance of the CMOS circuits                                                       |
| CO4 | Design Complex CMOS Circuits and examine the performance of the Complex circuits           |
| CO5 | Clarify the design hierarchy of VLSI Circuits and recognize about the memory devices using |
|     | CMOS transistors                                                                           |

# Text Book (s)

- S.M.Sze, "VLSI technology", 2nd Edition, Tata McGraw Hill Education, 2003, ISBN 9780070582910
- 2. Sung-Mo Kang & Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", 3rd Edition, Tata McGraw-Hill, New Delhi, 2003.
- 3. N. Weste and K. Eshranghian, "Principles of CMOS VLSI Design", Addison Wesley, 1998.

### Reference Book (s)

- 1. Jacob Backer, Harry W. Li and David E. Boyce, "CMOS Circuit Design, Layout and Simulation", Prentice Hall of India, 1998.
- 2. L.Glaser and D. Dobberpuhl, "The Design and Analysis of VLSI, Circuits", Addison Wesley
- 3. Randel & Geiger, "VLSI Analog and Digital Circuit Design Techniques" McGraw-Hill,1990.
- 4. John P. Uyemura, "Introduction to VLSI Circuits and Systems," John Wiley & Sons, ,Inc, 2002.

Unit-1 Introduction 8 hours

Integrated circuit technology, basic monolithic integrated circuits, epitaxial growth, Masking and etching, diffusion of impurities, transistors for monolithic circuits, monolithic diodes, Integrated resistors, Integrated capacitors and inductors, monolithic circuit layout, additional isolation methods, LSI and MSI, the metal semiconductor contacts

### Unit-2

The Metal Oxide Semiconductor (MOS) Structure, The MOS System under External Bias, Structure and Operation of MOS, Transistor (MOSFET), MOSFET Current-Voltage Characteristics, MOSFET Scaling and Small-Geometry Effects, MOSFET Capacitances, Numerical and spice simulations

### Unit-3

Introduction, Resistive-Load Inverter, Inverters with n-Type MOSFET Load, CMOS Inverter, Delay-Time Definitions, Calculation of Delay Times, Inverter Design with Delay Constraints, Estimation of Interconnect Parasitics, Calculation of Interconnect Delay, Switching Power Dissipation of CMOS Inverters, Numerical and spice simulations.

### Unit-4

Introduction, Basic Principles of Pass Transistor Circuits, Voltage Bootstrapping, Synchronous Dynamic Circuit Techniques, High-Performance Dynamic CMOS Circuits, Introduction, MOS Logic Circuits with Depletion nMOS Loads, CMOS Logic Circuits, Complex Logic Circuits, CMOS Transmission Gates (Pass Gates), Introduction, Behavior of Bistable Elements, The SR Latch Circuit, Clocked Latch and Flip-Flop Circuits, CMOS D-Latch and Edge-Triggered Flip-Flop

### Unit-5

Introduction, Read-Only Memory (ROM) Circuits, Static Read-Write Memory (SRAM) Circuits, Dynamic Read-Write Memory (DRAM) Circuits Introduction, VLSI Design Flow, Design Hierarchy, Concepts of Regularity, Modularity and Locality, VLSI Design Styles, Design Quality, Packaging Technology, Computer-Aided Design Technology

| Internal Assessment | Mid Term Test | End Term Test | Total Marks |
|---------------------|---------------|---------------|-------------|
| (IA)                | (MTE)         | (ETE)         |             |
| 20                  | 30            | 50            | 100         |

| Name of The Course | Automation and Robotics       |   |   |   |   |
|--------------------|-------------------------------|---|---|---|---|
| Course Code        | EEC501                        |   |   |   |   |
| Pre-requisite      | IoT, Electronic System Design |   |   |   |   |
| Co-requisite       |                               |   |   |   |   |
| Anti-requisite     |                               |   |   |   |   |
|                    | ·                             | L | T | P | C |
|                    |                               | 3 | 0 | 0 | 3 |

- 1. To provide the student with basic knowledge and skills associated with robot control.
- 2. Demonstrate an ability to apply spatial transformation to obtain forward kinematics equation of robot manipulators.
- 3. Demonstrate an ability to perform kinematics and inverse kinematics analysis of robot systems.
- 4. Demonstrate knowledge of robot controllers.
- 5. To develop the student's knowledge in various robot structures and their workspace.

### **Course Outcomes**

| CO1 | Explain Basic Robotic model & its applications.                                        |  |  |  |
|-----|----------------------------------------------------------------------------------------|--|--|--|
| CO2 | Differentiate types of control and the standardization for some robotic system. K4     |  |  |  |
| CO3 | Critically evaluate robots for particular applications.                                |  |  |  |
| CO4 | Analyze particular industrial applications and evaluate possible solutions in terms of |  |  |  |
| 004 | automated dedicated/flexible) or mixed manual/automated systems.                       |  |  |  |
| CO5 | Realize the design problem and preliminary consideration of Industrial automation.     |  |  |  |

### Text Book (s)

- 1. Mikell P Grover et. al. "Industrial Robots: Technology, Programming and Applications", 2nd Edition, Tata McGraw Hill, 1980, ISBN 9781259006210.
- 2. Robert J. Schilling, "Fundamentals of Robotics-Analysis and Control", PHI Learning, 2009, ISBN 9788120310476 (Unit-II and Unit-III)

### Reference Book (s)

1. K.S. Fu, Ralph Gonzalez, C.S.G. Lee, "Robotics: control, sensing, vision and Intelligence", 1st Edition, TataMcgraw-Hill, 2008, ISBN 9780070265103

# **Unit-1**INTRODUCTION ROBOTICS9 hours

Robotics – Basic components – Classification – Performance characteristics – Actuators- Electric actuator- DC motor horse power calculation, magneto-astrictive hydraulic and pneumatic actuators. Sensors and vision systems: Different types of robot transducers and sensors – Tactile sensors – Proximity and range sensors –ultrasonic sensor-touch sensors-slip sensors-sensor calibration- vision systems.

# Unit-2ROBOT CONTROL

8 Hours

Control of robot manipulators- state equations-constant solutions-linear feedback systems-single axis PID control- PD gravity control- computed torque control- variable structure control-Impedance control.

# **Unit-3**END EFFECTORS **8 Hours**

End effectors and tools—types — Mechanical grippers — Vacuum cups — Magnetic grippers — Robot end effectors interface, work space analysis work envelope-workspace fixtures-pick and place operation- continuous path motion-interpolated motion-straight line motion.

# Unit-4ROBOT MOTION ANALYSIS 7 Hours

Robot motion analysis and control: Manipulator kinematics –forward and inverse kinematics- arm equation-link coordinates-Homogeneous transformations and rotations and Robot dynamics

# Unit-5ROBOT APPLICATIONS 6 Hours

Industrial and Non industrial robots, Robots for welding, painting and assembly – Remote Controlled robots – Robots for nuclear, thermal and chemical plants – Industrial automation – Typical examples of automated industries

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Satellite Communication |   |   |   |   |
|--------------------|-------------------------|---|---|---|---|
| Course Code        | EEC502                  |   |   |   |   |
| Prerequisite       | Communication systems   |   |   |   |   |
| Corequisite        |                         |   |   |   |   |
| Antirequisite      |                         |   |   |   |   |
|                    |                         | L | T | P | C |
|                    |                         | 3 | 0 | 0 | 3 |

- Understand the basics of satellite orbits
- Understand the satellite segment and earth segment
- Analyze the various methods of satellite access
- Understand the applications of satellites
- Understand the basics of satellite Networks

# **Course Outcomes**

| CO1 | To comprehend the orbital aspects, the satellite subsystems and launching methods |
|-----|-----------------------------------------------------------------------------------|
| CO2 | Analyse various multiplexing and multiple access techniques                       |
| CO3 | Design satellite uplink and downlink under various conditions.                    |
| CO4 | Demonstrate the GPS concepts for ethical usage in society                         |
| CO5 | Realize specific applications of satellite Communication                          |

### Text Book (s)

- 1. Wilbur L. Pritchard, H.G. Suyderhoud ,RobertA.Nelson, Satellite Communication Systems Engineering, Prentice Hall, New Jersey, 2006. ISBN-013-791468-7
- 2. Timothy Pratt and Charles W.Bostain, Satellite Communications, John Wiley and Sons, 2003. ISBN- 047137007X
- 3. D.Roddy, Satellite Communication, McGrawHill, 2006 ISBN-0071486895

# Reference Book (s)

- 1. Tri T Ha, Digital Satellite Communication, McGrawHill,1990. ISBN-978-0-07-007752-2
- 2. B.N.Agarwal, Design of Geosynchronous Spacecraft, Prentice Hall, 1993. ISBN-0132001144

# **Course Content:**

| Unit-1 Introduction                                                                        | 8 hours      |
|--------------------------------------------------------------------------------------------|--------------|
| Satellite Systems, Orbital description and Orbital mechanics of LEO, MEO and GSO, Place    | ement of     |
| a Satellite in a GSO, Satellite – description of different Communication subsystems, Bandv | <b>vidth</b> |
| allocation.                                                                                |              |
| Unit-2 Modulation and Multiplexing Schemes                                                 | 8 hours      |
| Different modulation and Multiplexing Schemes, Multiple Access Techniques - FDMA,          | TDMA,        |
| CDMA, and DAMA, Coding Schemes                                                             |              |
| Unit-3 Link Design                                                                         | hours        |
| Basic link analysis, Interference analysis, Rain induced attenuation and interference, Ior | ospheric     |
| characteristics, Link Design with and without frequency reuse.                             |              |
| Unit-4 Radio and Satellite Navigation 8                                                    | hours        |
| Radio and Satellite Navigation, GPS Position Location Principles, GPS Receivers and        | d Codes,     |
| Satellite Signal Acquisition, GPS Receiver Operation and Differential GPS                  |              |
| Unit-5 Applications                                                                        | hours        |
| Satellite Packet Communications, Intelsat series – INSAT series –VSAT, mobile satellite    | services,    |

IMMERSAT, Satellite and Cable Television, DBS (DTH), VSAT, Satellite Phones.

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test (ETE) | Total Marks |
|--------------------------|------------------------|---------------------|-------------|
| 20                       | 30                     | 50                  | 100         |

| Name of The Course | Digital System design using VHDL |   |   |   |   |
|--------------------|----------------------------------|---|---|---|---|
| Course Code        | EEC504                           |   |   |   |   |
| Pre-requisite      | Digital Design                   |   |   |   |   |
| Co-requisite       |                                  |   |   |   |   |
| Anti-requisite     |                                  |   |   |   |   |
|                    |                                  | L | T | P | C |
|                    |                                  | 3 | 0 | 0 | 3 |

- 1. To gain an in-depth understanding of VHDL and to realize different circuits using it both sequential and combinational.
- 2. To learn the concept of memories and how they are designed using VHDL.
- 3. To gain an understanding of applications of VHDL in PLDs and Field Programmable Logic Arrays (FPGAs).

### **Course Outcomes**

| CO1 | Explain VHDL as a programming language.                                           |  |  |
|-----|-----------------------------------------------------------------------------------|--|--|
| CO2 | Design the combinational and sequential logic circuits using VHDL.                |  |  |
| CO3 | Design Programmable logic devices(PLDs) and Networks of Arithmetic operations.    |  |  |
| CO4 | Gain proficiency with VHDL software package and utilize software package to solve |  |  |
| CO4 | problems on a wide range of digital logic circuits.                               |  |  |
| CO5 | Explain VHDL as a programming language.                                           |  |  |

### Text Book (s)

1. Stephen Brown and ZvonkoVranesic," Fundamentals of Digital Logic with VHDL Design", Mc-Graw-Hill (2nd edition). ISBN-10: 0077211642

### Reference Book (s)

1. Peter J. Ashenden, "Designers guide to VHDL ",Morgan Kaufman Publishers. 3rd edition, ISBN-10: 0120887851

### Unit-1 Introduction 7 hours

Introduction to Hardware Description Languages (HDL) And HDL Based Design, VHDL-Variables, Signals And Constants, Arrays, VHDL Operators, VHDL Functions, VHDL Procedures, Packages And Libraries, VHDL Description Of Combinational Networks, Modeling Flip-Flops Using VHDL, VHDL Models For A Multiplexer, Compilation And Simulation Of VHDL Code, Modeling A Sequential Machine, VHDL Model For A Counter.

# **Unit-2VHDL Synthesis and Models8 Hours**

"Attributes, Transport and Inertial delays, Operator overloading, Multivalued logic and signal resolution, IEEE-1164 standard logic, Generics, Generate statements, Synthesis of VHDL code, Synthesis examples, Files and TEXTIO.Introduction to data path and control path synthesis."

# **Unit-3Digital Design with State Machine Charts** 7 Hours

State machine charts, Derivation of SM charts, Realization of SM charts. Implementation of the dice game, Alternative realization for SM charts using microprogramming, Linked state machines, Asynchronous state machine based design.

### Unit-4Programmable Logic devices (PLDs)9 Hours

"DESIGNING WITH PROGRAMMABLE LOGIC DEVICES: Read-only memories (ROM, EPROM, EEPROM/FLASH), Programmable logic arrays (PLAs), Programmable array logic (PLAs), Other sequential programmable logic devices (PLDs), Design of a keypad scanner.

DESIGN OF NETWORKS FOR ARITHMETIC OPERATIONS: Design of a serial adder with accumulator, State graphs for control networks, Design of a binary multiplier, Multiplication of signed binary numbers, Design of a binary divider."

# Unit-5Field Programmable Gate Arrays (FPGA) 8 Hours

"Xlinx 3000 series FPGAs, Designing with FPGAs, Xlinx 4000 series FPGAs, using a one-hot state assignment, Altera complex programmable logic devices (CPLDs), Altera FELX 10K series COLDs.

Representation of floating-point numbers, Floating-point multiplication, Other floating-point operations."

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Principles of Secure Communication |                              |   |   |   |
|--------------------|------------------------------------|------------------------------|---|---|---|
| Course Code        | EEC505                             | EEC505                       |   |   |   |
| Prerequisite       | Digital communication system       | Digital communication system |   |   |   |
| Corequisite        | Digital communication system       |                              |   |   |   |
| Antirequisite      |                                    |                              |   |   |   |
|                    |                                    | L                            | T | P | C |
|                    |                                    | 3                            | 0 | 0 | 3 |

To understand the communication systems and various methods of communication system. To understand the ways to provide security to communication systems.

### **Course Outcomes**

| CO1 | Understanding of the various types of spread spectrum techniques for secure communication. |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------|--|--|--|--|
| CO2 | slow and fast frequency hopping, performance of FHSS in AWGN Channel.                      |  |  |  |  |
| CO3 | Analyze the various cryptographic techniques and Apply the Encryption standards like DES,  |  |  |  |  |
|     | AES.                                                                                       |  |  |  |  |
| CO4 | Understanding the principle of Block Cipher and Encryption Standards.                      |  |  |  |  |
| CO5 | Knowing current network authentication applications, PKI, Web security and their           |  |  |  |  |
|     | vulnerabilities that are exploited by intentional and unintentional attacks.               |  |  |  |  |

### Text Book (s)

- 1. Digital Communication by Simon Haykin, Wiley. 1 st edition ISBN 978-1-1185-4405-1,
- 2. Cryptography and Network Security by W. Stallings 5th Ed., PHI ISBN-10: 0136097049 ISBN-13: 978-0136097044.

# Reference Book (s)

- 1. Cryptography and secure Communications by M.Y. Rhee, Mc Graw Hill, ISBN-10: 0071125027; ISBN-13: 978-0071125024.
- 2. Communication System Security by LidongChen,Guang Gong, ISBN 9781439840368-CAT# K11870.

### **Course Content:**

Unit-1 Introduction 8 hours

Model of Spread Spectrum digital communication system, direct sequence spread spectrum signal, error rate, performance of the decoder, processing gain and jamming margin, uncoded DSSS signals, applications of DSSS signals in anti-jamming, Code division multiple access and multipath channels, effect of pulsed interference on DSSS systems, Generation of PN sequences using m sequence and Gold sequences, narrowband interference in DSSS systems, acquisition and tracking of DSSS system.

### Unit-2

Basic concepts of Frequency Hopping, slow and fast frequency hopping, performance of FHSS in AWGN Channel, FHSS in CDMA system, Time hopping and hybrid Spread spectrum system, acquisition and tracking of FH SS systems.

# Unit-3

Classical encryption techniques, Symmetric cipher model, cryptography and cryptanalysts,

# Substitution techniques, transposition techniques.

### Unit-4

Block cipher principle, data encryption standard (DES), strength of DES, differential and linear cryptanalysts, block cipher design principles, Finite fields, simplified advanced encryption standard (S-AES), multiple encryption and triple DES, Block cipher modes of operation, stream ciphers and RC4 algorithm.

# Unit-5

Prime numbers, Fermat and Euler's theorem, Chinese remainder theorem, discrete algorithms, principles of public key cryptosystems, RSA algorithm, key management Diffie-Hellman key exchange, message authentication requirements and functions.

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | <b>Total Marks</b> |
|--------------------------|------------------------|------------------------|--------------------|
| 20                       | 30                     | 50                     | 100                |

| Name of The Course | Neural Networks and Fuzzy Control |   |   |   |   |
|--------------------|-----------------------------------|---|---|---|---|
| Course Code        | rse Code EEC506                   |   |   |   |   |
| Pre-requisite      | Control Systems                   |   |   |   |   |
| Co-requisite       |                                   |   |   |   |   |
| Anti-requisite     |                                   |   |   |   |   |
|                    | ·                                 | L | T | P | C |
|                    |                                   | 3 | 3 | 0 | 5 |

- 1. Get the exposure to Artificial Neural Networks & Fuzzy Logic.
- 2. Understand the importance of tolerance of imprecision and uncertainty for design of robust &low cost intelligent machines
- 3. Explore the functional components of neural network classifiers or controllers, and the functional components of fuzzy logic classifiers or controllers
- 4. Develop and implement a basic trainable neural network or a fuzzy logic system for a typical control, computing application or biomedical application

### **Course Outcomes**

| CO1 | Identify and describe Fuzzy Logic and Artificial Neural Network techniques in building                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| COI | intelligent machines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| CO2 | Apply Artificial Neural Network & Description of the Apply Artificial Neural Neura Neural Neural Neural Neural Neural Neural Neural Neural Neural N |  |  |
| COZ | solve engineering problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| CO3 | Understanding of fuzzy relation rule and aggregations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| CO4 | Understand concept of classical and fuzzy sets, fuzzification and defuzzification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| CO5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

# Text Book (s)

- 1. Ross, Timothy J. Fuzzy logic with engineering applications, John Wiley & Sons, 2009
- 2. Yegnanarayana, B. Artificial neural networks. PHI Learning Pvt. Ltd., 2004
- 3. Stamatios V. Kartalopoulos, Understanding Neural Networks and Fuzzy Logic: Basic Concepts and Applications 1st Edition "
- 4. S. Rajasekaran, Neural Networks, Fuzzy Systems and Evolutionary Algorithms: Synthesis and Applications "

# Reference Book (s)

- 1. "Aaron M. Tenenbaum, YedidyahLangsam and Moshe J. Augenstein "Data Structures Using C and C++", PHI, 1996."
- 2. Jean Paul Trembley and Paul G. Sorenson, "An Introduction to Data Structures with applications", McGraw Hill, 2007.
- 3. "Kosko, B, "Neural Networks and Fuzzy Systems: A Dynamical Approach to Machine Intelligence", PrenticeHall, NewDelhi, 2004"
- 4. "Timothy J Ross, "Fuzzy Logic with Engineering Applications", John Willey and Sons, West Sussex, England, 2005."

### **Unit-1Introduction to Artificial Neural Network9 hours**

Artificial neural networks and their biological motivation – Terminology – Models of neuron – Topology – characteristics of artificial neural networks – types of activation functions – learning methods – error correction learning – Hebbian learning – Perceptron – XOR Problem – Perceptron learning rule convergence theorem – Adaline.

# **Unit-2Feed-forward and Recurrent Neural Networks12 Hours**

"Architecture: perceptron model, solution, single layer artificial neural network, multilayer perceptron model; back propagation learning methods, effect of learning rule co-efficient ;back propagation algorithm, factors affecting backpropagation training, applications; Recurrent neural networks: Linear auto associator – Bi-directional associative memory – Hopfield neural network."

# Unit-3Fuzzy Logic & Fuzzy Sets 9 Hours

Introduction to Fuzzy Logic, Classical and Fuzzy Sets, Membership Function ,Membership Grade, Universe of Discourse, Linguistic Variables, Operations on Fuzzy Sets: Intersections, Unions, Negation, Product, Difference, Properties of Classical set and Fuzzy sets, Fuzzy vs Probability, Fuzzy Arithmetic, Fuzzy Numbers.

# **Unit-4**Fuzzy Relations & Aggregations 9 Hours

Essential Elements of Fuzzy Systems, Classical Inference Rule, Classical Implications and Fuzzy Implications, Crisp Relation and Fuzzy Relations, Composition of fuzzy relations, Cylindrical Extension and Projection. Fuzzy IF-THEN rules, Inference: Scaling and Clipping Method, Aggregation, Fuzzy rule based Model: Mamdani Model, TSK model, Fuzzy Propositions, Defuzzification: MOM, COA

# **Unit-5**Fuzzy Optimization and Neuro Fuzzy Systems **6 Hours**

Fuzzy optimization –one-dimensional optimization. Introduction of Neuro-Fuzzy Systems, Architecture of Neuro Fuzzy Networks.

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Wireless Sensor Networks |   |   |   |   |
|--------------------|--------------------------|---|---|---|---|
| Course Code        | EEC507                   |   |   |   |   |
| Prerequisite       | Communication systems    |   |   |   |   |
| Corequisite        |                          |   |   |   |   |
| Antirequisite      |                          |   |   |   |   |
|                    |                          | L | T | P | C |
|                    |                          | 3 | 0 | 0 | 3 |

- Learn Ad hoc network and Sensor Network fundamentals
- Understand the different routing protocols
- Have an in-depth knowledge on sensor network architecture and design issues
- Understand the transport layer and security issues possible in Ad hoc and Sensor networks
- Have an exposure to mote programming platforms and toolsCourse Outcomes

### **Course Outcomes**

| CO1 | Analyze the knowledge of wireless sensor networks in various application areas.               |  |  |
|-----|-----------------------------------------------------------------------------------------------|--|--|
| CO2 | Comprehend and analyze localization and tracking issues associated with WSN network.          |  |  |
| CO3 | Evaluate the performance of energy saving approaches used in MAC Protocols.                   |  |  |
| CO4 |                                                                                               |  |  |
| CO5 | Apply the techniques used for sensor data gathering, data storage and data retrievals in WSN. |  |  |

### Text Book (s)

- 1. Networking Wireless Sensors: BhaskarKrismachari, Cambridge University Press
- 2. Wireless Sensor Networks: Edited by C.S Raghavendra, Krishna M, Sivalingam, TaiebZnati,

### Reference Book (s)

- 1. Wireless Sensor Networks: An Information Processing Approach- by Feng Zhao, Leonidas Guibas, Morgan Kaufmann Series in Networking 2004.
- 2. Wireless Sensor Networks: Technology, Protocols, and Applications: KazemSohraby, Daniel Minoli, TaiebZnati, Wiley Inter Science.

### **Course Content:**

| Unit-1   | Introduction                                                                    | 8 hours |
|----------|---------------------------------------------------------------------------------|---------|
| Sensor I | Network Concept: Introduction, Networked wireless sensor devices, Advantages of | Sensor  |
| network  | s, Applications, Key design challenges. Network deployment: Structured versus   |         |
| randomi  | ized deployment, Network topology, Connectivity, Connectivity using power contr | ol,     |
| Coverag  | ge metrics, Mobile deployment.                                                  |         |
| TT 14 A  | Y 11 (1 1/2 1 1                                                                 | 0.1     |

### **Unit-2** Localization and Tracking

8 hours

Localization and Tracking: Issues and approaches, Problem formulations: Sensing model, collaborative localization. Coarse-grained and Fine-grained node localization. Tracking multiple objects.

# **Unit-3** Wireless Communications

8 hours

Wireless Communications: Link quality, shadowing and fading effects Medium-access and sleep scheduling: Traditional MAC protocols, Energy efficiency in MAC protocols, Asynchronous sleep techniques, Sleep-scheduled techniques, and Contention-free protocols.

Unit-4 Routing 8 hours

Routing: Metric-based approaches, Multi-path routing, Lifetime-maximizing energy-aware routing techniques, Geographic routing. Sensor network

# **Unit-5** Database perspective on sensor networks

8 hour

Databases: Data-centric routing, Data-gathering with compression, Querying, Data-centric storage and retrieval, The database perspective on sensor networks

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Nanoscience and Technology |   |   |   |   |
|--------------------|----------------------------|---|---|---|---|
| Course Code        | EEC508                     |   |   |   |   |
| Prerequisite       | Applied Physics            |   |   |   |   |
| Corequisite        |                            |   |   |   |   |
| Antirequisite      |                            |   |   |   |   |
|                    |                            | L | T | P | C |
|                    |                            | 3 | 0 | 0 | 3 |

The objective of this course is to know the revolutions behind nanotechnology and nanomachines. The student will be clear about the aspects of intermolecular forces, various properties and other phenomena seen in the nanomaterials.

### **Course Outcomes**

The students will be able to

| CO1 | Explain the fundamentals of nanotechnology                              |  |
|-----|-------------------------------------------------------------------------|--|
| CO2 | Classify the nanomaterials based on dimensions                          |  |
| CO3 | Explain the properties of materials in their nanostructured state.      |  |
| CO4 | Explain the bonding forces in nanostructures.                           |  |
| CO5 | Demonstrate the impact of grain size in the properties of nanomaterials |  |

### **Text Book**

1. Ratner, M. A., & Ratner, D. (2003). *Nanotechnology: A gentle introduction to the next big idea*. Upper Saddle River, NJ: Prentice Hall.

### **Reference Books**

- 1. Wilson, M. (2002). *Nanotechnology: Basic science and emerging technologies*. Boca Raton: Chapman & Hall/CRC.
- 2. Poole, C. P., & Owens, F. J. (2003). Introduction to nanotechnology. Hoboken, NJ: J. Wiley.

### **Course Content:**

| Unit-1 Introduction                                                                     | 8 hours     |
|-----------------------------------------------------------------------------------------|-------------|
| Background to nanotechnology - Definition for Nanotechnology - Scientific Revolution    | s – Types   |
| of nanotechnology – Top-Down and Bottom-Up – Moore's Law – Basic problems and lim       | nitations – |
| Opportunities at the Nanoscale                                                          |             |
| Unit-2 Intermolecular Forces 8 hours                                                    |             |
| Intermolecular forces – hydrophobic – van der Waals – hydrogen bonding – electrical dou | ıble layer, |

# Unit-3 0D,1D and 2D Nanomaterials

8 hours

Introduction to 0D, 1D & 2D nanomaterials, introduction to quantum confinement, introduction to quantum mechanical tunneling.

# **Unit-4 Quantum effects**

self-assembly, micelles

8 hours

Influence of nanosize on electronic transport, ballistic conductivity, quantum hall effect, single domain magnetic nanoparticles, uniaxial anisotropy, superparamagnetism, magnetic thin films – shape anisotropy. Exchange anisotropy

# **Unit-5** Grain size effects

8 hour

Grain size effects on strength of metals- Optical properties of quantum dots and metal nanoparticles – Hall – petch relationship – super plasticity.

| <b>Internal Assessment</b> | Mid Term Test | End Term Test | Total Marks |
|----------------------------|---------------|---------------|-------------|
| (IA)                       | (MTE)         | (ETE)         |             |
| 20                         | 30            | 50            | 100         |

| Name of The Course | Mobile Ad Hoc Networks |   |   |   |   |
|--------------------|------------------------|---|---|---|---|
| Course Code        | EEC509                 |   |   |   |   |
| Prerequisite       | Computer networks      |   |   |   |   |
| Corequisite        | Communication systems  |   |   |   |   |
| Antirequisite      |                        |   |   |   |   |
|                    |                        | L | T | P | C |
|                    |                        | 3 | 0 | 0 | 3 |

The students should be able to

• Understand about adhoc networks, Wireless channels

# **Course Outcomes**

| CO1 | Explain the characteristics features, wireless channels and mobility models of mobile Adhoc |  |
|-----|---------------------------------------------------------------------------------------------|--|
|     | networks.                                                                                   |  |
| CO2 | Summarize the protocols used at the MAC layer and scheduling mechanisms.                    |  |
| CO3 | Compare and analyze types of routing protocols used for unicast and multicast routing.      |  |
| CO4 | Examine the network security solution and routing mechanism.                                |  |
| CO5 | evaluate the energy management schemes and Quality of service solution in ad hoc networks   |  |

# Text Book (s)

- 1.C.Siva ram murthy,B.S. Manoj, "Ad hoc wireless networks-Architectures and protocols" Pearson Education, 2005
- 2. Stefano Basagni, Marco Conti, "Mobile ad hoc networking", Wielyinterscience 2004

# Reference Book (s)

1. Charles E.Perkins,"Ad hoc networking", Addison Wesley,2001

# **Course Content:**

| Unit-1 Introduction                                                                                  | 8 hours                                 |  |
|------------------------------------------------------------------------------------------------------|-----------------------------------------|--|
| Introduction to adhoc networks – definition, characteristics features, applications. Characteristics |                                         |  |
| Wireless channel, Adhoc Mobility Models:- Indoor and out door models.                                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |  |
| Unit-2 Contention based protocols 8 hour                                                             |                                         |  |
| Design goals of a MAC protocol, Contention based protocols; Contention based protocols with          |                                         |  |
| reservation mechanisms and scheduling mechanisms, MAC protocols using directional ar                 |                                         |  |
| Unit-3 Routing protocols 8 hours                                                                     |                                         |  |
| Table driven routing protocols, On demand routing protocols, hybrid routing protocol                 |                                         |  |
| Hierarchical routing protocols, Power aware routing protocols, Tree based and mesh bas               |                                         |  |
| multicast routing protocols                                                                          |                                         |  |
| Unit-4 Security considerations in ad hoc sensor networks                                             | 8 hours                                 |  |
| Maximum life time routing, Secure routing protocols, Intrusion detection, Security considerations    |                                         |  |
| in ad hoc sensor networks                                                                            |                                         |  |
| Unit-5 Energy management schemes 8 hours                                                             |                                         |  |
| Energy management schemes-Battery management, transmission power management, system                  |                                         |  |
| power management schemes. Quality of service solutions in ad hoc wireless networks.                  |                                         |  |

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test (ETE) | Total Marks |
|--------------------------|------------------------|---------------------|-------------|
| 20                       | 30                     | 50                  | 100         |

| Name of The Course | Digital Image Processing |   |   |   |   |
|--------------------|--------------------------|---|---|---|---|
| Course Code        | EEC510                   |   |   |   |   |
| Prerequisite       | Signals and systems      |   |   |   |   |
| Corequisite        | DSP                      |   |   |   |   |
| Antirequisite      |                          |   |   |   |   |
|                    |                          | L | T | P | C |
|                    |                          | 3 | 0 | 0 | 3 |

To introduce the fundamentals of visual information, representation of 2-D and 3-D information, enhancement of information, retrieval of information, and various colour models.

### **Course Outcomes**

| CO1 | Students will be able to describe and Interpret basic elements of Digital Image Processing, |  |  |
|-----|---------------------------------------------------------------------------------------------|--|--|
|     | Analyze the need and suitability of transforms in image processing applications             |  |  |
| CO2 | Design and implement filters for image enhancement in spatial domain and frequency domain   |  |  |
|     | for real time applications and apply image restoration algorithms                           |  |  |
| CO3 | Segment and Extract features from images for analysis and recognition                       |  |  |
| CO4 | Perform Wavelet analysis on images                                                          |  |  |
| CO5 | Interpret Still and Video compression algorithms                                            |  |  |

### Text Book (s)

- 1.Digital Image Processing/ Gonzalez and Woods/ Pearson Education 2008/Third Edition
- 2. Fundamentals of Digital Image Processing/ A.K. Jain/ PHI Indian Edition
- 3. Digital Image Processing using MATLAB/ Gonzalez, Woods, and Eddins/ Mc Graw Hill Second/ 2013

### Reference Book (s)

1.Digital Image Processing/ K.R. Castleman/ Pearson 2014

**Unit-2 Image Enhancement and Restoration** 

- 2. Digital Image Processing Algorithms and Applications/I. Pitas/John Wiley 2002
- 3. Image Processing, Analysis, and Machine Vision/Milan Sonka, Vaclav Hlavac, Roger Boyale/Cengage Learning 4th Edition

### **Course Content:**

|                                                                                         | Unit-1 Introduction                                                                      | 8 hours |  |  |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------|--|--|
|                                                                                         | Need for DIP- Fundamental steps in DIP – Elements of visual perception -Image sensing a  |         |  |  |
| Acquisition – Image Sampling and Quantization – Imaging geometry, discrete image mathem |                                                                                          |         |  |  |
|                                                                                         | characterization, Two dimensional Fourier Transform- Properties - Fast Fourier Transform | rm –    |  |  |
|                                                                                         | Inverse FFT Discrete cosine transform and KL transformDiscrete Short time Fourier Tr     | ansform |  |  |

Image enhancement in spatial domain: Gray-level transformations, histogram equalization, spatial filters- averaging, order statistics; Edge detection: first and second derivative filters, Sobel, Canny, Laplacian and Laplacian-of Gaussion masks; Image filtering in frequency domain: Smoothing and sharpening filtering in frequency domain, ideal and Butterworth filters, homomorphic filtering; Image restoration: Degradation/ restoration process, noise models, restoration in presence of noise-only spatial filtering, linear position-invariant degradations, estimating the degradation function, inverse filtering, Wiener filtering, constrained least squares filtering

8 hours

# **Unit-3 Image Segmentation**

8 hours

Detection of discontinuities – Edge linking and Boundary detection- Thresholding- -Edge based segmentation-Region based Segmentation- matching-Advanced optimal border and surface detection- Use of motion in segmentation. Image Morphology – Boundary descriptors- Regional descriptors.

### Unit-4 Wavelets and Multi-resolution image processing

8 hours

Wavelets and Multi-resolution image processing- Uncertainty principles of FourierTransform, Time frequency localization, continuous wavelet transforms, wavelet bases and multi-resolution analysis, wavelets and Subband filter banks, wavelet packets.

# **Unit-5 Image and Video Compression**

8 hours

Image Compression-Redundancy-inter-pixel and psycho-visual; Losslesscompression – predictive, entropy; Lossy compression-predictive and transform coding; Discrete Cosine Transform; Still image compression standards–JPEG and JPEG-2000.

Fundamentals of Video Coding-Inter-frame redundancy, motion estimation techniques – full-search, fast search strategies, forward and backward motion prediction, frame classification – I, P and B; Video sequence hierarchy—Group of pictures, frames, slices, macro-blocks and blocks; Elements of a video encoder and decoder; Video coding standards – MPEG and H.26X.

| Internal Assessment | Mid Term Test | End Term Test | Total Marks |
|---------------------|---------------|---------------|-------------|
| (IA)                | (MTE)         | (ETE)         |             |
| 20                  | 30            | 50            | 100         |

| Name of The Course | Information Theory and Coding                      |     |       |       |   |
|--------------------|----------------------------------------------------|-----|-------|-------|---|
| Course Code        | EEC511                                             |     |       |       |   |
| Pre-requisite      | Signals and Systems, Modulation Theory, Digital Co | omm | unica | ation |   |
| Co-requisite       |                                                    |     |       |       |   |
| Anti-requisite     |                                                    |     |       |       |   |
| _                  |                                                    | L   | T     | P     | C |
|                    |                                                    | 3   | 0     | 0     | 3 |

- 1. To understand the fundamental concept of entropy and information as they are used in communications.
- 2. To enhance knowledge of probabilities, entropy, measures of information.
- 3. To identify the implications and consequences of fundamental theories and laws of information theory and coding with reference to the application in modern communication and computer systems.
- 4. To design different encoders using the different coding schemes like Huffman Coding, ShannaonFano Coding, Cyclic codes, etc.,

### **Course Outcomes**

| CO1 | Calculate the information content of a random variable from its probability distribution.    |
|-----|----------------------------------------------------------------------------------------------|
| CO2 | Relate the joint, conditional, and marginal entropies of variables in terms of their coupled |
|     | probabilities.                                                                               |
| CO3 | Define channel capacities and properties using Shannon Theorems.                             |
| CO4 | Construct efficient codes for data on imperfect communication channels.                      |
| CO5 | Generalize the discrete concepts to continuous signals on continuous channels.               |

### Text Book (s)

- 1. R Bose, "Information Theory, Coding and Cryptography", TMH 2007.
- 2. Fred Halsall, "Multidedia Communications: Applications, Networks, Protocols and Standards", Perason Education Asia, 2002

### Reference Book (s)

- 1. K Sayood, "Introduction to Data Compression" 3/e, Elsevier 2006.
- 2. S Gravano, "Introduction to Error Control Codes", Oxford University Press 2007.
- 3. Amitabha Bhattacharya, "Digital Communication", TMH 2006

# **Course Content:**

# **Unit-1 INFORMATION THEORY 8 hours**

Information – Entropy, Information rate, classification of codes, Kraft McMillan inequality, Source coding theorem, Shannon-Fano coding, Huffman coding, Extended Huffman coding - Joint and conditional entropies, Mutual information - Discrete memoryless channels – BSC, BEC – Channel capacity, Shannon limit.

### Unit-2ERROR CONTROL CODING: BLOCK CODES 7 Hours

Definitions and Principles: Hamming weight, Hamming distance, Minimum distance decoding - Single parity codes, Hamming codes, Repetition codes - Linear block codes, Cyclic codes - Syndrome calculation, Encoder and decoder – CRC

# Unit-3ERROR CONTROL CODING: CONVOLUTIONAL CODES 5 Hours

 $Convolutional\ codes-code\ tree,\ trellis,\ state\ diagram-Encoding-Decoding:\ Sequential\ search\ and\ Viterbi\ algorithm-Principle\ of\ Turbo\ coding.$ 

# Unit-4SOURCE CODING: TEXT, AUDIO AND SPEECH 8 Hours

Text: Adaptive Huffman Coding, Arithmetic Coding, LZW algorithm – Audio: Perceptual coding, Masking techniques, Psychoacoustic model, MEG Audio layers I,II,III, Dolby AC3 - Speech: Channel Vocoder, Linear Predictive Coding

# Unit-5SOURCE CODING: IMAGE AND VIDEO 7 Hours

Image and Video Formats – GIF, TIFF, SIF, CIF, QCIF – Image compression: READ, JPEG – Video Compression: Principles-I,B,P frames, Motion estimation, Motion compensation, H.261, MPEG standard

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Modern Digital signal Processing           |   |   |   |   |
|--------------------|--------------------------------------------|---|---|---|---|
| Course Code        | EEC512                                     |   |   |   |   |
| Pre-requisite      | Signals and Systems, Digital Communication |   |   |   |   |
| Co-requisite       |                                            |   |   |   |   |
| Anti-requisite     |                                            |   |   |   |   |
|                    |                                            | L | T | P | C |
|                    |                                            | 3 | 3 | 0 | 3 |

- 1. This course examines the fundamentals of detection and estimation for signal processing.
- 2. It will help the students to implement new algorithms for signal processing applications in frequency, time and mixed domains

### **Course Outcomes**

| CO1 | Learn Multirate signal processing.                                       |
|-----|--------------------------------------------------------------------------|
| CO2 | Design and Analyze adaptive, Kalman filter and Wiener filter.            |
| CO3 | Understand the spectral estimation.                                      |
| CO4 | Know digital signal processing application in frequency and time domain. |
| CO5 | Understand the fundamentals of DSP processor architecture                |

### Text Book (s)

- 1. Oppenheim A.V., Schafer, Ronald W. & Buck, John R., "Discrete Time Signal processing", Pearson Education, 2nd Edition.
- 2. Monson H. Hayes "Statistical Digital Signal Processing and Modeling" John Wiley & Sons, 2009
- 3. Steven W. Smith, "Digital Signal Processing: A Practical Guide for Engineers and Scientists", Elsevier, 2003.
- 4. Papoulis, Circuits and Systems, Modern Approach, HRW, 1980

### Reference Book (s)

- 1. John G. Proakis, "Digital Signal Processing Principles, Algorithms and Applications", 4th edition, PHI 2007.
- 2. Lawrence R. Rabiner, Bernard Gold, "Theory and Application of Digital SignalProcessing", PHI 2001.
- 3. Roberto Cristi "Modern Digital Signal Processing", Thomson Brooks/Cole, 2004.
- 4. R.F. Ziemer, W.H. Tranter and D.R.Fannin, Signals and Systems Continuous and Discrete, 4th Edn. Prentice Hall, 1998.

### **Course Content:**

# **Unit-1** Introduction to Modern Digital Signal Processing **6 hours**

"Introduction to Modern Digital Signal Processing: Signals, systems and signal processing (continuous & discrete an overview), time domain and frequency domain analysis of signals. Sampling and reconstruction of signals, Concepts of Two dimensional, Multi-rate and adaptive signal processing."

# Unit-2Design of Filters 9 Hours

Design of digital filters, Introduction to adaptive signal processing, LMMSE filters – Wiener and Kalman, Adaptive filters – LMS and RLS, Lattice filters, Tracking performance of time varying filters, Adaptive filters, Applications, moving average filters, adaptive filters: FIR adaptive filters adaptive channel equalization ,adaptive noise cancellation ,IIR adaptive filters - RLS filters and Filter banks.

# **Unit-3**Fast Fourier Transform and Spectral estimation 9 Hours

Discrete and fast Fourier transform algorithms, Goertzel and Chirp-z transform for computation of DFT, effect of finite register length in DFT computation, Fourier analysis of non-stationary signals, Power spectral estimation

# Unit-4Introduction to Digital signal Processors 9 Hours

Introduction to Digital signal Processors:Architecture and applications, Fixed and Floating Point Processors, Complex numbers – fixed and floating point representation. Applications: Applications of Digital, Signal Processing to Speech & Audio coding and processing

# **Unit-5**Design and implementation example 9 Hours

"An IIR and FIR audio filters - Modelling in MATLAB - Analog measurement on DSP Systems, Fixed and floating Point Realization impacts. Speech production, Articulatory and Acoustic phonetics, Time domain analysis, Frequency domain analysis, Cepstral analysis, LPC analysis."

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | ASIC Design and FPGAs |   |   |   |   |
|--------------------|-----------------------|---|---|---|---|
| Course Code        | EEC513                |   |   |   |   |
| Pre-requisite      | Digital system design |   |   |   |   |
| Co-requisite       |                       |   |   |   |   |
| Anti-requisite     |                       |   |   |   |   |
|                    |                       | L | T | P | C |
|                    |                       | 3 | 0 | 0 | 3 |

Course Objectives: To introduce students to the process of designing application specific hardware implementations of algorithms for ASICs and FPGAs. Students will work with commercial computer aided design tools to synthesize designs described in hardware description languages. Topics covered will include differences between hardware description languages for synthesis and simulation, behavioral synthesis, gate-level design, register transfer level design, design methodologies, finite state machines, design reuse and intellectual property cores, and optimization.

#### **Course Outcomes**

| CO1                                                           | Understand the fundamentals of logic designing and Analog / Mixed signal (AMS) IC designing |  |  |  |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|
| CO2                                                           | Develop advanced RTL design using Verilog                                                   |  |  |  |
| CO3                                                           | Perform ASIC verification                                                                   |  |  |  |
| CO4                                                           | CO4 Conduct analysis of backend design parameter                                            |  |  |  |
| CO5 Demonstrate high performance designs using HDL techniques |                                                                                             |  |  |  |

#### Text Book (s)

- 1. M.J.S .Smith, " Application Specific Integrated Circuits " Addison -Wesley Longman Inc., 1997
- 2. Skahill, Kevin," VHDL for Programmable Logic", Addison-Wesley, 1996

#### Reference Book (s)

- 1. John F. Wakherly, "Digital Design: Principles and Practices", 2nd Edn 1994, Prentice Hall International Edn
- 2. Charles W. Mckay, "Digital Circuits a proportion for microprocessors", Prentice

## **Course Content:**

## Unit-1 Introduction to ASIC and VHDL9 hours

"Introduction To ASICS, CMOS Logic And ASIC Library Design, Types of ASICs - Design flow - CMOS transistors CMOS Design rules - Combinational Logic Cell - Sequential logic cell - Data path logic cell - Transistors as Resistors - Transistor Parasitic Capacitance- Logical effort -Library cell design - Library architecture. Review of VHDL/Verilog: Entities and architectures "

# Unit-2Programmable ASICS 7 Hours

Programmable Asics, Programmable ASIC Logic Cells And Programmable ASIC I/O Cells Anti fuse - static RAM - EPROM and EEPROM technology - PREP benchmarks - Actel ACT - Xilinx LCA - Altera FLEX - Altera MAX DC & AC inputs and outputs - Clock & Power inputs - Xilinx I/O blocks

## Unit-3Programmable ASIC Interconnect & Software 9 Hours

Programmable ASIC Interconnect, Programmable ASIC Design Software And Low Level Design Entry Actel ACT -Xilinx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera MAX 9000 - Altera FLEX - Design systems - Logic Synthesis - Half gate ASIC -Schematic entry - Low level design language - PLA tools - EDIF- CFI design representation.

## Unit-4ASIC Construction & FPGA partitioning 8 Hours

ASIC Construction, Floor Planning, Placement And Routing, System partition - FPGA partitioning - partitioning methods - floor planning - placement - physical design flow - global routing - detailed routing - special routing - circuit extraction - DRC.

| Unit-5Design using Xilinx 9 Hours |
|-----------------------------------|
| Design using Xilinx family FPGA   |

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Soft Computing   |   |   |   |   |
|--------------------|------------------|---|---|---|---|
| Course Code        | EEC514           |   |   |   |   |
| Prerequisite       | Mobile computing |   |   |   |   |
| Corequisite        | Mobile computing |   |   |   |   |
| Antirequisite      |                  |   |   |   |   |
| _                  |                  | L | T | P | C |
|                    |                  | 3 | 0 | 0 | 3 |

To learn the basic concepts of Soft Computing • To become familiar with various techniques like neural networks, genetic algorithms and fuzzy systems. • To apply soft computing techniques to solve problems.

#### **Course Outcomes**

| CO1 | Understand basics of Soft Computing                                   |  |
|-----|-----------------------------------------------------------------------|--|
| CO2 | Apply suitable ANN techniques for various applications.               |  |
| CO3 | Apply suitable Fuzzy techniques for various applications.             |  |
| CO4 | Apply suitable Genetic Algorithm techniques for various applications. |  |
| CO5 | Integrate various soft computing techniques for complex problems.     |  |

### Text Book (s)

- 1.N.P.Padhy, S.P.Simon, "Soft Computing with MATLAB Programming", Oxford University Press, 2015.
- 2. S.N.Sivanandam , S.N.Deepa, "Principles of Soft Computing", Wiley India Pvt.Ltd., 2nd Edition, 2011.
- 3. S.Rajasekaran, G.A.VijayalakshmiPai, "Neural Networks, Fuzzy Logic and Genetic Algorithm, Synthesis and Applications", PHI Learning Pvt.Ltd., 2017.

## Reference Book (s)

- 1. Jyh-Shing Roger Jang, Chuen-Tsai Sun, EijiMizutani, —Neuro-Fuzzy and Soft Computingl, Prentice-Hall of India, 2002.
- 2. 2. KwangH.Lee, —First course on Fuzzy Theory and Applications, Springer, 2005.
- 3. George J. Klir and Bo Yuan, —Fuzzy Sets and Fuzzy Logic-Theory and Applications, Prentice Hall, 1996.
- 4. James A. Freeman and David M. Skapura, —Neural Networks Algorithms, Applications, and Programming Techniques, Addison Wesley, 2003.

#### **Course Content:**

| Unit-1 Introduction                                                                   | 8 hours        |
|---------------------------------------------------------------------------------------|----------------|
| Introduction-Artificial Intelligence-Artificial Neural Networks-Fuzzy Systems-Genetic | ic Algorithm   |
| and Evolutionary Programming-Swarm Intelligent Systems-Classification of ANNs-M       | AcCulloch and  |
| Pitts Neuron Model-Learning Rules: Hebbian and Delta- Perceptron Network-Adaline      | e Network-     |
| Madaline Network.                                                                     |                |
| Unit-2 Back propagation Neural Networks                                               | 8 hours        |
| Back propagation Neural Networks - Kohonen Neural Network -Learning Vector            | Quantization - |
| Hamming Neural Network - Hopfield Neural Network- Bi-directional Associati            | ve Memory -    |
| Adaptive Resonance Theory Neural Networks- Support Vector Machines - Spike Neu        | iron Models.   |

Unit-3 Introduction to Fuzzy Logic 8 hours
Introduction to Fuzzy Logic, Classical Sets and Fuzzy Sets - Classical Relations and Fuzzy

Relations -Membership Functions -Defuzzification - Fuzzy Arithmetic and Fuzzy Measures - Fuzzy Rule Base and Approximate Reasoning - Introduction to Fuzzy Decision Making.

# **Unit-4 Genetic Algorithm**

8 hours

Basic Concepts- Working Principles -Encoding- Fitness Function - Reproduction - Inheritance Operators - Cross Over - Inversion and Deletion -Mutation Operator - Bit-wise Operators -Convergence of Genetic Algorithm.

# **Unit-5 Hybrid Systems**

8 hours

Hybrid Systems -Neural Networks, Fuzzy Logic and Genetic -GA Based Weight Determination - LR-Type Fuzzy Numbers - Fuzzy Neuron - Fuzzy BP Architecture - Learning in Fuzzy BP-Inference by Fuzzy BP - Fuzzy ArtMap: A Brief Introduction - Soft Computing Tools - GA in Fuzzy Logic Controller Design - Fuzzy Logic Controller

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Mobile Computing  |   |   |   |   |
|--------------------|-------------------|---|---|---|---|
| Course Code        | EEC515            |   |   |   |   |
| Prerequisite       | Computer networks |   |   |   |   |
| Corequisite        |                   |   |   |   |   |
| Antirequisite      |                   |   |   |   |   |
|                    |                   | L | T | P | C |
|                    |                   | 3 | 0 | 0 | 3 |

- To understand the concept about Mobile networks, protocol stack and standards
- To understand and analyze the network layer solutions for Mobile Computing
- To study about fundamentals of 3G Services, its protocols and applications
- To have in depth knowledge on internetworking of WLAN and WWAN
- To learn about evolution of 4G Networks, its architecture and applications

#### **Course Outcomes**

| CO1 | Understand the principles of mobile computing framework and mobile communication        |  |  |  |
|-----|-----------------------------------------------------------------------------------------|--|--|--|
|     | technologies.                                                                           |  |  |  |
| CO2 | Explain the wireless network architecture and associated protocols.                     |  |  |  |
|     | Differentiate the services that GSM network offers to people, employees, and businesses |  |  |  |
| 004 | Demonstrate the working of various routing protocols for Ad Hoc networks.               |  |  |  |
| CO5 | Explain the data management issues in mobile computing environment.                     |  |  |  |

# Text Book (s)

1. Jochen Schiller, Mobile Communications, Second Edition, Pearson Education, 2003.

2. Asoke K Talukder and Roopa R. Yavagal, *Mobile Computing – Technology, Applications and Service Creation*; TMH Pub., New Delhi, 2006

### Reference Book (s)

1.C D M Cordeiro, D. P. Agarwal, *Adhoc and Sensor Networks: Theory and applications*, World Scientific, 2006.Syllabus

#### **Course Content:**

Unit-1 Introduction 8 hours

Introduction of mobile computing, overview of wireless telephony: cellular concept, location management: HLR-VLR, hierarchical, handoffs, channel allocation in cellular systems, Multiple access techniques like Frequency division multiple access (FDMA), Time division multiple access (TDMA), Code division multiple access (CDMA), Space division multiple access (SDMA).

## Unit-2 Wireless Networking 8 ho

Wireless Networking, Wireless LAN Overview: MAC issues, IEEE 802.11, Blue Tooth, Wireless multiple access protocols, TCP over wireless, Wireless applications, data broadcasting, Mobile IP, WAP: Architecture, protocol stack, application environment, applications.

## Unit-3 GSM Architecture 8 hours

GSM Architecture, GSM Entities ,Call Routing in GSM, GSM Addresses and Identifiers, Network Aspects in GSM , GSM Frequency Allocation, Authentication and Security, Mobile Computing over SMS, Short Message (SMS) , Value Added Services through, MS, Accessing the SMS Bearer,

# GPRS, WAP, MMS.

## **Unit-4 Routing protocols8 hours**

Ad Hoc networks, localization, MAC issues, Routing protocols, global state routing (GSR), Destination sequenced distance vector routing (DSDV), Dynamic source routing (DSR), Ad Hoc on demand distance vector routing (AODV), Temporary ordered routing algorithm (TORA), QoS in Ad Hoc Networks, applications.

# **Unit-5 Data management issues**

8 hours

Data management issues, data replication for mobile computers, adaptive clustering for mobile wireless networks, file system, disconnected operations. Mobile Agents computing, security and fault tolerance, transaction processing in mobile computing environment.

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Microwave Engineering |   |   |   |   |
|--------------------|-----------------------|---|---|---|---|
| Course Code        | EEC516                |   |   |   |   |
| Prerequisite       | Instrumentation       |   |   |   |   |
| Corequisite        |                       |   |   |   |   |
| Antirequisite      |                       |   |   |   |   |
|                    |                       | L | T | P | C |
|                    |                       | 3 | 0 | 0 | 3 |

- To enable the student to understand the basic principles in antenna and microwave system design
- To enhance the student knowledge in the area of various antenna designs.
- To enhance the student knowledge in the area of microwave components and antenna for practical applications.

#### **Course Outcomes**

| CO1 | Describe and design transmission line with the help of various strip lines                  |  |  |  |
|-----|---------------------------------------------------------------------------------------------|--|--|--|
| CO2 | Design and implement various waveguides like directional coupler, phase shifter, attenuator |  |  |  |
|     | etc., for real time applications.                                                           |  |  |  |
| CO3 | Understand, design and interpret the microwave semiconductor devices for real time          |  |  |  |
|     | microwave communication.                                                                    |  |  |  |
| CO4 | Understand different microwave tubes and apply them for different real time applications.   |  |  |  |
| CO5 | Design set up for different microwave measurements.                                         |  |  |  |

#### Text Book (s)

- 1. Samuel Y. Liao, "Microwave Devices and Circuits", 3rd Edition, Pearson education.
- 2.R.E.Collin, "Foundations for Microwave Engineering", 2nd Edition, Tata McGraw Hill, 1992.

#### Reference Book (s)

1.D.Pozar, "Microwave Engineering", John Wiley & Sons, New York, 1998. Syllabus

#### **Course Content:**

| Unit-1 Introduction                                                              | 8 hours         |
|----------------------------------------------------------------------------------|-----------------|
| Microwave frequency, Applications of Microwave, microwave transmission line, I   | Introduction to |
| Micro strip Transmission line (TL), Coupled TL, Strip TL, Coupled Strip Line, Co | planar TL,      |
| Shielded strip lines smith chart                                                 | _               |

### Unit-2

Rectangular Wave Guide: Field Components, TE, TM Modes, Dominant (TE10) mode, Power Transmission, Power losses, Excitation of modes, Circular Waveguides: TE, TM modes, Microwave cavities (Resonators), Scattering matrix- The transmission matrix, Passive microwave devices: Microwave Hybrid Circuits, E Plane Tee, H plane Tee and Magic Tee, Terminations, Attenuators, Phase Shifters, Directional Couplers: Two Hole directional couplers, S Matrix of a Directional coupler, Hybrid Couplers, Isolators, Circulators.

## Unit-3

Operation, characteristics and application of BJTs and FETs, Principles and characteristics: -tunnel diodes, Varactor diodes, PIN diode, Schottky diodes, Transferred Electron Devices: Gunn diode(Gunn Effect, RWH theory, two valley model theory, modes of operation), Avalanche Transit

time devices: IMPATT and TRAPATT devices, Microwave Oscillators and Mixers.

## Unit-4

Klystrons, Reentrant Cavities, Velocity-Modulation Process, Bunching Process, Output Power and Beam Loading, Multicavity Klystron Amplifiers, Beam-Current Density, Output Current Output Power of Two-Cavity Klystron, Reflex Klystrons, Velocity Modulation, Power Output and Efficiency, Helix Traveling-Wave Tubes (TWTs), Slow-Wave structures, Amplification Process, Convection Current, Axial Electric Field, Wave Modes, Gain Consideration, Microwave Crossed-Field Tubes, Magnetron Oscillators, Cylindrical Magnetron, Coaxial Magnetron, TunableMagnetron, Backward wave Oscillators.

## Unit-5

Introduction, Microwave Measurements devices: Slotted line carriage, Tunable detectors, VSWR Meter, microwave power measurements techniques, frequency measurement, wavelength measurements, Impedance and Refection coefficient measurements, VSWR, Insertion and attenuation measurements: Power ratio method, RF substitution method, VSWR measurements(Low and High). AWR software tool introduction.

| Internal Assessment | Mid Term Test | End Term Test | Total Marks |
|---------------------|---------------|---------------|-------------|
| (IA)                | (MTE)         | (ETE)         |             |
| 20                  | 30            | 50            | 100         |

| Name of The Course | Radar Guidance and Navigation |   |   |   |   |
|--------------------|-------------------------------|---|---|---|---|
| Course Code        | EEC518                        |   |   |   |   |
| Pre-requisite      | Antenna and Wave Propagation  |   |   |   |   |
| Co-requisite       |                               |   |   |   |   |
| Anti-requisite     |                               |   |   |   |   |
|                    |                               | L | T | P | C |
|                    |                               | 3 | 0 | 0 | 3 |

- 1. To introduce the fundamental concepts of RADAR (Radio Detection And Ranging) and Navigational aids
- 2. To provide exposure the students to different types of RADAR systems and Navigation
- 3. To Understand the needs of technological solution for designing and developing Radar functions and signal scanning
- 4. To Apply the knowledge of Radar Transmitters and Receivers

#### **Course Outcomes**

| CO1 | Apply the knowledge Radar Equation in various applications                      |
|-----|---------------------------------------------------------------------------------|
| CO2 | Analyze Doppler effect, CW and multiple frequency CW Radar                      |
| CO3 | Describe MTI and Pulse Radar functions and operations                           |
| CO4 | Understand Radar signal scanning and tracking technique                         |
| CO5 | Understand function and operation of Radar Transmitters, Antennas and Receivers |

#### Text Book (s)

- 1. Introduction to Radar System M.I. Skolnik ,Publisher: McGraw Hill
- 2. Radar Systems and Radio Aids to Navigation, Sen& Bhattacharya, Publisher: Khanna publishers

#### Reference Book (s)

- 1. Electronic and Radio Engg. F.E. Terman, Publisher: McGraw Hill
- 2. Andreas F. Molisch, "Wideband Wireless Digital Communication", Pearson Education 2001.
- 3. Radar Engg. Hand Book M.I. Skolnik, Publisher: McGraw Hill
- 4. Roger J Suullivan, "Radar Foundations for Imaging and Advanced Topics

# **Course Content:**

# Unit-1 Introduction and Radar equation 10 hours

Introduction: The simple form of Radar Equation, Radar Block diagram and Operation, Radar Frequencies, millimeter and submilimeter waves, Applications of Radar. Radar Equation: Prediction of Range Performance, Minimum Detectable Signal, Receiver Noise, Signal to Noise Ratio, Matched filter impulse response, Integration of radar Pulses, Radar Cross Section of Targets, Cross section Fluctuations, Radar Clutter-surface clutter, sea clutter and Land clutter ,weather clutter, Transmitter Power, Pulse Repetition Frequency and Range ambiguities, Antenna Parameters, system losses, propagation effects, other considerations.

## Unit-2CW and FM CW Radar 8 Hours

Doppler effect. CW radar. FM CW radar. Multiple frequency CW Radar.

## Unit-3MTI And Pulse Doppler Radar 8 Hours

Introduction, Delay line Cancellers, Multiple or staggered Pulse Repetition Frequencies, Range gated Doppler Filters, Block Diagram of Digital Signal Processor, Example of MTI radar Processor, , Pulse Doppler Radar, Non coherent MTI ,MTI from moving platform, Other types of MTI, Airborne radar.

| Unit-4Tracking Radar             | 8 Hours                                               |                                     |
|----------------------------------|-------------------------------------------------------|-------------------------------------|
| Sequential loping, conical scan, | Monopulse, Tracking in range and Doppler, Acquisition | g in range and Doppler, Acquisition |

Unit-5Radar Transmitters, Antennas and Receivers and Electronic Scanning Radar 7 Hours

Principle of phased array for electronic scanning, Advantages and capabilities of electronic scanning, block diagram of an electronic scanning system and its operation

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Introduction to IoT and its Applications |   |   |   |   |
|--------------------|------------------------------------------|---|---|---|---|
| Course Code        | EEC519                                   |   |   |   |   |
| Prerequisite       | IoT                                      |   |   |   |   |
| Corequisite        | IoT                                      |   |   |   |   |
| Antirequisite      |                                          |   |   |   |   |
|                    |                                          | L | T | P | C |
|                    |                                          | 3 | 0 | 0 | 3 |

To understand the basic concept of IoT and study the applications of IoT.

## **Course Outcomes**

| CO1 | Understand the concepts of Internet of Things                                        |
|-----|--------------------------------------------------------------------------------------|
| CO2 | Analyze basic protocols in wireless sensor network                                   |
| CO3 | Design IoT applications in different domain and be able to analyze their performance |
| CO4 | Implement basic IoT applications on embedded platform                                |
| CO5 | Analyze and design of academic project                                               |

## Text Book (s)

- 1.Rajkumar Buyya, Amir VahidDastjerdi, "Internet of Things Principles and Paradigms " Copyright © 2016 Elsevier Inc.
- 2.Arshdeep Bahga, Vijay Madisetti, "Internet of Things A hands-on approach", Universities Press, 2015. 2. Manoel Carlos Ramon, "Intel® Galileo and Intel® Galileo Gen

# Reference Book (s)

- 1.API Features and Arduino Projects for Linux Programmers", Apress, 2014.
- 2.Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014.

## **Course Content:**

| Unit-1 Introduction 8 h                                                                       | ours     |  |
|-----------------------------------------------------------------------------------------------|----------|--|
| The Internet of Things Today, Time for Convergence, Towards the IoT Universe, Internet of     | of       |  |
| Things Vision, IoT Strategic Research and Innovation Directions, IoT Applications, Future     | Internet |  |
| Technologies, Infrastructure, Networks and Communication, Processes, Data Management,         | ,        |  |
| Security, Privacy & Trust, Device Level Energy Issues, IoT Related, Standardization,          |          |  |
| Recommendations on Research Topics.                                                           |          |  |
| Unit-2 OpenIoT Architecture for IoT 8 ho                                                      | ours     |  |
| Background/Related Work - OpenIoT Architecture for IoT/Cloud Convergence - Schedulin          | ng       |  |
| Process and IoT Services Lifecycle - Scheduling and Resource Management - Validating          |          |  |
| Applications and Use Cases - Future Research Directions                                       |          |  |
| Unit-3 Device/Cloud Collaboration Framework 8 hours                                           |          |  |
| Introduction - Background and Related Work - Device/Cloud Collaboration Framework - F         | Powerful |  |
| Smart Mobile Devices - Runtime Adaptation Engine - Privacy-Protection Solution - Applic       | ations   |  |
| of Device/Cloud Collaboration - Context - Aware Proactive Suggestion - Semantic QA Cad        | che -    |  |
| Image and Speech Recognition Future Work                                                      |          |  |
| Unit-4 Principles, Architectures, and Applications 8 hours                                    |          |  |
| Principles, Architectures, and Applications: Introduction - Motivating Scenario - Definitions |          |  |
| and Characteristics Reference Architecture - Applications - Research Directions and Enablers  |          |  |
| Commercial Products - Case Study                                                              |          |  |

| Unit-5 Data Transmission                                                 | 8 hours        |
|--------------------------------------------------------------------------|----------------|
| Introduction - Scenario Architecture Overview- Sensors - The Gateway - S | Summary - Data |
| Transmission                                                             |                |

| Internal Assessment (IA) | Mid Term Test<br>(MTE) | End Term Test<br>(ETE) | Total Marks |
|--------------------------|------------------------|------------------------|-------------|
| 20                       | 30                     | 50                     | 100         |

| Name of The Course | Optical Communication |   |   |   |   |
|--------------------|-----------------------|---|---|---|---|
| Course Code        | EEC520                |   |   |   |   |
| Prerequisite       | Communication systems |   |   |   |   |
| Corequisite        |                       |   |   |   |   |
| Antirequisite      |                       |   |   |   |   |
|                    |                       | L | T | P | C |
|                    |                       | 3 | 0 | 0 | 3 |

- To study about the various optical fiber modes, configuration and transmission characteristics of optical fibers
- To learn about the various optical sources, detectors and transmission techniques
- To explore various idea about optical fiber measurements and various coupling techniques
- To enrich the knowledge about optical communication systems and networks

## **Course Outcomes**

| CO1 | Understand the evolution of optical system with respect to angles, modes and structure.   |  |  |
|-----|-------------------------------------------------------------------------------------------|--|--|
| CO2 | Analyze the different types of Optical Sources and Optical link design                    |  |  |
| CO3 | Evaluate the technical requirements of Systems and identify the suitable Fibre,           |  |  |
|     | Transmitters, Receivers and associated system modules.                                    |  |  |
| CO4 | Evolve proper Network design for Short / Long distance Optical Communication links taking |  |  |
|     | into consideration potential                                                              |  |  |
| CO5 | Evaluate SONET / SDH / WDM Systems                                                        |  |  |

## Text Book (s)

- 1. Gerd Keiser, "Optical Fiber Communications" McGraw-Hill, 3rd Edition, 2000.
- 2. R. Ramaswami& K.N. Sivarajan, Morgan Kaufmann," Optical Networks A practical perspective", 2nd Edition, Pearson Education, 2000.

## Reference Book (s)

- 1. John M. Senior, "Optical Fiber Communication", Second Edition, Pearson Education, 2007.
- 2.J.Senior, "Optical Communication, Principles and Practice", Prentice Hall of India, 3rd Edition, 2008.
- 3.J.Gower, "Optical Communication System", Prentice Hall of India, 2001.

#### **Course Content:**

| Unit-1 Introduction                                                                      | 8 hours        |
|------------------------------------------------------------------------------------------|----------------|
| Introduction to vector nature of light, propagation of light, propagation of light ina c | ylindrical     |
| dielectric rod, Ray model, wave model. Different types of optical fibers, Modal analy    | ysis of a step |
| index fiber. Signalde gradation on optical fiber due to dispersion and attenuation. Fal  | brication of   |
| fibers and measurement techniques like OTDR                                              |                |
| Unit-2                                                                                   |                |

Optical sources - LEDs and Lasers, Photo-detectors - pin-diodes, APDs, detectorresponsivity, noise, optical receivers. Optical link design - BER calculation, quantum limit, power penalties.

Optical switches - coupled mode analysis of directional couplers, electro-opticswitches.

## Unit-3

WDM -WDM Components -Tunable Optical Filters-Multiplexers and Demultiplexers - Add—Drop Multiplexers - Star Couplers- Wavelength Routers- Optical Cross-Connects - Wavelength Converters- - WDM Transmitters and receivers - Nonlinear Raman Crosstalk Stimulated Brillouin Scattering - Cross-Phase Modulation - Four-Wave Mixing — Dispersion -Management-Precompensation Schemes- Post compensation Techniques -Fiber Bragg Gratings- Optical Phase Conjugation- PMD Compensation.

## Unit-4

Attenuation measurements - Dispersion measurements - Fiber Refractive index profile measurements - Fiber cut- off Wave length Measurements - Fiber numerical Aperture Measurements - Fiber diameter

#### Unit-5

Basic Networks – SONET / SDH – Broadcast – and –select WDM Networks –Wavelength Routed Networks – Non linear effects on Network performance —Link Power budget -Rise time budget-Noise Effects on System Performance-Operational Principles of WDM Performance of WDM + EDFA system – Solutions – Optical CDMA – Ultra High Capacity

| Internal Assessment | Mid Term Test | Iid Term Test End Term Test |     |
|---------------------|---------------|-----------------------------|-----|
| (IA)                | (MTE)         | (ETE)                       |     |
| 20                  | 30            | 50                          | 100 |