

School of Electrical, Electronics and Communication Engineering

Program: M. Tech VLSI Design

Scheme: 2017/2018/2019

Curriculum

		Semest	er 1						
Sl.	Course	Name of the Course					Assessmen	t Patteri	1
No	Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1	MATH5001	Advanced Numerical & Statistical Methods	3	1	0	4	20	30	50
2	MVLS5020	Advanced Digital System Design	3	0	0	3	20	30	50
3	MVLS5021	Advanced VLSI Design	3	0	0	3	20	30	50
4	MVLS5004	Analog Filter Design	3	0	0	3	20	30	50
5	MVLS****	Program Elective 1	3	0	0	3	20	30	50
6	MVLS5019	Advanced Digital System Design Lab	0	0	2	1	50	-	50
7	MVLS5022	Advance VLSI Design Lab	0	0	2	1	50	-	50
		Total	15	1	4	18			

Semester II

Sl	Course	Name of the Course	Assess			Assessmen	ent Pattern			
No	Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE	
1	CENG5001	Professional and Communication skills	0	0	4	2	20	30	50	
2	MVLS5007	DSP for VLSI	3	0	0	3	20	30	50	
3	MVLS5008	VLSI Testing and fault Tolerance	3	0	0	3	20	30	50	
4	MVLS5009	ASIC Design and FPGAs	3	0	0	3	20	30	50	
5	MVLS****	Program Elective 2	3	0	0	3	20	30	50	
6	MVLS****	Program Elective 3	3	0	0	3	20	30	50	
7	MVLS5012	ASIC Design Lab	0	0	2	1	50	-	50	
8	MVLS5013	DSP for VLSI Lab	0	0	2	1	50	-	50	
		Total	15	0	8	19				

Semester III

Sl	Course	Name of the Course					Assessment Pattern			
No	Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE	
1	MVLS6001	Embedded System Design	3	0	0	3	20	30	50	
2	MVLS****	Program Elective 4	3	0	0	3	20	30	50	
3	MVLS****	Program Elective 5	3	0	0	3	20	30	50	
4	MVLS6004	Embedded System Lab	0	0	2	1	50	-	50	
5	MVLS9997	Research Seminar	0	0	2	1	50	-	50	
6	MVLS9998	Capstone Design- 1	0	0	10	5	50	-	50	
		Total	9	0	14	16				

Semester IV

Sl	Course	Nome of the Course					Assessment	t Patterr	ı
No	Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1	MVLS9999	Capstone Design- 2	0	0	30	15	50	-	50
		Total	0	0	30	15			

Programme Elective

Sl. No.	Course Code	Course Title	L	Т	Р	С
1	MVLS5003	Advanced VLSI Technology	3	0	0	3
2	MVLS5005	MOS Device Modelling	3	0	0	3
3	MVLS5010	Advanced Digital VLSI Design	3	0	0	3
3	MVLS5011	Low power VLSI Design	3	0	0	3
4	MVLS5014	Sensor Technology and MEMS	3	0	0	3
7	MVLS5015	Nano-Electronics	3	0	0	3
8	MVLS5016	Design of Semiconductor Memories	3	0	0	3
9	MVLS5017	Advanced Analog VLSI Design	3	0	0	3
10	MVLS5018	Reconfigurable Computing	3	0	0	3
11	MVLS6002	Physical Design Automation	3	0	0	3
12	MVLS6003	System-on-Chip Design	3	0	0	3
13	MVLS6005	Packaging and Interconnect Analysis	3	0	0	3
14	MVLS6006	EMI and EMC in System Design	3	0	0	3
15	MVLS6007	DSP Architecture	3	0	0	3
16	MVLS6008	Mixed Signal IC Design	3	0	0	3

Detailed Syllabus

Name of The Course	Advanced Numerical & Statistical Methods				
Course Code	MATH5001				
Prerequisite	Matrices and Calculus				
		L	Т	Р	С
		3	1	0	4

Course Objectives: To introduce the applications and trade off of various advanced methods used to solve a wide variety of engineering problems dealing with algebraic and differential equation that are often encountered in engineering and cannot be solved by analytical methods along with the introduction of design of experiment.

Course Outcomes

CO1	Do numerical integration for various problems			
CO2	Do interpolation using various interpolation techniques.			
CO3	Understand the Ordinary & Partial Differential equations and their solutions.			
CO4	Do numerical integration			
CO5	Use wavelets and their applications			

Text Book (s)

- 1. Numerical Method : E. Balagurusamy, Tata McGraw Hill Publication.
- 2. Applied Numerical Analysis : Curtis F. Gerald and Patrick O. Wheatley Pearson Education Ltd.

Reference Book (s)

- 1. Numerical Methods for Scientific and Engineering computation: M.K Jain, S.R.K Iyengar and R.K Jain, New age International Publishers.
- 2. Statistical Methods: S.P. Gupta, Sultan Chand and Sons
- 3. **Introduction to Mathematical Statistics:** A.M. Mood, F. Graybil and D.C.Boes, Mc Graw Hill Publication.

Unit-1	System of Equations	8				
		hours				
Solution	Solution of system of linear equations- Direct Methods- Gauss elimination – Pivoting, Partial and					
Total Piv	Total Pivoting, Triangular factorization method using Crout LU decomposition, Cholesky method,					
Iterative	Method- Gauss-Seidel and Jacobi method, ill conditioned matrix					
Solution	of system of non linear equation- Newton Raphson and Modified Newton Raphso	n				
Method.	Iterative methods.					
Unit-2	Interpolation and Approximation	8				
		hours				
Lagrange	e, Spline and Hermite interpolation, Approximations, Error of approximation, Norr	ns for				
discrete a	and continuous data, Least square approximation.					
Unit-3	Numerical Integration	8				
		hours				
Newton (Cotes closed Quadrature, Gauss Legendre Quadrature, Multiple Integration.					
Init 1	Numerical Solution of Differential Equations	0				
01111-4	Numerical Solution of Differential Equations	o hours				
Finite Di	fference Schemes, Numerical solution of Ordinary differential equation using I	Modified				
Euler's r Solution time depe	nethod, Runge-Kutta method of 2nd, 3rd and 4th orders, Predictor- Corrector of Laplace's and Poisson's equations by Liebmann's method, Solution of one dimendent heat flow.	method, nensional				

Unit-5	Probability and statistics	8
		hours
Review of	f concept of probability, Random Variables, Continuous and discrete distribution	function,

moments and moments generating functions, Binomial, Poisson, Negative Binomial, Geometric and Hyper-geometric Distributions, Uniform, Normal, Exponential, Gamma and Beta distributions. Point and Interval estimation, Testing of Hypothesis (t-test and chi square test), Analysis of variance and Introduction of Design of experiments.

Internal Assessment	Mid Term Test	End Term Test	Total Marks
20	30	(ETE) 50	100

Name of The Course	Advanced Digital System Design				
Course Code	MVLS5020				
Prerequisite	Digital Electronics				
		L	Т	P	С
		3	0	0	3

This course describes about the logic design techniques using simple combinational and sequential circuits to FPGAs, CPLDs.

Course Outcomes

CO1	Understand the Basics of MOS transistor Theory			
CO2	Understand the Device Modeling techniques using CAD and analyze the parameters which			
	degrades the functionality of MOS Devices			
CO3	Design Complex CMOS Circuits			
CO4	Understand and design various combinational and Sequential Circuits using CMOS			
	Transistors			
CO5	Perform Data Path Operations using CMOS Circuits			

Text Book (s):

- 1. T.R. Padmanabhan, B Bala Tripura Sundari, Design Through Verilog HDL, Wiley 2009.
- 2. Zainalabdien Navabi, Verliog Digital System Design, TMH, 2nd Edition.
- 3. Fundamentals of Digital Logic with Verilog Design Stephen Brown, Zvonkoc Vranesic, TMH, 2nd Edition.

Reference Book (s)

- 1. Advanced Digital Logic Design using Verilog, State Machines & Synthesis for FPGA Sunggu Lee, Cengage Learning, 2012.
- 2. Verilog HDL Samir Palnitkar, 2nd Edition, Pearson Education, 2009.
- 3. Advanced Digital Design with Verilog HDL Michel D. Ciletti, PHI,2009.

Unit-1	Overview of Verilog HDL	10 hours			
Introduction to VerilLog HDL: Verilog as HDL, Levels of Design Description, Concurrency,					
Simulatio	on and Synthesis, Function Verification, System Tasks, Programming Languag	<i>g</i> e			
Interface	Module, Simulation and Synthesis Tools				
Languag	e Constructs and Conventions: Introduction, Keywords, Identifiers, Whit	e Space,			
Characte	rs, Comments, Numbers, Strings, Logic Values, Strengths, Data Types, Sca	alars and			
Vectors,	Parameters, Operators.				
Unit-2	Unit-2 Modeling Concepts -I 8 hours				
Gate Level Modeling: Introduction, AND Gate Primitive, Module Structure, Other Gate					
Primitives, Illustrative Examples, Tristate Gates, Array of Instances of Primitives, Design of					
Flip-Flops with Gate Primitives, Delay, Strengths and Construction Resolution, Net Types,					
Design o	Design of Basic Circuit				

Modeling at Dataflow Level: Introduction, Continuous Assignment Structure, Delays and Continuous Assignments, Assignment to Vector, Operators.

Unit-3	Modeling Concepts -II	8 hours
Behavio	ural Modeling: Introduction, Operations and Assignments, Functional Bi furc	ation,
'Initial' C	onstruct, Assignments with Delays, 'Wait Construct, Multiple Always Block,	Designs at
Behaviou	aral Level, Blocking and Non-Blocking Assignments, The 'Case' Statement, Si	mulation
Flow, 'If'	an 'if-Else' Constructs, 'Assign- De-Assign' Constructs, 'Repeat' Construct, for	r loop, "The
Disable'	Construct, 'While Loop', Forever Loop, Parallel Blocks, Force-Release, Constr	ruct, Event.
Unit-4	Modeling Concepts -III	8 hours
Switch L	evel Modeling: Basic Transistor Switches, CMOS Switches, Bi Directional C	Gates,
Time De	lays with Switch Primitives, Instantiation with 'Strengths' and 'Delays' Strength	h
Contentio	on with Trireg Nets.	
System 7	Tasks, Functions and Compiler Directives: Parameters, Path Delays, Module	e
Paramete	rs. System Tasks and Functions, File Based Tasks and Functions, Computer D	Directives,
Hierarch	ical Access, User Defined Primitives	
Unit-5	Sequential Circuits and Test-benches	8 hours
Sequenti	al Circuit Description: Sequential Models - Feedback Model, Capacitive	Model,
Implicit	Model, Basic Memory Components, Functional Register, Static Machine C	Coding,
Sequentia	al Synthesis.	
Compon	ents Test and Verification: Test Bench - Combinational Circuits Testing, Se	quential
Circuit T	esting, Test Bench Techniques, Design Verification, Assertion Verification.	_

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Advanced VLSI Design				
Course Code	Code MVLS5021				
Prerequisite	Basic knowledge of semiconductors and its devices				
		L	Т	Р	С
		3	0	0	3

This course is designed to impart the knowledge of VLSI designing methodologies. The mathematical approach in dealing with the designing aspects enables the students to understand the subject in a better way.

Course Outcomes

CO1	Understand the Basics of MOS and Bipolar Transistor Amplifiers
CO2	Illustrate current mirrors and analyse the performance of various amplifiers with active
	loads
CO3	Desaign of Various MOS transistor powered operational Amplifiers
CO4	Understand and design various oscillators and Conveter circuits using CMOS Transistors
CO5	Understand the concepts of Switched Capacitor Filters

Text Book (s)

- 1. N. Weste and K. Eshranghian, "Principles of CMOS VLSI Design", Addison Wesley, 1998.
- 2. Jacob Backer, Harry W. Li and David E. Boyce, "CMOS Circuit Design, Layout and Simulation ", Prentice Hall of India, 1998..
- 3. L.Glaser and D. Dobberpuhl, "The Design and Analysis of VLSI, Circuits", Addison Wesley 1993.

Reference Book (s)

1. Randel & Geiger, "VLSI Analog and Digital Circuit Design Techniques" McGraw-

Hill,1990.

2. William M. Penny, Lillian Lau, "MOS Integrated Circuits- Theory, Fabrication, Design

and System Applications of MOS LSI", Van Nostrand Reihold Company..

3. Sung Ms Kang, Yusuf Lablebici, "CMOS Digital Integrated Circuits Analysis & Design",

Tata Mc-Graw Hill.

Unit-1 MOSFETs Fundamentals	9 hours			
Introduction To MOS Circuits: MOS Transistors, MOS Transistor Switches, CMOS				
Logic, Circuit and System Representations, MOS Transistor Theory - Introduction	on			
MOS Device Design Equations, The Complementary CMOS Inverter-DC				
Characteristics, Static Load MOS Inverters, The Differential Inverter, The				
Transmission Gate, The Tri State Inverter, Bipolar Devices				
Unit-2Circuit Characterization And Performance Estimation8 hours				
Resistance Estimation Capacitance Estimation, Inductance, Switching Characteristics CMOSGate				
Transistor Sizing, Power Dissipation, Sizing Routing Conductors, Charge Sharing, Design				
Margining, and Reliability.				
Unit-3 CMOS Circuits 8 hours				
Childs Childs	<u> </u>			
CMOS Circuit And Logic Design: CMOS Logic Gate Design, Basic Physical Design				

of Simple Gate, CMOS Logic Structures, Clocking Strategies, I/O Structures, Low					
Power Design. Basic operation of CMOS inverter, detailed analysis of its noise margin propagatio	m				
delay, power dissipation concept of layout & area, layout optimization & area estimation for a					
single as well as combinational logic circuits.					
Unit-4 Systems Design And Design Method 8 hours	5				
Design Strategies CMOS Chip Design Options, Design Methods, Design Capture Tools, Design					
Verification Tools, Design Economics, Data Sheets, CMOS Testing - Manufacturing Test					
Principles, Design Strategies for Test, Chip Level Test Techniques, System Level Test Techniques,					
Layout Design for Improved Testability.					
Unit-5CMOS Sub System Design8 hours					
Data Path Operations-Addition/Subtraction, Parity Generators, Comparators, Zero/One Detectors,					
Binary Counters, ALUs, Multiplication, Shifters, Memory Elements, Control-FSM, Control Logic					
Implementation.					

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Analog Filter Design				
Course Code	MVLS5004				
Prerequisite	Analog Signal Processing				
		L	Т	P	С
		3	0	0	3

Course Objectives: Analog circuits are essential in interfacing and building amplifiers and low

pass filters. This course introduces design methods for CMOS an

alog filter circuit.

Course Outcomes

CO1	Acquire a basic knowledge of filters and their characteristics.
CO2	Develop the ability to analyze and design analog filter circuits.
CO3	Learn noise modeling of CMOS analog circuits
CO4	Analysis of Butterworth and Chebyshev filters.
CO5	Design analog filter using recent active building block(CFOA, OTRA, CDTA, etc.)

Text Book (s)

- 1. Sedra and K. C. Smith, "Microelectronic Circuits", Oxford.
- 2. G. Daryanani, "Principles of Active Network Synthesis & Design", John Wiley & Sons **Reference Book (s)**
 - 1. Design of Analog Filters, Van Valkenburg, Oxford.

Course Content:

Unit-1	Basic Concepts	8 hours			
Filters: T	ypes, Specifications and Transfer functions; Circuit elements and scaling; OP-A	AMP:			
integrato	r model & basic circuits; Bode plots.				
Unit-2	Design and analysis of First & Second order Filters	8 hours			
First orde	er: Bilinear transfer functions, Passive Realization, Active realization, Realizatio	n with Bode			
plots; Se	cond order: Design parameters (ω and Q), Second order circuit.				
Unit-3	Synthesis Techniques	8 hours			
Biquad '	Topology: Tow Thomas, KHN, Sallen-Key, Single Amplifier Biquad usin	ng Multiple			
feedback	Topology; Inductance Simulation, General impedance converter (GIC) and FD	NR.			
Unit-4 Approximation Theory 8 hours					
Butterwo	Butterworth: Ideal low pass filter, Butterworth response & pole locations, low pass filter				
specifica	specifications; Chebyshev: Chebyshev polynomial, magnitude response, location of Chebyshev				
poles.					
Unit-5Study of Filter building blocks & recent trends8 hours					
Current mode building blocks and tunable filters using OTA, Current conveyors (CCI, CCII), CFOA,					
OTRA etc. and recent trends.					

OTRA etc. and recent trends.

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	PROFESSIONAL AND COMMUNICATION SK	ILL	ı		
Course Code	CENG5001				
Prerequisite					
		L	Т	Р	С
		0	0	4	2

To develop the professional and communication skills of learners in a technical environment. To enable the students to acquire functional and technical writing skills.

To acquire state-of-the-art presentation skills in order to present technical topics to both technical and non-technical audience.

Course Outcomes

CO1	The learners will be able to exhibit their language proficiency and skill in <i>Describing</i>
	Technology.
CO2	The learners will be able to exhibit their language proficiency and skill in <i>Investigating and</i>
	designing using Technology.
CO3	Exhibit their language proficiency and skill in Technical Writing and Syntax.
CO4	Exhibit their language proficiency and skill in Technical Resume and Company Profile
	Presentation.
CO5	Exhibit their language proficiency and skill in Pie chart, Bar chart, Line graphs: analysis
	and interpretation

Text Books and Softwares:

- 1. English Vocabulary in Use Advanced, McCarthy & Felicity, CUP, 2003
- 2. Sky Pronunciation CD-ROM
- 3. Cambridge Advanced Learner's Dictionary CD-ROM
- 4. English Master : Grammar

Reference Book (s)

- 1. Writing, Researching, Communicating, Keith et al, Tata McGraw-Hill, 1989
- 2. Advanced English Grammar, Martin, CUP, 2006

Unit-1	Basics of	Communication	8 hours
Functional L	anguage	Basic structures- Tense agreement, Prepositional phrases	
		Techno-words : Basic Concepts 62, 63	
Pronunciation : sounds of syllables: Past tense & plural endings		dings	
Technical Ex	pression	Organizational techniques in technical writing	
		Guided writing: Paragraph Writing, Note Making	
Presentation Skills Techniques of presentation (general topic: speech without visual aid		visual aids)	
		Listening to speeches and comprehending	
Graphical Sk	tills	Flow chart: Process and Functional description	
Unit-2			8 hours
Functional L	anguage	Basic structures- Voice, Conditionals	
		Techno-words : Basic Concepts 64,65,67	
		Pronunciation : Word Stress: two syllable words	
Technical Expression		Mechanics of Technical Writing and Syntax	
		Guided writing: Letter and email	

Presentation Skills	Interpersonal Communication Skills	
	Writing techniques for Power point presentation, Group	Discussion
Graphical Skills	Technical Illustrations and Instructions	
Unit-3		8 hours
Functional Language	Basic structures- Modal Verbs and Phrasal verbs	
	Techno-words : Basic Concepts 68,69,70,71	
	Pronunciation : Word Stress: compound words	
Technical Expression	Mechanics of Technical Writing and Syntax	
_	Guided writing: Technical Description	
Presentation Skills	resentation Skills Career advancement: Technical Resume and Company Profile	
	Presentation and Group Discussion	
Graphical Skills	Pie chart, Bar chart, Line graphs: analysis and interpretat	on
Unit-4		8 hours
Functional Language	Basic structures- Modal Verbs and Phrasal verbs	
	Techno-words : Basic Concepts 72,73,74, Functional voc	abulary 87
	Pronunciation : Sentence Stress	
Technical Expression	Guided and Free writing: Abstract and Technical articles	
Presentation Skills Nuances of Presentation to a Technical audience		
Graphical Skills	Oral Presentation of graphical representation	

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	DSP for VLSI				
Course Code	MVLS5007				
Prerequisite	DSP				
		L	Т	Р	С
		3	0	0	3

To design and analysis of DSP systems at chip level design

Design the different digital filters with efficient ways using VLSI.

Course Outcomes

CO1	To understand theory of different filters and algorithms
CO2	understand theory of multirate DSP, solve numerical problems and write algorithms
CO3	understand theory of prediction and solution of normal equations
CO4	know applications of DSP at block level.
CO5	understand theory of adaptive filters and algorithms

Text Book (s)

1. Parhi, K.K., VLSI Digital Signal Processing Systems: Design and Implementation, John Wiley (2007).

2. Oppenheim, A.V. and Schafer, R.W., Discrete-Time Signal Processing, Prentice Hall (2009) 2nd ed

Reference Book (s)

1. Mitra, S.K., Digital Signal Processing. A Computer Based Approach, McGraw Hill (2007)3rd ed.

2. Wanhammar, L., DSP Integrated Circuits, Academic Press (1999).2005, ISBN: 978-0131543188.

Unit-1 Introduction to DSP Systems	8 hours	
Introduction to DSP Systems, Iteration bound, Data Flow graphs (DFGs) representation, Loop		
Bound, Iteration rate, Critical loop, Critical path, Area-Speed-Power trade-offs, Algorith	ms for	
computing iteration bound, Pipelining of FIR Digital Filters, Parallel Processing, Pipelir	ing and	
Parallel Processing for low power		
Unit-2 Algorithmic Transformations	8 hours	
Retiming Definitions and properties, Retiming Techniques, Clock period minimization,	Unfolding,	
An algorithm for unfolding, Critical path, Applications of unfolding, Sample period red	iction,	
Folding, Folding order, Folding Factor, register minimization techniques, register minim	ization in	
folded architecture, Forward Backward Register Allocation technique, folding of multi-	ate	
systems, Folding Bi-quad filters, Retiming for folding.		
Unit-3 Systolic Architecture Design and Fast Convolution	8 hours	
Introduction, system array design methodology, FIR systolic arrays, , Systolic Design for	r space	
representations containing delays Systolic architecture design methodology, Design exa	nples of	
systolic architectures, selection of scheduling vector, matrix-matrix multiplication and 2	-D systolic	
array design, Hardware Utilization efficiency, Cook-Toom Algorithm, Wniograd Algori	thm,	
Iterated Convolution, Cyclic Convolution, Design of fast convolution algorithm by insp	ection.	
Unit-4 Algorithm Strength Reduction in filter	8 hours	
Introduction, Parallel FIR filters, Polyphase decomposition, Discrete Cosine Transform	and Inverse	
Discrete Cosine Transform, parallel architectures for Rank Order filters.		
Unit-5 Pipelined and Parallel Recursive and Adaptive Filters	8 hours	

Introduction, pipelining in 1st order IIR digital filters, pipelining in higher order IIR digital filters, parallel processing for IIR filters, combined pipelining and parallel processing for IIR filters, low power IIR Filter Design using pipelining and parallel processing, pipelined adaptive digital filters.

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	VLSI Testing and Fault Tolerance				
Course Code	MVLS5008				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives: This course deals with basics of testing and fault diagnosis in IC design. The combinational and sequential circuits are tested with various test patterns. Self checking circuits and algorithms are also discussed.

Course Outcomes

CO1	Understand various testing techniques.
CO2	Various physical faults and their modelling
CO3	Various self test circuits and test algorithms
CO4	Know fault diagnosis methods for combinational and sequential circuits
CO5	Verify increasingly complex designs more efficiently and effectively.

Course Content:

Unit-1Physical Fault Modeling And Basics Of Testing8 ho	ours	
Physical Faults and their modelling, Stuck at Faults, Bridging Faults, Fault collapsing, Fault		
Simulation, Deductive, Parallel, and Concurrent Fault Simulation, Introduction to Testing		
Unit-2 Test Generation For Combinational And Sequential Circuits 8 ho	ours	
Deterministic and Weighted Random Test Pattern Generation, Test generation for combination	nal	
logic circuits, Testable combinational logic circuit design, Test generation for sequential circu	its,	
design of testable sequential circuits.		
Unit-3Design For Testability8 ho	ours	
Design for Testability, Ad-hoc design, Generic scan based design, Classical scan based design	1	
,System level DFT approaches, Time Frame Expansion, Controllability and Observability Sca	n	
Design, Boundary Scan for Board Level Testing		
Unit-4Self Test And Test Algorithms8 ho	ours	
Built-In Self Test and Totally Self checking circuits, Test pattern generation for BIST, Circula	ar	
BIST, BIST Architectures, Testable Memory Design -Permanent, Intermittent and Pattern Sen	isitive	
Faults, Marching Tests, Test algorithms, Test generation for Embedded RAMs.		
Unit-5Fault Diagnosis8 ho	ours	
Logic Level Diagnosis, Diagnosis by UUT reduction, Fault Diagnosis for Combinational Circu	uits ,	
Self-checking design, System Level Diagnosis, Concept of Redundancy, Spatial Redundancy,	Time	
Redundancy, Error Correction Codes, Reconfiguration Techniques, Yield Modelling, Reliability		
and effective area utilization.		

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	ASIC Design and FPGA				
Course Code	MVLS5009				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives: This course deals with the concepts of ASIC design, ASIC Construction and design using Xilinx

Course Outcomes

CO1	Define the basic concepts of ASIC design and Verilog HDL
CO2	Express the details of programmable ASICs and FPGAs technologies from ACTEL,
	ALTERA and XILINX
CO3	Practice writing the Dataflow and Behavioral models of digital circuits for simulation and
	synthesis using ASICs and FPGAs
CO4	Testing and Verification of Register Transfer Level (RTL) models of Digital Circuits using
	ASICs and FPGAs.
CO5	Simulate and Synthesize using Xilinx family FPGA

Text Book (s):

- 1. M.J.S .Smith, " Application Specific Integrated Circuits " Addison -Wesley Longman Inc., 1997
- R. B. Reese, M A Thornton, "Introduction to Logic Syntehsis Using Verilog HDL," Morgan & Claypool Publishers, 2006

Reference Book (s)

- 1. Skahill, Kevin," VHDL for Programmable Logic", Addison-Wesley, 1996
- 2. John F. Wakherly, "Digital Design: Principles and Practices", 2nd Edn 1994, Prentice Hall International Edn
- 3. Charles W. Mckay, "Digital Circuits a proportion for microprocessors", Prentice Hall International Edition.

Unit-1	Introduction To ASIC and HDL	8 hours
Introduct	ion To ASICS, CMOS Logic And ASIC Library Design, Types of ASICs - D	Design flow
- CMOS	transistors CMOS Design rules - Combinational Logic Cell – Sequential logic	cell - Data
path logic	c cell - Transistors as Resistors - Transistor Parasitic Capacitance- Logical effo	ort -Library
cell desig	n - Library architecture.	-
Review of	of VHDL/Verilog: Entities and architectures	
Unit-2	Programmable ASICS	8 hours
Program	nable Asics, Programmable ASIC Logic Cells And Programmable ASIC I/O	Cells
Anti fuse	- static RAM - EPROM and EEPROM technology - PREP benchmarks - Ac	tel ACT -
Xilinx LO	CA - Altera FLEX - Altera MAX DC & AC inputs and outputs -	
Clock &	Power inputs - Xilinx I/O blocks	
Unit-3		8 hours
	Programmable ASIC Interconnect & Software	0 110 01 0
Program	nable ASIC Interconnect, Programmable ASIC Design Software And Low	

Level Design Entry Actel ACT -Xilinx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera MAX 9000

- Altera FLEX - Design systems - Logic Synthesis - Half gate ASIC -Schematic entry - Low level design language - PLA tools - EDIF- CFI design representation

Unit-4 ASIC Construction & FPGA partitioning 8 hours ASIC Construction, Floor Planning, Placement And Routing,System partition - FPGA partitioning - partitioning methods - floor planning - placement - physical design flow - global routing - detailed routing - special routing -circuit extraction - DRC. Unit-5 Design using Xilinx 8 hours

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Embedded Systems Design				
Course Code	MVLS6001				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

This course deals introduction to Embedded Computing, embedded Processors, RTOS Design and Simulation.

Course Outcomes

CO1	understand the basic of Embedded System Design.
CO2	visualize the role of CISC & amp; RISC in processor operation.
CO3	differentiate between embedded processor and other general-purpose processors and how to
	use them in specific application
CO4	understand RTOS – basics and relevance in embedded system.
CO5	list Issues involved in embedded system design

Text Book (s)

- 1. Wayne Wolf, "Computers as Components: Principles of Embedded Computing System Design", Morgan Kaufman Publishers.
- 2. Jane.W.S. Liu, "Real-Time systems", Pearson Education Asia.
- 3. Heath, S., Embedded Systems Design, Elsevier Science (2003).

Reference Book (s)

- 1. C. M. Krishna and K. G. Shin, "Real-Time Systems", McGraw-Hill, 1997
- 2. Frank Vahid and Tony Givargis, "Embedded System Design: A Unified Hardware/Software Introduction", John Wiley & Sons.
- 3. Fisher, J.A., Faraboschi, P. and Young, C., Embedded Computing A VLIW
- 4. Approach to Architecture, Compilers and Tools, Morgan Kaufman (2005).

Course Content:

Unit-1	Embedded Processing	8 hours	
Introduction to Embedded Computing, Difference between Embedded and General-Purpose			
Computin	ng, Characterizing Embedded Computing, Design Philosophies, RISC, CISC, VLI	W versus	
superscal	ar, VLIW versus DSP Processors, Role of the Compiler, Architectural structures,	The data	
path, Reg	sisters and Clusters, Memory Architecture, Branch architecture, Speculation and p	rediction,	
Prediction	n in the embedded domain, Register File Design, Pipeline Design, the control unit	, control	
registers			
Unit-2	Embedded Processors	8 hours	
Embedde	d Computers, Characteristics of Embedded Computing Applications, and Challen	ges in	
Embedde	d Computing system design. ARM architecture, Embedded Cores, Soft and Hard	Cores,	
Architect	ure of Configurable Microblaze soft core, Instruction set, Stacks and Subroutines,	Microblaze	
Assembly	y Programming, Input-Output interfacing, GPIO, LCD interfacing, Peripherals, DI	OR	
Memory, SDRAM, Microblaze interrupts, Timers, Exceptions, Bus Interfacing, DMA, On-chip			
Peripheral bus (OPB), OPB Arbitration, OPB DMA			
Unit-3	Networks	8 hours	
Distribut	ed Embedded Architecture- Hardware and Software Architectures. Networks for e	mbedded	

Distributed Embedded Architecture- Hardware and Software Architectures, Networks for embedded systems- I2C, CAN Bus, SHARC link supports, Ethernet, Myrinet, Internet, Network-Based design-Communication Analysis, system performance Analysis, Hardware platform design, Allocation and scheduling, Design Example: Elevator Controller.

Unit-4 RTOS and Application Design	8 hours	
Programming embedded systems in assembly and C – Meeting real time constraints –M	ulti-state	
systems and function sequences. Embedded software development tools -Emulators and	debuggers.	
Embedded Matlab, Embedded JAVA, Embedded C extensions, Real time operating syst	ems,	
Embedded RTOS, Real time process scheduling, structure of real time operating system	Memory	
management in Embedded operating system. File systems in Embedded devices, Differe	nt types of	
locks, Semaphores, Application studies with Vxworks, Montavista Linux etc.		
Unit-5 System Design Techniques and Simulation	8 hours	
Design Methodologies, Requirement Analysis, Specification, System Analysis and Architecture Design,		
Quality Assurance. System-on-a-Chip (SoC), IP Blocks and Design Reuse, Processor C	Cores and SoC,	
Non-programmable accelerators, reconfigurable logic, multiprocessing on a chip, symmetric		
multiprocessing, heterogeneous multiprocessing, use of simulators, Compilers, Loaders, Linkers,		
locators, assemblers, Libraries, post run optimizer, debuggers, profiling techniques, binary utilities,		
linker script, system simulation.		

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Advanced VLSI Technology				
Course Code	MVLS5003				
Prerequisite					
		L	Т	P	С
		3	0	0	3

A course in VLSI semiconductor devices, to give knowledge about modern CMOS technology, crystal growth, fabrication, and basic properties of silicon wafers. It will focus on lithography, thermal oxidation, (Si/Si)2, interface, dopant diffusion, ion implantation, thin film deposition, etching, and back-end technology

Course Outcomes

CO1	Understand various IC fabrication techniques.
CO2	Have knowledge of fabrication of various semiconductor components.
CO3	Understand fundamentals of different deposition techniques for thin film deposition.
CO4	Learn basics of lithography and application of different lithographic technologies in IC
	fabrication processes.
CO5	Understand etching and metallization process and its significance in IC fabrication process.

Text Book (s)

1. W. Wolf, "Modern VLSI design", 4th Edition, PHI Learning, 2009, ISBN 9788120338241.

2. S.M.Sze, "VLSI technology", 2nd Edition, Tata Mc Graw Hill Education, 2003, ISBN 9780070582910

Reference Book (s)

1. Douglas Pucknell, "Basic VLSI design", 3rd Edition, PHI Learning, 2011, ISBN 9788120309869

Unit-1 IC Fabrication Technologies	8 hours		
Process steps in IC fabrication Crystal growth and wafer preparation- Czochralski process-			
apparatus- silicon shaping, slicing and polishing- Diffusion of impurities- physical mechanism-			
Fick's I and II law of diffusion- Diffusion profiles- complementary (erfc) error function	n- Gaussian		
profile- Ion implantation- Annealing process- Oxidation process- Lithography- Photoli	thography,		
Fine line lithography, electron beam and x-ray lithography- Chemical vapour depositio	n- epitaxial		
growth- reactors- metallisation- patterning- wire bonding and packaging - Comparison			
Unit-2 Fabrication of Semiconductor Devices	8 hours		
Monolithic components Isolation of components- junction isolation and dielectric isola	tion-		
Transistor fabrication- buried layer- impurity profile- parasitic effects- monolithic diod	es- schottky		
diodes and transistors- FET structures- JFET- MOSFET- PMOS and NMOS, control of	f threshold		
voltage (Vth)- silicon gate technology- Monolithic resistors- sheet resistance and resist	or design-		
resistors in diffused regions- MOS resistors- monolithic capacitors- junction and MOS	structures-		
IC crossovers and vias			
Unit-3 CMOS Technology	8 hours		
CMOS technology Metal gate and silicon gate- oxide isolation- Twin well process- Latch up-			
BiCMOS technology- fabrication steps- circuit design process- stick diagrams- design rules-			
Capacitance of layers- Delay- Driving large capacitance loads- Wiring capacitance- Basic circuit			
concepts- scaling of MOS structures- scaling factors- effects of miniaturization.			
Unit-4 CMOS Logic Systems	8 hours		

Subsystem design and layout- Simple logic circuits- inverter, NAND gates, BiCMOS circuit, NOR gates, CMOS logic systems – bus lines- arrangements- power dissipation- power supply rail distribution- subsystem design process- design of a 4 bit and 8 bit shifter.

Unit-5GaAs Fabrication8 hoursGallium Arsenide Technology Sub-micro CMOS technology- Crystal structure- Doping process-
Channeling effect- MESFET- GaAs fabrication- Device modeling.8 hours

Internal Assessment	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	MOS Device Modelling				
Course Code	MVLS5005				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

This course deals with fundamentals of semiconductor devices, which are undergraduate level, will be reviewed and distributed-constant circuit models will be also provided. Then, in-depth modeling of MOS transistors will be introduced using the textbook. This helps you design VLSIs using the deep sub-micron CMOS in the near future

Course Outcomes

CO1	Explain basic concept of semiconductor devices
CO2	Design CMOS VLSI chips
CO3	model, analyze and design different types of MOS devices
CO4	Learn Parameter Measurement
CO5	Forecast the future direction of VLSI technologies

Text Book (s)

1. Tsividis, Y., "Operation and Modeling of the MOS Transistor", 2nd ed.,Oxford University Press, 2008.

2. Sze, S.M., "Physics of Semiconductor Devices", John Wiley, 2008.

Reference Book (s)

1. Muller, R.S., Kamins, "T.I., and Chan, M., Device Electronics for Integrated Circuits", 3rd ed., John Wiley, 2007.

2. Taur, Y. and Ning, T.H., "Fundamentals of Modern VLSI Devices", Cambridge University Press, 2009.

Unit-1	Semiconductor and Quantum Mechanics Fundamentals	8 hours		
Poisson and Continuity Equations, Recombination, Equilibrium carrier concentrations electron				
statistics,	density of states, effective mass, bandgap narrowing), Review of PN and MS di	odes.		
Basic Qu	antum Mechanics, Crystal symmetry and band structure, 2D/1D density of states	8,		
Tunnelin	g			
Unit-2	Modeling and Simulation of Carrier Transport and MOS Capacitors	8 hours		
Carrier S	cattering (impurity, phonon, carriercarrier, remote/interface), Boltzmann Transp	ort		
Equation	, Drift-diffusion. Modes of operation (accumulation, depletion, strong/weak inve	ersion),		
Capacita	nce versus voltage, Gated diode, Non-ideal effects (poly depletion, surface charg	es), High		
field effe	cts (tunneling, breakdown).			
Unit-3	MOSFET Modeling	8 hours		
Introduction Interior Layer, MOS Transistor Current, Threshold Voltage, Temperature Short				
Channel	and Narrow Width Effect, Models for Enhancement, Depletion Type MOSFET,	CMOS		
Models in	n SPICE, Long Channel MOSFET Devices, Short Channel MOSFET Devices.			
Unit-4	Unit-4Parameter Measurement8 hours			
General Methods, Specific Bipolar Measurement, Depletion Capacitance, Series Resistances,				
Early Effect, Gummel Plots, MOSFET: Long and Short Channel Parameters, Statistical Modeling				
of Bipolar and MOS Transistors.				
Unit-5	Advanced Device Technology	8 hours		

SOI, SiGe, strained Si, Alternative oxide/gate materials, Alternative geometries (raised source/drain, dual gate, vertical, FinFET), Memory Devices (DRAM, Flash). Sub-micron and Deep sub-micron Device Modeling.

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Advanced Digital VLSI Design				
Course Code	MVLS5010				
Prerequisite					
		L	Т	P	С

This course deals with the concepts of MOS transistor, Modelling of MOS transistor, CMOS, Latches and Registers.

Course Outcomes

CO1	understand the concepts of MOS devices
CO2	model MOS transistor
CO3	Design latches and registers
CO4	Design data paths
CO5	Understand memory control elements

Text Book (s):

- 1. Jan.M.Rabaey., Anitha Chandrakasan Borivoje Nikolic, "Digital Integrated Circuits", Second Edition
- 2. Neil H.E Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design", 2nd Edition, Addition Wesley, 1998

Reference Book (s):

1. Sung-Mo Kang, Yusuf Leblebici, "CMOS Digital IC- Analysis and Design", 3rd Edition, Tata McGraw Hill publication

Unit-1 MOS Transistor	8 hours			
MOS Transistor-Introduction to MOS device, MOS Transistor under static conditions-threshold				
voltage-Resistive operation-saturation region -channel length modulation-velocity sat	uration-Hot			
carrier effect-drain current Vs voltage charts - sub threshold conduction - equivalent r	esistance-			
MOS structure capacitance-Design A logic sates using NMOS and PMOS and CMOS	devices-			
Stick Diagram.				
Unit-2 Modelling of MOS Transistor	8 hours			
Modeling of MOS Transistor using PSPICE-Introduction - Basic Concepts-LEVEL1-	LEVEL2-			
LEVEL3 modeling technique-various model comparison. Static CMOS inverter-Eval	uating the			
Robustness of CMOS Inverter. Performance of CMOS inverter: Dynamic Behavior-c	omputing the			
capacitance-propagation delay sizing inverter for performance-sizing a chain of inver	tors -			
Dynamic power consumption-static consumption				
Unit-3 CMOS	8 hours			
Static CMOS design-complementary CMOS - static properties- complementary CMC	S design-			
Power consumption in CMOS logic gates-dynamic or glitching transitions - Design te	chniques to			
reduce switching activity - Radioed logic-DC VSL - pass transistor logic - Differentia	l pass			
transistor logic -Sizing of level restorer-Sizing in pass transistor-Dynamic CMOS des	ign-Basic			
principles - Domino logic-optimization of Domino logic-NPCMOS-logic style selection	on -Designing			
logic for reduced supply voltages				
Unit-4 Latches & Registers	8 hours			

Timing metrics for sequential circuit -latches Vs registers -static latches and registers - Bistability principle - multiplexer based latches-master slave edge triggered registers- non-ideal clock signalslow voltage static latches-static SR flip flop - Dynamic latches and registers-C2MOS register -Dual edge registers-True single phase clocked registers-pipelining to optimize sequential circuit latch Vs register based pipelines-non-Bistable sequential circuit-Schmitt trigger-mono stable -Astable -sequential circuit - choosing a clocking strategy.

Unit-5	Data Path Operations	8 hours
Data Path	Operations Addition/Subtraction - Comparators- Zero/One Detectors- Binary	Counters-
ALUs- M	ultiplication- Shifters- Memory elements- control : Finite-State Machines.	

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Low power VLSI Design				
Course Code	MVLS5011				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:. This course deals with issues and models to design low-power VLSI circuits, fundamentals of power dissipation in microelectronic devices, will be able to estimate power dissipation due to switching, short circuit.

Course Outcomes

CO1	analyze and design low-power VLSI circuits using different circuit technologies and design
	levels.
CO2	design chips used for battery-powered systems
CO3	design high-performance circuits not exceeding power limits
CO4	Design and test of low-voltage CMOS circuits.
CO5	Learn architecture level estimation and synthesis

Text Book (s)

- 1. Roy, K. and Prasad, Sharat C., "Low Power CMOS VLSI: Circuit Design", John Wiley, 2009.
- 2. Chandrakasan, A.P. and Broderson, R.W., "Low Power Digital CMOS Design", Kluwer, 1995.

Reference Book (s)

- 1. Rabaey, J.M. and Pedram, M., "Low Power Design Methodologies", Springer 1996.
- 2. Yeo, K.S. and Roy K., Low Voltage, "Low Power VLSI Subsystems", McGraw Hill, 2004.
- 3. Sanchez-Sinencio, E. and Andreou, A.G., "Low-Voltage/Low-Power Integrated

Unit-1 Low Power Microelectronics	8 hours			
Retrospect and Prospect, Fundamentals of power dissipation in microelectronic devices, Estimation				
of power dissipation due to switching, short circuit, subthreshold leakage, and diode	leakage currents.			
Unit-2 Device & Technology Impact on Low Power	8 hours			
Dynamic dissipation in CMOS, Transistor sizing & gate oxide thickness, Impac	t of technology			
Scaling, Technology & Device innovation.				
Unit-3 Simulation Power and Probabilistic power analysis	8 hours			
SPICE circuit simulators, gate level logic simulation, capacitive power estimation, s	tatic state power,			
gate level capacitance estimation, architecture level analysis, data correlation a	analysis in DSP			
systems. Monte Carlo simulation. Random logic signals, probability & frequency, probabilistic				
power analysis techniques, signal entropy.				
Unit-4 Low Voltage Technologies and Circuits 8 hours				
Threshold Voltage Scaling and Control, Multiple Threshold CMOS (MTCMOS)	, Substrate Bias			
Controlled Variable Threshold CMOS, Testing Issues: Design and test of low-voltage CMOS				
circuits.				
Unit-5 Algorithm and architectural level methodologies	8 hours			
Introduction, design flow, algorithmic level analysis and optimization, Architectural level				
estimation and synthesis.				

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	rse Sensor Technology and MEMS				
Course Code	MVLS5014				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Description:

This course deals with study of different Sensors and MEMS technology

Course Outcomes

CO1	Understand working of sensors
CO2	know microsystems and MEMES
CO3	Know materials used for MEMS
CO4	Understand fabrication process
CO5	Know design process of microsystem

Text Book (s):

1. Integrated Sensors, Microp-actuators and micro-systems (MEMS): K.D. (Guest

Editor), Special Issue of proceedings of IEEE, Vol. 86, No.8, August 1998

2. RF MEMS: Theory, Design, and Technology: Gabriel M. Rebeiz, Wiley, 2003.

Reference Book (s)

1. Fundamentals of Microfabrication : Marc Madou, CRC Press, 1997.

Course Content:

Unit-1	Overview of Sensors	8 hours		
Classific	Classification of physical sensors, Integrated, Intelligent, or Smart sensors, Sensor Principles and			
Example	s : Thermal sensors, Electrical Sensors, Mechanical Sensors, Chemical and B	iosensors,		
Case stud	ly on strain sensors, Temperature sensors, Pressure sensors, Humidity sensors	s,		
Accelero	meters, Gyroscopes, RF MEMS Switch, phase shifter, and smart sensors.			
Unit-2	Microsystems	8 hours		
MEMS a	nd Microsystems, Microsystems and microelectronics, Microsystems and mi	niaturization,		
Working	principle of micro system, Micro sensors, Micro actuators, MEMS with Micro	ro actuators		
Unit-3	Materials For MEMS	8 hours		
Substrate	Substrate and wafer, silicon as a substrate material, silicon compound, silicon Piezo-resistors,			
Gallium	Gallium Arsenide, quartz, Piezoelectric crystals, polymers and packaging Materials.			
Unit-4Fabrication Process8 hours				
Photolithography, Ion implantation, Oxidation, Chemical vapor deposition (CVD), Physical vapor				
depositio	n, Deposition by Epitaxy, Etching.Manufacturing Process - Bulk Micromach	ining, Surface		
Microma	chining, LIGA Process			
Unit-5	Micro system Design	8 hours		
Design consideration, process design, Mechanical design, Mechanical design using MEMS.				
Mechanical packaging of Microsystems, Microsystems packaging, interfacing in Microsystems				
packaging, packaging technology, selection of packaging materials, signal mapping and				
transduction. MEMS for RF Applications: Need for RF MEMS components in communications,				
space and	d defense applications			

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Nano-Electronics				
Course Code	MVLS5015				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

1. Understand the fundamental forces controlling the dynamic and static response of materials at the Nanoscale.

- 2. To have comprehensive understanding of state-of-the-art Nano-fabrication methods.
- 3. To have knowledge of processing conditions to functional nanomaterials.
- 4. To scalable system for the continuous production of nanomaterials.
- 5. To understand the state-of-the-art characterization methods for nanomaterials.

Course Outcomes

CO1	Understand the fundamental forces controlling the dynamic and static response of materials
	at the Nano-scale
CO2	To demonstrate a comprehensive understanding of state-of-the-art Nano-fabrication
	method
CO3	To determine and evaluate processing conditions to functional nanomaterials.
CO4	Design and analyse scalable system for the continuous production of nanomaterials.
CO5	Understand the state-of-the-art characterization methods for nanomaterials.

Text Book (s):

1. Nanoelectronics & Nanosystems: From Transistor to Molecular & Quantum Devices: Karl Goser, Jan Dienstuhl.

Reference Book (s)

- 1. Rainer Waser (Ed.), Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, Wiley-VCH, 2003
- 2. Microfabrication by Marc Madaon, CRC Press

Course Content:

Unit-1	Introduction to nanoelectronics			
Recent p	Recent past, the present and its challenges, Future, Overview of basic Nanoelectronics, Physics			
solid stat	e, Structure - Energy band - Quantum mechanics.			
Unit-2	Fundamentals of Nanoelectronics	8 hours		
Fundame to compu- devices, o performa processir computat computer	ntals of logic devices:- Requirements, dynamic properties, threshold gates, p tations, concepts of logic devices:- classifications, two terminal devices, fie coulomb blockade devices, spintronics, quantum cellular automata – quantu nce of information processing systems;- basic binary operations, measure of g capability of biological neurons, performance estimation for the human br ion:- power dissipation limit – dissipation in reversible computation – the ul	bhysical limits Id effect in computing ; performance rain. Ultimate timate		
Unit-3	Molecular Electronics Components	8 hours		
Characterization of switches and complex molecular devices, polyphenylene based Molecular				
rectifying diode switches. Technologies, Single Electron Devices, Quantum Mechanical Tunnel				
Devices, Quantum Dots & Quantum wires.				
Unit-4	Nanocomputers	8 hours		

Unit-4 Nanocomputers

Nanoelectronic & Nanocomputer architectures and nanotechnology: Introduction to nanoelectronic and nanocomputers, Quantum DOT cellular Automata (QCA), Single electron circuits, molecular circuits Nanocomputer Architecture.

Unit-5	Silicon	MOSFETs & Quantum Transport Devices	8 hours	
Silicon M	IOSFET	S - Novel materials and alternate concepts: - fundamentals of MOSF	ET Devices,	
scaling ru	ules, silic	con-dioxide based gate dielectrics, metal gates, junctions & contacts,	, advanced	
MOSFET concepts, Quantum transport devices based on resonant tunneling:- Electron tunneling,				
resonant tunneling diodes – resonant tunneling devices; Single electron devices for logic				
application	ons:- Sin	gle electron devices – applications of single electron devices to logic	c circuits.	

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Design of Semiconductor Memories				
Course Code	MVLS5016				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

- 1. Comprehend the concept of memory structures, reliability and radiation effects.
- 2. Have a knowledge on Memory fault modelling, Testing and design for fault tolerance.

Course Outcomes

CO1	Select architecture and design semiconductor memory circuits and subsystems.
CO2	Know non-volatile memory architecture
CO3	Identify various fault models, modes and mechanisms in semiconductor memories and their
	testing procedures.
CO4	Understand reliability issues and RAM failures
CO5	Know about packaging technologies of memory

Text Book (s)

- 1. Ashok K. Sharma, "Semiconductor Memories Technology, Testing and Reliability", Prentice-Hall of india Private Limited, New Delhi, 1997.
- 2. Tegze P. Haraszti," CMOS Memory Circuits", Kluwer Academic Publishers, 2001

Reference Book (s)

- 1. Betty Prince, "Emerging Memories: Technologies and Trends", Kluwer academic publishers, 2002
- 2. Kiyoo Itoh, "VLSI memory chip design", Springer International Edition

Unit-1 RAM Technologies	8 Hours		
Static Random Access Memories: SRAM Cell Structures-MOS SRAM Architecture-MOS SRAM			
Cell and Peripheral Circuit Operation-Bipolar SRAM Technologies- SOI Technology-Ac	dvanced		
SRAM Architectures and Technologies-Application Specific SRAM- Dynamic Random	Access		
Memories: DRAM Technology Development-CMOS DRAMs-DRAMs Cell Theory and	Advanced		
Cell Structures -BiCMOS, DRAMs-Soft Error Failures in DRAMs-Advanced DRAM De	esigns and		
Architecture-Application, Specific DRAMs.			
Unit-2 Nonvolatile Memories	8 hours		
Masked Read-Only Memories (ROMs)-High Density ROMs-PROMs-Bipolar PROMs-C	CMOS,		
PROMs-Erasable (UV) - EPROM-Floating-GateEPROM Cell-One-Time Programmable	(OTP)		
EPROMs-EEPROM-EEPROM Technology And Arcitecture-Nonvolatile SRAM-Flash Memories			
(EPROMs or EEPROM)-Advanced Flash Memory Architecture			
Unit-3 Memory Fault Modelling, Testing and design for Fault Tolerance	8 hours		
RAM Fault Modeling, Electrical Testing, Pseudo Random Testing-Megabit DRAM Testi	ing-		
Nonvolatile Memory Modeling and Testing-IDDQ Fault Modeling and Testing- Applicat	tion		
Specific Memory Testing			
Unit-4 Reliability and Radiation Effects	8 hours		
General Reliability Issues-RAM Failure Modes and Mechanism-Nonvolatile Memory			
Reliability-Reliability Modeling and Failure Rate Prediction-Design for Reliability-			
Reliability Test Structures-Reliability Screening and Qualification. RAM Fault Modeling,			

Electrical	Testing, Psuedo Random Testing-Megabit DRAM Testing-Nonvolatile Memo	ory
Modeling	and Testing-IDDQ Fault Modeling and Testing-Application Specific Memory	
Testing.		
Unit-5	Packaging Technologies	8 hours
Radiation	Effects-Single Event Phenomenon (SEP)-Radiation Hardening Techniques-	
Radiation	Hardening Process and Design Issues-Radiation Hardened Memory	
Characteristics-Radiation Hardness Assurance and Testing - Radiation Dosimetry-Water		
Level Radiation Testing and Test Structures. Ferroelectric Random Access Memories		
(FRAMs)	-Gallium Arsenide (GaAs) FRAMs-Analog Memories-Magnetoresistive. Rand	lom
Access Memories (MRAMs) - Experimental Memory Devices. Memory Hybrids and MCMs		
(2D)-Mer	nory Stacks and MCMs (3D)-Memory MCM Testing and Reliability Issues-	
Memory (Cards-High Density Memory Packaging Future Directions.	

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Advanced Analog VLSI Design				
Course Code	MVLS5017				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

- 1. Recognize transistor amplifiers.
- 2. Design multistage MOS amplifiers.

Course Outcomes

CO1	demonstrate the use of analog circuit analysis techniques to analyze the operation and
	behavior of various analog integrated circuits.
CO2	demonstrate their knowledge by designing analog circuits.
CO3	compute the gain, power, and bandwidth of analog circuits.
CO4	Understand the concept of different parameters like gain, power, and bandwidth.
CO5	understand the Switched capacitor circuits and data converters.

Text Book (s)

1. Paul B Gray and Robert G Meyer, "Analysis and Design of Analog Integrated Circuits".

2. D. A. Johns and Martin, Analog Integrated Circuit Design, John Wiley, 1997.

Reference Book (s)

1. R Gregorian and G C Temes, Analog MOS Integrated Circuits for Signal Processing, John Wiley, 1986.

2.R L Geiger, P E Allen and N R Strader, VLSI Design Techniques for Analog & Digital Circuits, McGraw Hill, 1990.

Unit-1 MOS & BJT Transistor Amplifiers	8 hours
Single transistor Amplifiers stages: Common Emitter, Common base, Common Collect	or,
Common Drain, Common Gate & Common Source Amplifiers	
Multiple Transistor Amplifier stages: CC-CE, CC-CC, & Darlington configuration,	
Cascode configuration, Active Cascode. Differential Amplifiers: Differential pair & DC	c transfer
characteristics.	
Unit-2 Current Mirrors, Active Loads & References	8 hours
Current Mirrors: Simple current mirror, Cascode current mirrors Widlar current mirror,	Wilson
Current mirror, etc. Active loads, Voltage & current references. Analysis of Differentia	1
Amplifier with active load, supply and temperature independent biasing techniques, Fre	equency
Response,	
Unit-3 Operational Amplifier	8 hours
Applications of operational Amplifier, theory and Design; Definition of Performance	
Characteristics; Design of two stage MOS Operational Amplifier, two stage MOS	
operational Amplifier with cascodes, MOS telescopic-cascode operational amplifiers,M	IOS
Folded-cascode operational amplifiers, Bipolar operational amplifiers. Frequency respo	nse &
compensation.	
Unit-4 Nonlinear Analog Circuits	8 hours
Analysis of four quadrant and variable Tran conductance multiplier, Voltage controlled	oscillator,
Comparators, Analog Buffers, Source Follower and Other Structures. Phase Locked Te	chniques;

Phase Locked Loops (PLL), closed loop analysis of PLL. Digital-to-Analog (D/A) and Analog-		
to-Digita	(A/D) Converters	-
Unit-5	OTA & Switched Capacitor filters	8 hours
OTA Am	plifiers. Switched Capacitor Circuits and Switched Capacitor Filters.	

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Physical Design Automation				
Course Code	MVLS6002				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

- 1. Learn automation process used in VLSI system design
- 2. Understand various physical design CAD tools and designing algorithm.

Course Outcomes

CO1	know automation process for VLSI System design.
CO2	Understanding of fundamentals for various physical design CAD tools.
CO3	Know floor-planning and PIN assignment
CO4	Learn to implement different routing algorithms
CO5	Develop and enhance the existing algorithms and computational techniques for physical
	automation

Text Book (s)

Sung Kyu Lim, Practical Problems for VLSI Physical Design Automation, Springer Publications
 Majid Sarrafzadeh and C. K. Wong, An Introduction to VLSI Physical Design, McGraw Hill, 1996

Reference Book (s)

1.Computer Aided Logical Design with Emphasis on VLSI - Hill & Peterson, Wiley, 1993.

Naveed Sherwani, Algorithms for VLSI Physical Design Automation, Springer Publications.
 Modern VLSI Design: Systems on silicon – Wayne Wolf, Pearson Education Asia, 2nd

Unit-1	Data Structures and Basic Algorithms	8 hours		
Basic Terminology, Complexity Issues and NP-hardness, Basic Algorithms, Basic Data Structures,				
Graph A	lgorithms for Physical design.			
Unit-2	Partitioning	8 hours		
Problem	Formulation, Classification of Partitioning Algorithms, Group Migration Algori	thms,		
Simulate	d Annealing and Evolution, Other Partitioning Algorithms. Performance Driven			
Partition	ng			
Unit-3	Floorplanning and Pin Assignment	8 hours		
Floorplan	nning, Chip planning, Pin Assignment. Global Routing: Problem Formulation,			
Classific	ation of Global Routing, Maze Routing Algorithms, Line-Probe Algorithms, She	ortest Path		
Based A	Based Algorithms, Steiner Tree based Algorithms Integer Programming Based Approach,			
Performance Driven Routing.				
		•		
Unit-4	Detailed Routing	8 hours		
Problem	Formulation, Classification of Routing Algorithms, Single-Layer Routing Algorithms	rithms,		
Two-Lay	er Channel Routing Algorithms, Three-Layer Channel Routing Algorithms, Mu	lti-Layer		
Channel	Routing Algorithms, Switchbox Routing Algorithms			
Unit-5	Over-the-Cell Routing and Via Minimization	8 hours		
Over-the-cell Routing, Via Minimization. Clock and Power Routing: Clock Routing, Power and				
Ground Routing. Compaction: Problem Formulation, Classification of Compaction Algorithms,				
One-Dim	ensional Compaction, Two-Dimensional Compaction			

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	System-on-Chip Design				
Course Code	MVLS6003				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

- 1. Apply concepts of semiconductor devices to design and analyze circuits.
- 2. To prepare students to know the characteristics of different semiconductor devices.
- 3. Apply fundamentals of semiconductor devices in electronics projects in circuit design, evaluation and analysis.
- 4. Explain the fundamental principles necessary for the analysis and design of analog integrated circuits at transistor level.

Course Outcomes

Define the hardware and software structures used to implement and model inter-	
component communication in System on Chip.	
Describe the details of subsystem components like Adders, Multipliers and ALUs etc.	
Practice writing the Behavioral models of digital circuits for simulation and synthesis using	
SystemC, including transactional modelling.	
Learn Testing and Verification of system level designs using SystemC.	
Simulate and Synthesize using SystemC.	
	Define the hardware and software structures used to implement and model inter- component communication in System on Chip. Describe the details of subsystem components like Adders, Multipliers and ALUs etc. Practice writing the Behavioral models of digital circuits for simulation and synthesis using SystemC, including transactional modelling. Learn Testing and Verification of system level designs using SystemC. Simulate and Synthesize using SystemC.

Text Book (s)

- 1. Wolf, W., "Modern VLSI Design: System-on-chip Design", 3rd ed., Prentice Hall 2002.
- 2. Lin, S. Y.L., "Essential Issues in SOC Design: Designing Complex Systems-On-Chip", Springer ,2006.
- 3. D. Black, J. Donovan, B. Bunton, A. Keist, "SystemC: From the Ground Up", Second Edition, Springer, 2010.

Reference Book (s)

- 1. Asheden, P.J. and Mermet J., "System-on-Chip Methodologies and Design Languages", Kluwer Academic, 2002.
- 2. Erbas, C., "System-Level Modelling and Design Space Exploration for Multiprocessor Embedded System-on-Chip Architectures", Amsterdam University Press, 2007.

Unit-1 Introduction to SOC Design/Overview	8 hours			
Introduction, Integrated Circuit Manufacturing, CMOS Technology, Integrated Circuit	Design			
Techniques, Fabrication Processes, Transistors, Wires and Vias, Design Rules Layout	Design and			
Tools				
Unit-2 SoC Architecture Design	8 hours			
Introduction, Front-end chip design, Back-end chip design, Integration platforms and S	oC			
Design, Function Architecture Co-design, Designing Communication Networks, System Level				
Power Estimation and Modeling, Transaction Level Modeling, Design Space Exploration, Software				
design in SoCs.				
Unit-3 Basic SoC Subsystem Design	8 hours			

Introduction. Subsystem Design Principles. Combinational Shifters. Adders. ALUs. Multipliers.					
High-Der	High-Density Memory. Field-Programmable Gate Arrays. Programmable Logic Arrays.				
Unit-4	High level HDL for SoC Design- SystemC	8 hours			
Introduct	Introduction of SystemC, Transaction-Level Modeling (TLM) and Electronic System-Level (ESL)				
languages	languages, SystemC Class Concepts for Hardware, Overview of SystemC Components.				
Unit-5	Unit-5SoC Design and Test Optimization8 hours				
Design methodologies for SoC, Noise and signal integrity analysis, System Integration issues for					
SoC, SoC	SoC, SoC Test Scheduling and Test Integration, SoC Test Resource partition.				

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Reconfigurable Computing				
Course Code	MVLS5018				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Understand concept of Reconfigurable Computing and their applications

Course Outcomes

CO1	Understand parallelism and pipelining concepts, the design aspects and challenges.
CO2	Evaluate the issues in vector and array processors.
CO3	Study and analyze the high performance scalable multithreaded and multiprocessor
CO4	Know Reconfigurable Design
CO5	know Reconfigurable Devices application

Text Book (s)

1 C. Maxfield, The Design Warrior's Guide to FPGAs, Newnes, 2004, ISBN: 978-0750676045

2 M. Gokhale and P. Graham, Reconfigurable Computing: Accelerating Computation with Field-Programmable Gate Arrays, Springer, 2005, ISBN: 978-0-387-26105-8.

3 C. Bobda, Introduction to Reconfigurable Computing: Architectures, Algorithms and Applications, Springer, 2007, ISBN: 978-1402060885.

Reference Book (s)

1. P. Lysaght and W. Rosenstiel (eds.), New Algorithms, Architectures and Applications for Reconfigurable Computing, Springer, 2005, ISBN: 978-1402031274.

2. D. Pellerin and S. Thibault, Practical FPGA Programming in C, Prentice-Hall, 2005, ISBN: 978-0131543188.

3. W. Wolf, FPGA-based System Design, Prentice-Hall, 2004, ISBN: 0-13-142461-0.

4. R. Cofer and B. Harding, Rapid System Prototyping with FPGAs: Accelerating the Design Process, Newnes, 2005, ISBN: 978-0750678667.

Unit-1 Introduction of RC	8 hours			
Reconfigurable Computing Basics, Reconfigurable Computing Hardware Components, Custom				
Computing, Machine Overview, Comparison of Computing Machines, Interconnects, D	Delays in			
VLSI Structures, control path and data path, logic minimization.				
Unit-2 FPGA Architectures	8 hours			
Introduction, Technology-independent optimization, FPGA Mapping, FPGA Partitionir	ng and			
Placement, Routing, Computing Elements, LUT's, LUT Mapping, ALU and CLB's, Re	etiming,			
Multi-FPGA Partitioning, Logic Emulation, Power Reduction Techniques for FPGAs.				
Unit-3RC Architectures8 hours				
Device characteristics, The Systolic Model, Fine-grained architecture, Coarse-grained architecture,				
Comparison of different architectures, Function-Unit Architectures, Logic Emulation Architectures,				
Programming Reconfigurable Computers, Logic Cell and Data path Mapping, Hardware/Software				
Co-design, Systolic Loop Transformations, Software Pipelining, MATRIX and RaPiD, Module				
Generators.				
Unit-4 Reconfigurable Design	8 hours			

Temporal portioning algorithms, Online temporal placement, Device space management, Binding
Time and Programming Styles, Overheads, Data Density, Data BW, Function density, Function
diversity, Interconnect methods, Contexts, Context switching; Area calculations for PE; Efficiency,
ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic ReconfigurationBinding
design.Unit-5RC Applications8 hoursReconfigurable Coprocessors, Reconfigurable Memory Security, Reconfigurable Weather Radar
Data Processing, Dynamically Reconfigurable Adaptive Viterbi Decoder, High Speed Data
Acquisition System for Space Applications.

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Packaging and Interconnect Analysis				
Course Code	MVLS6005				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives: Analysis and design for high-performance interconnects at both IC and packaging levels, including interconnect modeling, delay modeling for devices and interconnects, timing-driven placement, interconnect topology construction, buffer insertion, device and wire sizing, clock network design, thermal modeling, analysis, and thermal-based placement

Course Outcomes

CO1	understand problems in modeling and design of high-performance VLSI
CO2	Learn delay calculations
CO3	Optimize interconnection and topology
CO4	Know clock design for interconnection
CO5	Demonstrate thermal modelling and analysis

Text Book (s)

- 1. M. Celik, L. Pileggi, A. Odabasioglu, IC Interconnect Analysis, Kluwer Academic Publishers, 2002.
- 2. C. K. Cheng, J. Lillis, S. Lin, N. Chang, Interconnect Analysis and Synthesis, John Wiley & Sons, Inc. 2000.

Reference Book (s)

1.J. M. Rabaey, A. Chandrakasan, B. Nikoli´c, Digital Integrated Circuits A Design Perspective, Pearson Education, Inc. 2003

2. N. Menezes, L. Pileggi, Analyzing On-chip Interconnect Effects, Chapter 16 in Design of High-Performance Microprocessor Circuits, IEEE Press, 2001.

3. H. B. Bakoglu, Circuits, Interconnects, and Packaging for VLSI, Addison-Wesley Publishing Company, 1990

Unit-1 Introduction	8 hours				
Introduction, Functions of an electronic packages, Brief history of electronic packaging, Packaging					
Hierarchy, Challenges of Interconnect Design, Modeling of VLSI Interconnects, Lap	lace transform,				
Elmore delay model, Moment Computation, Asymptotic waveform evaluation, Pade	via Lanczos				
and transmission line modeling.					
Unit-2 Delay Calculation	8 hours				
Delay calculating: Devices modeling, R(L)C Delay Calculation. Overview of Layout	Design, and				
Optimization Techniques. Delay Budgeting, Net-based Timing-driven Placement, and	d Path-base				
Timing-driven Placement.					
Unit-3Device , Topology and Interconnect Optimization8 hours					
Transistor Ordering, Device Sizing, and Buffer Insertion. Topology Optimization: Wirelength					
Minimization, Pathlength Minimization, and Delay Minimization.					
Interconnect Sizing: Local Refinement-based, Dynamic Programming-based, Sensitivity-based, and					
Mathematical Programming. Simultaneous Device and Interconnect Sizing, Simultaneous					
Topology Construction, Buffer Insertion, Buffer Sizing, and Interconnect Sizing.					
Unit-4Clock Design and Noise Modeling8 hours					

 Clock Network Design: Zero-Skew, Bounded-Skew, Buffer and Wire Optimization, Non-Tree Routing, and Clock Schedule.

 Noise Modeling, Avoiding and Control: Simultaneous Switching Noise, Reflection Noise, Coupling Noise, Power/Ground Design, Topology Selection, Optimal Termination, Track

 Permutation, Layer Assignment, Buffer Insertion, and Interconnect Sizing and Spacing

 Unit-5
 Thermal Modeling and Analysis

 Thermal Modeling, Analysis, and Thermal-aware Design: Compact Thermal Modeling, Electro-thermal Simulation, Thermal Characterization of Stacked Dies, and Thermal Based Placement

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	EMI and EMC in System Design				
Course Code MVLS6006					
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Understand basics of electro-magnetic Interference and describes the concepts of its effects in system designing. The EMI measurements, EMI Control methods and Standards

Course Outcomes

CO1	Understand basic concept of electro-magnetic Interference.
CO2	Know methods for EMI measurements
CO3	Learn EMC standards and regulations
CO4	Understands control methods and fixes
CO5	Design EMC and interconnection

Unit-1 Basic Concepts	8 hours			
History and concept of EMI, Definition of EMI and EMC with examples, Classification	of			
EMI/EMC, Units of Parameters, Sources of EMI, EMI coupling modes, ESD Phenomer	na and			
effects, Transient phenomena and suppression, Electro magnetic environment, Practical				
experiences and concerns, frequency spectrum conservations, mechanisms of EMI gene	ration, EMI			
testing, Methods of elimination of EMI				
Unit-2 EMI Measurements	8 hours			
Basic principles of RE, CE, RS and CS measurements, EMI measuring instruments- An	tennas,			
LISN, Feed through capacitor, current probe, EMC analyzer and detection technique op	en area site,			
shielded anechoic chamber, TEM cell, Natural and manmade sources of EMI/EMC: Sou	urces of			
Electromagnetic noise, typical noise paths, modes of noise coupling, designing for EM				
compatibility, lightening discharge, electro static discharge (ESD), electro magnetic pul	se (EMP).			
Unit-3 EMC Standard and Regulations	8 hours			
National and International standardizing organizations- FCC, CISPR, ANSI, DOD, IEC	, CENEEC,			
FCC CE and RE standards, CISPR, CE and RE Standards, IEC/EN, CS standards, Frequ	lency			
assignment - spectrum conversation, Components for EMC and EMC Standards: Choice of				
capacitors, inductors, transformers and resistors.				
Unit-4 EMI Control Methods and Fixes	8 hours			
Grounding, Bonding, Filtering, EMI gasket, Isolation transformer, opto isolator, Shielding and				
Bonding: effectiveness of shielding, near and far fields / impedances, methods of analys	is, total loss			
due to absorption and reflection effects, composite absorption and reflection losses for e	electric			
fields / magnetic fields, magnetic materials as a shield, shield discontinuities, slots and h	noles, seams			
and joints, conductive gaskets, Electrical Bonding, Shape and Material for Bond straps.				
Unit-5 EMC Design and Interconnection Techniques	8 hours			
Cable routing and connection, Component selection and mounting, PCB design- Trace routing,				
Impedance control, decoupling, Zoning and grounding, Grounding and Cabling: Safety and signal				
grounds, low and high frequency grounding methods, grounding of amplifiers and cable shields,				
isolation, neutralizing transformers, shield grounding at high frequencies, digital grounding, types				
of cables, mechanism of EMI emission / coupling in cables				
Continuous Assessment Pattern				

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	DSP Architecture				
Course Code					
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Identify and formalize architectural level characterization of P-DSP hardware

Ability to design, programming (assembly and C), and testing code using Code Composer

Studio environment

Deployment of DSP hardware for Control, Audio and Video Signal processing

applications

Understanding of major areas and challenges in DSP based embedded systems

Course Outcomes

CO1	Understand the hardware and software structures used to implement digital signal			
	processing.			
CO2	Describe the details of Architectures For Programmable DSP Devices.			
CO3	Describe Programmable Digital Signal Processors TMS320C54XX addressing modes,			
	control unit and its operation.			
CO4	Implement basic DSP algorithms like FIR and IIR digtal filters.			
CO5	Describe interfacing of memory and input output peripherals to programmable DSP devices			

Text Book (s)

1. B Venkataramani and M Bhaskar "Digital Signal Processors", TMH, 2002.

2. Peter Pirsch "Architectures for Digital Signal Processing", John Weily, 2007.

3. Avatar Singh and S. Srinivasan, "Digital Signal Processing", Thomson Learning, 2004

Reference Book (s)

1. Lars Wanhammer, "DSP Integrated Circuits", 1999 Academic press, New York

2.A.V.Oppenheim et.al, "Discrete-time Signal Processing", Pearson Education, 2000.

3. Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital signal processing – A practical approach", Second Edition, Pearson Education, Asia.

4.Keshab K.Parhi, "VLSI Digital Signal Processing Systems design and Implementation", John Wiley & Sons, 1999.

Unit-1	Introduction to Digital Signal Processing	8 hours		
Introduction, A Digital Signal-Processing System, The Sampling Process, Discrete Time				
Sequence	s, Typical DSP Algorithms (Discrete Fourier Transform (DFT) and Fast Fourier	er		
Transform (FFT), Least Mean Square(LMS)). Representation of Signal Processing Algorithms,				
Signal-Flow, Data-Flow graphs, Digital Filters, Decimation and Interpolation, Analysis and Design				
Tool for DSP Systems.				
Unit-2	Architectures For Programmable DSP Devices	8 hours		

Basic Architectural features, DSP Computational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, Address Generation Unit, Programmability and Program Execution, Speed Issues, Features for External interfacing.

Unit-3	Programmable Digital Signal Processors	8 hours		
Commerc	tial Digital signal-processing Devices, Data Addressing modes of TMS320C54	XX		
DSPs,Dat	ta Addressing modes of TMS320C54XX Processors, Memory space of TMS32	.0C54XX		
Processor	rs, Program Control, TMS320C54XX instructions and Programming, On-Chip	peripherals,		
Interrupts	of TMS320C54XX processors, Pipeline Operation of TMS320C54XX Proces	sors.		
Unit-4	Implementation Of Basic DSP Algorithms	8 hours		
The Q-no	tation, FIR Filters, IIR Filters, interpolation Filters, Decimation filters, PID Co	ntroller,		
Adaptive	Filters. Implementation of FFT algorithms.			
Unit-5	Unit-5 Interfacing Memory And I/O Peripherals To Programmable Dsp 8 hours			
	Devices			
Memory space organization, External bus interfacing signals, Memory interface, Parallel I/O				
interface, Programmed I/O, Interrupts and I/O, Direct memory access (DMA). A Multichannel				
buffered serial port (McBSP), McBSP Programming, a CODEC interface circuit, CODEC				
programn	ning, A CODEC-DSP interface example.			

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	MIXED SIGNAL IC DESIGN				
Course Code	MVLS6008				
Prerequisite					
		L	Т	Р	С
		3	0	0	3

Understand basics of Data Converters and describes the concepts of modulator, filters to improve SN and SPICE modeling

Course Outcomes

CO1	Understand basic concept of ADC, DAC
CO2	Learn SNR improvement methods
CO3	Know noise shaping data converters
CO4	Design data converters
CO5	Design various filters

Text Book (s)

- 1. R. J. Baker, CMOS Mixed Signal Cicuit Design, Wiley/IEEE, 2002.
- 2. Handkiewicz, Mixed-Signal Systems : A Guide to CMOS Circuit Design, Wiley-IEEE, 2002.
- 3. Razavi, Principles of Data Conversion System Design, IEEE Press, 1995

Reference Book (s)

- 1. E. Sanchez-Sinencio and A. G. Andreou, Low-Voltage/Low-Power Integrated Circuits and Systems: Low-Voltage Mixed-Signal Circuits, IEEE, 1999.
- 2. Y. Tsividis, Mixed Analog-Digital VLSI Devices and Technology, MH, 1996.
- 3. S. Rabii and B. A. Wooley, Design of Low-Voltage Low-Power Sigma-Delta Modulators, Kluwer, 1998.
- 4. P. G. A. Jespers, Integrated Converters : D-A and A-D Architectures, Analysis and
- 5. Simulation, OUP, 2001.
- 6. R. Van de Plassche, Integrated Analog-to-Digital and Digital-to-Analog Converters Kluwer, 1994.

Unit-1	Data Converters	8 hours	
Data Converters: Introduction, Characteristic Parameters, Basic DAC and ADC Architectures.			
Sampling	and Aliasing, SPICE models for DACs and ADCs, Quantization Noise.		
Unit-2	Data Converters SNR	8 hours	
Clock Jit	ter, Improving SNR using Averaging, decimating filters for ADC's, Interpola	ating filters	
for DAC	's, Band pass and high pass Sinc filters, using feedback to improve SNR.		
Unit-3	Noise Shaping Data Converters	8 hours	
Noise Shaping data converters: SPICE model, First order noise shaping, First order Noise Shaping.			
- Digital first order NS Modulators, Modulation Noise, Decimating and filtering the output of a NS			
Modulator, Analog Sync filter using SPICE, Analog Implementation of First order NS Modulator,			
Feedback DAC, Forward modulator, op-amp. Second order Noise Shaping.			

Unit-4	Implementing Data Converters	8 hours			
Implement swing cur Implement capacitor topologie	Implementing data converters: R-2R topologies for DAC's – Current mode, voltage mode, wide swing current mode DAC, topologies without an op-amp, effects of op-amp parameters. Implementing ADC's- Implementing S/H,Cyclic ADC, Pipeline ADC using 1.5 bits per stage, capacitor error averaging, comparator placement, clock generation, offsets and alternative topologies, Layout of Pipelined ADC's.				
Unit-5	Filters	8 hours			
Low Pass filters, active RC integrators, Effect of parameters of Integrator, MOSFET-C integrators, transconductance-C integrator, discrete time integrators. Filtering topologies - bilinear transfer function and biquadratic transfer function					

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	RESEARCH SEMINAR				
Course Code	MVLS9997				
Prerequisite					
		L	Т	Р	С
		0	0	2	1

- 1. To make literature survey for various recently emerging technologies.
- 2. To select any topic of interest and to review the related literature in detail.
- 3. To compare and analysis the various topologies for the selected topic of interest.
- 4. To conclude the advantage, drawbacks and future scope of the technique.

Course Outcomes

CO1	Get familiar with the recently advanced techniques.
CO2	Get detailed information about the topic of interest.
CO3	Know how to do literature survey.
CO4	Develop the interest in research in area of VLSI Design

Text Book (s)

Depending upon the area of interest student may choose any text book of relevant field

Internal Assessment (IA)	End Term Test (ETE)(Presentaion)	Total Marks
50	50	100