School of Basic and Applied Sciences

Course Code: BSCC2001 Course Name: Organic Chemistry I

Electrophilic Aromatic Substitution Reactions Part-2

GALGOTIAS UNIVERSITY

Learning outcome

After studying this lecture, you shall be able to:

- Explain electrophilic aromatic substitution reactions
- Types of electrophilic aromatic substitution reactions
- Mechanism of Halogenation, Friedel-Craft's alkylation/acylation

Electrophilic aromatic substitution

An atom appended to the aromatic ring, usually hydrogen, is replaced by an electrophile.

Type

- Nitration
- Halogenation
- Sulfonation
- Acylation and alkylating Friedel-Crafts reactions.

Mechaniism of EAS: arenium ions

Step 1

(nonaromatic cyclohexadienyl cation)

Mechaniism of EAS: arenium ions

Step 2

The proton is removed by any of the bases, for example by the anion derived from the electrophile

Halogenation of benzene

 Benzene does not react with Br2 or CL2 unless a Lewis acid is present in mixture

- Lewis acid is an electron-pair acceptor
- Lewis acids most commonly used to effect bromination and chlorination reactions are FeCl3, FeBr3 and AlCl3

Bromination of benzene

UNIVERSITY

Bromobenzene (75%)

Electrophilic Aromatic Bromination

Step 1
$$: \ddot{\mathbf{B}}\mathbf{r} - \ddot{\ddot{\mathbf{B}}}\mathbf{r} : + \mathbf{F}\mathbf{e}\mathbf{B}\mathbf{r}_{3} \longrightarrow : \ddot{\mathbf{B}}\mathbf{r} - \ddot{\ddot{\mathbf{B}}}\mathbf{r} - \ddot{\mathbf{F}}\mathbf{e}\mathbf{B}\mathbf{r}_{3}$$

Bromine combines with FeBr3 to form a complex that dissocates to form apostive bromine ion and FeBr4-

Positive bromine ion is attacked by benzene to form an arenium ion

Electrophilic Aromatic Bromination

Step 3

Proton is removed from the arenium ion to become bromobenzene

FRIDEL CRAFT REACTIONS

These are of two types-

- (a) Fridel Craft Alkylation Reaction
- (b) Fridel Craft Acylation Reaction

(a) FRIDEL CRAFTS ALKYLATION REACTION

The reaction of benzene with alkyl bromides or chlorides in the presence of a Lewis acid catalyst (such as FeCl₃ or AlCl₃) leads to the formation of alkyl benzenes.

MECHANISM

STEP I

Generation of electrophile (Alkyl carbocation ion)

The Lewis acid enhances the electrophilic character on carbon of alkyl group to facilitate formation of electrophile.

STEP II

Attack of Alkylium ion (electrophile) on benzene

This is the rate determining step of the reaction; and arenium ion is formed as intermediate.

STEP III

Formation of product (Alkylbenzene)

Alkylbenzene is formed by the loss of proton from intermediate (Arenium ion)

Arenium ion (Resonance stabilised)

Alkyl benzene

(b) FRIDEL CRAFTS ACYLATION REACTION

The reaction of benzene with acyl halide or acid anhydride in the presence of a Lewis acid catalyst (such as FeCl₃ or AlCl₃) results in the introduction of an acyl group (RCO–) in the benzene ring and formation of an arylketone as product.

MECHANISM

STEP I

Generation of electrophile (Acylium ion)

The Lewis acid forms a complex with acid chloride which dissociates further to generate acylium ion (electrophile).

AlCl₃ + CH₃COCl
$$\longrightarrow$$
 AlCl₄ + CH₃CO
Lewis acid Acetyl Chloride Acyliumion (Electrophile)

STEP II

Attack of Acylium ion (electrophile) on benzene

This is the rate determining step of the reaction; and arenium ion is formed as intermediate

STEP III

Formation of product (Acetophenone)

Acyllbenzene (Acetophenone) is formed by the loss of proton from intermediate (Arenium ion)

$$\begin{array}{c} \mathsf{COCH_3} \\ \mathsf{H} \\ \\ \bullet \\ \mathsf{AlCl_4} \\ \\ \mathsf{Arenium\ ion} \\ \mathsf{(Resonance\ stabilised)} \\ \end{array} + \mathsf{HCl} + \mathsf{AlCl_3} \\ \\ \mathsf{Acetophenone} \\ \end{array}$$

School of Basic and Applied Sciences

Course Code: BSCC2001 Course Name: Organic Chemistry I

References

- 1. Morrison, R. N. & Boyd, R. N. *Organic Chemistry*, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 1. Finar, I. L. *Organic Chemistry (Volume 1)*, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 2. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education.
- 3. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds, Wiley: London, 1994.
- 4. Kalsi, P. S. Stereochemistry Conformation and Mechanism, New Age International, 2005.
- 5. McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013.

School of Basic and Applied Sciences

Course Code: BSCC2001 Course Name: Organic Chemistry I

GALGOTIAS UNIVERSITY