GALGOTIAS UNIVERSITY

Email: <u>admissions@galgotiasuniversity.edu.in</u> Website: www.galgotiasuniversity.edu.in

COURSE BOOK SCHOOL OF CIVIL ENGINEERING -2020 Volume-I

Curriculum and syllabus for SCHOOL OF CIVIL ENGINEERING

THE

CONTENTS

1.	B. Tech Civil Engineering	2
2.	M.Tech in Structural Engineering	75
3.	M.Tech in Energy & Environmental Engineering	109
4.	B. Tech in Construction Technology	
5.	M.Tech in Transportation Engineering	

Program: B.Tech Civil Engineering

Scheme: 2020-2021

Vision

To be a Centre of Excellence for imparting high end research and technical education in Civil Engineering producing socially aware professionals to provide sustainable solutions to global community.

Mission

M1: To impart quality education and mould technically sound, ethically responsible professionals in the field of Civil Engineering.

M2: Collaborate with industry and society to design a curriculum based on the changing needs of stakeholders and provide excellence in delivery and assessment.

M3: Establish state-of-the-art facilities for world class education and research.

M4: To mentor students in pursuit of higher education, entrepreneurship and global professionalism.

PEOs

PEO1: Graduates shall attain state of the art knowledge in the different streams of Civil Engineering and be trained for playing the role of competent Civil Engineer in multidisciplinary projects.

PEO2: Graduates shall be capable of pursuing productive careers in private and government organizations at the national and international level and to become successful entrepreneurs.

PEO3: Graduates shall display a high sense of social responsibility and ethical thinking and develop sustainable engineering solutions.

PSOs

PSO1: Develop the ability to implement emerging techniques to plan, analyze, design, execute, manage, maintain and rehabilitate systems and processes in diverse area like structural, environmental, geotechnical, transportation and water resources engineering.

PSO2: Excel in research, innovation, design, problem solving using different softwares and artificial intelligence and develop an ability to interact and work seamlessly in multidisciplinary environment.

POs

PO1: Apply the knowledge of Mathematics, Science, and Engineering fundamentals, and an engineering specialization to solution of complex engineering problems (Engineering Knowledge)

PO2: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences (Problem analysis)

PO3: Design of solutions for complex engineering problems and design of system components or processes that meet the specified needs with appropriate considerations of public health and safety, and cultural, societal, and environmental considerations (Design/development of solutions)

PO4: Use research based methods including design of experiments, analysis and interpretation of data and synthesis of information leading to logical conclusions (Conduct investigations of complex problems)

PO5: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling complex engineering activities with an understanding of limitations (Modern tool usage)

PO6: Apply reasoning within the contextual knowledge to access societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The engineer and society)

PO7: Understand the impact of the professional engineering solutions in the societal and environmental contexts, and demonstrate the knowledge of, and the need for sustainable developments (Environment and sustainability)

PO8: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice (Ethics)

PO9: Function effectively as an individual independently and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and team work)

PO10: Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation, make effective oral presentations, and give and receive clear instructions (Communication)

PO11: Demonstrate knowledge and understanding of engineering management principles and apply those to one's own work as a member and leader of a team to manage projects in multidisciplinary environments (Project management and finance)

PO12: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life-long Learning).

Curriculum

Semester 1										
Sl.	Course Code	Name of the Course				1	Assess	sment Pa	attern	
No		Name of the Course	L	Т	Р	С	IA	MTE	ETE	
1		Energy Sources and Audit	1	0	0	1	20	30	50	
2		Data Analytics (Excel and Tableu)	1	0	0	1	20	30	50	
3		AI Fundamentals	2	0	0	2	20	30	50	
4		Differential / Vector calculus and Matrices	3	0	0	3	20	30	50	
5		Programming for Problem Solving (C)	1	0	4	3	20	30	50	
6		Communication Skill (BEC-1)	3	0	0	3	20	30	50	
7		Engineering Physics	2	0	0	2	20	30	50	
8		Engineering Physics Lab	0	0	2	1	50	-	50	
9		Bio Systems in Engineering	2	0	0	2	20	30	50	
10		AC DC Circuits	2	0	2	3	20	30	50	
		Total				21				
		Semester II					I			
Sl	Comme Code	Norma of the Commo					Assess	sment Pa	attern	
No	Course Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE	
1		Integral and Multiple Calculus	2	0	0	2	20	30	50	
2		Partial Differential Equations	1	0	0	1	20	30	50	
3		Embedded Technology and IOT	1	0	2	2	20	30	50	
4		Waste Management	0	0	2	1	50	-	50	
5		Environmental Science	0	0	1	0.5	50	-	50	
6		Liberal and Creative Arts	0	0	1	0.5	50	-	50	
-		Creativity, Innovation and			-		20	20	~0	
1		Entrepreneurship	1	0	2	2	20	30	50	
-		Application of Python			-					
8		Programming	0	0	2	1	50	-	50	
9		Introduction to Digital System	2	0	2	3	20	30	50	
10		Data Structure Using C	2	0	2	3	20	30	50	
11		Digital Fabrication	0	0	2	1	50	-	50	
12	BCE01T3201	Engineering Mechanics	3	0	0	3	20	30	50	
	Dellorrellor	Total	5	0	0	20	20	50	20	
		Semester III	I			-0	l			
Sl							Assess	sment Pa	attern	
No	Course Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE	
		Mathematics-III (Functions of								
1		Complex Variables and	3	0	0	3	20	30	50	
		Transforms)								
•		Aptitude building and Logical	0	0	2	1	-			
2		Reasoning - I	0	0	Z	1	50	-	50	
3		Disruptive Technologies	0	0	4	2	50	-	50	
4		AI and its Applications	0	0	4	2	50	-	50	
5	BCE01T3301	Mechanics of Materials	3	0	0	3	20	30	50	
6	BCE01T3302	Fluid Mechanics	3	0	0	3	20	30	50	
7	BCE01T3303	Surveying	3	0	0	3	20	30	50	
			1	1		1	i	1		

r			1		1			1	
8	BCE01P3302	Fluid Mechanics Lab	0	0	2	1	50	-	50
9	BCE01P3303	Surveying Practices	0	0	2	1	50	-	50
10	BCE01P3304	Engineering Drawing	0	0	4	2	50	-	50
11	BCE01P3301	Mechanics of Materials Lab	0	0	2	1	50	-	50
		Total				22			
~	Г	Semester IV	1						
SI No	Course Code	Name of the Course	т	т	р	C	Assess	sment Pa	attern
INO		Mathematics_IV (Numerical and		I	P	C	IA	MIE	EIE
1		Computational Methods)	2	0	0	2	20	30	50
		Numerical and Computational							
2		Methods Lab	0	0	2	1	50	-	50
		Aptitude building and Logical							
3		Reasoning - II	0	0	2	1	50	-	50
4		Engineering Clinic - I (IOT)	0	0	2	1	50	_	50
		Communication Skill (BEC-2) - 3		-			00		
5		credit	3	0	0	3	20	30	50
6	BCE01T3402	Construction Engineering	3	0	0	3	20	30	50
7	BCE01T3401	Structural Analysis	3	0	0	3	20	30	50
8	BCE01T3404	Hydrology & Hydraulic Systems	3	0	0	3	20	30	50
9	BCE01T3403	Geotechnical Engineering	3	0	0	3	20	30	50
10	BCE01P3401	Structural Analysis Lab	0	0	2	1	50	-	50
11	BCE01P3403	Geotechnical Engineering Lab	0	0	2	1	50	-	50
12	BCE01P3402	Construction Engineering Lab	0	0	2	1	50	-	50
		Total				23			
	1	Semester V	T				T		
Sl	Course Code	Name of the Course				-	Asse	ssment l	Pattern
No			L	Т	Р	C	IA	MTE	ETE
1		Engineering Economics and Management	3	0	0	3	20	30	50
		Engineering Clinic - II (Machine							
2		Learning)	0	0	2	1	50	-	50
		Aptitude building and Logical							
3		Reasoning - III	0	0	2	1	50	-	50
4	DCE01E2501	Design of Reinforced Concrete	2	0	0	2	20	20	50
4	BCE0113501	Structures	3	0	0	3	20	30	50
5	BCE01T3502	Transportation Engineering - I	3	0	0	3	20	30	50
6	DCE01T2502	Water Supply & Treatment	2	0	0	2	20	20	50
0	DCE0113303	Systems	3	U	U	3	20	50	30
7		Program Elective - I	2	0	0	2	20	30	50
8	BCE01P3504	CAD Lab - I (AUTOCAD)	0	0	4	2	50	-	50
9	BCE01P3502	Transportation Engineering Lab	0	0	2	1	50	-	50
10	BCE01P3503	Water Quality Analysis Lab	0	0	2	1	50	-	50
11		Social Internship	0	0	2	1	50	-	50
12		Hobby Class	0	0	1	0.5	50	-	50
13	BCE01P3505	Industrial Internship - I	0	0	0	1	50	-	50
				1		1	1		

		Semester VI								
Sl	Course Code	Name of the Course					Asse	ssment l	Pattern	
No	Course Coue	Name of the Course	L	Т	Р	C	IA	MTE	ETE	
1		Excel Training & PPT Training	0	0	1	0.5	50	-	50	
2	BCE01T3601	Design of Steel Structures	3	0	0	3	20	30	50	
3		Foreign Language (German / Japanese / French)	0	0	4	2	50	-	50	
4	BCE01P3605	Analysis and Design Lab (STAAD PRO)	0	0	2	1	50	-	50	
5		Aptitude building and Logical Reasoning - IV	0	0	2	1	50	-	50	
6	BCE01P3606	Design and Innovation	0	0	2	1	50	-	50	
7		Open Elective - I	3	0	0	3	20	30	50	
8		Program Elective - II	2	0	0	2	20	30	50	
9		Program Elective - III	2	0	0	2	20	30	50	
10	BCE01T3602	Transportation Engineering - II	3	0	0	3	20	30	50	
11	BCE01T3603	Waste Water Treatment & Disposal Systems	3	0	0	3	20	30	50	
12	BCE01T3604	Quantity Surveying and Estimating	2	0	0	2	20	30	50	
13	BCE01P3604	Quantity Surveying and Estimating Lab (PRIMAVERA)	0	0	2	1	50	-	50	
		Total				24.5				
Semester VII										
Sl	Course Code	Name of the Course		1			Assess	sment Pa	attern	
No			L	T	P	C	IA	MTE	ETE	
1		Program Elective - IV	2	0	0	2	20	30	50	
2		Program Elective - V	2	0	0	2	20	30	50	
3	BCE01T3701	Remote Sensing & Geographical Information System	1	0	2	2	20	30	50	
4		Campus to Corporate	3	0	0	3	20	30	50	
5		Ethics and Professional Competency	0	0	2	1	50	-	50	
6	BCE01P3998	Capstone Phase-1	0	0	4	2	50	-	50	
7		Open Elective - II	3	0	0	3	20	30	50	
8	BCE01P3702	Project Planning and Management Lab (PRIMAVERA)	0	0	2	1	50	-	50	
9	BCE01P3703	Industrial Internship - II	0	0	0	1	50	-	50	
		Total				17				
		Semester VIII	[·	•	· · · · · ·				
Sl No	Course Code	Name of the Course					Asse Patt	essment ern		
Sl No	Course Code	Name of the Course	L	T	Р	С	Asse Patt IA	essment ern MTE	ЕТЕ	
Sl No	Course Code BCE01P3999	Name of the Course Capstone Phase-2	L 0	T 0	P 20	C 10	Asse Patt IA 50	essment ern MTE -	ETE 50	

List of Program Electives

Basket 1 (Geotechnical)

Sl	Course Code	Name of the Floatives				Assessment Pattern					
No	Course Coue	Ivanie of the Electives	L	Т	Р	С	IA	MTE	ETE		
1	BCE01T5501	Advanced Geotechnical Engineering	2	0	0	2	20	30	50		
2	BCE01T5502	Ground Improvement Techniques	2	0	0	2	20	30	50		
3	BCE01T5503	Soil Dynamics and Machine Foundation	2	0	0	2	20	30	50		
4	BCE01T5504	Structures on Expansive Soils	2	0	0	2	20	30	50		
5	BCE01T5505	Foundation Engineering	2	0	0	2	20	30	50		
6	BCE01P5506	Mini Project	0	0	4	2	50	-	50		

Basket 2 (Transportation)

SI	Course Code	Name of the Elective					Assessment Pattern			
No	Course Code	Name of the Elective	L	Т	Р	С	IA	MTE	ETE	
1	BCE01T5601	Mass Transport Management	2	0	0	2	20	30	50	
2	BCE01T5602	Traffic Engineering	2	0	0	2	20	30	50	
3	BCE01T5603	Highway Pavement Design	2	0	0	2	20	30	50	
4	BCE01T5604	Pavement Constructions	2	0	0	2	20	30	50	
5	BCE01T5605	Transportation Safety and Environment	2	0	0	2	20	30	50	
6	BCE01P5606	Mini Project	0	0	4	2	50	-	50	

Basket 3 (Environment)

Sl	Course Code	Nome of the Floctives					Assessment Pattern				
No	Course Coue	Name of the Electives	L	Т	Р	С	IA	MTE	ETE		
1	BCE01T5621	Pollution Control and	C	0	0	2	20	30	50		
1	BCE0113021	Monitoring	$\begin{array}{c c} 2 & 0 \\ \hline 2 & 0 \\ \end{array}$	0	2	20	30	30			
2	BCE01T5622	Air and Noise Pollution	2	0	0	2	20	30	50		
3	BCE01T5623	Solid Waste Management	2	0	0	2	20	30	50		
4	BCE01T5624	Bioenergy Technologies	2	0	0	2	20	30	50		
5	BCE01T5625	Environmental Ecology	2	0	0	2	20	30	50		
6	BCE01P5626	Mini Project	0	0	4	2	50	-	50		

Basket 4 (Structures)

Sl	Course Code	Name of the Floctives					Assessment Pattern						
No	Course Coue	Name of the Electives	L	Т	Р	С	IA	MTE	ETE				
1	BCE01T5701	Advanced Structural Analysis	2	0	0	2	20	30	50				
2	BCE01T5702	Rehabilitation of structures &	2	0	0	2	20	30	50				
2		Vaastu Principles	2	Ŭ	•	1	20		50				
3	BCE01T5703	Bridge Engineering	2	0	0	2	20	30	50				
4	BCE01T5704	Earthquake Engineering	2	0	0	2	20	30	50				

5	BCE01T5705	Advanced Concrete Design	2	0	0	2	20	30	50
6	BCE01P5706	Mini Project	0	0	4	2	50	-	50

Basket 5 (Construction Management)

Sl	Course Code	Nome of the Electives					Assessment Pattern					
No	Course Coue	Name of the Electives	L	Т	Р	С	IA	MTE	ETE			
1	BCE01T5721	Construction Planning and	2	0	0	2	20	30	50			
1	BCE0113721	Management	2	U	U	2	20	50	50			
2	BCE01T5722	Economics and Project Finance	2	0	0	2	20	30	50			
2	DCL0113722	for Civil Engineers	2	U	U	-	20	50	50			
3	BCE01T5723	Construction Contracts	2	0	0	2	20	30	50			
5	BCE0113723	Administration and Management	2	U	v	2	20	30	50			
1	BCE01T5724	Value Engineering and	2	0	0	2	20	30	50			
Ŧ	DCL0113724	Valuation	2	U	U	2	20	50	50			
5	BCE01T5725	Infrastructure Development	2	0	0	2	20	30	50			
6	BCE01P5726	Mini Project	0	0	4	2	50	-	50			

Minor Courses

SI	Course Code	Name of the Electives					Assessment Pattern			
No	Course Coue		L	Т	Р	С	IA	M TE	ЕТЕ	
1	BCE01T3303	Surveying	3	0	0	3	20	30	50	
2	BCE01T3402	Construction Engineering	3	0	0	3	20	30	50	
3	BCE01T3403	Geotechnical Engineering	3	0	0	3	20	30	50	
4	BCE01T3301	Mechanics of Materials	3	0	0	3	20	30	50	
5	BCE01T3503	Water Supply & Treatment Systems	3	0	0	3	20	30	50	
6	BCE01T3502	Transportation Engineering - I	3	0	0	3	20	30	50	
		Total Credit				18				

Major Courses

Sl	Course Code	Name of the Floatives					Asse	essment]	Pattern
No	Course Coue	Ivanie of the Electives	L	Т	Р	С	IA	MTE	ETE
1	BCE01T3711	Pre Stressed Concrete Structures	3	0	0	3	20	30	50
2	BCE01T3712	Applications of Matrix Methods in Structural Analysis	3	0	0	3	20	30	50
3	BCE01T3713	Open Channel Hydraulics	3	0	0	3	20	30	50
4	BCE01T3714	Water Resources Systems Engineering	3	0	0	3	20	30	50
5	BCE01T3715	Transport Planning and Management	3	0	0	3	20	30	50
6	BCE01T3716	Industrial Waste Treatment and Disposal	3	0	0	3	20	30	50
		Total Credit				18			

Name of The	Engineering	Engineering Mechanics				
Course						
Course Code	BCE01T320	1				
Prerequisite	-					
Co-requisite	-					
Anti-requisite	-					
		L	Т	Р	С	
		3	0	0	3	

Course Objectives

1. To enable students to calculate the reactive forces.

2. To make students to learn the geometric properties of different shapes.

3. To enable students to determine stresses and strains for axially loaded member.

4. Students will be taught to draw shear force diagrams and bending moment diagrams.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand fundamental principles of forces and the concept of free body diagram.
CO2	Calculate the centroid, centre of gravity and moment of inertia of various surfaces.
CO3	Determine stresses and strains for one dimensional axially loaded member.
CO4	Analyze plane trusses by different methods.
CO5	Draw the shear force diagrams and bending moment diagrams for statically determinate beams.
CO6	Discussion on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit	I:	Introduction	to	Mecha	nics &	&
	Eq	uilibrium of Fo	rces	8	lectur	·e
	ho	urs				

Fundamental Principles Vectorial Representation of Forces - Coplanar forces -Resolution and Composition of forces and equilibrium of particles - introduction of Forces on a particle in space - Equivalent system of forces - Principle of transmissibility - Single equivalent force - Free body diagram - Equilibrium of rigid bodies in two dimensions and three dimensions. **Unit II: Properties of Surfaces 8** lecture hours Centroid - Centre of gravity - Parallel axis theorem - First moment of area - Second moment of area – Product of inertia of plane areas – Polar moment of inertia. Unit III: Stresses & Strains **8** lecture hours Axial Stress and Strain - Solution of simple problems - Tapered Section - One Dimensional axial loading of members of varying cross-section - Stress - Strain Diagram of mild steel. Unit IV: Analysis of plane truss **8** lecture hours Trusses: Introduction - Simple Truss - Analysis of Simple truss - Method of Joints - Method of Sections - Tension Coefficient Method. Unit V: Introduction to shear force and **8 lecture hours** bending moment Beam: Introduction, Shear force and Bending moment, Shear Force Diagram and Bending Moment Diagram for statically determinate beams. **Unit VI: Discussion on Latest Research Paper 2 lecture hours**

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- Tayal. A. K. (2009), Engineering Mechanics Statics and Dynamics, 12th Edition, Umesh Publications, ISBN: 9788188114016
- 2. Punamia B. C. (2010), Mechanics of Materials, 15th

Edition, Laxmi publications (P) Ltd, ISBN:

9788131806463.

3. Shames I. H. (2006), Engineering Mechanics – Statics

and Dynamics, 4th Edition, Prentice-Hall of India

Private limited, ISBN- 9780133569247.

Name of The	Fluid Mecha	nics			
Course Course Code	BCE01T330	2			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. To enable the students to understand fluid properties.

2. To enable the students to explain different types of flows.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand fluid properties.
CO2	Determine momentum and energy
02	correction factors.
CO3	Explain open channel flow.
CO4	Apply Buckingham π theorem.
COS	Distinguish between laminar flow and
005	turbulent flow.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Fluid Properties and Hydrostatics

8 lecture hours

Density – Viscosity – Surface tension – compressibility – capillarity – Hydrostatic forces

on plane – inclined and curved surfaces buoyancy – centre of buoyancy – metacentre.

Unit II: Fluid Dynamics

9 lecture hours

Control volume – Fluid Kinematics - Types of flows; Steady flow, Unsteady flow, Uniform and Non Uniform flow, Rotational flow, Irrotational flow, 1-D, 2-D, 3-D flows– Streamline and Velocity potential lines- Euler and Bernoulli's equations and their applications – moment of momentum – Momentum and Energy correction factors – Impulse – Momentum equation - Navier-Stokes Equations-Applications

Unit III: Open Channel Flow

9 lecture hours

Flow through pipes – Open Channels and Measurement pipe flow: Darcy's law – Minor losses – Multi reservoir problems – pipe network design – Moody's diagram – Hagen Poiseuille equation – Turbulent flow. Specific Energy – Critical flow concept – specific force – Hydraulic jump – uniform flow and gradually varying flow concepts. – Measurement of pressure – flow – velocity through pipes and open channels.

Unit IV: Dimensional Analysis

6 lecture hours

Unit V: Boundary layers

8 lecture hours

Boundary layers – Laminar flow and Turbulent flow – Boundary layer thickness – momentum – Integral equation – Drag and lift-Separation of boundary layer-Methods of separation of boundary layer.

Unit VI: Discussion on Latest Research Paper 2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. R. K. Bansal (2010), A Textbook of Fluid Mechanics and Hydraulic Machines 9th Ed. Laxmi Publication, ISBN- 9788131808153.

2. P. N. Modi and S. M. Seth (2011), Hydraulics and Fluid Mechanics including Hydraulic Machines, Standard Publications. ISBN- 9788189401269.

3. V.L. Streeter, (2001), Fluid Mechanics, McGraw Hill Book Co. ISBN – 9780071156004.

Name of The	Surveying				
Course					
Course Code	BCE01T330.	3			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	С
		3	0	0	3

Course Objectives

1. To enable the students to understand the basics of surveying and different techniques of surveying.

2. To help the students to learn the field applicability of the different survey methods.

3. To make the students learn different types of errors encountered in different types of surveying.

Course Outcomes

On completion of this course, the students will be able to

	Learn about basics involved in different
CO1	types of surveying like tape, compass,
	leveling, and theodolite (total station).
	Demonstrate skills in performing
CO2	measurement of distance, angles, leveling,
	and curve setting.
COL	Develop skills for estimating distance
	between given points, area of a given plot
005	and earthwork involved in cuttings and
	fillings.
	Develop skill to carry out tachometry,
CO4	geodetic surveying wherever situation
	demands.
	Develop skills to apply error adjustment to
CO5	the recorded reading to get an accurate
	surveying output.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Plane Surveying and Theodolite 9 lecture hours Introduction to plane surveying, conventional tape measurement, electronic distance measurement -Meridians, Azimuths and bearings - Theodolites - Temporary and permanent adjustment -Horizontal and Vertical angle measurements -Electronic total station. **Unit II: Leveling and Contouring 8 lecture hours** Differential leveling, Longitudinal & cross section leveling, Refraction & curvature correction, Reciprocal leveling -Tachometry - Stadia tachometry, tangential tachometry & substance tachometry- Contouring. Unit III: Calculation of Earthwork and GPS **8 lecture hours** Area, volume calculation of earth work -Introduction to Global positioning system - GPS surveying methods. **Unit IV: Curve Surveying 6 lecture hours** Definitions, designation of curve, elements of simple curve - Settings of simple circular curve, Compound and reverse curve- Transition curve -Introduction to vertical curves. **Unit V: Geodetic surveying 9** lecture hours Introduction to geodetic surveying, Triangulation surveying – Base line measurement & correction, Satellite station. Surveying adjustments Principle of least square and adjustment of triangulation network.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Punmia B.C. (2005), Surveying, Volume 1, 16th Edition Laxmi Publications. ISBN: 9788170080794 2. Punmia B.C. (2005), Surveying, Volume 2, 15th Edition Laxmi Publications. ISBN: 9788170080800 3. Kanetkar T.P. (2006), Surveying and Levelling, Vol I, Pune. ISBN: 9788185825113.

4. Kanetkar T.P. (2008), Surveying and Levelling, Vol II, Pune. ISBN: 9788185825007

Name of The	Mechanics of Materials				
Course					
Course Code	BCE01T330	1			
Prerequisite	BCE01T3201	-			
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		3	0	0	3

Course Objectives

1. To know the concept of stresses and strains.

2. To know the concept of shear force and bending moment.

3. To calculate deflection in beams and trusses.

4. To determine the buckling and crushing load of compression members.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand the concepts of volumetric
COI	strain, principle stresses and torsion.
CO2	Analyse shear force and bending moment
02	for different types of beams.
CO3	Calculate deflections in beams.
CO4	Determine deflections in plane trusses.
COS	Distinguish between short column and
05	long column.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Volumetric Strain, Principle Stresses and Torsion

10 lecture hours

Bulk Modulus – Modulus of rigidity – Change in volume – Volumetric Strain - Principle stresses -Mohr's circle – Introduction to torsion - Torsion of shafts of circular section - torque and twist shear stress due to torque.

Unit II: Shear Force and Bending Moment

lecture hours

Types of beams, supports and loadings - shear force and bending moment diagram - bending stresses and shear stresses in beams.

8

8

Unit III: Deflection of Beams

lecture hours

Introduction - Theory of bending - deflection of beams by Macaulay's method - moment area method and conjugate beam method.

Unit IV: Strain Energy

7 lecture hours

Strain Energy - Castigliano's theorem - calculation of deflection in statically determinate beams and plane trusses - Unit load methods - Williot Mohr's diagram.

Unit V: Theory of Columns

7 lecture hours

Theory of Columns - long column and short column - Euler's formula - Rankine's formula -Secant formula - beam column.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Gere J. M. and Thimoshenko S. P. (2008), Mechanics of Materials, 8th Edition, CBS Publishers & Distributors, ISBN: 9780534417932.

2. Popov E. P. (2009), Engineering Mechanics of Solids, 2nd Edition, Prentice Hall Publisher, ISBN: 9788120321076.

3. Bansal R. K. (2010), Strength of Materials, 4th
Edition, Laxmi Publications, ISBN:
9788131808146.

Name of The Course	Mechanics of Materials Lab				
Course Code	BCE01P3301	l			
Prerequisite	BCE01T3301				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		0	0	2	1

Course Objectives

1. To supplement the theoretical knowledge gained in Mechanics of Materials with practical testing for determining the strength of materials under externally applied loads.

2. This would enable the student to have a clear understanding of the design for strength and stiffness.

Course Outcomes

On completion of this course, the students will be able to

COI	Conduct tension and compression tests on		
COI	the components.		
To determine hardness, impact stre			
02	fatigue strength of the specimens.		
CO3	Measure strain and load using specific		
	gauges.		
CO4	Measure torsion in mild steel.		
COS	Compression and tension test on helical		
05	springs.		

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

1. Tension test on a mild steel rod, thin and twisted bars.

- 2. Compression test on Bricks, Concrete blocks.
- 3. Double shear test on Mild steel and aluminium rods.
- 4. Impact test on metal specimen (Charpy test and Izod test).
- 5. Hardness test on metals (Steel, Copper and Aluminium) Brinell Hardness Number.

6. Hardness test on metals (Steel, Copper and Aluminium) - Rockwell Hardness Number.

7. Deflection test – Verification of Maxwell theorem.

8. Compression and tension test on helical springs.

9. Fatigue test on Steel.

10. Torsion test on mild steel

Aluminium

Suggested Reading

1. Gere J. M. and Thimoshenko S. P. (2008), Mechanics of Materials, 8th Edition, CBS Publishers & Distributors, ISBN: 9780534417932.

2. Popov E. P. (2009), Engineering Mechanics of Solids, 2nd Edition, Prentice Hall Publisher, ISBN: 9788120321076.

3. Bansal R. K. (2010), Strength of Materials, 4th
Edition, Laxmi Publications, ISBN: 9788131808146.

Name of The Course	Fluid Mechanics Lab				
Course Code	BCE01P3302	2			
Prerequisite	BCE01T3302	2			
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		0	0	2	1

Course Objectives

1. Introduce concepts, laws, observations, models of fluids at rest and in motion and understanding fluid behavior for engineering design and control of fluid system.

2. Develop competence with mass, energy and momentum balances for determining resultant interactions of flows and engineered and natural systems.

3. The development of boundary layers and advancement of practical hydraulics and

understanding the concept of advanced fluid mechanics.

Course Outcomes

On completion of this course, the students will be able to

CO1	To find frictional losses in a pipe when
	there is a flow between two places.
CO2	Calculation of conjugate depth in a flow
	and to analyse the model and prototype.
CO3	Find the dependent and independent
COS	parameters for a model of fluid flow.
COA	Explain the various methods available for
004	the boundary layer separation
CO5	Calculate losses in pipe.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

- 1. Verification of Bernoullis Theorem
- 2. Metacentric Height
- 3. Calibration of V- Notch
- 4. Calibration of Rectangular Notch
- 5. Calibration of Trapezoidal Notch
- 6. Calibration of Venturimeter
- 7. Calibration of Orificemeter
- 8. Losses in Pipes

Suggested Reading

1. R. K. Bansal (2010), A Textbook of Fluid Mechanics and Hydraulic Machines 9th Ed. Laxmi Publication, ISBN- 9788131808153.

2. P. N. Modi and S. M. Seth (2011), Hydraulics and Fluid Mechanics including Hydraulic Machines, Standard Publications. ISBN- 9788189401269.

3. D.S. Kumar (2004), Fluid Mechanics and Fluid Power Engineering, Katson Publishing House, ISBN - 9788185749181.

4. V.L. Streeter, (2001), Fluid Mechanics, McGraw Hill Book Co. ISBN – 9780071156004.

Name of The	Surveying Practices				
Course					
Course Code	BCE01P3303	3			
Prerequisite	BCE01T3303				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		0	0	2	1

Course Objectives

1. To teach the students basics of surveying and expose different techniques of surveying.

2. To help the students to learn the field applicability of the different survey methods.

3. To teach students about types of errors encountered in different types of surveying.

Course Outcomes

On completion of this course, the students will be able to

CO1	Learn about basics involved in different types of surveying like tape, compass, leveling, and theodolite (total station).
CO2	Demonstrate skills in performing measurement of distance, angles, leveling, and curve setting.
CO3	Develop skills for estimating distance between given points, area of a given plot and earthwork involved in cuttings and fillings.
CO4	Develop skill to carry out tachometry, geodetic surveying wherever situation demands.
CO5	Develop skills to apply error adjustment to the recorded reading to get an accurate surveying output.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

- 1. Chain Survey- Determination of area by perpendicular offsets
- 2. Chain Survey- Measurement of distance by chaining & ranging

- 3. Compass Survey- Plotting & adjustment of closed traverse
- 4. Theodolite Survey- Measurement of horizontal angles by method of repetition
- 5. Measurement of Vertical Angles and Determination of Height of an Object
- 6. Plane Table Survey- Radiation method
- 7. Levelling- Rise & Fall method
- 8. Levelling- Height of collimation method
- 9. Trignometrical Levelling- Single plane method
- 10. Curve Surveying- Setting out a simple circular curve by Rankine's method
- 11. Contouring- To determine the contours for a given location
- 12. GPS Survey- Coordinates & Distance measurement using GPS
- 13. Total Station- Measurement of Altitude of Given Elevated Points
- 14. Total Station- Measurement of distance & coordinates of given points
- 15. Stereoscope- Use of stereoscope for 3D viewing
- Stereoscope- Determination of height of objects from a stereo pair using the parallax bar

Suggested Reading

 Punmia B.C. (2005), Surveying, Volume 1, 16th Edition Laxmi Publications. ISBN: 9788170080794
 Punmia B.C. (2005), Surveying, Volume 2, 15th Edition Laxmi Publications. ISBN: 9788170080800
 Kanetkar T.P. (2006), Surveying and Levelling, Vol I, Pune. ISBN: 9788185825113.
 Kanetkar T.P. (2008), Surveying and Levelling,

Vol II, Pune. ISBN: 9788185825007

Name of The	Engineering Drawing				
Course					
Course Code	BCE01P3304	1			
Prerequisite	BCE01T3201				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		0	0	4	2

Course Objectives

- 1. To create awareness and emphasize the need for Engineering Drawing in all the branches of engineering.
- 2. To follow basic drawing standards and conventions.
- 3. To develop skills in three-dimensional visualization of engineering component.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand the needs and objectives for
	engineering drawings.
CO2	Solve specific geometrical problems in
02	plane geometry involving lines.
CO3	Produce orthographic projection for points
005	and lines.
CO4	Draw orthographic projections for planes.
CO5	Draw orthographic projections for solids.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

Unit I: Introduction

9 lecture hours

Engineering Drawing: An Overview, its need and objectives. Introduction to Computer Aided Drafting- Introduction to AutoCAD/CATIA; Initial setup commands, Utility commands, drawing aids, entity draw commands, display commands and edit commands.

Unit II: Lettering, Numerals and Dimensioning

9 lecture hours

Drawing scale, various types of lines and their uses. Lettering. Dimensioning; Basic types of dimensioning

Unit III: Orthographic Projection – Points and Lines

10 lecture hours

Object in four quadrant, 2-D description of quadrants. Projection of points. Projection of

lines- Inclined lines, projection of a skew line, line parallel to perpendicular plane.

Unit IV: Orthographic Projection – Planes

10 lecture hours

Planes under study, classification of planer surface, projection of planer surface- principal, inclined, oblique planes.

Unit V: Orthographic Projection – Solids

10 lecture hours

Introduction- Division of engineering solids, Polyhedra- Regular and Irregular polyhedral, solids of revolution, projection of solids. Axis inclined to one reference plane and parallel to the other.

Suggested Reading

1. Kulkarni D.M., Rastogi A.P. and Sarkar A.K., "Engineering Graphics with AutoCAD", PHI Learning Private Limited, New Delhi, 2010.

2. Bhatt N. D., "Engineering Drawing", Charotar publishing House, 1998.

3. French and Vierk, "Fundamentals of Engineering Drawing", McGraw Hill, 2002.

4. John K.C., "Engineering Graphics for Degree", PHI Learning Private Limited, New Delhi, 2010.

Name of The	Structural Analysis				
Course					
Course Code	BCE01T3401				
Prerequisite	BCE01T3301				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. To understand the concept of static indeterminacy.
- 2. To know the different techniques available for the analysis of statically indeterminate structures.
- 3. To identify the best suitable method of analysis.

Course Outcomes

On completion of this course, the students will be able to

CO1	Identify the method of analysis for statically indeterminate structures
	statically indeterminate structures.
	Understand the difference between
CO2	statically determinate structures and
	statically indeterminate structures.
CON	Use the influence line diagram for
COS	analysing beam.
CO 4	Understand strain energy method to
004	analyse arches.
005	Analyse beams and portals by slope
05	deflection method.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Theorem of Three Moments

8 lecture hours

Static indeterminacy - Theorem of three moments - analysis of propped cantilevers - fixed & continuous beam - bending moment and shear force diagram.

Unit II: Strain Energy Method

8 lecture hours

Static indeterminacy - Strain energy method analysis of indeterminate structures, beams, pin jointed and rigid jointed structures - temperature effect - bending moment and shear force diagram.

Unit III: Influence Line

8 lecture hours

Influence line - influence lines for bending moment and shear force for beams, Muller Breaslau's principle - Maxwell's reciprocal theorem - Maxwell Betti's theorem.

Unit IV: Analysis of Arches

8 lecture hours

Two hinged and three hinged parabolic arches circular arches - cables - tension forces in towers - influence line for horizontal thrust and bending moment.

Unit V: Slope deflection method

8 lecture hours

Kinematic indeterminacy - Slope deflection method - analysis of continuous beams and portals - bending moment and shear force diagram.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Vazirani & Ratwani (2003), Analysis of Structures, Vol. 1 & II, Khanna Publishers, ISBN: 0125249853.

2. S. Ramamrutham (2004), Theory of Structures, 5thEdition, Dhanpat Rai Publications, ISBN: 978041528091

S. Reddy (2010), Structural Analysis, 3rd
 Edition, Tata McGraw Hill, ISBN:9780070702769.
 Kenneth M. Leet, Gilbert A, Uang C. M. (2010),
 Fundamentals of Structural Analysis, 4th Edition,
 Tata McGraw Hill,ISBN:9780071289382.

Name of The	Construction Engineering					
Course						
Course Code	BCE01T3402					
Prerequisite	-					
Co-requisite	-					
Anti-requisite	-					
		L	Τ	Р	С	
		3	0	0	3	

Course Objectives

- 1. To know different types of modern construction materials and their uses.
- 2. To know different types of cement, mineral and chemical admixtures, aggregates and their Engineering properties and uses.

- 3. To understand the properties and application of various special concretes.
- 4. To know the methodology of mix design and their application in accordance with various field conditions.

Course Outcomes

On completion of this course, the students will be able to

	Davalon ability to aboase the modern
CO1	Develop ability to choose the modelin
	construction materials appropriate to the
COI	climate and functional aspects of the
	buildings.
	Supervise the construction technique to be
CON	followed in brick and stone masonry,
02	concreting, flooring, roofing and
	plastering etc.
CO2	Understand the properties of cement and
COS	its laboratory testing methods.
CO1	Determine quality of fine aggregate and
CO4	course aggregate.
005	Learn about the different properties of
	concrete.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Properties of Construction Materials

8 lecture hours

Physical and Mechanical properties of construction materials – Bricks - Stones -Structural Steel and Aluminum – Roofing Material – Physical descriptions of asbestos sheets, GI sheets, tubes and light weight roofing materials - Timber and its Products – Modern materials – Neoprene - Thermo Cole - Vinyl flooring - decorative panels and laminates anodized aluminum - architectural glass and ceramics - Ferro cement – PVC - Polymer base materials and FRP.

Unit II: Construction Technology

8 lecture hours

Introduction to Masonry design, Principles of construction–Bonding–Reinforced brick work– – Stone masonry – Hollow block masonry – Pointing - Plastering – DPC Floor and Roof Construction: Floors, General Principles – Types of floors – Floor coverings – Types of roofs.

Unit III: Calculation of Earthwork and GPS

8 lecture hours

ASTM classification of Cement – Properties of Cement - Testing of Cement – Field Testing – Laboratory Testing methods – Setting time of cement – soundness of cement – fineness and compressive strength of cement - Heat of Hydration.

Unit IV: Fine Aggregate and Coarse Aggregate

8 lecture hours

Fine aggregate – Properties and testing methods – Bulking of Sand – sieve analysis – fineness modulus of sand - Cement mortar – properties and uses, Chemical Admixtures- Plasticizer – super plasticizer – air entraining agents etc.

Unit V: Properties of Concrete

8 lecture hours

Concrete – selection of materials for concrete water cement ratio - Properties of fresh concrete workability – measurement of workability – Strength of concrete – gain of strength with age – testing of hardened concrete - Compressive strength - Tensile strength – Flexural strength – modulus of elasticity of concrete – Introduction to Mix Design of concrete.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Shetty, M.S. (2010), Concrete Technology, S. Chand & Company Ltd. ISBN- 9788121900034.

2. Neville. A.M. (2010) Specification of Properties of Concrete, Standard Publishers Distributors. ISBN- 9780273755807

3. Gambhir, M. L. (2012), Concrete Technology, McGraw-Hill. ISBN- 9780070151369.

4. 4. IS: 10262-2009, Guidelines for concrete mix design proportioning, BIS, New Delhi.

Name of The	Geotechnical Engineering					
Course						
Course Code	BCE01T3403					
Prerequisite	-					
Co-requisite	-					
Anti-requisite	-					
		L	Τ	Р	С	
		3	0	0	3	

Course Objectives

- 1. To impart the fundamental concepts of soil mechanics.
- 2. To understand the bearing capacity.
- 3. To know the importance of index properties like grain size, consistency limits, soil classification.
- 4. To understand the concept of compaction and consolidation of soils.

Course Outcomes

On completion of this course, the students will be able to

CO1	Give an engineering classification of a				
COI	given soil.				
	Understand the principle of effective				
CO2	stress, and then calculate stresses that				
	influence soil behavior.				
	Determine soil deformation parameters,				
CO3	and calculate settlement magnitude and				
	rate of settlement.				
CO4	Specify soil compaction requirements.				
	Conduct laboratory tests, and obtain soil				
CO5 properties and parameters from the					
	observations and results.				
CO6	Discuss on Latest Research Paper.				

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	

30

20

50

100

Course Content:

Unit	I:	Weight	volume	relations	and	Index
	l	propertie	es			
	-	12 lectur	e hours			

Distribution of soil in India, Soil - Types, 3-phase diagram, Weight-volume relations, Classification, Index properties (Atterberg's limits), Theory of compaction, Importance of geotechnical engineering.

Unit II: Soil water and Permeability

8 lecture hours

Soil water - Effective and neutral stresses – Flow of water through soils – Permeability – Darcy's law –Seepage and flow-nets - Quick sand conditions.

Unit III: Stress distribution in soils

8 lecture hours

Vertical pressure distribution- Boussinesq's equation for point load and uniformly distributed loads of different shapes- Newmark's influence chart – Westergaard's equation – Isobar diagram – Pressure bulb - Contact pressure, Earth Pressures Theories.

Unit IV: Compressibility and Consolidation

8 lecture hours

Unit V: Shear strength of soils

9 lecture hours

Stress analysis by Mohr's circle - Mohr's strength theory – Shear strength of soils – Mohr-Coloumb strength envelope – Laboratory shear tests – Direct shear test – Triaxial compression – Unconfined compression test – Vane shear test – Shear strength of saturated cohesive soils – Shear strength of cohesion less soils - conditions for liquefaction.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. K.R.Arora (2011), Soil Mechanics and Foundation Engineering, Standard Publishers Distributors, Delhi, ISBN: 978-81-801-4112-6.

2. Arun Kr. Jain, B.C. Punmia, Ashok Kr. Jain (2005), Soil Mechanics and Foundations, Sixteenth Edition, Laxmi Publications. ISBN: 978-81-700-8791-5.

3.Gopal Ranjan, A.S.R Rao (2000), Basic and Applied Soil Mechanics 2nd Edition, New Age International. ISBN: 978-81-224-1223-9.

4. William Powrie, Soil Mechanics: Concepts and Applications, Second Edition, Spon Press. ISBN: 978-04-153-1156-4.

5. Karl Terzaghi, Soil Mechanics in Engineering Practice, Warren Press. ISBN: 978-14-465-1039-1.

Name of The	Hydrology &	Hydrology & Hydraulic						
Course	Systems	Systems						
Course Code	BCE01T3404	BCE01T3404						
Prerequisite	BCE01T3302	BCE01T3302						
Co-requisite	-	-						
Anti-requisite	-							
	L T P C							
	3 0 0 3				3			

Course Objectives

- 1. To understand the concept of weather and hydrology.
- 2. To have an idea about precipitation and abstraction.

Course Outcomes

On completion of this course, the students will

be able to

CO1	Understand the importance of hydrology.	
CO2	Explain diurnal and monsonic wind systems.	
CO3	Process and analyze precipitation data.	

CO4	Distinguish between centrifugal pump and
	Reciprocating pump.
CO5	Determine the specific speed for different
	types of turbines.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction

9 lecture hours

Definition – Development of hydrology – hydrologic design – Hydrologic failures – Importance in Engineering – Hydrological budget.

Unit II: Hydro Meteorology

9 lecture hours

Weather and hydrology – General circulation Temperature humidity – Wind – Diurnal and monsonic wind systems.

Unit III: Precipitation and Abstraction

9 lecture hours

Formation of precipitation – forms of precipitation – types of precipitation – Rainfall measurement – gauges – recorders – processing precipitation data – check for consistency – supply of missing data – Aerial mean mass curve technique – Intensity duration frequency curves. Process of evaporation, transpiration – Infiltration factors affecting evaporation – Measurement of evaporation and infiltration indices – Horton's equation.

Unit IV: Pumps

9 lecture hours

Centrifugal	pump –	velocity	triangle	_
characteristic	curves	- specific	speed	_
applications	- Reciproc	cating pump	- types	_

Indicator diagram – acceleration and friction – air vessels.

Unit V: Turbines

9 lecture hours

Classification – Pelton Turbine – Francis Turbine – Kaplan Turbine - velocity triangle – characteristic curves – specific speed.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1.Subramanya K. (2008), Engineering Hydrology, Tata McGraw Hill Co., Graw Hill Co. ISBN: 9780074624494.

2. Varshney R.S. (2012), Engineering Hydrology, Nem Chand & Brothers Publishers. ISBN: 8185240688.

3. Das (2009), Hydrology & Soil Conservation Engineering, Prentice-Hall of India. ISBN: 9788120335868.

4. Modi P. N. and Seth S. M. (2011), Hydraulics and Fluid Mechanics including Hydraulic Machines, Standard Publications, ISBN-9788189401269.

5. Bansal R. K. (2010), A Textbook of Fluid Mechanics and Hydraulic Machines, Laxmi Publication, ISBN-9788131808153.

Name of The Course	Structural Analysis Lab				
Course Code	BCE01P3401	l			
Prerequisite	BCE01T3401				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		0	0	2	1

Course Objectives

1. To know the concept and procedure of different type of method to find slope and deflection for different type of structures.

2. To understand the advantage and disadvantage of different types of methods used for find slope.

Course Outcomes

On completion of this course, the students will be able to

	Measure deflection of a simply supported
CO1	beam and verify Clark-Maxwell's
	theorem.
CON	Determine the Flexural Rigidity of a
02	given beam.
CO2	Verify the Moment - area theorem for
COS	slope and deflection of a given beam.
COA	Determine deflection studies for a
CO4	continuous beam.
COF	Visualize the behaviour of two hinged
005	arch and three hinged arch.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

- 1. Deflection of a simply supported beam and verification of Clark-Maxwell's theorem.
- 2. To determine the Flexural Rigidity of a given beam.
- 3. To verify the Moment area theorem for slope and deflection of a given beam.
- 4. Deflection of a fixed beam and influence line for reactions.
- 5. Deflection studies for a continuous beam and influence line for reactions.
- 6. Study of behaviour of columns and struts with different end conditions.
- 7. Experiment on three hinged arch.
- 8. Experiment on two hinged arch.
- 9. Deflection of a statically determinate pin jointed truss.
- 10. Unsymmetrical Bending of curved beam.

Suggested Reading

1. Vazirani & Ratwani (2003), Analysis of Structures, Vol. 1 & II, Khanna Publishers, ISBN: 0125249853.

2. S. Ramamrutham (2004), Theory of Structures, 5thEdition, Dhanpat Rai Publications, ISBN: 978041528091

3. C. S. Reddy (2010), Structural Analysis, 3rd Edition, Tata McGraw Hill, ISBN:9780070702769.

4. Kenneth M. Leet, Gilbert A, Uang C. M. (2010), Fundamentals of Structural Analysis, 4th Edition, Tata McGraw Hill,ISBN:9780071289382

Name of The	Construction Engineering				
Course	Lab				
Course Code	BCE01P3402	r			
Prerequisite	BCE01T3402	2			
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		0	0	2	1

Course Objectives

1. To know the concept and procedure of different type of test conducted on cement, aggregate and concrete.

 To understand the properties of different building materials and their Civil Engineering Significance.
 To understand the IS Code provision of testing different types of building materials.

Course Outcomes

On completion of this course, the students will be able to

COI	Identify the suitability of materials for
COI	construction work.
cor	Determine the fineness of cement by Blain
002	air permeability apparatus.
CO2	Determine the specific gravity of given
COS	sample of OPC.
	Determine the consistency of the concrete
CO4	mixes for different W/C ratio by slump test
	with and without admixture.
CO5	Cast concrete cubes and determine
	compressive strength of concrete.

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	

50 -

List of Experiments:

1. To determine the water content required producing a cement paste of normal consistency and also determining initial and final setting time of a given cement sample.

50

100

- 2. To determine the fineness of cement by Blain air permeability apparatus.
- 3. To determine the specific gravity of given sample of OPC.
- 4. To determine the particle size distribution of fine and coarse aggregate by sieve analysis method.
- 5. Determination of specific gravity of coarse and fine aggregate.
- 6. To determine the silt content in the given sample of fine aggregate and also determine necessary adjustment for the bulking of fine aggregate and draw curve between water content and bulking.
- 7. To determine the consistency of the concrete mixes for different W/C ratio by slump test with and without admixture.
- 8. To determine the workability of concrete mix of given proportion by compaction factor test.
- 9. To cast concrete cubes and to determine compressive strength of concrete by non-destructive and destructive method of testing.

Suggested Reading

1. Rangwala, (2011), Engineering Materials, 38th edition, Charotar Publishing House Pvt. Ltd. ISBN: 978-93-80358-26-0.

2. Ashok Kumar Jain, Dr. B.C. Punmia, Arun Kumar Jain (2009), Building Construction, Laxmi Publications Pvt. Ltd, ISBN: 978-81-318-0428-5.

3. M. L. Gambhir, (2009), Concrete Technology, Tata McGraw Hill Education, ISBN: 978-00-701-5136-9.

4. P. C. Varghese, (2009), Engineering Materials, 1st edition, PHI Learning, ISBN: 978-81-203-2848-8.

Name of The	Geotechnical Engineering				
Course	Lab				
Course Code	BCE01P3403	3			
Prerequisite	BCE01T3403	3			
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	С
		0	0	2	1

Course Objectives

1. To impart the fundamental concepts of soil mechanics.

2. To understand the bearing capacity.

3. To know the importance of index properties like grain size, consistency limits, soil classification.

4. To understand the concept of compaction and consolidation of soils.

Course Outcomes

On completion of this course, the students will be able to

CO1	Give an engineering classification of a	
	given soil.	
	Understand the principle of effective	
CO2	stress, and then calculate stresses that	
	influence soil behavior.	
	Determine soil deformation parameters,	
CO3	and calculate settlement magnitude and	
	rate of settlement.	
CO4	Specify soil compaction requirements.	
	Conduct laboratory tests, and obtain soil	
CO5	properties and parameters from the test	
	observations and results.	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

- 1. To determine moisture content of soil
- 2. To determine the specific gravity of soil fraction passing 4.75mm I.S sieve by density bottle/Pycnometer bottle
- 3. To determine the grain size distribution curve for given soil sample by sieve analysis and hydrometer analysis.
- 4. To determine the consistency limits (i.e Liquid limit, Plastic limit & Shrinkage limit) of given samples
- 5. To determine in-situ density of compacted soils by using core cutter & pouring cylinder methods.
- 6. To determine the relative density of given coarse grained materials
- 7. To determine the maximum dry density and optimum moisture content for the given soil sample.
- 8. To determine coefficient of permeability of given soil sample by constant head and variable head method.
- 9. To determine unconfined compressive strength of a given soil sample
- 10. To determine shear strength of a given soil specimen using vane shear apparatus
- 11. To determine shear strength of a given soil specimen using direct shear apparatus
- 12. To determine the shear parameters of soil by Undrained Triaxial Test.

Suggested Reading

1. K.R.Arora (2011), Soil Mechanics and Foundation Engineering, Standard Publishers Distributors, Delhi, ISBN: 978-81-801-4112-6.

2. Arun Kr. Jain, B.C. Punmia, Ashok Kr. Jain (2005), Soil Mechanics and Foundations, Sixteenth Edition, Laxmi Publications. ISBN: 978-81-700-8791-5.

3.Gopal Ranjan, A.S.R Rao (2000), Basic and Applied Soil Mechanics 2nd Edition, New Age International. ISBN: 978-81-224-1223-9.

4. William Powrie, Soil Mechanics: Concepts and Applications, Second Edition, Spon Press. ISBN: 978-04-153-1156-4.

5. Karl Terzaghi, Soil Mechanics in Engineering Practice, Warren Press. ISBN: 978-14-465-1039-1.

Name of The	Design of Reinforced				
Course	Concrete Structures				
Course Code	BCE01T350	1			
Prerequisite	BCE01T3301, BCE01T3401				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		3	0	0	3

Course Objectives

- 1. To make the students to learn design of beams by working stress method.
- 2. To enable the students to understand the limit state method of design of beams, columns and slabs.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand the behavior of structural
	members and the concept of design.
CO2	Calculate moment of resistance for
02	different types of RC beam section.
CO3	Design any RC beam by limit state
COS	method.
COA	Understand the difference between one
CO4	way slab and two way slab.
CO5	Know the concept of short column and
	long column.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Material Properties and Design Concepts

9 lecture hours

Material properties: Compressive strength, tensile strength, design stress-strain curve of concrete modulus of elasticity - grades of concrete different types and grades of reinforcing steel design stress-strain curve of steel. Introduction to design concepts, elastic behaviour of rectangular section, under, balanced and over reinforced section. Deflection and cracking in beams and

slabs using IS code provisions. Design of singly reinforced beams by working stress method.

Unit II: Introduction to Limit State Design

9 lecture hours

Philosophy and principle of limit state design along with the assumptions, partial safety factors, characteristic load and strength. Introduction to stress block parameters, concept of balanced, under reinforced and over reinforced sections, limit state of collapse in flexure of rectangle and flanged sections with examples. Limit state of collapse in shear and torsional strength of sections with examples.

Unit III: Limit state design of beams

9 lecture hours

Design principles and procedures for critical sections for bending moment and shear forces. Flexural and shear design example of singly and doubly reinforced simply supported and cantilever beams using the codal provision. Detailing of longitudinal and shear reinforcement, anchorage of bars, check for development length. Reinforcement requirements, slenderness limits for beams for lateral stability. Flexural and shear design of simply supported T and L beams. Design of rectangular section for torsion.

Unit IV: Limit State Design of Slabs

9 lecture hours

Introduction to one way and two way slabs, design of one way cantilever, simply supported and continuous slab, design of two way slabs.

Unit V: Limit State Design of Compression Members

9 lecture hours

General design aspects of compression members, Design of short axially loaded columns with reinforcement detailing, Design of columns with uniaxial bending and biaxial bending using SP-16 charts, Design of long column.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications.

Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Gambhir, M.L., (2011), "Fundamentals of Reinforced Concrete Design", Prentice-Hall of India. ISBN: 9788120330481.

2. S Unnikrishna Pillai &Devdas Menon, (2005), Reinforced Concrete Design, Tata Mcgraw Hill, ISBN: 9780070141100.

3. Varghese, P.C., (2009), Limit State Design of Reinforced Concrete, 2nd ed. ISBN: 9788120320390.

Name of The	Transportation Engineering-				
Course	Ι				
Course Code	BCE01T3502	2			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. To impart the knowledge in Highway Geometrics, Traffic Engineering, materials, construction and design of pavements.

Course Outcomes

On completion of this course, the students will be able to

CO1	Design various geometric elements of
	highways.
	Understand the procedure to collect the
CO2	traffic data for design and traffic
	management.
CO3	Test the highway materials as per IS/IRC
005	guidelines.
CO4	Do structural design of flexible and rigid
	pavements.
COS	Know various highway constructions
CO5	techniques and its maintenance.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	

30

20

50

100

Course Content:

Unit I: Highway and Traffic Planning

8 lecture hours

Introduction to Transportation modes – Highway alignment and field surveys – Master Plan – Transport economics – Traffic Studies – Volume, speed, origin and destination studies.

Introduction to Multi-modal Transportation, Automated Transport systems, High urban transport, Impact of transport on environment.

Unit II: Highway Geometrics

14 lecture hours

Highway classification (Rural and Urban roads), Road Geometrics – Highway cross section elements – camber – Sight Distance, Horizontal Alignment Design, Super Elevation, Extra widening, Transition curves, Set back distance, Design of Vertical curves.

Unit III: Traffic Engineering

6 lecture hours

Traffic characteristics, road user & vehicular characteristics, traffic studies, traffic operations, traffic control devices, intelligent transport systems, Intersections, Interchanges, Parking Layout & Road signs.

Unit IV: Highway Materials and Construction

8 lecture hours

Material requirement for pavements – Soil classification for Highway – Soil tests – CBR and Plate Load Test, Aggregate – materials testing and specification, Bitumen – material testing and specification construction of bituminous and rigid pavements, Highway Maintenance – Material recycling

Unit V: Highway Design

9 lecture hours

Pavement Analysis – Factors affecting pavement thickness – Soil – Wheel load – Temperature – environmental factors; Flexible Pavement Design – Axle Load surveys – CBR method of Design, Rigid Pavement Design – IRC method

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Khanna.S.K and Justo. C.E.G., (2011), Highway Engineering, Ninth Edition.

2. Kadiyali.L.R, and Lal.N.B, (2005), Principles and Practice of HighwayEngineering, Fourth Edition, Khanna Publishers, ISBN- 9788174091659.

3. ChakroborthyPartha, and Das Animesh, (2003), Principles of Transportation Engineering, Eighth Printing, Prentice-Hall of India, ISBN-9788120320840.

4. Rao.G.V., (1996), Principles of Transportation and Highway Engineering, Tata McGraw-Hill Co, ISBN- 9780074623633.

Name of The	Water Supply and				
Course	Treatment S	Treatment Systems			
Course Code	BCE01T350.	BCE01T3503			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		3	0	0	3

Course Objectives

1. To make the students to understand the basic principles and concepts of unit operations and processes involved in water treatment.

2. To enable the students to learn design of unit operations and processes involved in water treatment.

Course Outcomes

On completion of this course, the students will be able to

CO1	Define water demand.
CO2	Understand about treatment of raw water.
CO3	Differentiate between slow sand filters and rapid sand filters.
CO4	Understand disinfection processes in
0.04	water treatment.

CO5 Explain water supply networks.CO6 Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Water sources- classification and Distribution

8 lecture hours

8 lecture hours

Water demand, Factors governing water demands and seasonal variations, Effect of population dynamics on water demand, Principles for forecasting of water-demand and its calculations, Self-purification of surface water bodies – Oxygen sag curve, permissible values for drinking water

Unit II: Water Treatments Units

8 lecture hours

Physicochemical Principles applied in water treatment, Unit operations, principles and processes for pretreatment and treatment of raw water, pre-chlorination and chlorination, principles and objectives for designing chlorination systems, General design considerations for designing water treatment plants.

Unit III: Unit Operations & Processes

8 lecture hours

Principles, functions and design of screen, grit chambers, flash mixers, flocculators, sedimentation tanks and sand filters- Slow sand and rapid sand filters, layouts – Flash mixer – Clariflocculator – Slow sand and rapid sand filters

Unit IV: Disinfection Processes in Water treatment

8 lecture hours

Principles, Objectives, Unit Operations & Advanced Processes in Water treatment, Disinfection – Aeration – iron and manganese removal, Defluoridation and demineralization – Water softening

Unit V: Water supply systems

9 lecture hours

Various water supply systems - Water supply networks - Various water storage systems

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Garg S.K. (2010), Environmental Engineering Vol. I Water Supply Engineering, Khanna Publishers. ISBN: 9788174091208

2. H.S.Peavy, D.R.Rowe & George Tchobanoglous (2005), Environmental Engineering, McGraw-Hill Company, New Delhi. ISBN: 9789380358246

3. Nathanson, Jerry A. (2007), Basic Environmental Technology: Water Supply, Waste Management, and Pollution Control, 5th ed., PHI Learning Private Limited ISBN: 978-81-203-3836-4

4. Rangwala (1999), Water supply & Sanitary Engineering, Charotar Publishing House, Anand-16th Edition. ISBN: 9788185594590

5. Metcalf and Eddy (2003), Wastewater Engineering, Treatment and reuse, Tata McGraw-Hill Edition, Fourth edition. ISBN:9780070495395

Name of The	CAD Lab - I (AUTOCAD)				
Course					
Course Code	BCE01T3502	1			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		0	0	4	2

Course Objectives

1. To enable the students to understand the regulations as per National Building Code.

2. To make the students to learn the functional requirements and building rules.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand AUTOCAD commands and draw lines, circles and different types of polygon.
CO2	Draw plan, elevation and cross-sectional views of one storey residential building.
CO3	Draw staircases.
CO4	Draw plan, elevation and cross-sectional views of two storey residential building.
CO5	Draw plan, elevation and cross-sectional views of workshop with trussed roof.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

- 1. AUTOCAD commands, drawing of lines, circles and different types of polygon.
- 2. Drawing plan, elevation and crosssectional views of one storey residential building.
- 3. Drawing of staircases.
- 4. Drawing plan, elevation and crosssectional views of two storey residential building.
- 5. Drawing plan, elevation and crosssectional views of five story commercial building.
- 6. Drawing plan, elevation and crosssectional views of three story hospital building.
- 7. Drawing plan, elevation and crosssectional views of ten story college building.
- 8. Drawing plan, elevation and cross-sectional views of workshop with trussed roof

Suggested Reading

1. V. B. Sikka (2012), "Civil Engineering Drawing", S.K.Kataria& Sons, New Delhi. ISBN: 978-93-5014-272-1

2. N. Kumaraswamy (2012), A.Kameswara Rao
"Building Planning & Drawing", Charotar
Publishing House Pvt. Ltd. ISBN: 9789380358581
3. AUTOCAD Manuals

Name of The	Transportation Engineering				
Course	Lab				
Course Code	BCE01P3502				
Prerequisite	BCE01T3502				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	C
		0	0	2	1

Course Objectives

1. To enable the students to know testing of different highway materials as per IS/IRC guidelines.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand aggregate crushing value test.
CO2	Explain aggregate impact test.
CO3	Perform Los Angeles abrasion test.
CO4	Understand ductility test of bitumen.
CO5	Explain California Bearing ratio test.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

- 1. Aggregate Crushing Value Test
- 2. Aggregate Impact Test
- 3. Los Angeles Abrasion Test
- 4. Shape Test
- 5. Penetration Test of Bitumen
- 6. Ductility Test of Bitumen
- 7. Softening Point Test of Bitumen
- 8. Flash and Fire Point Test of Bitumen
- 9. Viscosity Test of Bitumen
- 10. Spot Test
- 11. California Bearing Ratio Test

Suggested Reading

1. Khanna.S.K., and Justo. C.E.G., (2011), Highway Engineering, Ninth Edition, Nem.

 Kadiyali.L.R., and Lal.N.B., (2005), Principles and Practice of Highway Engineering, Fourth Edition, Khanna Publishers, ISBN- 9788174091659.
 ChakroborthyPartha, and Das Animesh, (2003), Principles of Transportation Engineering, Eighth Printing, Prentice-Hall of India, ISBN-9788120320840

4. Rao.G.V., (1996), Principles of Transportation and Highway Engineering, Tata McGraw-Hill Co, ISBN- 9780074623633.

Name of The	Water Quality Analysis Lab				
Course					
Course Code	BCE01P3503				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	С
		0	0	2	1

Course Objectives

1. To enable the students to understand the basic principles and concepts of unit operations and processes involved in water treatment.

2. To make the students to know turbidity test of a given water sample.

Course Outcomes

On completion of this course, the students will be able to

CO1	Determine pH of a given water sample.				
CO2	Determine total solids, suspended solids, dissolved solids and volatile solids in wastewater.				
CO3	Determine turbidity and specific conductivity of the given water samples.				
CO4	Determine alkalinity of a given water sample				
CO5	Determine chloride concentration of a given water sample.				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

- 1. To determine the pH of a given water sample.
- 2. To determine the total solids, suspended solids, dissolved solids and volatile solids in wastewater.
- 3. To determine the turbidity and specific conductivity of the given water samples.
- 4. To determine the Alkalinity of given water sample.
- 5. To determine total hardness, permanent hardness and temporary hardness for given water sample.
- 6. To determine the chloride concentration of a given water sample.
- 7. To determine amount of sulphates in a given sample
- 8. To determine the dissolved oxygen content in a given water sample.
- 9. To determine BOD of the given wastewater sample.
- 10. To determine the COD of given sample.
- 11. To determine the optimum dosage of coagulant for turbidity removal of a given water sample.

Suggested Reading

1. Garg S.K. (2010), Environmental Engineering Vol. I Water Supply Engineering, Khanna Publishers. ISBN: 9788174091208

2. H.S.Peavy, D.R.Rowe & George Tchobanoglous (2005), Environmental Engineering, McGraw-Hill Company, New Delhi. ISBN: 9789380358246

3. Nathanson, Jerry A. (2007), Basic Environmental Technology: Water Supply, Waste Management, and Pollution Control, 5th ed., PHI Learning Private Limited ISBN: 978-81-203-3836-4

4. Rangwala (1999), Water supply & Sanitary Engineering, Charotar Publishing House, Anand-16th Edition. ISBN: 9788185594590

5. Metcalf and Eddy (2003), Wastewater Engineering, Treatment and reuse, Tata McGraw-Hill Edition, Fourth edition. ISBN:9780070495395

Name of The Course	Industrial Internship - I
Course Code	BCE01P3505

Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		0	0	0	1

Course Objectives

- 1. To gain first-hand experience of working as an engineering professional, including the technical application of engineering knowledge.
- 2. To experience the discipline of working in a professional organisation and multidisciplinary team.
- 3. To develop technical, interpersonal and communication skills.

Course Outcomes

On completion of this course, the students will be able to

CO1	Apply engineering knowledge in solving real-life problems.
CO2	Attain new skills and be aware of the state- of-art in engineering disciplines of their own interest.
CO3	Get exposure to real-life-working environment & practices, and to attain the professionalisms.
CO4	Work with multi-tasking professionals and multidisciplinary team.
CO5	Prepare a technical report, to improve presentation and other soft skills.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	_	50	100

Course Content:

Exposure to real life problems at various reputed industries engaged in areas of Civil Engineering.

Mode of Evaluation:

The evaluation of this training shall be included in the next semester evaluation. The student will be assigned a faculty guide who would be the supervisor of the student. The faculty will be identified before the end of the examination.

Students have to prepare an exhaustive technical report of the internship undertaken which will be duly signed by the officer under whom internship was taken in the industry/ organization. The covering format shall be signed by the concerned faculty incharge of the student. The officer-in-charge would also give his rating of the student in a sealed envelope to the Dean of the SOCE. The student at the end of internship will present his report about the internship before a committee constituted by the Dean of the School which would be comprised of at least three members comprising of the Division Chair/Program Chair. The students guide would be a special invitee to the presentation. The seminar session shall be an open house session. The internal marks would be the average of the marks given by each member of the committee separately in a sealed envelope to the Dean.

The marks by the external examiner would be based on the report submitted by the student which shall be evaluated by the external examiner and cross examination done of the student concerned. Not more than three students would form a group for such industrial internship. The final evaluation of the Industrial Internship will be based on the following criteria:

 Presentation and contents of the report demonstrating well developed communication skill.
 The professionalism displayed by the student during industrial training including the scope of quality industrial training attained.

3. Contribution of the employer in providing quality training and relevance of the student's industrial training to their degree.

4. Marks/grades for this course will be withheld until students complete the training. Without this mark/grade students cannot graduate.

	Internship Progress Report		Final Evaluation		
Comp onents	Internal Supervi sor	Industr y Supervi sor	Project Report	Presentatio n and Viva voice	
Marks	25	25	25	25	
Total Marks	5	0	50		

Overall Marks

100

Name of The	Design of Steel Structures				
Course					
Course Code	BCE01T3601				
Prerequisite	BCE01T3401				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. To enable the students to understand the concepts of steel design.

2. To make the students to learn different types of pitched roofs.

Course Outcomes

On completion of this course, the students will be able to

	Understand different types of structural
CO1	rolled steel sections and their properties
	and design of connections.
CO2	Design laterally supported and laterally
02	unsupported steel beams.
	Design built up column sections, lacings,
CO3	battens, column bases and tension
	members.
COA	Design plate girders and understand
004	curtailment of flange plates and stiffeners.
0.05	Analyze and design roof trusses and
005	purlins.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction and Design of Connection

8 lecture hours

Introduction, Types and properties of structural rolled steel sections, Design of connections -

Riveted - Welded - Bolted – Solution of simple problems.

Unit II: Design of beams

9 lecture hours

Simple and built-up beams – design of laterally supported and unsupported beams - concept of shear.

Unit III: Design of Compression Members and Tension Members

9 lecture hours

Design of column – built up section – single and double lacing – batten – Column bases – design of tension members.

Unit IV: Plate Girders

10 lecture hours

Plate girders - design of plate girders - curtailment of flange plates – Concept of stiffeners and splices

Unit V: Roof Trusses

8 lecture hours

Types of roof trusses - Calculation of dead load, live load, wind load – Analysis and design of roof truss – Design of purlins.

Unit VI: Discuss on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

 Vajrani V. N., Ratwani M. M. and Mehra H. (2012), Design and Analysis of Steel Structures, 18th Edition, Oscar Publications, ISBN: 9788174092953.
 Syal I. C. (2009), Design of Steel Structures, Standard Publishers Distributors, New Delhi, ISBN: 9788180141270.

3. Ramchandra (2006), Non Linear Analysis of Steel Structures, Standard Publishers Distributors, ISBN:9788180140785.

4. IS: 800-2007 & Steel Table.

Name of The Course	Transportation Engineering - II
Course Code	BCE01T3602
Prerequisite	BCE01T3502

Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. To teach the students about the different transportation systems.
- 2. To familiarise with various components involved in their respective modes and their basic design concepts.

Course Outcomes

On completion of this course, the students will be able to

	Demonstrate the ability to identify the				
CO1	components of railway track, their				
	functions, alignment and the station yards.				
CO2	Understand the requirements of railway				
02	alignment				
CON	Recognize and identify the requirement of				
COS	an airport and the principle involved in it.				
CO4	Design runway and taxiway.				
	Learn to classify the harbours and				
CO5 demonstrate the ability to identi					
	components of a dock.				
CO6	Discuss on Latest Research Paper.				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction to Railway Engineering				
8 lecture hours				
History and administrative setup of Indiar				
Railways; rail gauges, permanent way - functions				
requirements, sections in embankment and				
cutting, stresses in different components of track				
Types of joints and fastenings.				

Unit II: Track Geometrics and Safety

8 lecture hours

Requirements of Railway alignment, vertical alignment and horizontal alignment, points and crossings – terminologies, Turnouts – Types and design aspects, Signals classification and their functions, train operation control systems, interlocking of tracks.

Unit III: Introduction to airports and Aircraft Characteristics

8 lecture hours

Air transport development in India, national and international organizations in air transport, aircraft characteristics and their impact on planning of an airport, selection of site for an airport, airport obstruction, imaginary surfaces, runway orientation clam period and wind coverage.

Unit IV: Geometric Designs and Airport Traffic control Aids

8 lecture hours

Runway and taxiway geometric designs, exit taxiway, its design and fillet curves, runway configuration, separation clearance, design of apron and their layout.

Visual aids, marking and lighting of runway and apron area, wind and landing direction indicator.

Unit V: Docks and Harbour Engineering

8 lecture hours

Historical development in India , tides, winds & waves, docks, harbours, break waters, jetties, landing stages & wharves, dry docks, transit sheds, cargo handling, inland water transport, Maintenance.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. Chandra.S., and Agarwal. M.M., (2007), Railway Engineering, Oxford University Press India, ISBN- 9780195687798.
- Rangwala.S.C., Rangwala.P.S., (2008), Airport Engineering, Charotar Publishing House Pvt. Limited, ISBN-9788185594972.
- 3. Oza.H.P., and Oza. G.H., (2011), Dock and Harbour Engineering, Sixth Edition, Charotar Publishing House Pvt., ISBN-9789380358383.

Name of The Course	Waste Water Treatment & Disposal Systems				
Course Code	BCE01T3603				
Prerequisite	BCE01T3503				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		3	0	0	3

Course Objectives

- 1. To teach students the basic principles and concepts of unit operations and processes involved in wastewater treatment.
- 2. To develop student's skill in the basic design of unit operations and processes involved in wastewater treatment.
- 3. To develop a student's skill in evaluating the performance of wastewater treatment plants.

Course Outcomes

On completion of this course, the students will be able to

	Demonstrate an ability to recognize the	
CO1	type of unit operations and processes	
	involved in wastewater treatment plants.	
	Demonstrate an ability to choose the	
COA	appropriate unit operations and processes	
CO2 required for satisfactory treatment of		
	wastewater.	
	Demonstrate an ability to design	
individual unit operation or process		
CO3	appropriate to the situation by applying	
	physical, chemical, biological and	
	engineering principles.	
COA	Demonstrate ability in design of	
004	wastewater treatments units in a cost	

	effective and sustainable way and			
	evaluate its performance to meet the			
	desired health and environment related			
	goals.			
COF	Recognize the importance of wastewater			
COS	treatment to protect the water resources.			
CO6	Discuss on Latest Research Paper.			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Wastewater Treatment

8 lecture hours

Physical, chemical and biological principles involved in wastewater treatment and designing of unit-operations and processes. Permissible standards for wastewater disposal

Unit II: Pre and Primary Treatment

9 lecture hours

Objectives-Unit operations and processes-Principles, functions and design of flash mixers, screens, sedimentation tanks and sand filters-Disinfection-Aeration, grit chambers and primary sedimentation tanks.

Unit III: Secondary Treatment

7 lecture hours

Secondary Treatment-Activated Sludge Process and Trickling filters; other treatment methods-Stabilization Ponds and Septic Tanks-Advances in Sewage Treatment.

Unit IV: Sewage Disposal and Sludge Management

8 lecture hours

Methods-Dilution-Self-purification of surface water bodies-Oxygen Sag Curve-Land disposal-Sewage Farming-Deep well injection-Soil dispersion system-Thickening-Sludge digestion-Bio-gas recovery, Drying beds-Conditioning and

Dewatering-Sludge disposal. Introduction to solid waste management, landfills and EIA.

Unit V: Waste Disposal System

8 lecture hours

Wastewater Treatment-Typical layouts-Screens-Grit Chamber-Sedimentation tanks-Trickling filter-Activated Sludge, sludge Digester-Septic tanks-Soil Dispersion System-Waste Stabilization pond.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Garg.S.K, (2010), Environmental Engineering-Sewage Disposal and Air Pollution Engineering, 1st Edition, Khanna Publishers, ISBN- 978-81-740-9230-4.

2. Metcalf & Eddy, (2002), Wastewater Engineering Treatment & Reuse, Tata McGraw-Hill Education, ISBN: 978-00-704-9539-5

3. Howard S. Peavy, Donald R. Rowe, George Tchobanoglous, (2001), Environmental Engineering, Tata McGraw-Hill Education, ISBN No: 978-00-710-0231-8.

4. Hammer & Hammer Jr., Water and Wastewater Technology, 7th Edition, ISBN-978-81-203-4601-7.

Name of The	Quantity Surveying and				
Course	Estimating				
Course Code	BCE01T3604				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		2	0	0	2

Course Objectives

1. To enable the students to understand the types of estimates.

2. To make the students to understand rate analysis and process of preparation of bill of quantity.

Course Outcomes

On completion of this course, the students will be able to

CO1	Prepare a detailed estimate for different
	types of structures.
CO2	Estimate RCC and steel work.
CO3	Understand rate analysis & preparation of
	bills.
CO4	Determine the valuation of a building.
CO5	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I:Estimation of building

9 lecture hours

Estimation of building works – Procedure of estimating, Types of estimates, detailed estimate of buildings including sanitary & electrical fittings.

Unit II: Estimate of R.C.C and Steel works

9 lecture hours

Estimate of R.C.C and Steel works - Scheduling -Slab - beam - column & trusses, Road – earthwork fully in banking, cutting, partly cutting & partly filling - Detailed estimate for WBM, Bituminous road.

Unit III: Rate analysis & preparation of bills

9 lecture hours

Rate analysis - preparation of bills – Data analysis of rates for various items of works – abstract estimates for Building projects – Introduction to software for Bill of Quantities & estimates.

Unit IV: Valuation

9 lecture hours

Valuation- rent fixation, tenders, - contracts – accounting procedure, measurement book, stores, cost & quality control – PWD & CPWD practice

- Specifications of various items of works - Schedule of Rates.

Unit V: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. B.N. Datta (2010), Estimating and costing, USBPD. ISBN 9788174767295.

2. Rangwala (2011), Specifications of Estimating, Costing and Valuation, Charotar Publishing House Pvt. Ltd. ISBN 9789380358543.

3. Vazirani, V. N. (2013), Civil Engineering Estimating Costing & Valuation, Khanna publishers. ISBN 9788174091277.

Name of The Course	Quantity Surveying and Estimating Lab (PRIMAVERA)				
Course Code	BCE01P3604				
Prerequisite	BCE01T3604				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		0	0	2	1

Course Objectives

 To develop the capacity of students in correlating theoretical knowledge into practical systems pertaining to civil engineering domain.
 To foster collaborative learning skills.

3. To develop self-directed inquiry and life-long skills.

4. To enhance the communication skills of the students by providing opportunities to discuss in groups and to present their observations, findings and report both in oral and written format.

Course Outcomes

On completion of this course, the students will be able to

COL	Identify, formulate, and solve engineering		
	problems.		
	Understand specifications of various items		
CO2	of works and schedule of rates and prepare		
	valuation reports.		
CO3	Submit a project report comprising of the		
005	application and feasibility of the project.		
CO4	Work and communicate efficiently in		
	multidisciplinary teams.		

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

Students will carry out the following estimation and costing works for a given multi-storied building.

- 1. Determination of volume of excavation of earth.
- 2. Estimation for concrete and steel in footings.
- 3. Form work required for footings.
- 4. Estimation for brick walls and plastering.

5. Form work required for columns including scaffolding and shuttering.

6. Estimation for concrete and steel in columns.

7. Form work required for slabs including scaffolding and shuttering.

8. Estimation for concrete and steel in slabs.

9. Form work required for beams including scaffolding and shuttering.

- 10. Estimation for concrete and steel in beams.
- 11. Rate analysis for various items of works.
- 12. Preparation of bills.
- 13. Studies of PWD and CPWD practices.
- 14. Bar bending schedule.
- 15. Valuation of the building.

Suggested Reading

1. B.N. Datta (2010), Estimating and costing, USBPD. ISBN 9788174767295.

2. Rangwala (2011), Specifications of Estimating, Costing and Valuation, Charotar Publishing House Pvt. Ltd. ISBN 9789380358543.

3. Vazirani, V. N. (2013), Civil Engineering Estimating Costing & Valuation, Khanna publishers. ISBN 9788174091277.
| Name of The | Analysis and Design Lab | | | | |
|---------------------|-------------------------|------|-----|------|-----|
| Course | (STAAD PRO) | | | | |
| Course Code | BCE01P3605 | 5 | | | |
| Prerequisite | BCE01T3401 | , B0 | CE0 | 1T3: | 501 |
| Co-requisite | - | | | | |
| Anti-requisite | - | | | | |
| | | L | Τ | P | C |
| | | 0 | 0 | 2 | 1 |

Course Objectives

1. To teach the students to understand the details of STAAD – PRO software package.

2. To enable the students to know the behaviour of RCC structures.

3. To enable the students to design different components of structures

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand the details of STAAD – PRO
COI	software package.
CO2	Know the behavior of RCC structures.
CO3	Know the bending moment diagram drawn
005	in tension face and shear force diagram.
CO4	Design RCC beams and columns.
CO5	Analyze and design RCC portal frames.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

- 1. Analysis and design of simply supported RCC beam.
- 2. Analysis and design of cantilever RCC beam.
- 3. Analysis and design of continuous RCC beam.
- 4. Analysis and design of doubly reinforced RCC beam.

- 5. Analysis and design of RCC columns with different end conditions.
- 6. Analysis and design of RCC portal frames.

Suggested Reading

1. V. N. Vazirani & M. M. Ratwani, (1998), Analysis of Structures, Khanna Publishers

2. R. L. Jindal, (1996), Indeterminate Structures, Tata McGraw Hill Publishing House.

3. G. S. Pandit & Gupta S. P., (1998), Structural Analysis (A matrix approach), Tata McGraw Hill Publishing Ltd.

4. Wang C. K., (1996), Matrix Method of Structural Analysis, Jon Wiley publications.

Name of The	Design and Innovation				
Course					
Course Code	BCE01P3606				
Prerequisite	BCE01T3401, BCE01T3501				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		0	0	2	1

Course Objectives

1. To teach the students to understand the details of STAAD – PRO software package.

2. To enable the students to know the behaviour of RCC structures.

3. To enable the students to design different components of structures

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand the details of STAAD - PRO
COI	software package.
CO2	Know the behavior of RCC structures.
CO3	Know the bending moment diagram drawn
003	in tension face and shear force diagram.
CO4	Design RCC beams and columns.
CO5	Analyze and design RCC portal frames.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Experiments:

- **1.** Design of (G+2) masonry building.
- 2. Design of staircase.
- **3.** Design of (G+3) RCC building.
- 4. Design of (G+4) RCC building.

Suggested Reading

1. V. N. Vazirani & M. M. Ratwani, (1998), Analysis of Structures, Khanna Publishers.

2. R. L. Jindal, (1996), Indeterminate Structures, Tata McGraw Hill Publishing House.

3. G. S. Pandit & Gupta S. P., (1998), Structural Analysis (A matrix approach), Tata McGraw Hill Publishing Ltd.

4. Wang C. K., (1996), Matrix Method of Structural Analysis, Jon Wiley publications.

Name of The Course	Remote Sensing & Geographical Information System				
Course Code	BCE01T370	l			
Prerequisite	BCE01T3303				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		1	0	2	2

Course Objectives

1. To introduce the students to the basic concepts and principles of various components of remote sensing.

2. To provide an exposure to GIS and its practical applications in civil engineering.

Course Outcomes

On completion of this course, the students will be able to

CO1	Know Principles of Remote Sensing.
CO2	Define GIS.
CO3	Understand the process of data entry.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

UNIT I: EMR and ITS Interaction with Atmosphere & Earth Material 5 lecture hours

Definition of remote sensing and its components – Electromagnetic spectrum – wavelength regions important to remote sensing – Wave theory, Particle theory, Stefan-Boltzman and Wein's Displacement Law – Atmospheric scattering, absorption – Atmospheric windows – spectral signature concepts – typical spectral reflective characteristics of water, vegetation and soil.

UNIT II: Geographic Information System

5 lecture hours

Introduction – Maps – Definitions – Map projections – types of map projections – map analysis – GIS definition – basic components of GIS – standard GIS softwares – Data type – Spatial and nonspatial (attribute) data – measurement scales – Data Base Management Systems (DBMS).

UNIT III: Data Entry, Storage And Analysis

5 lecture hours

Data models – vector and raster data – data compression – data input by digitization and scanning – attribute data analysis – integrated data analysis – Modeling in GIS Highway alignment studies – Land Information System.

Suggested Reading

1. Lillesand,T.M., Kiefer, R.W. and J.W.Chipman. "Remote Sensing and Image Interpretation" 5th Edition. John Willey and Sons Asia Pvt. Ltd., New Delhi, 2004.

2. Anji Reddy, M. "Textbook of Remote Sensing and Geographical Information System" 2nd edition. BS Publications, Hyderabad, 2001.

 Lo. C.P.andA.K.W.Yeung, "Concepts and Techniques of Geographic Information Systems", Prentice Hall of India Pvt. Ltd., New Delhi, 2002
Peter A.Burrough, Rachael A. McDonnell, " Principles of GIS", Oxford University Press, 2000

Remote Sensing & Geographical Information System Lab

Course Content

- 1. Introduction of ARCGIS software
- 2. Storage of data
- 3. Geographical data modeling
- 4. Storage of geographical coordinates
- 5. Arc map View & edit data, analyze data
- 6. Enhancement of images

Name of The	Capstone Phase-1				
Course					
Course Code	BCE01P3998	3			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		0	0	4	2

Course Objectives

1. To develop the capacity of students in correlating theoretical knowledge into practical systems either to perform creative works or to perform analysis and hence to suggest solutions to problems, pertaining to civil engineering domain.

- 2. Foster collaborative learning skills.
- 3. Develop self-directed inquiry and life-long skills.

3. To enhance the communication skills of the students by providing opportunities to discuss in groups and to present their observations, findings and report in formal reviews both in oral and written format.

Course Outcomes

On completion of this course, the students will be able to

CO1	Submit a project synopsis comprising of the application and feasibility of the project.				
CO2	Design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health care, safety and sustainability.				
CO3	Work and communicate efficiently in multidisciplinary teams.				
CO4	Identify, formulate, and solve engineering problems.				
CO5	Develop an understanding of professional and ethical responsibility.				

Continuous Assessment Pattern

Comp	Project Progress Report	Final 1	Evaluation
onents	Internal Supervisor	Project Report	Presentation and Viva voice
Marks	20	30	50
Total Marks		100	

Name of The Course	Project Planning and Management Lab (PRIMAVERA)				
Course Code	BCE01P3702	2			
Prerequisite	BCE01P3604	Ļ			
Co-requisite	-				
Anti-requisite	-				
_		L	Т	Р	С
		0	0	2	1

Course Objectives

1. To develop the capacity of students in correlating theoretical knowledge into practical systems pertaining to civil engineering domain.

2. To foster collaborative learning skills.

3. To develop self-directed inquiry and life-long skills.

4. To enhance the communication skills of the students by providing opportunities to discuss in groups and to present their observations, findings and report both in oral and written format.

Course Outcomes

On completion of this course, the students will be able to

COI	Identify, formulate, and solve engineering
COI	problems.
	Understand specifications of various items
CO2	of works and schedule of rates and prepare
	valuation reports.
CO2	Submit a project report comprising of the
COS	application and feasibility of the project.
COA	Work and communicate efficiently in
004	multidisciplinary teams.
COF	Develop an understanding of professional
005	and ethical responsibility.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	_	50	100

List of Experiments:

- 1. Scheduling for a (G+2) masonry building.
- 2. Scheduling for a (G+2) RCC building.
- 3. Scheduling for a (G+4) RCC building.
- 4. Scheduling for a (G+6) RCC building...

Suggested Reading

1. B. N. Datta (2010), Estimating and costing, USBPD. ISBN 9788174767295.

2. Rangwala (2011), Specifications of Estimating, Costing and Valuation, Charotar Publishing House Pvt. Ltd. ISBN 9789380358543.

3. Vazirani, V. N. (2013), Civil Engineering Estimating Costing & Valuation, Khanna publishers. ISBN 9788174091277.

Name of The Course	Industrial In	tern	ship) - I]
Course Code	BCE01P3703	3			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	С
		0	0	2	1

Course Objectives

1. To gain first-hand experience of working as an engineering professional, including the technical application of engineering knowledge.

2. To experience the discipline of working in a professional organization and multidisciplinary team.

3. To develop technical, interpersonal and communication skills.

Course Outcomes

On completion of this course, the students will be able to

CO1	Apply engineering knowledge in solving real-life problems.
CO2	Attain new skills and be aware of the state- of-art in engineering disciplines of their own interest.
CO3	Get exposure to real-life-working environment & practices, and to attain the professionalisms.
CO4	Work with multi-tasking professionals and multidisciplinary team.
CO5	Prepare a technical report, to improve presentation and other soft skills.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

Exposure to real life problems at various reputed industries engaged in areas of Civil Engineering.

Mode of Evaluation:

The evaluation of this training shall be included in the next semester evaluation. The student will be assigned a faculty guide who would be the supervisor of the student. The faculty will be identified before the end of the examination.

Students have to prepare an exhaustive technical report of the internship undertaken which will be duly signed by the officer under whom internship was taken in the industry/ organization. The covering format shall be signed by the concerned faculty in-

charge of the student. The officer-in-charge would also give his rating of the student in a sealed envelope to the Dean of the SOCE. The student at the end of internship will present his report about the internship before a committee constituted by the Dean of the School which would be comprised of at least three members comprising of the Division Chair/Program Chair. The students guide would be a special invitee to the presentation. The seminar session shall be an open house session. The internal marks would be the average of the marks given by each member of the committee separately in a sealed envelope to the Dean.

The marks by the external examiner would be based on the report submitted by the student which shall be evaluated by the external examiner and cross examination done of the student concerned. Not more than three students would form a group for such industrial internship. The final evaluation of the Industrial Internship will be based on the following criteria:

 Presentation and contents of the report demonstrating well developed communication skill.
The professionalism displayed by the student

during industrial training including the scope of quality industrial training attained.

3. Contribution of the employer in providing quality training and relevance of the student's industrial training to their degree.

4. Marks/grades for this course will be withheld until students complete the training. Without this mark/grade students cannot graduate.

Internship Progress Report

50

Internal

Supervi

sor

25

Industr

у

Supervi

sor 25

Comp

onents

Marks

Total

Marks Overall

Marks

Anti-requisite	-				
		L	Т	Р	С
		0	0	4	2

Course Objectives

1. To develop the capacity of students in correlating theoretical knowledge into practical systems either to perform creative works or to perform analysis and hence to suggest solutions to problems, pertaining to civil engineering domain.

2. Foster collaborative learning skills.

3. Develop self-directed inquiry and life-long skills.

3. To enhance the communication skills of the students by providing opportunities to discuss in groups and to present their observations, findings and report in formal reviews both in oral and written format.

Course Outcomes

On completion of this course, the students will be able to

100

numeation	SKIII.			~ .			
by the stu	udent	C	01	Submit a project synopsis comprising of the application and faceibility of the			
ig the scope of C		UI	the application and feasibility of the				
providing quality				Des	ign a system,	component	, or process to
dent's indu	strial			mee	et desired	needs wit	thin realistic
		С	02	con	straints su	uch as	economic,
be withheld	until			env	ironmental, s	social, poli	itical, ethical,
Without	this			hea	Ith care, safet	y and susta	inability.
e. C			03	Wo mul	rk and com tidisciplinary	municate teams.	efficiently in
Final Evaluation		04	Idei	ntify, formula	te, and solv	ve engineering	
E		04	pro	problems.			
			05	Dev	elop an unde	rstanding o	of professional
Project	Presentatio		and ethical responsibility.				
Report							
	voice	Co	ntin	uous	Assessment	Pattern	
25	25				Project	Final	Evaluation
		_			Progress		
	50		Co	mp	Report		
			one	ents		Project	Presentation
100					Internal	Report	and Viva
100					Supervisor	Report	voice
			Ma	arks	20	30	50
e-2			Тс	tal			L
			10	nai		400	

Name of The	Capstone Phase-2
Course	
Course Code	BCE01P3999
Prerequisite	-
Co-requisite	-

Marks

Name of The	Advanced Geotec	Advanced Geotechnical				
Course	Engineering					
Course Code	BCE01T5501					
Prerequisite	BCE01T3403					
Co-requisite	-					
Anti-requisite	-					
		L	Т	Р	C	
		2	0	0	2	

Course Objectives

1. To understand the design aspects of foundation.

2. To evaluate the stress developed in the soil medium.

3. To understand the framework of soil investigation.

Course Outcomes

On completion of this course, the students will be able to

	Comprehend and utilize the geotechnical
CO1	literature to establish the framework for
	foundation design.
	Plan and implement a site investigation
CO2	program including subsurface exploration
02	to evaluate soil/structure behavior and to
	obtain the necessary design parameters.
CO3	Carry out slope stability analysis for
005	various fills and slopes.
CO4	Understand theories of earth pressures and
004	designing of retaining walls.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit	I:	Soil	Exploration	and	Types	of
	F	ounda	tions			

7 lecture hours

Objective of site investigation - reconnaissance – detailed site investigation - methods of exploration – geophysical methods - seismic refraction survey. Depth of exploration – factors governing location and depth of foundation – types of foundations – selection of foundation – plate load test – standard penetration test.

Unit II: Capacity and Settlements of Shallow Foundations

7 lecture hours

Terzaghi's theory of bearing capacity – general and local shear failure - effect of water table – design of footings – settlement of footings immediate and time dependent settlement – permissible limits – differential settlement, introduction to Codal provisions.

Unit III: Deep Foundations

7 lecture hours

Classification and selection of piles – static and dynamic formulae for single pile capacity – efficiency and capacity of pile groups – design of pile group – settlement of pile groups – load test on piles.

Unit IV: Theories of Earth Pressure

7 lecture hours

Definitions – Earth pressure at rest – Rankine's active and passive earth pressures - Coulomb's earth pressure theories – types of retaining walls and its design. Introduction of tunneling, ground improvement methods – compaction, deep compaction and fiber reinforced plastic and geotextiles.

Suggested Reading

1. Shashi K. Gulhati&Manoj Datta (2005), Geotechnical Engineering 1st edition, Tata McGraw Hill Ltd. ISBN: 978-00-705-8829-5.

2. Donald P Coduto, William A. Kitch, Man-chu Ronald Yeung (2010), Geotechnical Engineering: Principles and Practices 2nd revised Edition, Pearson Education. ISBN: 978-01-313-5425-8.

3. Joseph E. Bowles (2006), Foundation Analysis and Design 5th edition, McGraw-Hill, New York. ISBN: 978-00-711-8844-9.

4. Braja M. Das (2007), Principles of Foundation Engineering 6th Edition, Nelson Engineering. ISBN: 978-81-315-0202-0.

Name of The	Ground Imp	Ground Improvement					
Course	Techniques						
Course Code	BCE01T5502	BCE01T5502					
Prerequisite	BCE01T3403						
Co-requisite	-						
Anti-requisite	-						
		L	Т	Р	С		
		2	0	0	2		

Course Objectives

- 1. To find out proper methods of ground improvement.
- 2. To understand various soil engineering problems.
- 3. To use geo-textiles and stabilizers for soil improvement.

Course Outcomes

On completion of this course, the students will be able to

COI	Choose correct method for ground
COI	improvement.
CO2	Choose correct stabilizing material for
002	expansive soils.
CO3	Design grouting process for various soil
005	engineering problems.
CO4	Understand disinfection processes in
004	water treatment.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction & Dewatering

7 lecture hours

Need and objectives of ground improvement, ground classification of modification techniques, suitability and feasibility, emerging trends in ground improvement, methods of dewatering, sumps and interceptor ditches, single, stage well points, multi vacuum well points. Horizontal wells, foundation drains, blanket drains, criteria for selection of fill material around drains, Electro-osmosis.

Unit II: Stabilization

7 lecture hours

Soil improvement by adding materials, lime, flyash, cement and other chemicals and bitumen, sand column, stone column, sand drains, prefabricated drains, lime column, soil-lime column, stabilization of soft clay or silt with lime, bearing capacity and settlement of treated soils, improvement in slope stability, control methods.

Unit III: Dynamic compaction

7 lecture hours

Principles of compaction, field compaction techniques static vibratory, impact, compaction control, compaction using vibratory probes, vibrotechniques, vibro equipment, vibro-compaction and replacement process, vibro systems and liquefaction, soil improvement by thermal treatment, preloading techniques, surface compaction, introduction to bio technical stabilization.

Unit IV: Grouting

7 lecture hours

Introduction, suspension grout, solution grout, grouting equipments and methods, grouting, design and layout granular piles – ultimate bearing capacity and settlement, method of construction, load test.

Suggested Reading

1. Colin Jfp Jones (1996), Earth Reinforcement & Soil Structures, Thomas Telford. ISBN: 978-07-277-3489-1.

2. Nelson, John D. Nelson, Ron Miller (1997), Expansive Soils: Problems and Practice in Foundation and Pavement Engineering New edition, Wiley-Interscience. ISBN: 978-04-711-8114-9.

3. P. Purushothama Raj (1999), Ground Improvement Techniques 1st Edition, Laxmi Publications. ISBN: 978-81-318-0594-7.

4. Rao (1990), Engineering with Geo-synthetics, Mcgraw-hill Education. ISBN: 978-00-746-0323-9.

Name of The	Soil Dynamics and Machine		ine			
Course	Foundation					
Course Code	BCE01T550.	BCE01T5503				
Prerequisite BCE01T3403						
Co-requisite	-					
Anti-requisite	-					
		L	Т	Р	С	
		2	0	0	2	

Course Objectives

- 1. To understand the fundamentals of soil dynamics.
- 2. To know the behavior of the machine foundations and its design.
- 3. To design foundations so as to mitigate the effect of seismic activities.

Course Outcomes

On completion of this course, the students will be able to

CO1	Solve geotechnical earthquake
COI	engineering problems.
cor	Identify the pattern of wave propagation,
02	attenuation of seismic waves
cor	Study the parameters of the soil under
COS	dynamic conditions.
CO4	Design vibration isolation.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I:	Types	of Vibrator	y Motion
---------	-------	-------------	----------

7 lecture hours

Vibratory motion-terminology- Single degree freedom system -Free and Forced vibrations with and without damping; Transient response of single degree freedom system.

Unit II: Wave Propagation in Soil media

7 lecture hours

Wave propagation in an elastic homogeneous isotropic medium - Rayleigh, Shear and

compression waves - waves in elastic half space and its equation.

Unit III: Dynamic Properties of Soils

7 lecture hours

Coefficient of elastic, uniform and non-uniform compression and shear - effect of vibration on the dissipative properties of soils - determination of dynamic properties of soil – Codal provisions.

Unit IV: Design Procedures of Machine Foundations

7 lecture hours

Dynamic loads - simple design procedures for foundations under reciprocating machines – machines producing impact loads - rotary type machines- Codal provision – Vibration isolation.

Suggested Reading

1. Swami Saran (2010), Soil Dynamics and Machine Foundations 2nd edition, Galgotia Publications Pvt Ltd. ISBN: 978-81-751-5441-4.

2. Prasad (2011) Advanced Soil Dynamics and Earthquake Engineering, Prentice Hall, New Delhi. ISBN: 978-81-203-2670-5.

3. Srinivasulu.P. &Vaidyanathan.C. (1998), Hand book on Machine Foundations, McGraw Hill Publications. ISBN: 978-00-709-6611-6.

4. Braja M. Das (2010), Principles of Soil Dynamics 2nd Edition, Cengage Learning Canada. ISBN: 978-04-954-1135-2.

Name of The	Structures on Expansive				
Course	Soils				
Course Code	BCE01T5504				
Prerequisite	BCE01T3403				
Co-requisite	-				
Anti-requisite	te -				
		L	Τ	P	С
		2	0	0	2

Course Objectives

1. To understand problems related to expansive soils.

2. To identify preventive measures for mitigating effect of soil expansion on structures founded on expansive soil.

Course Outcomes

On completion of this course, the students will be able to

COI	Know the physical & mineralogical
COI	properties of expansive soil.
CO2	Predict heave and shrinkage.
CO3	Conduct tests for identification of swelling
005	soil.
COA	Design suitable method for improving
004	properties of expansive soil.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Origin and Occurrence of Expansive
Soils
7 lecture hours
Occurrence and distribution in India - Moisture
equilibrium - Soil, structure, environmental
interaction - Distress symptoms case histories.

Unit II: Identification of Expansive Soils

7 lecture hours

Soil Structure - Clay mineralogy Swell potential -Field exploration - laboratory tests for identification.

Unit III: Remedial foundation Techniques

7 lecture hours

Design considerations-Individual and continuous footings - stiffened mats, under reamed piles, Codal provisions

Unit IV: Chemical stabilization and Special Foundation

7 lecture hours

Mechanical alteration – Sand cushion technique – CNS concept – Chemical stabilization with lime, flyash and cement – Special foundations – Underreamed piles – Straight-shafted drilled piers – Belled piers – Granular pile-anchors. 1. Swami Saran (2008), Analysis and Design of sub structures 2nd edition, Limit State Design, Oxford & IBH Publishing Co. Pvt Ltd., 66, Janpath, New Delhi. ISBN: 978-81-204-1700-7.

2. F.H.Chen (1995), Foundations in Expansive Soils, Elseivier Publications. ISBN:978-04-444-3036-6.

3. R.E.Peck, W.E.Hansen&T.H.Thornburn (2004), Foundation Engineering, John Wiley. ISBN: 978-04-716-7585-3.

4. Varghese P.C (2009), Foundation Engineering 1st Edition, Prentice-Hall of India Private Limited. ISBN: 978-81-203-2652-1.

Name of The	Foundation Engineering					
Course						
Course Code	BCE01T5505					
Prerequisite	BCE01T3403	BCE01T3403				
Co-requisite	-					
Anti-requisite	-					
		L	Τ	Р	С	
	2 0 0 2					

Course Objectives

1. This subject is taught to impart the knowledge in the area of analysis and design of foundations and earth retaining structures

Course Outcomes

On completion of this course, the students will be able to

000	
CO1	Understand the concepts of shallow foundations.
CO2	Design raft foundations.
CO3	Know the concept of pile group.
CO4	Design pile foundation.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I:Shallow foundation

7 lecture hours

Suggested Reading

Shallow Foundations – Spread footings – Contact pressure – Structural design of individual footings – Pedestals – Combined footings (Rectangular and trapezoidal .

Unit II: Raft foundation

7 lecture hours

 $Eccentrically\ loaded\ footings-Raft\ foundations$

Unit III: Piles and Pile Groups

7 lecture hours

Pile Foundations – Types of piles – Static and dynamic pile formula – Pile groups – Efficiency of pile group

Unit IV: Pile foundations

7 lecture hours

Settlement of piles – Batter piles – Analysis of pile groups – Structural design of piles and pile caps

Suggested Reading

1. Gopal Ranjan and A S R Rao (2000), Basic and Applied Soil Mechanics, Second Edition, New Age International, ISBN-13: 9788122412239.

2. J. E. Bowles, (2000), Foundation Analysis and Design, Fifth Edition, McGraw Hill Education India Pvt. Ltd., ISBN-13: 9781259061035.

3. P. C. Verghese, (2009), Design of Reinforced Concrete Foundations, First Edition, PHI Learning Pvt. Ltd., ISBN-13: 9788120336155

Name of The	Mini Projec	t			
Course					
Course Code	BCE01P550	6			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	С
		2	0	0	2

Course Objectives

1. To develop the capacity of students in correlating theoretical knowledge into practical systems pertaining to civil engineering domain.

2. To foster collaborative learning skills.

3. To develop self-directed inquiry and life-long skills.

4. To enhance the communication skills of the students by providing opportunities to discuss in

groups and to present their observations, findings and report both in oral and written format.

Course Outcomes

On completion of this course, the students will be able to

CO1	Identify, formulate, and solve engineering problems.
CO2	Understand planning and scheduling of a project.
CO3	Submit a project report comprising of the application and feasibility of the project.
CO4	Work and communicate efficiently in multidisciplinary teams.
CO5	Develop an understanding of professional and ethical responsibility.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Projects:

Students will select topic in geotechnical engineering field.

Suggested Reading

1.Gopal Ranjan, A.S.R Rao (2000), Basic and Applied Soil Mechanics 2nd Edition, New Age International. ISBN: 978-81-224-1223-9.

2. William Powrie, Soil Mechanics: Concepts and Applications, Second Edition, Spon Press. ISBN: 978-04-153-1156-4.

3. Karl Terzaghi, Soil Mechanics in Engineering Practice, Warren Press. ISBN: 978-14-465-1039-1.

4. Aysen (2004), Problem Solving in Soil Mechanics, Taylor & Francis Group. ISBN: 978-04-153-8392-9.

Name of The	Mass Transport
Course	Management
Course Code	BCE01T5601
Prerequisite	BCE01T3502
Co-requisite	-
Anti-requisite	-

L	Т	Р	С
2	0	0	2

Course Objectives

- 1. To teach the concepts of MRTS and their importance, the accessories involved in MRTS.
- 2. To develop the students skills to have better understanding about the finance management, route surveys and evaluation.

Course Outcomes

On completion of this course, the students will be able to

	Learn the basic principles of MRTS and
CO1	their importance so as to apply perfectly in
	the Management issues.
	Demonstrate the ability to understand the
CO2	accessories required for MRTS, bus
002	terminals and the organization and
	operation.
	Understand the principles and implement
CO3	new methods in financing, revenues and
	have good public relations.
	Prepare route surveys and planning,
CO4	schedules and evaluate a system with the
	acquired knowledge.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Importance	of MRTS
--------------------	---------

7 lecture hours

Structures of urban areas – provision of transport facilities – different mass transportation systems – basic management issues.

Unit II: Organizational Structures

7 lecture hours

Organizational structures – management by objectives – delegation of powers – man power planning.

Unit III: Financing-Budgeting

7 lecture hours

Methods of financing – budgeting and recounting – fare structures – replacement programmes, fare collected system – revenue leakage and prevention. Incentives – public relations.

Unit IV: Route Surveys

7 lecture hours

Route surveys and planning – preparation of schedules and duty roasters – travel time accident studies.

Suggested Reading

1. Glaister.S., (1995), Fundamentals of Transport economics, BasiclBalckwell, Oxford, ISBN-9780312311520.

2. Khisty.C.J., and Lall.B.K., (2003) "Transportation Engineering", Indian Edition, Prentice-Hall of India , ISBN-9788120322127.

3. Stubbs.P.C. et al., (1984), Transport Economics, Allen and Ulbwin, Boston, ISBN-9780043381212.

4. Chon. Louss F. andMcVoy.G.R., (1982), "Environmental Analysis of Transportation System", A Willy Interscience Publication, John Wiley & Sons, New York, ISBN-9780471080985.

Name of The	Traffic Engineering				
Course					
Course Code	BCE01T5602				
Prerequisite	BCE01T3502				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		2	0	0	2

Course Objectives

- 1. To teach the concepts of traffic studies, traffic facilities and their regulations and management.
- 2. To understand the methods for efficient management of traffic in urban roads.

Course Outcomes

On completion of this course, the students will be able to

CO1	Perform traffic studies.				
CO2	Know importance of traffic management.				
CO3	Identify the specification of traffic facilities.				
CO4	Understand disinfection processes in water treatment.				
CO5	Discuss on Latest Research Paper.				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Traffic Studies

7 lecture hours

Road user and Vehicle Characteristics - Traffic Studies -Traffic volume and composition - speed, Headway - Concentration and Delay & Flow principles - Capacity and level of service.

Unit II: Traffic Facilities

7 lecture hours

Signals - Islands - Types and General layout of atgrade and grade separated intersections.

Unit III: Traffic Regulations and Management

7 lecture hours

Traffic signs and markings - Parking practices - Traffic management measures.

Unit IV: General Principles and Flexible Pavement Design

7 lecture hours

Factors affecting pavements stability – equivalent single wheel load – vehicle, soil, traffic & Climatic factors - stress distribution in different conditions - CBR method of design - AASSO method & Burmister design method.

Suggested Reading

1. Kadiyali.L.R. (2008), Traffic Engineering and Transportation Planning, Khanna Publishers, ISBN-9788174092205.

2. ChakroborthyPartha, and Das Animesh, (2003), Principles of Transportation Engineering, Eighth Printing, Prentice-Hall of India, ISBN-9788120320840.

3. Khisty.C.J., and Lall.B.K., (2003) "Transportation Engineering", Indian Edition, Prentice-Hall of India , ISBN- 9788120322127.

4. Garber. Nicholas J., and Hoel. Lester A., (2009), Traffic & Highway Engineering, Fourth Edition, Cengage Learning, ISBN-9780495082507.

Name of The Course	Highway Pavement Design				
Course Code	BCE01T5603				
Prerequisite	BCE01T3502				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		2	0	0	2

Course Objectives

- 1. To introduce various analysis and design procedures of different types of pavements.
- 2. To familiarise with maintenance, evaluation, strengthening and rehabilitation of the pavements.

Course Outcomes

On completion of this course, the students will be able to

CO1	Learn the basic principles of flexible and
COI	rigid pavements.
	Demonstrate the ability to analyse and
	design the flexible and rigid pavements by
CO2	applying various methods and thorough in
	construction procedures and the functions
	of pavements
	Ability to critically evaluate flexible and
CO3	rigid pavements by deflection
	measurement.
CO4	Demonstrate the ability to apply
	strengthening techniques and
	rehabilitation of pavements.

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	

5	SCHOOL OF CIVIL ENGINEERING						
	20	30	50	100			

Course Content:

Unit I: General Principles of Pavement Design

7 lecture hours

Components of a road and functions – factors affecting pavements stability – equivalent single wheel load – vehicle and traffic factors – moisture factors – climate factors – soil factors – stress distribution in different conditions – modulus of elasticity of various layers.

Unit II: Flexible Pavement Design

7 lecture hours

Empirical method using soil classification tests – estimation of CBR value method of designing pavement – plate bearing test method Ashpalt Institute method – AASSO method – Burmister design method.

Unit III: Rigid Pavement Design

7 lecture hours

Stresses in concrete pavement – IRC method – design of steel reinforcements – design of different joints in concrete pavements and their functions – construction of concrete pavements and their functions.

Unit IV: Pavement Evaluation

7 lecture hours

Distresses in flexible pavements – distress in rigid pavements – service ability index – structural evaluation of flexible and rigid pavements – evaluation by deflection measurement – strengthening of pavements – flexible overlays – rigid overlays.

Suggested Reading

- 1. ChakroborthyPartha, and Das Animesh, (2003) "Principles of Transportation Engineering", Eighth Printing, Prentice-Hall of India, ISBN-9788120320840.
- Yoder.E.J., and Witczak. M. W., Principles of Pavement Design, Second Edition, John Wiley & Sons, ISBN-9780471977803.

- Garber. Nicholas J., and Hoel. Lester A., (2009), Traffic & Highway Engineering, Fourth Edition, Cengage Learning, ISBN-9780495082507.
- 4. S.K. Sharma (1998), Principles, Practice and Design of Highway Engineering, S. Chand & Co Ltd, New Delhi.
- Bruce.A.G. and Clarkeson.J., (1952), Highway Design and Construction, Third Edition, International Textbook Co.

Name of The	Pavement Constructions				
Course					
Course Code	BCE01T5604				
Prerequisite	BCE01T3502				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		2	0	0	2

Course Objectives

1. To make the students to understand stabilization of Soil.

2. To enable the students to understand different types of pavement constructions.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand stabilization of Soil.			
CO2	Explain construction of non-bituminous			
	pavements.			
CO3	Understand construction of bituminous			
	pavements.			
COA	Explain Construction of Cement Concrete			
CO4	Roads			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Stabilization of Soil

lecture hours

History of road construction, stages of construction, seasonal limitations of pavement construction. Mechanical stabilization, cementing additives and chemicals, thermal stabilization.

7

Unit II: Construction of Non-bituminous Pavements

7 lecture hours

Brief introduction to earthwork machinery: shovel, hoe, clamshell, dragline, bulldozers, cleaning and grubbing, excavation for road and drain, principles of field compaction of embankment / subgrade. Compacting equipments. Granular roads. Construction steps of GSB, WBM and WMM.

Unit III: Construction of Bituminous Pavements

7 lecture hours

Various types of bituminous constructions. Prime coat, tack coat, seal coat and surface dressing. Construction of busg, premix carpet, BM, DBM and AC. Brief coverage of machinery for construction of bituminous roads: bitumen boiler, sprayer, pressure distributer, hot-mix plant, coldmix plant, tipper trucks, mechanical paver or finisher, rollers. Mastic asphalt. Introduction to various IRC and MORTH specifications.

Unit IV: Construction of Cement Concrete Roads

7 lecture hours

Construction of cement concrete pavements, machinery involved in construction, slip-form pavers, joints in cement concrete pavements, IRC and MORTH specifications. Construction of other types of pavements: basic concepts of the following: soil stabilized roads, use of geosynthetics, reinforced cement concrete pavements, prestress concrete pavements, roller compacted concrete pavements and fibre reinforced concrete pavements. Use of fly ash in cement concrete road construction.

Suggested Reading

1. Kadiyali.L.R., and Lal.N.B., (2005), Principles and Practice of Highway Engineering, Fourth Edition, Khanna Publishers, ISBN- 9788174091659.

2. ChakroborthyPartha, and Das Animesh, (2003), Principles of Transportation Engineering, Eighth Printing, Prentice-Hall of India, ISBN-9788120320840.

3. Rao.G.V., (1996), Principles of Transportation and Highway Engineering, Tata McGraw-Hill Co, ISBN- 9780074623633.

4. Khisty.C.J., and Lall.B.K., (2003), Transportation Engineering, Indian Edition, Prentice-Hall of India, ISBN- 9788120322127.

Name of The Course	Transportation Safety and Environment				
Course Code	BCE01T5605				
Prerequisite	BCE01T3502				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		2	0	0	2

Course Objectives

1. To make the students to understand transportation safety.

2. To enable the students to understand proper use of land.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand the problem of road accidents in India
CO2	Explain traffic segregation.
CO3	Understand the concepts of road safety audit.
CO4	Monitor and evaluate non-engineering measures for road safety.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Trends in roads development

7 lecture hours

Trends in roads and highways development. Problem of road accidents in India. Characteristics of road accidents. Causes of accidents. Global and Indian road safety scenario. Factors responsible for success stories in road safety. Role of highway professionals in highway safety.

Unit II: Planning of roads for safety

7 lecture hours

Planning of roads for safety. Land use planning zoning. Development control and and encroachment. hierarchy. Network Route planning through communities. Access control. Traffic segregation. Traffic calming designing for safety: road link design, alignment design. Crosssectional elements. Traffic control devices. Road side safety. Road side facilities. Some critical elements. Junction design Basic principles. Selection of junction type. Factors affecting safety at various junction types. Elements to improve road safety. Provisions for vulnerable road users.

Unit III: Road safety audit

7 lecture hours

Road safety audit. Concepts of road safety audit, Road safety auditors & key personnel in RSA. Organizing and conducting a road safety audit. Example and commonly identified. Issues during RSA, Road safety audit report. Development of cost-effective of road safety audit accident investigation and prevention. Basic strategies for accident reduction. Significance of accident data. Accident investigation and identification of potential sites for treatment. Problem diagnosis. Selection of countermeasures. Example of selection of counter measures. Detailed design and implementation of countermeasures.

Unit IV: Monitoring of road safety

hours

7 lecture

Monitoring and evaluation non-engineering measures for road safety, behavioral counter measures, education. Training and publicity. The goal of police traffic control activities. Strategy for road safety management by police. Role of NGOs in road safety. Legal framework for road safety transport related pollution, noise pollution, air pollution, effects of weather conditions, vehicular emission parameters, pollution standards. EIA requirements of highway projects, world bank guidelines, EIA practices in India. Fuel crisis and transportation, factors affecting fuel consumption, fuel economy in various modes of transportation, various types of alternative fuels.

Suggested Reading

 Kadiyali.L.R., and Lal.N.B., (2005), Principles and Practice of Highway Engineering, Fourth Edition, Khanna Publishers, ISBN- 9788174091659.
ChakroborthyPartha, and Das Animesh, (2003), Principles of Transportation Engineering, Eighth Printing, Prentice-Hall of India, ISBN-9788120320840.

3. Rao.G.V., (1996), Principles of Transportation and Highway Engineering, Tata McGraw-Hill Co, ISBN- 9780074623633.

4. Khisty.C.J., and Lall.B.K., (2003), Transportation Engineering, Indian Edition, Prentice-Hall of India, ISBN- 9788120322127.

Name of The	Mini Project				
Course					
Course Code	BCE01P5606	5			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		2	0	0	2

Course Objectives

1. To develop the capacity of students in correlating theoretical knowledge into practical systems pertaining to civil engineering domain.

2. To foster collaborative learning skills.

3. To develop self-directed inquiry and life-long skills.

4. To enhance the communication skills of the students by providing opportunities to discuss in groups and to present their observations, findings and report both in oral and written format.

Course Outcomes

On completion of this course, the students will be able to

	Identify, formulate, and solve engineering
CO1	problems.
CO2	Understand planning and scheduling of a
002	project.
CO3	Submit a project report comprising of the
005	application and feasibility of the project.
COA	Work and communicate efficiently in
004	multidisciplinary teams.
CO5	Develop an understanding of professional
	and ethical responsibility.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Projects:

Students	will	select	topic	in	transportation
engineeri	ng fiel	d.			

Suggested Reading

 Kadiyali.L.R., and Lal.N.B., (2005), Principles and Practice of Highway Engineering, Fourth Edition, Khanna Publishers, ISBN- 9788174091659.
ChakroborthyPartha, and Das Animesh, (2003), Principles of Transportation Engineering, Eighth Printing, Prentice-Hall of India, ISBN-

9788120320840.3. Rao.G.V., (1996), Principles of Transportation and Highway Engineering, Tata McGraw-Hill Co,

ISBN- 9780074623633.

4. Khisty.C.J., and Lall.B.K., (2003), Transportation Engineering, Indian Edition, Prentice-Hall of India, ISBN- 9788120322127.

Name of The	Pollution Control and
Course	Monitoring
Course Code	BCE01T5621
Prerequisite	-
Co-requisite	-
Anti-requisite	-

L	Т	Р	С
2	0	0	2

Course Objectives

- 1. To understand the factors that must be satisfied for potable water, land and air for the removal and treatment of pollutants.
- 2. To provide a strong link between the Pollution Damage, Public Authority Control Systems and Technical Control Systems
- 3. To know the relationship between social, legislative and biological constraints in a modern developed society.

Course Outcomes

On completion of this course, the students will be able to

CO1	Describe the principles of the biological and chemical treatment processes that are required to ensure adequate quality and quantities of potable water.
CO2	Implement the principal techniques currently in use for wastewater treatment and to review operational procedures for the plant involved.
CO3	Use advanced methods for monitoring and modeling spatial and temporal patterns of pollution.
CO4	Understand disinfection processes in water treatment.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Water Pollution & Control

7 lecture hours

Natural process-pollution due to industrial, agricultural and municipal wastes-limitations of disposal by dilution-BOD consideration in streams – Oxygen Sag Curve-Water pollution control legislation.

Unit II: Air Pollution and Control

7 lecture hours

Pollution and their sources-effects of pollution on human health, vegetation and climate-prevention and control of particulate-industry and airpollution surveys and sampling-Air quality monitoring- air pollution control legislation.

Unit III: Noise Pollution and Control

7 lecture hours

Sound and Noise: Sources of noise pollution – environmental and industrial noise; effects of noise pollution; fundamentals of sound generation, propagation etc; sound measurement; sound level meters – types, components, Measures for prevention and control of noise; environmental and industrial noise; noise control legislation.

Unit IV: Environmental Sanitation

7 lecture hours

Relation of food to disease-principles of food sanitation-sanitation of kitchens, restaurants and other catering establishments-quality changes in milk-milk as carrier of infection-pasteurisation of milk-HTST and LTLT processes – cattle shed sanitation. Orientation of buildings with respect to the direction of prevailing winds and solar movement. Air movement inside the buildings for a healthy residential environment.

Suggested Reading

1. Rao C.S. (2006), Environmental Pollution Control Engineering, New Age International, ISBN: 9788122418354.

2. Arcadio P Sincero, Gregoria A Sincero (2009), Environmental Engineering : A Design Approach, PHI Learning, ISBN: 9788120314740.

3. George Tchobanoglous, Donald R. Rowe, Howard S. Peavy, Environmental Engineering, McGraw-Hill Publishing Co., ISBN: 9780071002318.

4. P. AarneVesilind, Susan M. Morga (2004), Introducing to Environmental Engineering, Nelson Engineering, ISBN: 9780534378127.

Name of The	Air and Noise Pollution					
Course						
Course Code	BCE01T5622					
Prerequisite	-	-				
Co-requisite	-					
Anti-requisite	-	-				
	L T P C					
	2 0 0 2					

Course Objectives

1. To understand the aspects of atmospheric pollution and its flow.

2. To know about the issues such as atmospheric composition, monitoring, acidic deposition, urban air quality

3. To understand the use and application of air quality models for the identification of plume flow.

Course Outcomes

On completion of this course, the students will be able to

	The main chemical components and				
CO1	reactions occur in the atmosphere and				
COI	examine the factors responsible for				
	perturbing this.				
	The Implementation of the methods for				
CO2	monitoring and modeling spatial and				
	temporal patterns of pollution.				
CON	The air pollution issues at a range spatial				
CO3	scales and how these are relaxed.				
CO4	The environmental impacts of atmospheric				
	pollutants and assess their concentration.				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Sources and Effects of Air Pollution

7 lecture hours

Classification of air pollutants – Particulates and gaseous pollutants – Sources of air pollution – Source inventory – Effects of air pollution on human beings, materials, vegetation, animals – global warming-ozone layer depletion, Sampling and Analysis – Basic Principles of Sampling – Source and ambient sampling – Analysis of pollutants – Principles.

Unit II: Control of Air Pollution

7 lecture hours

Concepts of control – Principles and design of control measures – Particulates control by gravitational, centrifugal, filtration, scrubbing, electrostatic precipitation – Selection criteria for equipment, gaseous pollutant control by adsorption & absorption, condensation, combustion – Pollution control for specific major industries.

Unit III: Air Quality Management

7 lecture hours

Air quality standards – Air quality monitoring – Air pollution control efforts – Zoning – Town planning regulation of new industries – Legislation and enforcement – Environmental Impact Assessment – Methods.

Unit IV: Noise Pollution & Control

7 lecture hours

Sound and Noise: Sources of noise pollution – environmental and industrial noise; effects of noise pollution- fundamentals of sound generation - propagation, sound measurement - sound level meters – types, components, Noise prevention & control measures, environmental and industrial noise - noise control legislation.

Suggested Reading

1. M N Rao& H V N Rao (2007), Air Pollution, Tata McGraw-Hill Publishing Company, 26th reprint, New Delhi. ISBN: 0074518718 Noel De Nevers (2010), Air Pollution Control Engineering, 2nd Edition, Waveland Press, Inc., Long Grove, Illinois. ISBN: 978-1577666745
Singal, S.P. (2000), Noise Pollution and Control,

First Edition, Narosa Publishing House, New Delhi.ISBN: 8173193630

4. Rao C.S. (2006) Environmental Pollution Control Engineering, 2nd edition, New Age International,New Delhi. ISBN: 9788122418354

Name of The	Solid Waste Management				
Course					
Course Code	BCE01T5623				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		2	0	0	2

Course Objectives

- 1. To gain insight into collection, transfer and transport of municipal solid waste
- 2. Understand the design and operation of municipal solid waste landfill
- 3. Understand the design and operation of resource recovery facility

4. Understand the design and operation of waste to energy facility

Course Outcomes

On completion of this course, the students will be able to

COL	Understand solid waste and its
COI	composition.
CO2	Understand method of solid waste
002	collection and transportation.
	Understand various processes involved in
CO3	solid waste collection, segregation and
	transportation.
CO4	Design solid waste disposal facility.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction to Solid Waste Management

7 lecture hours

Legal and Organizational foundation: Definition of solid waste–waste generation– major legislation, monitoring responsibilities, sources and types of solid waste – sampling and characterization – Determination of composition of MSW–storage and handling of solid waste – Future changes in waste composition.

Unit II: Waste collection systems

7 lecture hours

Waste collection systems, analysis of collection system–alternative techniques for collection system. Need for transfer operation, transport means and methods, transfer station types and design requirements.

Unit III: Process of Solid Waste and Energy recovery

7 lecture hours

Unit operations for separation and processing, Materials Recovery facilities, Waste transformation through combustion and aerobic composting, anaerobic methods for materials recovery and treatment – Energy recovery – Incinerators

Unit IV: Disposal of Solid Wastes

7 lecture hours

Land farming, deep well injections. Landfills: Design and operation including: site selection, Geo-

environmentalinvestigations, engineered sites, liner sandcovers, leachate control and treatment, gas

recovery and control, including utilization of recovered gas (energy), and landfill monitoring and

reclamation,,Requirementsandtechnicalsolution,d esignatedwastelandfillremediation–Integrated

waste management facilities. TCLP tests and leachate studies. Economics of the on-site v/s offsite waste management options. Natural attenuation process and its mechanisms.

1.GeorgeTechobanoglousetal," Integrated SolidWaste Management", McGraw-Hill Publication,1993

1. Hand book of Solid Waste Management by <u>Frank</u> <u>Kreith</u>, <u>George Tchobanoglous</u>, McGrawHill Publication

2. Bagchi, A., Design, Construction, and Monitoring of Landfills,(2ndEd). Wiley Inter Science, 1994.ISBN: 0-471-30681-9.

3. Sharma,H.D.,and Lewis,S.P., Waste Containment Systems, Waste Stabilization, and Landfills: Design and Evaluation. Wiley Interscience,1994, ISBN: 0471575364.

Name of The	Bio-Energy Technologies				
Course					
Course Code	BCE01T5624				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		2	0	0	2

Course Objectives

1. Bio-energy and its mechanism

2. Different processes for production of bio energy

3. To under different techniques and tools

4. Bio energy production from different solid wastes

5. Energy Consumption and Cost - Environmental Aspects

Course Outcomes

On completion of this course, the students will be able to

CO1	Solid waste management by bio energy	
	Different processes used for	
CO2	biodegradation of solid waste and	
	production of bio energy	
CO3	The industrial applications of Bio-	
005	Energy.	
CO4	Environmental aspect of Bio-Energy	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction to Bio Energy

7 lecture hours

Bio Energy - Bio Conversion Mechanism - Utilization of Photosynthate

Unit II: Biological Conversion

7 lecture hours

Combustion, Pyrolysis, Gasification and Liquefaction - Biological Conversion - Methanol, Ethanol Production - Fermentation - Anaerobic Digestion Biodegradation and Biodegradability of Substrate - Hydrogen Generation from Algae – Biological Pathways

Unit III: Biomass Production

7 lecture hours

Through Fermentation and Gasification - Biomass Production from different Organic Wastes - Effect of Additives on Biogas Yield - Biogas production from Dry Dung Cakes

Unit IV: Energy Production

7 lecture hours

Viability of Energy Production - Wood Gasifier System, Operation of Spark Ignition and Compression Ignition with Wood Gas. Operation and Maintenance

Suggested Reading

1. R.C.Maheswari, Bio Energy for Rural Energisation, Concepts Publication, 1997

2. David Boyles, Bio Energy Technology Thermodynamics and costs, Ellis Hoknood, Chichester, 1984

3. Khandelwal KC, Mahdi SS, Biogas Technology - A Practical Handbook, Tata McGraw Hill, 1986

4. Anthony San Pietro, Biochemical and Photosynthetic aspects of Energy Production, Academic Press, New York, 1980

Name of The Course	Environmental Ecology				
Course Code	BCE01T5625				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		2	0	0	2

Course Objectives

1. To establish Ecology's credibility in high environmental, ethical and quality standards of goods and services.

2. Access the market opportunity presented by the 'greenmarket'.

3. Raise consumer awareness and concern for environmental issues, and encourage their support for ecological values in consumer practices.

4. Also to develop affair and equitable means to link economic and environmental values

Course Outcomes

On completion of this course, the students will be able to

COI	Develop legal and economic
COI	structures
	Able to provide reasonable return on
CO2	investment, financial or personal effort,
	dividends, wages and so forth
	Develop ecologically sustainable
CO3	production and industry through
	developing the potential of all fibres.
COA	Develop environmentally and socially
004	friendly alternatives

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Concepts of Ecology

7 lecture hours

Fundamentals of ecology, Natural ecosystems and their food chains, food webs, bioenergetics, biochemical cycles and ecological succession, deoxygenating nutrient enrichment

Unit II: Bio Diversity

7 lecture hours

Biological diversity and its importance, reduction in biological diversity by human activities, classes and general effects of physical and Biological interaction with pollutants, lethal and sub-lethal effects.

Unit III: Ecosystem Ecology

7 lecture hours

Ecosystems responses to deoxygenating nutrient enrichment, pesticides, hydrocarbons, metal and salts, thermal pollution, suspended solids and silt. **Unit IV: Community Ecology**

Unit IV: Community Ecolo

7 lecture hours

Principles of population and community ecology– concepts of systems and models–building and analysis of models–environmental systems, structures and interaction between coastalaeolian, glacial, fluvial, weathering, soil and detrital systems.

Suggested Reading

1. Odum. E. P, "Fundamentals of ecology", W.B. Sanders, Philadelphia, 2002

2. White. I.D., Mottershead. D.N., Harrison .S.J, "Environmental Systems – an introductory text", Chapmanandahll ,London,1998.

3. Colinvaux.P, "Introduction to Ecology", John Wile & sons, Newyork, 1973.

Name of The Course	Mini Project				
Course Code	BCE01P5626				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	C
		2	0	0	2

Course Objectives

1. To develop the capacity of students in correlating theoretical knowledge into practical systems pertaining to civil engineering domain.

2. To foster collaborative learning skills.

3. To develop self-directed inquiry and life-long skills.

4. To enhance the communication skills of the students by providing opportunities to discuss in groups and to present their observations, findings and report both in oral and written format.

Course Outcomes

On completion of this course, the students will be able to

	Identify, formulate, and solve engineering
CO1	problems.

CO2	Understand planning and scheduling of a
02	project.
CO3	Submit a project report comprising of the
005	application and feasibility of the project.
CO4	Work and communicate efficiently in
004	multidisciplinary teams.
COS	Develop an understanding of professional
05	and ethical responsibility.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Projects:

Students will select topic in Environmental engineering field.

Suggested Reading

1. Rao C.S. (2006), Environmental Pollution Control Engineering, New Age International, ISBN: 9788122418354.

2. Arcadio P Sincero, Gregoria A Sincero (2009), Environmental Engineering : A Design Approach, PHI Learning, ISBN: 9788120314740.

3. George Tchobanoglous, Donald R. Rowe, Howard S. Peavy, Environmental Engineering, McGraw-Hill Publishing Co., ISBN: 9780071002318.

4. P. AarneVesilind, Susan M. Morga (2004), Introducing to Environmental Engineering, Nelson Engineering, ISBN: 9780534378127.

Name of The	Advanced Structural				
Course	Analysis				
Course Code	BCE01T5701				
Prerequisite	BCE01T3401				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		2	0	0	2

Course Objectives

- 1. To enable the students to understand the behaviour of indeterminate structures.
- 2. To help the students to know the concepts of elastic analysis and plastic analysis.

3. To teach students about the concepts of matrix analysis of structures.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand the concept of moment
	distribution method.
CO2	Understand the concept of plastic analysis.
CON	Use flexibility matrix method for
005	analyzing beams and plane trusses.
COA	Apply stiffness matrix method in the
C04	analysis of beams and plane trusses.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Moment distribution method

7 Lecture Hours

Moment distribution method - analysis of continuous beams and portals - bending moment and shear force diagram

Unit II: Plastic Analysis

7 Lecture Hours

Plastic moment of resistance - shape factor - collapse load - analysis of continuous beams and portals.

Unit III: Flexibility matrix

7 Lecture Hours

Concept of flexibility matrix - analysis of continuous beams - pin jointed plane trusses.

Unit IV: Stiffness matrix

7 Lecture Hours

Stiffness matrix for beam element - analysis of continuous beams - pin jointed plane trusses.

Suggested Reading

1.Ashok K. Jain, (2009), Advanced Structural Analysis with Finite Element & Computer Applications, Nem Chand & Brothers, ISBN 978-81-852-4081-7.

2.Hibbeler, R. C. (2005), Structural Analysis (5th Ed.), Pearson Education India, ISBN-10: 0131470892.

3. S. S. Bhavikatti, (2005), Structural Analysis, 2nd edition, Vikas Publishing House, ISBN: 812-59-171-60.Rao C.S. (2006)

Name of The Course	Rehabilitation of structures & Vaastu Principles				
Course Code	BCE01T5702				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		2	0	0	2

Course Objectives

1. This subject imparts a broad knowledge in the area of repair and rehabilitation of structures

Course Outcomes

On completion of this course, the students will be able to

CO1	Know the strategies of maintenance and repairing
CO2	Get an idea of repairing techniques.
CO3	Understand the properties of repairing materials.
CO4	Know about Vaastu Principles

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Repairing materials

7 lecture hours

Diagnosis and Assessment of Distress - Visual inspection – Non destructive tests –Ultrasonic pulse velocity method – Rebound hammer technique – ASTM classifications – Pullout tests – Core test.

Unit II: Repairing techniques

7 lecture hours

Materials for Repairing - Special concretes and mortar - Concrete chemicals - Special elements for accelerated strength gain - Expansive cement -Polymer concrete – Ferro cement, Fibre reinforced concrete - Fibre reinforced plastics.

Unit III: Repairs to structures

7 lecture hours

Techniques for Repair - Rust eliminators and polymers coatings for rebars during repair -Foamed concrete - Mortar and dry pack - Vacuum concrete - GModulee and shotcrete - Epoxy injection - Mortar repair for cracks - Shoring and underpinning.

Unit IV: Vaastu Principles

7 lecture hours

Vaastu Principles – Applications - Advantages

Suggested Reading

1. Shetty M. S., (2008), Concrete Technology, Seventh Edition, S. Chand & Company Ltd.*ISBN*-13: 9788121900034.

2. Ravindra K. Dhir, M. Roderick Jones & Li Zheng, (2005), Repair and Renovation of Concrete Structures, American Society of Civil Engineers, *ISBN-13:* 9780727734051.

3. A. R. Santha Kumar, (2006), Concrete Technology, First Edition, Oxford University Press, ISBN-13: 9780195671537.

Name of The	Bridge Engineering				
Course Code	BCE01T5703	3			
Prerequisite	-	0			
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		2	0	0	2

Course Objectives

1. To understand the design and codal concepts of different types of bridges.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand IRC Code
cor	Use Pigeauds curves for designing deck
002	slab for T-beam Bridge.
	Understand Courbon's method of load
CO3	distribution to analyze and design girders
	for T-beam Bridge.
CO4	Design piers and abutments

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction and design of slab culvert

7 lecture hours

Site selection, various types of bridges, loads on bridges according to IRC codes, Design of RC bridges under concentrated loads using effective width method.

Unit II: Deck slab of T-Beam Bridges

7 lecture hours

Pigeauds curves, Calculation of bending moments, Design of deck slab for T-beam Bridge for different types of vehicles.

Unit III: Girders of T-Beam Bridge

7 lecture hours

Courbon's method of load distribution, Analysis and design of girders for T-beam Bridge for different types of vehicles, Concept of box culverts

Unit IV: Design of Substructures

7 lecture hours

Types of piers, Forces acting on piers, Design of piers, General features of abutments, Forces acting on abutments, Design of abutments

Suggested	Reading
-----------	---------

1. Victor D. J. (2008), Essentials of Bridge Engineering, 6th Edition, Oxford University Press, ISBN: 9788120417175.

 Ramachandra (2004), Design of Steel structures, 4th Edition, Standard Publishers Distributors, ISBN: 9780071544115.

3. Duggal S. K. (2008), Design of Steel Structures, 3rd Edition, Tata McGraw-Hill, ISBN: 9780070260689.

4. IRC Bridge Codes.

Name of The	Earthquake Engineering				
Course					
Course Code	BCE01T5704	4			
Prerequisite	BCE01T3501				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		2	0	0	2

Course Objectives

1. To enable the students to understand the elements of earthquake engineering.

2. To teach the students about SDOF and MDOF systems.

3. To teach the students about the earthquake resistant design of multi-storeyed structures.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand the elements of earthquake
	engineering
coz	Compute design moments and shears for
framed structure as per IS: 1893.	
	Calculate free vibrations and forced
CO3	vibrations of different degree of freedom
005	and dynamic response to time dependent
	forces
CO4	Know about earthquake damages

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam (ETE)	

20	30	50	100

Course Content:

Unit I: Elements of Earthquakes

7 lecture hours

Elements of Seismology - Earthquakes -Structure of the Earth -History of the Earth -Earthquake Mechanism -Propagation of Seismic Waves -Earthquake Phenomena -Earthquake Measurements -Definitions of magnitude, intensity, epicentre etc; General features of tectonics of seismic regions, seismographs, liquefaction, effect of Tsunami.

Unit II: Free and Forced Vibrations

7 lecture hours

Dynamic Loads - D'Alembert's Principle and inertia forces-Stiffness and flexibility of elastic structures - Theory of Vibrations - Free vibrations of single degree, two degree and multi degree freedom systems - computations of dynamic response to time dependent forces- mass and stiffness matrices – natural frequencies - Plate Tectonics Theory.

Unit III: Earthquake Resistant Design

7 lecture hours

Principles of Earthquake Resistant Design -Response spectrum theory. Application of response spectrum theory to seismic design of structures.

Unit IV: Earthquake Damages

7 lecture hours

Earthquake	Damages	to	Vario	us Civil	
Engineering	Structures	-	Case	Histories	
Earthquake-Earthquake response of structures					

Suggested Reading

1. Anil K. Chopra, (2011), Dynamics of Structures – Theory and Applications to Earthquake Engineering, 4th Edition, Prentice-Hall India Pvt Ltd. ISBN: 0132858037

2. Agarwal P. &Shrikhande M., (2006), Earthquake Resistant Design of Structures, Prentice-Hall India Pvt Ltd, ISBN: 9788120328921

3. Pauley & Priestly (1995), Seismic design of reinforced concrete and masonry buildings, John Wiley & Sons.

4. StrattaJ.L. (2000), Manual of Seismic Design, Prentice-Hall India Pvt Ltd.

Name of The	Advanced Concrete Design				
Course					
Course Code	BCE01T5705				
Prerequisite	BCE01T3501				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
	2 0 0 2				

Course Objectives

- 1. To enable the students to learn the limit state method of design of concrete members.
- 2. To enable the students to understand the concepts of advanced concrete design for different structures.

Course Outcomes

On completion of this course, the students will be able to

CO1	Design different types of RC footings.
CO2	Design dog legged and open well stair
002	case.
CO3	Design cantilever and counterfort
COS	retaining walls.
CO4	Understand the concept of yield line
004	theory.

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Course Content:

Unit I: Design of Footings

lecture hours

Types of foundation - Design of isolated footing - combined footing – Concept of raft footing and well foundation

Unit II: Design of Stair Cases

7 lecture hours

General specifications, Types of stair cases, Loads on stair cases, Effective span of stairs, Design of dog legged stair case, Design of open well stair case

Unit III: Retaining Walls

7

lecture hours

General specifications, Forces acting on retaining walls, Stability consideration, Wall proportioning, Design of cantilever retaining walls and counterfort retaining walls.

Unit IV: Yield Line Theory

7

lecture hours

Yield line pattern, Moment capacity along yield line, Ultimate load on slabs, Analysis by virtual work method and equilibrium method.

Suggested Reading

 Gambhir, M.L., (2011), Design of Reinforced Concrete Structures, ISBN: 9788120331938.
Varghese, P.C., (2009), Advanced Reinforced Concrete Design, 2nd ed. ISBN: 9788120327870.
Jain, A.K., (1999) "Reinforced Concrete: Limit State Design 7th Edition, ISBN: 8185240663.
IS:456 (2000) & SP:16.

Name of The	Mini Project				
Course					
Course Code	BCE01P5706	5			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		2	0	0	2

Course Objectives

1. To develop the capacity of students in correlating theoretical knowledge into practical systems pertaining to civil engineering domain.

2. To foster collaborative learning skills.

7

3. To develop self-directed inquiry and life-long skills.

4. To enhance the communication skills of the students by providing opportunities to discuss in groups and to present their observations, findings and report both in oral and written format.

Course Outcomes

On completion of this course, the students will be able to

CO1	Identify, formulate, and solve engineering
	problems.
CO2	Understand planning and scheduling of a
002	project.
CO3	Submit a project report comprising of the
005	application and feasibility of the project.
CO4	Work and communicate efficiently in
04	multi disciplinary teams.
COS	Develop an understanding of professional
05	and ethical responsibility.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Projects:

Students	will	select	topic	in	Environmental
engineeri	ng fiel	ld.			

Suggested Reading

 Gambhir, M.L., (2011), Design of Reinforced Concrete Structures, ISBN: 9788120331938.
Varghese, P.C., (2009), Advanced Reinforced Concrete Design, 2nd ed. ISBN: 9788120327870.
Jain, A.K., (1999) "Reinforced Concrete: Limit State Design 7th Edition, ISBN: 8185240663.
IS:456 (2000) & SP:16.

Name of The	Construction Planning and				
Course	Management	t			
Course Code	BCE01T572	l			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С

2	0	0	2

Course Objectives

- 1. To provide a fundamental understanding of social and economic conditions within which the construction project takes place.
- 2. To know the management techniques and project management skills and their application.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand the special management skills		
	required in multidisciplinary and global		
	Construction Industry.		
	Integrate and apply theoretical concepts,		
CO2	ideas, tools and techniques to Construction		
	practice.		
CO3	Plan, schedule and control project		
	activities using Project management		
	software.		
CO4	Know about the details of project		
	management.		

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Principles of Management		
7 lecture hours		
Definition – Importance – Functions of		
Management - Relevance to government and		
Quasi Government departments - Private		
Contractors – Contracting firms – Organizational		
structure.		
Unit II: Construction Planning and Labour		
Welfare		
7 lecture hours		
Collection of field data – Preliminary estimates –		
Approval and sanction of estimates - Budget		
provisions - Scheduling using MS project		
software - Relationships between management		

and labour – Problems – Labour legislations – Minimum Wages act – Industrial Psychology – Safety procedures in construction – MS Project Application.

Unit III: Management Techniques

7 lecture hours

Concepts of Network – Network methods CPM/PERT – Cost control – Principles – Control by graphical representation, by bill of quantities and by network analysis.

Unit IV: Project Management

7 lecture hours

Tendering - Arbitration - International projects – Detailed Project Reports (DPR) / Build Own Operate Transfer (BOOT) Projects / Build Operate and Transfer (BOT) – case studies.

Suggested Reading

1. Jha Kumar Neeraj (2013), "Construction Project Management", Pearson Education India. ISBN9788131732496.

2. Chitkara, K. K. (2010), "Construction Project Management : Planning, Scheduling and Controlling", Tata McGraw-Hill Publishing Company Limited. ISBN 9780070680753.

3. R. L. Peurifoy and C. J. Schexnayder (2008), "Construction Planning, Equipment and Methods", Tata McGraw-Hill Publishing Company Limited. ISBN 9780073401126

Name of The	Economics a	nd P	Proje	ect	
Course	Finance for	Civil	Eng	gine	ers
Course Code	BCE01T5722	2			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		2	0	0	2

Course Objectives

1. To understand the importance of Economics in Engineering.

2. To know the basic concepts of engineering economics and finance.

3. To provide understanding of methods used for evaluating

Engineering alternatives.

Course Outcomes

On completion of this course, the students will be able to

CO1	Evaluate the engineering alternates
	economically.
	Evaluate the options incorporating the
CO2	uncertainty involved in the construction
	business.
	Understand the process of maintaining
CO3	balance sheets,
	profit and loss statements.
CO4	Know the various sources of finance for
	projects.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Engineering economics - Basic				
principles				
7 lecture hours				
Time value of money, Cash flow diagrams,				
Quantifying alternatives for decision making,				
Equivalence - single payment in the future (P/F,				
F/P). Future payment compared to uniform series				
payments (F/A, A/F). One present payment				
compared to uniform series payments (P/A, A/P),				
Arithmetic gradient, and Geometric gradient.				
Unit II: Comparison of Alternatives				

7 lecture hours

Present worth method- equal lives, unequal lives, infinite lives, future worth method and annual worth method of comparing alternatives, Rate of return, Incremental rate of return, Sensitivity Analysis, Breakeven analysis

Unit III: Taxes, depreciation and inflation

7 lecture hours

Depreciation, Taxes, Inflation, Escalation, Equipment economics- Equipment costs, Owning and operating costs, Buy/Rent/Lease options, Replacement analysis.

Unit IV: Construction Accounts Management

7 lecture hours

Construction accounting, Chart of Accounts, Financial statements - Profit and loss account, Balance sheets.

Suggested Reading

1. Jha Kumar Neeraj (2013), "Construction Project Management", Pearson Education India. ISBN9788131732496

2. D. C. Bose (2010), "Fundamentals of Financial management", Prentice Hall of India Pvt. Limited. ISBN 9788120340749

3. R. L. Peurifoy and C. J. Schexnayder (2008), "Construction Planning, Equipment, and Methods", Tata McGraw-Hill Publishing Company Limited. ISBN 9780073401126.

Name of The Course	Construction Contracts Administration and Management				
Course Code	BCE01T5723				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
	·	L	Τ	Р	С
		2	0	0	2

Course Objectives

1. To understand the broad principles and concepts of construction management.

2. To create awareness of MIS techniques in construction industry.

3. To represent various works measurement standards

Course Outcomes

On completion of this course, the students will be able to

CO1	Take responsibilities as construction		
	manager		
CO2	Apply MIS technique in the real time		
02	construction operation		
CO3	Acquire knowledge of work measurement		
005	application in construction industry		
CO4	Know about the details of work study.		

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction to management

lecture hours

History of construction management, modern management, system approach and emergence of management thought, need, nature and purpose of construction management, major problems in construction industry, firm organization, chain of command, division of work, organization charts, functions and responsibilities of construction manager, case studies, future of construction management

7

7

Unit II: Principles of construction management 7 lecture hours

Planning, organizing, staffing, leading, controlling. Decision making in construction industry, nature of managerial decision making, the rational model of decision making, challenges to the rational model, improving the effectiveness of decision making tools and techniques, benefitcost analysis, replacement analysis, break even analysis, risk management in construction industry.

Unit III: Site mobilization and demobilization aspects

7 lecture hours

Various resource management based on funds availability, organization and monitoring of the construction work with respect to cost-time schedules, coordinating, communicating and reporting techniques, Application of MIS to construction, Training of Construction Managers.

Unit IV: Work Study

lecture hours

Definition, Objectives, basic procedure, method study and work measurement, work study applications in Civil Engineering. Method study – Definition, Objective, Procedure for selecting the work, recording facts, symbols, flow process charts, multiple activity charts, string diagrams.

Suggested Reading

- Jha Kumar Neeraj (2013), "Construction Project Management", Pearson Education India. ISBN9788131732496
- D. C. Bose (2010), "Fundamentals of Financial management", Prentice Hall of India Pvt. Limited. ISBN 9788120340749
- R. L. Peurifoy and C. J. Schexnayder (2008), "Construction Planning, Equipment, and Methods", Tata McGraw-Hill Publishing Company Limited. ISBN 9780073401126.

Name of The	Value Engin	eerii	ng a	nd	
Course	Valuation				
Course Code	BCE01T5724	4			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	С
		2	0	0	2

Course Objectives

1. Define Value engineering and its objectives

2. Estimation of project budget using capitalized income approach

3. Analyse a building using LCC methodology

Course Outcomes

On completion of this course, the students will be able to

CO1	Establish value engineering techniques
	and methodology.
CON	Draw value engineering job plan and work
02	plan phases.
coz	Acquire concept of Delphi techniques and
COS	rules for brainstorming.
CO4	Know about the details of value
	engineering.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction to value engineering

lecture hours

Introduction to value engineering (VE), definition, objectives of value engineering, reasons for unnecessary costs, VE techniques and methodology, interface with the other programs. **Unit II: Elements of the project budget**

7

7 lecture hours

Elements of the project budget need for cost control, meaning of capitalization, capitalization process, and capitalized income approach to construction project budgeting.

Unit III: Life cycle cost

7 lecture hours

Life cycle cost (LCC) and building costs, LCC technology and examples, LCC methodology, LCC formats and analysis and weighted evaluation – application of LCC to buildings.

Unit IV: Value engineering

7 lecture hours

Value engineering and total project management, level of effort, team selection, value engineering job plan, and work plan phases.

Suggested Reading

1. Tenah, K.A. (1985). "The Construction Management Process", Reston Publishing Company, Inc. Virginia

2. Dell'Isola, Alphonse (1997). "Value Engineering: Practical Applications." R.S. Means Company, Inc: Kingston, MA.

3. Oberiender, G. D. (1993). "Project Management for Engineering and Construction". McGraw-Hill, Inc.: New York.

Name of The	Infrastructure Development				
Course					
Course Code	BCE01T5725	5			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		2	0	0	2

Course Objectives

- 1. Importance of prefabrication in construction
- 2. Advantages of modular coordination in prefabrication

3. Application of different equipments in construction industry

Course Outcomes

On completion of this course, the students will be able to

CO1	Evaluate advantages and disadvantages of				
prefabrication in construction industr					
CO2	Comprehend differe	nt I.S.			
02	recommendations for modular planning				
CO3	Analyse the role of different equipments in				
005	construction industry				
CO4	Know about concrete mixers	9			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Precast and Prefabricated construction
7 lecture nours
Precast and Prefabricated construction - need for
prefabrication, classification and scope.
Advantages and disadvantages of prefabrication
and design principles of prefabrication system.
Unit II: Modular coordination
7
lecture hours
Modular coordination and its importance, I.S.
Recommendations for modular planning,
standardization, mass production and methods of
Transportation
Unit III: Construction equipment
7
lecture hours
Construction equipment- hoisting equipment such
as hoist winch, hoisting chains and hooks, slings.
Various types of cranes - tower crane, mobile
crane, and derrick crane, safety in crane
operations, their characteristics performance and
applications to building process.
Unit IV: Concrete mixers
7
lecture hours
Concrete mixers, truck mixers, pneumatic
concrete placer and vibrators for concrete, and
Scoffolding Their characteristics performance

and applications to building process.

Suggested Reading

1. Peurify, R.L.(1996). "Construction, Planning, Equipment and Methods." McGraw-Hill Book Company, Inc, NY

2. Mahesh Varma (1997) "Construction Equipment and its planning & applications." Metropolitan Book Co (P) Ltd, New Delhi, India.

3. U.K. Srivastava (1999). "Construction Planning and Management." Galgotia Publications Pvt., ltd, New Delhi, India

Name of The	Mini Project				
Course					
Course Code	BCE01P5720	5			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	С
		2	0	0	2

Course Objectives

1. To develop the capacity of students in correlating theoretical knowledge into practical systems pertaining to civil engineering domain.

2. To foster collaborative learning skills.

3. To develop self-directed inquiry and life-long skills.

4. To enhance the communication skills of the students by providing opportunities to discuss in groups and to present their observations, findings and report both in oral and written format.

Course Outcomes

On completion of this course, the students will be able to

~~ 1	Identify, formulate, and solve engineering
CO1	problems.
CO2	Understand planning and scheduling of a
	project.
CO3	Submit a project report comprising of the
005	application and feasibility of the project.
004	Work and communicate efficiently in
CO4	multidisciplinary teams.
COF	Develop an understanding of professional
CUS	and ethical responsibility.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

List of Projects:

Students will select topic in Construction Planning and Management field.

Suggested Reading

1. Jha Kumar Neeraj (2013), "Construction Project Management", Pearson Education India. ISBN9788131732496.

2. Chitkara, K. K. (2010), "Construction Project Management : Planning, Scheduling and Controlling", Tata McGraw-Hill Publishing Company Limited. ISBN 9780070680753.

3. R. L. Peurifoy and C. J. Schexnayder (2008), "Construction Planning, Equipment and Methods", Tata McGraw-Hill Publishing Company Limited. ISBN 9780073401126.

Name of The	Pre-Stressed Concrete				
Course	Structures				
Course Code	BCE01T3711				
Prerequisite	BCE01T3501				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		3	0	0	3

Course Objectives

1. To analyze sections for flexure and deflection.

2. To analyse the Losses of pre stressed members.

3. To analyse the Transfer of Prestress in Pre tensioned Members and Anchorage Zone Stresses in Post Tensioned Members

Course Outcomes

On completion of this course, the students will be able to

CO1	Analyze deflection	sec	tions	for	flexu	ire	and
CO2	Analyze members	the	Losses	s of	pre	str	essed

	Analyze the Transfer of Prestress in Pre
CO3	tensioned Members and Anchorage Zone
	Stresses in Post Tensioned Members.
CO4	Visualize and work on multi-disciplinary
04	tasks
COF	Use modern engineering tools, software
05	and equipment to analyze and design.
CO5	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Basic Principles of Pre-Stressing, Prestressing Systems 8 lecture hours

Basic concepts of prestressing, High strength concrete and steel, Stress-strain characteristics and properties, Various prestressing systems, Pretensioning and Post- tensioning systems with anchorages, Advantages and limitations of prestressed concrete.

Unit II: Analysis of Sections for Flexure

8 lecture hours

Basic assumptions, Analysis of stresses in concrete due to pre- stress and loads for different types of cross section, Pressure line or thrust line, Cable profile, Concept of load balancing, Cracking moment.

Unit III: Losses of Pre-Stress & Deflections 8

lecture hours

Nature of losses in pre-stress, Various losses encountered in pre-tensioning and post tensioning methods, Deflection, Factors influencing deflection, Elastic deflection under transfer loads and due to different cable profile. Deflections limits as per IS-1343, Effects of creep on deflection, crack widths

Unit IV: Flexural and Shear Strength of Prestressed Concrete Sections

8 lecture hours

Types of flexural failure, IS code recommendations for flexure, Ultimate flexural strength of section. Shear and principal stresses, Ultimate shear resistance of prestressed concrete members, Shear reinforcement

Unit V: Transfer of Prestress in Pre tensioned Members and Anchorage Zone Stresses in Post Tensioned Members

8 lecture hours

Transmission of pre-stress in pre-tensioned members, Transmission length, Bond stresses, Codal provisions for bond and transmission length, Anchorage stress in post- tensioned member. Bearing stress and bursting tensile force, IS code provisions.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Raju, N. K., "Pre-stressed concrete", Tata McGraw Hill, New Delhi, 1st Edition, 2012.

2. Ramamruthum, S., "Pre-stressed Concrete", Dhanpat Rai Publishing Company (P) Ltd., New Delhi, 2003.

3. Lin, T. Y., Burns, N. H., "Design of pre- stressed Concrete Structures", John Wiley and Sons. New York, 3rd Edition, 1981

Name of The Course	Applications of Matrix Methods in Structural Analysis				
Course Code	BCE01T3303				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. To understand the basic concepts of flexibility method and stiffness method.

2. To distinguish between force method and displacement method.

3. To understand the behaviour of plane trusses & plane frames.

Course Outcomes

On completion of this course, the students will be able to

CO1	Know the concept of static and kinematic indeterminacy			
CO2	Understand the concept of flexibility matrix method and stiffness matrix method			
CO3	Analyze plane trusses & plane frames			
CO4	Understand the concept of plate girders, gantry girders and roof trusses.			
CO5	Calculate different types of loadings on roof trusses			
CO6	Discussion on Latest Research Paper.			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction to Flexibility Matrices and
Stiffness Matrices
8 lecture hours
Flexibility and stiffness matrices- relationship
between flexibility and stiffness matrices-
properties of stiffness and flexibility matrices -
concept of co-ordinates-solution of simple
problems.
Unit II: Analysis of Beams by Flexibility
Matrix Method
8 lecture hours
Flexibility matrices for beams - solution of
statically indeterminate beams-shear force
diagram and bending moment diagram.
Unit III: Analysis of Beams by Stiffness Matrix
Method

8 lecture hours

Stiffness matrices for beams - solution of kinematically indeterminate beams-shear force diagram and bending moment diagram

Unit IV: Analysis of Plane Truss by Stiffness Matrix Method

8 lecture hours

Stiffness matrices for plane truss - solution of simple problems.

Unit V: Analysis of Plane Frame by Stiffness Matrix Method

8 lecture hours

Stiffness matrices for plane truss - solution of simple problems.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Pundit G.S., & Gupta S.P., (2008), Structural Analysis (A matrix approach), Tata McGraw Hill Publishing Ltd.

2. Amin Ghali, Adam M Neville and Tom G Brown, "Structural Analysis: A Unified Classical and Matrix Approach". Sixth Edition, 2007, Chapman & Hall.

 Devdas Menon, "Advanced Structural Analysis" (2009), Narosa Publishing House

4. Devdas Menon, "Structural Analysis" (2008), Narosa Publishing House, 2008

Name of The Course	Open Channel Hydraulics				
Course Code	BCE01T3303				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		3	0	0	3

Course Objectives

- 1. To provide knowledge about various types of flows and properties in open channels.
- 2. To provide knowledge in detail about gradually varied flow, rapidly varied flow and spatially varied flow.

Course Outcomes

On completion of this course, the students will be able to

CO1	Know the various types of flows in open
	channels
CO2	Determine velocity distribution across and
	along the channel, and hydraulic jumps.
	Design the channel sections, drains, and
CO3	jumps for various hydraulic and
	hydrologic projects.
CO4	Understand the concept of plate girders,
004	gantry girders and roof trusses.
COF	Calculate different types of loadings on
005	roof trusses
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction

8 lecture hours

Introduction, Pipe Flow and Free Surface Flow, Continuity Equation, Energy in Free Surface Flow, Basic Momentum Equation, Velocity Distribution, Velocity Measurement and Distribution, Velocity-area Method, Radio-active tracer technique for Measurement of River Discharges, Errors in Depth Measurement in High Velocity Flows, Secondary Current and Spiral Flow, Energy and Momentum Coefficients-Derivation and Coefficients for Different Velocity Distributions, Comparison between Momentum and Energy Equation, Pressure Distribution, Specific Energy Equations for Rectangular Channels, Application of Specific Energy, Specific Force.

Unit II: Critical Flow

8 lecture hours

Characteristics of Critical Flow, Occurrence, Critical Depth in Trapezoidal & Circular Channels, Hydraulic Exponent for Critical Flow, Critical Flow Depth Computations, Flow Measurement, Measuring Flumes, Critical Depth Flumes, Weirs-Introduction, Types of Control Structures, Proportional weirs, Flow Over weirs, Polygonal weirs, Special types of weirs, Broad Crested weirs, Different types of Broad Crested weirs, Bear Trap weir, Flow below a Sluice Gate, Brink Depth, Modern Measurements of Flow Measurements, International Standards for Flow Measurement in Open Channel.

Unit III: Uniform Flow

8 lecture hours

Concept of Uniform Flow, Derivation of Uniform Flow Equations, Resistance in Open Channel Hydraulics, History of Uniform Flow Velocity and Resistance Factor, Friction, Ganguillet and Kutter Formula, Conveyance, Section Factor for Uniform Flow Computation, Hydraulic Exponent for Uniform Flow Computation, Maximum Discharge, Classification of bed Slope, Solution of Manning Equation by Newton Raphson Method, Slope-area Method, Normal & Critical Slopes, Design of Canals, Typical Canal Cross Sections, Lining the Canal, Seepage Prevention with Impermeable membranes, Failure of Canal Lining, Most Efficient Hydraulic Section, Design of Unlined Channels

Unit IV: Gradually Varied Flow

8 lecture hours

Introduction, Dynamic Equation for Steady Gradually Varied Flow, Classification of Gradually Varied Flow Profiles, Real Life Cases of Water Surface Profiles, Sketching of Composite Water Surface Profiles, Computation of Gradually Varied Flow, Integration of Differential Equation, Improved Euler Method, Fourth-order Runga-Kutta Method

Unit V: Hydraulic jump

8 lecture hours

Normal Hydraulic Jumps, Classification of Jumps, Momentum Equation, General Hydraulic Jump Equation, Energy loss in the Jump, Turbulent Characteristics of the Jump, Pressure Distribution in the Jump, Velocity Distribution in Hydraulic Jump, Length of the Jump, Air Entrainment Characteristics of the Jump, Pre Entrained Hydraulic Jump, Air Concentration Distribution along the Jump, Decay of Turbulence Downstream from a Stilling Basin, Hydraulic Jumps in Sloping Channels, Stilling Basin, Baffle Stilling Basin in Sudden Expansion, Slotted Bucket Stilling Basin.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

 Subramanya, K., (2008) Flow in Open Channels, 3rd ed., Tata McGraw-Hill. ISBN - 9780070699663
V. T .Chow (2009), Open Channel Hydraulics, Blackburn Press. 9781932846188.

 Asawa, G. L., (2010), Fluid Flow in Pipes and Channels, CBS Publishers. ISBN - 9788123917238
Chanson, H., (2004), The Hydraulics of Open Channel Flow: An Introduction, Elsevier Scientific. ISBN- 9780750659789

Name of The	Water Resources System				
Course	Engineering				
Course Code	BCE01T3303				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	С
		3	0	0	3

Course Objectives

1. To provide information about need of water resources engineering in India and teach basic concepts of surface and ground water hydrology and irrigation aspects.

2. To teach various optimization techniques.

3. To provide information about water resources engineering structures.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand the components of planning
	and management in water resources
CO2	Use various optimization methods
CO3	Use linear and dynamic programming of
005	water resource problems.
CO4	Understand the concept of plate girders,
004	gantry girders and roof trusses.
CO5	Calculate different types of loadings on
	roof trusses
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction and Basic Concepts

8 lecture hours

Introduction, System Components, Planning and management, Concept of a system, Advantages and limitations of systems approach, Modelling of Water Resources Systems, Simulation and optimization, Economics in water resources, Challenges in water sector.

Unit II: Introduction to Optimization

8 lecture hours

Objective function, Maxima, minima and saddle points, convex and concave functions, Constrained and unconstrained optimization using calculus, Lagrange multipliers, Kuhn-Tucker conditions.

Unit III: Linear & Dynamic Programming and Applications

8 lecture hours

General form of LP, Standard and Canonical forms of LP, Elementary transformations, Graphical method, Feasible and infeasible solutions, Simplex method, Dual and sensitivity analysis, LP problem formulation, Reservoir sizing and Reservoir operation using LP, Introduction, multistage decision problem, Recursive Equations, Principle of optimality, Discrete DP, Curse of Dimensionality, Water allocation problem.

UnitIV:Multi-objective&Stochastic Optimization8 lecture hours

Position, Velocity and Acceleration – Rectilinear motion – Curvilinear motion of a particle – Tangential and Normal components – Radial and Transverse components – Rotation of rigid bodies about a fixed axis – General plane motion – Absolute and relative motion method – Instantaneous centre of rotation in plane motion – Linear momentum – Equation of motion – Angular momentum of a particle and rigid body in plane motion – D'Alembert's principle

Unit V: Simulation

8 lecture hours

Principle of work and energy for a particle and a rigid body in plane motion – Conservation of energy - Principle of impulse and momentum for a particle and a rigid bodies in plane motion – Conservation of momentum – System of rigid bodies – Impact - direct and central impact – coefficient of restitution

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

 Jain S.K. and Singh V.P., (2003) 'Water Resources Systems Planning and Management', Elsevier, The Netherlands. ISBN – 9780444514295.
Hamdy A. Taha(2006). Operations Research: An Introduction, Prentice Hall, ISBN- 9780131889231.
Loucks D.P, Stedinger J.R and Haith D.A, (1981) 'Water Resources Systems Planning and Analysis', Prentice Hall, USA, 1981. ISBN – 9780139459238.
Mays L.W and Tung Y-K, (2002) 'Hydrosystems Engineering and Management', Water Resources Pubns, 1992. ISBN – 9781887201322.

Name of The	Transport Planning and				
Course	Managemen	l			
Course Code	BCE01T3303				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		3	0	0	3

Course Objectives

- 1. To teach the transportation planning process, trip generation and distribution methods.
- 2. To teach various techniques involved in traffic assignments, and introduce evaluation techniques based on economy and performance.

.Course Outcomes

On completion of this course, the students will be able to

	Identify the different planning process
CO1	involved in transportation and the
	importance of Zoning.
	Demonstrate the ability to understand the
CO2	various distribution methods, trip
002	generation and critically apply the analysis
	techniques practically.
	Understand the principles in traffic
CO3	assignment and apply them suitably as a
	successful transportation Engineer.
	Demonstrate the ability to evaluate a
	transport projects critically in all aspects
CO4	and apply transport planning process
	effectively for medium and small sized
	towns
	Calculate different types of leadings on
CO5	roof trusses
	TOOT UTUSSES.

CO6 Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Transport Planning Process

8 lecture hours

Scope – interdependence of land use and traffic – systems approach to transport planning – survey of existing conditions and forecasting future conditions. Transport survey – definition of study area – zoning survey – types and methods – inventory on transport facilities – inventory of land use and economic activities.

Unit II: Trip Generation

6 lecture hours

Factors governing trip generation and attraction rates – multiple linear regression analysis – category analysis – critical appraisal of techniques

Unit III: Trip Distribution Methods

9 lecture hours

Uniform factor method, average factor methods – gravity model and its calibration – opportunity model.

Unit IV: Modal Split and Trip Assignment

8 lecture hours

Modal split – factors, advantages and limitations, logit model and its calibration, Traffic assignment – general principles – assignment techniques – all nothing assignment – multiple root assignment – capacity – restraint assignment – diversion curves

Unit V: Evaluation Techniques

8 lecture hours

Economic evaluation techniques – performance evaluation – rating and ranking methods – case studies in evaluation – rating and ranking methods – case studies in evaluation of transport projects –
land use transport models – transport planning for medium and small sized towns.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Kadiyali.L.R. (2008), Traffic Engineering and Transportation Planning, Khanna Publishers, ISBN-9788174092205.

2. Ortuzar.J.D., and Willumsen. Luis G. (2011), Modelling Transport, Fourth Edition, John Wiley & Sons, ISBN-9781119993520.

3. Wright.P.H.,Ashford.N., and Stammer.R., (1998), Transportation Engineering – Planning & Design, Fourth Edition, John Wiley & Sons, New York, ISBN-9780471173960.

4. Dickey.J.W., (1995), Metropolitan Transportation Planning, Tata McGraw-Hill publishing company Ltd, New Delhi

Name of The	Industrial W	Industrial Waste Treatment				
Course	and Disposal	l				
Course Code	BCE01T371	6				
Prerequisite	-					
Co-requisite	-					
Anti-requisite	-					
		3	0	0	3	

Course Objectives

1. Get the adequate knowledge about phenomena of atmospheric environment and treatment, sources, characteristics and treatment processes of various types of industries.

2. Know the various processes of wastewater treatment of different industries and the engineering requirements for treatment facilities.

3. Design the waste treatment system for the different industry

Course Outcomes

On completion of this course, the students will be able to

	Provide solutions of physical, chemical
CO1	and biological treatment and biosensors
	applied to biological process control
	Use new techniques for collection,
CO2	recycling and disposal and treatment of
	wastewater and solid wastes.
CO3	Design the wastewater supply and
COS	treatment technology
	Evaluate and monitor the treatment
CO4	systems according to the need of different
	industries
COF	Calculate different types of loadings on
005	roof trusses
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Industrial Pollution

8 lecture hours

Types of industries and industrial pollution – Characteristics of industrial wastes – Population equivalent – Bioassay studies – effects of industrial effluents on streams, sewer, land, sewage treatment plants and human health – Hazardous Wastes – Environmental legislations related to prevention and control of industrial effluents and hazardous wastes – Pollution Control Boards

Unit II: Waste Management Approach

8 lecture hours

Waste management approach – Waste Audit – Volume and strength reduction – material and process modifications – Recycle, reuse and byproduct recovery – Applications.

Unit III: Liquid Waste Treatment Techniques

8 lecture hours

Equalization – Neutralization – removal of suspended and dissolved organic solids -Chemical oxidation – Removal of dissolved

inorganics – Combined treatment of industrial and municipal wastes – Residue management.

Unit IV: Industrial Solid Waste Treatment

8 lecture hours

Physico-chemical treatment – solidification – incineration – Secured landfills – Legal Provisions.

Unit V: Case Studies of Industrial Pollution Control

8 lecture hours

Sources & their Characteristics, waste treatment flow sheets for selected industries such as textiles, tanneries, dairy, sugar, paper, distilleries, steel plants, refineries, fertilizer, and thermal power plants

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Patwardhan A.D. (2008), Industrial Waste Water Treatment, PHI Learning Pvt Ltd. ISBN: 978-81-203-3350-5

2. Nelson, L. Nemerow (2007), Industrial Waste Treatment: contemporary practice and vision for future, Elsevier Butterworth-Heinemann Publication. ISBN: 9780123724939

3. Woodard & Curran Inc. (2006), Industrial Waste Treatment Handbook, Second Edition, Elsevier Butterworth-Heinemann Publication. ISBN: 9780750679633

4. Thomas T. Shen (1999), Industrial Pollution Prevention, Springer publications. ISBN: 3540652086

5. W .W. Eckenfelder Jr. (2000), "Industrial Water Pollution Control", McGraw-Hill Book Company, New Delhi. ISBN: 9780070393646

Name of The	Disaster Management
Course	
Course Code	BCE01T5641
Prerequisite	-

Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. To know about the types of natural and environmental disasters.
- 2. To develop skills in various stages of disaster preparedness, mitigation and management.
- 3. To know the methodology for disaster risk assessment.

.Course Outcomes

On completion of this course, the students will be able to

CO1	Understand the types of natural and
COI	environmental disasters and its causes.
	Know about organizational and
CO2	Administrative strategies for managing
	disasters.
	Explain the engineering and non-
CO3	engineering controls of mitigating various
	natural disasters.
	About the early warning systems,
CO4	monitoring of disasters effect and
	necessity of rehabilitation
	Learn methodologies for disaster risk
005	assessment with the help of latest tools like
COS	GPS, GIS, Remote sensing, information
	technologies, etc.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Natural and Man Made Disasters – Overview

8 lecture hours

Introduction- Natural Disasters around the world-Natural Disaster Risk Assessment- Earth and its characteristics – Environmental Change and Degradation - Climate Change - Global warming – Human Dimensions of Global environment

Change – Disaster mitigation, preparedness, response recoverycomprehensive and emergency management Early warning systems and Disaster Preparedness-Rehabilitation, Vulnerable Populations - Logistics and Services, Food, Nutrition and Shelter -Role of UN Red cross and NGOs, Understanding Man-Made Disasters, Nuclear Disasters, Chemical Disasters, Biological Disasters, Building Fire, Coal Fire, Forest Fire, Oil Fire, Air &Water Pollution, Industrial Pollution, accidents, toxic gas leakages and occupational hazards, exposure to manual and codes issued by NDMA, BIS etc for adopting disaster proof designs related to civil infrastructure development like Housing, dams, highways, airports, industrial complexes etc.

Unit II: Plate Tectonics& Earthquakes

8 lecture hours

Introduction and Review - Natural Disasters -Principles, Elements, and Systems - Geological-Geo-morphological aspects, - Earthquake-Geology, Seismology, Characteristics and dimensions– Landslides- Human impact on the mountainous terrain and its relationship with Rainfall, liquefaction etc- Tsunami - Nature and characteristics.

Unit III: Critical climate system aspects and Processes

8 lecture hours

Oceanic, Atmospheric and Hydrologic cycles -Severe Weather & Tornadoes, Cyclones, Floods and Droughts - Global Patterns - - Mitigation & Preparation – Drought – Famine- nature & dimensions – Drought Assessment & Monitoring

Unit IV: Natural hazards Assessment and Communication

8 lecture hours

Mapping - Modeling, risk analysis and loss estimation – Natural disaster risk analysis prevention and mitigation - Applications of Space Technology (Satellite Communications, GPS, GIS and Remote Sensing and Information / Communication Technologies (ICT) in Early warning Systems - Disaster Monitoring and Support Centre– Information Dissemination – Mobile Communications etc.

Unit V: Administrative mechanisms

lecture hours

Roles and responsibilities NDMA/SDMA,Social organizations – Education and Training – Establishment of capacity building among various

stake holders – Government - Educational institutions – Use of Multi-media knowledge products for self-education.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Edward A Keller, Robert H Blodgett (2007), Natural Hazards: Earth's Processes as Hazards, Disasters, and Catastrophes, Pearson Prentice Hall, 2nd Edition. ISBN: 9780132361316

2. Didax (2007), Natural Disasters, Didax Educational Resources: ISBN: 9781583242728

3. Edward Bryant (2005), Natural Hazards, Cambridge University Press, New York. ISBN: 978-0521537438

4. Robert L Kovach Earth's Fury (1995), An Introduction to Natural Hazards and Disasters, Prentice Hall. ISBN: 9780130424334

5. Davi Alexander (1993), Natural Disasters, Routledge. ISBN: 9781857280937

8

School of Civil Engineering

Program: M. Tech in Structural Engineering

Scheme: 2018/2019/2020 (onwards)

Date of BoS: 12.11.2017, 22.07.2018, 04.06.2019

		Semester 1							
Sl.	Course	Name of the Course					Asses	sment P	attern
No	Code		L	Т	Р	С	IA	MTE	ETE
1	CENG5001	Professional and Communication Skills	0	0	4	2	50	-	50
2	MATH5001	Advanced Numerical and Statistical Methods	3	1	0	4	20	50	100
3	MSTR5001	Structural Dynamics	3	0	0	3	20	50	100
4	MSTR5002	Matrix Methods of Structural Analysis	3	0	0	3	20	50	100
5	MSTR5003	Advanced Concrete Technology	3	0	0	3	20	50	100
6	MSTR5004	Design of Concrete Structural Systems	3	0	0	3	20	50	100
7	MSTR5005	Matrix methods of Structural Analysis Lab (STAAD PRO)	0	0	2	1	50	-	50
8	MSTR5006	Design of Concrete and Structural Systems Lab (STAAD PRO)	0	0	2	1	50	-	50
		Semester II							
Sl	Course	Name of the Course			1	1	Asses	sment P	attern
No	Code		L	T ^	P	C	IA	MTE	ETE
1	MSTR6001	Finite Element Analysis	3	U	U	3	20	50	100
2	MSTR6002	Theory of Elasticity and Plasticity	3	0	0	3	20	50	100
3	MSTR6003	Limit State Design of Steel Structures	3	0	0	3	20	50	100
4		Elective - 1	3	0	0	3	20	50	100
5		Elective – 2	3	0	0	3	20	50	100
6		Elective - 3	3	0	0	3	20	50	100
7	MSTR6004	Structural Engineering lab (CASTING)	0	0	2	1	50	-	50
8	MSTR6005	Finite Element Analysis Lab (STAAD PRO)	0	0	2	1	50	-	50
		Semester III							
Sl	Course	Name of the Course			1		Asses	sment P	attern
No	Code		L	T	P	С	IA	MTE	ETE
1	MSTR7001	Application of Numerical Methods in Structural Engineering	3	0	0	3	20	50	100
2		Elective – 4	3	0	0	3	20	50	100
3		Elective – 5	3	0	0	3	20	50	100
4	MSTR7002	Seminar (or) Mini Project	-	-	2	1	50	-	50
5	MSTR7003	Comprehensive Examination	-	-	-	2	50	-	50
6	MSTR7004	Project (Phase I)	0	0	0	5	50	-	50

Curriculum

	Semester IV								
Sl	Course	Name of the Course					Asses	sment P	attern
No	Code		L	Т	Р	С	IA	MTE	ETE
1	MSTR8001	Project (Phase II)	0	0	0	15	50	-	50

List of Electives

Sl	Course	Name of the Electives			Assessment Pattern				
No	Code		L	Т	Р	С	IA	MTE	ETE
		Advanced Foundation					20	50	100
1	MSTR6010	Engineering	3	0	0	3			
		Engineering							
2	MSTR6011	Design of Concrete Bridges	3	0	0	3	20	50	100
3	MSTR6012	Design of Industrial Structures	3	0	0	3	20	50	100
4	MSTR6013	Earthquake Resistant Design	3	0	0	3	20	50	100
5	MSTR6014	Design of Tall Buildings	3	0	0	3	20	50	100
6	MSTR6015	Energy Efficient Buildings	3	0	0	3	20	50	100
7		Environmental Engineering	3	0	0	3	20	50	100
	MSTR6016	Structures							
8	MSTR6017	Experimental Stress Analysis	3	0	0	3	20	50	100
9	MSTR6018	Machine Foundations	3	0	0	3	20	50	100
10		Maintenance & Rehabilitation of	3	0	0	3	20	50	100
	MS1 K6019	Structures					20	50	100
11	MSTR6020	Shells	3	0	0	3	20	50	100
12	MSTR6021	Off Shore Structures	3	0	0	3	20	50	100
13	MSTR6022	Prefabricated Structures	3	0	0	3	20	50	100
14	MSTR6023	Pre-stressed Concrete Structures	3	0	0	3	20	50	100
15	MSTR6024	Soil Structure Interaction	3	0	0	3	20	50	100
16	MSTR6025	Stability of Structures	3	0	0	3	20	50	100
17	MSTR6026	Structural Optimization	3	0	0	3	20	50	100
18	MSTR6027	Composite Structures	3	0	0	3	20	50	100

Name of The	Structural D	Structural Dynamics					
Course							
Course Code	MSTR5001	MSTR5001					
Prerequisite	-	-					
Corequisite	-						
Antirequisite	-						
		L	Τ	Р	С		
		3	0	0	3		

COURSE OBJECTIVES:

1. To find the behaviour of structures subjected to dynamic loads such as wind, earthquake and blast loads.

2. To study different dynamic analysis procedures for calculating response of structures.

COURSE OUTCOMES:

At the end of the course, students will be able to:

CO1	Solve the problems on single degree of			
	freedom system.			
CO2	Understand the concept of harmonic			
	loading and impulse loading and the			
	related analysis procedures.			
CO3	Understand the concept of multi degree of			
	freedom system.			
CO4	Evaluate the mode shapes for different			
	structures.			
CO5	Know the orthogonality condition.			

TEXT BOOKS

1. Mario Paz, (2004), Structural Dynamics -Theory and Computation, Second Edition, CBS Publishers, ISBN-13: 9788123909783.

REFERENCE BOOKS

- J. Humar, (2012), Dynamics of Structures, Third Edition, CRC Press, ISBN-13: 9780415620864.
- Anil K. Chopra, (2003), Dynamics of Structures - Theory and Applications to Earthquake Engineering, Third Edition, Pearson India, ISBN-13: 9788131713297.

COURSE CONTENT

Unit I:SDOF Systems	
8 lecture hours	

Single Degree of Freedom System -Introduction - Alembert's principle -Mathematical models for SDOF systems - Free vibration - Damped and undamped - Critical damping - Logarithmic decrement.

Unit II: Harmonic and Impulse Loading 8 lecture hours

Response to Harmonic Loading and Impulse Loading - Analysis of undamped system damped system - general dynamic loading.

Unit III: Vibration Analysis

8 lecture hours

Vibration Analysis - Rayleigh's method -Approximate Analysis - Improved Rayleigh method.

Unit IV:MDOF Systems

8 lecture hours

Multi degree of Freedom System - Evaluation of structural property matrices - Mode shape -Orthogonality conditions - Undamped and damped system - Mode superposition method.

Unit	V:	Continuous	Systems
8 lectur	e hours		

Continuous Systems - Differential equation of motion - Transverse vibration of linearly elastic beams - Analysis of undamped free vibration of simply supported and cantilever beams - Orthogonality condition.

Internal Assessment	Mid Term	End Term	Total Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Matrix Methods of
Course	Structural Analysis
Course Code	MSTR5002
Prerequisite	Structural Analysis

Corequisite	-				
Antirequisite	-				
		L	Τ	Р	С
		3	0	0	3

COURSE OBJECTIVES:

 The course is intended to teach the basic concepts of indeterminate structures, static indeterminacy and kinematic indeterminacy.
 Different matrix methods will be taught and their uses will be explained in the class.

COURSE OUTCOMES:

On completion of this course, the students will be able to

CO1	Solve different structures by flexibility matrix method and stiffness matrix method
	memou.
CO2	Visualize and analyze plane trusses and
	plane frames.
CO3	Understand the effect of settlement of
	supports.
CO4	Analyze space trusses and plane
	frames.
CO5	Solve any problem on grid.

TEXT BOOKS

1. Pundit G.S. & Gupta S.P., (2008), Structural Analysis (A matrix approach), Second Edition, Tata McGraw Hill Education, ISBN-13: 9780070667358.

REFERENCE BOOKS

1. J. S. Przemieniecki, (1985), Theory of Matrix Structural Analysis, New Edition, Dover

Publication, ISBN-13: 97804866494.

 Richard B. Nelson, Lewis P. Felton, (1997), Matrix Structural Analysis, John Wiley & Sons, Imported Edition, ISBN-13: 9780471123248.

COURSE CONTENT

Unit I: Introduction to flexibility matrix and stiffness matrix 8 lecture hours Concept of static indeterminacy and kinematic indeterminacy - concept of flexibility matrix and stiffness matrix - properties of matrices coordinate system - solution of simple problems - derivation of stiffness matrix of beam element from strain energy. Unit II: Analysis of plane structures by flexibility matrix method 8 lecture hours Analysis of continuous beam, plane truss and plane frame by flexibility matrix method -Internal forces due to thermal expansion and lack of fit – effect of settlement of supports.

Unit III: Analysis of plane structures by stiffness matrix method 8 lecture hours Analysis of continuous beam, plane truss and plane frame by stiffness matrix method -Internal forces due to thermal expansion and lack of fit – effect of settlement of supports

Unit IV: Space truss 8 lecture hours

Analysis of space truss by flexibility matrix method and stiffness matrix method.

Unit V: Analysis of space structures by stiffness matrix method8 lecture hours Analysis of space frame and grid structures by stiffness matrix method

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Advanced Concrete				
Course	Technology				
Course Code	MSTR500	3			
Prerequisite	Concrete Technology				
Corequisite	-				
Antirequisite	-				
		L	Τ	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. This course mainly aims to develop the knowledge about properties of cement concrete and importance of admixtures in concrete.

2. To make the students to understand Mix Design Method.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Know the various materials used in
	concrete and admixtures.
CO2	Do the Mix design by different methods.
CO3	Get a thorough knowledge of various
	types of cement, aggregates and
	properties of special concrete.
CO4	Know the different procedures for
	testing concrete.
CO5	Understand different types of special
	concrete.

TEXT BOOKS

1. Shetty. M. S., (2008), Concrete Technology, Seventh Edition, S. Chand & Company Ltd.ISBN-13: 9788121900034.

REFERENCE BOOKS

- 1. M. L. Gambhir, (2013), Concrete Technology, Fifth Edition, McGraw Hill Education India Pvt. Ltd., ISBN-13: 9781259062551.
- A. R. Santha Kumar, (2006), Concrete Technology, First Edition, Oxford University Press, ISBN-13: 9780195671537.

COURSE CONTENT

Unit I:Mater	rial, r	einforcement	and admixtu	res
8 lecture ho	urs			
Materials	-	Concrete	materials	-
Reinforcem	ents a	and admixtur	es.	

Unit II:Mix design

8 lecture hours

Mix Design – Specifications - Design of concrete mixes by IS code method - ACI method - Road Note No: 4 methods – High strength concrete.

Unit III:Modern trends in concrete 8 lecture hours

Behaviour of Concrete - Modern trends in concrete manufacture and placement techniques - Behaviour of fresh concrete and hardened concrete - Resistance to static and dynamic loads.

Unit IV: Concrete testing 8 lecture hours Testing of Concrete - Non-destructive testing and quality control – Durability - Corrosion protection and fire resistant.

Unit V:Special concrete8 lecture hours Special Concrete - Pre-cast concrete - Light weight concrete - Under water concrete - Pump concrete - Polymer concrete - Composites and fibre reinforced concrete.

Continuous Assessment Pattern

Internal Assessment	Mid Term	End Term	Total Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Design of (Conc	rete	;	
Course	Structural Systems				
Course Code	MSTR5004				
Prerequisite	Design of Concrete				
-	Structures				
Corequisite	-				
Antirequisite	-				
		L	Τ	Р	С
		3	0	0	3

COURSE OBJECTIVES

- 1. This subject is intended to teach the concept of advanced concrete design.
- 2. The practical aspects of various designs of structure will be explained in the classes

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Understand rotation capacity of a RC section and moment curvature relationship.
CO2	Analyse and design deep beams.
CO3	Design flat slabs.

CO4	Understand the concept of designing
	slender columns and shear walls.
CO5	Design different types of water tanks.

TEXT BOOKS

1. Krishnaraju N., (2013), Advanced Reinforced Concrete Design, Second Edition, CBS Publisher, *ISBN-13: 9788123912257*.

REFERENCE BOOKS

- 1. P. C. Varghese, (2009), Advanced Reinforced Concrete Design, Second Edition, Phi Learning Pvt. Ltd., ISBN-13: 9788120327870.
- 2. M. L. Gambhir, (2009), Design of Reinforced Concrete Structures, First Edition, Phi Learning Pvt. Ltd., ISBN-13: 9788120331938.
- P. Dayaratnam, (2011), Design of Reinforced Concrete Structures, Fourth Edition, Oxford & IBH – Pubs Company, ISBN-13: 9788120414198.
- 4. B. C. Punmia, Ashok Kr. Jain, Arun Kr. Jain, (2006), R. C. C. Designs, Laxmi Publication (P) Ltd., ISBN-13: 9788131809426.

COURSE CONTENT

Unit I:Limit state design of beams 8 lecture
hours
Limit state analysis and design of beams in
flexure - Behaviour of reinforced
concrete
Members in bending - Plastic hinge – Rotation
capacity – Factors affecting rotation
capacity
of a section –Plastic moment – Moment
curvature relationship – Redistribution
of moments.
Unit II:Deep beams
8 lecture hours
Limit state design of deep beams.
Unit III: Flat Slabs
8 lecture hours
Design of Flat Slabs using BIS 456.
Unit IV: Columns and shear walls
8 lecture hours
Design of slender columns subjected to
combined bending moment and axial force
using SP: 16, Design of shear walls, Ductile
detailing.
Unit V: Design of Water Tanks
8 lecture hours

Types of water tanks, Design of underground rectangular water tanks, Design of overhead water tank (Intze type tank), Design of staging.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Finite Element Analysis				
Course Code	MSTR6002	MSTR6001			
Prerequisite	Matrix Me Structural	Matrix Methods of Structural Analysis			
Corequisite	-	-			
Antirequisite	-				
		L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. The course is intended to teach the basic concepts of finite element analysis.

2. The practical application of finite element method and their advantages and disadvantages will be explained in the class.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Carry out finite element analysis of
	beam.
CO2	Understand the concept of
	displacement polynomials.
CO3	Analyse plane trusses, plane frames
	and grids.
CO4	Calculate strain-displacement matrix
	and stress-strain matrix for plane
	stress elements.

CO5 Know the concepts of isoparametric elements.

TEXT BOOKS

1. C. S. Krishnamoorthy, (2008), Finite Element Analysis, Second Edition, Tata McGraw Hill Education Pvt. Ltd., ISBN-13: 978007462100.

REFERENCE BOOKS

1. Cook R. D., Malkas D. S. &Plesha M. E, (2008), Concepts and applications of Finite element analysis, Fourth Edition, Wiley India Pvt. Ltd., ISBN-13: 9788126513369.

2. Reddy, (2005), An Intro. To The Finite Element Methods, Third Edition, Tata McGraw Hill Education Pvt. Ltd., ISBN-13: 9780070607415.

3. Singiresu S. Rao, (2010), The Finite Element Method in Engineering, Fifth Edition, Elsevier Science, ISBN-13: 9780080952048.

COURSE CONTENT

Unit I:Introduction to FEM8 lecture hours Introduction - Background - General description of the method – Analysis procedure - Stress and strain vectors – Stain displacement equations – Linear constitutive equations – Overall stiffness matrix – Overall load matrix -Analysis of beams.

Unit II: Displacement models

8 lecture hours

Theory of Finite Element - Concept of an element - Various elements shapes -Displacement polynomials - Convergence requirements - Shape functions - Element strains and stresses - Direct formulation of element stiffness matrix for beam element and plane truss element.

Unit III:Analysis of structures by FEM 8 lecture hours

Overall Problems - Discretization of a body or structure - Minimization of band width -Construction of stiffness matrix and loads for the assemblage - Boundary conditions -Analysis of plane truss, space truss, plane frame and grid.

Unit IV: Plane stress and plane strain 8 lecture hours

Plane stress - Plane strain - CST, LST & QST elements – Rectangular element - solutions of problems.

Unit V:Isoparametric elements 8 lecture hours

Natural Coordinate - Isoparametric Formulation - Natural coordinates (area and volume) - Isoparametric Bar element - Plane bilinear isoparametric element - Plane stress element - Quadratic plane stress elements -Application of Gauss Quadrature formulation.

Continuous Assessment Pattern

Internal Assessment	M	id	En	d m] N	lotal Aarl	26
(IA)	Term Test		Tes	st (FF)	I	1ai i	10
20	20	<u>, , , , , , , , , , , , , , , , , , , </u>	(L) 50	(1 2)	1	00	
20	30		50		1	UU	
Name of The Course		Theory of Elasticity and Plasticity					
Course Code MSTR60			6002	2			
Prerequisite -							
Corequisite		-					
Antirequisite		-					
				L	Τ	Р	С
				3	0	0	3

COURSE OBJECTIVES

1. This subject is taught to impart knowledge on theory of elasticity and plasticity.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Analyse the stresses and strains for two dimensional and three dimensional
	elements.
CO2	Understand the equilibrium and compatibility conditions.
CO3	Know the concept of Prandle's membrane analogy.
CO4	Solve the problems on Torsion for different shaped bars.
CO5	Understand the concept of plasticity.

TEXT BOOKS

 Timoshenko and Goodier, (1970), Theory of Elasticity, Third Edition, McGraw Hill Professional, ISBN-13: 9780070858053.

REFERENCE BOOKS

- Srinath, (2002), Advanced Mechanics of Solids, Third Edition, Tata McGraw Hill Pvt. Ltd., ISBN-13: 9780070139886.
- D. Peric, E. A. de Souza Neto& D. R. J. Owen, (2011), Computational Methods for Plasticity, Wiley, ISBN-13: 9781119964544.

COURSE CONTENT

Unit I: Stresses and strains

8 lecture hours

Analysis of Stress and Strain - Elasticity approach – Definition and notation of stress – Components of stress and strain – Generalized Hooke's law -Two dimensional Problems in Cartesian Coordinates - Plane stress and plain strain problems with practical examples -Equations of equilibrium and compatibility conditions in Cartesian coordinates – Airy's stress function - Bending of simply supported beams..

Unit II: Axi-symmettic problems 8 lecture hours

Two dimensional Problems in Polar Coordinates - Equations of equilibrium and compatibility conditions in polar coordinates – Axi-symmetrical problems - Thick cylinder under uniform pressure - Circular arc beams subjected to pure bending

Unit III: Prandle's membrane analogy 8 lecture hours

Principal stresses and strains for three dimensional element – Equations of equilibrium and compatibility conditions for 3D problems in Cartesian co-ordinates -Transformation of stresses and strains.

Unit IV: Torsion lecture hours

8

Torsion - Torsion of various shaped bars - Pure torsion of prismatic bars - Prandtle's membrane analogy - Torsion of thin walled tubes and hollow shafts.

Unit V: Introduction to plasticity 8 lecture hours

Introduction to plasticity – Stress – Strain diagram – Plastic analysis – Yield criteria – St. Venant's theory – Von Mises criterion – Plastic work – Strain hardening.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100
20	50	50	100

Name of The	Limit State	Limit State Design of			
Course	Steel Struc	Steel Structures			
Course Code	MSTR600.	MSTR6003			
Prerequisite	-	-			
Corequisite	-	-			
Antirequisite	-				
	·	L	Τ	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. To know how to design and use the different types of steel structural elements.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Design different types of connections.
CO2	Design members for pitched roof truss, bracings and purlins.
CO3	Understand the design of plate girders and gantry girders.
CO4	Design chimney.
CO5	Understand the concept of plastic analysis.

TEXT BOOKS

1. Dayarathnam. P., (1996), Design of Steel Structures, Second Edition, S. Chand and Publishers, ISBN-13: 0788121923200.

REFERENCE BOOKS

- 1. Duggal S. K., (2014), Limit State Design of Steel Structures, Second Edition, McGraw Hill, ISBN-13: 9789351343509.
- 2. Ramchandra, VirendraGehlot, (2010), Limit State Design of Steel Structures: Based on

IS: 800-2007 IN S. I. Units, Scientific Publishers, ISBN-13: 9788172336141.

COURSE CONTENT

Unit I: Eccentric and Moment Cconnections 8 lecture hours

Different types of beam-column connections – Design of rigid and semi rigid connection.

Unit II: Industrial Buildings 8 lecture hours

Roof Trusses - Calculation of dead load, live load and wind load - Design of joints – Design of members for pitched roof truss – Bracings – Design of Purlins.

Unit III: Plate Girder and Gantry Girder 8 lecture hours

Elements of plate girders – Shear strength of web - Design of plate girders - Curtailment of flange plates – Design of stiffeners – Design of gantry girder

Unit IV: Chimney8 lecture hours

Calculation of wind load and seismic load, Design of chimney, Design of foundation of chimney

Unit V: Plastic Analysis

8 lecture hours

Plastic Analysis of Structures – Introduction -Shape factors – Mechanisms - Plastic hinge -Analysis of beams and portal frames - Design of continuous beams.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	Application of Numerical Methods in Structural Engineering				
Course Code	MSTR7001				
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
	1	L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. This subject is taught to impart knowledge on numerical methods in structures.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Solve the linear simultaneous equations.
CO2	Use the Finite difference method.
CO3	Calculate bending moment, slope and deflection for beams using Simpson's rule and Gauss Quadrature method.
CO4	Understand the concept of finite strip method of analysis of plates.
CO5	Evaluate the eigen values and eigen vectors for stability problems.

TEXT BOOKS

 N. Krishnaraju& K. U. Muthu, (2008), Numerical Methods for Engineering problems, Second Edition, Macmillan India Ltd., ISBN-13: 9780333924242.

REFERENCE BOOKS

- Jain M. K., Iyengar, R. K. & Jain R. K. (2004), Numerical Methods: Problems and Solutions, Second Edition, New Age International (P) Ltd., ISBN-13: 9788122415346.
- 2. Klaus-Jsrgan Bathe, (2008), Finite Element Procedures, First Edition, Prentice Hall of India, ISBN-13: 9788120310759.

Init I: Simultaneous equations
8 lecture hours
Solution of linear simultaneous equations –
Gauss elimination method Gauss-Iordan
method Causs-Sidel method - Banded - Semi-
handed matrix Skyling technique
bandeu matrix- Skynne technique.
Unit II: Finite difference method
8 lecture hours
Finite difference method – Solution of
simultaneous equations – Bending moment -
Slope and deflection in beams - Membrane
analogy using finite difference method for
slabs-slope and deflection of slabs.
Unit III: Numerical methods
8 lecture hours
Numerical Methods – Numerical integration
(Trapezoidal and Simpson's rule) for
determining shear, moment and deflection in
beams– Gauss Quadrature formula.
Unit IV: Finite Strip method for analysis of
plates8 lecture hours
Finite Strip Method – Shape Functions – Strain
- Displacement Relationship – Strip Stiffness
Matrix – Load Matrix – Solution of Problems.
Unit V: Eigen values and Eigen Vectors
8 lecture hours
Mass Matrix - Stiffness matrix - Dynamic

Continuous Assessment Pattern

Analysis - Eigen values & Eigen Vectors.

Internal Assessment	Mid	End	Total Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Prerequisite	Matrix Methods of Structural Analysis				
Corequisite	-				
Antirequisite	-				
		L	Т	Р	С
	0 0 2 1				

List of experiments:

1. Analysis of propped cantilever beam

2. Analysis of two span continuous beams

3. Analysis of statically determinate plane truss

4. Analysis of statically indeterminate plane

truss

5. Analysis of kinematically indeterminate plane truss

6. Analysis of one bay - one storey plane frame

7. Analysis of multi bay – multi storied plane

frame

8. Analysis of space truss

9. Analysis of grid

10. Analysis of space frame

Internal	End Term	Total
Assessment (IA)	Test (ETE)	Marks
50	50	100

Name of The Course	Design of Concrete and Structural Systems lab (STAAD PRO)
Course Code	MSTR5006
Prerequisite	Design of Concrete and Structural system
Corequisite	-
Antirequisite	-

Name of The Course	Matrix Methods of Structural Analysis Lab (STAAD PRO)
Course Code	MSTR5005

L	Τ	Р	С
0	0	2	1

List of experiments:

- 1. Design of Continuous beams
- 2. Design of Deep beams
- 3. Design of Columns
- 4. Design of Shear walls

Continuous Assessment Pattern

Internal	End Term	Total
Assessment (IA)	Test (ETE)	Marks
50	50	100

Name of The	Structural Engineering				
Course	Laboratory (CASTING)				
Course Code	MSTR6004				
Prerequisite	Design of Concrete Structures				
Corequisite	-				
Antirequisite	-				
	·	L	Т	Р	С
		0	0	2	1

List of experiments:

1. To determine the compressive strength of fibre reinforced concrete by testing cubes

specimen.

2. Casting and testing of simply supported RCC beams for flexural failure.

3. Casting and testing of simply supported RCC beams for shear failure.

4. To determine tensile strength on a steel reinforcement bar.

5. To determine shear strength of steel bar under double shear.

6. To conduct bending test of I-section steel beam.

7. To conduct bending test of steel channel section.

8. To study rebound hammer test on concrete blocks.

9. To study ultra sonic pulse velocity test

Continuous	Assessment	Pattern
------------	------------	---------

Internal	End Term]	Fota	l	
Assessment (IA)	Test (ETE)		Mar	ks	
50	50	1	100		
Name of The	Finite Elem	ient	Ana	alysi	S
Course	Lab (STAA	D F	PRO)	
Course Code	MSTR6005	;			
Prerequisite	Matrix Me	thod	ls of	•	
	Structural Analysis Lab				
Corequisite	-				
Antirequisite	-				
		L	Τ	Р	С
		0	0	2	1

List of experiments:

- 1. Analysis of three span continuous beams.
- 2. Analysis of propped cantilever beam.
- 3. Analysis of statically determinate plane truss.

4. Analysis of statically indeterminate plane truss.

5. Analysis of one bay – one storey plane frame.

6. Analysis of two bays – one storey plane frame.

7. Analysis of a 2-D building frame subjected to dead load, live load and seismic load.

8. Analysis of grid.

Internal	End Term	Total
Assessment (IA)	Test (ETE)	Marks

50

1	00	

Name of The	Seminar				
Course					
Course Code	MSTR7002	2			
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
		L	Τ	Р	С
		0	0	2	1

COURSE OBJECTIVES

1. To make literature survey for various recently emerging technologies.

2. To select any topic of interest and to review the related literature in detail.

3. To compare and analyze the various topologies for the selected topic of interest.

4. To conclude the advantages, drawbacks and future scopes of the technique.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Get familiarity with the recently	
	advanced techniques.	
CO2	Get detailed information about the	
	topic of interest.	
CO3	Know how to do literature survey.	
CO4	Develop the interest in different	
	research areas of Structures.	

TEXT BOOKS

Depending upon their area of interest, students may choose any text book of relevant field or any article from Journal.

REFERENCE BOOKS

Depending upon their area of interest, students may choose any reference book of relevant field.

COURSE CONTENT

Depending upon their area of interest, students will choose any topic.

Continuous Assessment Pattern

Internal	End Term	Total
Assessment (IA)	Test (ETE)	Marks
50	50	100

Name of The Course	Mini Project				
Course Code	MSTR7002				
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
		L	Τ	Р	С
		0	0	2	1

COURSE OBJECTIVES

1. To make literature survey for various recently emerging technologies.

2. To select any topic of interest and to review the related literature in detail.

3. To compare and analyze the various topologies for the selected topic of interest.

4. To conclude the advantages, drawbacks and future scopes of the technique.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Get familiarity with the recently
	advanced techniques.
CO2	Get detailed information about the topic of interest.
CO3	Know how to do literature survey.
CO4	Develop the interest in different research areas of Structures.

TEXT BOOKS

Depending upon their area of interest, students may choose any text book of relevant field or any article from Journal.

REFERENCE BOOKS

Depending upon their area of interest, students may choose any reference book of relevant field.

COURSE CONTENT

Depending upon their area of interest, students will choose any topic.

Continuous Assessment Pattern

Internal	End	Total				
Assessment	Term	Marks				
(IA)	Test					
	(ETE)					
50	50	100				
Name of The	Project	t (Phase I)			
Course						
Course Code	MSTR	7004				
Prerequisite	-					
Corequisite	-					
Antirequisite	-					
			L	Т	Р	С
			0	0	0	5

Course Objectives

- 1. To develop the capacity of students in correlating theoretical knowledge into practical systems either to perform creative works or to perform analysis and hence to suggest solutions to problems, pertaining to civil engineering domain.
- 2. Foster collaborative learning skills.
- 3. Develop self-directed inquiry and life-long skills.
- 4. To enhance the communication skills of the students by providing opportunities to discuss in groups and to present their observations, findings and report in formal reviews both in oral and written format.

Course Outcomes

On completion of this course, the students will be

able to

CO1	Submit a project synopsis comprising of
	the application and feasibility of the
	project.
CO2	Design a system, component, or process
	to meet desired needs within realistic
	constraints such as economic,
	environmental, social, political, ethical,
	health care, safety and sustainability.
CO3	Work and communicate efficiently in
	multidisciplinary teams.
CO4	Identify, formulate, and solve
	engineering problems.
CO5	Develop an understanding of
	professional and ethical responsibility.

TEXT BOOKS

Depending upon their area of interest, students may choose any text book of relevant field or any article from Journal.

REFERENCE BOOKS

Depending upon their area of interest, students may choose any reference book of relevant field.

Depending upon their area of interest, students will choose any topic.

Internal	End Term	Total
Assessment (IA)	Test (ETE)	Marks
50	50	100

Name of The \tilde{a}	Project (Phase II)
Course	
Course Code	MSTR8001
Prerequisite	Project (Phase I)
Corequisite	-
Antirequisite	-

L	Τ	Р	С
0	0	0	15

Course Objectives

1. To develop the capacity of students in correlating theoretical knowledge into practical systems either to perform creative works or to perform analysis and hence to suggest solutions to problems, pertaining to civil engineering domain. 2. Foster collaborative learning skills.

3. Develop self-directed inquiry and life-long skills.

4. To enhance the communication skills of the students by providing opportunities to discuss in groups and to present their observations, findings and report in formal reviews both in oral and written format.

Course Outcomes

On completion of this course, the students will be

able to

CO1	Submit a project synopsis comprising of
	the application and feasibility of the
	project.
CO2	Design a system, component, or process
	to meet desired needs within realistic
	constraints such as economic,
	environmental, social, political, ethical,
	health care, safety and sustainability.
CO3	Work and communicate efficiently in
	multidisciplinary teams.
CO4	Identify, formulate, and solve
	engineering problems.
CO5	Develop an understanding of
	professional and ethical responsibility.

TEXT BOOKS

Depending upon their area of interest, students may choose any text book of relevant field or any article from Journal.

REFERENCE BOOKS

Depending upon their area of interest, students may choose any reference book of relevant field.

COURSE CONTENT

Depending upon their area of interest, students will choose any topic.

Continuous Assessment Pattern

Internal	End Term	Total
Assessment (IA)	Test (ETE)	Marks
50	50	100

PROGRAM ELECTIVES

Name of The Course	Advanced Foundation Engineering				
Course Code	MSTR6010				
Prerequisite	Geotechnical Engineering –II (Foundation Engg.)				
Corequisite	-				
Antirequisite	-				
	·	L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. This subject is taught to impart the knowledge in the area of analysis and design of foundations and earth retaining structures.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Understand the concepts of shallow foundations.
CO2	Design the retaining walls and sheet piles.
CO3	Know the concept of pile group.
CO4	Design pile foundation.
CO5	Know the types well foundations.

TEXT BOOKS

1. Gopal Ranjan and A S R Rao (2000), Basic and Applied Soil Mechanics, Second Edition, New Age International, ISBN-13: 9788122412239.

REFERENCE BOOKS

- 1. J. E. Bowles, (2000), Foundation Analysis and Design, Fifth Edition, McGraw Hill Education India Pvt. Ltd., ISBN-13: 9781259061035.
- P. C. Verghese, (2009), Design of Reinforced Concrete Foundations, First Edition, PHI Learning Pvt. Ltd., ISBN-13: 9788120336155.

COURSE CONTENT	
Unit I: Shallow foundation	
8 lecture ho	urs
Shallow Foundations – Spread	footings –
Contact pressure – Structural	design of
individual footings – Pedestals –	Combined
footings (Rectangular and trape	ezoidal) –
Eccentrically loaded footings	– Mat
foundations	
Unit II: Deep foundation	
8 lecture hours	
Pile Foundations – Types of piles –	Static and
dynamic pile formula – Pile groups –	Efficiency
of pile group	J
Unit III: Pile foundations	8
lecture hours	
Settlement of piles – Batter piles – A	Analysis of
Settlement of piles – Batter piles – A pile groups – Structural design of pil	Analysis of es and pile
Settlement of piles – Batter piles – A pile groups – Structural design of pil caps	Analysis of es and pile
Settlement of piles – Batter piles – A pile groups – Structural design of pil caps	Analysis of es and pile
Settlement of piles – Batter piles – A pile groups – Structural design of pil caps Unit IV: Retaining structures 8	Analysis of es and pile lecture
Settlement of piles – Batter piles – A pile groups – Structural design of pil caps Unit IV: Retaining structures 8 hours	Analysis of es and pile lecture
Settlement of piles – Batter piles – A pile groups – Structural design of pil caps Unit IV: Retaining structures 8 hours Retaining Structures – Stability of	Analysis of es and pile lecture of walls –
Settlement of piles – Batter piles – A pile groups – Structural design of pil caps Unit IV: Retaining structures 8 hours Retaining Structures – Stability of Design of cantilever and counter for	Analysis of es and pile lecture of walls – ort walls –
Settlement of piles – Batter piles – A pile groups – Structural design of pil caps Unit IV: Retaining structures 8 hours Retaining Structures – Stability of Design of cantilever and counter for Design of gravity walls – Coffer dam	Analysis of es and pile lecture of walls – ort walls – s – Braced
Settlement of piles – Batter piles – A pile groups – Structural design of pil caps Unit IV: Retaining structures 8 hours Retaining Structures – Stability of Design of cantilever and counter for Design of gravity walls – Coffer dam coffer dams – Stability of bottom ex	Analysis of es and pile lecture of walls – ort walls – s – Braced cavation –
Settlement of piles – Batter piles – A pile groups – Structural design of pil caps Unit IV: Retaining structures 8 hours Retaining Structures – Stability of Design of cantilever and counter for Design of gravity walls – Coffer dam coffer dams – Stability of bottom ex Anchorage – Walls and tie rods	Analysis of es and pile lecture of walls – ort walls – s – Braced cavation –
Settlement of piles – Batter piles – A pile groups – Structural design of pil caps Unit IV: Retaining structures 8 hours Retaining Structures – Stability of Design of cantilever and counter for Design of gravity walls – Coffer dam coffer dams – Stability of bottom ex Anchorage – Walls and tie rods	Analysis of es and pile lecture of walls – ort walls – s – Braced cavation –
Settlement of piles – Batter piles – A pile groups – Structural design of pil caps Unit IV: Retaining structures 8 hours Retaining Structures – Stability of Design of cantilever and counter for Design of gravity walls – Coffer dam coffer dams – Stability of bottom ex Anchorage – Walls and tie rods	Analysis of es and pile lecture of walls – ort walls – s – Braced ccavation – urs
Settlement of piles – Batter piles – A pile groups – Structural design of pil caps Unit IV: Retaining structures 8 hours Retaining Structures – Stability of Design of cantilever and counter for Design of gravity walls – Coffer dam coffer dams – Stability of bottom ex Anchorage – Walls and tie rods Unit V:Well foundations8 lecture ho Well Foundations – Types of wells of	Analysis of es and pile lecture of walls – ort walls – s – Braced cavation – urs or caissons

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

- Construction- Design of drilled caissons

Name of The Course	Design of Concrete Bridges					
Course Code	MSTR601	MSTR6011				
Prerequisite	Reinforced Concrete Structures					
Corequisite	-	-				
Antirequisite	-					
	•	L	Т	Р	C	
		3	0	0	3	

Course Objectives

1. To understand the design and codal concepts of different types of bridges.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand IRC Code.
CO2	Use Pigeauds curves for designing deck slab for T-beam Bridge.
CO3	Understand Courbon's method of load distribution to analyze and design girders for T-beam Bridge.
CO4	Design plate girders and steel truss bridges.
CO5	Design piers and abutments.

Text Books

- Victor D. J. (2008), Essentials of Bridge Engineering, 6th Edition, Oxford University Press, ISBN: 9788120417175.
- Ramachandra (2004), Design of Steel structures, 4th Edition, Standard Publishers Distributors, ISBN: 9780071544115.

Reference Books

 Duggal S. K. (2008), Design of Steel Structures, 3rd Edition, Tata McGraw-Hill, ISBN:

9780070260689.

2. IRC Bridge Code.

COURSE CONTENT

Unit I: Introduction and design of slab culvert 8 lecture hours Site selection, various types of bridges, loads on bridges according to IRC codes, Design of RC bridges under concentrated loads using effective width method

Unit II: Deck slab of T-Beam Bridges 8 lecture hours

Pigeauds curves, Calculation of bending moments, Design of deck slab for T-beam Bridge for different types of vehicles

Unit III: Girders of T-Beam Bridge 8 lecture hours

Courbon's method of load distribution, Analysis and design of girders for T-beam Bridge for different types of vehicles, Concept of box culverts.

Unit IV: Design of Plate Girders and Steel Trussed Bridges 8 lecture hours Design principles, Design and detailing of plate girder bridges, Types of trusses, Design of steel trussed bridges.

Unit V: Design of Substructures

8 lecture hours

Types of piers, Forces acting on piers, Design of piers, General features of abutments, Forces acting on abutments, Design of abutments.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Design of Industrial
Course	Structures

Course Code	MSTR6012	2			
Prerequisite	Construction Technology				
Corequisite	-				
Antirequisite	-				
		L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. This subject is taught to impart a broad knowledge in the area of industrial structures.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Know the requirements of various industries.
CO2	Get an idea about the materials used and planning.
CO3	Know the construction techniques.
CO4	Learn about circulation, communication and transport.
CO5	Understand the functional requirements.

TEXT BOOKS

1. El Reedy, (2010), Construction Management and Design of Industrial Concrete and Steel Structures, Taylor & Francis Group, ISBN-13: 9781439815991.

REFERENCE BOOKS

- Nelson G. L., (1988), Light Agricultural and Industrial Structures: Analysis and Design Kluwer Academic Publisher, ISBN-13: 9780442267773.
- 2. Dr. Raja Rizwan Hussain, (2011), Pre-Cast Concrete for Multi-Storey Structures, Createspace Publisher, ISBN: 9781467918220.

Init I: Industrial requirements		
8 lecture hours		
General - Specific requirements for industries		
like textile, sugar, cement, chemical, etc - Site		
layout and external facilities.		
Unit II: Planning of building works		
8 lecture hours		

Planning of Building Work – Standards -
Structural materials including plastics –
Polymers - Fibre glass - Pressed card boards
etc. Multi-storey buildings. Steel skeletal
structures - Reinforced concrete frames -
Workshops Wore houses Single storey
buildings Shade in steel and reinforced
concrete North lights Single spon spherical
concrete - North-lights - Single span spherical
and other special constructions - Cooling
towers and chimneys - Bunkers and silos'
prefabrication - Construction.
Unit III: Construction techniques
8 lecture hours
Construction Techniques - Expansion joints -
Machine foundations - Other foundations -
Water proofing - Roofs and roofing - Roof
drainage - Floors and flooring joists - Curtain
walling - Outer wall facing - Sound and shock
proof mountings - Use of modern hoisting and
other construction equipments.
Unit IV: Circulation
8 lecture hours
Circulation - Communication and Transport -
Fixed points (central cores) – Staircases - Grid
floor sections - Lifts refuse disposals -
Utilization of waste materials – Cranes -
Continuous conveyors - Mobile cranes –
Transporters – Doors - Sliding gates
Transporters 20019 Shund Burge
Unit V.Functional Requirements lecture
hours
HUHS Functional Doguiromonta – Lighting: Natural
Functional Requirements – Lighting: Natural
ngnung - rrotection from the sun - siy lights -
window cleaning installations -Services:
Layout – wiring – fixtures - cable and pipe
bridges - electrical installations - lighting
substation - Effluent. Ventilation and fire
protection: Ventilation - Air-conditioning -
Fire escapes and chutes - Fire alarms -
Extinguishers and hydrants.
Continuous Assessment Pattern
Internal Mid End Total

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Earthquake Resistant
Course	Design

Course Code	MSTR6013				
Prerequisite	Structural Dynamics				
Corequisite	-				
Antirequisite	-				
		L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. To impart the knowledge about the earthquake and its occurrence.

2. To know about the mathematical modeling of structures subjected to earthquakes and their behaviour

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Understand about the basic of seismology.
CO2	Evaluate the behaviour of structures under dynamic loadings.
CO3	Know methodology for earthquake resistant design for shear walls.
CO4	Design the buildings using capacity design method.
CO5	Design seismic resistant multi storied building.

TEXT BOOKS

1. Anil K. Chopra, (2011), Dynamics of Structures – Theory and Applications to Earthquake Engineering, Second Edition, Ingram International Inc., ISBN-13: 9780132858038.

REFERENCE BOOKS

- 1. Pankaj Agarwal and Manish Shrikhande, (2007), Earthquake Resistant Design of Structures, First Edition, Prentice-Hall India Pvt Ltd, ISBN-13: 9788120328921.
- 2. Gupta B. L., (2010), Principles of Earthquake Resistant Design of Structures & Tsunami, Standard Publishers & Distributors, ISBN-13: 9788180141485.

Basic	of seis	mology	& Theory	of	vibrations	6
lectu	re hour	'S				
Brief	Introd	luction	: Elements	of	Seismology	_
Defin	itions	of n	nagnitude	_	Intensity	_

Epicentre – General features of tectonics of
seismic regions – SeismographsFree vibrations of single degree freedom systems
– Computations of dynamic response to time
dependent forces –Solution of problems.Unit II: Dynamic analysis of building
9 lecture hoursDynamic analysis of building – MDOF system –
Eigen values and eigen vectors – Mode shape –
Calculation of storey shear.Unit III: Earthquake resistant design of shear
wall 9 lecture hoursDetermination of design lateral forces – Design of

Determination of design lateral forces – Design of shear wall – Detailing of reinforcements as per IS: 13920.

Unit IV: Capacity design method

8 lecture hours

Capacity – Design Principles – Design criteria for strength – Stiffness and ductility – Earthquake Analysis – Concept of earthquake resistance design – Code provisions for design of RCC building – IS: 1893 and IS: 4326 – Energy absorption capacity - Behaviour and design of masonry buildings subjects to earthquake ground motion.

<u>Unit V: Multi storey building analysis</u> <u>8 lecture hours</u>

Seismic analysis and design of a multi storied building – Seismic retrofitting strategies for RC and masonry buildings.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	Design of Tall Buildings
Course Code	MSTR6014
Prerequisite	Design of Steel Structures, Structural analysis
Corequisite	-
Antirequisite	-

L	Т	Р	С
3	0	0	3

COURSE OBJECTIVES

1. This course is intended to teach the concept of tall structures.

2. Various methods to analyse the tall structure will be explained in the classes.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Know the types of tall buildings.
CO2	Analyze the plane frame systems by different methods.
CO3	Design the shear wall systems.
CO4	Know the details of in filled frame systems.
CO5	Perform the three dimensional analysis.

TEXT BOOKS

1. Bryan Stafford Smith and Alex Coull, (2011), Tall Building Structures: Analysis and Design, Wiley India, ISBN-13: 9788126529896.

REFERENCE BOOKS

- 1. SarwarAlamRaz, (2002), Structural Design in Steel, Second Edition, New Age International, ISBN-13: 9788122432282.
- Ghali. A., Neville. A. M and Brown T. G, (2009), Structural Analysis - A unified classical and Matrix Approach, Sixth Edition, Span press, ISBN-13: 9780415774338.

COURSE CONTENT

Unit I: Classification of buildings 8 lecture hours Introduction - Classification of buildings according to NBC – Types of loads – wind load – Seismic load – Quasi static approach Unit II: Plane frame systems 8 lecture hours Plane Frame System - Calculation of wind load – Approximate method – Portal - Cantilever

and factor methods – Kani's method – Substitute frame method for dead load and live loads.

Unit III: Shear wall system 8 lecture hours Shear Wall System - Rosman's analysis – Design aspect – RC frame and shear wall interaction – Equivalent frame method

Unit IV: In-filled frame system 8 lecture hours In-filled Frame Systems - Importance – Methods of analysis – Equivalent truss and frame method – Force-displacement method – Effect of perforation in the in-filled frame.

Unit V:Three dimensional analysis8 lecture hours Three Dimensional Analysis - Basic principles

Centre of rotation of a rigid floor – Force displacement method.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Energy Efficient				
Course	Buildings				
Course Code	MSTR6015	5			
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
		L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. This course aims to highlight importance of Energy- Efficient Buildings within the context of Energy issues in the 21st century.

- 2. To familiarize students with the concept of Energy efficiency, Renewable sources of energy and their effective adaptation in green buildings
- 3. To give a full understanding of Building Form and Fabric, Infiltration, ventilation, Lighting, cooling and water conservation.
- 4. To highlight the importance of Environmental Management as well as Environmental impact Assessment methods in Energy efficient buildings.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Understand to make buildings energy
	efficient.
CO2	Have a fuller grasp on Renewable
	Energy mechanisms such as Passive
	Solar heating and collection,
	Photovoltaics, and Ground source heat
	pumps, and their adaption to green
	building concepts.
CO3	Understand the concepts of Site and
	Climate, Building Form, Building
	Fabric, Infiltration and ventilation,
	Lighting, Heating, Cooling, Energy
	Management and water conservation.
CO4	Have the necessary skills to undertake
	an Environmental Impact Assessment
	study for Energy Efficient Buildings.
	They shall be equipped with the
	associated cutting-edge management
	strategies too.
CO5	Monitor energy consumption.

TEXT BOOKS

1. William T. Meyer, (2007), Energy Economics and Building Design, McGraw -Hill, ISBN: 9780070417519.

REFERENCE BOOKS

- 1. Sim Van Der Ryn and Stuart Cowan, "Ecological Design", Annotated Edition, Island Press ISBN-13: 9781597261418.
- 2. Richard D. Rush, (1991), The Building System Integration Handbook., Butterworth

Heinemann Ltd, ISBN-13: 9780750691987.

I Unit	I :	Green	Buildings,	Energy	and
Environm	nen	t	8 le	cture hou	rs

CHOOL OF CIVIL ENGINEERING
Green Buildings within the Indian Context - Types of Energy - Energy Efficiency and Pollution - Better Buildings - Reducing energy consumption - Low energy design.
Unit II: Renewable Energy, Site and Climate 8 lecture hours Renewable Energy sources that can be used in Green Buildings - Solar energy - Passive Solar Heating - Passive Solar collection - Wind and other renewable - A passive solar strategy - Photovoltaics - Climate and Energy - Macro and Microclimate - Indian Examples.
Unit III: Building Form and Fabric 8 lecture hours Building Form - Surface area and Fabric Heat Loss - utilizing natural energy - Internal Planning - Grouping of buildings - Building Fabrics - Windows and doors - Floors - Walls - Masonry - Ecological walling systems - Thermal Properties of Construction Material.
Unit IV: Infiltration, Ventilation, Lighting, Cooling and Water Conservation 8 lecture hours Infiltration and ventilation - Natural

ventilation and ventilation - Natural ventilation in commercial buildings - passive cooling - modelling air flow and ventilation -Concepts of daylight factors and day lighting daylight assessment - artificial lighting - New light sources - Cooling buildings - passive cooling - mechanical cooling - Water conservation- taps, toilets and urinals, novel systems - collection and utilization of rain water.

UnitV:EnergyAwareness8 lecture hoursEnergy awareness - monitoring energy
consumption - Building Environmental
Assessment - environmental criteria -
assessment methods - assessment tools (e.g.
LEED) – Ecohomes - Sustainable architecture
and urban design - principles of
environmental architecture - Benefits of green
buildings - Energy Conservation Building
code – NBC.

Internal Total Mid End Assessment Marks Term Term Test Test **(IA)** (MTE) (ETE) 20 30 50 100

Name of The Course	Environmental Engineering Structures				
Course Code	MSTR6016				
Prerequisite	Design of Co Structures	oncre	ete		
Corequisite	-				
Antirequisite	-				
		L	T	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. This subject is taught to impart the knowledge in the area of analysis and design of pipes and sewage structures.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Understand the concepts of pipe network and design.
CO2	Design the water tanks and concrete roofing systems.
CO3	Understand the economic analysis of tanks.
CO4	Design the special purpose structures.
CO5	Understand the concepts of filter walls and clarifiers.

TEXT BOOKS

 P. Dayaratnam, (2011), Design of Reinforced Concrete Structures, Fourth Edition, Oxford & IBH – Pubs Company, ISBN-13: 9788120414198.

REFERENCE BOOKS

1. M. L. Gambhir, (2009), Design of Reinforced Concrete Structures, First Edition, Phi Learning Pvt. Ltd., ISBN-13: 9788120331938.

2. Krishna Raju, (2004), Pre-stressed Concrete (Problems and Solutions), Second Edition, CBS Publishers & Distributors, ISBN-13: 9788123902174.

COURSE	CONTENT

Unit I:Pipe design

8 lecture hours Design of Pipes - Structural design of concrete - Pre-stressed concrete steel and cast iron piping mains - Sewerage tanks design -Anchorage for pipe – Massive outfalls – Structural design and laying – Hydrodynamic considerations.

Unit II: Water tank design

8 lecture hours

Analysis and design of water tanks - Design of concrete roofing systems using cylindrical, spherical and conical shapes using membrane theory and design of various types of folded plates for roofing using concrete - IS Codes for the design of water retaining structures.

Unit III: Economic analysis lecture hours

Design of circular, rectangular, spherical and Intze type of tanks using concrete - Design of pre-stressed concrete cylindrical tanks – Economic analysis.

8

Unit IV: Swimming pools

8 lecture hours

Design of Special Purpose Structures -Underground reservoirs and swimming pools -Intake towers - Structural design including foundation of water retaining structures such as settling tanks, clarifloculators, aeration tanks etc. – Effect of earth pressure and uplift considerations – Selection of materials of construction.

Unit V:Mixing tank8 lecture hours Design of filter walls and clarifiers - Mixing tanks.

Continuous Assessment Pattern

Internal Assessment	Mid	End	Total Morks
(IA)	Test	Test	WATKS
	(MTE)	(ETE)	

20	30	50	100

Name of The Course	Experimenta Analysis	l Sti	ress		
Course Code	MSTR6017				
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
		L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. This subject is taught to impart knowledge about the instruments and its applications.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Know the working principle of strain
	gauges.
CO2	Perform the model analysis using
	different theorems.
CO3	Know the concepts of photo elasticity
	and its applications.
CO4	Understand the processes of scattered
	light photo elasticity.
CO5	Use the various Non-destructive testing
	methods.

TEXT BOOKS

1. Jindal, (2012), Experimental Stress Analysis, Pearson India, ISBN-13: 9788131759103.

REFERENCE BOOKS

- 1. J. Srinivas, (2012), Stress Analysis and Experimental Techniques: An Introduction, Alpha Science International Ltd, ISBN-13: 9781842657232.
- 2. Sadhu Singh, (2009), Experimental Stress Analysis, Khanna Publishers, ISBN-13: 9788174091826.

Unit I: Strain gauges
8 lecture hours
Strain Gauges - Mechanical and optical strain
gauges – Description and operation – Electrical

resistance- Inductance and capacitance gauges
- Detailed treatment on resistant gauges -
Measurement of static and dynamic strains -
Strain rosettes – Effect of transverse strains –
Use of strain recorders and load cells.
Unit II: Model Analysis
8 lecture hours
Model Analysis - Structural similitude – Use of
models - Structural and dimensional analysis -
Buckingham Pi Theorem – Muller Breslau's
principle for indirect model analysis – Use of
Begg's and Eney'sdeformeters – Moment
indicators - Design of models for direct and
indirect analysis.
Unit III: Two dimensional photo elasticity
8 lecture hours
Two dimensional photo elasticity - Stress optic
law – Introduction to polariscope – Plane and
circular polariscope – Compensators and
model materials – Material and model fringe
value - Calibration of photo elastic materials -
Isochromatic and isoclinic fringes – Time edge
effects.
Unit IV: Three dimensional photo elasticity
8 lecture hours
Three dimensional photo elasticity -
Introduction – Stress freezing techniques –
Stress separation techniques – Scattered light
photo elasticity – Reflection polariscope
Unit V: Non-destructive testing8 lecture hours
Miscellaneous Methods - Brittle coating
method – Birefringence techniques – Moire
fringe method – Non-destructive testing –
Ultrasonic pulse velocity technique – Rebound
hammer method – X-ray method – Gamma-ray
method.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Machine F	oun	datio	ons	
Course					
Course Code	MSTR6018	8			
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
		L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. This subject is taught to impart the knowledge of dynamic behaviour of soils, effects of dynamic loads and the various design methods.

COURSE OUTCOMES

On completion of this course, the students will be able to

C01	Know the basic principles of soil dynamics.
CO2	Understand the elastic properties of soil.
CO3	Learn the multi degree freedom system.
CO4	Know the mathematical models for dynamic analysis.
CO5	Understand the concepts of stiffness, damping, inertia, guide lines for design.

TEXT BOOKS

 K. G. Bhatia, (2007), Foundations for Industrial Machines: Handbook for Practicing Engineers, D-Cad Publishers, ISBN-13: 9788190603201.

REFERENCE BOOKS

- 1. Srinivasulu P. and Vaidyanathan C. V., (2004), Hand Book of Machine Foundations, First Edition, Tata Education Pvt. Ltd., ISBN-13: 9780070966116.
- Shambhu P. Dasgupta&Indrajit Chowdhury, (2009), Dynamics of Structures and Foundations: A Unified Approach: Fundamentals (Volume 1), First Edition, Taylor & Francis Publishers, ISBN-13: 9780415471459.

Unit I: Introduction

8 lecture hours

Introduction: Elements of soil dynamics – Basic definitions – Importance of dynamics analysis – general requirements of machine foundations – types of machine foundation

Unit II: Properties of soil

8 lecture hours

Elastic properties of soils – Elastic deformation of soils and elastic constants - co-efficient of elastic uniform compression of soils - coefficient of elastic non-uniform compression of soil, co-efficient of elastic uniform shear of soil, effect of vibration on the dissipatice properties of soil, effect of vibration on the porosity and hydraulic properties of soils, elements of the theory of residual settlements of decrease the residual dynamic settlement of foundations

Unit III: Design parameters

8 lecture hours

Theory of massive machine foundation – theory of single and multi degree freedom, system – Evaluation of Design parameters – vertical vibrations of foundations, rocking, vibration of foundations, vibration of pure shear, vibration of foundations accompanied by simultaneous rotations

Unit IV: Block foundation 8 lecture hours

Analysis and Design of foundation - models of vibration of block foundation – method of analysis for block foundation, design procedure from block foundations – relevant code for design of foundation, foundations for impact load and cyclic load – design data – Barker's Empirical procedures, analog models for dynamic analysis of single pile. Dynamic bearing capacity, earth pressure, dynamic soil structure interaction

Unit V: Vibration isolation 8 lecture hours

Vibration isolation – active and passive types of isolation – methods of isolation in machine foundation – properties of isolating materials – guide lanes for design and construction details of machine foundation

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)			

	Test (MTE)	Test (ETE)	
20	30	50	100

Name of The Course	Maintenan Rehabilita Structures	ice & tion	k of		
Course Code	MSTR601	9			
Prerequisite	Concrete 7	ſech	nolo	gy	
Corequisite	-				
Antirequisite	-				
	•	L	T	Р	C
		3	0	0	3

COURSE OBJECTIVES

1. This subject imparts a broad knowledge in the area of repair and rehabilitation of structures

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Understand the properties of fresh and
	hardened concrete.
CO2	Know the strategies of maintenance and
	repairing.
CO3	Get an idea of repairing techniques.
CO4	Understand the properties of repairing materials.
CO5	Know about weathering wear, fire
	leakage and marine exposure.

TEXT BOOKS

1. Shetty M. S., (2008), Concrete Technology, Seventh Edition, S. Chand & Company Ltd.ISBN-13: 9788121900034.

REFERENCE BOOKS

- 1. Ravindra K. Dhir, M. Roderick Jones & Li Zheng, (2005), Repair and Renovation of Concrete Structures, American Society of Civil Engineers, ISBN-13: 9780727734051.
- 2. A. R. Santha Kumar, (2006), Concrete Technology, First Edition, Oxford University Press, ISBN-13: 9780195671537.

COURSE CONTENT

Unit I:Properties of concrete

8 lecture hours Serviceability and Durability of Structures -Quality Assurance for concrete construction -Fresh concrete properties – Strength – Permeability - Cracking - Effects due to climate – Temperature – chemicals - Wear and erosion - Design and construction errors - Corrosion mechanism - Effects of cover thickness and cracking - Methods of corrosion protection – Inhibitors - Resistant steels – Coatings -Cathodic protection

Unit II: Repairing materials

8 lecture hours

Diagnosis and Assessment of Distress - Visual inspection – Non destructive tests –Ultrasonic pulse velocity method – Rebound hammer technique – ASTM classifications – Pullout tests – Core test

Unit III: Repairing techniques

8 lecture hours

Materials for Repairing - Special concretes and mortar - Concrete chemicals - Special elements for accelerated strength gain - Expansive cement - Polymer concrete – Ferro cement, Fibre reinforced concrete - Fibre reinforced plastics.

Unit IV: Repairs to structures

8 lecture hours

Techniques for Repair - Rust eliminators and polymers coatings for rebars during repair -Foamed concrete - Mortar and dry pack -Vacuum concrete - GModulee and shotcrete -Epoxy injection - Mortar repair for cracks -Shoring and underpinning.

Unit V: Example of Repairs to Structures8 lecture hours

Example of Repairs to Structures - Repairs to overcome low member strength – Deflection – Cracking - Chemical disruption - Weathering wear - Fire leakage - Marine exposure

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100
	•••	•••	200

Name of The Course	Theory and I Plates & She	Desi Ils	gn o	f	
Course Code	MSTR6020				
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
	·	L	Τ	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. This subject is taught to impart knowledge about the behavior of plates and shells.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Understand the concept of thin plates.
CO2	Analyse laterally loaded circular plates.
CO3	Analyse laterally loaded thin plates.
CO4	Understand the concept of shells.
CO5	Analyse and design of doubly curved shells

TEXT BOOKS

1. G. S. Ramaswamy, (1996), Design and Construction of Concrete Shell Roofs, First Edition, CBS Publishers and distributors. ISBN-13: 9780812390995.

REFERENCE BOOKS

- Timoshenko and Krieger, (2010), Theory of Plates and Shells, Second Edition, Tata McGraw Hill Education Pvt. Ltd., ISBN-13: 9780070701250.
- 2. K. Bhaskar, (2013), Plates: Theories and Applications, First Edition, Ane Books Pvt. Ltd., ISBN-13: 9789382127024.

COURSE CONTENT
Unit- I:Thin plates
8 lecture hours
Introduction:- Assumptions in the theory of
thin plates – Pure bending of Plates – Relations
between bending moments and curvature -
Particular cases of pure bending of rectangular
plates, Cylindrical bending - immovable simply
supported edges – Synclastic bending and
Anticlastic bending – Limitations - Boundary
conditions.
Unit- II: Circular plates
8 lecture hours
Laterally Loaded Circular Plates:- Differential
equation of equilibrium – Uniformly loaded
circular plates with simply supported and fixed
boundary conditions – Annular plate with
uniform moment and shear force along the
boundaries.
Unit III: Plate bending
8 lecture hours
Laterally loaded thin plates – Differential
equation of plates - Navier's solution and
Levy's method – Rectangular plates with
various edge conditions
Unit IV: Theory of shells
8 lecture hours
Types of shells – Structural action – Membrane
theory – Limitations – Beam method of
analysis.
Unit V: Curved shell 8 lecture
hours
Analysis and design of doubly curved shells –
Elliptic paraboloid - Conoid and hyperbolic
paraboloid roofs.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Offshore Structures
Course	
Course Code	MSTR6021
Prerequisite	-
Corequisite	-

Antirequisite	-				
		L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. This subject is taught to impart knowledge about analysis and design of offshore structures.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Understand the effect of wind on structures.
CO2	Know about wave generation and propagation.
CO3	Calculate wave forces.
CO4	Design plat forms, derrick, jacket towers.
CO5	Learn the principles of jacketing towers.

TEXT BOOKS

1. Gerwick, (1999), Construction of Marine and Offshore Structure, Second Edition, CRC

Press, ISBN-13: 9780849374852.

REFERENCE BOOKS

- 1. Lymon C. Reese, Bruce J. Muga& James F. Wilson, Offshore Structures, Second Edition, John Wiley & Sons, ISBN-13: 978047121264675.
- 2. Templetion J. S., (2007), Offshore Technology in Civil Engineering, Hall of Fame, Papers from the Early Years, Volume-2, American Society of Civil Engineers, ISBN-13: 9780784409251.

Unit I: Rigid and flexible structures
8 lecture hours
Wind on structures - Rigid structures - Flexible
structures - Static and Dynamic effects.
Unit II: Wave generation
8 lecture hours

Wave generation and Propagation - Small and				
finite amplitude wave theories - Wave energy				
and pressure distribution.				
Unit III: Wave forces 8 lecture				
hours				
Wave forces on structures - Environmental				
loading - Use of Morrison equation.				
Unit IV: Types of structures				
8 lecture hours				
Loads - Design of platforms - Derricks -				
Helipads – Design.				
Unit V:Design of platform, helipad etc8 lecture				
hours				
Principles and examples of Jacket towers -				
Mooring cables.				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	Prefabrica	Prefabricated Structures			
Course Code	MSTR602	2			
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
	•	L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. This subject is taught to impart the knowledge in the area of prefabricated structures.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Know	the	types	of	prefabrication
	system	s.			

CO2	Understand about handling and
	erection stresses.
CO3	Learn about construction and
	expansion joints.
CO4	Understand the process of erection of
	R.C. structures.
CO5	Design pre fabricated modules.

TEXT BOOKS

 Hass, A. M., (1995) Precast concrete Design and Applications, Applied Science Publishers, England.

REFERENCE BOOKS

- Promyslov, V. (1998), Design and Erection of Reinforced concrete structures, MIR Publishers, Moscow.ISBN: 0719024323.
- Levit, M., (2000), Precast concrete materials, Manufacture properties and usage, Applied Science Publishers, London. ISBN 0-203-79881-3.

Unit I:Introduction			
8 lecture hours			
Types of foundation - Modular co-ordination -			
Components - Prefabrication systems and			
structural schemes - Design considerations -			
Economy of prefabrication - Prefabrication of			
load-carrying members - DisModuleing of			
structures - Structural behaviour of pre cast			
structures.			
Unit II: Handling and erection stresses			
8 lecture hours			
Handling and erection stresses - Application of			
pre stressing of roof members - Floor systems -			
Two way load bearing slabs - Wall panels			
Unit III: Dimensioning and detailing of joints			
8 lecture hours			
Dimensioning and detailing of joints for			
different structural connections - Construction			
and expansion joints.			
Unit IV: Erection of structures			
8 lecture hours			
Production - Transportation and Erection -			
Organising of production - Storing and			

erection equipment - Shuttering and mould design - Dimensional tolerances, Erection of R.C. structures, Total prefabricated buildings Unit V:Design of pre fabricated Modules8 lecture hours Prefabricated Modules for Industrial structures - Multi-storied buildings and Water tanks - Application of pre stressed concrete in prefabrication

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	Pre-stressed Concrete Structures				
Course Code	MSTR6023	MSTR6023			
Prerequisite	Reinforced Concrete Structures				
Corequisite	-				
Antirequisite	-				
	•	L	Τ	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. This subject is taught to give the concepts of pre-stress.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Know the concepts, methods and
	materials of pre-stressing systems.
CO2	Design the pre-stressed concrete
	members.
CO3	Calculate the deflections in pre-
	stressed concrete members.

CO4	Design anchorage zones and composite				
	pre-stressed concrete members.				
CO5	Know the concepts of pre-stressed				
	concrete beams.				

TEXT BOOKS

1. Krishna Raju.N, (2004), Pre stressed Concrete, Third Edition, Tata McGraw Hill Co

REFERENCE BOOKS

 Rajagopal.N, (2005), Prestressed Concrete, Second Edition, Narosa Publishing House. ISBN 13, : 9788173195433

2. Dayarathnam P, (2004), Prestressed Concrete Structures, S.Chand Publishers.

3. Sinha.N.C and Roy.S.K, (2000), Fundamentals of Pre-stressed Concrete, S.Chand& Company.

nit I:Materials and losses in pre stress
8 lecture hours
Difference between reinforced and pre-stressed
concrete – Principles of pre-stressing –
Methods and systems of pre-stressing –
Principles of pre-stressing – Classification of
pre-stressed concrete structures – Materials –
High strength concrete and High strength steel
– Stress-strain diagram - Losses in pre-stress.
Unit II: Design of pre-stressed concrete beams
8 lecture hours
Design of prismatic pre-stressed concrete
members for bending at service load.
Unit III: Deflections
8 lecture hours
Simple cable profiles – Calculation of
deflections - Design of beams for shear and
torsion at working and ultimate loads.
Unit IV: Anchorage design 8
lecture hours
Design of Anchorage zone by Guyon's method
- Concept of Magnel's method - IS:1343
- Concept of Magnel's method - IS:1343 recommendations.
 Concept of Magnel's method – IS:1343 recommendations. Unit V: Composite prestressed concrete beams
 Concept of Magnel's method – IS:1343 recommendations. Unit V: Composite prestressed concrete beams 8lecture hours
 Concept of Magnel's method – IS:1343 recommendations. Unit V: Composite prestressed concrete beams 8lecture hours Pre-stressed concrete beams – Design
 Concept of Magnel's method – IS:1343 recommendations. Unit V: Composite prestressed concrete beams 8lecture hours Pre-stressed concrete beams – Design procedure – Calculation of stresses at

important stages both for propped and unpropped constructions – Shrinkage stresses -Statically indeterminate structures – Concept of concordant cable and profile – Sketching of pressure lines for continuous beams.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	Soil Structure Interaction				
Course Code	MSTR6024				
Prerequisite	Geotechnical Engineering				
Corequisite	-				
Antirequisite	-				
		L	Τ	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. This subject is taught to impart knowledge on soil structure interaction analysis, its influences in the design parameters.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Understand the concept of different
	soil models.
CO2	Calculate modulus of subgrade for
	different types of soil.
CO3	Carry out soil structure interaction for
	shallow foundation.
CO4	Do the elastic analysis of piles and pile
	groups.
CO5	Know non-linear soil properties.

TEXT BOOKS

1. Desai, C. and Christian, I.T., (2003), Numerical methods in Geo-technical Engineering,

Khanna	Publishers	ISBN-978-3-642-
01461-1.		

REFERENCE BOOKS

 Selvadurai A.P.S., Elastic Analysis-Soil foundation interaction.ISBN 13: 9780444416636

 Hetenyi, M; Beams on elastic foundation. ISBN: 0472084453
 Baker, A.L.L. Raft foundation, The Soil line method of design ISBN 10: 8122410782
 Nainan P. Kurian, Design of foundation systems (Narosa) ISBN: 978-81-7319-939-4
 Structure –Soil interaction – State of art report, Institute of Structural Engineers, 1978
 ACl-336 suggested Analysis and design practice, for combined footings and mats. American Concrete Institute, Delhi - 1988.
 Poulous, H.G. and Davis, E.H, Pile foundation analysis and design, John Wiley, 1980. ISBN 10: 0471020842

COURSE CONTENT

Unit I:Mathematical model, Winkler model,
Two parameter model 8 lecture hours
Soil models: single parameter model (Winkler),
two parameter models – Filonenko - Borodich
model, Pasternak model, Heteni model, visco
elastic model, elastic continuum model, contact
pressure distribution below the flexible and
rigid footing and. raft parameter affecting
conduct pressure.
· · · · · · · · · · · · · · · · · · ·

Unit II: Modulus of subgrade, reaction 8 lecture hours

Contact pressure and subgrade modulus and beams on elastic foundation method - analysis of contact pressure distribution – modulus of subgrade reaction – classical solution for beam of infinite length subjected to concentrated load and moment, beams of finite length (formulation of basic equation for slabs resting on elastic foundation), Application of design of combined footing.

Unit III: Beams and slabs

8 lecture hours

Plates in elastic medium – soil structure interaction for shallow foundation – interface behaviour - Thin and thick plates – analysis of finite plates, rectangular and circular plates, Numerical analysis of finite plates, simple solutions, Baker's method for rafts.

Unit IV: Analysis of piles

8 lecture hours

Soil pile interaction : Introduction – elastic analysis of single pile, theoretical solutions for

settlement and load distribution analysis of pile group interaction analysis – Load distribution with groups with rigid cap – elastic continuum and elasto-plastic analysis of piles and pile groups (Ultimate lateral resistance of piles by various approaches).

Unit V:Pile displacement8 lecture hours Laterally loaded pile and piled raft: Nonlinear load – deflection response P-Y reactions, non-linear soil properties lift capacity of piles and anchors, Piles raft system – soil structure interaction in framed structures. FEM modules use of approximately software packages

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	Stability of	Str	uctu	ires	
Course Code	MSTR6025				
Prerequisite	Structural analysis				
Corequisite	-				
Antirequisite	-				
		L	Τ	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. This subject is taught to impart the knowledge in the area of stability of structures.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Understand the behaviour of columns.
CO2	2. Learn the theory of the beam columns.
CO3	3. Analyse the frame stability.
CO4	4. Understand the concept of plate buckling.

CO5 5. Understand the concept of buckling of shells.

TEXT BOOKS

1. Aswini Kumar, (2002), Stability theory of structures, Tata McGraw Hill Publishing Co. Limited, New Delhi.

REFERENCE BOOKS

- Timoshenko & Gere (2000), Theory of Elastic Stability, McGraw Hill. ISBN-13: 978-0-486-47207-2
- N.G.R. Iyengar (1996), Structural Stability of Columns and Plates, Affiliated East West Press, **ISBN** 81-85814-24-4. 3.

COURSE CONTENT

Unit I :Column analysis
8 lecture hours
Introduction - Static equilibrium – Governing
equation for columns – Analysis for various
boundary conditions - Analysis of Eccentrically
loaded column.
Unit II: Beam column analysis
8 lecture hours
Beam Columns – Theory of Beam column –
Stability analysis of beam column with
different types of loads - Failure of beam
columns.
Unit III: Frames stability
8 lecture hours
Analysis and stability of frames
Unit IV: Plates
8 lecture hours
Plates subjected to inplane forces - Differential
equation – Analysis – Approximate techniques
- Analysis for various boundary conditions –
Wood and Armer equation for analysis and
design.
Unit V: Shells
8 lecture hours
Buckling of shells – Differential equation –
Analysis – Application

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Structural Optimization				
Course Code	MSTR6026				
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
		L	Τ	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. This course is intended to teach the importance of Optimization problems in the Structural Engineering.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Understand the concepts of				
	Optimization problems in the				
	Structural Engineering.				
CO2	Know the different methods for the				
	Optimization problems.				
CO3	Understand the concepts of Linear and				
	Non-Linear Programming techniques.				
CO4	Understand the concepts of Stochastic				
	Optimization Methods.				
CO5	Understand the concepts of Genetic				
	Algorithm based Optimization				
	Methods.				

TEXT BOOKS

1. S.S.Rao, (1996), Engineering Optimization: Theory and Practice, Third Edition, John Wiley &Sons,Inc.ISBN 0-471-55034-5

REFERENCE BOOKS

- Smith, D. R., "Variational Methods in Optimization," Dover Publications, 1998. ISBN, 0486404552.
- Haftka, R. T. and Gurdal, Z., "Elements of Structural Optimization," Kluwer Academic Publishers, 1992. ISBN, 0792315049
- 3. Bendsoe, M. P. and Sigmund, O., "Topology Optimization: Theory, Methods, and Applications," Springer, 2003. ISBN-10: 3540429921

COURSE CONTENT

Unit I:Formulation of Structural Optimization problems. 8 lecture hours

Formulation of Structural Optimization				
problems: Design variables - Objective				
function - constraints. Fully stressed design.				
Unit II: Linear Programming techniques				
8 lecture hours				
Review of Linear Algebra: Vector spaces, basis				
and dimension, canonical forms.				
Unit III: Non-Linear Programming techniques				
8 lecture hours				
Linear Programming: Revised Simplex				
method, Application to structural				
Optimization.				
Unit IV: Stochastic Optimization Methods				
8 lecture hours				
Nonlinear Programming: Deterministic				
Methods_ Unconstrained and constrained				
Optimization - Kuhn-Tucker conditions,				
Direct search and gradient methods - One				
dimensional search methods - DFP and BFGS				
algorithms, constrained Optimization - Direct				
and Indirect methods - SLP, SQP and SUMT,				
Application of NLP methods to optimal				
structural design problems. Optimality criteria				
based methods, Reanalysis techniques -				
Approximation concepts - Design sensitivity				
Optimization of sections, steel and concrete				
structures - framed structures, bridge				
structures.				
Unit V: Genetic Algorithm based Optimization				
Methods 8 lecture hours				
Genetic Algorithm based Optimization				
Methods				

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	Composite Structures				
Course Code	MSTR6027	MSTR6027			
Prerequisite	-	-			
Corequisite	-	-			
Antirequisite	-	-			
		L	Τ	Р	С
		3	0	0	3

COURSE OBJECTIVES

1. To know the types of composites

2. To understand the need for stress strain relation

3. To understand the fabrication methods

4. To understand the laminated plates

5. To study and understand the different

methods & analysis of composite materials.

COURSE OUTCOMES

On completion of this course, the students will be able to

CO1	Analyze composite structures
CO2	Do microscopic and macroscopic
	analysis
CO3	Analyze sandwich and laminated plates
CO4	Understand the failure criteria for composites.
CO5	Know the fabrication techniques

TEXT BOOKS

- 1. Calcote, L R. "The Analysis of laminated Composite Structures", Von - Noastrand Reinhold Company, New York 1991.ISBN0-324-06680-5
- 2. Jones, R.M., "Mechanics of Composite Materials", McGraw-Hill, Kogakusha Ltd., Tokyo, 1915.ISBN 81-297-0277-0

REFERENCE BOOKS

1. Agarwal, B.D., and Broutman, L.J., "Analysis and Performance of Fibre Composites", John Wiley and sons. Inc., New York. ISBN 0-324-06680-5

- 2. Lubin, G., "Handbook on Advanced Plastics and Fibre Glass", Von Nostrand Reinhold Co., New York.ISBN 0-324-06680-5
- 3. J. N. Reddy, "Mechanics of Laminated Composite Plates and Shells - Theory and CRC Press Analysis", (USA) ISBN 9780849315923

COURSE CONTENT

Unit I: Stress Strain Relationship

8 lecture hours Introduction - advantages and application of composite materials, reinforcements and matrices - Generalised Hooke's Law - Elastic constants for anisotropic, orthotropic and isotropic materials. **Unit II: Finite Element Analysis of Plates 8 lecture hours Introduction - concept of mesh - Displacement** function - Stress-Strain Matrix - Stiffness matrix of plate element – Solution of problem **Unit III: Methods of Analysis 8** lecture hours Micro mechanics - Mechanics of materials approach, elasticity approach to determine material properties - Macro Mechanics -Stress-strain relations with respect to natural axis, arbitrary axis - Determination of material properties - Experimental characterization of lamina. **Unit IV: Laminated Plates 8 lecture hours** Governing differential equation for a general laminate, angle ply and cross ply laminates -Failure criteria for composites. **Unit V: Sandwich Constructions, Fabrication Process 8**lecture hours **Basic design concepts of sandwich construction** - Materials used for sandwich construction -Failure modes of sandwich panels - Various Open and closed mould processes Manufacture of fibers - Types of resins and properties and applications - Netting analysis.

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

School of Civil Engineering

Program: M.Tech. Energy & Environmental Engineering

Scheme: 2018/2019/2020-2021

Curriculum

		Semester 1							
Sl.	Course Code	Name of the Course					Asse	ssment Pa	attern
No	Course Coue		L	Τ	P	С	IA	MTE	ETE
1	CENG5001	Professional and Communication Skills	0	0	4	2	50	-	50
2	MATH5001	Advanced Numerical and Statistical Methods	3	1	0	4	20	50	100
3	MENE5001	Renewable Energy Technology	3	0	0	3	20	50	100
4	MENE5002	Physico-chemical, Biological Principles and Processes	4	0	0	4	20	50	100
5	MENE5003	Environmental Quality Monitoring	2	0	0	2	20	50	100
6	MENE5004	Energy Auditing, Conservation & Management	3	0	0	3	20	50	100
7	MENE5005	Renewable Energy Technology Lab	0	0	2	1	50	-	50
8	MENE5006	Environmental Quality Monitoring Lab	0	0	4	2	50	-	50
		Semester II							
Sl	Course Code	Name of the Course					Asse	ssment Pa	attern
No			L	Т	Р	С	IA	MTE	ETE
1	MENE6001	Energy, Instrumentation, Measurement & Control	3	0	0	3	20	50	100
2	MENE6002	Environmental Audit & Impact Assessment	3	0	0	3	20	50	100
3	MENE6003	Design of Water & Wastewater Treatment Systems	3	0	0	3	20	50	100
4	MENE6004	Air Pollution & Its Control	3	0	0	3	20	50	100
5	MENE6019	Elective-I (Energy Environment Climate Change)	3	0	0	3	20	50	100
6	MENE6039	Elective-II (Risk Assessment and Disaster Management)	3	0	0	3	20	50	100
7	MENE6005	Seminar	0	0	0	1	50	-	50
8	MENE6006	Energy, Instrumentation, Measurement & Control Lab	0	0	2	1	50	-	50
	[Semester III					1		
Sl No	Course Code	Name of the Course		-		~	Asse	ssment Pa	attern
1	MENIE7001	Comprehensive Exemination		T	P	<u>C</u>	IA 50	MTE	ETE 50
2	MENE7002	Project (Phase I)	0	0	0	<u>ک</u> 5	50		50
2	MENE6020	Fnergy Efficient Buildings (Elective III)	3	0	0	3	20	50	100
5	WIENE0029	Energy Efficient Dunuings (Elective-III)	5	U	0	5	20	50	100
4	MENE6032	Solid Waste Management (Elective-IV)	3	0	0	3	20	50	100
5	MENE6037	Remote Sensing & GIS Applications (Elective-V)	3	0	0	3	50	50	50
	1	Semester IV							
	Course Code	Name of the Course					Asse	ssment Pa	attern

Sl No			L	Т	Р	С	IA	MTE	ЕТЕ
1	MENE8001	Project (Phase II	0	0	0	15	50		50

Sl	Course Code	Name of the Electives				Assessment Pattern			
No	Course Coue	Name of the Electives	L	Т	P	С	IA	MTE	ETE
1	MENE6013	Solar Energy Technology	3	0	0	3	20	50	100
2	MENE6015	Hydrogen & Fuel Cells	3	0	0	3	20	50	100
3	MENE6019	Energy Environment Climate Change	3	0	0	3	20	50	100
4	MENE6027	Bioenergy Technologies	3	0	0	3	20	50	100
5	MENE6029	Energy Efficient Building	3	0	0	3	20	50	100
6	MENE6032	Solid Waste Management	3	0	0	3	20	50	100
7	MENE6034	Design of Wastewater Treatment & Disposal System	3	0	0	3	20	50	100
8	MENE6035	Urban Environmental Quality Management	3	0	0	3	20	50	100
9	MENE6037	Remote Sensing & GIS Applications	3	0	0	3	20	50	100
10	MENE6038	Application of Bio-technology in Environmental Engineering	3	0	0	3	20	50	100
11	MENE6039	Risk Assessment and Disaster Management	3	0	0	3	20	50	100
12	MENE6040	Mathematical Modelling in Environmental Engineering	3	0	0	3	20	50	100
13	MENE6041	Clean Development Mechanism & Green Technologies	3	0	0	3	20	50	100
14	MENE6042	Environmental Ecology	3	0	0	3	20	50	100
15	MENE6046	Environmental Economics, Legislation and Management	3	0	0	3	20	50	100

List of Electives

Detailed Syllabus

Name of The	Renewable Energy				
Course	Technology				
Course Code	MENE5001				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	C
		3	0	0	3

Course Objectives

- 1. Fundamental knowledge to the student about renewable and non-renewable energy.
- 2. Brief idea to students about types of energy and conversion technologies, processes, systems and devices.
- 3. Plasticize students to work with instruments
- 4. Encourage students to take up projects in those areas.
- 5. Implementation of renewable energy in project and development.

Course Outcomes

At the end of the course, students will be able to:

CO1	Explain the basic principles of various				
	renewable energy conversion processes				
	and devices used therein.				
CO2	Understand the relationships between				
	natural resources, consumption,				
	population, economics of consumerism,				
	etc in an environmental context.				
CO3	Identify various parameters that influence				
	the performance of devices/processes.				
CO4	An understanding the problems of energy				
	distribution, design, plan and execute.				
CO5	To make a thought in terms of scientific				
	and technological advancement in the				
	spirit of a sustainable energy.				
1.					

Course Content

Unit I: Introduction to energy and resources 9 lecture

hours

Introduction to energy and resources – Renewable energy sources - Availability of solar energy – Sun-earth relationships - Estimation of solar radiation using Page-Angstrom method - Solar radiation measurement – Flat plate collectors – Solar water heating systems – Evacuated Tubular Concentrators - Solar air heating systems and applications – Concepts on solar drying, cooking, desalination, solar ponds and solar cooling -Passive heating and cooling of buildings – Basics of solar concentrators and types - Solar thermal power generation.

Unit II: Solar Cells

lecture hours

10

Physics of solar cells – Cell types and manufacture – PV applications - Characteristics of cells and module – Performance parameters - Estimation of module power output – PV system configurations – System components: Battery, charge controller and inverter.

Unit III: Biomass

10

lecture hours Biomass to energy conversion processes – Anaerobic digestion, process parameters, biogas composition, digester types, high rate anaerobic conversion systems – Alcohol from biomass – Biodiesel: preparation, characteristics and application - Biomass combustion and power generation – Briquetting – Gasification: Process, types of gasifiers, applications – Waste to energy technologies.

Unit IV: Wind Power

7 lecture

hours

Power in the wind - Types of wind mills – WEG components - Airfoils: lift and drag – Power curves and energy estimation - Micro siting – Indian wind potential. Small Hydro Power: Types, site identification, head and flow measurement, discharge curve, estimation of power potential and system components.

Unit V: Renewable Energy Technologies

lecture hours

Technologies for harnessing other renewable energy sources like geothermal, wave, tidal and ocean thermal energy.

2.

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Physico-chemical,					
Course	Biolo	Biological				
	Prin	Principles and				
	Proc	Processes				
Course Code	MEN	MENE5002				
Prerequisite	Basi	Basic physics,				
	chen	chemistry and				
	math	mathematics				
Corequisite						
Antirequisite						
		L	Т	Р	С	
		4	0	0	4	

Course Objectives

The objective of this course is to:

- 1. To study about the solid- liquid- gas interactions
- 2. To understand about process kinetics
- 3. To deal with the microbial applications in environmental engineering
- 4. To study microbial activity and its application to treat wastewater
- 5. To apply microbial kinetics to addressed wastewater treatment problems

Course Outcomes

At the end of the course, students will be able to:

CO1	Understand the mass transfer and						
	transport of impurities in system						
CO2	Apply the concepts of oxidation-						
	reduction equilibrium						
CO3	Study and applying practically about						
	microbial kinetics						
CO4	Application of micro-organism for						
	wastewater treatment						
CO5	Apply microbial principles to						
	environmental engineering						

Text Books

- Benefield, L.D. Judkins J.F. and Weand B.L. (1982). Process Chemistry for Water and Wastewater Treatment, End ed., Prentice-Hall, Inc, New Jersey, USA
- Metcalf and Eddy, M.C., "Wastewater Engineering: Treatment, Disposal and Reuse", Tata McGraw-Hill Publications, New Delhi, 2003

Reference Books

- 1. Benefield L.D. and Randall, C.W. (1980). Biological process design for wastewater treatment. Prentice-Hall. N.J.
- 2. Pelczar, M.J., Chan ECS and Krieg NR, Microbiology, Tata McGraw Hill Edition, New Delhi, India.
- 3. Talaro K., Talaro A CassidaPelzar and Reid, (1993) Foundations in Microbiology, W.C. Brown Publishers.
- 4. Sawyer, McCarty, and Parkin, 2003.Chemistry for Environmental Engineers, 5th" McGraw Hill,

Course Content

Unit I: Structure and Properties of Water 8 hours

Structure and Properties of Water- their significance in environmental engineering, Sources of Water impurities, Abiotic reactions, Biological metabolism. Solid-Liquid-Gas interactions, Mass transfer and transport of impurities in water, diffusion, dispersion. Physical and Chemical interactions due to various forces, suspensions and dispersions.

Unit II: Chemical Reactions

8 hours

Chemical reactions, Chemical equilibrium and thermodynamics, Acid-baseequilibria, solubility equilibria, oxidation-reduction equilibria. Process kinetics, reaction rates and catalysis, surface and colloidal chemistry, Adsorption. Settling of particles in water stabilization.

Unit III: Eco Systems

8 hours

Ecosystems; biotic and abiotic components, biogeochemical cycles, ecology of population; Ecological niche, Mortality and survivorship, CommModuley Interactions. typical natural and artificial ecosystems

Unit IV : Biochemistry

8 hours

Biochemistry; Biological compounds– enzymes, coenzymes and amino acids, Microbiological concepts; Cells, classification and characteristics of living organisms, Characterization techniques, Reproduction, Metabolism, Microbial growth kinetics.

Unit V: Applications of Microbiological principles to environmental engineering 8 hours

Applications of Microbiological principles to environmental engineering; assimilation of wastes, engineered systems, Concepts and Principles of carbon oxidation, Nitrification, Denitrification, Methanogenasis, etc., Concepts of quantization of degradable pollutants.

Continuous Assessment Pattern

Internal Assessment	Mid Term	End Term	Total Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Environmental				
Course	Quality Monitoring				
Course Code	MENE5003				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. To teach students about various water quality parameters and their effect
- 2. Explain brief procedure for collection and preservation of samples of water and wastewater
- 3. Give idea to students about different standard methodologies for sampling and analysis of environment at whole and its constituents like water, wastewater, air and soil
- 4. To teach advance analytical methods for environmental quality monitoring
- 5. Conduct small projects on water quality monitoring of polluted and waste water in field condition

 MN.Rao, H.V.N.Rao, (2007), Air Pollution, Tata McGraw Hill Publishing Company Limited, ISBN: 978-00-745-1871-7

Reference Books

- 1. Stanley E. Manahan (2005), Environmental Chemistry, 8th Edition, CRC Press, ISBN: 978-15-667-0633-9.
- Clair N Sawyer, Perry L. McCarty and Gene F. Parkin (2002), Chemistry for Environmental Engineering and Science, McGraw-Hill Science.Daniel P Bovet and Marco Cesati, "Understanding the Linux kernel", 3rd edition, O'Reilly, 2005.
- Gilbert M Master, Wendell P Ela, (2008), Environmental Engineering and Sceince, PHI Learning Pvt. Limited, ISBN:978-81-203-3691-9
- 4. Howard S.Peavy, Donald R Rowe, George Tchobanoglous, (1985), Environmental Engineering, 5.McGraw Hill Publishing Co.,ISBN:978-0-710-0231-8

Course Content

Course	Outcomes	Unit I: General Sampling and Analytical				
		Techniques 9 hours				
At the e	end of the course, students will be able to:	General principles for collection of				
		representative sample, frequency of sampling,				
CO1	Schedule field studies and other data acquisition activ	validation, interpretation and analysis of data, vities to be considered for compliance its control				
CO2	Use a tiered monitoring approach consisting of rapid	assessment of the reality of the satisfies at site				
CO3	Supervise monitoring techniques of various environn	etinit diraviethoods for Physicochemical				
CO4	Generate monitoring data relevant to decision making	Annabessis of Water/Wastewater 10				
CO5	Manage and report environmental quality data in a	whyourst is meaningful and understandable to inter	ded			
	audience	Gravimetric methods for solids analysis in water				
		and wastewater, determination of acidity,				
Text B	ooks	alkalinity and turbidity, analysis of common				
1.	Metcalf and Eddy, (2003), Wastewater	cations and anions in water/wastewater through				
	Engineering Treatment and Reuse, 4th	various chemical techniques, determination of				
	edition, Tata McGraw Hill Education	nitrogen, phosphorus and chemical oxygen				
	Private Limited, ISBN:978-00-704-9539-	demand (COD), acid-base titrations,				
	5.Andrew S. Tanenbaum, "Modern	precipitation titrations, complexometric				
	Operating Systems" Pearson Education 2^{nd}	titrations, oxidation-reduction titrations, working				
	Edition 2006	principles of electrodes, different types of				
	Edition, 2000	electrodes.				
2.	S.K.Garg (2010), Sewage Disposal and Air					
	Pollution Engineering, Khanna Publishers,	Unit III: Biological Methods and				
	ISBN:978-81-740-9230-4	Microbiology 10				
		hours				

Biochemical oxygen demand (BOD), MPN test for microbial pollution, plate counts; confirmatory tests for various microbiological agents.

Unit IV: Air Pollution Measurements

7 hours

Sampling techniques for air pollution measurements; analysis of particulates and common chemical air pollutants, analysis of oxides of nitrogen, oxides of sulphur, carbon monoxide, hydrocarbon and poly aromatic hydro carbons.

Unit V: Advanced Analytical Methods 9 hours

Working principles of Spectrophotometric methods; Nephelometric methods; Atomic absorption spectroscopy and its various analytical versions; Ion chromatography, High performance liquid chromatography, CHNO/S Analyzer, TOC analyzer and other advanced analytical instruments.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test	End Term Test	Total Marks
	(MTE)	(ETE)	
20	30	50	100

Name of The	Energy Auditing				
Course	Conservation and				d
	Ma	nage	emen	t	
Course Code	MF	ENE5	5004		
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. To teach the basic concepts of energy audit and management.

- 2. Give brief knowdge about mathematical calculation and modelling of energy performance
- 3. Teach students about data collection and analysis
- 4. The energy auditing procedures, techniques, policy planning, implementation and energy audit instrument
- 5. To give a broadly knowledge about planning and management for economical growth

Course Outcomes

At the end of the course, students will be able to:

CO1	Understand the general aspect of energy
	auditing and management
CO2	Development of knowledge about the energy auditing procedures, techniques, policy planning and implementation
	poncy plaining and implementation.
CO3	Understand about energy audit instrument.
CO4	Mathematical approach of data collection and analysis.
CO5	Design of energy modelling and optimization

Text Books

- 1. Energy Management: W.R.Murphy, G.Mckay (Butterworths).
- 2. Energy Management Principles: C.B.Smith (Pergamon Press).
- 3. Efficient Use of Energy : I.G.C.Dryden (Butterworth Scientific)
- 4. Energy Economics -A.V.Desai (Wieley Eastern)
- 5. Industrial Energy Conservation : D.A. Reay (Pergammon Press)

Reference Books

- 1. Stanley E. Manahan (2005), Environmental Chemistry, 8th Edition, CRC Press, ISBN: 978-15-667-0633-9.
- Clair N Sawyer, Perry L. McCarty and Gene F. Parkin (2002), Chemistry for Environmental Engineering and Science, McGraw-Hill Science.Daniel P Bovet and

Marco Cesati, "Understanding the Linux kernel", 3rd edition, O'Reilly, 2005.

- Gilbert M Master, Wendell P Ela, (2008), Environmental Engineering and Sceince, PHI Learning Pvt. Limited, ISBN:978-81-203-3691-9
- 4. Howard S.Peavy, Donald R Rowe, George Tchobanoglous, (1985), Environmental Engineering, 5.McGraw Hill Publishing Co.,ISBN:978-0-710-0231-8

Course Content

Unit I: General Aspects 9 hours

General Philosophy and need of Energy Audit and Management. Definition and Objective of Energy Management, General Principles of Energy Management, Energy Management Skills, Energy Management Strategy. Energy Audit: Need, Types, Methodology and Approach. Energy Management Approach, Understanding Energy Costs, Bench marking, Energy performance, Matching energy usage to requirements, Maximizing system efficiency, Optimizing the input energy requirements, Fuel and Energy substitution.

Unit II: Procedures and Techniques 10 hours

Data gathering : Level of responsibilities, ener Facts, figures and impression about energy /fuel a Special tests, Questionnaire for data gathering. **Analytical Techniques:** Incremental cost conce of Energy inputs and rejections, Heat transfer ca process and energy system simulation.

UnitIII:EnergyPolicyPlanningandImplementation10hours

hours

Location of Energy Manager, Top Management Support, Managerial functions, Role and responsibilities Energy Manager, of Accountability. Motivating - Motivation of employees, Requirements for Energy Action Planning. Information Systems: Designing, Barriers. Strategies. Marketing and Communicating Training and Planning.

Unit IV: Energy Balance &MIS 7 hours

First law of efficiency and Second law of efficiency, Facility as an Energy system, Methods

for preparing process flow, Materials and Energy Balance diagram, Identification of losses, Improvements. Energy Balance sheet and Management Information System (MIS) Energy Modeling and Optimization.

Unit V: Energy Audit Instruments 9 hours

Instruments for Audit and Monitoring Energy and Energy Savings, Types and Accuracy

4. Continuous Assessment Pattern						
Internal	Mid	End	Total			
Assessment	Term	Term	Marks			
(IA)	Test	Test				
	(MTE)	(ETE)				
20	30	50	100			

Name of The	Rene	ewał	ole E	nerg	gy
Course	Tech	nolo	ogy l	Lab	
Course Code	MEN	NE5)05		
Prerequisite	Renewable Energy				
	Tech	nolo	ogy		
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives

This subject is taught

1. To impart knowledge in the area of biomass to energy

2. Working principle knowledge of instruments

3. Brief knowledge about various renewable energy parameters

4. Knowledge about handling the instruments and how to operate in filed

5. The role of instruments in different engineering applications.

Course Outcomes

At the end of the course, students will be able to:

CO1	Study the devices used to measure
	various forms of energy.
CO2	Understand the basic working principle of
	energy measuring devices
CO3	Knowledge of various flow parameters
CO4	Handling efficiency of instruments and
	problem solving
CO5	Technical approach of the instruments in
	field condition

Text Books

- 1. Fundamentals of Aerodynamics (McGraw-Hill International Editions: Mechanical Engineering Series) by John David Anderson , Tata Mcgraw-Hill Education.
- 2. Electrical Measurements and Measuring Instruments by A.K Sawhney.
- 3. Flow measurement: practical guides for measurement and control by David W. Spitzer, Instrument Society of America.

Reference Books

- 1. Energy Management Handbook by Steve Doty, Wayne C. Turne
- 2. Handbook of Energy Engineering by Albert Thumann, D. Paul Mehta.
- 3. Guide to Energy Management by B. L. Capehart, Wayne C. Turner, William J. Kennedy

COURSE CONTENT

1. Determination of proximate analysis (Moisture content, ash, Volatile matter & fixed carbon) for a Given Biomass Sample.

2. Determination of Total solids, volatile Solids and calorific value for a given organic Biomass Sample.

3. Determination of elemental analysis (chemical method) for a Given Biomass Sample.

4. Determination of C/N Ratio for a given organic Biomass Sample.

5. Determination of Chemical Oxygen Demand, BOD, Total dissolved solids (TDS) and

pH for a Given Slurry or Liquid

Sample. 6. Determination of Dissolved Oxygen & Biochemical in a Liquid Slurry Waste Sample.

7. Determination of Calorific Value of a solid and liquid Biomass Sample using Bomb calorimeter.

8. To study the Effect of Different Loading Rates, Total Volatile Solids and Hydraulic Retention time on Generation of Biogas in Batch Type Digesters.

9. Determination of Lignin, Cellulose, Hemicelluloses in a Given Biomass Sample.

10. Determination of Potassium, Sodium and Phosphorous in a Given Waste Slurry Sample.

11. Determination of Crude Protein in a Given Biomass Sample.

12. Study of Gasifier and its performance evaluation with solid and loose biomass.

13. Characterization of liquid biomass (Viscosity, density, flash/fire point, cloud point)

and its comparison with diesel

Continuous Assessment Pattern

Internal Assessment (IA)	External Assessment (EA)	Total Marks
50	50	100

Name of The	Env	viron	men	tal	
Course	Qua	Quality Monitoring			ng
	Lat)			
Course Code	ME	NE5	006		
Prerequisite	Environmental				
	Qua	ality	Mon	itori	ng
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives

This subject is taught

1. To impart knowledge in the area of sampling and statistical analysis

2. Working principle knowledge of instruments

3. Brief knowledge about various parameters

4. Knowledge about handling the instruments and how to operate in field

5. The role of instruments in different engineering applications.

Course Outcomes

At the end of the laboratory experiments, the student will be able to

List of Experiments

1. Estimation of pH

2. Determination of Total, suspended, dissolved

volatile & fixed residue in a waste/water sample

3. Determination of Turbidity

4. Determination of the Carbonate, Bicarbonate, and Hydroxide Alkalinity

- 5. Determination of the type and Extend of Acidity
- 6. Estimation of the Optimum Dose of Coagulants
- for Coagulation

7. Estimation of the Hardness of water (EDTA Method)

	8. Estimation of the Chloride Concentration.
CO1	Learn various instruments process and about the section of the Dissolved Oxygen (DO)
CO2	How to handle the instruments and percentage saturation
CO3	Supervise monitoring techniques of various covinental parameters and Broshemical Oxygen Demand
CO4	Generate monitoring data and their application application of the strewton of the second seco
CO5	Manage and report environmental quality data in Determithation of Whagful and synder Dendahle (1001Dended
	project of wastewater

Text Books

1. Metcalf and Eddy, (2003), Wastewater Engineering Treatment and Reuse, 4th edition, Tata McGraw Hill Education Private Limited, ISBN: 978-00-704-9539-5.

2. S.K.Garg (2010), Sewage Disposal &Air Pollution Engineering, Khanna Publishers, ISBN: 978-81-740-9230-4

3. MN.Rao, H.V.N.Rao, (2007), Air Pollution, Tata McGraw Hill Publishing Company Limited, ISBN: 978-00-745-1871-7

Reference Books

1. Stanley E. Manahan (2005), Environmental Chemistry, 8th Edition, CRC Press, ISBN: 978-15-667-0633-9.

 Clair N Sawyer, Perry L. McCarty and Gene F. Parkin (2002), Chemistry for Environmental Engineering and Science, McGraw-Hill Science.
 Gilbert M Master, Wendell P Ela, (2008), Environmental Engineering and Sceince, PHI Learning Pvt. Limited, ISBN:978-81-203-3691-9
 Howard S.Peavy, Donald R Rowe, George Tchobanoglous, (1985), Environmental Engineering, 5.McGraw Hill Publishing Co.,ISBN:978-0-710-0231-8
 C.S.Rao (2006), Environmental Pollution Control

Engineering, New Age International, ISBN:978-81-224-1835-4

Continuous Assessment Pattern

Internal Assessment (IA)	External Assessment (IA)	Total Marks
50	50	100

Name of The	Energ	gy,			
Course	Instru	Instrumentation,			
	Measurement &				
	Contr	ol			
Course Code	MEN	E60	01		
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

This subject is taught

1. To impart knowledge in the area of numerical integration and Calculus

2. Working principle knowledge of energy meter

3. Brief knowledge about various flow parameters

4.	Knowledge	about	handling	the	instruments	and
ho	w to operate	in file	d			

5. The role of instruments in different engineering applications.

Course Outcomes

At the end	of the course, students will be able to:	Unit IV: Gas Flow Metering 7 lecture hours	
CO1	Study the devices used to measure various form	is or energy.	
CO2	Understand the basic working principle of energy	SUME SuFluid Flow Metering	
CO3	Knowledge of various flow parameters	9 lecture hours	
CO4	Handling efficiency of instruments and problem	nClassification of fluid flow meters based on the	
CO5	Technical approach of the instruments in field	poperating principle- Differential Pressure	
		Flowmeters, Velocity Flow meters, Positive	

Text Books

1. Fundamentals of Aerodynamics (McGraw-Hill International Editions: Mechanical Engineering Series) by John David Anderson, Tata Mcgraw-Hill Education.

2. Electrical Measurements and Measuring Instruments by A.K Sawhney.

3. Flow measurement: practical guides for measurement and control by David W. Spitzer, Instrument Society of America.

Reference Books

1. Energy Management Handbook by Steve Doty, Wayne C. Turne

2. Handbook of Energy Engineering by Albert Thumann, D. Paul Mehta.

3. Guide to Energy Management by B. L. Capehart, Wayne C. Turner, William J. Kennedy

Course Content

Unit I: Electrical Energy Metering 9 lecture hours

Electrical energy meter, One –Phase energy meters, Three Phase Energy meters, working principle, various compensation, and Automatic meter reading systems.

Unit II: Thermal Energy Metering 10 lecture hours

Combustion analyser, Fuel efficiency monitor RTDs, Potentiometric & Paperless Recorders Pyrometer, Digital indicators, PID Controllers Thermistors, Heat Flux sensor. Flowmeters, Velocity Flow meters, Positive Displacement Flowmeters, Mass Flowmeters, Open Channel Flowmeters, Types:-Orifices, Venturies, Nozzles, Rotameters, Pitot Tubes, Calorimetrics, Turbine, Vortex, Electromagnetic, Doppler, Ultrasonic, Thermal, Coriolis.

10 lecture hours

Continuous Assessment Pattern

Unit III: Air Flow Metering

Air flow meters: vane (flap) type air flow meters and "hot wire" and "hot film" air mass

meters. Anemometer, types and its classification, working principle.

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Environmental				
Course	Audit & Impact				
	Assessment				
Course Code	MEN	E60	02		
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

The course is intended

1. To teach the basic concepts of environmental audit impact assessment and policy.

- 2. To provide a critical overview of the theory and practice of EIA as operated internationally to those students who need to understand EIA
- 3. Field visit and EIA study of different field cases
- 4. How to conduct project on sustainability of environment
- 5. To teach various conventions and laws involving EIA.

Course Outcomes

At the end of the course, students will be able to:

CO1	Define EIA, different types of EIAs and				
	benefits of EIA				
CO2	Describe the role of EIA in sustainable				
	development				
CO3	Skill development for project planning				
	process				
CO4	Take a decision-making process in				
	environmental clearance and public				
	relation				
CO5	Make a plan for International				
	environmental issues and sustainable				
	development				

Text Books

1. Fundamentals of Aerodynamics (McGraw-Hill International Editions: Mechanical Engineering Series) by John David Anderson, Tata Mcgraw-Hill Education.

2. Electrical Measurements and Measuring Instruments by A.K Sawhney.

3. Flow measurement: practical guides for measurement and control by David W. Spitzer, Instrument Society of America.

Reference Books

1. Energy Management Handbook by Steve Doty, Wayne C. Turne

2. Handbook of Energy Engineering by Albert Thumann, D. Paul Mehta.

3. Guide to Energy Management by B. L. Capehart, Wayne C. Turner, William J. Kennedy

Course Content

Unit I: General Aspects 9 lecture hours Definition of Environmental Audit (EA). Types of environmental audits. Policies and legislation relating to environmental audits. Conducting an audit. Audit reports. Relationship between an environmental audit and an EIA. The benefits of EA. Guidelines for EAs (General Principles, Criteria, evidence and findings, Reporting). EA objectives, roles and responsibility. EA as environmental management tool for small scale and large scale enterprises. EA and sustainable development. Responsibilities in conducting EAs. The benefits of database in EAs. Future Direction of EA

Unit II: Environmental Impact Assessment-1 10 lecture hours

Economic development, population growth Environmental Impact assessment. The history and aims of EIA. EIA administration and prac environmental protection are complimentar development.

EIA in project planning and management. The costs and benefits of EIA. Introduction to the key principles and elements of EIA, core values (sustainability, integrity, utility). EIA guiding principles (e.g. participation, transparency, flexibility, etc). Introduction to the main features of the EIA system. Role of public participation stages that follow EIA Understanding of the strengths and limitations of EIA.

Unit IV: Environmental Policy-1 7 lecture hours

Overview of the legislative and institutional characteristics essential for the support of a national EIA system. Factors that help to establish an effective national EIA system. Steps involved in establishing and modifying a national EIA system.

UnitV:Environmentalpolicy-29 lecture hours

The level of public involvement in EIA and the relative advantages and disadvantages they offer. Techniques for communicating with the public. Consensus building and dispute resolution mechanisms. International environmental issues and sustainable development plans. International environmental laws and policies of relevance to EIA -Treaties, conventions etc.

5.	Continuous Assessment Pattern
----	--------------------------------------

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Design of Water				
Course	and Wastewater				
	Treatment Systems				
Course Code	MENE6003				
Prerequisite	site				
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

Brief knowledge to the student about

- 1. various water treatment processes and their designing criteria
- 2. implementation of technologies in wastewater treatment in order to make water safe to drink
- 3. to teach various options available in treatment of waste water for recycle and safe disposal
- 4. design of bioreactors for degradation of nutrients
- 5. application of wastewater treatment in field by research projects

Course Outcomes

At the end of the course, the student will be able to

CO1	Understand various unit operations					
	involved in water treatment and design					
	various water treatment units required					
CO2	Planning and siting of water treatment					
	plant					
CO3	Effect of wastes disposal to water					
CO4	Design of physical units for waste					
	treatment.					

C05 Design of bioreactors for biodegradation of wastewater treatment

Text Books

1. Metcalf and Eddy, M.C., "Wastewater Engineering: Treatment, Disposal and Reuse", Tata McGraw-Hill Publications, New Delhi, 2003 2. Benefield, L.D. Judkins J.F. and Weand B.L. (1982). Process Chemistry for Water and Wastewater Treatment, End ed., Prentice-Hall, Inc, New Jersev, USA 3. Benefield L.D. and Randall, C.W. (1980). Biological process design for wastewater treatment. Prentice-Hall. N.J. 4. Pelczar, M.J., Chan ECS and Krieg NR, Microbiology, Tata McGraw Hill Edition, New Delhi, India. 5. Talaro K., Talaro A CassidaPelzar and Reid, (1993) Foundations in Microbiology, W.C. Brown Publishers.

6. Sawyer, McCarty, and Parkin, 2003. Chemistry for Environmental Engineers, 5th" McGraw Hill

Reference Books

McGraw-Hill Education: New York, Chicago, San Francisco, Athens, London, Madrid, Mexico City, Milan, New Delhi, Singapore, Sydney, Toronto

Course Content

Unit I: Definitions and Concepts 9 lecture hours

Water sources, Philosophy of water treatment, Review of water quality characteristics and potable water standards, Estimation of water quantity, Theory and design of Conventional Unit Operations used in Water Treatment: Screening, Sedimentation, Floatation, coagulation, flocculation, filtration, softening and disinfection processes.

Unit II: Theory and Design of Advanced Unit Operations used in Water Treatment 10 lecture hours

Membrane processes, Ion Exchange, Aeration/stripping, Precipitation, Adsorption, Oxidation-reduction and advanced oxidation processes; Water Treatment Plant Design; Selection of raw water source, Planning and siting

of water treatment plant, Chemical requirement and residuals management.

Unit III: Philosophy of Wastewater Treatment 10 lecture hours

Philosophy of wastewater Treatment, Review of Wastewater quality parameters and discharge standards for aquatic and land disposal, Estimation of wastewater quantity; Wastewater Collection; Design of sewers and sewerage systems

Unit IV: Wastewater Disposal 7 lecture hours

Disposal to inland waters such as lakes reservoirs, rivers and streams, disposal to sea, disposal on Land. Wastewater treatment; Preliminary treatment, Bar-rack, Screens, Grit chamber, Equalization tank, Primary sedimentation

Unit V: Secondary treatments 9 lecture hours

Aerobic processes, Anaerobic processes. Tertiary treatment, Nutrient removal, Residual management, Design; Planning and setting of Wastewater treatment plant, Chemical requirements and material balance.

6. Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Environmental				
Course	Quality Monitoring				
Course Code	MENE6004				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

The course is intended to teach

- 1. The basics concept of air pollution
- 2. Instruments of monitoring of air quality
- 3. Technology required controlling air pollution
- 4. Effect of air pollution on environment
- 5. How to apply study for clean air development

Course Outcomes

At the end of the course, the student will be able to

CO1	Brief knowledge and experience to					
	identify the type the source of pollutant.					
CO2	Monitoring of air quality by different					
	instruments					
CO3	Control of air pollution by using different					
	ECS.					
CO4	Field project on remediation of air quality					
C05	Use of different methods for air quality					
	improvement					

Text Books

1. M.N.Rao& H V N Rao (2000), Air pollution, Tata McGraw Hill Publishing Ltd

Reference Books

1. Air Pollution Control Technology Handbook, Second Edition" by Karl B Schnelle Jr and Russell F Dunn

Course Content

Unit I: Air Pollution & its Classification 9 lecture hours

Definition, Air Quality, Classification of Air Pollutants.

Unit II: Effects of Air pollution 10 lecture hours

Effects of Air pollution on human, plant and animal, Air Pollution Episodes.

Unit III: Air Pollution Monitoring 10 lecture hours

Collection of Gaseous Air Pollutants, Collection of Particulate Pollutants, Measurement of SO₂, Nox, CO, Oxidants and Ozone.

Unit IV: Meteorology & Dispersion of pollutants 7 lecture hours

Wind Circulation, Lapse Rate, Stability Conditions, Maximum Mixing Depths, Plume Rise and dispersion.

Unit V: Emission Control Systems 9 lecture hours

Air pollution control technologies for particulates and gaseous contaminants, Gravity settlers, Electrostatic precipitators, Bag Filters, Scrubbers, Cyclone, control for moving sources.

Continuous Assessment Pattern

Internal Assessment	Mid Term	End Term	Total Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Energy, Environment and Climate Change				
Course Code	MENE6019				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. To impart the knowledge of modern energy and climate change

- 2. Lays the foundation for energy conservation by analyzing various schemes, which is of prime importance in the modern energy crisis
- 3. To conduct energy audit and hence suggest means to improve energy management
- 4. To understand the importance of economic dispatch and unit commitment problem
- 5. This subject is taught to impart knowledge in environmental degradation due to the technical advancement.

Course Outcomes

Student will get the knowledge of:

CO1	Current emerging technologies and conduct energy audit and hence suggest means to improve energy management			
CO2	India's stand in terms of various technologies			
CO3	Environmental impacts due to energy production			
CO4	Measures taken to control the global environmental changes			
C05	Understand the importance of economic dispatch and unit commitment problem			

Text Books

1. Adrian Bejan, Peter Vadasz, Detlev G. Kroger (1999), Kluwer Academic Publishers.

2.A K De (2001), Environmental Concerns, New Age Publications Pvt Ltd.

Reference Books

1. O.L. Elgard (1987), Electrical Energy System Theory – An Introduction, Tata McGraw-Hill Publication.

2. Robert H.MillerandJamesH.MalinOwaki(1987), PowerSystemOperation,3rdEdition,Tata McGraw-Hill.

3.P.S.R. Murthy(1994), Power System Operation and Control, Tata McGraw-Hill Publication

COURSE CONTENT

Unit I: Energy Sources

9 lecture hours

Definition, Modules, Forms of Energy, Power, Coal, Oil, Natural gas, Nuclear, Geothermal, R

Energy, Bio-Energy, Hydro, Tidal, Ocean , Nuclear Energy and Courseand FusRisk AssessmentEnergy.Courseand Disaster

Unit II: Energy Scenario 10 lecture hours

Global Energy Scenario: Energy consumption pattern in various sectors, Impact on economy, India's Energy Scenario, Urban and Rural energy consumption patterns, Impact of Energy on Development, Energy Infra structure in India

Unit III: Impact of Energy Projects on

Environment 10 lecture hours

Overview of global environmental problems, Environmental degradation due to Energy production and use, Pollution due to thermal power stations, Environmental aspects of Wind Energy Farms, Environmental aspects of Nuclear power generation, Nuclear waste disposal, Impact of Hydro power generation on Ecology and Environment, Guidelines for Environmental impact assessment (EIA) of Energy Projects

Unit IV: Climate Change Concerns 7 lecture hours

Green House Gas Emissions, Depletion of Ozone layer, Global Warming, Climate Change Concerns, Climate Change in India, Kyoto protocol, Clean Development Mechanism [CDM], Carbon Fund Concept of Carbon credit

Unit V: Climate Change Policy Issues 9 lecture hours

Impact of Climate Change on Glaciers, Rivers and Water Resources, Climate Change Policy Issues in Himalayas, International Status of Climate Change Policies, Indian Action Plan on Climate Change

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTF)	End Term Test (FTF)	Total Marks
20	<u>30</u>	50	100

Course	and Disaster				
	Management				
Course Code	MENE6039				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

To enable a comprehensive understanding of:

- 1. To provide knowledge related to the broad field of environmental risk assessment
- 2. Steps involved in the risk assessment process, including statistical characterization of observed data
- 3. Knowledge about tools that can be used in defining environmental risks, particularly as related to human health.
- 4. To develop practical skills in disaster mitigation, planning, response and post disaster rehabilitation, particularly related to health and public health.
- 5. To provide knowledge related to cyber and important legal provision for sustainable development

Course Outcomes

At the end of the course, students will be able to:

CO1	To gain knowledge related to the broad field of environn
CO2	Statistical characterization of field data
CO3	Use of tools for environmental risks, particularly as relat
CO4	To apply biotechnological concept and tools for green pr
CO5	Gain knowledge on eco-sustainable waste management e

Text Books

1. Rao V. Kolluru,"Environmental Strategicshand book", Mc-graw Hill Inc., New York, 1994.

Reference Books

- 1. BrockNeely.W&BlanG.E,"EnvironmentalE xposurefromchemicals,VolumeII,ChcPressI unc., Florida,1989.
- 2. WoodsenW.E., "Humanfactorsdesignhandb ook-

informationandguidelinesfordesigntosystem

s, facilities, equipment and product for human use", McGraw Hill, New York, 1981.

Course Content

Unit I: Risk Assessment 9 lecture hours

Introduction- Methodologies and Guidelines: Principles, Code of practice – Appointment of personnel and their responsibilities-Emergency plans: onsite and offsite. Steps in risk assessment: Identification of risk. Extent of risk and disaster. Risk-Based Decisions for Corrective Action -Timely updation. Developing a Site Conceptual Model -Focusing on Risk-Based Decisions in Corrective Action -Risk Assessment: Dose Response and Target Calculations-Experiences Level in Environmental Risk Assessment.

Unit II: Occupational Health and Safety 10 lecture hours

Occupational risk analysis survey and health evaluation, behavioral studies, occupational injury, disease reporting, investigation: monitoring and control of environmental hazards. Occupationally induced illness, nonoccupational illness, and discomfort at work, the epidemiological approach, occupational health practice: investigation, monitoring, control, examples of occupational health hazards: nasal cancer, asbestosis, bronchitis, heart disease. Occupational health services.

UnitIII:MethodologiesandManagementTechniques10 lecture hours

Risk assessment techniques for accidental release of toxic and inflammable materials, hazard analysis, potential risk, conceivable release mechanisms and release rates, fire and explosion hazards and simplified models for their assessment. Operations Management(OM),Risk Assessment and Disaster Response, Quantification Techniques, NGO Management, SWOT Analysis based on Design &Formulation Strategies, Insurance & Risk Management.

Unit IV: Disaster Management7 lecture hours

Introduction & Dimensions of Natural & Anthropogenic Disasters, Principles/Components of Disaster Management, Organizational Structure for Disaster Management, Disaster Management Schemes/SOPs, Natural Disasters and Mitigation Efforts, Flood Control, Drought Management, Cyclones, Avalanches, Mangroves, Land Use Planning, Inter-Linking of Rivers, Role of Union/States, Role of Armed Forces/Other Agencies in Disasters, Role of Financial Institutions in Mitigation Effort, Group Concept of Team Building, Dynamics, Motivation Theories and Applications, School Awareness and Safety Programs, Psychological and Social Dimensions in Disasters, Trauma and Stress. Emotional Intelligence, Electronic Warning Systems. Use of Information systems, Unit V: **Experiences and case studies** 9 lecture hours Recent Trends in Disaster Information Provider, GeoInformatics in Disaster Studies, Cyber Terrorism, Remote Sensing &GIS Technology, Laser Scanning Applications in Disaster Management, Statistical Seismology, Quick Reconstruction Technologies, Role of Media in Disasters, Management of Epidemics, Bio-Terrorism, Forecasting / Management of Casualties. Important Statutes/ Legal Provisions, IEDs/Bomb Threat Planning, NBC Threat and

Continuous Assessment Pattern

Safety Measures, Forest Fires.

Internal Assessment (IA)	Mid Term Test	End Term Test	Total Marks
	(MTE)	(ETE)	
20	30	50	100

Name of The	Seminar				
Course					
Course Code MENE6005					
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	0	1

Course Objectives

To enable a comprehensive understanding of:

 To prepare students to compete for a successful career in Energy & Environmental Engineering profession through global education standards.
 To enable the students to aptly apply their acquired knowledge in basic sciences and mathematics in solving Energy & Environmental Engineering problems.

3. To produce skillful graduates to analyze, design and develop a system/component/ process for the required needs under the realistic constraints.
4. To train the students to approach ethically any multidisciplinary engineering challenges with economic, environmental and social contexts
5. To create an awareness among the students about

the need for lifelong learning to succeed in their professional career

Course Outcomes

At the end of the course, students will be able to:

Unit IV: Assessment

hours

Short review submitted each week (you may work in pairs)

7

lecture

• Longer review of the paper you presented

Unit V: Key skills 9 lecture hours

Summaria

- Summarise
- Evaluate
- Identify the important questions
- Understand the context

	Continuous Assossment Pattern		
CO1	To demonstrate the ability to identify, formulate and solve engineering problems.		
CO2	To demonstrate the ability to design and conduct experiments tennalyze and interpret stata.	Total	
CO3	The ability to visualize and work on laboratory and multi-Assessment tasksAssessment	Marks	
CO4	To demonstrate the skills to use modern engineering tools, software's and equipment to an	alyze problem	ıs.
CO5	To demonstrate the knowledge of professional, ethical responsibilities and in both verbal a	and written for	m.

COURSE CONTENT

Unit	I:	Student	presentations				
9 lecture	e hours	5					
 Each student will present one paper during the term 							
Unit	II	: Class	evaluations				
	1() lecture hours					
	• Each week each student is asked to						
		write a short evalu	uation of one of the				

papers being presented

Unit III: Class Discussion

hours

10 lecture

 Discuss the papers – expose the flaws, analyse the writing, what was the impact?

Name of The	Energy,				
Course	Instrumentation,				
	measurement &				
	Contr	ol L	ab		
Course Code	MENE6006				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	P	С
		0	0	2	1

Course Objectives

This subject is taught

1. To impart knowledge in the area of numerical integration and Calculus

2. Working principle knowledge of energy meter

3. Brief knowledge about various flow parameters

4. Knowledge about handling the instruments and how to operate in filed

5. The role of instruments in different engineering applications.

Course Outcomes

At the end of the course, students will be able to:

CO1	Study the devices used to measure various forms of energy.
CO2	Understand the basic working principle of energy measuring devices
CO3	Knowledge of various flow parameters
CO4	Handling efficiency of instruments and problem solving
CO5	Technical approach of the instruments in field condition

Text Books

1. Fundamentals of Aerodynamics (McGraw-Hill International Editions: Mechanical Engineering Series) by John David Anderson, Tata Mcgraw-Hill Education.

2. Electrical Measurements and Measuring Instruments by A.K Sawhney.

3. Flow measurement: practical guides for measurement and control by David W. Spitzer, Instrument Society of America.

Reference Books

1. Energy Management Handbook by Steve Doty, Wayne C. Turne

2. Handbook of Energy Engineering by Albert Thumann, D. Paul Mehta.

3. Guide to Energy Management by B. L. Capehart, Wayne C. Turner, William J. Kennedy

COURSE CONTENT

1. Determination of electrical Energy in One –

Phase & Three Phase energy meters,

- 2. Fuel efficiency by Flue gas analyzer,
- 3. Fuel efficiency Thermometers,
- 4. Determine the difference in potential by Potentiometric
- 5. Measurement of temperature and converts into current signals by Temperature Transmitters
- 6. Determination of intensity of light by Optical Pyrometer
- 7. Measurement of air flow in Air flow meters
- 8. Determination of speed of airflow in Anemometer
- 9. Measurement of volumetric flow rate of fluid by Rotameter
- 10. Determination fluid flow velocity by Pitot Tube
- 11. Measurement of mass flow rate by Mass Flowmeters
- 12. Determination of velocity of water by Open Channel Flowmeters

Internal Assessment	External Assessment	Total Marks
(IA)	(IA)	
50	50	100

Name of The	Project (Phase I)				
Course					
Course Code	MENE7002				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	0	5

Course Objectives

- 1. To provide a comprehensive understanding of the concepts and methodologies for project identification, project preparation, project evaluation and project financing
- 2. To make the students understand the project cycle and their wide socio-economic and environmental impacts
- 3. To make the students learn how to evaluate a project in view of global concern about sustainable development of energy and environment projects
- 4. To make students to develop lab scaled experimental setup to addressed environmental problems
- 5. To help students to carryout case studies on various environmental problems

Course Outcomes

At the end of the course, students will be able to:

Name of The	Energy Efficient				
Course	Buildings				
Course Code	MENE6029				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

The student will be exposed

- 1. Importance of Energy- Efficient Buildings within the context of Energy issues in the 21st century.
- 2. The concept of Energy efficiency, Renewable sources of energy and their effective adaptation in green buildings
- 3. Understanding of Building Form and Fabric, Infiltration, ventilation, Lighting, cooling and water conservation.
- 4. The importance of Environmental Management as well as Environmental Impact Assessment methods in Energy efficient buildings.
- 5. To help students understanding energy flow and its conservation.

Course Outcomes

At the end of the course, students will be able to:

CO1	Identify various energy and environmental features of a project							
CO2	Small projects for environmental development and sustainability development and sustainability of the stand why buildings should be made							
CO3	Develop a p	roject with suitab	ble technology	, and er	vitonm	energy efficient. ental impacts		
CO4	Solve comp	lex environmenta	l problems by	differen	t tools a	nd techniques such as Passive Solar heating and		
CO5	Carry out tee	chno-economic ev	aluation of end	ergy proj	ects wit	henvironmentalicantiderations		
					CO3	Ground source heat pumps, and their adaption to		
						green building concepts.		
					CO4	Understand the concepts of Site and Climate,		
Conti	nuous Assessn	nent Pattern				Building Form, Building Fabric, Infiltration		
						and ventilation, Lighting, Heating, Cooling,		
	Internal	External	Total			Energy Management and water conservation.		
A	Assessment	Assessment	Marks		CO5	Environmental Impact Assessment study for		
	(IA)	(IA)				Energy Efficient Buildings. They shall be		
	50	50	100			equipped with the associated cutting-edge		
				J		management strategies.		

Text Books

1. William T. Meyer., Energy Economics and Building Design., New York: McGraw-Hill, Inc

Reference Books

1. Public Technology, Inc. (1996). Sustainable Building Technical Manual: Green Building Design, Construction, and Operations. Public Technology, Inc., Washington, DC. 2. Sim Van Der Ryn, Stuart Cowan, "Ecological Design", Island Press (1996). 3. Dianna Lopez Barnett, William D. Browning,"A Primer on Sustainable Building", Rocky Mountain Green Development Services,. 4. The HOK Guidebook to Sustainable Design, Sara Mendler and William Odell, John Wiley. 5. David A. Gottfried, Sustainable Building Technical Manual., Public Technology Inc 6. Richard D. Rush, . Building System Integration Handbook., New York: John Wiley & Sons 7. Ben Farmer & HentieLouw., Companion to Contemporary Architectural Thought, London & New York: Routledge 8. PeterNoever (ed)., Architecture in Transition: Between Deconstruction and New Modernism., Munich: Prestel.

Course Content

Unit I: Green Buildings, Energy and Environment 9 hours

Green Buildings within the Indian Context, Ty Buildings, Reducing energy consumption, Low

Unit II: Renewable Energy, Site and Climate 10 hours

Renewable Energy sources that can be used in Green Buildings – Solar energy, Passive Solar Heating, Passive Solar collection, Wind and other renewables. A passive solar strategy, Photovoltaics, Climate and Energy, Macro and Microclimate. Indian Examples.

Unit III: Building Form and Fabric 10 hours

Building Form – Surface area and Fabric Heat Loss, utilizing natural energy, Internal Planning, Grouping of buildings. Building Fabrics-Windows and doors, Floors, Walls, Masonry, Ecological walling systems, Thermal Properties of construction material.

Unit IV: Infiltration, Ventilation, Lighting, Cooling and Water Conservation 7 hours

Infiltration and ventilation, Natural ventilation in commercial buildings, passive cooling, modeling air flow and ventilation, Concepts of daylight factors and day lighting, daylight assessment, artificial lighting, New light sources. Cooling buildings, passive cooling, and mechanical cooling. Water conservation- taps, toilets and urinals, novel systems, collection and utilization of rain water.

Unit V:Energy Awareness 9 hours

Energy monitoring awareness, energy Building Environmental consumption, Assessment - environmental criteria - assessment methods - assessment tools (e.g. LEED). Ecohomes, Sustainable architecture and urban design _ principles of environmental architecture. Benefits of green buildings -Energy Conservation Building code - NBC

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Solid Waste				
Course	Management				
Course Code	MENE6032				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

The student will be exposed

4. To gain insight into collection, transfer and transport of municipal solid waste

- 5. Understand the design and operation of municipal solid waste landfill
- 6. Understand the design and operation of resource recovery facility
- 7. Understand the design and operation of waste to energy facility
- 8. Understand the effect of waste management on environmental sustainability

Course Outcomes

Legal and Organizational foundation:
Definition of solid waste-waste generation-
major legislation, monitoring responsibilities,
sources and types of solid waste – sampling
and characterization – Determination of
composition of MSW-storage and handling of
solid waste – Future changes in waste
composition.

Regulatory

Unit II: 10 hours

At the e	end of the course, students will be able to:	Waste collection systems, analysis of collection system–alternative techniques for
CO1	Understand solid waste and its composition	collection system. Need for transfer operation,
CO2	Understand method solid waste collection and	transport means and methods, transfer station transportation
CO3	Understand various processes involved in solid	waste collection, segregation and transportation.
CO4	Design solid waste disposal facility.	Unit III:Process of Solid Waste and Energy
CO5	Understand the identification of hazardous w	astesovery 10 hours
Text Bo 1. Ge SolidW HillPub	ooks orgeTechobanoglous et al," Integrated aste Management ", McGraw- lication, 1993	Unit operations for separation and processing, Materials Recovery facilities, Waste transformation through combustion and aerobic composting, anaerobic methods for materials recovery and treatment – Energy recovery – Incinerators
Referei	nce Books	Unit IV: Disposal of Solid Wastes 7 hours
 1. 2. 3. 4. 	HandbookofSolidWasteManagementby <u>Fra</u> <u>nkKreith,GeorgeTchobanoglous</u> ,McGrawH ill Publication Bagchi, A., Design,Construction, andMonitoringofLandfills,(2ndEd). WileyInterscience, 1994.ISBN: 0-471- 30681-9. Sharma,H.D.,andLewis,S.P.,WasteContain mentSystems,WasteStabilization,andLandf ills: DesignandEvaluation.Wiley Interscience,1994.ISBN: 0471575364. GeorgeTechoban oglous et al," IntegratedSolidW asteManagement	Land farming, deep well injections. Landfills: Design and operation including: site selection, Geo- environmentalinvestigations, engineeredsites, lin ersandcovers, leachate control and treatment, gas recovery and control, including utilization of recovered gas (energy), and landfill monitoring and reclamation,, Requirements and technical solution, designated was telandfill remediation–Integrated was te management facilities. TCLP tests and leachate studies. Economics of the on-site v/s offsite was te management options. Natural attenuation process and its mechanisms.
	", McGraw HillPublication	Unit V: Household Hazardous Waste
	1993	Management 9 hours
5.	CharlesA.Wentz; "HazardousWaste Management ", McGraw-Hill Publication, 1995.	Design practices of solid wastes. Definition and identification of hazardous wastes-sources and characteristics – hazardous wastes in Municipal Waste – Hazardous waste regulations
Course	Content	minimization of Hazardous Waste-compatibility, handling and storage of hazardous waste-

Unit I: 9 hours

collection

and

transport.

requirements for identification, characterization and disposal of hazardous, nonhazardous waste.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Remote Sensing &			&	
Course	GIS Applications				
Course Code	MENE6037				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

This subject explains the basic concepts of

- 1. Basic concept of Remote Sensing
- 2. Knowledge of Geographic Information Systems with its applications.
- 3. History of development of GIS
- 4. Concepts of digital image processing
- 5. Applications of GIS and remote sensing

Course Outcomes

At the end of the course, students will be able to:

Land	Resources
Assessment, Clarendon Press, Ox	ford.

Reference Books

- 1. T.M.Lilles and R.W.Kiefer (1999),Remote Sensing and Image Interpretation, JohnWiley& Sons, New York.
- 2. KeithC. Clarke,BradO.Parks, Michael P.Crane (2005),Geographic Information Systems and Environmental Modeling, Prentice-Hall of India.

Course Content

Basic	concept	s of Remote	Sensing
Introdu	iction	to remote	sensing
Electro	magnetic	radiation - Cha	aracteristic
real re	emote se	ensing systems-	–Plat form
Satellit	e-Indian	remote sensi	ing satellit
Sensor	s		0
Unit	II:	Imag	e Proces
		e	
10 hou	rs		
10 hou Image	process	sing - Elemer	nts of im
10 hou Image interpret	rs process etation	sing - Elemer –Concepts of	nts of im digital im
10 hou Image interproprocess	rs process etation sing	sing - Elemer –Concepts of	nts of im digital im
10 hou Image interproprocess	rs process etation sing	sing - Elemer –Concepts of	nts of im digital im
10 hou Image interpro process Unit	rs process etation sing III:	sing - Elemer -Concepts of Basic concep	nts of im digital im ots of
10 hou Image interpro process Unit 10 hou	rs process etation sing III: urs	sing - Elemer –Concepts of Basic concep	nts of im digital im ots of
10 hou Image interpro process Unit 10 hou Basic o	rs process etation sing III: rs concepts	sing - Elemer –Concepts of Basic concept of GIS – Introdu	nts of im digital im ots of action to GI
10 hou Image interproprocess Unit 10 hou Basic of History	rs process etation sing III: urs concepts (7 of deve	sing - Elemer -Concepts of Basic concept of GIS – Introdu	nts of im digital im ots of action to GI - Elements

		Umt	1.4.	wap	Overlay
CO1	Basic remote sensing concepts and its character	erist 7chours		-	•
CO2	GIS and its requirements				
CO3	Data management with GIS	Map over	ay-Vector	and raster da	ita model-
CO4	Carry out analysis and interpretation of GIS re	sults	nt- Develor	a storage and	overlay –
CO5	Modelling through GIS	Overlay or	peration	princing of finap	
Text Books	. Patel and Surendra Singh (1999),	Unit V: Sensing	Applicatio	ons of GIS a	and Remote 9 hours
Ren	note Sensing Principles and	Applicatio	ns of GIS	and remote	sensing in

- Applications, Scientific Publisher, Jodpur. A. Burrough(2000), Principle of Application
- 2. A. Burrough(2000), Principle of Geographical Information Systems for

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Continuous Assessment Pattern

Name of The	Project (Phase II)			()	
Course					
Course Code	MENE8001				
Prerequisite					
Corequisite					
Antirequisite					
		L	Τ	Р	С
		0	0	0	15

Course Objectives

1. To provide a comprehensive understanding of the concepts and methodologies for project identification, project preparation, project evaluation and project financing

2. To make the student understand the project cycle and their wide socio-economic and environmental impacts

3. To make the student learn how to evaluate a project in view of global concern about sustainable development of energy and environment projects

Course Outcomes

After taking this course the student will be able to 1. Identification various energy and environmental features of a project

2. Laboratory and field based study

3. Small projects for environmental development and sustainability

4. Develop a project with suitable technology, and environmental impacts

5. Solve complex environmental problems by different tools and techniques

different tools and techniques

6. Carryout techno-economic evaluation of energy projects with environmental considerations

Continuous Assessment Pattern

Internal Assessment (IA)	External Assessment (IA)	Total Marks
50	50	100

PROGRAMME ELECTIVES

Name of The	Solar Energy				
Course	technology				
Course Code	MENE6013				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. To impart the knowledge in the area of solar energy
- 2. Solar energy and the effective utilization to improve energy management
- 3. To understand the importance of economic dispatch and unit commitment problem
- 4. Solar energy using different technologies.
- 5. Design of liquid and air heaters

Course Outcomes

At the end of the course, students will be able to:

CO1	Atmospheric attenuation
CO2	Fixing of Solar energy
CO3	Application of energy into daily life activities
CO4	Find out heat removal rate
CO5	Design of active systems for liquid and air heaters

Text Books

1. DuffieJ.A and Beckman, W.A., "Solar Engineering of Thermal Processes", 2nd Edition, John Wiley& Sons Inc., Newyork, -1991

2. G.N. Tiwari. "Solar Energy: Fundamentals, Design, Modelling and Applications", Third Reprint, Narosa Publishing House, New Delhi-2006

Reference Books

1. Edward Anderson, "Fundamentals for Solar Energy Conversion", Addison Wesley pubCO.,1983.

2. FankKreith, Jan F.Kreider,: Principles of solar Engg", 1978.

3. Koushika M.D," Solar Energy Principles and Applications", IBT publications and distributors, 1988.

4. Kaushik S.C, Tiwari G.N and Nayak J.K, "Thermal control in passive solar buildings" .IBT Publishers & Distributors, 1988.

Course Content

Unit I: Solar Radiation 9 hours

Source of radiation – Sun earth relationshipextra-terrestrial radiation.– Atmospheric attenuation – Terrestrial radiation-radiation on a horizontal surfaces and inclined planes relations between horizontal radiation and inclined surfaces – relations between monthly, daily and hourly radiation and components of the radiations– solar charts – Critical radiation-Measurement of global, direct and diffuse solar radiation- pyrohelio meter, pyrano meter, pyro geo meter, net pyradiometer-sunshine recorder .

Unit II: Solar Collectors – Flat Plate Collectors 10 hours

Design considerations – classification- Flat plate collectors- air heating collectors liquid heating –Temperature distributions- Heat removal rate- Useful energy gain – Losses in the collectors-for efficiency of flat plate collectors – selective surfaces – tubular solar energy collectors analysis of concentric tube collector – testing of flat plate collectors.

Unit III: Concentric Solar Collectors and Thermal Application 10 hours

Concentric collectors-Limits to concentration – concentrator mounting – tracking mechanism performance analysis focusing solar concentrators: Heliostats. Solar powered absorption A/C system (Ammonia/water) solar water pump, solar chimney, solar drier, solar dehumidifier, solar still, solar cooker.

Unit IV: Simulation and Energy Storage 7 hours

Simulation in Solar Process Design-TRANSYS- Design of active systems- f chart methods for liquid and air heaters- phi bar, of chart method - sensible, latent heat and thermochemical storage-pebble bed etc. materials for phase change- Glauber'ssaltorganic compounds -solar ponds.

Unit V: Solar PV System 9 hours

Photo- voltaic cell – characteristics-maximum power- tracking-cell arrays-power electric circuits for output of solar panels--invertersbatteries-charge regulators, Construction concepts.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Hydrogen Fuel				
Course	Cells				
Course Code	MENE6015				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

The student will be exposed

- 1. Importance of hydrogen as a future energy carrier
- 2. How to storage compressed gas
- 3. Fuel cell classification
- 4. Different parameters of fuel cell
- 5. Design of fuel cell

Course Outcomes

Student will get the knowledge of:

		Unit III:
CO1	Knowledge about hydrogen energy	10 hours
CO2	Able to get techniques to store compressed gas	Fuel cells classification – operating
CO3	Knowledge about various types of fuel cell	temperatures, state of electrolyte, type of fuel,
CO4	Find out the energy transferred and effect of va	rious parmeters, solar chimney, solar drier, solar
CO5	Design of fuel cell	dehumidifier, solar still, solar cooker.
Text Books Reference B	 Aldo V. da Rosa(2005),Fundamentals of Renewable Energy Processes, Elsevier Academic Press. Wolf Vielstich, Arnold Lammand H.A. Gastieger(2003), Handbook of Fuel Cells Vol 1-4, John Wiley. 	Unit IV:7 hoursPolymer Electrolyte Membrane Fuel Cells(PEMFC) – Alkaline Fuel Cells (AFC)-Phosphoric Acid Fuel Cells (PAFC)- DirectMethanol Fuel Cells (DMFC)-Molten CarbonateFuel Cells (MCFC)-Solid Oxide Fuel Cells(SOFC)Unit V:9 hoursStationary systems, automotive systems,portable fuel cells, small (less than 1 kW) fuelcells

 GregorHogenEd. (2003), Fuel Cell Technology Handbook, CRC Press.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End ' (ETE
20	30	

COURSE CONTENT

Unit I:

9 hours

Importance of hydrogen as a future energy carrier –Thermodynamic and thermo physical properties-Chemical production of hydrogen– Steam reforming, thermal decomposition etc. -Purification - Desulfurization, removal of CO₂, CO, etc.- Electrolytic hydrogen production– Electrolyzer configurations -Thermolytic hydrogen production – Direct dissociation of water, chemical dissociation of water, photolytic hydrogen production, photobiological hydrogen production

Unit II:

10 hours

Compressed gas storage-Cryogenic liquid storage-Solid state storage-Adsorption and chemical compounds, Metal hydrides, hydride heat pumps and compressors

Name of The	Energy				
Course	Environment and			l	
	Climate Change				
Course Code	MENE6019				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	P	C
		3	0	0	3

Course Objectives

The student will be exposed

1. Various forms of energy

2. Global energy scenarios and its consumption pattern		Global Energy Scenario: Energy consumption pattern in various sectors, Impact on economy,		
3.	3. Environmental problems due to energy consumption India's Energy Scenario, Urban and Rural energy consumption patterns, Impact of Energy on			
4. CMD to address various environmental problems Development, Energy Infra structure		Development, Energy Infra structure in India		
5.	Various national and international	Unit III:		
policies related to environmental and		10 hours		
sustainably		Overview of global environmental problems,		
	5	Environmental degradation due to Energy		
Course Ou	tcomes	production and use, Pollution due to thermal		
Course ou	l ast the large view of	power stations, Environmental aspects of Wind		
Student will	get the knowledge of:	Energy Farms ,Environmental aspects of		
<u>CO1</u>		Nuclear power generation, Nuclear waste		
COI	Current emerging technologies	disposal, Impact of Hydro power generation on		
CO2	India's stand in terms of various technologies	Ecology and Environment, Guidelines for		
CO3	Environmental impacts due to energy producti	First Environmental impact assessment (EIA) of		
CO4	Measures taken to control the global environm	Energy Projects		
CO5	Able to play role in policy making process	Unit IV:		
		/ nours		
		lavor Clobal Warming Climato Change		
Text Books	3	Concorns Climate Change in India Kyoto		
		protocol Clean Development Machanism		
1. Adrian	Bejan, Peter Vadasz, Detlev G. Kroger	[CDM] Carbon Fund Concept of Carbon credit		
(1999), Kluwer Academic Publishers.		Lu; t V.		
2. A K De (2001), Environmental Concerns, New		7 HUUIS		
Age Pu	blications Pvt Ltd.	and Water Descurres, Climate Change Delicy		
		Louis in Himpleyes, International Status of		
		Climate Change Deliging Indian Action Discussion		
D ()		Chinate Change Policies, Indian Action Plan on		

Reference Books

- Wolf Vielstich, Arnold Lammand H.A. Gastieger(2003), Handbook of Fuel Cells Vol 1-4, John Wiley.
- 2. GregorHogenEd. (2003), Fuel Cell Technology Handbook, CRC Press.

COURSE CONTENT

Unit I:
9 hours
Definition, Modules, Forms of Energy, Power,
Origin of Fossil fuels, World and Indian
Resources of Coal, Oil, Natural gas, Nuclear,
Geothermal, Renewable Energy potential : Solar
Energy, Wind Energy, Bio-Energy, Hydro,
Tidal, Ocean, Nuclear Energy, Nuclear Fission
and Fusion, Geothermal Energy
Unit II:

10 hours

Continuous Assessment Pattern

Climate Change

Internal Assessment	Mid Term	End Term	Total Marks
(IA)	Test (MTE)	Test (ETE)	
20	30	50	100

Name of The	Bio-Energy						
Course	Technologies						
Course Code	MENE6027						
Prerequisite							
Corequisite							
Antirequisite							
		L	Т	Р	С		
		3	0	0	3		

Course Objectives

Student will learn about

- 1. Bio-energy and its mechanism
- 2. Different processes for product bioenergy
- 3. To under different techniques a
- 4. Bioenergy production from diff wastes
- 5. Energy Consumption and Cost **Environmental Aspects**

Course Outcomes

Student will get the knowledge of:

4.EL - Halwagi MM, Biogas Technology : Transfer &Diffusio, Elsevier Applied SC, London 1986

COURSE CONTENT

le MENE6027	Unit I:
e	9 hours
<u> </u>	Bio Energy - Bio Conversion Mechanism -
	Utilization of Photosynthate
te	
	Unit II:
3 0 0 3	10 hours
	Combustion, Pyrolysis, Gasification and
tives	Liguefaction - Biological Conversion -
nt will learn about	Methanol, Ethanol Production - Fermentation -
nergy and its mechanism	Anaerobic Digestion Biodegradation and
	Biodegradability of Substrate - Hydrogen
ent processes for production of	Generation from Algae – Biological Pathways
ergy	
der different techniques and tools	Unit III:
der unterent teeninques and tools	10 hours
ergy production from different solid	Through Fermentation and Gasification -
5	Biomass Production from different Organic
	Wastes - Effect of Additives on Biogas Yield -
y Consumption and Cost -	Biogas production from Dry Dung Cakes
onmental Aspects	Unit IV.
	Omt IV: 7 hours
omes	Viability of Energy Production - Wood Gasifier
at the knowledge of:	System. Operation of Spark Ignition and
et the knowledge of.	Compression Ignition with Wood Gas.
Solid waste management by bioenergy	Operation and Maintenance
Different processes used for biodegradation of	solid waste and production of bioenergy
The industrial applications of Dio Ergenzy	Unit V:
The industrial applications of Bio-Energy.	9 hours
Environmental aspect of Bio-Energy	Energy Effectives and Cost Effectiveness -
Energy Consumption and Cost - Environmenta	Histerts of Energy Consumption and Cost -
	Environmental Aspects of Bio-energy
	Conversion.

Text Books

CO1

CO2

CO3

CO4

CO5

1.R.C.Maheswari, Bio Energy for Rural Energisation, Concepts Publication, 1997

Reference Books

1. David Boyles, Bio Energy Technology Thermodynamics and costs, Ellis Hoknood, Chichester, 1984 2.Khandelwal KC, Mahdi SS, Biogas Technology -A Practical Handbook, Tata McGraw Hill, 1986 3. Anthony San Pietro, Biochemical and Photosynthetic aspects of Energy Production, Academic Press, New York, 1980

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End ' (ETE
20	30	

Name of The	Energy Efficient				
Course	Buildings				
Course Code	MENE6029				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

The student will be exposed

- 1. Importance of Energy-Efficient Buildings within the context of Energy issues in the 21st century.
- The concept of Energy efficiency, 2. Renewable sources of energy and their effective adaptation in green buildings
- 3. Understanding of Building Form and Fabric, Infiltration, ventilation, Lighting, cooling and water cons
- 4. The Man Imp effic
- 5. To h flow

Course Outcom

CO1

CO2

CO3

CO4

CO5

Text Books 2. William T.

At the end of the

Reference Books

1. Public Technology, Inc. (1996). Sustainable Building Technical Manual: Green Building Design, Construction, and Operations. Public Technology, Inc., Washington, DC. 2. Sim Van Der Ryn, Stuart Cowan, "Ecological Design", Island Press (1996). 3. Dianna Lopez Barnett, William D. Browning,"A Primer on Sustainable Building", Rocky Mountain Green Development Services,. 4. The HOK Guidebook to Sustainable Design, Sara Mendler and William Odell, John Wiley. 5. David A. Gottfried, Sustainable Building Technical Manual., Public Technology Inc 6. Richard D. Rush, . Building System Integration Handbook., New York: John Wiley & Sons 7. Ben Farmer & HentieLouw., Companion to Contemporary Architectural Thought, London & New York: Routledge 8. PeterNoever (ed)., Architecture in Transition: Between Deconstruction and New Modernism., Munich: Prestel.

Course Content

	conservation.	Unit I: Green Buildings, Energy and
		Environment 9 hours
4.	The importance of Environmental	Green Buildings within the Indian Context, Ty
	Management as well as Environmental	Buildings, Reducing energy consumption, Low
	Impact Assessment methods in Energy	
	efficient buildings.	Unit II: Renewable Energy, Site and Climate
5	To halp students understanding anarous	10 hours
5.	flow and its concernation	Renewable Energy sources that can be used in
	now and its conservation.	Green Buildings – Solar energy, Passive Solar
		Heating, Passive Solar collection, Wind and
		other renewables. A passive solar strategy,
rse Aut	comes	Photovoltaics, Climate and Energy, Macro and
no and a	f the course students will be able to:	Microclimate. Indian Examples.
	The course, students will be able to.	
)1	Understand why buildings should be made and	Unit III: Building Form and Fabric
	Understand why buildings should be made ene	TO hours
)2	Have a fuller grasp on Renewable Energy mech	nabusing repairs Passive colar nearing and collection,
	photovoltaics.	Loss, utilizing natural energy, Internal Planning,
)3	Ground source heat pumps, and their adaption	Grouping of Differings Building Fabrics-
)4	Understand the concepts of Site and Climate, E	uWding Korand Bloiddin Floobsi Mallil intion and
	ventilation, Lighting, Heating, Cooling, Energy	Elanlagerative allich graystering, all votinal Properties
)5	Environmental Impact Assessment study for E	nergy of the shall be equipped with
	the associated cutting-edge management strate	gies.
		Unit IV: Infiltration, Ventilation, Lighting,
		Cooling and Water Conservation 7 hours
t Books		Infiltration and ventilation, Natural ventilation in
William	1 T. Meyer., Energy Economics and	commercial buildings, passive cooling, modeling
Building	g Design., New York: McGraw-Hill, Inc	air flow and ventilation, Concepts of daylight

factors and day lighting, daylight assessment, artificial lighting, New light sources. Cooling buildings, passive cooling, and mechanical cooling. Water conservation- taps, toilets and urinals, novel systems, collection and utilization of rain water.

Unit V:Energy Awareness 9 hours

Energy awareness, monitoring energy consumption, Building Environmental Assessment - environmental criteria - assessment methods - assessment tools (e.g. LEED). Ecohomes, Sustainable architecture and urban design _ principles of environmental architecture. Benefits of green buildings -Energy Conservation Building code - NBC

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Solid Waste					
Course	Management					
Course Code	MENE6032					
Prerequisite						
Corequisite						
Antirequisite						
		L	Т	Р	С	
		3	0	0	3	

Course Objectives

The student will be exposed

- 9. To gain insight into collection, transfer and transport of municipal solid waste
- 10. Understand the design and operation of municipal solid waste landfill
- 11. Understand the design and operation of resource recovery facility
- 12. Understand the design and operation of waste to energy facility

13. Understand the effect of waste management on environmental sustainability

Course Outcomes

At the end of the course, students will be able to:

CO1	Understand solid waste and its composition
CO2	Understand method solid waste collection and tran
CO3	Understand various processes involved in solid wa
CO4	Design solid waste disposal facility.
CO5	Understand the identification of hazardous waste

Text Books

1. GeorgeTech	nobanoglous	et	al,"	Integrated
SolidWaste	Management		",	McGraw-
HillPublication,	1993			

Reference Books

- 1 HandbookofSolidWasteManagementby<u>Fra</u> <u>nkKreith,GeorgeTchobanoglous</u>,McGrawH ill Publication
- Bagchi, A., Design, Construction, andMonitoringofLandfills, (2ndEd).
 WileyInterscience, 1994.ISBN: 0-471-30681-9.
- 3 Sharma,H.D.,andLewis,S.P.,WasteContain mentSystems,WasteStabilization,andLandfi lls: DesignandEvaluation.Wiley Interscience,1994.ISBN: 0471575364.
- 4 GeorgeTechobanoglous et al," IntegratedSolidWasteManagement ", McGraw HillPublication, 1993.
- 5 CharlesA.Wentz; "HazardousWaste Management ", McGraw-Hill Publication, 1995.

Course Content

Unit I:

9 hours

Legal and Organizational foundation: Definition of solid waste–waste generation– major legislation, monitoring responsibilities, sources and types of solid waste – sampling and characterization – Determination of composition of MSW–storage and handling of solid waste – Future changes in waste composition.

Unit II:

10 hours

Waste collection systems, analysis of collection system–alternative techniques for collection system. Need for transfer operation, transport means and methods, transfer station types and design requirements.

Unit III:Process of Solid Waste and Energy recovery 10 hours

Unit operations for separation and processing, Materials Recovery facilities, Waste transformation through combustion and aerobic composting, anaerobic methods for materials recovery and treatment – Energy recovery – Incinerators

Unit IV: Disposal of Solid Wastes 7 hours

Land farming, deep well injections. Landfills: Design and operation including: site selection, Geo-

environmentalinvestigations,engineeredsites,lin ersandcovers,leachatecontrolandtreatment,gas recovery and control, including utilization of recovered gas (energy), and landfill monitoring and

reclamation,,Requirementsandtechnicalsolution, designatedwastelandfillremediation–Integrated waste management facilities. TCLP tests and leachate studies. Economics of the on-site v/s offsite waste management options. Natural attenuation process and its mechanisms.

nit V: Household Hazardous Waste Management 9 hours

Design practices of solid wastes. Definition and identification of hazardous wastes-sources and characteristics – hazardous wastes in Municipal Waste – Hazardous waste regulations – minimization of Hazardous Waste-compatibility, handling and storage of hazardous wastecollection and transport. Regulatory requirements for identification, characterization and disposal of hazardous, nonhazardous waste.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)			

	Test (MTE)	Test (ETE)	
20	30	50	100

Name of The	Design of				
Course	Wastewater				
	Tre	atm	ent 8	k	
	Dis	posa	l Sys	stem	
Course Code	MENE6034				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

The student will be exposed

- 1. Need of advanced wastewater treatment
- 2. Process for removal nutrients
- 3. Physical and chemical methods
- 4. Economic value of environmental resources
- 5. Economics of biodiversity conservation

Course Outcomes

At the end of the course, students will be able to:

CO1	Know about the conventional treatment	
	units and processes.	
CO2	Role of microorganisms in wastewater	
	treatment.	
CO3	Nutrients removal by chemical and	
	biological process	
CO4	Sludge treatment, handling and disposal.	
CO5	Wastewater reuse, recycling and disposal	
	of treated effluents	

Text Books

- 1. R.K.Turner, D.W.PearceandI.Bateman(1994), EnvironmentalEconomics: AnElementary Introduction, Harvester Wheatsheaft, London
- D.W.PearceandR.K.Turner(1990), Economi csofNaturalResourcesandtheEnvironment, HarvesterWheatsheaf, London.

Reference Books

1.D.W.Pearce, A.MarkandyaandE.B.Barbier(1989), BlueprintforaGreenEconomy, Earthscan, London. 2.MichaelS.CommonandMichaelStuart(1996), Envi ronmentalandResourceEconomics: An Introduction,

2ndEdition,Harlow:Longman.

3.RogerPerman,MichaelCommon,YueMaandJames McGilvray(2003),NaturalResourceand

Environmental Economics,3rdEdition, Pearson Education.

4.N.Hanley, J.Shogrenand B.White

(2001), AnIntroduction to Environmental Economics, Oxford University Press.

COURSE CONTENT

Unit I: Chemical Nutrient Removal 9 hours

Effects of chemical constituents in wastewater / process selection and development of treatm applications / Removal of residual suspended s

Unit II: Chemical Nutrient Removal 10 hours

Sources and forms of Nitrogen (N) and Phosphorus (P) / Processes for N and P removals. Conventional biological nitrification/ denitrification processes and its process fundamentals. Sequencing Batch Reactor (SBR) and Simultaneous Nitrification – Denitrification (SND) processes for nitrogen removal. New processes nitrogen removal: for ANAMMOX, SHARON, CANON etc. **Biological removal of Phosphorus- Process** fundamentals and types of processes. Combined removal of N and P by biological methods.

Unit III: Economic Value of Environmental Resources 10 hours

Nitrogen removal by physical and chemical methods-Air stripping of ammonia/Break point Chlorination/Ion –exchange. Removal of phosphorus by chemical addition

Unit IV: Concept of Total Economic Value 7 hours

Economic value of environmental resources and environmental damage-Concept of Total Economic Value-Alternative approaches to valuation-Cost benefit analysis and discounting

Unit V: Economics of bio-diversity Conservation

9 hours

Economics of biodiversity conservation -Valuing individual environmental damage-Concept of Total Economic Value - Policy responses at national and international levels

Continuous Assessment Pattern

Internal Assessment (IA)	External Assessment (EA)	Total Marks
50	50	100

Name of The	Urba	n			
Course	Environmental				
	Quality				
	Mana	ngem	nent		
Course Code	MEN	E60	35		
Prerequisite					
Corequisite					
Antirequisite					
·		L	Т	Р	С
		3	0	0	3

Course Objectives

The student will be exposed

1. Investigating the causes, consequences and

degradation of environmental resources

2. Possible solutions to problems associated with

degradation of environmental resources

3. Analyse the potential non-sustainability of certain types

4. Economic activities using economic analysis as a tool

5. To plan and to execute monitoring programmes

Course Outcomes

Student will get the knowledge of:

CO1	Have knowledge of the nature and effects of enviro
CO2	Have a detailed knowledge of the techniques invol
CO3	Be able to measure and assess the effects of noise on human activity and health

CO4 Have an awareness of the need for integrated pollutatione controller pollutants and as similative control pollutants and as similatitexpectencontexpected and as sintexpected and as similative contr	ve &ontrol c id iil
CO5 Have the skills to plan and to execute moniformagitprogrammes for the execution systems environmental pollutants, including water, air and those waters and its sevent as a market of urban so pollution in urban areas: Impact of urban so pollution on quality of living system-	&ontrol o id il
environmental pollutants, including water, air and these wetters and its including solution in urban areas: Impact of urban solution on quality of living system-	nd vil
pollution in urban areas: Impact of urban sol pollution on quality of living system-	
T art B alor	
1 Vershney C.K. "Water Dollution	
andManagement" Wiley Fastern I to New Unit IV: Management of Urban	
Delhi, 1998 Environment Quality	
7 hours	
Land use planning-traffic management. S	Safe
Reference Books municipal water supply and planning of s	safe
1. Plowden,S., municipal water supply and drainage syste	em–
solid waste management including dispos	sal–
2.Fallion, A.B. &E. abatement of noise pollution – Provision	n of
Simon, "The Urban Pattern", Van	
Nistrand, New York. Unit V: Conservation and Disaster	
3. M.J. Suess&S.R. Craxford, Management	
"Manualon Urban 9 hours	
AirQuanty , who, Copennagen. Natural Conservation: Planning of urbanization	tion
on ecological basis, preservation and	
COURSE CONTENT development of green recovery areas Urban	1
Industrial explosions landslides earthquakes	8
Unit I:Urbanization & PollutionIndustrial employment, fundaments, calculationFloods and Management of epidemics.	,
9 hours	
Consequences of urbanization, demand of	
resources by the public - Sources of Pollution to	
the urban environment: Status of pollution Continuous Assessment Pattern	
levels in major cities- Slum formation: Impact	
of slum on general quality of life on Urban elite Assessment Term Marks	
- status of slum settlements in major cities (IA) Test Test	
(MTE) (ETE)	
Unit II: Air & Noise Pollution in Urban203050100	
Environment 10	
hours	
Air Pollution Sources: Nature of air pollution	
activities Name of The Remote Sensing	& GIS
of industrialization effect of airpollution on Urba	
nEnvironment. Course Code MENE6037	
AirpollutionIndicesforAssessment of status of Prerequisite	
Urbanairquality Corequisite	
SourcesofnoisepollutioninUrbanareas, SourcesofnoisepollutioninUrbanareas, Antirequisite	

effectofnoisepollutiononUrban environment, status ofnoise pollution in major cities.

Unit III:Water and Land pollution in UrbanEnvironment10

hours

Water Demands and Pollution in Urban areas:

Course Objectives

This subject explains the basic concepts of

L

3

T P

0 0

С

3

interpretation -Concepts of digital image 1. Basic concept of Remote Sensing processing 2. Knowledge of Geographic Information Systems with its applications. Unit III: Basic GIS concepts of 3. History of development of GIS 10 hours 4. Concepts of digital image processing Basic concepts of GIS - Introduction to GIS-5. Applications of GIS and remote sensing History of development of GIS- Elements of GIS-Computer hardware and software **Course Outcomes** Unit IV: Map **Overlay** At the end of the course, students will be able to: 7 hours

CO1	Basic remote sensing concepts and its character	ristics Man overlay-Vector and raster data model-	
CO2	GIS and its requirements	Mapping concept-Data storage and data base	
CO3	Data management with GIS	management- Development of map overlay –	
CO4	Carry out analysis and interpretation of GIS res	Description	
CO5	Modelling through GIS		
		Unit V: Applications of GIS and Remote	

Text Books

- 1. A.N. Patel and Surendra Singh (1999), Remote Sensing Principles and Applications, Scientific Publisher, Jodpur.
- Burrough(2000), Principle of 2. A. Geographical Information Systems for Land Resources Assessment, Clarendon Press, Oxford.

Reference Books

- 1. T.M.Lilles **R.W.Kiefer** and (1999), Remote Sensing and Image Interpretation, JohnWiley& Sons, New York.
- 2. KeithC. Clarke, BradO.Parks, Michael P.Crane (2005), Geographic Information and Environmental Systems Modeling, Prentice-Hall of India.

Course Content

Unit I: Basic concepts of remote Sensing				
9 hours				
Basic concepts of Remote Sensing -				
Introduction to remote sensing –				
Electromagnetic radiation - Characteristic of				
real remote sensing systems–Plat forms–				
Satellite-Indian remote sensing satellite-				
Sensors				
Unit II: Image Processing				
10 hours				

10 hours						
Image	processing	-	Elements	of	image	

pplications of GIS and Remote Sensing 9 hours

Applications of GIS and remote sensing in resource management

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Appli	icati	on o	f Bio)-
Course	Tech	Technology in			
	Environmental				
	Engi	neer	ing		
Course Code	MEN	E60	38		
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	C
		3	0	0	3

Course Objectives

This subject explains the basic concepts of

7. 1. To introduce microbial and biotechnological concepts and theories. 8.

2. То understand

the

 biotechnological tools and their applications for environmental management. 3. To become familiar with the effective use of biotechnology in eco-sustainable waste management. 4. To understand various toxic chemicals 5. To understand various biotechnological technologies for environmental damages 	s; Genes and development- geneexpressionandtheir regulation,regulation ofcellandanimalbodydevelopment; EnvironmentandEcosystemanditscomponents;E nergy andbiogeochemicalcycles;Microorganismsand Environment- microbes as functionary part of ecosystem, terrestrial and non-terrestrial environments, marineandfreshwaterenvironments; Ecological Niche;
At the end of the course, students will be able to:	Unit II: 10 hours Historical Overview of Development and
CO1 To gain knowledge related to biology of microorgani	Pollution, Environmental Sustainability and
CO2 Environmental Management Strategies for Sustainabl	Biodiversity; e-Development, 11, monordon vironment
CO3 Application of Microorganism in green technology	concentsofbiotechnology itsusefulnesstohumank
CO4 To address problems of toxic chemicals in environme	entrand global environment theories and
CO5 Gain knowledge on Biotechnological remedies for en	vphilosophy;d Gontradiction between economic
	and environment; Environmental Management
	Strategies for Sustainable Development;
 Text Books Pelczar, M. Microbiology, 5thEdn,Tata McGraw Hill, ISBN 0074623206 Wainwright,M. An Introductionto Environmental Biotechnology,Kluwer AcademicPublisher,ISBN 0792385691 Reference Books Alexander, M.Biodegradationand Bioremediation.2ndEd.,AcademicP ress California USA ISBN 	UnitIII:10 hoursMicrobial cell and enzyme technology- adaptedmicroorganisms,bioremovalofnutrients, micro-algal biotechnology;Interactionofmixedmicrobial population andits applications in bioprocessing of wastes, role of extracellular polymers, bioremediation of environmental problems; Concept of DNA technology, plasmid,mutation,geneticallyengineeredmicrobi al strainsandapplicationsofgeneticengineeringin environmental management;
012049860X	Unit IV:
 2. Sayler, Gray S.,RobertFox, JamesW.Blackburn,Environmental Biotechnology forWasteTreatment, PlenumPress, New York. ISBN 0306439433 3. BruceE. Rittmann, Eric Seagren,Brian A.Wrenn,Albert J.Valocchi, ChittaranjanRay, LutgardeRaskin, In-SituBioremediation, 2ndEd., Noyes Publications,U.S.A. ISBN0815513488. Course Content Unit I: 9 hours Principlesof biology-Cell,structure,types, 	8 hours Problems of toxic chemicals-sources and categories, halogenated and non-halogenated, petroleum hydrocarbons, metals,humanhealtheffectscausedbytoxicchemic alpollutions; Biodegradationoftoxic pollutants, mechanisms of detoxification- oxidation reactions, dehalogenation, biotransformation of metals; XenobioticCompounds- types, sources and its hazards;Recalcitranceof xenobioticcompoundsand leading factors; Biodegradation of xenobiotic compounds Unit V: 9 hours V:
functionsandcommunicationduringdevelopment	damages- decontamination of ground water
systems,

subsurfaceenvironment,reclamationconceptsbioremediation;Productionofproteins,Biotransfo rmation of waste into biofertilizers, biogasandelectricalenergy, affectingphysical,chemicalandmicrobiological factors health risk odor management

factors, health risk, odor management, technological advances; Environmental effects and ethics of microbial technology; Biosafety; Clean Technology- concepts and applications inindustrial process, clean synthesis; Farmingasanengineeringprocess.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The	Risk	Ass	essm	nent	
Course	and Disaster				
	Man	agen	nent	;	
Course Code	MEN	JE6 ()39		
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1) To enable a comprehensive understanding of:
- 2) To provide knowledge related to the broad field of environmental risk assessment
- 3) Steps involved in the risk assessment process, including statistical characterization of observed data
- 4) Knowledge about tools that can be used in defining environmental risks, particularly as related to human health.
- 5) To develop practical skills in disaster mitigation, planning, response and post disaster rehabilitation, particularly related to health and public health.

Course Outcomes

At the end of the course, students will be able to:

CO1	To gain knowledge related to the broad field of		
	environmental risk assessment		
CO2	Statistical characterization of field data		
CO3	Use of tools for environmental risks,		
	particularly as related to human health		
CO4	To apply biotechnological concept and tools		
	for green production technologies		
CO5	Gain knowledge on eco-sustainable waste		
	management ensuring sustainable		
	development		
	*		

Text Books

1 Rao V. Kolluru, "Environmental Strategicshand book", Mc-graw Hill Inc., New York, 1994.

Reference Books

- 1 BrockNeely.W&BlanG.E,"EnvironmentalE xposurefromchemicals,VolumeII,ChcPressI unc., Florida,1989.
- WoodsenW.E., "Humanfactorsdesignhandb ook– informationandguidelinesfordesigntosystem s, facilities, equipment and product for human use", McGraw Hill, New York, 1981.

Course Content

Unit I: Risk Assessment 9 lecture hours

Introduction- Methodologies and Guidelines: Principles, Code of practice - Appointment of personnel and their responsibilities–Emergency plans: onsite and offsite. Steps in risk assessment: Identification of risk. Extent of risk Risk-Based Decisions and disaster. for Corrective Action -Timelv updation. Developing a Site Conceptual Model -Focusing on Risk-Based Decisions in Corrective Action -Risk Assessment: Dose Response and Target Calculations-Experiences Level in Environmental Risk Assessment.

Unit II: Occupational Health and Safety 10 lecture hours

Occupational risk analysis survey and health evaluation, behavioral studies, occupational

injury, disease reporting, investigation: monitoring and control of environmental hazards. Occupationally induced illness, nonoccupational illness, and discomfort at work, the epidemiological approach, occupational health practice: investigation, monitoring, control, examples of occupational health hazards: nasal cancer, asbestosis, bronchitis, heart disease. Occupational health services.

Unit III:Methodologies and Management **Techniques 10 lecture hours** Risk assessment techniques for accidental release of toxic and inflammable materials. hazard analysis, potential risk, conceivable release mechanisms and release rates, fire and explosion hazards and simplified models for their assessment. Operations Management(OM), Risk Assessment and Disaster Response, Quantification Techniques, NGO Management, SWOT Analysis based on Design & Formulation Strategies, Insurance & Risk Management.

Unit IV: Disaster Management7 lecture hours

Introduction & Dimensions of Natural & Disasters. Anthropogenic Principles/Components of Disaster Management, Organizational Structure for Disaster Management, Disaster Management Schemes/SOPs, Natural Disasters and Mitigation Efforts, Flood Control, Drought Management, Cyclones, Avalanches, Mangroves, Land Use Planning, Inter-Linking of Rivers, Role of Union/States, Role of Armed Forces/Other Agencies in Disasters, Role of Financial Institutions in Mitigation Effort, Group Dynamics, Concept of Team Building, Motivation Theories and Applications, School Awareness and Safety Programs, Psychological and Social Dimensions in Disasters, Trauma and Stress, Emotional Intelligence, Electronic Warning Systems. Use of Information systems, Unit V: **Experiences and case studies** 9 lecture hours Recent Trends in Disaster Information Provider, GeoInformatics in Disaster Studies, Cyber

Terrorism, Remote Sensing &GIS Technology, Laser Scanning Applications in Disaster Management, Statistical Seismology, Quick Reconstruction Technologies, Role of Media in Disasters, Management of Epidemics, Bio-Terrorism, Forecasting / Management of Casualties. Important Statutes/ Legal Provisions, IEDs/Bomb Threat Planning, NBC Threat and Safety Measures, Forest Fires.

Continuous Assessment Pattern

Internal Assessment	Mid Term	End Term	Total Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Ma	then	natic	al	
Course	Modelling in				
	Environmental				
	Engineering				
Course Code	MF	ENE	6040		
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

To enable a comprehensive understanding of:

- 1. The scope and extent of mathematical modelling
- 2. The basic tenets of mathematical modelling and its application to environmental Processes
- 3. Mathematical modelling techniques
- 4. Plume Rise estimation Emissions inventories
- 5. Mathematical modelling methods applied to Global Environmental Problems

Course Outcomes

At the end of the course, students will be able to:

CO1	Basic understanding of how mathematical					
	models can be used to solve					
	environmental problems					
CO2	Set up material balance models for					
	conservative and non-conservative					
	systems					
CO3	Formulate and solve Boundary value					
	problems.					
CO4	Plume Rise estimation Emissions					
	inventories					
CO5	Formulate, Set-up, and solve complex					
	environmental Problems.					
9						

Text Books

1.Gilbert M., Master, 'Introductionto Environmental Engineering and Science' Prentice-Hall ofIndia,NewDelhi,1998

Reference Books

 Howard S.Peavy, Donald R. Rowe, and George Tchobanoglous.'Environmental Engineering'. McGraw-Hill BookCompany, New York.1985
 Roland b. Stull : Introduction to Boundary Layer Meteorology. John Wiley 1988. 3. Plus, Journal Articles from J.Geophys. Res.,Geophysical Research Letters, Quarterly Journal of the Royal Meteorological Society. 10.

Course Content

Unit I:

9 lecture hours

The origins: Formation of the Physical Environment. The evolution of the Earth's atmosphere. Quantification of the Lapse Rate. The states of stability of the atmosphere Quantification of Wind circulation : Geostrophic winds. Necessity of mathematical models. Concentration calculations and conversions in liquids and gases. Converting ppm into micro grammes/m3 and vice-versa. Material Balance–Steadystateconservativesystems-non-

conservativepollutants.Mass-

nergyflowsandbalances–specific examples in real-life environmental problems: Thermal pollution of a River

Unit II:

10 lecture

hours

The importance of Air Pollution modelling. Modelling the Atmospheric Boundary Layer-mixing length, and eddy diffusion. The formulation and solution of the Gaussian Plume Model. Gaussian Dispersion Coefficients. Plume Rise estimation Emissions inventories. Point, Line and Area Sources. Simple noise quality models : Models for Road way Noise

Unit III:

lecture hours

Modelling the mass transport of Sulphur Dioxide into falling raindrops. Reaction Pathways. Mass and Charge Balance.Theconvective diffusion equation. Normalisation of the CDE with reaction kinetics. Modelling the Homogeneous and Heterogeneous Pathways for Ozone depletion.

Unit IV:

hours

7 lecture

10

Solar and Terrestrial Radiation. Quantifying the Green House Effect. A model for estimating the

Equilibrium temperature of the Earth. Aerosol and cloud processes. The Basic tenets of Global Circulation Models for Weather Forecasting **Unit V:**

lecture hours

9

The unusual qualities of water. Modelling Biochemical Oxygen demand (BOD). Estimating the BOD Reaction Rate Constant. The effect of Oxygen-demanding wastes on rivers. A model for De-oxygenation. The Oxygen- sag curve. Solid waste modelling: Waste to Energy. Modelling the methane potential of discards.

11.

12.

13.	Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Clear	n De	velo	pme	ent
Course	Mechanism &				
	Green Technologies		ies		
Course Code	MEN	JE6 (41		
Prerequisite					
Corequisite					
Antirequisite					
		L	Τ	P	С
		3	0	0	3

Course Objectives

To enable a comprehensive understanding of:

- 1. The course is intended to teach the basics of CDM.
- 2. To become familiar with CDM processes.
- 3. To study CDM to address environmental problems
- 4. To study use of CDM in sustainable development
- 5. Case studies of various CDM of major projects

Course Outcomes

At the end of the course, students will be able to:

CO1 Well aware of developments in Clean Development Mechanism.

CO2	14. Understanding of Global				
	Warming and Climatic changes.				
CO3	Develop ecologically sustainable				
	production and industry through				
	developing the potential of all fibres.				
CO4	Develop environmentally and socially				
	friendly alternatives				
CO5	Many of the deleterious practices,				
	processes and products currently in use				
15.					

Text Books

 Introductionto Environmental Engineeringand Science. Gilbert M.Masters.Prentice-Hall of India. 2005.

Reference Books

1.White. I.D., Mottershead. D.N., Harrison .S.J, "Environmental Systems – an introductory text", Chapmanandahll ,London,1998. 2.Colinvaux.P.,"Introduction toEcology", JohnWiley& sons,Newyork,1973. 16.

Course Content

Unit I: Principle of Clean Developme	ent
Mechanism	9
lecture hours	
Introduction to Climate Change an	d Global
Warming, International Response to	Climate
Change & Global Warming	
с с	
Unit II: Kyoto	Protocol
10 lecture hours	
Kyoto Protocol and its mechanism, obj	ectives of
Kyoto protocol and details of the a	greement,
Amendments of Kyoto Protocol.	
Unit III: Clean Development M	echanism
Process	10
lecture hours	
Overview of Clean Development M	echanism,
Administration and Participation, CDM	A, Project
Cycle and Financing, Post Kyoto Ne	gotiations
and India.	_
Unit IV: Sustainable Development	in CDM
7 lecture hours	
CDM, Sustainable Development	and its
Assessment The CDM Market Types	of Major

CDM Projects, Small Sectors and CDM, preparing CDM project design document (PDD) Course Project

Unit V: Case Studies of CDM Projects 9 lecture hours

Types of Major CDM Projects, Small Sectors and CDM, Detailed studies of CDM approved projects.

17.

18.

19. **Continuous Assessment Pattern**

Internal	Mid	End	Total Morks
Assessment	Term	Term Term	WIALKS
(IA)	lest	lest	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Environmental							
Course	Ecology							
Course Code	MENE6042							
Prerequisite								
Corequisite								
Antirequisite								
		L	Т	Р	С			
		3	0	0	3			

Course Objectives

To enable a comprehensive understanding of:

1. To establish Ecology's credibility in high environmental, ethical and quality standards of goods and services.

2. Access the market opportunity presented by the 'greenmarket'.

3. Raise consumer awareness and concern for environmental issues, and encourage their support for ecological values in consumer practices.

4. To develop affair and equitable means to link economic and environmental values

5. The development of mutually beneficial relationships with all segments of the community.

Course Outcomes

At the end of the course, students will be able to:

	structures					
CO2	Able to provide reasonable return on					
	investment, financial or personal effort,					
	dividends, wages and so forth.					
CO3	Develop ecologically sustainable					
	production and industry through					
	developing the potential of all fibres.					
CO4	Develop environmentally and socially					
	friendly alternatives					
CO5	Many of the deleterious practices,					
	processes and products currently in use					
20	· • • •					

Text Books

Odum. E. P, "Fundamentals of ecology", W.B. Sanders, Philadelphia, 2002

Reference Books

1.White. I.D., Mottershead. D.N., Harrison .S.J, "Environmental Systems – an introductory text", Chapmanandahll ,London,1998. 2.Colinvaux.P., "Introduction toEcology", JohnWiley& sons,Newyork,1973.

21.

Course Content

Unit I: Concepts of Ecology 9 lecture hours

Fundamentals of ecology, Natural ecosystems and their food chains, food webs, bioenergetics, biochemical cycles and ecological succession, deoxygeneation nutrient enrichment

UnitII:BioDiversity10 lecture hours

Biological diversity and its importance, reduction in biological diversity by human activities, classes and general effects of physical and Biological interaction with pollutants, lethal and sub-lethal effects.

UnitIII:EcosystemEcology10 lecture hours

Ecosystems responses to deoxygeneation nutrient enrichment, pesticides, hydrocarbons, metal and salts, thermal pollution, suspended solids and silt.

Unit IV: CommunityEcology 7 lecture hours

Principles of population and community ecology– concepts of systems and models–building and

analysis

Of models–environmental systems, structures and interaction between coastalaeolian, glacial, fluvial, weathering, soil and detrital systems.

Unit V:Integration Ecological Principles 9 lecture hours

Integration of classical, agro and restoration ecological principle sand methods, Biomonitoring and its role in the evaluation of aquatic ecosystem, rehabilitation of ecosystem through ecological engineering principles.

22.

23.

24. Continuous	Assessment Pattern
-----------------------	--------------------

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Environmental							
Course	Economics,							
	Legislation and							
	Management							
Course Code	MENE6046							
Prerequisite								
Corequisite								
Antirequisite								
		L	Т	Р	С			
		3	0	0	3			

Course Objectives

The student will be exposed

- 1. To make the student investigating the causes, consequences
- 2. possible solutions to problems associated with degradation of environmental resources
- 3. Analyse the potential non-sustainability of certain types of economic activities using economic analysis as a tool.
- 4. The economic implications of alternative to pollution

5. Alternative methods for valuing environmental resources and environmental damage

Course Outcomes

At the end of the course, students will be able to:

CO1	The economic significance and the economic caus
	diversity
CO2	The extent to which market based mechanisms mi
	degradation problem in the absence of overt interv
CO3	The economic implications of alternative 'interven
	including the use of charges, subsidies and market
CO4	Alternative methods for valuing environmental res
CO5	The economic consequences of policy instrument

Text Books

1. R.K.Turner, D.W.Pearce and I.Bateman (1994), Environmental

Economics:AnElementaryIntroduction, Harvester Wheatsheaft, London.

2. D.W. Pearce and R.K. Turner (1990), Economics of Natural Resources and the Environment, Harvester Wheatsheaf, London.

Reference Books

1. D.W.Pearce, A.Markand ya and E.B.Barbier(1989),Blue print for a Green Economy, Earthscan, London.

2. Michael S.Common and Michael Stuart(1996),Environmental and Resource

Economics: An Introduction, 2ndEdition, Harlow: Longman.

3. RogerPerman, Michael Common,YueMaand James Mc Gilvray(2003),Natural Resource and Environmental Economics,3rdEdition, Pearson Education.

4. N.Hanley,J. Shogren and B.White (2001), An Introduction to Environmental Economics, Oxford University Press..

Course Content

Unit I: Introduction to Sustainable Development

9 lecture hours

Introduction to sustainable development -Economy-Environment inter-linkages -Meaning of sustainable development- Limits to growth and the environmental Kuznets curve –The sustainability debate- Issues of energy and the economics of energy – Nonrenewable energy, scarcity, optimal resources, back stop technology, property research, externalities, and the conversion of uncertainty

Unit II: Economic Significance 10 lecture hours

Economic significance and causes of environmental degradation - The concepts of policy failure, externality and market failure - Economic analysis of environmental degradation - Equi-marginal principle.

Unit III: Economics of Pollution 10 lecture hours

Economics of Pollution - Economics of optimal pollution, regulation, monitoring and enforcement - Managing pollution using existing markets: Bargaining solutions -Managing pollution through market intervention: Taxes, subsidies and permits.

Unit IV: Economic Value of Environmental Resources 7 lecture hours

Economic value of environmental resources and environmental damage-Concept of Total Economic Value-Alternative approaches to valuation-Cost benefit analysis and discounting

Unit V: Economics of bio-diversity Conservation 9 lecture hours

Economics of biodiversity conservation -Valuing individual species and diversity of species - Policy responses at national and international levels

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Program: BTech in Construction Technology

School of Civil Engineering

Scheme: 2020-2021

Vision

To be a Centre of Excellence for imparting high end research and technical education in Civil Engineering with specialization in Construction Technology producing socially aware professionals to provide sustainable solutions to global community.

Mission

M1: To impart quality education and mould technically sound, ethically responsible professionals in the field of Civil Engineering with specialization in Construction Technology.

M2: Collaborate with industry and society to design a curriculum based on the changing needs of stakeholders and provide excellence in delivery and assessment.

M3: Establish state-of-the-art facilities for world class education and research.

M4: To mentor students in pursuit of higher education, entrepreneurship and global professionalism.

PEOs

PEO1: Graduates shall attain state of the art knowledge in the different streams of Civil Engineering with specialization in Construction Technology and be trained for playing the role of competent Civil Engineer in multidisciplinary projects.

PEO2: Graduates shall be capable of pursuing productive careers in private and government organizations at the national and international level and to become successful entrepreneurs.

PEO3: Graduates shall display a high sense of social responsibility and ethical thinking and develop sustainable engineering solutions.

PSOs

PSO1: Develop the ability to implement emerging techniques to plan, analyze, design, execute, manage, maintain and rehabilitate systems and processes in construction technology and other diverse areas like structural, environmental, geotechnical, transportation and water resources engineering.

PSO2: Excel in research, innovation, design, problem solving using different softwares and artificial intelligence and develop an ability to interact and work seamlessly in multidisciplinary environment.

POs

PO1: Apply the knowledge of Mathematics, Science, and Engineering fundamentals, and an engineering specialization to solution of complex engineering problems (Engineering Knowledge)

PO2: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences (Problem analysis)

PO3: Design of solutions for complex engineering problems and design of system components or processes that meet the specified needs with appropriate considerations of public health and safety, and cultural, societal, and environmental considerations (Design/development of solutions)

PO4: Use research based methods including design of experiments, analysis and interpretation of data and synthesis of information leading to logical conclusions (Conduct investigations of complex problems)

152

PO5: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling complex engineering activities with an understanding of limitations (Modern tool usage)

PO6: Apply reasoning within the contextual knowledge to access societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The engineer and society)

PO7: Understand the impact of the professional engineering solutions in the societal and environmental contexts, and demonstrate the knowledge of, and the need for sustainable developments (Environment and sustainability)

PO8: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice (Ethics)

PO9: Function effectively as an individual independently and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and team work)

PO10: Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation, make effective oral presentations, and give and receive clear instructions (Communication)

PO11: Demonstrate knowledge and understanding of engineering management principles and apply those to one's own work as a member and leader of a team to manage projects in multidisciplinary environments (Project management and finance)

PO12: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life-long Learning).

Semester 1 SI. **Assessment Pattern Course Code** Name of the Course No L Т P С IA MTE ETE Energy Sources and Audit Data Analytics (Excel and Tableu) AI Fundamentals Differential / Vector calculus and Matrices Programming for Problem Solving (C) Communication Skill (BEC-1) **Engineering Physics Engineering Physics Lab** -Bio Systems in Engineering AC DC Circuits **Total credits** Semester II **Assessment Pattern** SI **Course Code** Name of the Course ETE Т Р MTE No L С IA Integral and Multiple Calculus Partial Differential Equations Embedded Technology and IOT Waste Management _ **Environmental Science** 0.5 _ Liberal and Creative Arts 0.5 _ Creativity, Innovation and Entrepreneurship Application of Python _ Programming Introduction to Digital System Data Structure Using C **Digital Fabrication** _ Engineering Mechanics BCE01T3201 Total credits Semester III **Assessment Pattern** SI **Course Code** Name of the Course No Т MTE L Р С IA ETE Mathematics-III (Functions of Complex Variables and Transforms) Aptitude building and Logical _ Reasoning - I

Curriculum

_

Disruptive Technologies

4		AI and its Applications	0	0	4	2	50	-	50
5	BCE02T3301	Strength of Materials	2	0	0	2	20	30	50
6	BCE02T3302	Basic Fluid Mechanics	2	0	0	2	20	30	50
7	BCE02T3303	Introduction to Surveying	2	0	0	2	20	30	50
8	BCE02T3304	Basic Transportation Engineering	2	0	0	2	20	30	50
9	BCE02P3302	Basic Fluid Mechanics Lab	0	0	2	1	50	-	50
10	BCE02P3303	Surveying Lab	0	0	2	1	50	-	50
11	BCE01P3304	Engineering Drawing	0	0	4	2	50	-	50
12	BCE02P3301	Strength of Materials Lab	0	0	2	1	50	-	50
13	BCE02P3304	Basic Transportation Engineering Lab	0	0	2	1	50	-	50
		Total credits				22			
		a							
C1		Semester IV					1	mont De	ttom
SI No	Course Code	Name of the Course	L	Т	Р	С	Assess	MTE	ETE
110		Mathematics-IV (Numerical and		-	1	C	IA		
1		Computational Methods)	2	0	0	2	20	30	50
2		Numerical and Computational Methods Lab	0	0	2	1	50	-	50
3		Aptitude building and Logical Reasoning - II	0	0	2	1	50	-	50
4		Engineering Clinic - I (IOT)	0	0	2	1	50	-	50
5		Communication Skill (BEC-2) - 3 credit	3	0	0	3	20	30	50
6	BCE01T3402	Construction Engineering	3	0	0	3	20	30	50
7	BCE02T3403	Basic Structural Analysis	2	0	0	2	20	30	50
8	BCE02T3404	Water & Waste Water Treatment Systems	2	0	0	2	20	30	50
9	BCE02T3405	Soil Mechanics	2	0	0	2	20	30	50
10	BCE02T3406	Reinforced Concrete Structures	2	0	0	2	20	30	50
11	BCE02P3404	Water Analysis Lab	0	0	2	1	50	-	50
12	BCE02P3405	Soil Mechanics Lab	0	0	2	1	50	-	50
13	BCE01P3402	Construction Engineering Lab	0	0	2	1	50	-	50
		Total credits				22			
		Semester V							
Sl	Course Code	Name of the Course					Asse	ssment l	Pattern
No	Course Coue	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1		Mathematics-V (Application of Statistical Methods in Construction)	3	0	0	3	20	30	50
2		Engineering Economics and Management	3	0	0	3	20	30	50
3		Engineering Clinic - II (Machine Learning)	0	0	2	1	50	-	50
4		Campus to Corporate	3	0	0	3	20	30	50

5		Aptitude building and Logical	0	0	2	1	50	_	50
5		Reasoning - III	0	Ű	_	-	50		50
6	BCE02T3501	TQM in Construction	3	0	0	3	20	30	50
7		Program Elective - I	3	0	0	3	20	30	50
8	BCE01P3504	CAD Lab - I (AUTOCAD)	0	0	4	2	50	-	50
9	BCE02T3502	Construction Contracts	3	0	0	3	20	30	50
		Administration and Management							
10		Social Internship	0	0	2		50	-	50
11	DCE00D0501	Hobby Class	0	0	1	0.5	50	-	50
12	BCE02P3501	Industrial Internship - I	0	0	0	1	50	-	50
		Total credits				24.5			
		Semester VI							
Sl							Asse	ssment	Pattern
No	Course Code	Name of the Course	L	Τ	Р	С	IA	MTE	ETE
1		Excel Training & PPT Training	0	0	1	0.5	50	-	50
2	BCE02T3601	Introduction to Design of Steel	2	0	0	2	20	30	50
2	DCL0213001	Structures	2	0	0	2	20	- 50	50
3		Foreign Language (German /	0	0	4	2	20	30	50
5		Japanese / French)	Ŭ	Ŭ	т	2	20	50	50
4	BCE01P3605	Analysis and Design Lab (STAAD	0	0	2	1	50	_	50
-	Delon 5005	PRO)	Ŭ	Ŭ	-	1	50	_	50
5		Aptitude building and Logical	0	0	2	1	50	_	50
5		Reasoning - IV	Ű	Ű	_	-	50		50
6	BCE01P3606	Design and Innovation	0	0	2	1	50	-	50
7		Open Elective - I	3	0	0	3	20	30	50
8		Program Elective - II	3	0	0	3	20	30	50
9		Program Elective - III	3	0	0	3	20	30	50
10	BCE02T3602	Project Economics & Financial	3	0	0	3	20	30	50
10		Management			-		20	50	
11	BCE02T3603	Quantity Surveying and Estimating	3	0	0	3	20	30	50
12	BCE02P3607	Estimation Lab (PRIMAVERA)	0	0	4	2	50	-	50
		Total credits				24.5			
		Semester VII							
Sl	C C I						Assess	sment Pa	attern
No	Course Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1		Program Elective - IV	3	0	0	3	20	30	50
2		Program Elective - V	3	0	0	3	20	30	50
3		Ethics and Professional	0	0	2	1	50		50
3		Competency	0	0	2	1	30	-	50
4	BCE02P3998	Capstone Phase-1	0	0	4	2	50	-	50
5		Open Elective - II	3	0	0	3	20	30	50
6	BCE02T3701	Project Planning and Scheduling	2	0	0	2	20	30	50
7	BCF02P3701	Project Planning and Scheduling	0	0	2	1	50	_	50
/	BCL021 3701	Lab (PRIMAVERA)	Ŭ		-	1	50	_	50
8	BCE02P3702	Industrial Internship - II	0	0	0	1	50	-	50
		Total credits		1		16			

Ē

	Semester VIII									
SI No	Course Code	Name of the Course					Assessment Pattern			
INO			L	Т	Р	С	IA	MTE	ETE	
1	BCE02P3999	Capstone Phase-2	0	0	20	10	50	-	50	
		Total credits				10				

Total Grand Credits = 160

Sl	Course Code	List of Programma Electiva Assessme						sment Pa	attern
No	Course Coue	se Code List of Programme Elective		Т	Р	С	IA	MTE	ETE
1	BCE02T5701	Sustainable Construction Materials	3	0	0	3	20	30	50
2	BCE02T5702	Environment & Energy for Sustainable Construction	3	0	0	3	20	30	50
3	BCE02T5703	Human Rights	3	0	0	3	20	30	50
4	BCE02T5704	Human Resource Development	3	0	0	3	20	30	50
5	BCE02T5705	Materials Management	3	0	0	3	20	30	50
6	BCE02T5706	Value Engineering and Valuation	3	0	0	3	20	30	50
7	BCE02T5707	Infrastructure Development	3	0	0	3	20	30	50
8	BCE02T5708	International Contracting	3	0	0	3	20	30	50
9	BCE02T5709	Thrust Areas in Project Management	3	0	0	3	20	30	50
10	BCE02T5710	Leadership & Team Building	3	0	0	3	20	30	50
11	BCE02T5711	Material Management & Inventory Control	3	0	0	3	20	30	50
12	BCE02T5712	Marketing Research	3	0	0	3	20	30	50

List of Program Electives

Minor Courses

SI	Course Code	Minor Courses					Assessment Pattern			
No	Course Code	willior Courses	L	Т	Р	С	IA	MTE	ETE	
1	BCE01T3402	Construction Technology	3	0	0	3	20	30	50	
2	BCE02T3501	TQM in Construction	3	0	0	3	20	30	50	
3	BCE02T3703	Management and Project Planning in Construction	3	0	0	3	20	30	50	
4	BCE02T3502	Construction Contracts Administration and Management	3	0	0	3	20	30	50	
5	BCE02T3602	Project Economics & Financial Management	3	0	0	3	20	30	50	
6	BCE02T3603	Quantity Surveying and Estimating	3	0	0	3	20	30	50	
		Total Credit				18				

SI	Course Code	Major Courses						Assessment Pattern			
No	Course Coue			Т	Р	С	IA	MTE	ETE		
1	BCE02T3711	Advanced Construction Technology	3	0	0	3	20	30	50		
2	BCE02T3712	Operations Research	3	0	0	3	20	30	50		
3	BCE02T3713	Retrofitting of Structures	3	0	0	3	20	30	50		
4	BCE02T3714	Construction Safety	3	0	0	3	20	30	50		
5	BCE02T3715	Economics and Project Finance for Civil Engineers	3	0	0	3	20	30	50		
6	BCE02T3716	Repair and Maintenance of Buildings	3	0	0	3	20	30	50		
		Total Credit				18					

Major Courses

Name of The	Engineering Mechanics				
Course Code	BCE01T32	01			
Prerequisite	-	01			
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Detailed Syllabus

Course Objectives

- 1. To calculate the reactive forces.
- 2. To analyze structures.
- 3. To learn the geometric properties of different shapes.

Course Outcomes

On completion of this course the student will be able to:

CO1	Understand fundamental principles of forces and the concept of free body
	diagram.
~~~	Calculate the centroid, centre of gravity
CO2	and moment of inertia of various
	surfaces.
	Determine stresses and strains for one
CO3	dimensional axially loaded member.
COA	Analyze plane trusses by different
04	methods
<b>CO5</b>	Understand latest research paper

#### **Continuous Assessment Pattern**

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

**Course Content:** 

Unit I: Introduction to Mechanics & Equilibrium of Forces 8 Lecture Hours

# FundamentalPrinciples-VectorialRepresentation of Forces -Coplanar forces -Resolution and Composition of forces andequilibrium of particles -introduction of Forces

on a particle in space - Equivalent system of forces
- Principle of transmissibility - Single equivalent
force - Free body diagram - Equilibrium of rigid
bodies in two dimensions and three dimensions.
Unit II: Properties of Surfaces
8
Lecture Hours
Centroid - Centre of gravity - Parallel axis
theorem - First moment of area - Second moment
of area – Product of inertia of plane areas – Polar
moment of inertia
Unit III: Stresses & Strains
8
Lecture Hours
Axial Stress and Strain - Solution of simple
problems - Tapered Section - One Dimensional
axial loading of members of varying cross-section
- Stress - Strain Diagram of mild steel.
Unit IV: Analysis of plane truss
8
8 Lecture Hours
8 Lecture Hours Trusses: Introduction - Simple Truss - Analysis of
8 Lecture Hours Trusses: Introduction - Simple Truss - Analysis of Simple truss - Method of Joints - Method of
8 Lecture Hours Trusses: Introduction - Simple Truss - Analysis of Simple truss - Method of Joints - Method of Sections – Tension Coefficient Method
<b>Lecture Hours</b> Trusses: Introduction - Simple Truss - Analysis of         Simple truss - Method of Joints - Method of         Sections - Tension Coefficient Method         Unit V: Introduction to shear force and
<b>Lecture Hours</b> Trusses: Introduction - Simple Truss - Analysis of         Simple truss - Method of Joints - Method of         Sections - Tension Coefficient Method <b>Unit V: Introduction to shear force and</b> bending moment
8         Lecture Hours         Trusses: Introduction - Simple Truss - Analysis of         Simple truss - Method of Joints - Method of         Sections – Tension Coefficient Method         Unit V: Introduction to shear force and         bending moment         8
Note:
8Lecture HoursTrusses: Introduction - Simple Truss - Analysis of Simple truss - Method of Joints - Method of Sections - Tension Coefficient MethodUnit V: Introduction to shear force and bending moment8Lecture HoursBeam: Introduction, Shear force and Bending
NoteNoteLecture HoursSimple truss - Method of Joints - Method ofSimple truss - Method of Joints - Method ofSections – Tension Coefficient MethodUnit V: Introduction to shear force andbending moment8Lecture HoursBeam: Introduction, Shear force and Bendingmoment, Shear Force Diagram and Bending
<b>Lecture Hours</b> Trusses: Introduction - Simple Truss - Analysis of         Simple truss - Method of Joints - Method of         Sections - Tension Coefficient Method         Unit V: Introduction to shear force and         bending moment         8         Lecture Hours         8         Lecture Hours         9         Moment, Shear Force Diagram and Bending         Moment Diagram for statically determinate
8Lecture HoursTrusses: Introduction - Simple Truss - Analysis of Simple truss - Method of Joints - Method of Sections - Tension Coefficient MethodUnit V: Introduction to shear force and bending moment8Lecture HoursBeam: Introduction, Shear force and Bending moment, Shear Force Diagram and Bending Moment Diagram for statically determinate beams.
NomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomNomeNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNomNom
<b>Lecture Hours</b> Trusses: Introduction - Simple Truss - Analysis of         Simple truss - Method of Joints - Method of         Sections - Tension Coefficient Method <b>Unit V: Introduction to shear force and</b> bending moment         8         Lecture Hours         Beam: Introduction, Shear force and Bending         moment, Shear Force Diagram and Bending         Moment Diagram for statically determinate         beams.         Unit VI: Discussion on Latest Research Paper         4
<b>Lecture Hours</b> Trusses: Introduction - Simple Truss - Analysis of         Simple truss - Method of Joints - Method of         Sections - Tension Coefficient Method         Unit V: Introduction to shear force and         bending moment         8         Lecture Hours         Beam: Introduction, Shear force and Bending         moment, Shear Force Diagram and Bending         Moment Diagram for statically determinate         beams.         Unit VI: Discussion on Latest Research Paper         4         Lecture Hours
NetworkLecture HoursTrusses: Introduction - Simple Truss - Analysis of Simple truss - Method of Joints - Method of Sections - Tension Coefficient MethodUnit V: Introduction to shear force and bending momentBeading moment8Lecture HoursBeam: Introduction, Shear force and Bending 
<b>Lecture Hours</b> Trusses: Introduction - Simple Truss - Analysis of         Simple truss - Method of Joints - Method of         Sections - Tension Coefficient Method <b>Unit V: Introduction to shear force and</b> bending moment         8         Lecture Hours         Beam: Introduction, Shear force and Bending         moment, Shear Force Diagram and Bending         Moment Diagram for statically determinate         beams. <b>Unit VI: Discussion on Latest Research Paper</b> 4         Lecture Hours         This unit is based on research papers / Innovations         / start-up ideas / white papers / applications.
<b>Lecture Hours</b> Trusses: Introduction - Simple Truss - Analysis of         Simple truss - Method of Joints - Method of         Sections - Tension Coefficient Method <b>Unit V: Introduction to shear force and</b> bending moment         8         Lecture Hours         Beam: Introduction, Shear force and Bending         moment, Shear Force Diagram and Bending         Moment Diagram for statically determinate         beams.         Unit VI: Discussion on Latest Research Paper         4         Lecture Hours         This unit is based on research papers / Innovations         / start-up ideas / white papers / applications.         Minimum one latest research paper will be

# **Suggested Reading**

- 1. Punamia B. C. (2010), Mechanics of Materials, 15th Edition, Laxmi publications (P) Ltd, ISBN: 9788131806463.
- Shames I. H. (2006), Engineering Mechanics Statics and Dynamics, 4th Edition, Prentice-Hall of India Private limited, ISBN-9780133569247.

Name of The	Basic Fluid Mechanics				
Course					
Course Code	BCE02T3302	2			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		2	0	0	2

#### **Course Objectives**

- 1. Introduce concepts, laws, observations, models of fluids at rest and in motion and understanding fluid behavior for engineering design and control of fluid system.
- 2. Develop competence with mass, energy and momentum balances for determining resultant interactions of flows and engineered and natural systems.
- 3. The development of boundary layers and advancement of practical hydraulics and understanding the concept of advanced fluid mechanics.
- 4. Students understand Citizens' Role and Civil Society- Social Movements and Non-Governmental Organizations.

#### **Course Outcomes**

On completion of this course the student will be able to:

COI	To find frictional losses in a pipe when
COI	there is a flow between two places.
coa	Calculation of conjugate depth in a flow
02	and to analyse the model and prototype.
CO3	Find the dependent and independent
005	parameters for a model of fluid flow.
COA	Explain the various methods available for
004	the boundary layer separation.

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

#### **Course Content:**

Unit I: Fluid Properties and Hydrostatics
7
Lecture Hours
Density – Viscosity – Surface tension –
compressibility - capillarity - Hydrostatic forces
on plane – inclined and curved surfaces –
buoyancy – centre of buoyancy – metacentre.
Unit II: Fluid Dynamics
7
Lecture Hours
Control volume – Fluid Kinematics - Types of
flows; Steady flow, Unsteady flow, Uniform and
Non Uniform flow, Rotational flow, Irrotational
flow, 1-D, 2-D, 3-D flows- Streamline and
Velocity potential lines- Euler and Bernoulli's
equations and their applications – moment of
momentum – Momentum and Energy correction
factors – Impulse – Momentum equation-Navier-
Stokes Equations-Applications
Unit III: Open Channel Flow
/
Dimensional homogenaity Delaigh and
Dimensional homogeneity – Raleign and
Buckingnam $\pi$ theorems – Non-dimensional
Module quantities Specific quantities
Unit IV. Dimensional Analysis
Unit IV: Dimensional Analysis
/ Lactura Hours
Dimensional homogeneity – Raleigh and
Buckingham $\pi$ theorems Non dimensional
numbers – Model laws and distorted models
Module quantities-Specific quantities
moune quantities-specific quantities.

#### **Suggested Reading**

- P. N. Modi and S. M. Seth (2011), Hydraulics and Fluid Mechanics including Hydraulic Machines, Standard Publications. ISBN-9788189401269.
- D.S. Kumar (2004), Fluid Mechanics and Fluid Power Engineering, Katson Publishing House, ISBN - 9788185749181.

#### **Continuous Assessment Pattern**

3. V.L. Streeter, (2001), Fluid Mechanics, McGraw Hill

Book Co. ISBN – 9780071156004

Name of The	Basic Fluid Mechanics Lab				
Course Code	BCE02P3302	2			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		0	0	2	1

#### **Course Objectives**

1. Introduce concepts, laws, observations, models of fluids at rest and in motion and understanding fluid behavior for engineering design and control of fluid system.

2. Develop competence with mass, energy and momentum balances for determining resultant interactions of flows and engineered and natural systems.

3. The development of boundary layers and advancement of practical hydraulics and understanding the concept of advanced fluid mechanics..

#### **Course Outcomes**

On completion of this course the student will be able to:

COL	To find frictional losses in a pipe when
COI	there is a flow between two places.
CO2	Calculation of conjugate depth in a flow
002	and to analyse the model and prototype
	Find the dependent and independent
CO3	parameters for a model of fluid flow.
COA	Explain the various methods available for
CO4	the boundary layer separation.

#### **Continuous Assessment Pattern**

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

#### **Course Content:**

#### List of Experiments:

- 1. Verification of Bernoullis Theorem
- 2. Metacentric Height
- 3. Calibration of V- Notch
- 4. Calibration of Rectangular Notch
- 5. Calibration of Trapezoidal Notch
- 6. Calibration of Venturimeter
- 7. Calibration of Orificemeter
- 8. Losses in Pipes

#### **Suggested Reading**

1. P. N. Modi and S. M. Seth (2011), Hydraulics and Fluid Mechanics including Hydraulic Machines, Standard Publications. ISBN- 9788189401269.

2. D.S. Kumar (2004), Fluid Mechanics and Fluid Power Engineering, Katson Publishing House, ISBN - 9788185749181.

3. V.L. Streeter, (2001), Fluid Mechanics, McGraw Hill Book Co. ISBN – 9780071156004.

Name of The Course	Surveying Lab						
Course Code			BCE	E02P	3303	3	
Prerequisite	-						
Co-requisite	-						
Anti-requisite	-						
				L	Τ	P	С
				0	0	2	1

#### **Course Objectives**

1. To teach the students basics of surveying and expose different techniques of surveying.

2. To help the students to learn the field applicability of the different survey methods.

3. To teach students about types of errors encountered in different types of surveying.

#### **Course Outcomes**

On completion of this course the student will be able to:

C01	Learn about basics involved in different types of surveying like tape, compass, leveling, and theodolite (total station).
CO2	Demonstrate skills in performing measurement of distance, angles, leveling, and curve setting.
CO3	Develop skills for estimating distance between given points, area of a given plot and earthwork involved in cuttings and fillings.
CO4	Develop skill to carry out tachometry, geodetic surveying wherever situation demands.
CO5	Develop skills to apply error adjustment to the recorded reading to get an accurate surveying output.

#### **Continuous Assessment Pattern**

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

#### **Course Content:**

#### List of Experiments:

- 17. Chain Survey- Determination of area by perpendicular offsets
- 18. Chain Survey- Measurement of distance by chaining & ranging
- 19. Compass Survey- Plotting & adjustment of closed traverse
- 20. Theodolite Survey- Measurement of horizontal angles by method of repetition
- 21. Measurement of Vertical Angles and Determination of Height of an Object
- 22. Plane Table Survey- Radiation method
- 23. Levelling- Rise & Fall method
- 24. Levelling- Height of collimation method
- 25. Trignometrical Levelling- Single plane method
- 26. Curve Surveying- Setting out a simple circular curve by Rankine's method
- 27. Contouring- To determine the contours for a given location
- 28. GPS Survey- Coordinates & Distance measurement using GPS
- 29. Total Station- Measurement of Altitude of Given Elevated Points
- 30. Total Station- Measurement of distance & coordinates of given points
- 31. Stereoscope- Use of stereoscope for 3D viewing
- 32. Stereoscope- Determination of height of objects from a stereo pair using the parallax bar

#### **Suggested Reading**

- 1. Punmia B.C. (2005), Surveying, Volume 1, 16th Edition Laxmi Publications. ISBN: 9788170080794
- Punmia B.C. (2005), Surveying, Volume 2, 15th Edition Laxmi Publications. ISBN: 9788170080800
- 3. Satheesh Gopi (2010), GPS Principles and Applications, Tata Mc Graw Hill publishing company Ltd. ISBN: 9780070141704

Name of The Course	Introduction to Surveying
<b>Course Code</b>	BCE02T3303

Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		2	0	0	2

#### **Course Objectives**

- 1. To teach the students basics of surveying and expose different techniques of surveying.
- 2. To help the students to learn the field applicability of the different survey methods.
- 3. To teach students about types of errors encountered in different types of surveying.

#### **Course Outcomes**

On completion of this course the student will be able to:

	Learn about basics involved in different
CO1	types of surveying like tape, compass,
	leveling, and theodolite (total station).
	Demonstrate skills in performing
CO2	measurement of distance, angles,
	leveling, and curve setting.
	Develop skills for estimating distance
CO2	between given points, area of a given plot
COS	and earthwork involved in cuttings and
	fillings.
	Develop skill to carry out tachometry,
<b>CO4</b>	geodetic surveying wherever situation
	demands.

#### **Continuous Assessment Pattern**

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

#### **Course Content:**

#### **Unit I: Plane Surveying and Theodolite**

#### **Lecture Hours**

Introduction to plane surveying, conventional tape measurement, electronic distance measurement – Meridians, Azimuths and bearings – Theodolites – Temporary and permanent adjustment – Horizontal and Vertical angle measurements – Electronic total station.

#### **Unit II: Leveling and Contouring**

# 7

7

Differential levelling, Longitudinal & cross section leveling, Refraction & curvature correction, Reciprocal leveling -Tachometry – Stadia tachometry, tangential tachometry & substance tachometry- Contouring.

# Unit III Calculation of Earthwork and GPS 7

#### **Lecture Hours**

**Lecture Hours** 

Area, volume calculation of earth work – Introduction to Global positioning system – GPS surveying methods.

**Unit IV: Curve Surveying** 

#### **Lecture Hours**

Definitions, designation of curve, elements of simple curve - Settings of simple circular curve, Compound and reverse curve- Transition curve – Introduction to vertical curves.

#### Suggested Reading

- Punmia B.C. (2005), Surveying, Volume 1, 16th Edition Laxmi Publications. ISBN: 9788170080794
- Punmia B.C. (2005), Surveying, Volume 2, 15th Edition Laxmi Publications. ISBN: 9788170080800
- 3. Satheesh Gopi (2010), GPS Principles and Applications, Tata Mc Graw Hill publishing company Ltd. ISBN: 9780070141704

Name of The	Engineering	Dra	win	g	
Course					
Course Code	BCE01P3304	1			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	P	С
		0	0	4	2

#### **Course Objectives**

- 4. To create awareness and emphasize the need for Engineering Drawing in all the branches of engineering.
- 5. To follow basic drawing standards and conventions.

7

6. To develop skills in three-dimensional visualization of engineering component.

#### **Course Outcomes**

On completion of this course the student will be able to:

<b>CO1</b>	Prepare drawings as per standards (BIS).
CO2	Solve specific geometrical problems in plane geometry involving lines, plane figures and special Curves.
CO3	Produce orthographic projection of engineering components working from pictorial drawings.
<b>CO4</b>	Develop skill Planes under study.

#### **Continuous Assessment Pattern**

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

#### **Course Content:**

Unit I: Introduction	
7	7
Lecture Hours	
Engineering Drawing: An Overview, its need a	nd
objectives. Introduction to Computer Aic	led
Drafting- Introduction to AutoCAD/CAT	[A;
Initial setup commands, Utility comman	ds,
drawing aids, entity draw commands, disp	lay
commands and edit commands.	
Unit II: Lettering, Numerals and Dimensioni	ing
	7
Lecture Hours	
Drawing scale, various types of lines and th	eir
uses. Lettering. Dimensioning; Basic types	of
dimensioning- linear, angular and rad	lial
dimensioning. Title block.	
Unit III Orthographic Projection – Points a	nd
Lines	
7	
Lecture Hours	
Object in four quadrant, 2-D description	of
quadrants. Projection of points. Projection	of
lines- Inclined lines, projection of a skew line, h	ine
parallel to perpendicular plane.	
Unit IV: Orthographic Projection –Planes	
·	

# Lecture Hours

Planes under study, classification of planer surface, projection of planer surface- principal, inclined, oblique planes.

#### **Suggested Reading**

- 1. Bhatt N. D., "Engineering Drawing", Charotar publishing House, 1998.
- 2. French and Vierk, "Fundamentals of Engineering Drawing", McGraw Hill, 2002.
- 3. John K.C., "Engineering Graphics for Degree", PHI Learning Private Limited, New Delhi, 2010.

Name of The	Strength of Materials				
Course					
<b>Course Code</b>	BCE02T330	1			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		2	0	0	2

#### **Course Objectives**

1. To know the concept of stresses and strains.

2. To know the concept of shear force and bending moment.

3. To calculate deflection in beams and trusses.

4. To determine the buckling and crushing load of compression members.

#### **Course Outcomes**

On completion of this course the student will be able to:

CO1	Understand the concepts of volumetric strain and torsion.
CO2	Analyse shear force and bending moment for different types of beams.
CO3	Calculate deflections in beams and trusses.
<b>CO4</b>	Study compression member, columns and finding buckling and crushing load.

#### **Continuous Assessment Pattern**

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	

7

20 30 30 100 ourse Content: Jnit I: Volumetric Strains and Torsion. 7 Lecture Hours Bulk Modulus – Modulus of rigidity – Change is volume – Volumetric Strain - Introduction to orsion - Torsion of shafts of circular section orque and twist - shear stress due to torque Jnit II: Shear Force and Bending Moment 7 Lecture Hours Types of beams, supports and loadings - sheat orce and bending moment diagram - bending tresses and shear stresses in beams Jnit III: Deflection of Beams Jnit III: Deflection of Beams 7 Lecture Hours ntroduction - Theory of bending - deflection of beams by Macaulay's method - moment are nethod and conjugate beam method. Jnit IV: Theory of Columns 7 Lecture Hours	20	20	50	100
Juit I: Volumetric Strains and Torsion.         7         Lecture Hours         3ulk Modulus – Modulus of rigidity – Change is volume – Volumetric Strain - Introduction to orsion - Torsion of shafts of circular section orque and twist - shear stress due to torque         Juit II: Shear Force and Bending Moment         7         Lecture Hours         7         Lecture Hours         7         Lecture Hours         7         Lecture Hours         Types of beams, supports and loadings - sheat orce and bending moment diagram - bending tresses and shear stresses in beams         Juit II: Deflection of Beams         7         Lecture Hours         ntroduction - Theory of bending - deflection of beams by Macaulay's method - moment are nethod and conjugate beam method.         Juit IV: Theory of Columns         7         Lecture Hours	20		50	100
ourse Content:       7         Unit I: Volumetric Strains and Torsion.       7         Lecture Hours       7         Bulk Modulus – Modulus of rigidity – Change is volume – Volumetric Strain - Introduction to orsion - Torsion of shafts of circular section orque and twist - shear stress due to torque         Unit II: Shear Force and Bending Moment         7         Lecture Hours         7         Lecture Hours         7         Lecture Hours         Types of beams, supports and loadings - shear orce and bending moment diagram - bending tresses and shear stresses in beams         Unit III: Deflection of Beams         7         Lecture Hours         7				
Unit I: Volumetric Strains and Torsion.       7         Lecture Hours       7         Bulk Modulus – Modulus of rigidity – Change is zolume – Volumetric Strain - Introduction to orsion - Torsion of shafts of circular section orque and twist - shear stress due to torque       7         Unit II: Shear Force and Bending Moment       7         Lecture Hours       7         Eventure Hours       7         Types of beams, supports and loadings - shear orce and bending moment diagram - bending tresses and shear stresses in beams       7         Lecture Hours       7         Cecture Hours       7         Init III: Deflection of Beams       7         Lecture Hours       7	ourse Conte	ent:		
7 Lecture Hours Bulk Modulus – Modulus of rigidity – Change is yolume – Volumetric Strain - Introduction to orsion - Torsion of shafts of circular section orque and twist - shear stress due to torque Unit II: Shear Force and Bending Moment 7 Lecture Hours Types of beams, supports and loadings - sheat orce and bending moment diagram - bending tresses and shear stresses in beams Unit III: Deflection of Beams 7 Lecture Hours ntroduction - Theory of bending - deflection of beams by Macaulay's method - moment area nethod and conjugate beam method. Unit IV: Theory of Columns 7 Lecture Hours 7	Unit I: Volu	metric Strair	is and Torsi	ion.
Lecture Hours         Bulk Modulus – Modulus of rigidity – Change is volume – Volumetric Strain - Introduction to orsion - Torsion of shafts of circular section orque and twist - shear stress due to torque         Unit II: Shear Force and Bending Moment         7         Lecture Hours         Types of beams, supports and loadings - shear stresses and shear stresses in beams         Unit II: Deflection of Beams         7         Lecture Hours         7         Lecture Hours         7         Lecture Hours         Torice and bending moment diagram - bending tresses and shear stresses in beams         Jnit III: Deflection of Beams         7         Lecture Hours         ntroduction - Theory of bending - deflection of beams by Macaulay's method - moment are nethod and conjugate beam method.         Jnit IV: Theory of Columns         7         Lecture Hours				7
Bulk Modulus – Modulus of rigidity – Change for a considered or section or section or section or section of shafts of circular section or and twist - shear stress due to torque         Unit II: Shear Force and Bending Moment         7         Lecture Hours         Types of beams, supports and loadings - sheat or conce and bending moment diagram - bending tresses and shear stresses in beams         Jnit III: Deflection of Beams         7         Lecture Hours	Lecture Hou	irs	<u> </u>	<u></u>
Volume – Volumetric Strain - Introduction for orsion - Torsion of shafts of circular section orque and twist - shear stress due to torque Unit II: Shear Force and Bending Moment 7 Lecture Hours Types of beams, supports and loadings - sheat force and bending moment diagram - bending stresses and shear stresses in beams Unit III: Deflection of Beams 7 Lecture Hours ntroduction - Theory of bending - deflection of beams by Macaulay's method - moment are nethod and conjugate beam method. Unit IV: Theory of Columns 7 Lecture Hours	Bulk Modulu	is – Modulus	of rigidity –	Change in
orsion - Torsion of shafts of circular section orque and twist - shear stress due to torque Unit II: Shear Force and Bending Moment 7 Lecture Hours Types of beams, supports and loadings - sheat orce and bending moment diagram - bending stresses and shear stresses in beams Unit III: Deflection of Beams 7 Lecture Hours ntroduction - Theory of bending - deflection of beams by Macaulay's method - moment are nethod and conjugate beam method. Unit IV: Theory of Columns 7 Lecture Hours	volume – V	olumetric St	rain - Intro	duction to
orque and twist - snear stress due to torque         Unit II: Shear Force and Bending Moment         7         Lecture Hours         Types of beams, supports and loadings - sheat         Force and bending moment diagram - bending         Teresses and shear stresses in beams         Unit III: Deflection of Beams         7         Lecture Hours         ntroduction - Theory of bending - deflection of beams by Macaulay's method - moment are nethod and conjugate beam method.         Jnit IV: Theory of Columns         7         Lecture Hours	torsion - 10	rsion of shaft	s of circula	r section -
7         Lecture Hours         Types of beams, supports and loadings - sheat         Force and bending moment diagram - bending         Sorce and bending moment diagram - bending         Stresses and shear stresses in beams         Unit III: Deflection of Beams         7         Lecture Hours         ntroduction - Theory of bending - deflection of beams by Macaulay's method - moment are nethod and conjugate beam method.         Unit IV: Theory of Columns         7         Lecture Hours         7	orque and ty	vist - shear str	ess due to to	rque
A cecture Hours       7         Types of beams, supports and loadings - sheat or ce and bending moment diagram - bending tresses and shear stresses in beams       7         Unit III: Deflection of Beams       7         A cecture Hours       7         Introduction - Theory of bending - deflection of beams by Macaulay's method - moment are nethod and conjugate beam method.       7         Jinit IV: Theory of Columns       7         A cecture Hours       7	Unit II: She	ar Force and	Bending M	oment
Cypes of beams, supports and loadings - sheat         Force and bending moment diagram - bending         Sorce and shear stresses in beams         Unit III: Deflection of Beams         7         Lecture Hours         ntroduction - Theory of bending - deflection of beams by Macaulay's method - moment are nethod and conjugate beam method.         Unit IV: Theory of Columns         7         Lecture Hours	T 4 TT			7
Types of beams, supports and loadings - shear force and bending moment diagram - bendin stresses and shear stresses in beams Unit III: Deflection of Beams 7 Lecture Hours ntroduction - Theory of bending - deflection of beams by Macaulay's method - moment are nethod and conjugate beam method. Unit IV: Theory of Columns 7 Lecture Hours	Lecture Hot	irs		
orce and bending moment diagram - bending stresses and shear stresses in beams Unit III: Deflection of Beams 7 Lecture Hours Introduction - Theory of bending - deflection of beams by Macaulay's method - moment are nethod and conjugate beam method. Unit IV: Theory of Columns 7 Lecture Hours			1	
Unit III: Deflection of Beams 7 Lecture Hours Introduction - Theory of bending - deflection of beams by Macaulay's method - moment are nethod and conjugate beam method. Unit IV: Theory of Columns 7 Lecture Hours	Types of be	ams, supports	s and loadin	igs - shear
7         Lecture Hours         Introduction - Theory of bending - deflection of beams by Macaulay's method - moment are nethod and conjugate beam method.         Jnit IV: Theory of Columns         7         Lecture Hours	force and be	ams, supports ending mome	s and loadin ont diagram	igs - shear - bending
Lecture Hours Introduction - Theory of bending - deflection of beams by Macaulay's method - moment are nethod and conjugate beam method. Unit IV: Theory of Columns Lecture Hours	force and be stresses and s	ams, supports ending mome shear stresses	s and loadin ent diagram in beams	igs - shear - bending
ntroduction - Theory of bending - deflection of beams by Macaulay's method - moment are nethod and conjugate beam method. Unit IV: Theory of Columns 7 Lecture Hours	force and be stresses and s Unit III: De	ams, supports ending mome shear stresses flection of Be	s and loadin ent diagram in beams ams	igs - shear - bending
beams by Macaulay's method - moment are nethod and conjugate beam method. Unit IV: Theory of Columns Cecture Hours	force and be stresses and s Unit III: De	ams, supports ending mome shear stresses flection of Be	s and loadin ent diagram in beams <b>ams</b>	ngs - shear - bending 7
nethod and conjugate beam method. Unit IV: Theory of Columns Cecture Hours	force and be stresses and s Unit III: Def Lecture Hou	ams, supports ending mome shear stresses flection of Be Irs	s and loadin ent diagram in beams ams	ngs - shear - bending 7
Unit IV: Theory of Columns 7 Lecture Hours	Types of be force and be stresses and s Unit III: Def Lecture Hou Introduction	ams, supports ending mome shear stresses flection of Be Irs - Theory of b	s and loadin ent diagram in beams ams pending - de	rgs - shear - bending 7 effection of
Contry: Theory of Columns 7 Lecture Hours	force and be stresses and s Unit III: Def Lecture Hou Introduction beams by N	ams, supports ending mome shear stresses flection of Be urs - Theory of the flacaulay's m	s and loadin ent diagram in beams ams pending - de ethod - mo	rgs - shear - bending 7 eflection of oment area
Lecture Hours	Types of be force and be stresses and s Unit III: Def Lecture Hou Introduction beams by M method and c	ams, supports ending mome shear stresses flection of Be urs - Theory of b flacaulay's m conjugate bear	s and loadin ent diagram in beams ams pending - de ethod - mo m method.	rest - shear - bending 7 eflection of oment area
Lecture mours	Types of be force and be stresses and s Unit III: Def Lecture Hou Introduction beams by M method and c Unit IV: The	ams, supports ending mome shear stresses flection of Be Irs - Theory of the Macaulay's me conjugate bear eory of Colur	s and loadin ent diagram in beams ams bending - de ethod - mo m method. nns	rest - shear - bending 7 offlection of oment area
	Types of be force and be stresses and s Unit III: Def Lecture Hou Introduction beams by M method and c Unit IV: The	ams, supports ending mome shear stresses flection of Be Irs - Theory of b flacaulay's m conjugate bear eory of Colur	s and loadin ent diagram in beams ams bending - de ethod - mo n method. nns	responding to the second secon
	I ypes of be force and be stresses and s Unit III: Def Introduction beams by N method and c Unit IV: The Lecture Hou Theory of C	ams, supports ending mome shear stresses flection of Be Irs - Theory of b Aacaulay's m conjugate bear eory of Colur Irs Columns - lo	s and loadin in beams ams bending - de ethod - mo <u>m method.</u> nns	response of the short of the sh

#### Suggested Reading

1. Ramamrutham S. and Narayanan R. (2008), Strength of Materials, 3rd Edition, Dhanpat Rai Publications Company, ISBN: 9788187433545.

2. Bansal R. K. (2010), Strength of Materials, 4th Edition, Laxmi

Publications, ISBN: 9788131808146.

Name of The	Construction Engineering				
Course					
<b>Course Code</b>	BCE01T3402	2			
Prerequisite	-				
<b>Co-requisite</b>	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

#### **Course Objectives**

5. To know different types of modern construction materials and their uses.

- 6. To know different types of cement, mineral and chemical admixtures, aggregates and their Engineering properties and uses.
- 7. To understand the properties and application of various special concretes.
- 8. To know the methodology of mix design and their application in accordance with various field conditions.

#### **Course Outcomes**

On completion of this course the student will be able to:

CO1	Develop ability to choose the modern construction materials appropriate to the climate and functional aspects of the buildings.
CO2	Supervise the construction technique to be followed in brick and stone masonry, concreting, flooring, roofing and plastering etc.
CO3	Understand the properties of cement and its laboratory testing methods.
CO4	Determine quality of fine aggregate and course aggregate
CO5	Learn about the different properties of concrete.
<b>CO6</b>	Understand latest research paper

#### **Continuous Assessment Pattern**

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

#### **Course Content:**

Unit I: Properties of Construction Materials				
8				
Lecture Hours				
Physical and Mechanical properties of				
construction materials - Bricks - Stones -				
Structural Steel and Aluminum – Roofing				
Material – Physical descriptions of asbestos				
sheets, GI sheets, tubes and light weight roofing				
materials - Timber and its Products - Modern				
materials - Neoprene - Thermo Cole - Vinyl				
flooring - decorative panels and laminates -				
anodized aluminum - architectural glass and				

ceramics - Ferro cement – PVC - Polymer base materials and FRP.

## **Unit II: Construction Technology**

8

**Lecture Hours** 

Introduction to Masonry design, Principles of construction–Bonding–Reinforced brick work– – Stone masonry – Hollow block masonry – Pointing - Plastering – DPC Floor and Roof Construction: Floors, General Principles – Types of floors – Floor coverings – Types of roofs.

#### **Unit III: Properties of cement**

8

#### **Lecture Hours**

ASTM classification of Cement – Properties of Cement - Testing of Cement – Field Testing – Laboratory Testing methods – Setting time of cement – soundness of cement – fineness and compressive strength of cement - Heat of Hydration.

Unit IV: Fine Aggregate and Coarse Aggregate

#### 8

8

# **Lecture Hours**

Fine aggregate – Properties and testing methods – Bulking of Sand – sieve analysis – fineness modulus of sand - Cement mortar – properties and uses, Chemical Admixtures- Plasticizer – super plasticizer – air entraining agents etc.

#### **Unit V: Properties of Concrete**

#### **Lecture Hours**

Concrete – selection of materials for concrete water cement ratio - Properties of fresh concrete workability – measurement of workability – Strength of concrete – gain of strength with age – testing of hardened concrete - Compressive strength - Tensile strength – Flexural strength – modulus of elasticity of concrete – Introduction to Mix Design of concrete.

# Unit VI: Discussion on Latest Research Paper 4

# **Lecture Hours**

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

#### **Suggested Reading**

- Shetty, M.S. (2010), Concrete Technology, S. Chand & Company Ltd. ISBN-9788121900034.
- 2. IS: 10262-2009, Guidelines for concrete mix design proportioning, BIS, New Delhi.

Name of The	Soil Mecha	nics			
Course					
<b>Course Code</b>	BCE02T34	05			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		2	0	0	2

#### **Course Objectives**

- 5. To impart the fundamental concepts of soil mechanics.
- 6. To understand the bearing capacity.
- 7. To know the importance of index properties like grain size, consistency limits, soil classification.
- 8. To understand the concept of compaction and consolidation of soils.

#### **Course Outcomes**

CO1	Give an engineering classification of a			
COI	given soil			
	Understand the principle of effective			
CO2	stress, and then calculate stresses that			
	influence soil behavior.			
	Determine soil deformation parameters,			
CO3	and calculate settlement magnitude and			
	rate of settlement			
<b>CO4</b>	Specify soil compaction requirements.			

#### **Continuous Assessment Pattern**

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

**Course Content:** 

# Unit I: Weight volume relations and Index properties

# 7 Lecture Hours

Distribution of soil in India, Soil - Types, 3-phase diagram, Weight-volume relations, Classification, Index properties (Atterberg's limits), Theory of compaction, Importance of geotechnical engineering.

#### Unit II: Soil water and Permeability

7

#### **Lecture Hours**

Soil water - Effective and neutral stresses – Flow of water through soils – Permeability – Darcy's law –Seepage and flow-nets - Quick sand conditions.

#### Unit III: Stress distribution in soils

#### **Lecture Hours**

7

Vertical pressure distribution- Boussinesq's equation for point load and uniformly distributed loads of different shapes- Newmark's influence chart – Westergaard's equation – Isobar diagram – Pressure bulb - Contact pressure, Earth Pressures Theories.

#### Unit IV: Compressibility and Consolidation 7 lecture hours

#### **Suggested Reading**

1.K.R.Arora (2011), Soil Mechanics and Foundation Engineering, Standard Publishers Distributors, Delhi, ISBN: 978-81-801-4112-6.

2.Gopal Ranjan, A.S.R Rao (2000), Basic and Applied Soil Mechanics 2nd Edition, New Age International. ISBN: 978-81-224-1223-9.

3. Arun Kr. Jain, B.C. Punmia, Ashok Kr. Jain (2005), Soil Mechanics and Foundations, Sixteenth Edition, Laxmi Publications. ISBN: 978-81-700-8791-5.

Name of The<br/>CourseStrength of Materials Lab

Course Code	BCE02P3301	l			
Prerequisite	-				
<b>Co-requisite</b>	-				
Anti-requisite	-				
		L	Т	Р	С
		0	0	2	1

#### **Course Objectives**

To supplement the theoretical knowledge gained in Mechanics of Solids with practical testing for determining the strength of materials under externally applied loads. This would enable the student to have a clear understanding of the design for strength and stiffness.

#### **Course Outcomes**

On completion of this course the student will be able to:

COI	Conduct tension and compression tests on
COI	the components
CO2	To determine hardness, impact strength,
002	fatigue strength of the specimens.
CO3	Measure strain and load using specific
005	gauges.
<b>CO4</b>	Measure torsion in mild steel.
COF	Compression and tension test on helical
05	springs.

#### **Continuous Assessment Pattern**

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

#### **Course Content:**

#### List of Experiments

- 1. Tension test on a mild steel rod, thin and twisted bars.
- 2. Compression test on Bricks, Concrete blocks.
- 3. Double shear test on Mild steel and Aluminium rods.
- 4. Impact test on metal specimen (Charpy test and Izod test).

- 5. Hardness test on metals (Steel, Copper and Aluminium) - Brinnell Hardness Number.
- Hardness test on metals (Steel, Copper and Aluminium) - Rockwell Hardness Number.
- Deflection test Verification of Maxwell theorem.
- 8. Compression and tension test on helical springs.
- 9. Fatigue test on Steel.
- 10. Torsion test on mild steel

## **Suggested Reading**

1. Gere J. M. and Thimoshenko S. P. (2008), Mechanics of Materials, 8th Edition, CBS Publishers & Distributors, ISBN: 9780534417932.

2. Popov E. P. (2009), Engineering Mechanics of Solids, 2nd Edition, Prentice Hall Publisher, ISBN: 9788120321076.

3. Bansal R. K. (2010), Strength of Materials, 4th
Edition, Laxmi Publications, ISBN: 9788131808146.

Name of The	Construction Engineering				
Course	Lab				
<b>Course Code</b>	BCE01P3402				
Prerequisite	-				
<b>Co-requisite</b>	-				
Anti-requisite	-				
	L T P C				
		0	0	2	1

#### **Course Objectives**

- 1. To know the concept and procedure of different type of test conducted on cement, aggregate and concrete.
- 2. To understand the properties of different building materials and their Civil Engineering Significance.
- 3. To understand the IS Code provision of testing different types of building materials

# **Course Outcomes**

On completion of this course the student will be able to:

CO1	Identify the suitability of materials for
COI	construction work.

	Perform different test conducted on
CO2	cement, aggregate and concrete as per
	relevant Codal provision.
	Demonstrate the relevant BIS testing
CO3	procedure to be carried out to ascertain the
	quality of building materials.

#### **Continuous Assessment Pattern**

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

## **Course Content:**

# List of Experiments

- 10. To determine the water content required producing a cement paste of normal consistency and also determining initial and final setting time of a given cement sample.
- 11. To determine the fineness of cement by Blain air permeability apparatus.
- 12. To determine the specific gravity of given sample of OPC.
- 13. To determine the particle size distribution of fine and coarse aggregate by sieve analysis method.
- 14. Determination of specific gravity of coarse and fine aggregate.
- 15. To determine the silt content in the given sample of fine aggregate and also determine necessary adjustment for the bulking of fine aggregate and draw curve between water content and bulking.
- 16. To determine the consistency of the concrete mixes for different W/C ratio by slump test with and without admixture.
- 17. To determine the workability of concrete mix of given proportion by compaction factor test.
- 18. To cast concrete cubes and to determine compressive strength of concrete by non-destructive and destructive method of testing.

#### Suggested Reading

1. S. K. Duggal, (2008), *Building Materials*, 3rd Edition, New Age International Publishers, ISBN: 978-81-224-2392-1

2. Sushil Kumar (2010), *Building Construction*, Standard Publishers Distributors, ISBN: 978-81-801-4168-3.

3. M. S. Shetty, (2009), *ConcreteTechnology: Theory and Practice*, S.Chand Publishers, ISBN: 978-81-219-0003-4

4. A. R. Santhakumar (2006), *Concrete Technology*, Oxford University Press, ISBN: 978-01-956-7153-7

Name of The	Soil Mechanics Lab				
Course					
Course Code	BCE02P3405	BCE02P3405			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		0	0	2	1

# **Course Objectives**

1. To impart the fundamental concepts of soil mechanics.

2. To understand the bearing capacity.

3. To know the importance of index properties like grain size, consistency limits, soil classification.

4. To understand the concept of compaction and consolidation of soils.

# **Course Outcomes**

On completion of this course the student will be able to:

COI	Give an engineering classification of a		
COI	given soil.		
	Understand the principle of effective		
CO2	stress, and then calculate stresses that		
	influence soil behavior.		
	Determine soil deformation parameters,		
CO3	and calculate settlement magnitude and		
	rate of settlement.		
<b>CO4</b>	Specify soil compaction requirements.		
	Conduct laboratory tests, and obtain soil		
CO5	properties and parameters from the test		
	observations and results		

# **Continuous Assessment Pattern**

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

#### **Course Content:**

#### List of Experiments

- 13. To determine moisture content of soil
- 14. To determine the specific gravity of soil fraction passing 4.75 mm I.S sieve by density bottle/Pycnometer bottle
- 15. To determine the grain size distribution curve for given soil sample by sieve analysis and hydrometer analysis.
- To determine the consistency limits (i.e Liquid limit, Plastic limit & Shrinkage limit)of given samples
- 17. To determine in-situ density of compacted soils by using core cutter & pouring cylinder methods.
- 18. To determine the relative density of given coarse grained materials
- 19. To determine the maximum dry density and optimum moisture content for the given soil sample.
- 20. To determine coefficient of permeability of given soil sample by constant head and variable head method.
- 21. To determine unconfined compressive strength of a given soil sample
- 22. To determine shear strength of a given soil specimen using vane shear apparatus
- 23. To determine shear strength of a given soil specimen using direct shear apparatus
- 24. To determine the shear parameters of soil by Undrained Triaxial Test

#### **Suggested Reading**

- Gopal Ranjan, A.S.R Rao (2000), Basic and Applied Soil Mechanics 2nd Edition, New Age International. ISBN: 978-81-224-1223-9.
- 2. William Powrie, Soil Mechanics: Concepts and Applications, Second Edition, Spon Press. ISBN: 978-04-153-1156-4.

 Karl Terzaghi, Soil Mechanics in Engineering Practice, Warren Press. ISBN: 978-14-465-1039-1

Name of The Course	Basic Structural Analysis				
Course Code	BCE02T3403				
Prerequisite	-				
<b>Co-requisite</b>	-				
Anti-requisite	-				
		L	T	P	C
		2	0	0	2

#### **Course Objectives**

- 4. To understand the concept of static indeterminacy.
- 5. To know the different techniques available for the analysis of statically indeterminate structures.
- 6. To identify the best suitable method of analysis.

#### **Course Outcomes**

On completion of this course the student will be able to:

COL	Identify the method of analysis for
COI	statically indeterminate structures
	Understand the difference between
CO2	statically determinate structures and
	statically indeterminate structures
CO3	Use the influence line diagram for
005	analysing beam.
004	Understand strain energy method to
04	analyse arches.

#### **Continuous Assessment Pattern**

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

#### **Course Content:**

Unit I: Theorem of Three Moments

**Lecture Hours** 

Static indeterminacy - Theorem of three moments - analysis of propped cantilevers - fixed & continuous beam - bending moment and shear force diagram. **Unit II: Strain Energy Method** 7 **Lecture Hours** Static indeterminacy - Strain energy method analysis of indeterminate structures, beams, pin jointed and rigid jointed structures - temperature effect - bending moment and shear force diagram. Unit III: Analysis of Arches 7 **Lecture Hours** Two hinged and three hinged parabolic arches circular arches - cables - tension forces in towers - influence line for horizontal thrust and bending moment. **Unit IV: Slope deflection method** 7 **Lecture Hours** Kinematic indeterminacy - Slope deflection method - analysis of continuous beams and portals - bending moment and shear force diagram.

#### **Suggested Reading**

1.Vazirani & Ratwani (2003), Analysis of Structures, Vol. 1 & II, Khanna Publishers, ISBN: 0125249853.

2. S. Ramamrutham (2004), Theory of Structures, 5thEdition, Dhanpat Rai Publications, ISBN: 978041528091

Name of The Course	Basic Transportation				
Course Code	BCE02T3304				
Prerequisite	-				
<b>Co-requisite</b>	-				
Anti-requisite	-				
		L	Т	Р	С
		2	0	0	2

#### **Course Objectives**

2. To impart the knowledge in Highway Geometrics, Traffic Engineering, materials, construction and design of pavements

#### **Course Outcomes**

On completion of this course the student will be able to:

7

COL	Design various geometric elements of
COI	highways.
	Understand the procedure to collect the
CO2	traffic data for design and traffic
	management.
CO3	Test the highway materials as per IS/IRC
005	guidelines.
COA	Do structural design of flexible and rigid
004	pavements.

#### **Continuous Assessment Pattern**

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

#### **Course Content:**

Unit I: Highway and Traffic Planning
7
Lecture Hours
Introduction to Transportation modes – Highway
alignment and field surveys - Master Plan -
Transport economics – Traffic Studies – Volume,
speed, origin and destination studies.
Introduction to Multi-modal Transportation,
Automated Transport systems, High urban
transport, Impact of transport on environment.
Unit II: Highway Geometrics
7
Lecture Hours
Highway classification (Rural and Urban roads),
Road Geometrics – Highway cross section
elements - camber - Sight Distance, Horizontal
Alignment Design, Super Elevation, Extra
widening, Transition curves, Set back distance,
Design of Vertical curves.
Unit III: Traffic Engineering
7
Lecture Hours
Traffic characteristics, road user & vehicular
characteristics, traffic studies, traffic operations,
traffic control devices, intelligent transport
systems, Intersections, Interchanges, Parking
Layout & Road signs.
Unit IV: Highway Materials and Construction
7
Lecture Hours
Material requirement for pavements – Soil
classification for Highway – Soil tests – CBR and

Plate Load Test, Aggregate – materials testing and specification, Bitumen – material testing and specification construction of bituminous and rigid pavements, Highway Maintenance – Material recycling.

#### **Suggested Reading**

1.Khanna.S.K., and Justo. C.E.G., (2011), Highway Engineering, Ninth Edition, Nem.

 Kadiyali.L.R., and Lal.N.B., (2005), Principles and Practice of Highway Engineering, Fourth Edition, Khanna Publishers, ISBN- 9788174091659.
 Chakroborthy Partha, and Das Animesh, (2003), Principles of Transportation Engineering, Eighth Printing, Prentice-Hall of India, ISBN-9788120320840.

4. Rao.G.V., (1996), Principles of Transportation and Highway Engineering, Tata McGraw-Hill Co, ISBN- 9780074623633.

Name of The Course	Water & Waste Water Treatment Systems				
Course Code	BCE02T34	BCE02T3404			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		2	0	0	2

#### **Course Objectives**

1. Understand the basic principles and concepts of unit operations and processes involved in water treatment.

2. Design of unit operations and processes involved in water treatment.

3. Evaluation of the performance of water treatment plants.

#### **Course Outcomes**

On completion of this course the student will be able to:

CO1	The type of unit operations and processes involved in water treatment plants.
CO2	Unit operations and processes required for satisfactory treatment of water.

	Demonstrate an ability to recognize the
CO3	type of unit operations and processes
	involved in wastewater treatment plants.
	Demonstrate an ability to choose the
COA	appropriate unit operations and processes
004	required for satisfactory treatment of
	wastewater.

#### **Continuous Assessment Pattern**

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

#### **Course Content:**

Unit I: Water Treatments Units
7
Lecture Hours
Physicochemical Principles applied in water
treatment, Unit operations, principles and
processes for pretreatment and treatment of raw
water, pre-chlorination and chlorination,
principles and objectives for designing
chlorination systems, General design
considerations for designing water treatment
plants.
Unit II: Unit Operations & Processes
7
Lecture Hours
chambers, flash mixers, flocculators, sedimentation tanks and sand filters- Slow sand and rapid sand filters, layouts – Flash mixer – Clariflocculator – Slow sand and rapid sand filters. Unit III: Wastewater Treatment
-
/ Lecture Hours
Physical, chemical and biological principles
involved in wastewater treatment and designing of
unit-operations and processes. Permissible
standards for wastewater disposal.
Unit IV: Pre and Primary Treatment
7
Lecture Hours
Objectives-Unit operations and processes-
Dringinlag functions and design of flash mixans
Principles, functions and design of flash mixers,

Disinfection-Aeration, grit chambers and primary

sedimentation tanks.

#### **Suggested Reading**

- Garg S.K. (2010), Environmental Engineering Vol. I Water Supply Engineering, Khanna Publishers. ISBN: 9788174091208
- 2. H.S.Peavy, D.R.Rowe & George Tchobanoglous (2005), Environmental Engineering, McGraw-Hill Company, New Delhi. ISBN: 9789380358246

Name of The	Basic Transportation				
Course	Engineering Lab				
Course Code	BCE02P3304	BCE02P3304			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	C
		0	0	2	1

#### **Course Objectives**

1. To impart the knowledge in testing of different highway materials as per IS/IRC guidelines.

#### **Course Outcomes**

On completion of this course the student will be able to:

COI	Understand about aggregate crushing
COI	value test and aggregate impact test.
CO2	Perform Los Angeles Abrasion Test and
02	Shape Test.
CO3	Understand different procedures for
005	testing bitumen.
COA	Test the highway materials as per IS/IRC
04	guidelines.
COS	Carry out Spot Test and California Bearing
05	Ratio Test

#### **Continuous Assessment Pattern**

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

**Course Content:** 

## List of Experiments

- 12. Aggregate Crushing Value Test
- 13. Aggregate Impact Test
- 14. Los Angeles Abrasion Test
- 15. Shape Test
- 16. Penetration Test of Bitumen
- 17. Ductility Test of Bitumen
- 18. Softening Point Test of Bitumen
- 19. Flash and Fire Point Test of Bitumen
- 20. Viscosity Test of Bitumen
- 21. Spot Test
- 22. California Bearing Ratio Test

#### **Suggested Reading**

- Kadiyali.L.R., and Lal.N.B., (2005), Principles and Practice of Highway Engineering, Fourth Edition, Khanna Publishers, ISBN-9788174091659.
- Chakroborthy Partha, and Das Animesh, (2003), Principles of Transportation Engineering, Eighth Printing, Prentice-Hall of India, ISBN-9788120320840.
- Rao.G.V., (1996), Principles of Transportation and Highway Engineering, Tata McGraw-Hill Co, ISBN- 9780074623633.
- 4. Khisty.C.J., and Lall.B.K., (2003), Transportation Engineering, Indian Edition, Prentice-Hall of India, ISBN- 9788120322127.

Name of The	Water Analysis Lab					
Course						
Course Code	BCE02P3404	BCE02P3404				
Prerequisite	-	-				
Co-requisite	-					
Anti-requisite	-					
		L	Т	Р	С	
		0 0 2 1				

#### **Course Objectives**

1. Understand the basic principles and concepts of unit operations and processes involved in water treatment.

2. Design of unit operations and processes involved in water treatment.

3. Evaluation of the performance of water treatment plants.

#### **Course Outcomes**

On completion of this course the student will be able to:

CO1	The type of unit operations and processes
	involved in water treatment plants.
CON	Unit operations and processes required for
	satisfactory treatment of water.
	The design of unit operation or process
~~~	appropriate to the situation by applying
CO3	physical chemical biological and
	engineering principles
-	
	To study unit operations & advanced
CO4	processes in water treatment its
	disinfection and aeration and softening.
	The design of water treatments units in a
	cost effective and sustainable way and
	evaluate its performance to meet the
CO5	
	desired health and environment related
	goals.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

List of Experiments

- 12. To determine the pH of a given water sample.
- 13. To determine the total solids, suspended solids, dissolved solids and volatile solids in wastewater.
- 14. To determine the turbidity and specific conductivity of the given water samples.
- 15. To determine the Alkalinity of given water sample.
- 16. To determine total hardness, permanent hardness and temporary hardness for given water sample.
- 17. To determine the chloride concentration of a given water sample.
- 18. To determine amount of sulphates in a given sample

- 19. To determine the dissolved oxygen content in a given water sample.
- 20. To determine BOD of the given wastewater sample.
- 21. To determine the COD of given sample.
- 22. To determine the optimum dosage of coagulant for turbidity removal of a given water sample.

Suggested Reading

- Nathanson, Jerry A. (2007), Basic Environmental Technology: Water Supply, Waste Management, and Pollution Control, 5th ed., PHI Learning Private Limited ISBN: 978-81-203-3836-4
- 2. Rangwala (1999), Water supply & Sanitary Engineering, Charotar Publishing House, Anand-16th Edition. ISBN: 9788185594590
- 3. Metcalf and Eddy (2003), Wastewater Engineering, Treatment and reuse, Tata McGraw-Hill Edition, Fourth edition. ISBN:9780070495395

Name of The	C	CAD Lab-I (AUTOCAD)						
Course								
Course Code	B	CE	01P	3504	1			
Prerequisite	-	-						
Co-requisite	-	-						
Anti-requisite	-							
					L	Т	Р	С
					0	0	2	1

Course Objectives

- 1. To understand the regulations as per National Building Code To analyse the structures.
- 2. To identify the functional requirements and building rules.
- 3. To understand the sketches and working drawings.

Course Outcomes

On completion of this course the student will be able to:

COI	Implement the regulations for layout
COI	planning and preparation of drawings
	Prepare building drawings for residential
CO2	building and hospital buildings by
	AUTOCAD.

CO3	Design the different projections of the
CUS	buildings.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

List of Experiments

- 9. AUTOCAD commands, drawing of lines, circles and different types of polygon.
- 10. Drawing plan, elevation and crosssectional views of one storey residential building.
- 11. Drawing of staircases.
- 12. Drawing plan, elevation and crosssectional views of two storey residential building.
- 13. Drawing plan, elevation and crosssectional views of five story commercial building.
- 14. Drawing plan, elevation and crosssectional views of three story hospital building.
- 15. Drawing plan, elevation and crosssectional views of ten story college building.
- 16. Drawing of workshop with trussed roof.

Suggested Reading

- 1. S.C Rangwala (2013), "Civil Engineering Drawing", Charotar Publishing House Pvt. Ltd. ISBN: 978-93-80358-68-0
- Richard B. Eaton (2005), "Building Construction Drawing", Donhead Publisher. ISBN: 9780821805633.
- Padmini Murugesan (1997), Civil Engineering Drawing, Prithiba Publishers and Distributors. ISBN: 81-7525-282-0.

Name of The	Analysis and Design Lab
Course	(STAAD PRO)
Course Code	BCE01P3605

Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		0	0	2	1

Course Objectives

- 1. To teach the students to understand the details of STAAD – PRO software package.
- 2. To enable the students to know the behaviour of RCC structures.
- 3. To enable the students to design different

components of structuresCourse Outcomes

On completion of this course the student will be able to:

CO1	Understand the details of STAAD – PRO
COI	software package.
CO2	Know the behavior of RCC structures.
CO3	Know the bending moment diagram drawn
003	in tension face and shear force diagram.
CO4	Design RCC beams and columns.
CO5	Analyze and design RCC portal frames.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

List of Experiments

- 7. Analysis and design of simply supported RCC beam.
- 8. Analysis and design of cantilever RCC beam.
- 9. Analysis and design of continuous RCC beam.
- 10. Analysis and design of doubly reinforced RCC beam.
- 11. Analysis and design of RCC columns with different end conditions.
- **12.** Analysis and design of RCC portal frames.

Suggested Reading

- 1. R. L. Jindal, (1996), Indeterminate Structures, Tata McGraw Hill Publishing House.
- 2. G. S. Pandit & Gupta S. P., (1998), Structural Analysis (A matrix approach), Tata McGraw Hill Publishing Ltd.
- 3. Wang C. K., (1996), Matrix Method of Structural Analysis, Jon Wiley publications.
- 4. IS:456 (2000), IS:800

Name of The Course	Design and Innovation				
Course Code	BCE01P3606	BCE01P3606			
Prerequisite	-	-			
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	C
		0	0	2	1

Course Objectives

1. To teach the students to understand the details of STAAD – PRO software package.

2. To enable the students to know the behaviour of RCC structures.

3. To enable the students to design different components of structures

Course Outcomes

On completion of this course the student will be able to:

CO1	CO1 Understand the details of STAAD – PRO software package.	
CO2	CO2 Know the behavior of RCC structures.	
CO3	Know the bending moment diagram drawn in tension face and shear force diagram.	
CO4	Design masonry building.	
CO5	Design RCC building.	

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	

50 -	50	100
------	----	-----

Course Content:

List of Experiments

- 5. Design of (G+2) masonry building.
- 6. Design of staircase.
- 7. Design of (G+3) RCC building.
- **8.** Design of (G+4) RCC building.

Suggested Reading

- R. L. Jindal, (1996), Indeterminate Structures, Tata McGraw Hill Publishing House.
- G. S. Pandit & Gupta S. P., (1998), Structural Analysis (A matrix approach), Tata McGraw Hill Publishing Ltd.
- Wang C. K., (1996), Matrix Method of Structural Analysis, Jon Wiley publications.
- 4. IS:456 (2000), IS:800

Name of The	Industrial Internship - I				
Course Code	BCE02P3501	L			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		-	•	•	1

Course Objectives

- 4. To gain first-hand experience of working as an engineering professional, including the technical application of engineering knowledge.
- 5. To experience the discipline of working in a professional organization and multidisciplinary team.
- 6. To develop technical, interpersonal and communication skills.

Course Outcomes

On completion of this course, the students will be able to

CO1	Apply engineering knowledge in solving
COI	real-life problems.

CO2	Attain new skills and be aware of the state- of-art in engineering disciplines of their own interest.			
CO3	Get exposure to real-life-working environment & practices, and to attain the professionalisms.			
CO4 Work with multi-tasking professionals an multidisciplinary team.				
CO5	Prepare a technical report, to improve presentation and other soft skills.			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

Exposure to real life problems at various reputed industries engaged in areas of Civil Engineering.

Mode of Evaluation:

The evaluation of this training shall be included in the next semester evaluation. The student will be assigned a faculty guide who would be the supervisor of the student. The faculty will be identified before the end of the examination.

Students have to prepare an exhaustive technical report of the internship undertaken which will be duly signed by the officer under whom internship was taken in the industry/ organization. The covering format shall be signed by the concerned faculty incharge of the student. The officer-in-charge would also give his rating of the student in a sealed envelope to the Dean of the SOCE. The student at the end of internship will present his report about the internship before a committee constituted by the Dean of the School which would be comprised of at least three members comprising of the Division Chair/Program Chair. The students guide would be a special invitee to the presentation. The seminar session shall be an open house session. The internal marks would be the average of the marks given by each member of the committee separately in a sealed envelope to the Dean.

The marks by the external examiner would be based on the report submitted by the student which shall be evaluated by the external examiner and cross

examination done of the student concerned. Not more than three students would form a group for such industrial internship. The final evaluation of the Industrial Internship will be based on the following criteria:

1. Presentation and contents of the report demonstrating well developed communication skill.

2. The professionalism displayed by the student during industrial training including the scope of quality industrial training attained.

3. Contribution of the employer in providing quality training and relevance of the student's industrial training to their degree.

4. Marks/grades for this course will be withheld until students complete the training. Without this mark/grade students cannot graduate.

COI	Understand the behavior of structural			
COI	members and the concept of design.			
cor	Calculate moment of resistance for			
02	different types of RC beam sections.			
CO3	Design any type of RC beam.			
	Understand the difference between one			
CO4	way slab and two			
	way slab.			

Continuous Assessment Pattern

burnes Contonts

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

		Inter	nship	Final l	Evaluation	Course Content:		
		Progres	s Report			Unit I: Material Properties and Design		
	Comp onents	Internal Supervi sor	Industr y Supervi sor	Project Report	Presentation n and Viva voice	Concepts 7 Lecture Hours 7 Material properties: Compressive strength, tensile		
	Marks	25	25	25	25	strength, design stress-strain curve of concrete - modulus of elasticity - grades of concrete -		
	Total Marks	5	50		50	different types and grades of reinforcing steel - design stress-strain curve of steel. Introduction to		
	Overall Marks			100		 design concepts, elastic behaviour of rectangular section, under, balanced and over reinforced section. Deflection and cracking in beams and slabs using IS code provisions. Design of singly 		
N C C	ame of Th ourse ourse Coc	ne Rein Stru le BCI	nforced Co Ictures E02T3406	oncrete		reinforced beams by working stress method. Unit II: Limit state design of beams 7		
Prerequisite - Co-requisite - Anti-requisite - L T P C -			L T P 2 0 0	Design principles and procedures for critical sections for bending moment and shear forces. Flexural and shear design example of singly and doubly reinforced simply supported and cantilever				
Co 1. ' 2. 7	urse Obje To teach th columns, To enable t	ectives he students slabs by we he students	about the orking stres to understa	design of be ss method. and the limit	eams,	beams using the codal provision. Detailing of longitudinal and shear reinforcement, anchorage of bars, check for development length. Reinforcement requirements, slenderness limits for beams for lateral stability. Flexural and shear design of simply supported T and L beams. Design of rectangular section for torsion		
method of design of beams, columns and slabs.			mns and slat	Unit III: Limit State Design of Slabs 7 Lecture Hours				
On completion of this course the student will be able to:			udent will b	e	Introduction to one way and two way slabs, design of one way cantilever, simply supported and continuous slab, design of two			

way slabs.

Unit IV: Limit State Design of Compression Members

Lecture Hour

General design aspects of compression members. Design of short axially loaded columns with reinforcement detailing. Design of columns with uniaxial bending and biaxial bending using SP- 16 charts, design of long column.

Suggested Reading

- Gambhir, M.L., (2011), "Fundamentals of Reinforced Concrete Design", Prentice-Hall of India. ISBN: 9788120330481.
- S Unnikrishna Pillai & Devdas Menon, (2005), Reinforced Concrete Design, Tata Mcgraw Hill, ISBN: 9780070141100.
- Varghese, P.C., (2009), Limit State Design of Reinforced Concrete, 2nd ed. ISBN: 9788120320390.
- 4. B. C. Punmia (2003), Design of reinforced concrete structures, Lakshmi Publishers.

Name of The	Introduction	to I	Desi	gn o	f
Course Course	Steel Structures				
Course Code	BCE021360.	1			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		2	0	0	2

Course Objectives

- 1. To understand the concepts of steel design.
- 2. To know the analysis and design of plate girder and gantry girder and its applications.
- 3. To know different types of roofs, calculation of forces and design of roof trusses.

Course Outcomes

On completion of this course the student will be able to:

	Understand different types of structural
CO1	rolled steel sections and their properties
	and design of connections.

CO2	Design laterally supported and			
	unsupported beams.			
	Design built up column sections, lacings,			
CO3	battens, column bases and tension			
	members.			
CO4	Design plate girders and understand			
	curtailment of flange plates and stiffeners.			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction and Design of Connection.
7
Lecture Hours
Introduction, Types and properties of structural
rolled steel sections. Design of connections –
Riveted - Welded - Bolted – Solution of simple
problems.
Unit II: Design of beams
7
Lecture Hours
Simple and built-up beams – design of laterally
supported and unsupported beams - concept of
shear.
Unit III: Design of Compression Members and
Tension Members
7
Lecture Hours
Design of column – built up section – single and
double lacing – batten – Column bases – design of
tension members.
Unit IV: Roof Trusses.

7

Lecture Hours

Types of roof trusses - Calculation of dead load, live load, wind load – Analysis and design of roof truss – Design of purlins.

Suggested Reading

 Vajrani V. N., Ratwani M. M. and Mehra H. (2012), Design and Analysis of Steel Structures, 18th Edition, Oscar Publications, ISBN: 9788174092953.

- Syal I. C. (2009), Design of Steel Structures, Standard Publishers Distributors, New Delhi, ISBN: 9788180141270.
- Ramchandra (2006), Non Linear Analysis of Steel Structures, Standard Publishers Distributors, ISBN:9788180140785.
- 4. IS: 800-2007 & Steel Table.

Name of The	Quantity Surveying and				
Course	Estimating				
Course Code	BCE02T3603				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
	•	L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. To understand the types of estimates.
- 2. To identify the methods of quantity estimation used for different structural components.
- 3. To understand rate analysis and process of preparation of bill of quantity.

Course Outcomes

On completion of this course the student will be able to:

CO1	Prepare a detailed estimate for different
COI	types of structures.
CO2	Prepare valuation reports and cost quality
	control.
	Estimates the quantity of items and
CO3	analyse its rates considering material,
	labour and machinery cost with the help of
	software.
CO4	Prepare valuation reports and cost quality
004	control.
CO5	Know specifications of various items of
	works
CO6	Understand latest research paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Estimation of building 8 **Lecture Hours** Estimation of building works - Procedure of estimating, Types of estimates, detailed estimate of buildings including sanitary & electrical fittings. Unit II: Estimate of R.C.C and Steel works 8 **Lecture Hours** Estimate of R.C.C and Steel works - Scheduling -Slab - beam - column & trusses, Road – earthwork fully in banking, cutting, partly cutting & partly filling - Detailed estimate for WBM, Bituminous road. Unit III: Rate analysis & preparation of bills 8 **Lecture Hours** Rate analysis - preparation of bills – Data analysis of rates for various items of works - abstract estimates for Building projects - Introduction to software for Bill of Quantities & estimates. Unit IV: Valuation 8 Lecture Hours Valuation- rent fixation, tenders, - contracts accounting procedure, measurement book, stores, cost & quality control – PWD & CPWD practice - Specifications of various items of works -Schedule of Rates. Unit V: Detailed specifications and Schedule of Rates 8 **Lecture Hours** Specifications of various items of works -Schedule of Rates. **Unit VI: Discussion on Latest Research Paper Lecture Hours** This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Rangwala (2011), Specifications of Estimating, Costing and Valuation, Charotar Publishing House Pvt. Ltd. ISBN 9789380358543.
Vazirani, V. N. (2013), Civil Engineering Estimating Costing & Valuation, Khanna publishers. ISBN 9788174091277.

Name of The	Industrial Internship - II						
Course							
Course Code	BCE02P3702	2					
Prerequisite	-	-					
Co-requisite	-						
Anti-requisite	-						
		L	Т	Р	С		
		-	-	-	1		

Course Objectives

1. To gain first-hand experience of working as an engineering professional, including the technical application of engineering knowledge.

2. To experience the discipline of working in a professional organization and multidisciplinary team.

3. To develop technical, interpersonal and communication skills.

Course Outcomes

On completion of this course, the students will be able to

CO1	Apply engineering knowledge in solving real-life problems.
CO2	Attain new skills and be aware of the state- of-art in engineering disciplines of their own interest.
CO3	Get exposure to real-life-working environment & practices, and to attain the professionalisms.
CO4	Work with multi-tasking professionals and multidisciplinary team.
CO5	Prepare a technical report, to improve presentation and other soft skills

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

Exposure to real life problems at various reputed industries engaged in areas of Civil Engineering.

Mode of Evaluation:

The evaluation of this training shall be included in the next semester evaluation. The student will be assigned a faculty guide who would be the supervisor of the student. The faculty will be identified before the end of the examination.

Students have to prepare an exhaustive technical report of the internship undertaken which will be duly signed by the officer under whom internship was taken in the industry/ organization. The covering format shall be signed by the concerned faculty incharge of the student. The officer-in-charge would also give his rating of the student in a sealed envelope to the Dean of the SOCE. The student at the end of internship will present his report about the internship before a committee constituted by the Dean of the School which would be comprised of at least three members comprising of the Division Chair/Program Chair. The students guide would be a special invitee to the presentation. The seminar session shall be an open house session. The internal marks would be the average of the marks given by each member of the committee separately in a sealed envelope to the Dean.

The marks by the external examiner would be based on the report submitted by the student which shall be evaluated by the external examiner and cross examination done of the student concerned. Not more than three students would form a group for such industrial internship. The final evaluation of the Industrial Internship will be based on the following criteria:

 Presentation and contents of the report demonstrating well developed communication skill.
 The professionalism displayed by the student during industrial training including the scope of quality industrial training attained.

3. Contribution of the employer in providing quality training and relevance of the student's industrial training to their degree.

4. Marks/grades for this course will be withheld until students complete the training. Without this mark/grade students cannot graduate.

Comp	Internship	Final Evaluation
onents	Progress Report	

	Internal	Industr y	Project Report	Presentatio n and Viva	Develop an understanding of professional and ethical responsibility.				
	sor	Supervi sor	-	voice			A ago agos os 4	Dattaur	
Marks	25	25	25	25	onun	uous	Assessment	Pattern	
Total Marks	5	0		50			Project Progress	Final 1	Evaluation
Overall Marks			100		on Co	omp ents	Internal	Project Report	Presentation and Viva

Name of The	Capstone Phase - I				
Course					
Course Code	BCE02P3998	3			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	C
		0	0	4	2

Course Objectives

- 1. To develop the capacity of students in correlating theoretical knowledge into practical systems either to perform creative works or to perform analysis and hence to suggest solutions to problems, pertaining to civil engineering domain.
- 2. Foster collaborative learning skills.
- 3. Develop self-directed inquiry and life-long skills.
- 4. To enhance the communication skills of the students by providing opportunities to discuss in groups and to present their observations, findings and report in formal reviews both in oral and written format.

Course Outcomes

On completion of this course the student will be able to

-						
CO1	Submit a project synopsis comprising of the application and feasibility of the project.					
CO2	Design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health care, safety and sustainability.					
CO3	Work and communicate efficiently in multidisciplinary teams					
CO4	Identify, formulate, and solve engineering problems.					

Name of The Course	TQM in Construction						
Course Code	BCE02T3501	1					
Prerequisite	-						
Co-requisite	-	-					
Anti-requisite	-						
		L	Т	Р	С		
		3	0	0	3		

30

100

voice 50

Course Objectives

Marks

Total

Marks

20

1. To familiarize with quality management in construction Industry.

2. To familiarize with clauses for quality management in construction Industry.

3. To understand the leadership in construction Industry.

Course Outcomes

On completion of this course the student will be able to:

CO1	To realize the importance of significance
COI	of quality.
CO2	Manage quality improvement teams.
001	
CO3	Identify requirements of quality
005	improvement programs
CO4	To realize the importance of significance
004	of quality.
COF	Identify requirements of quality
005	management in the construction industry.
CO6	Understand latest research paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Quality management
8 Lecture Hours
Quality management in construction industry,
new approach to quality management, and road to
quality management.
Unit II: Quality assurance
8 Lecture Hours
Formal QA, quality assurance, ISO 9000, clauses
of ISO 9000, third party assessment for
construction works.
Unit III: Leadership and total quality
management
8 Lecture Hours
Leadership and total quality management, tools
for total quality management, teamwork for total
quality management, stages in team development,
and role within a team.
Unit IV: Learning organization
8 Lecture Hours
Learning organization, lean production and
management applied to construction industry.
Unit V: Total quality management
8 Lecture Hours
Quality management in the construction industry,
research objectives, senior management and total
quality management, cultural change in
quality management, cultural change in construction.
qualitymanagement,culturalchangeinconstruction.Unit VI: Discussion on Latest Research Paper
qualitymanagement,culturalchangeinconstruction.Unit VI: Discussion on Latest Research Paper4 Lecture Hours
quality management, cultural change in construction. Unit VI: Discussion on Latest Research Paper 4 Lecture Hours This unit is based on research papers / Innovations
quality management, cultural change in construction. Interstance Interstance Interstance Unit VI: Discussion on Latest Research Paper 4 Lecture Hours This unit is based on research papers / Innovations / start-up ideas / white papers / applications.
quality management, cultural change in construction. In construction. In construction. Unit VI: Discussion on Latest Research Paper 4 Lecture Hours This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research

Suggested Reading

 Steven McCabe. (1998). "Quality Improvement Techniques in Construction." LONGMAN.
 Kwakye, A.A. (1997), "Construction Project Administration", Adisson Wesley Longman, London.

Name of The Course	Estimation Lab (PRIMAVERA)					
Course Code	BCE02P3607	7				
Prerequisite	-					
Co-requisite	-					
Anti-requisite	-					
		L	Τ	Р	С	
		0	0	4	2	

Course Objectives

1.To develop the capacity of students in correlating theoretical knowledge into practical systems pertaining to civil engineering domain.

2. To foster collaborative learning skills.

3. To develop self-directed inquiry and life-long skills.

4. To enhance the communication skills of the students by providing opportunities to discuss in groups and to present their observations, findings and report both in oral and written format.

Course Outcomes

On completion of this course the student will be able to:

CO1	Identify, formulate, and solve engineering
COI	problems.
	Understand specifications of various
CO2	items of works and schedule of rates and
	prepare valuation reports.
CO3	Submit a project report comprising of the
005	application and feasibility of the project.
COA	Work and communicate efficiently in
004	multidisciplinary teams.
CO5	Develop an understanding of professional
005	and ethical responsibility.

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)		

		Exam (ETE)	
50	-	50	100

Course Content:

List of Experiments

1. Determination of volume of excavation of earth.

2. Estimation for concrete and steel in footings.

3. Form work required for footings.

4. Estimation for brick walls and plastering.

5. Form work required for columns including scaffolding and shuttering.

6. Estimation for concrete and steel in columns.

7. Form work required for slabs including scaffolding and shuttering.

8. Estimation for concrete and steel in slabs.

9. Form work required for beams including scaffolding and shuttering.

10. Estimation for concrete and steel in beams.

11. Rate analysis for various items of works.

12. Preparation of bills.

13. Studies of PWD and CPWD practices.

14. Bar bending schedule.

15. Valuation of the building.

Suggested Reading

1. Rangwala (2011), Specifications of Estimating, Costing and Valuation, Charotar Publishing House Pvt. Ltd. ISBN 9789380358543.

2. Vazirani, V. N. (2013), Civil Engineering Estimating Costing & Valuation, Khanna publishers. ISBN 9788174091277.

Name of The	Capstone Phase – 2				
Course					
Course Code	BCE02P3999				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		0	0	20	10

Course Objectives

- 5. To develop the capacity of students in correlating theoretical knowledge into practical systems either to perform creative works or to perform analysis and hence to suggest solutions to problems, pertaining to civil engineering domain.
- 6. Foster collaborative learning skills.
- 7. Develop self-directed inquiry and life-long skills.
- 8. To enhance the communication skills of the students by

providing opportunities to discuss in groups and to present

their observations, findings and report in formal reviews

both in oral and written format.

Course Outcomes

On completion of this course the student will be able to:

	Submit a project synopsis comprising of		
CO1	the application and feasibility of the		
	project.		
	Design a system, component, or process to		
	meet desired needs within realistic		
CO2	constraints such as economic,		
	environmental, social, political, ethical,		
	health care, safety and sustainability.		
CO3	Work and communicate efficiently in		
COS	multidisciplinary teams		
CO4	Identify, formulate, and solve engineering		
004	problems.		
COS	Develop an understanding of professional		
05	and ethical responsibility.		

Continuous Assessment Pattern

Comp	Project Progress Report	Final Evaluation	
onents	Internal Supervisor	Project Report	Presentation and Viva voice
Marks	20	30	50
Total Marks	100		

Name of The Course	Construction Contracts Administration and Management				
Course Code	BCE02T3502				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. Understand the broad principles and concepts of construction management.
- 2. To create awareness of MIS techniques in construction industry.
- 3. Represent various works measurement standards.

Course Outcomes

On completion of this course the student will be able to:

CO1	Understand construction contract various
COI	stages of a project
CO2	Understand the conceptual clarity about
02	contract Formation
	Understand the contract management,
CO3	Project Procurement, Service level
	Agreements and productivity.
COA	Understand the conceptual clarity about
04	FIDIC conditions.
	Understand the Construction Claims and
CO5	Dispute Resolution.
	^

CO6 Understand latest research paper

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100
a a .			

Course Content:
Unit I: Construction Contracts
0
ð Lootung Houng
Contract Act (1972) to)Definition of the contract
contract Act (1872) .a)Definition of the contract
as per the AC1. Value, Voluable, Volu contracts. Objectives of the set (from model 5) b)
Clauses 1 to 75 Contract formation contract
performance valid excuses for non-
performance, Vand excuses for non-
breach- understanding the clauses and applying
them to situations/scenarios on construction
projects Importance of the Workmen's
Compensation Act on construction projects.
Unit II: Contract Formation
8
Lecture Hours
Standard forms of contracts, methods of inviting
tenders, pre-bid meetings, pre-qualification
system, scrutiny of tenders and comparative
statement. b) Contract formation, conditions of
contracts, contracts with various stakeholders on a
major construction projects, contract pricing by
the client, project management consultants and the
contractor, contract performance, contract
correspondence and contract closure.
Unit III: Contract Conditions
8
Lecture Hours
General condition and Particular conditions, b)
Conditions of Ministry of Statistics and Program
Implementation- Government Of India. Model
0 Lacture Hours
ICE introduction FIDIC conditions- evolution of
FIDIC document types based on whether design
is of employer or contractor Design & Build

Colour Code. Various conditions of Red Book. Unit V: Construction Claims and Dispute Resolution

contract, EPC contract, short forms of contract-

Lecture Hours

8

Construction Claims : Extra items and causes of claims. claims. Types of construction documentation. settlement of claims .Dispute Resolution: Causes of disputes and importance of role of various stakeholders in prevention of disputes, Alternate Dispute Resolution methodsmediation, conciliation, arbitration and Dispute Resolution Boards.

Unit VI: Discussion on Latest Research Paper

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Civil Engineering Contracts and Estimates - B. S. Patil - Universities Press- 2006 Edition, reprinted in 2009.

2. The Indian Contract Act (9 of 1872), 1872-Bare Act- 2006 edition. Professional Book Publishers.

3. The Arbitration and Conciliation Act,(1996), 1996 (26 of 1996)- 2006 Edition, Professional Book Publisher.

4. Law of contract Part I and Part II, Dr. R.K. Bangia- 2005 Edition, Allahabad Law Agency.

Name of The	Project Economics &				
Course	Financial Ma	anag	geme	ent	
Course Code	BCE02T3602				
Prerequisite	equisite -				
Co-requisite -					
Anti-requisite	-				
		L	Τ	P	С
		3	0	0	3

Course Objectives

1. To help the students to develop cognizance of the importance of Financial Management in corporate valuation.

2. To enable students to describe how people analyze the corporate leverage under different conditions and understand why people valuate different corporate in different manner.

3. To provide the students to analyze specific characteristics of Supply Chain Industry and their future action for cash flow.

Course Outcomes

On completion of this course the student will be able to:

COI	Understand importance of the economic				
COI	background to measurement.				
	Understand the cost implication to				
CON	different forms of construction and				
02	maintenance and maintenance and				
	replacement lives of material.				
GOA	Understand the long term finance				
CO3	planning.				
COA	Understand the conceptual clarity about				
004	corporate sector.				
0.05	Understand the conceptual clarity about				
C05	accounting process.				
CO6	Understand latest research paper.				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Principles of Economics
8
Lecture Hours
Importance of the economic background to
measurement, objectives of business firm. Factors
bearing on size of firms. Motives to growth.
Obstacles to growth of firms, Study of present
economy. Capital: Analysis of need for working
capital, Estimation of requirements of working
capital, Credit Management, Cash Management,.
Corpus Fund
Unit II: Economic Analysis:

8

Lecture Hours

Cost implication to different forms of construction and maintenance and maintenance and replacement lives of material, Installation and

running cost of services, Capital investment in project, Cost analysis by traders and by functional element, Cost planning techniques, Cost control during design and Construction, Depreciation, Various Appraisal Criteria Methods. Break-even analysis, Cash flow analysis, Risk Analysis and Management Practice, Role of Lender's Engineer. Cost pricing method

Unit III: Financial Planning:

8

Lecture Hours

Need and sources of Finance, Long term finance planning, Stock, Borrowings, Debentures, Loan Capital, Public Deposit, Dividend Policies, Bonus Shares, Market value of shares, Reserves. Budget: Budgetary control system. Types of budgets, Procedure for master budgets. Budget manual. Accounting Information System:, Project Commentary, project Running Commentary.

Unit IV: Corporate Sector:

8

Lecture Hours

Corporate tax planning, Public policies on ICRA grading of exchange, World financial market, Role of financing institutes in Construction sector, SEBI regulation., GST, CGST, SGST, Direct Tax Court System

Unit V: Construction Accounts:

8

Lecture Hours

Accounting process, preparation of profit and loss account and balance sheet as per the companies Act2013, preparation of contract accounts for each project, methods of recording and reporting site accounts between project office and head office, Ratio Analysis. Escrow Account for PPP Project.

Unit VI: Discussion on Latest Research Paper 4

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Construction project scheduling and control ----Mubarak, Wiley India.

2. Construction Management & PWD Accounts ---D Lal, S. K. Kataria & Sons, 2012

3. Construction Management and Accounts -- Singh H. Tata McGraw Hill, New Delhi, 1988 4. Construction Management: Planning and finance--Cormican D. Construction press, London, Feb 2002.

5. Principles of Corporate Finance, Brealey R.A. Tata McGraw Hill, New Delhi, 2003.

Name of The Course	Sustainable Construction Materials				
Course Code	BCE02T5701				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	С
		3	0	0	3

Course Objectives

1. This course mainly aims to develop the knowledge about sustainable construction materials and importance of sustainable construction.

2. To make the students to understand sustainable construction materials & process.

3. Students get ideas about different types structure conditions.

4. Students understand repair techniques.

Course Outcomes

On completion of this course the student will be able to:

	Know the sustainable construction
COL	materials – meaning, scope, nature,
COI	present status of the sustainable
	construction materials.
CO2	Study and application of various
02	conditions of sustainable construction.
CO3	Get a thorough knowledge of various
	types of Sustainable Projects.
CO4	Know the different procedures for
04	Disputes Resolving.
CO5	Understand different types of Risk
	Management in project.
CO6	Understand latest research paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Necessity and importance.
8
Lecture Hours
Necessity and importance of sustainable
construction materials. Material composition and
properties, production, storage, distribution,
testing, acceptance criteria, limitations of use,
economic consideration, and recent development
related to the following materials to be studied.
Unit II: Various construction
chemicals/admixtures
8 Lecture Hours
various construction chemicals/admixtures, Fly
asn and its use in concrete , Silica fume
Reinforced plastics and concrete Light weight
concrete
Unit III: Snecial Materials
Lecture Hours
Crumb modified bitumen Rubber Glenium
Concrete. Materials used in nuclear-containment
structures. Gas pressure welding of rebar. Precast
concrete.
Unit IV: High performance concrete
8
Lecture Hours
High performance concrete, Nano technology in
cement concrete, Ferro cement Technology. Mix
design As per Is code 10262:2019
Unit V: Maintenance of Structure
8
Lecture Hours
Materials for Repairing - Special concretes and
mortar - Concrete chemicals - Special elements for
accelerated strength gain - Expansive cement -
Polymer concrete – Ferro cement, Fibre
reinforced concrete - Fibre reinforced plastics.
Risk Management in project.
Unit VI: Discussion on Latest Research Paper
4
Lecture Hours
This unit is based on research papers / Innovations
/ start-up ideas / white papers / applications.

Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Concrete Technology by Neville.

2. Construction Materials, Methods & Techniques(3e) by William P Spence, Yesdee Publication 2012, Pvt. Ltd., Chennai, India

3.Concrete Structure properties & Materials by Mehta P.K & Mantreio P.J.M, Prentice hall.

4.Concrete Technology by M.S.Shetty, S.Chand Publ.

5. Civil Engineering and Construction Review magazine.

6. New Building Materials and Construction World magazine.

7. Is code 10262: 2019

Name of The Course	Environment And Energy For Sustainable Construction		3y		
Course Code	BCE02T5702	2			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. The objective of this course is to expose the students to the concepts of sustainability in the context of building and conventional engineered building materials, such as Concrete, Bricks, and achieving the same through lower Carbon cements, Superior brick kilns and Recycled aggregate minimizing consumption of natural resources including water.

2. To make the students to understand VOC and indoor air quality.

3. To make the students to understand Energy codes ECBC requirement.

4. Students understand Role and Civil Society-Social Movements and Non-Governmental / Governmental Organizations.

Course Outcomes

On completion of this course the student will be able to:

CO1	Know about Role of Material in					
COI	sustainable construction.					
CO2	Study and know about operational energy					
02	in sustainable construction.					
CO3	Get a thorough knowledge of Comparative					
005	energy performance emission					
COA	Know & Understand Energy codes ECBC					
04	requirement.					
CO5	Understand latest research paper.					
C06	Students understand use of renewable					
	energy in buildings.					

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction
8
Lecture Hours
Embodied energy, Operational energy in Building
and Life cycle energy. Ecological foot print, Bio-
capacity and calculation of planet equivalent.
Unit II: Role of Material
8 Lecture Hours
Carbon from Cement, alternative cements and
cementitious material, Alternative fuel for
cements for reduction in carbon emission.
Sustainability issues for concrete, Role of quality,
minimization of natural resource utilization, High
volume fly ash concrete, geo-polymer concrete
etc. concrete with alternative material for
sustainability.

Unit III: Aggregates and water consumption 8

Lecture Hours

Reduction in water consumption in concrete, Recycled aggregate, Energy for grinding crushing of cement aggregate etc. and reduction. Operational energy in building role of materials and thermal conductivity. Clay Bricks, Types kilns, Comparative energy performance emission performance and financial performance, Indoor air quality.

Unit IV: Sustainability and Health

8

Lecture Hours

Paints, Adhesive and sealants for use in building, Volatile organic content (VOC) emission issues and indoor air quality for Sustainability and Health hazard Operational energy reduction and net zero building, Optimization for design of building for energy efficiency and example of optimization through use of Evolutionary genetic algorithm.

Unit V: Building Integrated Photo Voltaic

8

Lecture Hours

Use of Building Integrated Photo Voltaic (BIPV) and other renewable energy in buildings, basic concepts and efficiency. Radiation budget, Surface water balance, Effects of trees and microclimatic modification through greening.

Unit VI: Discussion on Latest Research Paper 4

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1.Fereidoon P. Sioshansi (2011) Energy, Sustainability and the Environment, Butterworth-Heinemann. Page; 640pp. ISBN 9780123851376. 2. Ali Sayigh (2013) Sustainability, Energy and Architecture, Academic Press. Pages; 552pp. ISBN 9780123977571.

3. Vivian Tam Khoa Le (2019) Sustainable Construction Technologies, Butterworth-Heinemann. Pages; 490pp. ISBN 9780128117507.

Name of The	Human Rights				
Course					
Course Code	BCE02T570.	3			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	С
		3	0	0	3

Course Objectives

1. This course mainly aims to develop the knowledge about human rights and importance of human rights in construction as well as in day to day life.

2. To make the students to understand Human rights /laws.

3. To make the students to understand Human rights and the international scene.

4. Students understand Citizens' Role and Civil Society- Social Movements and Non-Governmental Organizations.

Course Outcomes

On completion of this course the student will be able to:

	Know the Basic Human right -meaning,
CO1	scope, nature, present status of the
	Human rights.
CO2	Study and application of various
02	conditions of Rights.
	Get a thorough knowledge of various
CO3	types of Human rights – Types of Human
	rights.
COA	Know the different procedures for
04	Human rights.
COS	Understand different types of Human
05	rights in day to day life.
CO6	Understand latest research paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Human Rights – Concept, Development,
Evolution
8
Lecture Hours
Human Rights - Concept, Development,
Evolution- Philosophical, Sociological and
Political debates- Benchmarks of Human Rights
Movement.
Unit II: Human Rights and the Indian
Constitution
8
Lecture Hours
Human Rights and the Indian Constitution -
Constitutional framework - Fundamental Rights
& Duties - Directive Principles of State Policy -
Welfare State & Welfare Schemes.
Unit III: Human Rights & State Mechanisms
8 Lecture
Hours
Human Rights & State Mechanisms- Police &
Human Rights- Judiciary & Human Rights-
Prisons & Human Rights- National and State
Human Rights Commissions.
Unit IV: Human Rights of the Different
Sections
8
Lecture Hours
Human Rights of the Different Sections and
contemporary issues- Unorganized Sector, - Right
to Environment, particularly Industrial sectors of
Civil Engineering and Mechanical Engineering -
Globalization and Human Rights- Right to
Development.
Unit V: Citizens' Role and Civil Society
-
8
8 Lecture Hours
Kecture Hours Citizens' Role and Civil Society- Social
Kerture Kerture Hours Kerture Kerture Hours Kerture Kerure Kerure Kerure<
8Lecture HoursCitizens' Role and Civil Society- SocialMovementsandNon-GovernmentalOrganizations- Public Interest Litigation-Role of
8Lecture HoursCitizens' Role and Civil Society- SocialMovements and Non-GovernmentalOrganizations- Public Interest Litigation-Role ofNon-Governmentorganizationsin
8Lecture HoursCitizens' Role and Civil Society- SocialMovementsandNon-GovernmentalNon-GovernmentalOrganizations- Public Interest Litigation-Role ofNon-Governmentorganizationsin plementation of Human rights Right to
8Lecture HoursCitizens' Role and Civil Society- SocialMovements and Non-GovernmentalOrganizations- Public Interest Litigation-Role ofNon-Government organizations inimplementation of Human rights Right toInformation.
8Lecture HoursCitizens' Role and Civil Society- Social Movements and Non-Governmental Organizations- Public Interest Litigation-Role of Non-Government organizations in
8 Lecture Hours Citizens' Role and Civil Society- Social Movements and Non-Governmental Organizations- Public Interest Litigation-Role of Non-Government organizations in implementation of Human rights Right to Information. Unit VI: Discussion on Latest Research Paper 4
8 Lecture Hours Citizens' Role and Civil Society- Social Movements and Non-Governmental Organizations- Public Interest Litigation-Role of Non-Government organizations in implementation of Human rights Right to Information. Unit VI: Discussion on Latest Research Paper 4 Lecture Hours
8 Lecture Hours Citizens' Role and Civil Society- Social Movements and Non-Governmental Organizations- Public Interest Litigation-Role of Non-Government organizations in implementation of Human rights Right to Information. Unit VI: Discussion on Latest Research Paper 4 Lecture Hours This unit is based on research papers / Innovations

•4 T тт

Minimum one latest research paper will be discussed in the class.

Suggested Reading

 BASIC HUMAN RIGHTS Authors Name V M Thorat ISBN 9789388293082
 Study material on UNESCO, UNICEF web site.
 Human Rights in India- A Mapping, Usha Ramanathan: free download from http://www.ielrc.org/content/w0103.pdf
 Introduction to International Humanitarian Law by Curtis F. J. Doebbler - CD Publishing.
 Information, by Toby Mendel - UNESCO, 2008

Name of The	Human Resource					
Course	Development	Development				
Course Code	BCE02T5704	BCE02T5704				
Prerequisite	-					
Co-requisite	-					
Anti-requisite	-					
		L	Τ	Р	С	
		3	0	0	3	

Course Objectives

1. The course aims to equip students to develop themselves into a critically reflective and capable HRD practitioner, or a manager who can facilitate the learning of others.

2. The major objective of the course is to explain and demonstrate the contribution of HRD in an organization and enable student to develop an ability to decide learning and training needs; and have competence in the design and delivery of learning programmes.

3.To make the students to understand about counselling programmes of HRD.

4.Students understand about Career development and Intellectual capital.

Course Outcomes

On completion of this course the student will be able to:

CO1	Perceive strategic perspective of HRD.
CO2	Understand HRD Process Model.
CO3	Understand Employee coaching and performance management.

COA	Know about counselling programmes of
004	HRD.
COS	Know about Career development and
COS	Intellectual capital.
CO6	Understand latest research paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction to Human Resource Development

8

Lecture Hours

Emergent of HRD, Critical HRD roles, challenges for HRD. HRD in global perspective, HRD-Performance link, Strategic perspective of HRD.

Unit II: HRD Process Mode

8

Lecture Hours

Identification of HRD needs and Design and development of HRD programs. Methods of Implantation, Evaluation of HRD programs.

Unit III: Performance management

L	J	,	
7	٩	۱.	
L		,	

Lecture Hours

Coaching to improve poor performance, coaching analysis. Coaching to improve poor performance, coaching analysis.

Unit IV: Unit IV: Competency framework of HRD

C	٦	۱	
	r		
r			
L		,	

Lecture Hours

Why competency mapping? Understanding the competency mapping framework, Overview of counselling programmes, employee assistance programme, stress management, employee wellness and health promotion.

Unit V: Intellectual capital (IC)

8

Lecture Hours

Components of IC, measurement models of IC, IC index and challenges for HR. Career Planning, management, and development: Career

development stages and activities, role of individual and organization in career planning, Issues in career management.

Unit VI: Discussion on Latest Research Paper 4

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Pat Hargreaves and Peter Jarvis (1998) The Human Resource Development Handbook, London: Kogan Page; 212pp. ISBN 0 7494 2429 (hardback)

2.Francesco sofo (1999) Human Resource Development: Perspective, Roles and Practice choices, Warri wood, New South Wales: Business and Professional Publishing; 365pp. ISBN 1 875680 74 8; (paper)

3.John Walton (1999) strategic Human Resource Development, Harlow: Pearson Education; 614pp. ISBN 0 273 62636 1 (paper)

Name of The	Value Engineering and				
Course	valuation				
Course Code	BCE02T570	6			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. Define Value engineering and its objectives

2. Estimation of project budget using capitalized income approach

3. Analyze a building using LCC methodology

Course Outcomes

On completion of this course the student will be able to:

	Understand	the	basics	of	Valı	ıe
CO1	Engineering	(VE)	to en	sure	that	a
COI	standardized	metho	od is u	ised	for V	Έ
	applications to projects.					

CO2	Learn to perform "function analysis" for
	buildings and civil projects
CO3	Understand the appropriate time to apply
005	VE for building design projects.
CO4	Understand the value engineering and
04	total project management.
COS	Understand the function system in project
005	management.
CO6	Understand latest research paper

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

course content.
Unit I: Value engineering
8
Lecture Hours
Introduction to value engineering (VE),
definition, objectives of value engineering,
reasons for unnecessary costs, VE techniques and
methodology, interface with the other programs.
Unit II: Project budget
8
Lecture Hours
Elements of the project budget, need for cost
control, meaning of capitalization, capitalization
process, and capitalized income approach to
construction project budgeting.
Unit III: Life cycle cost (LCC) and building
costs
8
Lecture Hours
Life cycle cost (LCC) and building costs, LCC
technology and examples, LCC methodology,
LCC formats and analysis and weighted
evaluation – application of LCC to buildings.
Unit IV: Value engineering and total project
management
8
Lecture Hours
Value engineering and total project management,

Value engineering and total project management, level of effort, team selection, value engineering job plan, and work plan phases

Unit V: Function system

Lecture Hours

8

Classifying function, defining function, project level function system technique (fast) diagram, creativity and fixation, interpersonal skills, generation of ideas, brainstorming, rules for brainstorming, Delphi technique, application of Delphi technique to civil engineering projects.

Unit VI: Discussion on Latest Research Paper 4

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Jay Mandelbaum Danny L. Reed, Project Leader 2. Tenah, K.A. (1985). "The Construction Management Process", Reston Publishing Company, Inc. Virginia

3. Dell'Isola, Alphonse (1997). "Value Engineering: Practical Applications." R.S. Means Company, Inc: Kingston, MA.

4. Oberiender, G. D. (1993). "Project Management for Engineering and Construction". McGraw-Hill, Inc.: New York

Name of The	Infrastructure Development				
Course					
Course Code	BCE02T570'	7			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		3	0	0	3

Course Objectives

1. Importance of prefabrication in construction

2. Advantages of modular coordination in prefabrication

3. Application of different equipments in construction industry

Course Outcomes

On completion of this course the student will be able to:

CO1	Interpret the basic principles of geo- mechanics and their application in		
	infrastructure development.		
CO2	Interpret the design of structural elements.		
	Explain the complexities of delivery of		
CO3	infrastructure works and processes used		
	for project development and management.		
COA	Learn to issues related to infrastructure		
04	development.		
CO5	To study different infrastructure project.		
CO6	Understand latest research paper		

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Construction Industry	
Chit I. Constituction mutustry	

đ
Lecture Hours

Nature, characteristics, size and structure. Role of infrastructure development in employment generation and improving of the National economy. Various Agencies associated with infrastructure development in India as regards various sectors.

Unit II: Status of Infrastructure in India

8

0

Lecture Hours

Resource Planning- Planning for material, Labour, time and cost-Resources Utilization, material, Labour, time and cost - Procurementinventory control

Unit III: MATERIAL, EQUIPMENT AND LABOUR

8

Lecture Hours

Road sector Port, Railway, communication, water supply and drainage, Power sector, oil and gas industry, Health and educational services. Infrastructure Development, Indian budget and its relation with Infrastructure development projects in India. Various programs related with Infrastructure development in rural and urban

sector. Public Private Partnership (PPP) in Infrastructure, Draft Concession Agreement for PPP projects, Escrow Agreement.

Unit IV:Issues related to infrastructure development

8

Lecture Hours

Pre – requisites necessary to ensure success for switching over from public sector management to private sector management, issues in developing, funding and managing infrastructure projects, role, responsibility of project management consultants. FDI in Infrastructure development, Problem areas and solutions.

Unit V: SPV's for Infra projects

8

Lecture Hours

JNNURM - Jawaharlal Nehru National Urban Renewal Mission, PMGSY – Pradhan Mantri Gram Sadak Yojana, RGGVY - Rajiv Gandhi Grameen Vidyutikaran Yojana, Ports Connectivity Projects, Indira Gandhi International Air Port project, Indo – US Nuclear Deal, Nuclear Power Projects in India.

Unit VI: Discussion on Latest Research Paper 4

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Construction Engineering & management of Projects(For Infrastructure & Civil Works) by S. C. Sharma, Khanna Publishers, 2nd Edition, 2011

2. India Infrastructure Report – Rakesh Mohan.

3. Infrastructure Today – Magazine.

4. Document of five year plans, published by Govt. of India.

- 5. Public Private Partnership in Infrastructure by R. N. Joshi Vision Publications 2010.
- $\frac{1}{2} \frac{1}{2} \frac{1}$

6. Infrastructure Development in India by Rajarshi Majumder Rawat Publications – 2010

Name of The	International Contracting
Course	

Course Code	BCE02T5708				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-	-			
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. This course mainly aims to develop the knowledge about international contracting and importance of contact in construction.

2. To make the students to understand international contract/construction laws.

3. To make the students to understand Risk Management in project.

4. Students understand Managing Variations in Contracts.

Course Outcomes

On completion of this course the student will be able to:

	Know the International contracting –
CO1	meaning, scope, nature, present status of
	the International Construction.
CO2	Study and application of various
02	conditions of contract.
	Get a thorough knowledge of various
CO3	types of International Projects – Types of
COS	BOT systems. Understand different types
	of Risk Management in project.
CO4	Know the different procedures for
04	Disputes Resolving.
COS	Understand different types of Risk
	Management in project.
CO6	Understand latest research paper

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: International Contracting: Defining the Playing Field 8 Lecture Hours

International contracting –meaning, scope, nature, present status of the International Construction market, role of Asia- Pacific region countries in the present construction development. Impact of WTO/GATS on the Indian Construction Sector as regards domestic market and export sector. Selection of personnel to suit socio-economicenvironmental culture in other countries, suitable organizational structure.

Unit II: Study Of various Contract Condition 8 Lecture Hours

Study and application of various conditions of contract under the FIDIC document. Development of regulatory framework. Project exports from India. International financing: Various institution such as WB, IMF, ADB. African bank etc. and their role, rules – regulations in funding various projects, forming alliance, bilateral and multilateral funding, trade practices etc.

Unit III: International Projects

8

Lecture Hours

International Projects – Types of BOT systems such as BOT, BOOT, BOO, DBO, BOR, BLT, BRT, BTO & DBFOT, MOOT, ROO, ROT, and BOLT – Contractual procedures, special features, and methods of handling.

Unit IV: Disputes Resolving

Lecture Hours

8

8

Disputes Resolving - International Courts, formation of DRB's (Dispute resolving boards) functioning and experiences in India and abroad, Advantages of DRB's UNICTRAL Proceedings for International Arbitration. Institutionalized Arbitration, CIDC - SIAC Arbitration. CASE studies of any 2 major project executed/functioning under International Contracting.

Unit V: Project & Risk Management

Lecture Hours

Risk Management in project, Case-Contractor Withdraws from negotiation due to risk exposure. The many face of risk. Definition of risk. Risk Policy of Contractors.

Unit VI: Discussion on Latest Research Paper

4

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1.International Contracting: Contract Management in Complex Construction Projects. Book by A. J. van Weele and John Puil ISBN 978-1-908979-50-6

2.A Short Course in International Contracts: Drafting the International Sales by Karla C.Shippe: world trade press.

3.Simon M.S. McGraw Hill (2007);" Construction Contracts & Claims", New York. ISBN: 9780070574335.278 p.

4.FIDIC documents.

Name of The Course	Thrust Areas in Project Management				
Course Code	BCE02T5709	BCE02T5709			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	С
		3	0	0	3

Course Objectives

1. To understand the knowledge of Project Preplanning and Partnering

2. To analyze the SWOT and SCM of the construction project

3. To study about the critical chain management

4. To understand the concepts of cost variance, cost performance index and schedule performance index methods of determining earned value

5. To study on the reporting requirements of particular specifications.

6. Understand latest research paper.

Course Outcomes

On completion of this course the student will be able to:

COI	Understand	project	characteristics	and
COI	various stage	es of a pr	oject.	

CO2	Understand the conceptual clarity about
	project organization and feasibility
02	analyses - Market, Technical, Financial
	and Economic.
	Understand the critical chain in
CO3	construction projects based on the theory
	of constraints.
COA	Understand the importance of earned
04	value analysis.
CO5	Understand the various stakeholders of
	projects associated with reporting.
CO6	Understand latest research paper

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Project Pre-planning and Partnering	
	8
Lecture Hour	S

a) Project preplanning:-

Project Influence cost diagram. Need for project preplanning in the context of time and cost overruns, reduction in economic benefits. Definition selecting pre-planning team and evaluation of alternatives. Decision whether to invest in project design Concept of PDRI— Project definition rating index. PDRI for residential and industrial buildings. Utility of PDRI with respect to benchmarking. Any case study on Project pre—planning.

b) Project partnering:-

Delimitation, partnering as an effective risk sharing mechanism, partnering charter, partnering workshop. Advantages of partnering role in preventing construction disputes, risk management and QM. C Critical success factors for implementation Any case study on project partnering.

Unit II: S. W. O. T. analysis and S. C. M

8 Lecture Hours

a) S. W. O. T

Strengths, Weaknesses, opport Moduleies, threats analysis. Conduct S. W. O. T. for individual construction organization, Indian Construction industry. Advantages, S. W. O. T. matrix utility of S. W. O. T. matrix on strategic planning and management.

b) S. C. M.

Supply Chain Management. Concept of Supplier and customer in context of ISO. Identifying the chain associated connecting various processes between the supplier and the customer in context of construction project. Management strategy for implementing S. S. C. M. in construction organizations and on construction projects. Benefits of S. C. M.

Unit III: Critical Chain Management (CCM) and Fast Track Construction

8

Lecture Hours

Critical Chain Management (CCM):--

Concept of critical chain in construction projects based on the theory of constraints. Developing critical chain plans for a single project and multiple projects. Measuring, monitoring and controlling the critical chain. Advantages of CCM.

Fast Track Construction:--

Diagrammatic representation of the concept of the fast track construction. Advantage, suitability of fast track construction. Form of contract suitable for fast track projects. Concept of guaranteed maximum pricing (GMP). Any one case study on fast track constriction.

Unit IV: Earned Value Analysis

8

Lecture Hours

Definition of earned value. Importance of Earned value analysis. Concepts of cost variance, schedule variance, cost performance index and schedule performance index methods of determining earned value viz. Ratio method, repetitive type work package method, Complex construction work package method, start or finish method. Accounting practices for determining the earned value.

Unit V: Project Reporting

c Lecture Hours

8

Guidelines for report preparation, various stakeholders of projects associated with reporting. Scheduling program default report content, report Sorting, selection criteria, interpretation. Reporting requirements of particular specifications. Use of project Management software's in reporting. Study of sample project reports.

Unit VI: Discussion on Latest Research Paper 4

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Prasanna Chandra; Projects- Planning, Analysis, Selection, Financing, Implementation and Review',VI Edition, Tata Mc Graw Hill, 8th Edition 2015.

2. Pre-project planning handbook—published by Construction Industry Institute (CIT) USA.

3.ASCE journal papers on project pre-planning to be used. ASCE journal papers on project partnering to be used.

4. Project Management—Financial evaluation with strategic planning, networking and control— Bhavesh Patel—2nd edition 2010, reprinted in 2011—Vikas publishing House Pvt. Ltd.

Name of The Course	Leadership & Team Building				
Course Code	BCE02T571	0			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		3	0	0	3

Course Objectives

1. To study Develop and strengthen interpersonal skills

2. To study how to become familiar with and discuss different leadership models and studies

3. To study the various stages of leadership, its styles and connection to factors for success in today's society.

4. To study the way in which various mechanisms can allow for significant improvements in individual, team, and organizational performance.

Course Outcomes

On completion of this course the student will be able to:

CO1	Students will apply competencies and
	skills acquired in the leadership program.
	Apply leadership theory and practice to
CO2	decision-making and actions as a
	manager
	Recognize the implications of leadership
CO3	style and its impact on team and
	organization performance
	Identify and critically assess assumptions
COA	that influence decisions and actions on
004	management, leadership, teamwork and
	relationship building
CO5	To study the leadership models.
CO6	Understand latest research paper

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: EFFECTIVE COMMUNICATION:	
	8

Lecture Hours

Characteristics of the ideal communicator. Basic communication skills: empathy, active listening, assertiveness, rapport. Models of verbal and nonverbal communication. Steps to building a successful presentation. Structuring a story. Keys to high-impact slides. Ways to combat anxiety: cognitive and relaxation techniques. Oral expression techniques.

Unit II: MULTIPLE INTELLIGENCES & EMOTIONAL INTELLIGENCE 8 Lecture Hours

Emotional intelligence: origin and pillars, Components of emotional intelligence according to Daniel Goleman, The world of emotions: multiple functions. Self-esteem: self-awareness. Our feelings regarding our interests, values, and ways of thought. The ability to overcome obstacles: "Resilience as an affective strength. Managing relationships: how to confront a crisis. Improving our social relationships: empathy and assertiveness. Leading minds: the intelligences in relation to leaders and creators.

Unit III: EFFECTIVE LEADERSHIP

Lecture Hours

Will and motivation. Personal leadership, selfknowledge, and self-control. Using power responsibly and respectfully: the leader as a teambuilder. Serving the organization. Ability to plan future actions and transmit that vision to others. Take the initiative and stimulate others.

8

8

Unit IV: LEADERSHIP & VALUES

Lecture Hours

Value-based management. The foundation of values. Freedom and decision making. Conflicting ideas.

Unit V: LEADERSHIP MODELS

8Lecture Hours

Types of leadership. Traditional, legal, and legitimate leader .Formal and informal. Individual, executive, and institutional. Categories: autocratic, democratic, charismatic, paternalistic, authentic, spiritual. Dictatorial, etc. Classifying leadership, Characteristics of a leader. Leadership techniques

Unit VI: Discussion on Latest Research Paper 4

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1 Leadership and Team Building by vijay kumar haldar.

2. Team Building and Leadership (With Text & Cases) 1st Edition (English, Paperback, D. K. Tripathi)

3. Seven habits of highly effective people—Stephen Covey—Franklin Covey Publications

Name of The	Material Management &				
Course	Inventory Control				
Course Code	BCE02T571	1			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. To Study about the material organizing and purchasing

2. To Study about the material supply and demand

3. To Study about the material storage and causes of wastage of materials

Course Outcomes

On completion of this course the student will be able to:

CO1	Identifying the scope for integrating
	materials management function over the
	logistics and supply chain operations
	Apply various purchasing method and
CO2	inventory controlling techniques into
	practice.
	Analyzing the materials in storage,
CO3	handling, packaging, shipping distributing
	and standardizing.
CO4	To study the storage management
CO5	To study the wastage management.
CO6	Understand latest research paper

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Material Classification **8 Lecture Hours** Organizing for materials management – basis for forming organizations - conventional and modern approaches to organizing materials management. Materials identification - classifying of materials - codification of materials - standardization simplification and variety reduction of materials **Unit II: Material Purchasing 8** Lecture Hours Planning Purchasing Material Purchasing-Materials - Norms Of Vendor Rating - Cei Methodology – Material Selection And Development - Purchasing Procedures And Methods - Legal Aspects - Insurance Of Materials. **Unit III: Procurement Management 8 Lecture Hours** Supply Management – Sources Of Supply – Out Sourcing Material Management Procurement Organization - Procurement Planning - Functions Of Material Management - Inventory Control. **Unit IV: Store Management 8** Lecture Hours Storing of Materials-Management of stores location - different types of stores - methods of storing - safety and security of materials - stores equipment - materials handling equipment factors affecting materials handling **Unit V: Waste Management** 8 **Lecture Hours** Scrap & Obsolete Materials-Management of surplus obsolete and scrap materials - reasons for accumulation of surplus obsolete and scrap materials - methods of disposal - regulations and procedures **Unit VI: Discussion on Latest Research Paper** 8 **Lecture Hours** This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

 Datta .A.K, "Materials Management: Procedures, Text and Cases", PHI Learning Pvt. Ltd., 2004.
 Arnold, "Introduction To Materials Management", Pearson Education India,2009
 Richard J. Tersine, "Principles Of Inventory And Materials ,Management", Prentice Hall,2004
 Richard J. Tersine, "Modern Materials Management", John Hardin Campbell - 2007

Name of The Course	Marketing R	lesea	rch		
Course Code	BCE02T5712	2			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. To study Meaning of research

2. To study the literature survey, and strategies of literature survey.

3. To study the report writing need of effective documentation.

Course Outcomes

On completion of this course the student will be able to:

CO1	Develop understanding on various kinds of research, objectives of doing research, research process, research designs and sampling.
CO2	Have basic knowledge on qualitative research techniques.
CO3	Have adequate knowledge on measurement & scaling techniques as well as the quantitative data analysis
CO4	Have basic awareness of data analysis-and hypothesis testing procedures.
CO5	To study the advanced data analysis techniques.
CO6	Understand latest research paper

Suggested Reading

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction to Research Meaning of research

8

Lecture Hours

Introduction to Research Meaning of research, types of research, process of research, Sources of research problem, Criteria / Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem, formulation of research hypotheses. Search for causation. Developing a Research Proposal Format of research proposal, Individual research proposal, Institutional objectives. research proposal, Significance, methodology, Funding for the proposal, Different funding agencies. Framework for the planning

Unit II: Literature survey

8

Lecture Hours

Literature survey Definition of literature and literature survey, need of literature survey, sources of literature, elements and objectives of literature survey, styles of literature survey, and strategies of literature survey.

Unit III: Data collection

8

Lecture Hours

Data collection, Measuring, Sampling and Scaling Classification of data, benefits and drawbacks of data, evaluation of data, qualitative methods of data collection, methods of qualitative research, Sampling, sample size, sampling strategy, attitude measurement and scaling, types of measurements, criteria of good measurements, classification of scales.

Unit IV: Preliminary data analysis Testing of hypothesis

8

Lecture Hours

Preliminary data analysis Testing of hypothesisconcepts and testing, analysis of variance techniques, introduction to nonparametric tests. Validity and reliability, Approaches to qualitative and quantitative data analysis.

Unit V: Advanced data analysis techniques

8

Lecture Hours

Advanced data analysis techniques Correlation and regression analysis, Introduction to factor analysis, discriminate analysis, cluster analysis, multidimensional scaling, Descriptive statistics, Inferential statistics, Multi-dimensional measurement and factor analysis.

Unit VI: Discussion on Latest Research Paper 4

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1.Malhotra N.K. (2011) Marketing Research, Pearson Education, Inc.

2. Zikmund W.G. (2007) Business research Methods, Thomspns, Akash Press New Delhi.

 Research Methodology: Methods and Trends, by Dr. C. R. Kothari, New Age International Publishers.
 Research Methods in Education, Louis Cohen, Manion, Morrison, Routledge (Taylor & Francis Group)/ Cambridge University Press India Pvt. Ltd.

Name of The	Advanced Construction				
Course Code	BCE02T3711				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. To Study Bridges, Steel Bridges, Arch Bridges, Cantilever Bridges Segmental construction & Box Girders

2. To Study about Construction of Metro Railway & Monorail.

Course Outcomes

On completion of this course the student will be able to:

	To give an experience in the
COI	implementation of new technology
COI	concepts which are applied in field of
	Advanced construction
	Understand various types of Bridges,
CO2	Steel Bridges, Arch Bridges, Cantilever
	bridge.
CO3	To Study about Construction of Metro
COS	Railway & Monorail
COA	To study the construction methods and
C04	techniques of high rise building.
	Understand various types of offshore
CO5	structure such as- Beacons, Oil drilling
	Platforms, light houses.
CO6	Understand latest research paper

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Construction of power generating structures

8

Lecture Hours

Construction of power generating structures – Atomic Power stations, Thermal power stations. Co-generation Power Plant, Windmills, Transmission towers, Chimneys (single and multiflue), cooling towers - Natural draft cooling towers (NDCT) & Induced draft cooling tower (IDCT), Ash handling system, Containment Structure, Electro Static Precipitator (ESP), Case study of Kaiga atomic power station, Madras atomic power station. Or Any other Case Study and Safety Hazards

Unit II: Bridges

8

Lecture Hours

Bridges, Steel Bridges, Arch Bridges, Cantilever Bridges Segmental construction & Box Girders. Construction of special type of bridges such as cable stayed bridge, suspension and Pre-stressed bridge, construction of foundation and Super structure.

Unit III: Construction of Metro Railway & Monorail

8

Lecture Hours

Construction of Metro Railway & Monorail -Underground and over ground structures, different methods and techniques of construction. Problems and solutions – during maintenance and upkeep of structures. Fire, Ventilation, Dewatering and power supply, Subsidence, Vibration etc., Concept of Magrail.

Unit IV: High rise buildings

8

Lecture Hours

High rise buildings – Construction methods and techniques using different materials, Minerals, Admixtures in-situ concrete, Precast Concrete & Structural Steel, finished concrete, tunnel form, fire Fighting ,Safety & Hazards, Job Safety Analysis. Innovative methods of construction – Slip form technology, Jump form technology, Aluform & Tunnel Form Technology, Dry wall technology, Plastering Machines.

Unit V: Offshore structure

8

Lecture Hours

Offshore structure such as- Beacons, Oil drilling Platforms, light houses. Barges - Jack up Platform, Deck Barge, Hydro clam barges, Hoppers Barges, Submersible barges, Function, utilization & economics of barges.

Unit VI: Discussion on Latest Research Paper 4 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. S.P. Arora & S.P. Bindra, A Text Book of Building Construction, Dhanpat Rai & Sons, New Delhi

2. S.K. Sarkar and S. Saraswati, Construction Technology, Oxford University Press,

3. New Delhi. B.C. Punamia, Building Construction, Laxmi Publications, New Delhi

4. S.C. Rangwala, Building Construction, Charotar Publication Pvt Ltd. Anand

Name of The Course	Operations Research				
Course Code	BCE02T3712				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		3	0	0	3

Course Objectives

1. To Study use of operations Research in Civil Engineering and Managerial Decision making process

2. To Study about transportation Model and its variants.

3. To Study multi stage decision processes.

Course Outcomes

On completion of this course the student will be able to:

	To understand the use of Operations
CO1	Research in Civil Engineering and
	Managerial decision making process
CO2	Solve Linear Programming Problems

CO3	Solve Transportation and Assignment
	Problems
	Understand the usage of game theory and
CO4	Simulation for Solving Business
	Problems.
COS	Understand multivariable optimization
005	without constraints.
CO6	Understand latest research paper

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit	Ι	Operations	Research	in	Civil
Engin	eeri	ng			

8

Lecture Hours

Use of Operations Research in Civil Engineering and Managerial Decision making process. Introduction to Optimization Techniques and their application in Engineering Planning, Design and Construction. Various models; Objective function and constraints, convex and concave functions, regions and sets.

Unit II: Linear programming

8

Lecture Hours

Linear programming: Formulation of Linear optimization models, Civil engineering applications. Simplex method, special cases in simplex method, Method of Big M, Two phase method, duality, sensitivity analysis.

Unit III: Transportation and assignment model

8

8

Lecture Hours

Transportation Model and its variants, Assignment Model and its variants, Decision theory.

Unit IV: Dynamic programming

Lecture Hours

Dynamic programming: Multi stage decision processes, Principle of optimality, Recursive equation, Application of D.P.Non-Linear programming: Single variable unconstrained optimization -Local & Global optima, Uni-modal Function-Sequential Search Techniques: Dichotomous, Fibonacci, Golden Section methods.

Unit V: Multivariable optimization without constraints

8

Lecture Hours

Use of Building Integrated Photo Voltaic (BIPV) and other renewable energy in buildings, basic concepts and efficiency. Radiation budget, Surface water balance, Effects of trees and microclimatic modification through greening.

Unit VI: Discussion on Latest Research Paper 4

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1.Hillier, Frederick S. & Lieberman, "Introduction to Operations Research Concepts and Cases", 2010, 8 th Ed. TMH

2. N.D. Vohra, "Quantitative Techniques in Management", 2010, 4thEd.TMH.

3. J.K. Sharma, "Operations Research Theory and Applications 2009,4th Ed. McMillan.

4. Kasana, HS & Kumar, KD, "Introductory Operations Research theory and Applications", 2008, Springer.

5. Chakravarty, P, "Quantitative Methods for Management and Economics", 2009, 1st Ed. HPH.

Name of The	Retrofitting of Structures				
Course					
Course Code	BCE02T371	3			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. Learn the fundamentals of maintenance and repair strategies.

2. Study the quality assurance, serviceability and durability of concrete.

3. Know the various materials and techniques used for repair of structures.

4. Educate the different repair, strengthening, rehabilitation and retrofitting techniques.

5. Instruct the various health monitoring and demolition techniques.

Course Outcomes

On completion of this course the student will be able to:

COL	Understand the fundamentals of					
	maintenance and repair strategies.					
CO2	Diagnose for serviceability and durability					
02	aspects of concrete.					
CO3	Know the materials and techniques used					
005	for repair of structures.					
	Decide the appropriate repair,					
COA	strengthening, rehabilitation and					
04	retrofitting technique required for a case					
	study building.					
COS	Use an appropriate health monitoring and					
COS	demolition techniques.					
CO6	Understand latest research paper					

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Rehabilitation repairs and retrofitting

Lecture	Hours

8

Importance of rehabilitation repairs and retrofitting as a part of construction engineering. Difference between the term. Rehabilitation studies of buildings, underground construction, bridges, streets and highways, sewage treatment plants – masonry work, R.C.C. works, steel structures- types of distress.

Unit II: Numerical condition surveys

8

Lecture Hours

Numerical condition surveys for foundation, structural and functional deterioration, design criteria, materials and technology. Predictive performance models, evaluating alternatives based on technical, commercial, management, financial feasibilities, data collection and database management, maintenance of rehabilitated structures. Procedure adopted by BIFR (Board of Industrial and Financial Reconstruction).

Unit III: Serviceability and Durability of concrete

8

Lecture Hours

Serviceability and Durability of concrete: Quality assurance for concrete construction, concrete properties – strength, permeability, thermal properties and cracking. – Effects due to climate, temperature, chemicals, corrosion – design and construction errors – Effects of cover thickness and cracking.

Unit IV: Earthquake

8

Lecture Hours

Earthquake damages of buildings, their retrofitting, restoration, effects of earthquakes, response of buildings to earthquake motion, factors related to building damages due to earthquake, methods of seismic retrofitting, restoration of buildings.

Unit V: New Construction materials

8

Lecture Hours

New Construction materials, processes and techniques used for repairs, rehabilitation and retrofitting- Construction chemicals based on nanotechnology, construction points based on nanotechnology, various types of fibre wrappings etc.

Unit VI: Discussion on Latest Research Paper 4

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications.

Minimum one latest research paper will be discussed in the class.

Suggested Reading

1.Diagnosis and treatment of structures in distress by R.N.Raikar, Published by R&D Centre of Structural Designers & Consultants Pvt.Ltd., Mumbai, 1994.

2. Earthquake resistant design of structures by Pankaj Agarwal and Manish Shrikhande, Prentice-Hall of India, 2006.

Construction	Saf	fety		
BCE02T3714	1			
-				
-				
-				
	L	Т	Р	С
	3	0	0	3
	Construction BCE02T3714	Construction Saf BCE02T3714 - - - - L 3	Construction Safety BCE02T3714 - - - - - - - L T - 3 0	Construction Safety BCE02T3714 - - - - L T P L T Q Q - L T Q Q Q

Course Objectives

1. To study and understand the various safety concepts and requirements applied to construction industry.

2. To study the various construction safety problems and safety programs.

3. To study the various laws related to safety in construction industry

4. To study the importance of workers compensation insurance.

Course Outcomes

On completion of this course the student will be able to:

CO1	Ability to identify safety risks on jobsites.
	Able to create and manage an effective
CO2	safety program in a construction
	company.
CO3	Will be aware of various laws related to
005	construction safety
CO4	Understand Laws related to construction
04	industry.
CO5	Understand case based reasoning.
CO6	Understand latest research paper

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Safety management function

Lecture Hours

8

Safety management function, Importance of safety in construction industry, Line versus staff authority, Safety responsibility and accountability in construction industry, Safety organizations, Role of various parties, duties, responsibilities of top management, site managers, supervisors etc., Role of safety officers, Responsibilities of general employees, Safety administration.

Unit II: Construction safety problems

8

Lecture Hours

problems, Construction safety Hazards in projects, Accident: definition. construction causes, cost, measurement, investigation and prevention of accidents, Legal and financial aspects of accident, Safety Program: Need, Elements of an Effective and safety program, general safety program in construction industry. Hazard Identifications and Control Techniques -HAZOP, FMEA, FMECA.

Unit III: Safety in use of construction equipment

8

Lecture Hours

Safety in use of construction equipment - vehicles, cranes, hoists and lifts etc., Safety of scaffolding, ladders, working platforms etc, safety while using electrical appliances, explosives, blasting etc, fire safety, Fire safety Causes and safety of accidents on various construction sites such as buildings, dams, tunnels, bridges, roads, high rise constructions etc., safety measures for storage and handling of building materials. Safety equipment and gear used on construction site, First aid on site.

Unit IV: Laws related to construction industry

						8
				Ι	lectu	re Hours
Laws	related	to co	onstructi	on ir	ndustr	y, Laws
related	to the I	ndustri	ial Safet	y, Saf	ety P	rovisions
in the l	Factory	Act, L	abour la	ws. M	leasur	rement of
Safety modifi	Perform cation ra	nance, ating, v	Safety vorkers i	Aud	it. Ez nce.	xperience
Unit V	: Case	based	reasoni	ng		
				2		8
				Ι	lectu	re Hours

Case based reasoning, case indexing, retrieval, accident prevention and forecasting using CBR method. Systems safety analysis, faulty tree analysis, failure modes and effects analysis in construction industry.

Unit VI: Discussion on Latest Research Paper 4

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

 John V. Grimaldi. (1996). "Safety Management." AITBS Publishers & Distributors, New Delhi, India.
 Kwakye, A.A. (1997), "Construction Project Administration", Adisson Wesley Longman, London.

3. Jimmy W.Hinze, "Construction Safety ", Prentice Hall Inc., 1997.

4. Richard J. Coble, Jimmie Hinze and Theo C. Haupt, "Construction Safety and Health Management", Prentice Hall Inc., 2001. Internal continuous assessment: 100 marks Internal continuous assessment is in the form of periodical tests, assignm

5. James, J.O Brien, "Construction Inspection Handbook - Quality Assurance and Quality

Name of The	Economics And Project
Course	Finance For Civil Engineers
Course Code	BCE02T3715
Prerequisite	-
Co-requisite	-
Anti-requisite	-
	L T P C

3 0 0 3

Course Objectives

1. This course mainly aims to develop the knowledge about Engineering Economy

2.Importance of finance for civil engineers

3.To make the students to understand Engineering

Economy and importance of finance

4. Develop knowledge about project finance

Course Outcomes

On completion of this course the student will be able to:

COL	Know the Engineering Economy and
COI	importance of finance for civil engineers.
CO2	Study and application of various
02	conditions of finance.
CO3	Get a thorough knowledge of various
005	types of Projects finance.
CO4	Understand different types of
04	Engineering Economy.
COS	Students learn about the behaviour of
005	different types of Projects
CO6	Understand latest research paper

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Engineering economics	

Lecture Hours

8

8

Engineering economics: Basic principles – Time value of money, Quantifying alternatives for decision making, Cash flow diagrams, Equivalence- Single payment in the future (P/F, F/P), Present payment compared to uniform series payments (P/A,A/P), Future payment compared to uniform series payments (F/A,A/F), Arithmetic gradient, Geometric gradient.

Unit II: Comparison of alternatives

Lecture Hours

Comparison of alternatives: Present, future and
annual worth method of comparing alternatives,
Rate of return, Incremental rate of return, Break-
even comparisons, Capitalized cost analysis,
Benefit-cost analysis.
Unit III: Depreciation
8
Lecture Hours
Depreciation, Inflation and Taxes: Depreciation,
Inflation, Taxes.
Unit IV: Equipment economics
8
Lecture Hours
Equipment economics: Equipment costs,
Ownership and operating costs, Buy/Rent/Lease
options, Replacement analysis.
Unit V: Cost estimating
8
Lecture Hours
Cost estimating: Types of Estimates, Approximate
estimates – Unit estimate, Factor estimate, Cost
indexes, parametric estimate, and Life cycle cost.
Unit VI: Discussion on Latest Research Paper
4
Lecture Hours
Lecture Hours This unit is based on research papers / Innovations

Suggested Reading

discussed in the class.

1. Blank, L. T. and Tarquin, A. J.,"Engineering Economy", Fourth Edition, WCB/McGraw-Hill, 1998.

Minimum one latest research paper will be

2. Bose, D. C., "Fundamentals of Financial management", 2nd ed. PHI, New Delhi, 2010.

3. Boyer, C.B. and Merzbach, U. C., "A History of Mathematics", 2nd ed., John Wiley & Sons, New York, 1989.

4. Gould, F.E., "Managing the Construction Process", 2nd ed., Prentice Hall, Upper Saddle River, New Jersey, 2002.

5. Peurifoy , R. L. and Oberlender, G. D., "Estimating Construction Costs", 5th ed., McGrawHill, New Delhi, 2004.

6. Schexnayder, C. J. and Mayo, R.E., "Construction Management Fundamentals", International Edition, McGraw-Hill, 2003.

Name of The	Repair And Maintenance Of Buildings				
Course Code	BCE02T371	6			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	С
		3	0	0	3

Course Objectives

1. This course will help students learn how to identify various deterioration mechanisms or damage mechanisms in concrete structures.

2. The course will discuss the scientific aspects and its use while practicing repair works at site. Use of various non-destructive, partially-destructive tools to assess the condition of the structure will be discussed.

3. To make the students to beam shear capacity strengthening.

4. Students understand Concrete assessment.

Course Outcomes

On completion of this course the student will be able to:

CO1	Understand the Corrosion mechanisms.
CO2	Know the Deterioration of cementitious
02	systems.
CO3	Get an idea of Surface repairing
005	techniques.
COA	Understand the properties of repairing
04	materials.
COS	Know Strengthening and stabilization of
COS	Building materials.
CO6	Understand latest research paper

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction

8					
Lecture Hours					
Significance of corrosion, and corrosion					
mechanisms, Embedded metal corrosion.					
Unit II: Deterioration of cementitious systems					
8					
Lecture Hours					
Sulphate and Acid attack, Alkali Silica Reaction					
(ASR), Shrinkage, and others.					
Unit III: Concrete assessment					
8					
Lecture Hours					
Concrete assessment using non-destructive tests					
(NDT), Concrete assessment and load effects.					
Unit IV: Surface repair					
8					
Lecture Hours					
Condition assessment Analysis strategy and					
design					
Unit V. Papairs to structures					
e cont v. Repairs to structures					
o Lecture Hours					
Material requirement surface properation					
placement of repair material					
placement of repair material.					
Unit VI: Discussion on Latest Research Paper					
4					
I his unit is based on research papers / Innovations					
/ start-up ideas / white papers / applications.					
winnmum one latest research paper will be					
discussed in the class.					

Suggested Reading

1. Brian J.B. Wood, (2009), Building Maintenance, Wiley-Blackwell, ISBN-10: 1405179678.

2. Ravindra K. Dhir, M. Roderick Jones & Li Zheng, (2005), Repair and Renovation of Concrete Structures, American Society of Civil Engineers, ISBN-13: 9780727734051.

3. IS Code 10262: 2019

Program: MTech in Transportation Engineering

Scheme: 2020-2021

Vision

To be a Centre of Excellence for imparting high end research and technical education in Civil Engineering producing socially aware professionals to provide sustainable solutions to global community.

Mission

M1: To impart quality education and mould technically sound, ethically responsible professionals in the field of Civil Engineering.

M2: Collaborate with industry and society to design a curriculum based on the changing needs of stakeholders and provide excellence in delivery and assessment.

M3: Establish state-of-the-art facilities for world class education and research.

M4: To mentor students in pursuit of higher education, entrepreneurship and global professionalism.

PEOs

PEO1: Graduates shall attain state of the art knowledge in the different streamsof Civil Engineering and be trained for playing the role of competent Civil Engineer in multidisciplinary projects.

PEO2: Graduates shall be capable of pursuing productive careers in private and government organizations at the national and international level and to become successful entrepreneurs.

PEO3: Graduates shall display a high sense of social responsibility and ethicalthinking and develop sustainable engineering solutions.

PSOs

PSO1: Develop the ability to implement emerging techniques to plan, analyze, design, execute, manage, maintain and rehabilitate systems and processes in transportation engineering.

PSO2: Excel in research, innovation, design, problem solving using different softwares and artificial intelligence and develop an ability to interact and work seamlessly in multidisciplinary environment.

POs

PO1: Apply the knowledge of Mathematics, Science, and Engineering fundamentals, and an engineering specialization to solution of complex engineering problems (Engineering Knowledge)

PO2: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences (Problem analysis)

PO3: Design of solutions for complex engineering problems and design of system components or processes that meet the specified needs with appropriate considerations of public health and safety, and cultural, societal, and environmental considerations (Design/development of solutions)

PO4: Use research based methods including design of experiments, analysis and interpretation of data and synthesis of information leading to logical conclusions (Conduct investigations of complex problems)

208

PO5: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling complex engineering activities with an understanding of limitations (Modern tool usage)

PO6: Apply reasoning within the contextual knowledge to access societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The engineer and society)

PO7: Understand the impact of the professional engineering solutions in the societal and environmental contexts, and demonstrate the knowledge of, and the need for sustainable developments (Environment and sustainability)

PO8: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice (Ethics)

PO9: Function effectively as an individual independently and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and team work)

PO10: Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation, make effective oral presentations, and give and receive clear instructions (Communication)

PO11: Demonstrate knowledge and understanding of engineering management principles and apply those to one's own work as a member and leader of a team to manage projects in multidisciplinary environments (Project management and finance)

PO12: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life-long Learning).

Curriculum

	Semester 1								
Sl.	Course Code	Nome of the Course					Assess	sment Pa	attern
No	Course Code	Name of the Course	L	Τ	Р	С	IA	MTE	ETE
1	CENG 5001	Professional and Communication Skills	3	0	0	3	20	30	50
2	MATH5001	Advanced Numerical and Statistical Methods	3	1	0	3	20	30	50
3	MTPE5001	Material Characterization and Pavement Engineering	3	0	0	3	20	30	50
4	MTPE5002	Highway Geometric Design	3	0	0	3	20	30	50
5	MTPE5003	Traffic Engineering and Safety	3	0	0	3	20	30	50
6	MTPE5004	Intelligent Transportation Systems	3	0	0	3	20	30	50
7	MTPE5005	Pavement Material Lab	0	0	2	1	50	-	50
8	MTPE5006	Traffic Engineering Lab	0	0	2	1	50	-	50
		Total Credits				20			
		Semester II							
Sl	Course Code	Name of the Course				~	Asses	sment Pa	attern
No			L	T	P ^	C	IA	MTE	ETE
1	MTPE6001	Advanced Traffic Engineering and Safety	3	0	0	3	20	30	50
2	MTPE6002	Urban Mass Transportation Planning Operations and Management	3	0	0	3	20	30	50
3	MTPE6003	Computational Techniques In Transportation Engineering	3	0	0	3	20	30	50
4		Elective – 1	3	0	0	3	20	30	50
5		Elective – 2	3	0	0	3	20	30	50
6		Elective – 3	3	0	0	3	20	30	50
7	MTPE6004	Transportation Systems Planning and Management Lab	0	0	2	1	50	-	50
8	MTPE6005	Seminar	0	0	2	1	50	-	50
		Total Credits				20			
CI		Semester III						(D	
SI No	Course Code	Name of the Course	L	Т	Р	С	Assess IA	sment Pa	ettern ETE
1	MTPE7001	Smart and Sustainable Transportation	3	0	0	3	20	30	50
2		Elective - 4	3	0	0	3	20	30	50
3		Elective - 5	3	0	0	3	20	30	50
4	MTPE7002	Mini Project	-	-	2	1	50	-	50
5	MTPE7003	Comprehensive Examination	-	-	-	2	50	-	50
6	MTPE7004	Project (Phase I)	0	0	0	5	50	-	50
		Total Credits				17			
		Semester IV							
Sl	a a i						Assessment Pattern		
No	Course Code	Name of the Course	L	Т	Р	С	IA	MTE	ЕТЕ

1	MTPE8001	Project(Phase II)	0	0	0	15	50	-	50
		Total Credits				15			

Total Grand Credits = 72

Sl	Course	Nome of the Electives Assessmen				sment Pa	attern		
No	Code	Ivalle of the Electives	L	Т	Р	С	IA	MTE	ETE
1	MTPE6010	Airport planning and design	3	0	0	3	20	30	50
2	MTPE6011	Remote Sensing and GIS	3	0	0	3	20	30	50
3	MTPE6012	Selection of Construction	3	0	0	3	20	30	50
		Equipment and Modelling							
4	MTPE6013	Transport Economics and Finance	3	0	0	3	20	30	50
5	MTPE6014	Traffic Flow Theory	3	0	0	3	20	30	50
6	MTPE6015	Highway construction practices	3	0	0	3	20	30	50
7	MTPE6016	ML and Deep learning techniques	3	0	0	3	20	30	50
/	MIII LOOIO	to transportation problems	5	0	0	5	20	50	50
8	MTPE6017	Behavioural Travel Modelling	3	0	0	3	20	30	50
9	MTPE6018	Rural Road Technology	3	0	0	3	20	30	50
10	MTPE6019	Traffic Management & Design	3	0	0	3	20	30	50
11	MTPE6020	Public Transportation System	3	0	0	3	20	30	50
12	MTPE6021	Ground Improvement Techniques	3	0	0	3	20	30	50
13	MTPE6022	Bridge Engineering	3	0	0	3	20	30	50
14	MTPE6023	Transportation Network Analysis	3	0	0	3	20	30	50
15	MTPE6024	Project Management	3	0	0	3	20	30	50

Program Electives (Credits to be earned 15)

Name of The Course	Material Characterization and Pavement Engineering					
Course Code	MTPE5001					
Prerequisite	-					
Co-requisite	-					
Anti-requisite	-					
		L	Τ	Р	С	
		3	0	0	3	

Detailed Syllabus

Course Objectives

1. To provide students with a thorough understanding of the important factors in pavement design and analysis.

2. The focus will be on practices of pavement design of highway agencies.

3. To evaluate the physical and mechanical

properties of sub grade, and pavement materials and design of flexible and rigid pavements subjected to wheel loads.

Course Outcomes

On completion of this course, the students will be able to

	Determine the proportions of ingredients
CO1	required for the mix design of both asphalt
	mixtures and cement concrete.
	Characterize the pavement materials
CO2	including soil, aggregate, cement, asphalt
	mixtures, and cement concrete.
	Select appropriate asphalt binder for
CO3	construction of a flexible pavement
COS	depending upon the traffic and climatic
	conditions.
CO4	Choose appropriate stabilization technique
04	for pavement.
	Understand various pavement material
	characterization techniques, and able to
CO5	design a suitable pavement for known
	wheel loading characteristics and subgrade
	soil conditions.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Subgrade Soil Characterization

8 Lecture Hours Properties of subgrade layers; different types of soils, Mechanical response of soil; Soil Classification; Index and other basic properties of soil; A critical look at the different laboratory and in-situ procedures for evaluating the mechanical properties of soils viz. SPT, DCPT, CPT, CBR, Plate Load test & resilient modulus; Suitability of different type of soil for the construction of highway embankments and pavement layers; Field compaction and control, properties of compacted soils.

Unit II:Introduction to Soil Stabilization and Aggregates

8 Lecture Hours

Introduction, types of stabilization – mechanical, cementing and chemical, proportioning of materials, grouting – principle, grouting materials, grouting plant and equipment, injection methods and applications of grouting. Aggregate Characterization, Origin, Classification, Types of aggregates; Sampling of aggregates; Mechanical and shape properties of aggregates, Aggregate texture and skid resistance, polishing of aggregates; Proportioning and Blending of aggregates: Super pave gradation, Fuller and Thompson's Equation, 0.45 power maximum density graph, Use of locally available materials in lieu of aggregates.

Unit III: Bituminous Binders and Mixes

Lecture Hours

8

Types of binders, properties and sues of bitumen, physical tests on bitumen, rheological and performance related properties of bitumen, grading of bitumen – penetration, viscosity and performance grading. Bituminous cutbacks and

emulsions – preparation, types and uses, modified bitumen- CRMB, NRMB, PMB, Criteria for selection of bituminous binders, tests on ageing of bitumen – RTFOT and PAV. Bituminous mixes – types, requirements, methods of mix design – Marshall, Hveem, Hubbard field and super pave, tests on bituminous mixes

Unit IV: Cement and Cement Concrete Mix Characterization

8 Lecture Hours

Types of cements and basic cement properties, Special cements; Quality tests on cement; Tests on cement concrete including compressive strength, flexural strength, modulus of elasticity and fatigue properties; Introduction to advanced concretes like self-compacted concrete, Light weight concrete, Roller Compacted Concrete for pavement application; IS method of cement concrete mix design with case studies; Role of different admixtures in cement concrete performance: Joint fillers for Jointed Plain Cement Concrete Pavements and their characterization.

Unit V: Stresses in Pavements

8 Lecture Hours

Types of stresses and causes Stresses and strains in flexible pavements, Stresses and strains in an infinite elastic half space use of Boussinesq's equations – Burmister's two layer and three-layer theories; Wheel load stresses, various factors in traffic wheel loads; Equivalent single wheel load of multiple wheels. Repeated loads and EWL factors. Introduction to Westergaard's equations for calculation of stresses in rigid pavement due to the influence of traffic and temperature; Considerations in rigid pavement analysis, EWL; wheel load stresses, warping stresses, frictional stresses, combined stresses.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. "Material, Design, Construction, Maintenance, and Testing of Pavement (Geotechnical Special Publications)" by Dar-Hao Chen and Cindy Estakhri 2. "Street Pavements and Paving Materials: A Manual of City Pavements, the Methods and Materials of Their Construction (Classic Reprint)" by Geo W Tillson

3."Pavement Design and Materials" by A T Papagiannakis and E A Masad

4."Recent Developments in Soil and Pavement Mechanics" by Almeida Marcio

5."Asphalt Concrete: Simulation, Modeling and Experimental Characterization (Geotechnical Special Publication)" by EyadMasad and VassilisPanaskaltsis

Name of The Course	Highway Geometric Design					
Course Code	MTPE5002					
Prerequisite	-					
Co-requisite	-					
Anti-requisite	-					
		L	Т	Р	С	
		3	0	0	3	

Course Objectives

1. To cover the principles of transportation infrastructure design in the wider context of the civil engineering profession.

 The design and execution of large transport infrastructure projects is a multi-layered exercise
 This module aiming to provide an overview of the key stages involved.

4. This module will develop a good command of the concepts involved in geometric design of intersections, horizontal & vertical alignment of roads & pedestrian facilities.

Course Outcomes

On completion of this course, the students will be able to

CO1	Basic principles of planning and design of roads
CO2	Alignment, road aesthetics and adaptation to the environment.

	Apply basic principles for the design of
CO3	roads within the context of a design
	problem
CO4	Assess the environmental impacts of
04	location and design
COS	Prepare detailed plans for such
005	infrastructure elements.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Highway Cross Section Elements and Geometric Design of Highways

8

8

Lecture Hours

Functional Classification of Highway System; Design Controls _ Topography, Driver characteristics, Vehicle Characteristics, Traffic, Capacity and Level of Service, Design Speed.Objectives of Geometric Design. Carriageway, Shoulders, Formation, right of way; Kerbs, foot paths, Medians- design specifications; Pavement Surface characteristics – Skid Resistance, factors affecting Skid resistance, Measurement of Skid Resistance; Road Roughness, measurement of Road roughness; Camber, Objectives of Camber, design standards.

Unit II:Horizontal and Vertical Alignment

Lecture Hours

Objective of horizontal curves; Super elevation – Need for Super elevation; Method of computing super elevation; Minimum Radius of Curve; Methods of attainment of super elevation; Extra widening on Curves; Transition Curves – Objective and Design. Gradients – Types of Gradients, Design Standards; Vertical Curves – Summit Curves, Valley Curves and Design criteria for Vertical Curves; Combination of Vertical and Horizontal Curves – Grade Compensation; Sight Distances – Stopping Sight Distance, Overtaking Sight Distance and Intermediate Sight Distance; Importance of Sight Distances for Horizontal and Vertical Curves.

Unit III: Intersection Design and Drainage

	0
Lecture	Hours

8

Types of Intersections; Design Principles for Intersections; Design of At-grade Intersections – Channelization, Objective; Traffic Islands and Design standards; Rotary Intersection – Concept and Design, Advantages and Disadvantages; Grade separated Interchanges – Types, warrants and Design standards. Importance – sub surface drainage –surface drainage– Design of road side drives – Hydrological – Hydraulical considerations and design of filter media, problems on above.

Unit IV: Traffic Signs and Road Markings

8

Lecture Hours

Types of Road Signs; Guidelines for the provision of Road Signs; Cautionary Signs, Regulatory Signs, Information Signs – Design standards; Road markings – Objective of Road Markings; Types of Road Markings; Role of Road markings in Road Safety and Traffic Regulation; Specification for Road Markings. Highway Appurtenances – Delineators, Traffic Impact Attenuators, Safety Barriers.

Unit V: Pedestrian Facilities

8 Lecture Hours

Requirements of Pedestrians; Pedestrian facilities on Urban Roads; Cycle Tracks – Guidelines and Design standards; Bus bays – Types and Guide lines; Design of On-street and Off street Parking facilities – Guidelines for lay out Design.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Atkins, N. Harold, Highway Materials, Soils and Concretes, Fourth Edition, 2002, Prentice-Hall.

 Kerbs Robert D. and Richard D. Walker, Highway Materials, McGraw-Hill, 1971.
 Concrete Pavements, AF Stock, Elsevier, Applied Science Publishers
 Relevant IRC and IS Codes of Practices (Separate List will be given).

5. Pavement and Surfacing for Highway & Airports, Micheal Sargious, Applied Science Publishers Limited.

Name of The	Traffic Engineering and				
Course	Safety				
Course Code	MTPE5003				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	С
		3	0	0	3

Course Objectives

1. To study the fundamentals of traffic engineering & some of the statistical methods to analyze traffic safety.

2. To acquire knowledge and understanding of the road environment

3. To impart knowledge and understanding of the causes and consequences of accidents.

4. To understand roles and responsibilities in ensuring road safety.

Course Outcomes

On completion of this course, the students will be able to

CO1	To understand fundamental of Traffic
COI	Engg.
CO2	To investigate & determine the collective
02	factors & remedies of accident involved.
CO3	To design & planning various road
005	geometrics.
	Generate awareness about number of
CO4	people dying every year in road
	accidents, traffic rules and characteristics
	of accident.
CO5	Gain information and knowledge about
	people responsible for accidents and their
	duties
CO6	Discuss on Latest Research Paper.

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction to Road Safety

8 Lecture Hours Road traffic accidents scenario in India and in world. Road Safety and its importance. Traffic Rules and Driving Behavior. Characteristics of accidents, accidents vs. crash. Awareness about rules and regulations of traffic. Assisting Traffic control authorities. Multidisciplinary approach to planning for traffic safety and injury control. Vulnerable road users: crashes related to pedestrian and bicyclists, their safety, provision for disabled.

Unit II:Fundamentals of Traffic Engineering and Studies

8 Lecture Hours

Basic Characteristics of Motor-Vehicle Traffic. Highway Capacity, Applications of Traffic Control Devices, Traffic Design of Parking Facilities, Traffic Engineering Studies; Statistical Methods in Traffic Safety Analysis - Regression Methods, Poisson Distribution, Chi- Squared Distribution. Statistical Comparisons. Components of road traffic - the vehicle, driver and road. Objectives and scope of traffic engineering. Traffic Engineering: Road user characteristics: human and vehicle characteristics. factors affecting road traffic; methods of measurement. Concepts of passenger car units for mixed traffic flow. Sampling in traffic studies; adequacy of sample size; application of sampling methods for traffic studies, objectives, methods of traffic study, equipment, data collection, analysis and interpretation (including case studies) of (i) Spot speed (ii) Speed and delay (iii) Volume (iv) Origin - destination (v) Parking. Traffic maneuvers and Stream Characteristics: application in intersection design.

Unit III: Responsibility of Road accidents and Safety measures

Continuous Assessment Pattern
8 Lecture Hours

People responsible for accident prevention: Police, Politicians, Community members, Policy makers, Teachers, Parents, Infrastructure authorities, Drivers and Official road safety body. Reasons of students/ children have accidents. 4 E's of Accidents Prevention: 1. Engineering - by altering the environment 2. Enforcement - by imposing laws 3. Encouragement - by the use of publicity campaigns 4. Education - by gaining and using knowledge.

Unit IV: Accident Investigations and Risk Management

8

Lecture Hours

Collection and Analysis of Accident Data, Condition and Collision Diagram, Causes and Remedies, Traffic Management Measures and Their Influence on Accident Prevention, Assessment of Road Safety, Methods to Identify and Prioritize Hazardous Locations and Elements, Determine Possible Causes of Crashes, Crash Reduction Capabilities and Countermeasures, Effectiveness of Safety Design Features, Accident Reconstruction.

Unit V:Road Safety in Planning and Geometric Design

8 Lecture Hours

Traffic Management Systems for Safety, Road Safety Audits and Tools for Safety Management Systems, Road Safety Audit Process, Approach to Safety, Road Safety Improvement Strategies, ITS and Safety. Vehicle and Human Characteristics, Road Design and Road Equipment, Redesigning Junctions, Cross Section Improvements, Reconstruction and Rehabilitation of Roads, Road Maintenance, Traffic Control, Vehicle Design and Protective Devices, Post Accident Care.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

School of Civil Engineering

1. Traffic Engineering and Transportation Planning

– L.R. Kadiyali, Khanna Publishers

2. Transportation Engineering – An Introduction, C.Jotinkhisty, B. Kent Lall

3. Fundamentals of Traffic Engineering, Richardo G Sigua

4. Handbook of Road Safety measures, second Edition, Rune Elvik, Alena Hoye, TrulsVaa, Michael Sorenson

5. Road Safety by NCHRP.

Name of The	Intelligent Transportation				
Course Code	MTPE5004				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
	L T P C				

Course Objectives

- **1.** To develop an understanding of system engineering processes
- **2.** To describe the concepts of system architecture and their evolution
- **3.** Understand the capability of key technologies
- **4.** Understand impact of technology on different modes and movement

Course Outcomes

On completion of this course, the students will be able to

CO1	Differentiate different ITS user services			
cor	Select appropriate ITS technology			
02	depending upon site specific conditions.			
	Able to appreciate the advantages of ITS			
CO3	and suggest the appropriate technologies			
	for field conditions.			
	Able to suggest the appropriate system/s			
CO4	in various functional areas of			
	transportation.			
	Able to amalgamate the various systems,			
CO5	plan and implement the applications of			
ITS.				
CO6	Discuss on Latest Research Paper.			

Continuous Assessment Pattern

SCHGOLO5rCWILENGINEERING

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Fundamentals of ITS					
8 Lecture Hours					
Definition of ITS, the historical context of ITS					
from both public policy and market economic					
perspectives, Types of ITS; Historical					
Background, Benefits of ITS. ITS Data collection					
techniques - Detectors, Automatic Vehicle					
Location (AVL), Automatic Vehicle					
Identification (AVI), Geographic Information					
Systems (GIS), video data collection.					

Unit II: Telecommunications in ITS

8 Lecture Hours

Information Management, Traffic Management Centers (TMC). Application of sensors to Traffic management; Traffic flow sensor technologies; Transponders and Communication systems; Data fusion at traffic management centers; Sensor plan and specification requirements; Elements of Vehicle Location and Route Navigation and Guidance concepts.

Unit III: ITS User Needs and Services and Functional areas

8

Lecture Hours

Introduction, Advanced Traffic Management systems (ATMS), Advanced Traveller Information systems (ATIS), Commercial Vehicle Operations (CVO), Advanced Vehicle Control systems (AVCS), Advanced Public Transportation systems (APTS), Advanced Rural Transportation systems (ARTS).

Unit IV: ITS Architecture

8 Lecture Hours

Regional and Project ITS architecture; Concept of operations; ITS Models and Evaluation Methods; Planning and human factor issues for ITS, Case studies on deployment planning and system design and operation; ITS and safety, ITS and security, ITS as a technology deployment program, research, development and business models, ITS planning.

Unit V:ITS applications 8			
Lecture Hours			
Traffic and incident management systems; ITS			
and sustainable mobility, travel demand			
management, electronic toll collection, ITS and			
road-pricing.; Transportation network operations;			
commercial vehicle operations; public			
transportation applications; Automated Highway			
Systems- Vehicles in Platoons -ITS in World -			
Overview of ITS implementations in developed			
countries, ITS in developing countries - Case			
study			
Unit VI: Discussion on Latest Research Paper			

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Choudury M A and Sadek A, "Fundamentals of Intelligent Transportation Systems Planning" Artech House.

2. Kan Paul Chen, John Miles, "Recommendations for World Road Association (PIARC)" ITS Hand Book 2000.

3. Sussman, J. M., "Perspective on ITS", Artech House Publishers, 2005.

4. US Department of Transportation, "National ITS Architecture Documentation", 2007 (CDROM).

5. Turban. E and Aronson. J. E, "Decision Support Systems and Intelligent Systems", Prentice Hall

Name of The	Pavement Material Lab				
Course					
Course Code	MTPE5005				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Course Objectives

1. Have a better understanding of the characteristics of the flexible and rigid pavements; and

2. Be familiar with the criteria for the design of pavements and supporting materials.

Course Outcomes

On completion of this course, the students will be able to

CO1	Carry out sieve analysis
CO2	Determine density by Pycnometer.
CO3	Perform water absorption test.
CO4	Carry out flakiness index test
CO5	Determine specific gravity of bitumen

Continuous Assessment Pattern

Internal Assessment	Mid Term Exam	End Term	Total Marks
(IA)	(MTE)	Exam (ETE)	
50	-	50	100

Course Content:

List of Experiments:

- 1. Sieve Analysis
- 2. Density Determination By Pycnometer
- 3. Specific Gravity And Water Absorption Test
- 4. Flakiness Index Test
- 5. Elongation Index Test
- 6. Los Angeles Abrasion Test
- 7. Specific Gravity Of Bitumen
- 8. Penetration Test
- 9. Ductility Test
- 10. Softening Point Test

Suggested Reading

1. Khanna.S.K., and Justo. C.E.G., (2011), Highway Engineering, Ninth Edition, Nem.

 Kadiyali.L.R., and Lal.N.B., (2005), Principles and Practice of Highway Engineering, Fourth Edition, Khanna Publishers, ISBN- 9788174091659.
 ChakroborthyPartha, and Das Animesh, (2003), Principles of Transportation Engineering, Eighth Printing, Prentice-Hall of India, ISBN-9788120320840

4. Rao.G.V., (1996), Principles of Transportation and Highway Engineering, Tata McGraw-Hill Co, ISBN- 9780074623633.

Name of The Course	Traffic Engineering Lab				
Course Code	MTPE5006				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		0	0	2	1

Course Objectives

To impart knowledge on statistical analyses of traffic data; use of speed-flow-density relationships; conduct shock wave analysis and compute road and intersection capacity; as well as the design of traffic signals application of traffic, parking and demand management methods.

Course Outcomes

On completion of this course, the students will be able to

CO1	Determine impact value
CO2	Determine aggregate crushing value
CO3	Determine Flakiness Index
CO4	Determine Angularity Number
CO5	Determine loss on heating of oil &
COS	asphaltic compound

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content

List of Experiments:

- 1. Aggregate Impact value
- 2. Aggregate Crushing Value
- 3. Ten Percent Fines Value
- 4. Determination of Flakiness Index
- 5. Determination of Angularity Number
- 6. Traffic (Roadway Capacity)
- 7. Traffic (Saturation Flow)
- 8. Specific Gravity of Bituminous Material
- 9. Loss on Heating of Oil & Asphaltic Compound

Suggested Reading

1. Khanna. S. K., and Justo. C. E. G., (2011), Highway Engineering, Ninth Edition, Nem.

 Kadiyali.L.R., and Lal.N.B., (2005), Principles and Practice of Highway Engineering, Fourth Edition, Khanna Publishers, ISBN- 9788174091659.
 ChakroborthyPartha, and Das Animesh, (2003), Principles of Transportation Engineering, Eighth Printing, Prentice-Hall of India, ISBN-9788120320840

4. Rao.G.V., (1996), Principles of Transportation and Highway Engineering, Tata McGraw-Hill Co, ISBN- 9780074623633.

Name of The	Advanced Traffic				
Course	Engineering and Safety				
Course Code	MTPE6001				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. To be aware of various methods of collecting traffic data
- 2. To understand the basics of highway planning and design, and workout problems in design of road geometrics
- 3. To learn the importance of road safety

Course Outcomes

On completion of this course, the students will be able to

CO1	Explain traffic flow, forecast, accidents,
	traffic and environment management.
	Analyse trends of traffic flow, forecast,
CO2	accidents, traffic and environment
	management
CO3	Evaluate traffic flow, forecast, accidents
005	and environment for traffic management.
COA	Design and recommend solutions for
004	better traffic management.
CO5	Traffic Safety Practices
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Traffic flow theory and Forecast

8 Lecture Hours

Scope, relationship between flow variables, bottle necks, Problems. Oueuing theory and vehicle applications; arrivals, delays at intersections, Elements of simulation technique in traffic Engineering, Problems. Traffic Forecast objects, factors governing traffic growth, estimation of traffic growth from past trends, econometric models. Common methods of traffic forecast, Problems.

Unit II:Surface Transportation Accidents

8 Lecture Hours

Causes, scientific investigations and data collection. Analysis of individual accidents to arrive at causes; statistical methods of analysis of accident data, computer analysis. Road safety issues, various measures for road safety engineering, educational and enforcement measures, Short term and long-term measures. Road safety education and training. Economic evaluation of improvement measures by "before and after studies". Problems.

Unit III: Traffic management techniques

8 Lecture Hours

Local area management. Transportation system management. Low cost measures. Various types of medium- and long-term traffic management measures and their uses. Evaluation of the effectiveness and benefits of different traffic management measures, Elements of area traffic control and Intelligent transportation systems.

Unit IV: Traffic Safety

8 Lecture Hours

Principles and Practices – Safety along links -Safety at intersections. Road Safety Audit – Countermeasures, evaluation of effectiveness of counter-measures– Road safety programs.

School of Civil Engineering

Unit V: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. ITE Hand Book, Highway Engineering Hand Book, Mc Graw - Hill.

2. AASHTO A Policy on Geometric Design of Highway and Streets

3. Pignataro, L.J., Traffic Engineering – Theory & Practice, John Wiley,

4. R. J. Salter and N. B. Hounsell, Highway Traffic Analysis and Design, Macmillan Press Ltd, 19965. Relevant IRC codes

Name of The Course	Urban Mass Transportation Planning Operations and Management				
Course Code	MTPE6002				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. To be aware of various methods of Transportation Planning
- 2. To understand the basics of planning and management
- 3. To learn the importance of travel demand models
- 4. To introduce the issues of transportation planning and transportation policy
- 5. To introduce travel survey method for understanding travel behavior.
- 6. To introduce the key concepts of the urban transportation planning system

Course Outcomes

On completion of this course, the students will be able to

	Design and administer surveys to provide
CO1	the data required for transportation
	planning.
CO2	Estimate travel demand generation at
02	aggregate and disaggregate levels
CO3	Identify the factors of travel mode choice
005	and develop modal split models.
	Estimate the traffic impact of new
CO4	developments using the four-stage
	sequential models.
COS	Develop land use integrated travel
005	demand models.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Urban	Transportation	Planning
Process & Conco	epts	
	8 L	ecture Hours
Role of Transport	tation and Changin	g Concerns of
Society in	Transportation	Planning;
Transportation P	roblems and Prob	olem Domain;
Objectives and	Constraints; Flo	w Chart for
Transportation	Planning Process	s- Inventory,
Model Building	, Forecasting an	d Evaluation
Stages, Plannir	ng in System	Engineering
Framework; Con	cept of Travel De	emand and its
Modeling based of	on Consumer Beha	vior of Travel
Choices- Inde	pendent Variab	oles, Travel
Attributes.		
Unit II:Methods	of Travel Deman	d Estimation
		8 Lecture
		Hours
Assumptions in I	Demand Estimatio	n- Sequential,
Recursive and	Simultaneous	Process -
Introduction to T	concorrection Diana	ing Prostions

Recursive and Simultaneous Process -Introduction to Transportation Planning Practices; Definition of Study Area, Zoning. Trip Generation Analysis: Trip Generation Models- Zonal Models, Category analysis, Household Models, Trip Attractions of Work Centers & Commercial Trips

Inp Distribution Analysis: Inp End and Inp Interchange Models, Trip Distribution Models	'
Interchange Models; Irip Distribution Models -	
Growth Factor Models, Gravity Models,	
Opportunity Models and their calibration;	
Estimation of Travel Demand based on link	-
volume philosophy; Entropy based Trip	1
Distribution models.	
Unit III: Mode Split and Route Split analysis	
8	;
Lecture Hours	5
Mode Split Analysis- Mode Choice Behaviour,	,
Competing Modes, Mode Split Curves,	,
Probabilistic Models and Two Stage Mode Split	
Analysis; Route Split Analysis- Elements of	
Transportation Networks, Coding, Minimum Path	
Tress, Diversion Curves, Allor-Nothing	
Assignment, Capacity Restrained Assignment,	,
Multipath Assignment	
Unit IV: Land Use Transportation	L
Models	
8 Lecture	;
Hours	5
Location models - Opportunity Models, Lowry	,
hand Lond man Transmitted in Medale	
based Land use Transportation Models –	-
Allocation Function, Constraints, Travel Demand	-
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix	-
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix Formulation, Dynamic and Disaggregated	
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix Formulation, Dynamic and Disaggregated extensions; Urban Forms & Urban Structures.	
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix Formulation, Dynamic and Disaggregated extensions; Urban Forms & Urban Structures. Unit V:Traffic Regulation and Management	
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix Formulation, Dynamic and Disaggregated extensions; Urban Forms & Urban Structures. Unit V:Traffic Regulation and Management 8 Lecture Hours	
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix Formulation, Dynamic and Disaggregated extensions; Urban Forms & Urban Structures. Unit V:Traffic Regulation and Management 8 Lecture Hours Traffic Signs, Markings and Signals; Principles of	
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix Formulation, Dynamic and Disaggregated extensions; Urban Forms & Urban Structures. Unit V:Traffic Regulation and Management 8 Lecture Hourss Traffic Signs, Markings and Signals; Principles of Signal Design, Webster's method of Signal	
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix Formulation, Dynamic and Disaggregated extensions; Urban Forms & Urban Structures. Unit V:Traffic Regulation and Management 8 Lecture Hours Traffic Signs, Markings and Signals; Principles of Signal Design, Webster's method of Signal Design, Redesign of Existing Signals including	
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix Formulation, Dynamic and Disaggregated extensions; Urban Forms & Urban Structures. Unit V:Traffic Regulation and Management 8 Lecture Hours Traffic Signs, Markings and Signals; Principles of Signal Design, Webster's method of Signal Design, Redesign of Existing Signals including Case Studies; Signal System and Coordination.	
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix Formulation, Dynamic and Disaggregated extensions; Urban Forms & Urban Structures. Unit V:Traffic Regulation and Management 8 Lecture Hours Traffic Signs, Markings and Signals; Principles of Signal Design, Webster's method of Signal Design, Redesign of Existing Signals including Case Studies; Signal System and Coordination. Traffic Management measures: Speed, vehicle,	
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix Formulation, Dynamic and Disaggregated extensions; Urban Forms & Urban Structures. Unit V:Traffic Regulation and Management 8 Lecture Hours Traffic Signs, Markings and Signals; Principles of Signal Design, Webster's method of Signal Design, Redesign of Existing Signals including Case Studies; Signal System and Coordination. Traffic Management measures: Speed, vehicle, parking, enforcement regulations, mixed traffic	
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix Formulation, Dynamic and Disaggregated extensions; Urban Forms & Urban Structures. Unit V:Traffic Regulation and Management 8 Lecture Hours Traffic Signs, Markings and Signals; Principles of Signal Design, Webster's method of Signal Design, Redesign of Existing Signals including Case Studies; Signal System and Coordination. Traffic Management measures: Speed, vehicle, parking, enforcement regulations, mixed traffic regulation, various management techniques.	
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix Formulation, Dynamic and Disaggregated extensions; Urban Forms & Urban Structures. Unit V:Traffic Regulation and Management <u>8 Lecture Hours</u> Traffic Signs, Markings and Signals; Principles of Signal Design, Webster's method of Signal Design, Redesign of Existing Signals including Case Studies; Signal System and Coordination. Traffic Management measures: Speed, vehicle, parking, enforcement regulations, mixed traffic regulation, various management techniques. Unit VI: Discussion on Latest Research Paper	
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix Formulation, Dynamic and Disaggregated extensions; Urban Forms & Urban Structures. Unit V:Traffic Regulation and Management <u>8 Lecture Hours</u> Traffic Signs, Markings and Signals; Principles of Signal Design, Webster's method of Signal Design, Redesign of Existing Signals including Case Studies; Signal System and Coordination. Traffic Management measures: Speed, vehicle, parking, enforcement regulations, mixed traffic regulation, various management techniques. Unit VI: Discussion on Latest Research Paper	
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix Formulation, Dynamic and Disaggregated extensions; Urban Forms & Urban Structures. Unit V:Traffic Regulation and Management 8 Lecture Hours Traffic Signs, Markings and Signals; Principles of Signal Design, Webster's method of Signal Design, Redesign of Existing Signals including Case Studies; Signal System and Coordination. Traffic Management measures: Speed, vehicle, parking, enforcement regulations, mixed traffic regulation, various management techniques. Unit VI: Discussion on Latest Research Paper 2 lecture hours	
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix Formulation, Dynamic and Disaggregated extensions; Urban Forms & Urban Structures. Unit V:Traffic Regulation and Management <u>8 Lecture Hours</u> Traffic Signs, Markings and Signals; Principles of Signal Design, Webster's method of Signal Design, Redesign of Existing Signals including Case Studies; Signal System and Coordination. Traffic Management measures: Speed, vehicle, parking, enforcement regulations, mixed traffic regulation, various management techniques. Unit VI: Discussion on Latest Research Paper 2 lecture hours This unit is based on research papers / Innovations	
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix Formulation, Dynamic and Disaggregated extensions; Urban Forms & Urban Structures. Unit V:Traffic Regulation and Management 8 Lecture Hours Traffic Signs, Markings and Signals; Principles of Signal Design, Webster's method of Signal Design, Redesign of Existing Signals including Case Studies; Signal System and Coordination. Traffic Management measures: Speed, vehicle, parking, enforcement regulations, mixed traffic regulation, various management techniques. Unit VI: Discussion on Latest Research Paper 2 lecture hours This unit is based on research papers / Innovations / start-up_ideas / white_papers / applications	
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix Formulation, Dynamic and Disaggregated extensions; Urban Forms & Urban Structures. Unit V:Traffic Regulation and Management 8 Lecture Hours Traffic Signs, Markings and Signals; Principles of Signal Design, Webster's method of Signal Design, Redesign of Existing Signals including Case Studies; Signal System and Coordination. Traffic Management measures: Speed, vehicle, parking, enforcement regulations, mixed traffic regulation, various management techniques. Unit VI: Discussion on Latest Research Paper 2 lecture hours This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be	
Allocation Function, Constraints, Travel Demand Estimation – Iterative Solutions, Matrix Formulation, Dynamic and Disaggregated extensions; Urban Forms & Urban Structures. Unit V:Traffic Regulation and Management 8 Lecture Hours Traffic Signs, Markings and Signals; Principles of Signal Design, Webster's method of Signal Design, Redesign of Existing Signals including Case Studies; Signal System and Coordination. Traffic Management measures: Speed, vehicle, parking, enforcement regulations, mixed traffic regulation, various management techniques. Unit VI: Discussion on Latest Research Paper 2 lecture hours This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class	

School of Civil Engineering

1. Hutchinson, B.G., Principles of Urban Transportation System Planning, Mc-Graw Hill 1974

2. Khisty, C J., Transportation Engineering – An Introduction, Prentice-Hall, NJ, 2007

3. Dickey, J.W., Metropolitan Transportation Planning, Tata Mc-Graw Hill, 1980

4. Meyer, Michael D, ITE Transportation Planning Handbook, John Wiley & Sons 2016

5. Bruton M.J., Introduction to Transportation Planning, Hutchinson of London, 1970.

Name of The Course	Computational Techniques In Transportation Engineering				
Course Code	MTPE6003				
Prerequisite					
Co-requisite					
Anti-requisite					
_		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. To be introduced to systems approach.
- 2. To learn the fundamentals of simulation and the GPSS language.
- 3. To be introduced to advanced computational techniques such as GA and ANN

Course Outcomes

On completion of this course, the students will be able to

CO1	Working knowledge of simulation and
COI	GPSS programming.
CO2	Good understanding of GA applications
CO3	Applications of GPSS
CO4	Knowledge of Genetic Algorithms
COS	Complete understanding of Artificial
005	Neural Networks
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction to systems approach

8 Lecture Hours

Typical transportation systems - Mathematical models. Fundamentals of simulation - Monte Carlo method - Continuous and discrete models -Simulation languages. Probability concepts -Random numbers - Pseudo random generators -Arrival patterns - Service time distributions – Manual simulation of simple queuing system.

Unit II:GPSS Fundamentals

8 Lecture Hours

Creating and moving transactions - Queues and facilities - Event scheduling – Standard numerical attributes – Parameters and save values -Functions - Priority - Pre-emption - Collection of statistics - Report preparation. Internal logic of GPSS processor - Program control statements.

Unit III: Applications of GPSS

8 Lecture Hours

Simple queuing problems - Inventory problems -Simulation of ports - Railway platforms and level crossings - Traffic signals. Analysis of simulation results - Model validation - Replication of random conditions - Time series analysis.

Unit IV: Genetic Algorithm

8

Lecture Hours

Genetic Algorithm - Terminology in GA – Strings, Structure, Parameter string - Data Structures – Operators - Algorithm – Application in Transportation. Fuzzy Logic.

Unit V: Artificial Neural Networks

8 Lecture Hours

Basics of ANN – Topology - Learning Processes - Supervised and unsupervised learning. Least mean square algorithm, Back propagation algorithm - Applications.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Gordon, G., System Simulation, Prentice-Hall of India, 2005

2. GPSS/PC, User Manual, Minuteman Software, USA, 2005

3. David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989

4. J.M. Zurada. Introduction to artificial neural systems. Jaico Publishers, 2006

Name of The Course	Transportation Systems Planning and Management Lab				
Course Code	MTPE6004				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		0	0	2	1

Course Objectives

1. To enable the students to understand the various techniques of transportation management.

2. To make the students to understand he performance of various transportation systems.

Course Outcomes

On completion of this course, the students will be able to

CO1	Study the various techniques of		
COI	transportation management.		
CO2	Study the performance of various		
02	transportation systems.		
CO2	Understand transportation infrastructure		
COS	management.		
	Interpret road pricing, congestion		
CO4	management, and information		
technologies in transportation.			
CO5	Explain System assurance, safety,		
	security, and disruption management		

Continuous II	ssessment i a		
Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam	Total Marks
(111)	(1111)	(ETE)	
50	-	50	100

Continuous Assessment Pattern

Course Content:

List of Projects:

- 1. Network analysis and traffic flow theory
- 2. Transportation decision-making, policy, economics, and finance
- 3. Transportation infrastructure management

4. Road pricing, congestion management, and information technologies in transportation

5. System assurance, safety, security, and disruption management

Suggested Reading

1. Kadiyali, L. R., Traffic Engineering and Transport Planning, Khanna Publishers, 2011

2. Highway Engg.-Khanna S.K. and Justo C. E. G. New Chand Publication

3. C A O'Flaherty, "Transport Planning and Traffic Engineering", Butterworth Heinemann, Elsevier, Burlington, MA

Name of The	Smart and Sustainable				
Course	Transportation				
Course Code	MTPE7001				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		3	0	0	3

Course Objectives

- **1.** The historical evolution of transportation planning, policy and practice
- 2. The social, economic and environmental implications of various modes of transportation, including the relationship between transportation, urban form and public health;
- **3.** Evaluation of the relative strengths and weaknesses of local transportation plans from a multimodal and multijurisdictional perspective.

- 4. Unsustainable impacts of different transport modes, e.g. passenger cars, trucks, rail, sea and air transport
- **5.** Alternative propulsion technologies, e.g. biofuels, hybrid and electric vehicles, hydrogen

Course Outcomes

On completion of this course, the students will be able to

CO1	Explain the unsustainable impacts of
COI	today's transport sector
	Analyse and compare the potentials and
CO2	challenges of technological,
	organisational and policy solutions
CO3	Critically judge solutions and propose a
CO3	plan towards sustainable transportation
CO4	Role of transit systems
CO5	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Unit I: Introduction to sustainable
Transportation infrastructure
8 Lecture Hours
Introduction to various types of mass
transportation systems Need of mass
transportation, recent trends in transit, mass
transportation characteristics.
Unit II: Transportation Land Use and Urban
Form
8 Lecture Hours
Transportation and Urban Sprawl, Its
environmental impacts.
Unit III: Public Transportation Systems
8 Lecture
Hours
Introduction to public transit, History - Personal
public transit experiences, Opportunities for
transit professionals Transportation economics,
Sustainability Transit modes and technologies,
Transit system performance, Transit capacity,
Frequency and headway, Quality of service,

Coefficient of rolling friction, modes comparison, system configurations, system performance calculations.

Unit IV: Transit Systems

8 Lecture Hours

Transit classification and Right of way, Smart growth Transit Oriented Development Ridership and surge factors, station planning, ADA Designing for pedestrians, Safety and security, hazard analysis Bus transit, Transit procurement, commercial processes, technical specifications London Transport video.

Unit V: Sustainable Transportation Modes Planning

8 Lecture Hours

Pedestrian – Planning Principles, Tools, Designs, Methods to measure success, Cycles- Planning Principles, Cycle Track Network, Crossings and intersections and junctions, Transit Planning, Road Side Infrastructure Planning.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1.Paquette, R.J., et al, Transportation Engineering Planning and Design, John Wiley & Sons, New York, 1982.

2. Horenjeff Robert; The planning & Design of Airports, McGraw Hill Book Co., 2007

3. Alan Black, Urban Mass Transportation Planning, McGraw-Hill, 1995

Name of The CourseAirport Planning And Design		
Course Design	Name of The	Airport Planning And
	Course	Design
Course Code MTPE6010	Course Code	MTPE6010
Prerequisite -	Prerequisite	-

School of Civil Engineering

Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. To make the students conversant with the types of pavements and their design.
- 2. Learn the importance of orientation of runways,
- 3. Air traffic control devices and airport drainage

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand the role of airport planning and design in reducing runway incursions
COI	and surface incidents, and
	increasing airfield efficiency
	Compare airport capacity with the
CON	existing and forecasted demand and
CO2	ascertain whether improvements to
	increase capacity are needed
	Identify and discuss key issues with
CO2	regard to airport master planning,
COS	standards, airport facilities and terminal
	planning, functions and operations
	Describe the purpose of forecasting for
COA	airports and explain key elements and
004	methods used in planning for future
	airport needs
COF	Explain the concept of level of service
005	applied to an airport facility
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction

Q	Lootuno	Uanna
0	Lecture	HOUIS

Air transport- structure and organization, the challenges and the issues.

Unit II:Airport Planning and Geometric Design

8 Lecture Hours

Airport master plan, Aircraft characteristics, Geometric design of airfields, Development of Air Transportation in India: Airport site election. Modern aircraft. Airport obstructions: Zoning Laws, Imaginary surfaces, Approach and Turning zone, clear zone, vert. Clearance for Highway & Railway. Runway and taxiway design: Wind rose, cross wind component, Runway Orientation and configuration. Basic runway length and corrections, runway geometric design standards.

Unit III: Planning and design of the terminal area

8 Lecture Hours

The planning terminal system; design considerations and visual aids, Taxiway Layout and geometric design standards. Taxiway and other areas. Air traffic control: Need, Network, control aids, Instrumental landing systems

Unit IV:Structural design of airport pavements

8 Lecture Hours

Design factors, Design of flexible and rigid pavements, Airside Capacity and delay Mathematical models for capacity and delay, space time concept

Unit V: Air traffic control Elements

8 Lecture Hours

Major components and functions of the National airspace system, Airport drainage Design runoff, inlet size and location design, surface and subsurface design

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1.Horonjeff, R. Mickelvey, F.X, Planning & design of airports, Mc Graw Hill, New York, 4th edition. 2010

2.Khanna, S.K., Arora, M.G., and S.S. Jain; Airport Planning and Design, Nem Chand & Brothers 2012 3.Air transportation planning and design by Virender Kumar & Satish Chandra, Galgotia Publications, N.Delhi

Name of The	Remote Sensing and GIS				
Course					
Course Code	MTPE6011				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

- **1.** To understand the basics of advanced tools such as Remote sensing, GIS and GPS
- **2.** To highlight their applications in the field of Civil engineering
- **3.** To be introduced to various Remote Sensing/GIS/GPS equipment & processing packages.

Course Outcomes

On completion of this course, the students will be able to

Asses	Internal Mid Term End Total Assessment Exam Term Marks					
Inte	rnal	Mid Term	End	Total		
Continuous Assessment Pattern						
CO6	CO6 Discuss on Latest Research Paper.					
CO5	Applications of GIS					
CO4	Data Handling in GIS					
CO3	engineering.					
	system	ns	6.01	IQ · · ·1		
CO2	techniques using global positioning					
	Define and summarize surveying					
	remote sensing in Civil engineering.					
CO1	CO1 Describe the methods and applications of					

Assessment	Exam (MTE)	Term	Marks
(1A)		(ETE)	
20	30	50	100

Course Content:

Unit I: Cconcepts and foundations of remote sensing

8 Lecture Hours

Energy source Ends Tremote Sensing System
EMR interaction with particulate matter – Spectral
Signature curves – Data Acquisition and
interpretation - Visual Image Interpretation -
Photogrammetry – Radar, LIDAR, SAR systems
Unit II:Platform/Sensors
8 Lecture Hours
Classification – satellite system/sensor parameters
- earth resources and meteorological satellites -
microwave remote sensing techniques - Data
Processing – Digital Image processing –
Characteristics of Digital Satellite Image – ground
truthing.
Unit III: History of Development
8 Lecture Hours
Maps - Types of Maps, Projections -
Components/Architecture of GIS – Data – Spatial
and Non-Spatial - Data Input Sources - Raster
and Vector data structures – DBMS – Data Output
- Data quality - Sources/ types of errors
Unit IV: Data handling in GIS
8
Lecture Hours
Processing, analysis and Modelling – Raster and
Vector spatial analysis - Density analysis -
Spatial autocorrelation - network analysis -
nearest neighbour analysis - Surface modelling -
DTM – Introduction to Geodesy – Space Geodetic
Techniques – GPS
Unit V: Application of Remote Sensing
8 Lecture Hours
GIS and GPS – Survey, mapping and monitoring
– Transportation planning – Infrastructure
 Transportation planning – Infrastructure development – Structural engineering –
 Transportation planning – Infrastructure development – Structural engineering – Geotechnical Engineering – Earthquake
 Transportation planning – Infrastructure development – Structural engineering – Geotechnical Engineering – Earthquake Engineering – Environmental studies – Water
 Transportation planning – Infrastructure development – Structural engineering – Geotechnical Engineering – Earthquake Engineering – Environmental studies – Water resources
 Transportation planning – Infrastructure development – Structural engineering – Geotechnical Engineering – Earthquake Engineering – Environmental studies – Water resources Unit VI: Discussion on Latest Research Paper
 Transportation planning – Infrastructure development – Structural engineering – Geotechnical Engineering – Earthquake Engineering – Environmental studies – Water resources Unit VI: Discussion on Latest Research Paper
 Transportation planning – Infrastructure development – Structural engineering – Geotechnical Engineering – Earthquake Engineering – Environmental studies – Water resources Unit VI: Discussion on Latest Research Paper 2 lecture hours
 Transportation planning – Infrastructure development – Structural engineering – Geotechnical Engineering – Earthquake Engineering – Environmental studies – Water resources Unit VI: Discussion on Latest Research Paper 2 lecture hours This unit is based on research papers / Innovations
 Transportation planning – Infrastructure development – Structural engineering – Geotechnical Engineering – Earthquake Engineering – Environmental studies – Water resources Unit VI: Discussion on Latest Research Paper 2 lecture hours This unit is based on research papers / Innovations / start-up ideas / white papers / applications.
 Transportation planning – Infrastructure development – Structural engineering – Geotechnical Engineering – Earthquake Engineering – Environmental studies – Water resources Unit VI: Discussion on Latest Research Paper 2 lecture hours This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be
 Transportation planning – Infrastructure development – Structural engineering – Geotechnical Engineering – Earthquake Engineering – Environmental studies – Water resources Unit VI: Discussion on Latest Research Paper 2 lecture hours This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.
 Transportation planning – Infrastructure development – Structural engineering – Geotechnical Engineering – Earthquake Engineering – Environmental studies – Water resources Unit VI: Discussion on Latest Research Paper 2 lecture hours This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

1.Burrough P.A. and Rachel A. McDonell, Principles of Geographical Information Systems, Oxford Publication, 2004.

2.C.P. Lo and Albert K. W. Yeung, Concepts and Techniques of Geographical Information Systems, Prentice– Hall India, 2006.

3. Thomas. M. Lillesand and Ralph. W. Kiefer, Remote Sensing and Image Interpretation, John Wiley and Sons, 2003.

4.Joseph G., Fundamentals of Remote Sensing, University Press, 2005.

5.Panigrahi, N., Geographical Information systems, University Press, 2005.

Name of The Course	Selection of Construction Equipment and Modelling				
Course Code	MTPE6012				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	P	С
		3	0	0	3

Course Objectives

1. To develop concepts related with Construction management & Equipment management which involves Planning, scheduling, controlling, and organizing of project and Execution of the project with economic development & prosperity.

2. To study Scheduling of the project & resource allocating in terms of site management.

3. To finalize quantities of items, Equipment and resource requirement of civil engineering Works

4. To know the co-relation of client, consultant and contractor for the construction project with practical aspects

Course Outcomes

CO1	Describe concepts related with Construction management & Equipment
	management
CO2	Describe the basic assumption made for
002	creating a Network, Terminology
001	Define the Program Evaluation and
003	Review Technique (PERT)
CO4	Belt conveyor system
CO5	Hauling equipment
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Construction Management				
8 Lecture Hours				
Introduction, Objectives and Scope of				
Construction Management. Work break down				
structure for various projects, Construction				
Resources, PMC and Conventional Methods:				
Gantt Bar chart, Mile stone chart, Line of balance				
(L O B) technique, Introduction of PMC.				
Unit II: Network Analysis: Critical Path				
Method (CPM)				
8 Lecture Hours				
Introduction, Basic assumption made for creating				
a Network, Terminology, Types of networks,				
Network Rules, CPM, Bar chart, Type of floats				
and their significance, Time grid diagram,				
Updating of networks and Time cost				
Optimization, Terms and definitions : Event,				
Activity, Dummies, Interrelationship of Events,				
Interrelationship of Activity, Various schedules				
i.e. Material, labour, equipment etc. Resource				
allocation models with and without constraints.				
Difference between PERT and CPM.				
Unit III: Program Evaluation and Review				
1 echnique (PER1)				
Activities and project time estimates for				
probabilistic model Time Estimates: TI TE				
Evaluation of project completion time				
probabilities Comparison between Deterministic				
and Probabilistic Approaches Cash Flow analysis				
and expenditure schedules. Cash flow for Owner				
and Contractor Job Law out Supervision and				
Safety in Large Construction Projects				
Introduction to Construction Equipment: Their				
contribution and importance in construction				
Industry Classification of Equipment Einancial				
aspects related to construction equipments				
Discounted present worth analysis Depresention				
Cost of owning and operating construction				
cost of owning and operating construction				
equipment, basics of equipment replacement				
poncy.				

Unit IV: Belt conveyor system 8 Lecture Hours Related to performance of IC engines, rim pull, drawbar pull, Coefficient of traction, Gradability, Soil fundamentals, Power Shovels, Draglines, Hoes, Clam Shells and trenching machines, their basic Parts, Operation, Output estimation, Factors influencing output and methods to enhance it, Tractors and related equipment: Bulldozers, Rippers, Scrapers & overview of other Equipment, Terminology, Classification. Components, Power requirement estimation and design. **Unit V: Hauling equipment: 8** Lecture Hours

Trucks and wagons, operation and guideline for selection and deployment.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Sharma, M.R., Fundamentals of Construction Planning and Management, S.K. Kataria & Son, New Delhi, 2012.

2. Chitkara, K. K., Construction Project Management Techniques and Practices, Tata McGraw Hill, New Delhi, 2004

3. Sengupta and Guha, Construction Management and Planning, Tata McGraw Hill, New Delhi.

4. Chitkara, K. K., Construction Project Management Planning, Scheduling and Controlling, Tata McGraw Hill, New Delhi.

5. Seetharaman, S., Construction Engineering & Management, Umesh Publications, 2007.

Name of The Course	Transport Economics and Finance				
Course Code	MTPE6013				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. To enable students to think critically about transportation economics.

2. To make students to understand economic

policies affecting the transportation system.

3. To enable students to apply basic econometric methods to the analysis of transportation data.

Course Outcomes

On completion of this course, the students will be able to

COI	Think critically about transportation				
COI	economics.				
CO2	Evaluate economic policies that affect the				
	transportation system.				
CO3	Apply basic econometric methods to the				
005	analysis of transportation data.				
	Understand the institutional and political				
COA	barriers associated with transportation				
04	pricing				
	and financing,				
COF	Actively discuss and debate contested				
05	transportation economic issues,				
CO6	Discuss on Latest Research Paper.				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Economic evaluation of transport plans 8 Lecture Hours
Need for economic evaluation, cost and benefits
of transport projects, time horizon in economic
assessment, basic principles of economic
evaluation, interest rate, method of economic
evaluation, benefit cost ratio method, first year
rate of return, net present value method, internal
rate of return method, comparison of various
methods of economic evaluation.
Unit II: Vehicle operating costs
8 Lecture Hours
Introduction road user cost study in India

```
Introduction, road user cost study in India ,
components of VOC, factors affecting VOC, fuel,
consumption relationship, spare parts
consumption, maintenance and repairs, labour
```

cost, tyre life, lubricants, utilization, and fixed costs.

Unit III: Value of travel time savings

Lecture Hours

Introduction, classes of transport users enjoying travel time savings, methodology for monetary evaluation of passengers' travel time, review of work in India on passengers' travel time.

Unit IV: Accident costs

8	Lecture
	Hours

8

Introduction, relevance of accident costing for a developing country, review of alternative methodologies for accident costing, Indian studies.

Unit V:Traffic congestion, traffic restraints and road pricing, Highway finance

8 Lecture Hours

Congestion as a factor in road traffic, traffic restraint, road pricing, Basic principles, distribution of highway cost, sources of revenue, highway financing in India.

Unit VI: Discussion on Latest Research Paper

2 lecture hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. "Principles of Transportation engineering" by Chakroborty & Das, Prentice Hall, 2009.

2. "Highway Engineering" by S. K Khanna & CEG Justo, Nem Chand Bros., Roorkee, 2001.

3. "Principles and practices of Highway Engineering" by L. R Kadyali, Khanna Publishers, 2013.

Name of The	Traffic Flow Theory				
Course					
Course Code	MTPE6014				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	С
		3	0	0	3

Course Objectives

- 1. To be introduced to traffic flow theory.
- 2. To study macroscopic and microscopic modelling.
- 3. To learn the fundamentals of ITS.

Course Outcomes

On completion of this course, the students will be able to

CO1	Analyze the traffic stream parameters.
CO2	Apply the queuing theory
CO3	Define the significance of ITS under Indian conditions.
CO4	Role of Geographical Information Systems
CO5	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Traffic stream parameters				
9 Lecture Hours				
Traffic stream parameters - Fundamental diagram				
of volume-speed-density surface. Discrete and				
continuous probability distributions.				
Mergingmanoeuvres - critical gaps and their				
distribution.				
Unit II: Macroscopic models				
9 Lecture Hours				
Macroscopic models - Heat flow and fluid flow				
analogies - Shock waves and bottleneck control				
approach. Microscopic models - Application of				
queuing theory - regular, random and Erlang				
arrival and service time distributions				
Unit III: Queue discipline				
9 Lecture Hours				
Queue discipline - Waiting time in single channel				
queues and extension to multiple channels. Linear				
and non-linear car following models -				
Determination of car following variables -				
Acceleration noise.				
Unit IV: Geographical Information System				
9				
Lecture Hours				

Geographical Information System – Global Positioning System – Intelligent Transportation Systems - Area Traffic Control – Automatic Toll Collection – Smart Cards – Collision Detection System.

Unit V: Discussion on Latest Research Paper 4

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Drew, D.R., Traffic Flow Theory and Control, McGraw Hill., 1978.

2. TRB, Traffic Flow Theory - A Monograph, SR165, 1975.

3. Burrough P.A. and Rachel A. McDonell, Principles of Geographical Information Systems, Oxford Publication, 2004.

4. Sussman, J. M., Perspective on ITS, Artech House Publishers, 2005.

Name of The Course	Highway Construction Practices				
Course Code	MTPE6015				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		3	0	0	3

Course Objectives

- 1. To provide a coherent development to the students for the courses in sector of Engineering like Transportation & Traffic Engineering etc.
- 2. To present the foundations of many basic Engineering tools and concepts related Highway Engineering.
- 3. To give an experience in the implementation of Engineering concepts which are applied in field of Transportation Engineering
- 4. To involve the application of scientific and technological principles of planning, analysis, design and management to highway engineering

Course Outcomes

On completion of this course, the students will be able to

CO1	Understanding of Highway Constructions				
CO2	Quality Control of Concrete Pavements				
CO3	Knowledge about pavement Construction				
005	procedures				
COA	Understanding on Bituminous				
constructions					
CO5	Advances in Construction Maintenances				
CO6	Discuss on Latest Research Paper.				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: layers	: Types	of Highway	Constr	uction	and
			8 Lec	ture H	lours
Water	Bound	Macadam	(WBM),	Wet	Mix
Macada	am (WN	M). Drv Le	an Conci	ete (D	LC)

Stabilized Roads, Bituminous Construction and Cement Concrete Constructions. Types of bituminous constructions, Interface treatments, Wearing Courses for roads.

Unit II:Quality Control in construction of concrete pavements

8 Lecture Hours

Bridge deck slabs, Selection of wearing course under different climatic and traffic conditions, IRC specifications, Construction techniques and Quality Control, Concrete road construction, tests on concrete mixes, Construction equipment's, Methods of construction of joints in concrete pavements, Quality Control in construction of concrete pavements.

Unit III: Types of Pavement construction procedure

8 Lecture Hours

Construction of continuously reinforced, Prestressed, Steel Fibre Reinforced (SFRC), Pavements, IRC, MOST, ACI specifications, Ferro cement, Ferro-fibro-Crete, Pavement and overlay construction **Unit IV:Hill Landsides** Causes and control measures. Hill road construction practices, Construction of bituminous and cement concrete roads at high attitudes, Hill road drainage. **Unit V: Construction** and Maintenance **Problems** 8 Lecture Hours Construction and maintenance problems and remedial measures. **Unit VI: Discussion on Latest Research Paper** 2 **Lecture Hours** This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be

Suggested Reading

discussed in the class.

1. H.M.SO. (London), "Bituminous Materials in Road Construction", 1966.

2. Hewes, Laurence, Isley "American Highway Practice", New York, John Wiley and Sons, Inc.Vol. II, 4th Edition, 1949.

3. Sherrad H.M., "Australian Road Practices", Melbourne University Press, 1958

4. H.M.S.O. (London), Concrete Roads, 1966.

5. Sparkes, F.N. and Smith A.F., "Concrete Roads", Edward Amola and Co., London, 1952.

Name of The Course	ML and Deep learning Techniques to Infrastructure Problems				
Course Code	MTPE6016				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. Comprehensive exposition of the modern and advanced techniques in Machine Learning and Deep Learning
- 2. Understanding the role of ML in monitoring structural reliability
- 3. Sensitivity Analysis of Structures

Course Outcomes

On completion of this course, the students will be able to

Lecture Hours

8

	Gain comprehensive knowledge of
CO1	Applications of Machine Learning and
	Deep Learning Techniques
CO2	Understand decision tree learning
02	algorithm
CO3	Knowledge about Probability and
005	Reliability
COA	Knowledge about uncertainties and
004	Structural Deformations
CO5	Evaluate Hypotheses
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I:	Introduction to) Machine	Learning for	r
civil en	gineers			

8 Lecture Hours

Linear algebra, Probability theory, Probability distributions for Machine Learning, Bayesian methods for the estimation of epistemic uncertainty, Regression methods, Classification Methods, State-space models for time series: Theory, State-space models for time series: Applications

Unit II:Decision Tree Learning

8 Lecture Hours

Decision tree learning algorithm-Inductive bias-Issues in Decision tree learning; Artificial Neural Networks – Perceptrons, Gradient descent and the Delta rule, Adaline, Multilayer networks, Derivation of back propagation rule Back propagation Algorithm Convergence, Generalization.

Unit III: Introduction to the reliability of structures & systems

8 Lecture Hours

Revision of probability theory, Laws of probability. Reliability formulation, Multivariate probability densities, Monte Carlo sampling, MCFOSM & FOSM **Unit IV: Sensitivity Analysis**

8 Lecture Hours

SORM, Reliability of systems, Uncertainties, Estimation of parameters from observations, Stresses & Deformations

Unit V: Evaluating Hypotheses

8 Lecture Hours

Evaluating Hypotheses: Estimating Hypotheses Accuracy, Basics of sampling Theory, Comparing Learning Algorithms; Bayesian Learning: Bayes theorem, Concept learning, Bayes Optimal Classifier, Naïve Bayes classifier, Bayesian belief networks, EM algorithm.

Unit VI: Discussion on Latest Research Paper 2

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Hands-On Machine Learning with Scikit-Learn and TensorFlow (2nd Edition) by AurélienGéron

2. The Hundred-Page Machine Learning Book by Andriy Burkov

3. Building Machine Learning Powered Applications: Going from Idea to Product by Emmanuel Ameisen

4. Grokking Deep Learning by Andrew W. Trask

5. Deep Learning with Python by Francois Chollet

Name of The Course	Behavioural Travel Modelling				
Course Code	MTPE6017				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	С
		3	0	0	3

Course Objectives

- 1. Comprehensive exposition of the modern and advanced techniques in behavioral travel demand modeling.
- 2. Understanding of demand theory, statistical models, survey methods in transport, land use transportation models
- 3. Practical applications of Behavioral model

Course Outcomes

On completion of this course, the students will be able to

CO1	Identify the importance of urban travel
COI	demand analysis in a society
	Discuss the need for behavioural
CO2	modelling approach in the management
	of urban travel demand
	Formulate real-world disaggregate travel
CO2	demand problems in scientific terms and
005	plan for a rational solution using discrete
	choice models
	Design a survey process and use
COA	appropriate data analysis and model
04	building methods in an urban travel
	demand study
CO5	Understand the future of travel modelling
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Urban Travel Demand Analysis -Introduction

8 Lecture Hours

Objectives of urban travel demand analysis; Comprehensive transportation study; Factors influencing, the role of models in policy making, Data collection techniques: Observations and surveys, questionnaires and diaries, new technologies

Unit II: Individual choice theory

8 Lecture Hours

Binary choice models, multinomial and multidimensional choice models, issues in model specification, methods and statistics of model estimation with emphasis on maximum-likelihood estimation, aggregation and forecasting with discrete choice models, validation and transferability aspects, ordered multinomial models, nested logit models

Unit III: Survey design and analysis 8 Lecture Hours Travel surveys and their role in transport planning, survey methods, precision and accuracy in travel surveys, sample design, sampling procedures, survey format, pilot surveys, survey administration, collection of stated and revealed preference data, survey data processing.

Unit IV: Advanced concepts

8

Lecture Hours

Accommodating unobserved population heterogeneity in choice behaviour, mixed logit models, joint stated preference and revealed preference modeling, and longitudinal choice analysis

Unit V: Future Directions

8 Lecture Hours

Discrete choice models for integrated land use and transport modeling, review of state-of-the-art and future directions.

Unit VI: Discussion on Latest Research Paper 2

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Ortuzar, J. D. and Willumsen, L.G., Modelling Transport, John Wiley & Sons, New York, 1996.

2. Domencich, T.A. and McFadden, D., Urban Travel Demand: A Behavioral Analysis, North-Holland, 1975

3. Ben-Akiva, M. and Lerman, S, Discrete Choice Analysis: Theory and Application to Travel Demand, MIT Press, 1985.

4. Oppenheim, N., Urban Travel Demand Modeling: From Individual Choices to General Equilibrium, John Wiley, 1995.

Name of The	Rural Road Technology				
Course Code	MTPE6018				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	С
		3	0	0	3

Course Objectives

- Link issues of poverty with rural access and explain the approaches taken by the Rural Roads Project
- 2. Identify key lessons from the case study and Contrast lessons from the case study with their own country context
- 3. Analyse the links between rural access, economic development and poverty alleviation.

Course Outcomes

On completion of this course, the students will be able to

CO1	Plan rural road network	
CO2	Design highway geometrics	
CO3	Justify the geometric design standards	
003	adopted for low volume roads	
CO4	Understand the procedure for conducting	
04	safety audit	
CO5	Design pavements for low volume roads	
CO6	Discuss on Latest Research Paper.	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Planning and Alignment 8 Lecture Hours Planning of Rural Roads, Concept of Network

planning of Rural Roads, Concept of Network planning, rural roads planning, road alignment and surveys, governing factors on route selection, factors considered for alignment.

Unit II:Materials and Pavement Design 8 Lecture Hours

Introduction, Soil, material surveys, embankment and subgrade materials, stabilized Soils, Road aggregates, aggregate for base courses, new materials as stabilizers, materials for desert areas, materials for bituminous constructions and surfacing; materials for rigid pavements, special pavement, climatic suitability of concrete materials. Introduction, design procedure, pavement components, design of flexible and rigid pavements, special pavements design, types of drainage, and general criteria for road drainage, system of drainage, surface and subsurface systems.

Unit III: Course Content

8 Lecture Hours

Introduction, selection of materials and Methodology, Embankment and subgrade, sub – base (granular), base(granular), shoulder, bituminous concrete, semi- rigid pavements, construction, concrete pavements, construction of special pavements, equipment required for different procedures.

Unit IV: Waste material for pavement construction

8

Lecture Hours

Introduction, fly ash for road construction, design & construction, design & construction of fly ash embankment lime fly ash and stabilized soil, lime fly ash pavements, control of compaction, concrete stabilized fly ash with admixtures.

Unit V:Quality Control in Construction and Maintenance

8 Lecture Hours

Introduction, Pre-requirements, organizational setup, specification, and code of practice, Laboratory equipment, Earth and granular layers, bituminous courses, semi- rigid and rigid pavements, special requirements, recovered of quality control data. Distresses/Defects in rigid and flexible pavements, Maintenance and evaluation, inventory roads and inspections, types of Maintenance Activities, Maintenance

Unit VI: Discussion on Latest Research Paper 2

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. IRC manual for rural roads. Special publication – 20(2002)

2. HMSO, Soil Mechanics for rural Engineers in, London

3. IRC related code books

4. NRRDA - guidelines and code books

Name of The Course	Traffic Management and Design				
Course Code	MTPE6019	MTPE6019			
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		3	0	0	3

Course Objectives

- 1. To have an overall knowledge of the traffic components and assess the traffic characteristics and related problems.
- 2. To develop a strong knowledge base of traffic planning and its management in any transportation area.
- 3. To provide knowledge of traffic control devices and its techniques in transportation interaction.

Course Outcomes

On completion of this course, the students will be able to

	Gain knowledge in the fundamental's
CO1	components of traffic engineering and its
	features.
	The students will get a vast understanding
CO2	on various traffic enforcements rules and
	regulations.
	The students will get aware of the
CO3	different software used in the field of
005	transportation and its utility in solving the
	traffic problems.
COA	Understand Role of parking and fuel
004	consumption
CO5	Understand Congestion Pricing
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Fundamental of traffic flow 8 Lecture Hours

Basic components of traffic flow, road user, vehicle, environment and their characteristics, speed –volume –density relationship, homogenous and heterogonous traffic flow, PCU concept, vehicle operating cost. Transportation surveys - O-Surveys, spot-speed survey (using endoscope and radar speedometer) traffic volume counts, travel time, parking survey, interaction volume count and delay surveys, methods analysis and interpretation.

Unit II: Traffic Control Devices

8 Lecture Hours

Signs, markings, islands, channelization, one-way streets, speed breakers, bus stop locations, and bus ways, segregations, tidal flow arrangements, area traffic control, parking, pedestrian flow control, Traffic regulations ,driver, vehicle ,flow and general controls traffic devices control ,types of parking design principles ,parking restrictions, one way streets, zebra crossing, railings, pedestrian signal foot over bridges ,traffic management authorities, road lighting.

Unit III: Traffic Signal Design

8

Lecture Hours

Elements of traffic signal: Definitions, analysis of saturation headway, saturation flow, lost time, critical flows, derivation of cycle length; Design principles of a traffic signal: Phase design, cycle time determination, green splitting, pedestrian phases, and performance measures; Evaluation of a traffic signal: Definitions and measurement of stopped and control delay, Webster's delay model, oversaturated conditions

Unit IV: Specialized Traffic Studies

8

Lecture Hours

Parking Studies: Parking inventory, statistics, parking surveys; in out, license palate, on-street

and off-street parking; Accident Studies: Accident					
data collection, statistics, safety audit, safety					
measures; Fuel consumption and emission					
studies: Consumption models, pollutants, air					
quality models, mitigation measures					
Unit V: Congestion Studies					
- · · · · · · · · · · · · · · · · · · ·					
8 Lecture Hours					
8 Lecture Hours Congestion studies: Performance measures,					
8 Lecture Hours Congestion studies: Performance measures, intensity, duration, extent of congestion, traveler					
8 Lecture Hours Congestion studies: Performance measures, intensity, duration, extent of congestion, traveler perception, remedial measures, congestion pricing					

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

2

Suggested Reading

1. Kadiyali, L.R., Traffic Engineering & Transport Planning, Khanna Publishers, New Delhi

2. JotinKhisty, S.C. and Kent Lall, В.. Transportation Engineering - An Introduction, Prentice-Hall, NJ

3. S. C. Saxena Traffic Planning And Design .Dhanpat Rai Pub, NewDelhi

4. Hutchison, B.G., Introduction to Transportation Engineering, & Planning, McGraw Hill Book Co.

5. John W. Dickey, Metropolitan Transportation Planning, Tata McGraw Hill Pub. Co.

Name of The	Public Transportation				
Course Code	MTPE6020				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives

- 1. To cover concepts of Transportation planning, various modes, transit systems and their suitability
- 2. To give idea of modeling in planning, to develop the methodology of travel demand modeling for Urban Transportation Systems

3. To provide knowledge of Land use planning and transportation interaction.

Course Outcomes

On completion of this course, the students will be able to

COI	Know about Urban Transportation System
COI	Planning process.
CO2	Urban Mass Transit Systems
CO3	Travel Demand Modelling
CO4	Mass Transit Systems
CO5	Future Role of Transit Systems.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction

8 Lecture Hours
Development plans, objectives and goals; level of
planning; role of transportation at national,
regional and urban level, Urbanization Definition
of urban area; trends in urbanization; urban class
groups; metropolitan city; transportation problems
& identification

Unit II: Urban Mass Transportation Systems **8** Lecture Hours

Urban transit problems, travel demand, types of transit systems, public, private, para-transit transport, mass and rapid transit systems, BRTS and Metro rails, capacity, merits and comparison of systems, coordination, types of coordination.

Unit III: Travel Demand Modeling

8 Lecture Hours

Trip generation-zonal regression and category analysis, Trip distribution-growth factor models, gravity model, opportunity models, Desire line diagram. Modal split analysis-trip end models, trip interchange models, logit models, Trip assignment techniques-route choice, diversion curves, shortest path algorithms, Allor-nothing assignment, capacity restraint models and Direct demand models

Unit IV: Mass Transit Systems

8 Lecture Hours

Introduction to routing and scheduling, transit system's performance parameters. Corridor identification and corridor screen line analysis. Urban forms and structures: point, linear, radial, poly-nuclear developments and suitable transit systems, Urban goods movement. Preparation of comprehensive plan and transportation system management planning.

Unit V:Future Scope of Transit Systems 8 Lecture Hours

Future Scope of Transit Systems, Role of Transit Systems and case studies

Unit VI: Discussion on Latest Research Paper 2

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. B. G. Hutchinson, Principles of urban transportation system planning- McGraw-Hill, New York, 1974

2. Edward K. Morlok, Transportation Engg. and Planning

3. Dickey, Metropolitan Transportation Planning Tata McGraw-Hill, New Delhi, 1975

4. Blunder and Black, Land use transportation System

5. J. Ortuzer and L.G. Willumsen, Modelling Transport, Johan Wiley and Sons Chincester,1994

Name of The	Ground Improvement				
Course	Techniques				
Course Code	MTPE6021				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	P	С
		3	0	0	3

Course Objectives

1. To learn how to improve weak soils by modern ground improvement techniques

- 2. To study the role of soil reinforcement in soil stabilization
- 3. To know the importance of geo-synthetics in ground improvement

Course Outcomes

On completion of this course, the students will be able to

	Understand the importance of ground
CO1	improvement techniques in civil
	engineering construction activities.
CO2	Do reinforced wall design using steel
02	strip or geo-reinforcement
	Perform any modern ground
CO3	improvement design including soil
	stabilization
COA	Understand the methods of Soil
04	Reinforcement
CO5	Understand the role of Geo-synthetics
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Unit I: Introduction
8 Lecture Hours
Engineering properties of soft - weak and
compressible deposits - problems associated with
weak deposit - Requirements of ground
improvements - introduction to engineering
ground modification, need and objectives.
Unit II:Soil Stabilization
8 Lecture Hours
Science of soil stabilization - Mechanical
modification - Hydraulic modification -
Dewatering systems - Chemical modification -
Modification by admixtures like lime, Cement,
Bitumen etc Grouting - Deep jet mixing
methods
Unit III: Recent Ground improvement
techniques
8 Lecture Hours

Stabilization using industrial waste – modification by inclusion and confinement – soil nailing – stone column – compaction piles – dynamic compaction – prefabricated vertical drains – preloading – electro – osmosis – soil freezing vacuum consolidation – deep explosion – dry powdered polymers – enzymes

Unit IV: Soil reinforcement

8 Lecture Hours

Historical background, RCC – Vidalean concept of reinforced earth – Mechanisms – Types of reinforcements – Soil – Reinforcement – Interaction studies – Internal & External stability criteria – Design Principles of steep reinforced soil slops – pavements – Embankments on soft soils.

Unit V: Geo-Synthetics

8 Lecture Hours

Geo-synthetic clay liner – Construction details – Geo Synthetic Materials – Functions – Property characterization – Testing Methods for Geo – Synthetics – Recent research and Developments. Control of Improvement – Field Instrumentation – design and analysis for bearing capacity and settlement of improved deposits.

Unit VI: Discussion on Latest Research Paper 2

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Hausmann, M.R., Engineering Principles of Ground Modification, McGraw – Hill International Editions, 1990.

2. Purushotham Raj, Ground Improvement Techniques, Laxmi Publications, New Delhi

3. Sharma.S.K., Principles, Practice and Design of Highway Engineering, S.Chand& Co. New Delhi,1985.

4. Jones C. J. F. P, Earth Reinforcement and Soil Structures, Butterworths, London.

Name of The	Bridge Engineering				
Course					
Course Code	MTPE6022				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		3	0	0	3

Course Objectives

- 1. To develop an understanding of basic concepts in bridge engineering like components, classification, importance, investigation of bridges and loading conditions.
- 2. To study the design of Culvert, Foot Bridge, Slab Bridge, T-beam Bridge and Box Culvert using IRC.
- 3. To study the design of various sub-structures like piers, abutments, foundations and study the importance of the bearing and joints in construction of the bridge.

Course Outcomes

On completion of this course, the students will be able to

CO1	Prepare a detailed project report for the construction of bridge giving hydraulic particulars of the river and soil details
CO2	Be able to select the suitable site and type of the bridge.
CO3	Design various types of bridges like Culvert, Slab Bridge and T-beam Bridge using provisions of IRC.
CO4	Design pier, abutment, foundations, bearing and detailing of joints.
CO5	Importance of Bearings
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Unit I: Components of Bridges	
8	Lecture Hours

Components of Bridges - Classification -
Importance of Bridges – Investigation for Bridges
– Selection of Bridge site – Economical span –
Location of piers and abutments – Subsoil
exploration – Scour depth – Traffic projection –
Choice of bridge type
Unit II:Specification of road bridges
8 Lecture Hours
Specification of road bridges – width of
carriageway – loads to be considered – dead load
– IRC standard live load – Impact effect
Unit III: General design considerations
8 Lecture Hours
General design considerations – Design of culvert
- Foot Bridge - Slab Bridge - T-beam bridge -
Pre-stressed concrete bridge – Box Culvert - Fly
over bridges
Unit IV: Evaluation of sub structures
8 Lecture
Hours
Evaluation of sub structures – Pier and abutments
Evaluation of sub structures – Pier and abutments
Evaluation of sub structures – Pier and abutments caps – Design of pier – Abutments – Type of foundations
Betture Hours Evaluation of sub structures – Pier and abutments caps – Design of pier – Abutments – Type of foundations Unit V: Importance of Bearings
Beccure Hours Evaluation of sub structures – Pier and abutments caps – Design of pier – Abutments – Type of foundations Unit V:Importance of Bearings & Lecture Hours
Betture Hours Evaluation of sub structures – Pier and abutments caps – Design of pier – Abutments – Type of foundations Unit V:Importance of Bearings 8 Lecture Hours Importance of Bearings
Hours Hours Evaluation of sub structures – Pier and abutments caps – Design of pier – Abutments – Type of foundations Unit V:Importance of Bearings 8 Lecture Hours Importance of Bearings – Bearings for slab bridges Pagerings for girder bridges
Hours Hours Evaluation of sub structures – Pier and abutments caps – Design of pier – Abutments – Type of foundations Unit V:Importance of Bearings 8 Lecture Hours Importance of Bearings – Bearings for slab bridges – Bearings for girder bridges – Electrometric bearing
Hours Hours Evaluation of sub structures – Pier and abutments caps – Design of pier – Abutments – Type of foundations Unit V:Importance of Bearings 8 Lecture Hours Importance of Bearings – Bearings for slab bridges – Bearings for girder bridges – Electrometric bearing – Joints – Expansion joints. Construction and Maintananae of bridges
Hours Hours Evaluation of sub structures – Pier and abutments caps – Design of pier – Abutments – Type of foundations Unit V:Importance of Bearings 8 Lecture Hours Importance of Bearings – Bearings for slab bridges – Bearings for girder bridges – Electrometric bearing – Joints – Expansion joints. Construction and Maintenance of bridges – Lassons from bridge foilures
Hours Evaluation of sub structures – Pier and abutments caps – Design of pier – Abutments – Type of foundations Unit V:Importance of Bearings 8 Lecture Hours Importance of Bearings – Bearings for slab bridges – Bearings for girder bridges – Electrometric bearing – Joints – Expansion joints. Construction and Maintenance of bridges – Lessons from bridge failures Unit VI: Discussion on Lessons from bridge failures
Hours Hours Evaluation of sub structures – Pier and abutments caps – Design of pier – Abutments – Type of foundations Unit V:Importance of Bearings 8 Lecture Hours Importance of Bearings – Bearings for slab bridges – Bearings for girder bridges – Electrometric bearing – Joints – Expansion joints. Construction and Maintenance of bridges – Lessons from bridge failures Unit VI: Discussion on Latest Research Paper
Hours Hours Evaluation of sub structures – Pier and abutments caps – Design of pier – Abutments – Type of foundations Unit V:Importance of Bearings 8 Lecture Hours Importance of Bearings – Bearings for slab bridges – Bearings for girder bridges – Electrometric bearing – Joints – Expansion joints. Construction and Maintenance of bridges – Lessons from bridge failures Unit VI: Discussion on Latest Research Paper 2
Hours Hours Evaluation of sub structures – Pier and abutments caps – Design of pier – Abutments – Type of foundations Unit V: Importance of Bearings 8 Lecture Hours Importance of Bearings – Bearings for slab bridges – Bearings for girder bridges – Electrometric bearing – Joints – Expansion joints. Construction and Maintenance of bridges – Lessons from bridge failures Unit VI: Discussion on Latest Research Paper 2 Lecture Hours
Hours Hours Evaluation of sub structures – Pier and abutments caps – Design of pier – Abutments – Type of foundations Unit V: Importance of Bearings 8 Lecture Hours Importance of Bearings – Bearings for slab bridges – Bearings for girder bridges – Electrometric bearing – Joints – Expansion joints. Construction and Maintenance of bridges – Lessons from bridge failures Unit VI: Discussion on Latest Research Paper 2 Lecture Hours This unit is based on research papers / Innovations
Hours Hours Evaluation of sub structures – Pier and abutments caps – Design of pier – Abutments – Type of foundations Unit V: Importance of Bearings 8 Lecture Hours Importance of Bearings – Bearings for slab bridges – Bearings for girder bridges – Electrometric bearing – Joints – Expansion joints. Construction and Maintenance of bridges – Lessons from bridge failures Unit VI: Discussion on Latest Research Paper 2 Lecture Hours This unit is based on research papers / Innovations / start-up ideas / white papers / applications.
Hours Evaluation of sub structures – Pier and abutments caps – Design of pier – Abutments – Type of foundations Unit V:Importance of Bearings B Lecture Hours Importance of Bearings – Bearings for slab bridges – Bearings for girder bridges – Electrometric bearing – Joints – Expansion joints. Construction and Maintenance of bridges – Lessons from bridge failures Unit VI: Discussion on Latest Research Paper 2 Lecture Hours This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be

Suggested Reading

1. Ponnuswamy, s., Bridge Engineering, Tata McGraw - Hill, New Delhi, 1997

 Victor, D.J., Essentials of Bridge Engineering, Oxford & IBH Publishers Co., New Delhi, 1980.
 N. Rajagopalan, Bridge Superstructure, Narosa Publishing House, New Delhi, 2006.

Name of The Course	Transportation Network Analysis and Optimization				
Course Code	MTPE6023				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		3	0	0	3

Course Objectives

- 1. To learn the fundamental definitions of networks.
- 2. To study the different Shortest Path Algorithms and network assignment techniques.
- 3. To be exposed to various network analysis software.

Course Outcomes

On completion of this course, the students will be able to

CO1	Define and analyse different types of networks.
CO2	Apply the Shortest Path
CO3	Apply Minimum cost algorithms
CO4	Understand various applications of
04	network analysis
COS	Have a working knowledge of various
005	network analysis software.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Unit I: Network flows	
	8 Lecture Hours
Applications, definitions,	graphs, paths, trees,
cycles, loops, walk, net	work representation
(adjacency list and matrice	s) and basic network
transformations; Netw	ork algorithms;
Complexity, Search Algor	ithms, Strategies for
designing polynomial algori	thms.

Unit II:Shortest Path Algorithms

8 Lecture Hours Label setting, Dijkstra's and Dial's algorithms, Optimality conditions, label correcting algorithms and optimality conditions, detecting negative cycles, all-pair shortest path algorithms; pre-flow push polynomial time algorithms, capacity scaling techniques

Unit III: Minimum cost network assignment 8 Lecture Hours

Optimality conditions, cycle-cancelling algorithm, Successive shortest path algorithm, other polynomial time variants; Network equilibrium analysis; principles and optimization formulations, Frank-Wolfe algorithm; Special cases and variants

Unit IV:Applications

8

Lecture Hours

Applications of min-cost, max-flow, and shortest path algorithms to transportation and infrastructure networks: transportation networks, airline, freight, facility location, logistics, network design, project scheduling, reliability of distribution systems, telecommunication/power networks etc

Unit V: Computer Software Applications

8 Lecture Hours

Principles of TRIPS, SATURN, EMME/2, CUBE; Demo Versions, Case studies

Unit VI: Discussion on Latest Research Paper 2

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

 Ahuja, R., Magnanti, T.L., and Orlin, J.B., Network Flows: Theory, Algorithms and Application, Prentice Hall, New Jersey, 1993.
 Bell, M.G., Transportation Networks, Elsevier Science Publishers, 1999.

Name of The	Project Management
Course	
Course Code	MTPE6024
Prerequisite	

Co-requisite				
Anti-requisite				
	-	-		~
	L	Т	P	С

Course Objectives

Upon Completion of the Course Students will be able to understand Project Management practices and planning

Course Outcomes

On completion of this course, the students will be able to

CO1	Explain project planning activities that
	accurately forecast project costs,
	timelines, and quality.
CO2	Evaluate the budget and cost analysis of
02	project feasibility.
CO3	Analyze the concepts, tools and techniques
005	for managing projects.
	Illustrate project management practices to
	meet the needs of Domain specific
CO4	stakeholders from multiple sectors of the
	economy (i.e. consulting, government,
	arts, media, and charity organizations).
CO5	Understanding of Agile Technology
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Unit I: Introduction
8 Lecture Hours
Project Planning, Need of Project Planning,
Project Life Cycle, Roles, Responsibility and
Team Work, Project Planning Process, Work
Breakdown Structure (WBS), Introduction to
Agile Methodology.
Unit II:Capital Budgeting
8 Lecture Hours
Capital Investments: Importance and Difficulties,
phases of capital budgeting, levels of decision
making, facets of project analysis, feasibility
study – schematic diagram, objectives of capital
oudgeting
Unit III: Project Costing

8 Lecture Hours Cost of Project, Means of Finance, Cost of Production, Working Capital Requirement and its Financing, Profitability Projections, Projected Cash Flow Statement, Projected Balance Sheet, Multi-year Projections, Financial Modeling, Social Cost Benefit Analysis

Unit IV: Tools & Techniques of Project Management

8 Lecture Hours

Bar (GANTT) chart, bar chart for combined activities, logic diagrams and networks, Project evaluation and review Techniques (PERT) Critical Path Method (CPM), Computerized project management

Unit V:Project Management and Certification 8 Lecture Hours

An introduction to SEI, CMMI and project management institute USA – importance of the same for the industry and practitioners. PMBOK 6 - Introduction to Agile Methodology, Themes / Epics / Stories, Implementing Agile. Domain Specific Case Studies on Project Management: Case studies covering project planning, scheduling, use of tools & techniques, performance measurement

Unit VI: Discussion on Latest Research Paper 2

Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra, 8th Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.

2. A Guide to the Project Management Body of Knowledge (PMBOK Guide), Project Management Institute, 5th Edition, 2013, ISBN: 978-1-935589-67-9

3. Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner, 11th Edition, 2013, John Wiley & Sons Inc., ISBN 978-1-118-02227-6. 4. Project Management – Planning and Controlling Techniques, Rory Burke, 4th Edition, 2004, John Wiley & Sons, ISBN: 9812-53-121-1

Name of The	Seminar				
Course					
Course Code	MTPE6005				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		0	0	2	1

Course Objectives

1. To make literature survey for various recently emerging technologies.

2. To select any topic of interest and to review the related literature in detail.

3. To compare and analyze the various topologies for the selected topic of interest.

4. To conclude the advantages, drawbacks and future scopes of the technique.

Course Outcomes

On completion of this course, the students will be able to

CO1	Get familiarity with the recently
COI	advanced techniques.
CO2	Get detailed information about the topic
02	of interest
CO3	Know how to do literature survey.
COA	Develop the interest in different research
C04	areas of Structures.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Suggested Reading

1. Depending upon their area of interest, students may choose any text book of relevant field or any article from Journal

2. Depending upon their area of interest, students may choose any reference book of relevant field.

Name of The	Mini Project				
Course					
Course Code	MTPE7002				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		0	0	2	1

Course Objectives

1. To make literature survey for various recently emerging technologies.

2. To select any topic of interest and to review the related literature in detail.

3. To compare and analyze the various topologies for the selected topic of interest.

4. To conclude the advantages, drawbacks and future scopes of the technique.

Course Outcomes

On completion of this course, the students will be able to

COI	Get familiarity with the recently
COI	advanced techniques
CO2	Get detailed information about the topic
002	of interest.
CO3	Know how to do literature survey
COA	Develop the interest in different research
CO4	areas of Structures.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Suggested Reading

1. Depending upon their area of interest, students may choose any text book of relevant field or any article from Journal.

2. Depending upon their area of interest, students may choose any reference book of relevant field.

Name of The	Project (Phase I)	
Course		
Course Code	MTPE7004	
Prerequisite	-	

Co-requisite	-				
Anti-requisite	-				
		L	Τ	Р	С
		0	0	0	5

Course Objectives

1. To develop the capacity of students in correlating theoretical knowledge into practical systems either to perform creative works or to perform analysis and hence to suggest solutions to problems, pertaining to civil engineering domain.

2. Foster collaborative learning skills.

3. Develop self-directed inquiry and life-long skills.

4. To enhance the communication skills of the students by providing opportunities to discuss in groups and to present their observations, findings and report in formal reviews both in oral and written format.

Course Outcomes

On completion of this course, the students will be able to

	Submit a project synopsis comprising of			
CO1	the application and feasibility of the			
	project			
	Design a system, component, or process to			
	meet desired needs within realistic			
CO2	constraints such as economic,			
	environmental, social, political, ethical,			
	health care, safety and sustainability.			
CO3	Work and communicate efficiently in			
COS	multidisciplinary teams.			
COA	Identify, formulate, and solve engineering			
problems.				
COF	Develop an understanding of professional			
	and ethical responsibility.			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Suggested Reading

1. Depending upon their area of interest, students may choose any text book of relevant field or any article from Journal.

2. Depending upon their area of interest, students may choose any reference book of relevant field.

Name of The	Project (Phase II)				
Course					
Course Code	MTPE8001				
Prerequisite	MTPE7004				
Co-requisite	-				
Anti-requisite	-				
		L	Т	Р	С
		0	0	0	15

Course Objectives

1. To develop the capacity of students in correlating theoretical knowledge into practical systems either to perform creative works or to perform analysis and hence to suggest solutions to problems, pertaining to civil engineering domain.

2. Foster collaborative learning skills.

3. Develop self-directed inquiry and life-long skills.

4. To enhance the communication skills of the students by providing opportunities to discuss in groups and to present their observations, findings and report in formal reviews both in oral and written format.

Course Outcomes

On completion of this course, the students will be able to

	Submit a project synopsis comprising of
CO1	the application and feasibility of the
	project.
	Design a system, component, or process
	to meet desired needs within realistic
CO2	constraints such as economic,
	environmental, social, political, ethical,
	health care, safety and sustainability.
CO3	Work and communicate efficiently in
005	multidisciplinary teams.
COA	Identify, formulate, and solve engineering
C04	problems.
COS	Develop an understanding of professional
005	and ethical responsibility.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Suggested Reading

1. Depending upon their area of interest, students may choose any text book of relevant field or any article from Journal

2. Depending upon their area of interest, students may choose any reference book of relevant field depending upon their area of interest; students may choose any reference book of relevant field.