Course Code : BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Thermodynamics

Name of the Faculty: Dr. Monika Chauhan

Program Name: B.Sc

Course Code : BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

TOPICS COVERED

➤ Modes of Heat

≻Work

≻Generalize form of workdone

 \succ Expansion

➤Compression

≻Work done for different processes

Course Code : BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Modes of Energy Transfer

Energy can be transferred by two modes

(a) Work

(b) Heat

Work

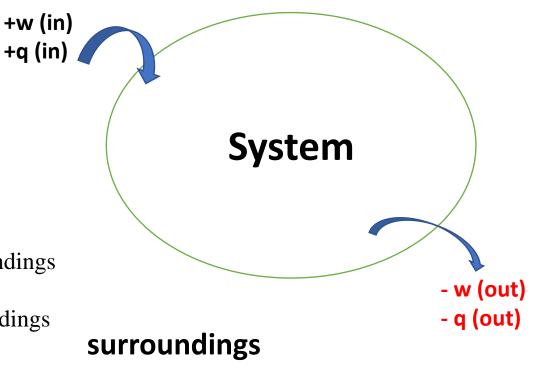
- The transfer of energy between a chemical reaction system and its surroundings occurs called work or heat.
- Work, w, is the mechanical transfer of energy from one thing to another

Work = Force × Displacement

Name of the Faculty: Dr. Monika Chauhan

Course Code : BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

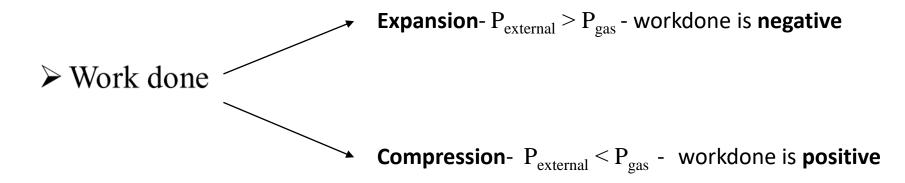

Work

- Energy transfer due to change in the volume of system on application of external pressure
- Pressure is a force over a unit area

 $\mathbf{P} = \frac{\mathbf{Force}}{\mathbf{Area}}$

(Sign Conversion)

- +**w** for work done **on** the system by the surroundings
- -w for work done by the system **on** the surroundings



Course Code : BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

GENERALIZE FORM OF WORKDONE

If system is a cylinder which is filed by gas having a piston then two types of work done takes place.

Course Code : BSCC2002	Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications		
WORK (w = - \int	PdV)	dV) If $P_{external} < P_{internal}$ (expansion) takes place then the position of piston changes from (1) to (2) so, change in position is said to be as dx	
(2) $\begin{vmatrix} P_{ext} \\ \end{vmatrix} = \begin{vmatrix} P_{ext} \\ \end{vmatrix}$		For dx displacement (change in position)	
	dx	Change in volume, $dV = A \times dx$	
(1)		Force against which work is done	$F_{ex} = P_{ex} \times A$
(1)		So, work done δ w = - F _{ex} $ imes$ dx	
		Put the value of F _{ex} form the above expression	
P _{internal}		δw = - P _{ex} × A × dx	$= (A \times dx = dV)$
		Change in work done	
		δw = - P _{ex} × dV	
		Total work done (W)	
		$W = - \int P_{external} \times dV$	

if we remove integration sign , dV changes into ΔV

 $\mathbf{w} = -\mathbf{P}_{ext} \Delta \mathbf{V}$ where, $\Delta \mathbf{V} = \mathbf{V}_{f} - \mathbf{V}_{i}$

Program Name: B.Sc

Course Code : BSCC2002

WORK

Calculate work done for Expansion: - In expansion final volume is greater than initial volume, so $V_f > V_i$ i.e. volume is positive so, $w = -\int PdV$ (work is negative)

Calculate work done for Compress: - In Compress final volume is lesser than initial volume, so $V_f < V_i$ i.e. volume is negative so, $w = \int PdV$ (work is positive)

Course Code : BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Work done for different processes

- Work done for irreversible process i.e. the external pressure remains constant
 - $W_{irr} = -P_{ex} (V_2 V_1)$ (Expansion)
 - $W_{rev} = -\int P_{gas} dV$ (Compress)
- Work done for isobaric process:- $W = P(V_2 V_1)$
- Work done for isochoric process:- W = 0
- Isothermal reversible expansion work of an ideal gas

$$w = -nRT \ln \frac{P_1}{P_2} = -2.303 \ nRT \log \frac{P_1}{P_2}$$
$$w = -nRT \ln \frac{V_2}{V_1} = -2.303 \ nRT \log \frac{V_2}{V_1}$$

Course Code : BSCC2002

- Unit of work is joule (J).
 - \geq 1 joule = 10⁷ ergs or 1 erg = 10⁻⁷ J
 - > 1 kJ = 1000 J
 - \geq 1L-atm of energy = 24.22 cal.
 - ➤ 1 Cal = 4.18 J
- For work
- Work done by the system i.e. expension = -ve
 Work done on the system i.e. compression = +ve

Course Code : BSCC2002

SOLVED PROBLEM

✓ Calculate the pressure-volume work done when a system containing a gas expands from 1.0 litre to 2.0 litres against a constant external pressure of 10 atmospheres. Express the answer in calories and joules.

SOLUTION:

$$w = -Pext (V2 - V1) = -(10 \text{ atm}) (2 l - 1 l) = -10 l atm$$

 $= - (10 \ l \ atm) \times 24.22$ = - 242.2 cal But 1 calorie = 4.184 J $w = -1013.3648 \ J$

Course Code : BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

SOLVED PROBLEM

- ✓ 50 J of heat is supplied to a system. Calculate the work done if the internal energy of system increases by 80J.
 - $\Delta U = +q+w$ 80 = 50 + ww = 30

Course Code : BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

References

Text Books

 Atkins, P. W. & Paula, J. de *Atkin's Physical Chemistry*10th Ed., Oxford University Press (2014).

Reference Books

- 1. Castellan, G. W. *Physical Chemistry*4th Ed. Narosa (2004).
- 2. Engel, T. & Reid, P. *Physical Chemistry*3rd Ed. Pearson (2013).
- 3. Levine, I.N. *Physical Chemistry*6th Ed., Tata Mc Graw Hill (2010)
- 4. Puri Sharma Pathania Physical Chemistry Book.

Course Code : BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Name of the Faculty: Dr. Monika Chauhan

Program Name: B.Sc