Curse Code : MSCP6002

Course Name: ATOMIC AND MOLECULAR PHYSICS

**Contents:** Symmetry / Anti-Symmetry wave function

Form of 2-particle wavefunction  $\Psi(r_1; r_2) = ?$ 

Try: 
$$\Psi(r_1; r_2) = \Psi_{n1}(r_1) \Psi_{n2}(r_2)$$
 (Eq. I)

Gives wrong answer for two electrons confined to He atom if particle-particle interaction is neglected.

How to do better? Realized that at the microscopic level it is impossible to distinguish between the two electrons. What does this imply? Eq. I is ruled out.

For two particles, we have two choices:

$$\begin{split} \Psi(r_1;r_2) = \Psi(r_2;r_1) & (\text{Eq.II}) \\ OR \\ \Psi(r_1;r_2) = - \Psi(r_2;r_1) & (\text{Eq.III}) \end{split}$$

Curse Code : MSCP6002

**Course Name: ATOMIC AND MOLECULAR PHYSICS** 

### Symmetry / Anti-Symmetry wave function

## What are acceptable forms for the 2-particle wavefunction consistent with indistinguishable particles?

One possibility is

$$\Psi_{s}(r_{1};r_{2}) = \frac{1}{\sqrt{2}} \left[ \Psi_{n}(r_{1})\Psi_{m}(r_{2}) \notin \Psi_{n}(r_{2})\Psi_{m}(r_{1}) \right]$$

this automatically makes  $\Psi_s(r_1; r_2) = + \Psi_s(r_2; r_1)$  "exchange" term

Another possibility is

$$\Psi_{a}(r_{1};r_{2}) = \frac{1}{\sqrt{2}} \left[ \Psi_{n}(r_{1})\Psi_{m}(r_{2}) - \Psi_{n}(r_{2})\Psi_{m}(r_{1}) \right]$$

this automatically makes  $\Psi_a(r_1; r_2) = -\Psi_a(r_2; r_1)$ 

Numerically speaking, the minus sign doesn't matter much since ultimately you calculate  $|\Psi|^2$ 

Any wavefunction is said to be asymmetric **under particle exchange** if the wavefunction flips sign when the particles are interchanged

Name of the Faculty: Dr. ANIS AHMAD

Program Name: M.Sc. Physics

3

Curse Code : MSCP6002

Course Name: ATOMIC AND MOLECULAR PHYSICS

Symmetry / Anti-Symmetry wave function

### What are the consequences of these wavefunctions?

Focus on calculating the probability to find both particles in the same quantum state w. There are three cases to consider:

Case I: Two distinguishable (identical) particles in same quantum state w

 $\Psi_{D}(r_{1};r_{2}) = \Psi_{n}(r_{1})\Psi_{m}(r_{2})\Big|_{n=m=w} = \Psi_{w}(r_{1})\Psi_{w}(r_{2})$ 

Probability Density  $\propto \Psi_w(r_1)\Psi_w(r_2)\Psi_w^*(r_1)\Psi_w^*(r_2)dV_1dV_2$ 

Curse Code : MSCP6002

**Course Name: ATOMIC AND MOLECULAR PHYSICS** 

## Symmetry / Anti-Symmetry wave function

Case II: Two indistinguishable (identical) particles described by symmetric wavefunction in same quantum state w

$$\begin{split} \Psi_{s}(r_{1};r_{2}) &= \frac{1}{\sqrt{2}} \Big[ \Psi_{u}(r_{1})\Psi_{u}(r_{2}) + \Psi_{u}(r_{2})\Psi_{u}(r_{1}) \Big]_{u=u=w} \\ &= \frac{1}{\sqrt{2}} \Big[ \Psi_{w}(r_{1})\Psi_{w}(r_{2}) + \Psi_{w}(r_{2})\Psi_{w}(r_{1}) \Big] \\ &= \frac{2}{\sqrt{2}} \Big[ \Psi_{w}(r_{1})\Psi_{w}(r_{2}) \Big] = \sqrt{2} \Big[ \Psi_{w}(r_{1})\Psi_{w}(r_{2}) \Big] \\ Probability Density &\propto \Psi_{s}(r_{1};r_{2})\Psi_{s}^{*}(r_{1};r_{2}) dV_{1}dV_{2} \\ &= \underbrace{2\Psi_{w}(r_{1})\Psi_{w}(r_{2})\Psi_{w}^{*}(r_{1})\Psi_{w}(r_{2}) dV_{1}dV_{2} \end{split}$$

Curse Code : MSCP6002

**Course Name: ATOMIC AND MOLECULAR PHYSICS** 

### Symmetry / Anti-Symmetry wave function

Case III: Two indistinguishable (identical) particles described by antisymmetric wavefunction in same quantum state w

$$\begin{split} \Psi_{a}(r_{1};r_{2}) &= \frac{1}{\sqrt{2}} \Big[ \Psi_{u}(r_{1})\Psi_{u}(r_{2}) - \Psi_{u}(r_{2})\Psi_{u}(r_{1}) \Big] \Big|_{n=m\equiv w} \\ &= \frac{1}{\sqrt{2}} \Big[ \Psi_{w}(r_{1})\Psi_{w}(r_{2}) - \Psi_{w}(r_{2})\Psi_{w}(r_{1}) \Big] \\ &= 0 \end{split}$$

Probability Density  $\propto \Psi_a(r_1; r_2) \Psi_a^*(r_1; r_2) dV_1 dV_2 = 0$ 

Curse Code : MSCP6002

**Course Name: ATOMIC AND MOLECULAR PHYSICS** 

### Symmetry / Anti-Symmetry wave function

# Which wavefunction $\Psi_s$ or $\Psi_a$ should we choose for electrons?

Pauli's exclusion principle helps us decide - since for electrons in atoms, two electrons **are never found** in the same quantum state.

Pauli exclusion implies that  $\Psi_a$  is the correct choice for electrons since if n=m (i.e. if we insist that two electrons have the same quantum state), we have:

$$\begin{split} \Psi_{a}(r_{1};r_{2}) &= \frac{1}{\sqrt{2}} \Big[ \Psi_{n}(r_{1})\Psi_{m}(r_{2}) - \Psi_{n}(r_{2})\Psi_{m}(r_{1}) \Big]_{if\,n=m} \\ &= \frac{1}{\sqrt{2}} \Big[ \Psi_{n}(r_{1})\Psi_{n}(r_{2}) - \Psi_{n}(r_{2})\Psi_{n}(r_{1}) \Big] \equiv 0 \end{split}$$

Writing  $\Psi_a$  is just an elegant (and equivalent) way to express the Pauli exclusion principle!

7

Name of the Faculty: Dr. ANIS AHMAD

Program Name: M.Sc. Physics

Curse Code : MSCP6002

Course Name: ATOMIC AND MOLECULAR PHYSICS

### Symmetry / Anti-Symmetry wave function

#### This discussion implies that there are fundamentally two different types of quantum particles

$$\begin{split} \textbf{Bosons:} \quad \Psi_s(r_1;r_2) &= \frac{1}{\sqrt{2}} \Big[ \Psi_n(r_1) \Psi_m(r_2) + \Psi_n(r_2) \Psi_m(r_1) \Big] \\ \Psi_s(r_1;r_2) &= \Psi_s(r_2;r_1) \\ Bosons have enhanced probability of being \\ in the same quantum state. \end{split}$$
 
$$\begin{split} \textbf{Fermions:} \quad \Psi_a(r_1;r_2) &= \frac{1}{\sqrt{2}} \Big[ \Psi_n(r_1) \Psi_m(r_2) - \Psi_n(r_2) \Psi_m(r_1) \Big] \\ \Psi_a(r_1;r_2) &= -\Psi_a(r_2;r_1) \end{split}$$

Fermions have zero probability of being in the same quantum state.

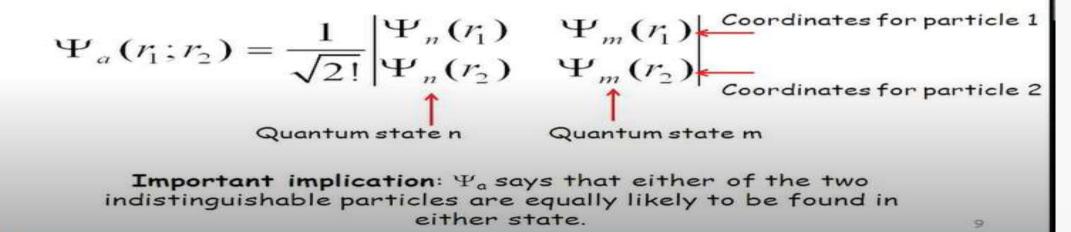
Curse Code : MSCP6002

**Course Name: ATOMIC AND MOLECULAR PHYSICS** 

### Symmetry / Anti-Symmetry wave function

To guarantee that no two particles have the same quantum state, make sure the wavefunction is <u>anti-</u> <u>symmtric</u> under the exchange of any two particles. If the two states happen to be the same, the wavefunction will automatically become ZERO.

Hence, .....the Slater determinant:



Name of the Faculty: Dr. ANIS AHMAD

Program Name: M.Sc. Physics

Curse Code :MSCP 6002

### **References:**

- 1. Raj Kumar, Atomic and Molecular Spectra: Laser, Kedear Nath Publication, Meerut, 2015
- 2. Arthur Beiser, Concepts of Modern Physics, 6th ed., McGraw Hill, New Delhi, 2008.
- 3. Harvey Elliott White, Introduction to Atomic Spectra, McGraw Hill, 1963.
- 4. G M Barrow, Introduction to molecular spectroscopy, Tata McGraw Hill, Japan, 1962.
- 5. Internet
- 6. https://www.youtube.com/watch?v=Yexx6IJXeEM

Name of the Faculty: Dr. Anis Ahmad

**Program Name: M.Sc. Physics**