School of Computing Science and Engineering

Course Code: CSCN4020 Course Name: Antivirus and Malware Analysis

BASICS OF MALWARE

nat is malware

- Can be loosely defined as "Malicious computer executable"
 - A bit flexible definition
 - Annoying software or program codes
- Running a code without user's consent
 - "If you let somebody else execute code on your computer, then it is not your own computer"
- Not only virus or worm
 - Sometimes known as computer contaminant
- Should not be confused with defective software which contains harmful bugs

asons for increase

- Growing number and connectivity of computers
 - "everybody" is connected and dependant on computers
 - the number of attacks increase
 - attacks can be launched easily (automated attacks)
- Growing system complexity
 - unsafe programming languages
 - hiding code is easy
 - verification and validation is impossible
- Systems are easily extensible
 - mobile code, dynamically loadable modules
 - incremental evolution of systems

o 10 Malware

```
    Packer.Malware.NSAnti.AD
    Win32.Netsky.P@mm
    Win32.Worm.Sohanad.NAW
    Packer.Malware.NSAnti.AG
    Trojan.Loader.N
    Trojan.Dropper.Cutwail.F
    Win32.Netsky.AA@mm
    Win32.NetSky.D@mm
```

Packer.Malware.NSAnti.Z

 According to Sophos 86% of the reported attacks is spyware

oes of Malware

- Viruses and Worms
- Spyware and adware
- Bots, trojans and keyloggers
 - Backdoors and DoS attacks

uses and Worms

- Worms are the oldest one
 - First well-known worm was known as the Morris Worm
 - Used a BSD Unix flaw to propagate itself
- Viruses requires hosts
 - Word document, etc.
- Both can spread through e-mail
 - Melissa virus uses address books of the infected computers (1999)
- Because it is less beneficial to their creators, this oldest form of malware is dying out

ware and adware

- Growth of Internet helped spawn spyware
- Largely fueled by the prospect of monetary gain
- Not spreads like viruses, instead packaged with user installed software (mostly p2p programs)
- Least virulent forms causes sluggish systems, slow Web browsing, annoying pop-ups
- More dangerous spyware tracks browsing habits or sensitive information

ts and Trojans

- Bots makers infect multiple systems
 - Creates massive botnets that can be used to launch Distributed Denial of Service attacks
- Trojan is a way to secretly install a piece of malware on a system
 - It could be adware or a keylogger
 - It sneakes onto a system and delivers an unexpected and potentially devastating payload

ws and vulnerabilities

- Homogeneity e.g. when all computers in a network run the same OS, if you can break that OS, you can break into any computer running it.
- Defects most systems containing errors which may be exploited by malware.
- Unconfirmed code code from a floppy disk, CD-ROM or USB device may be executed without the user's agreement.
- Over-privileged users some systems allow all users to modify their internal structures.
- Over-privileged code most popular systems allow code executed by a user all rights of that user.

School of Computing Science and Engineering

Course Code: CSCN4020 Course Name: Antivirus and Malware Analysis

VIRUSES

uses

- It is a piece of code that infect other programs by modifying them
 - Replicates its instructional code into other programs very much like its biological homophone
- It can also spread into programs in other computers by several ways
- It secretly executes when host program is run
- It is specific to particular software/hardware platform

etime of a virus

- Dormant phase
 - Idle, not all of them have this phase
- Propagation phase
 - Copies itself into other programs
- Triggering phase
 - Activated by a system event
- Execution phase
 - Runs its payload (part for malicious actions)

School of Computing Science and Engineering

Course Code: CSCN4020 Course Name: Antivirus and Malware Analysis

Virus structure

```
Program V:=
  goto main;
  1234567;
  subroutine infect-executable :=
  { loop:
   file := get-random-executable-file;
   if(first-line-of-file = 1234567)
           then goto loop
           else prepend V to file; }
     subroutine do-damage :=
     { whatever damage is to be done; }
```

```
subroutine trigger-pulled: =
{    return true if some condit
    holds; }

main:    main-progra
{ infect-executable;
    if trigger-pulled then do-dam
    goto next; }
    next:
}
```

us structure

- The infected program will first run the virus code when invoked
- If the infection phase is fast, then it will be unrecognizable
- Infected version of a program is longer than the normal
 - A virus can compress the infected program to make its versions identical length

es of viruses

- Parasitic virus
 - Traditional kind
- Memory-resident virus
 - Locates in memory, infects executing programs
- Boot sector virus
 - Infects MBR, spreads when system is booted
- Stealth virus
 - Compression technique, intercept logic in disk I/O routines
- Polymorphic virus
 - Makes detection by signature impossible by adding junk instructions, changing instruction order or using encryption
- Metamorphic virus
 - Similar to polymorphic virus, additionally changes its behaviour

School of Computing Science and Engineering

Course Code: CSCN4020 Course Name: Antivirus and Malware Analysis

icro viruses

- Platfrom independent
 - Any platform that supports office documents
- Infects Microsoft Word documents
- Easily spread by e-mails

ail viruses

- Eg. Melissa, sends mails with Word attachment
- Sends itself to everyone on the mail list in email package
- Does local damage
- In 1999, more powerful versions appeared
 - Executes when mail is read
- Strengthens the propagation phase of virus

School of Computing Science and Engineering

Course Code: CSCN4020 Course Name: Antivirus and Malware Analysis

GRAYWARE

- Applications that are installed on a user's computer to track and/or report certain information back to some external source
- Usually installed and run without the permission of the user
- Behave in a manner that is annoying or undesirable
- Designed to harm the performance of computers

- Sources can come from
 - Downloading shareware, freeware or other forms of file sharing services
 - Opening infected e-mails
 - Clicking on pop-up advertising
 - Visiting frivolous or spoofed web sites
 - Installing Trojan applications

- Not necessarily malevolent
 - Web site developers use newer techniques to customize their web sites & obtain better results
- Ultimate goal of many of them
 - Tracking the usage patterns of visitors to offer more customized search results to result in higher sales

- More of an annoyance than a security threat
 - Slower performance
 - More pop-up advertising
 - Web browser home pages being directed to other sites
- If the hackers are not counted!

- Hackers use grayware to load and run programs that
 - Collect information
 - Track usage pattern
 - Invasion of privacy
 - Track keystrokes
 - Modify system settings
 - Inflict other kinds of damage

ayware -- Categories

Spyware

- Included with freeware
- Does not notify the user of its existance or ask permission to install the components
- Designed to track & analyze a user's activity
 - Web browsing habits
 - Primarily for market purposes
- Tracked information is sent back to the originator's Web site
- Responsible for performance related issues

ayware -- Categories

Adware

- Embedded in freeware applications that users can donwload & install at no cost
 - By accepting the 'End User Licence Agreement'
- Used to load pop-up browser windows to deliver advertisements
- Considered to be invasive

ayware -- Categories

- Dialers
 - Used to control the PC's modem
 - To make long distance calls
 - To call premium 900 numbers to create revenue for the theaf
- Gaming
 - Installed to provide joke or nuisance games

ayware -- Categories

- Joke
 - Used to change system settings but do not damage the system
 - Changing the system cursor
 - Changing Windows' background image
- Peer-to-peer
 - Installed to perform file exchanges
 - Used to illegally swap music, movies, etc.

ayware -- Categories

Key Logger

- One of the most dangerous applications
- Installed to capture the keystrokes
 - User & password information
 - Credit card numbers
 - E-mail, chat, instant messages, etc.

Hijacker

- Manipulates the Web browser or other settings to change the user's favorite or bookmarked sites, start pages or menu options
- Some can also manipulate DNS settings

ayware -- Categories

Plugins

 Designed to add additional programs or features to an existing application in an attempt to control, record and send browsing preferences or other information back to an external destination

Network Management

- Designed to be installed to for malicious purposes
- Used to change network settings, disrupt network security

ayware -- Categories

- Remote Administration Tools
 - Allow an external user to remotely gain access, change or monitor a computer on a network
- Browser Helper Object (BHO)
 - DLL files that are often installed as part of a software application to allow program to control the behaviour of Internet Explorer
 - Can track surfing habits

ayware -- Categories

Toolbar

- Installed to modify the computer's existing toolbar features
- Can be used to monitor web habits, send information back to the developer or change the functionality of the host

Download

- Installed to allow other software to be downloaded & installed without the user's knowledge
- Usually run during the startup

ayware -- Symptoms

- Slower computer performance
 - Takes more CPU & memory resources
 - Can be identified from Windows Task Manager
 - Usually unknown applications to users
- Send & receive lights on modem or the network icons on the task bar are flashing even though you are not performing any online process

ayware -- Symptoms

- Computer displays pop-up messages & advertisements when not connected to Internet or when not running the browser
- Change in home page
- Change in search engine settings
- Change in bookmarks
- Change in toolbars or new installed options
 - Attempt to remove those fail

ayware -- Symptoms

- Increase in phone bills
- Stop in anti-virus program, anti-spyware program or any other security related program
- Receival of warnings of missing application files
 - Replacement does not work

ayware -- Protection

User Education

- Educating employees regarding the nature & dangers of grayware
- Establishing policies that prohibit downloading & installing applications that are not approved
- If the dowload & installation is allowed, 'End User License Agreement' should be read carefully
- Increase the security settings on the Web browser
- Configuration of e-mail programs as not to automatically download things
 - Turn of auto-preview

ayware -- Protection

- Host-based Anti-spyware Programs
 - Client based software applications that spot, remove and block spyware
 - Functions similarly to antivirus programs
 - Difficulty: overhead of installing & maintaining client software applications on all corporate PCs
 - Resources to purchase & install software and to perform routine upgrades on each computer
 - Danger: can be disabled by the end user or by other malicious application

ayware -- Protection

- Network-based Grayware Protection
 - Through a network gateway approach
 - Install the grayware detection on a perimeter security appliance
 - Centralizes the intelligence at the ingress point
 - Lowers the overhead of installing, maintaining and keeping it up-to-date
 - Drawback
 - What happens when the user leaves the office?

School of Computing Science and Engineering

Course Code: CSCN4020 Course Name: Antivirus and Malware Analysis

TROJAN HORSE

School of Computing Science and Engineering

Course Code: CSCN4020 Course N

Trojan Horse

- Is another type of proper looking software
 - But performs another action such as viruses
- Usually encoded in a hidden payload
- Used in installation of backdoors
- It does not propagate itself by self-replication
- Derived from the classical story of Trojan Horse

me examples

- Adding code to UNIX login command
 - Enables acception of encrypted password, or a particular known password
- C compiler can be modified to automatically generate rogue code
- Waterfall.scr is a free waterfall screensaver (!)
 - Unloads hidden programs, commands, scripts

es of Trojan Horse

- Remote Access
- Data Destruction
- Downloader
- Server Trojan (Proxy, FTP, IRC, Email, HTTP/HTTPS, etc.)
- Security software disabler
- Denial-of-Service attack (DoS)

mages of Trojan Horse (1)

- Erasing or overwriting data on a computer
- Encrypting files in a cryptoviral extortion attack
 - Attacker encrypts the victim's files and the user must pay the malware author to receive the needed session key
- Corrupting files in a subtle way
- Upload and download files
- Copying fake links, which lead to false websites, chats, or other account based websites, showing any local account name on the computer falsely engaging in untrue context
- Allowing remote access to the victim's computer.
- Spreading other malware, such as viruses
 - called a 'dropper' or 'vector'

mages of Trojan Horse (2)

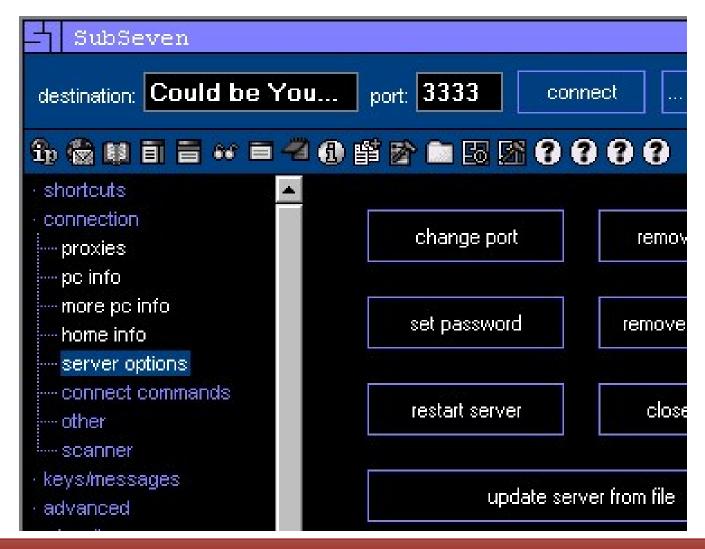
- Setting up networks of zombie computers in order to launch DDoS attacks or send spam
- Spying on the user of a computer and covertly reporting data like browsing habits to other people
- Making screenshots
- Logging keystrokes to steal information such as passwords and credit card numbers
- Phishing for bank or other account details
- Installing a backdoor on a computer system
- Opening and closing CD-ROM tray Playing sounds, videos or displaying images.

mages of Trojan Horse (3)

- Calling using the modem to expensive numbers, thus causing massive phone bills.
- Harvesting e-mail addresses and using them for spam
- Restarting the computer whenever the infected program is started
- Deactivating or interfering with anti-virus and firewall programs
- Deactivating or interfering with other competing forms of malware
- Randomly shutting off the computer

ckdoor (1)

- Bypassing actual authentication, securing remote access to a computer, obtaining access to plaintext
 - But remains undetected
- May be an installed program (e.g. Back Orifice) and modification to an existing program
- Threat is surfaced with development of multi-user and network based systems


ckdoor (2)

- Hard coded user and password combination
- Backdoors can be created by modification of source codes
 - Or modification of the compiler
- Computers infected by Sobig and Mydoom are a potential for spammers to send junk email
- Symmetric and asymmetric backdoors

School of Computing Science and Engineering

Course Code: CSCN4020 Course Name: Antivirus and Malware Analysis

mer 101 (Backdoor)

School of Computing Science and Engineering

Course Code: CSCN4020 Course Name: Antivirus and Malware Analysis

WORMS

orms

- It is a self-contained program and does not need human intervention unlike e-mail virus
- Replicates and sends copies of itself from computer to computer
- Performs disruptive or destructive actions
- May change its process name to system processes

w does it replicate?

- Electronic mail facility
- Remote execution capability
- Remote login capability

etime of a worm

- Dormant phase
- Propagation phase
 - Search for other systems by looking up host tables, repositories of remote system addresses
 - Connect to remote system
 - Copy itself to remote system and make it run
- Triggering phase
- Execution phase

School of Computing Science and Engineering

Course Code: CSCN4020 Course Name: Antivirus and Malware Analysis

me examples

- Morris worm
- Code Red

orris worm

- Released in 1998 by Robert Morris
- Designed for UNIX systems
- Propagation techniques
 - Examine system tables (list of other machines trusted by this one), mail forwarding files, remote account access permission tables

rris worm

- Attempt to log on to remote host as legitimate user
 - Crack the local password file, use permutations of usernames inside, all words in local directory
- Exploited a bug in the finger protocol
 - Gets info about remote user
- Exploited a trapdoor in remote sendmail program
- If succeeded, gains access to remote shell ands sends a short bootstrap program and executes it

de Red

- Released in July of 2001
- Exploits a security hole in Microsoft IIS
- It locates in RAM memory
- It propagates by probing random IP addresses between 1st and 19th of any month
 - Infected 360,000 servers in second reactivation
- It initiates DoS attack to a US government site and disrupts local service

de Red II

 New version installs a backdoor allowing master hacker to use host computer as a zombie

te of worm technology

- Multiplatform
 - Execute in different platforms
- Multiexploit
 - Use variety of exploits in web servers, browsers, etc.
- Ultrafast spreading
 - Prior Internet scan for vulnerable machines
- Polymorphic
 - Use functionality equivalent instructions and encryption
- Metamorphic
 - Change behavioural patterns
- Transport vehicles
 - Spread other malware tools
- Zero-day exploit
 - Use newly discovered exploits

School of Computing Science and Engineering

Course Code: CSCN4020 Course Name: Antivirus and Malware Analysis

SPAM

am

- Abuse of electronic messaging systems to indiscriminately send unsolicited bulk messages
- Remains economically viable
 - Advertisers have no operating cost beyond the management of their mailing lists
 - Difficult to hold senders accountable for their mass mailings

amming in Different Media

- E-mail Spam
 - Unsolicated bulk e-mail (UBE)
 - Unsolicated commercial e-mail (UCE)
 - Practice of sending unwanted e-mail messages
 - Sent via 'zombie networks', networks of virus- or worm-infected PCs
 - Many modern worms install a backdoor which allows the spammer access to the computer

amming in Different Media

- Instant messaging & Chat room Spam
 - Requires scriptable software & the recepients' IM usernames
- Chat Spam
 - Can occur in any live chat environment
 - Consists of repeating the same word/sentences many times to get attention or to interfere with normal operations
- Newsgroup & Forum Spam

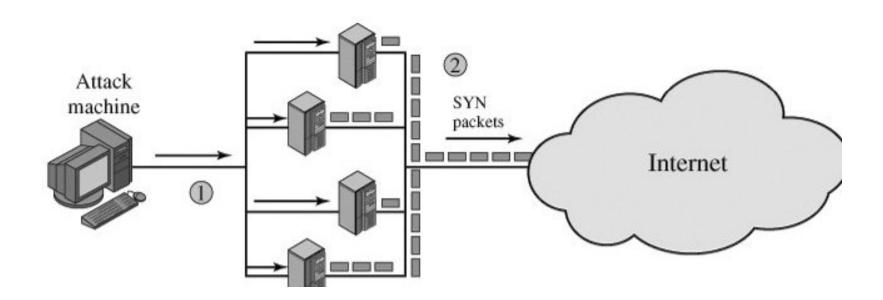
amming in Different Media

- Mobile Phone Spam
- Online Game Messaging Spam
- Spam Targeting Search Engines
 - Spamdexing
 - Practice on the WWW of modifying HTML pages to increase the chances of them being placed high on search engine relevancy lists
- Blog, Wiki & Guestbook Spam
- Spam Targeting Video Sharing Sites

Distributed Denial of Service Attack (DDoS)

tributed Denial of Service Attack (DDoS)

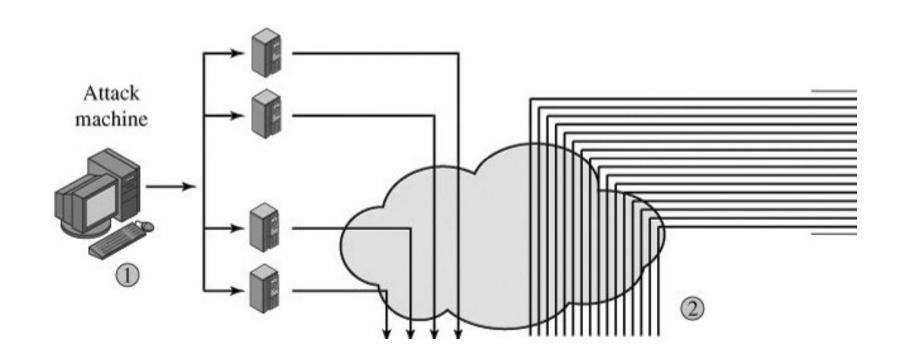
- DDoS attacks make computer systems inaccessible by flooding servers, networks and end-user computers
- In a DDoS attack a large number of compromised hosts are amassed
- If an attack comes from a single machine, it is referred to as a DoS


ack Description

- DDoS attack attempts to consume target's resources
- Consume operation is based on:
 - Internal Resource Attack
 - Consume of Data Transmission Resource

ernal Resource Attack

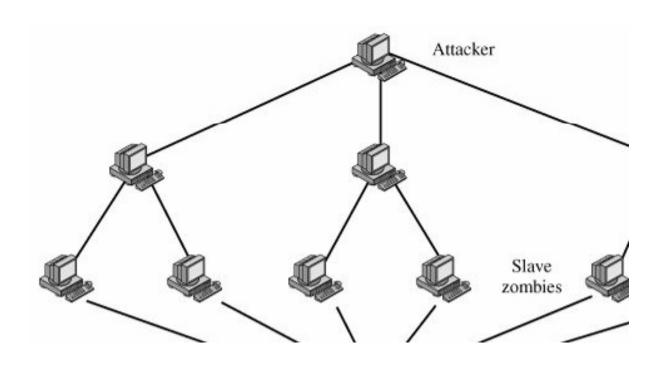
- Attacker takes control of multiple hosts, and instructs them to contact with target
- Slave hosts begin sending TCP/IP SYN packets with erronous return IP address information
 - SYN packets are requests to open TCP connections
- Server sends SYN/ACK response packets to these spurious IP addresses
- Data structure is consumed with "half open" connections


tributed SYN Flood Attacks

nsume of Data Transmission Resource

- Attacker takes control of hosts, intructs them to send ICMP ECHO packets with target's IP address, to a group of hosts
- Nodes that receive multiple requests and responds with sending echo reply packets
- Target's router is flooded, and leaves no data transmission capacity for legitimate traffic

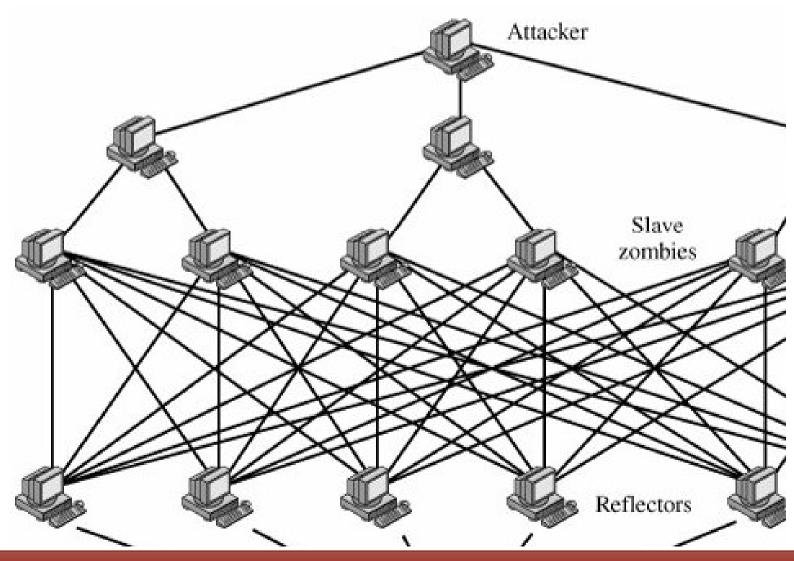
tributed ICMP Attack


ect DDoS Attack

- Attacker can implant zombie software
 - Master and slave zombies
- Attacker coordinates master zombies
 - They trigger slave zombies
- Why are two level zombies needed?
 - It makes more difficult to trace the attack back to its source

School of Computing Science and Engineering

Course Code: CSCN4020 Course Name: Antivirus and Malware Analysis


ect DDoS Attack

flector DDoS Attack

- This time slaves send packets to reflectors (uninfected machines)
- Source address of these packets are spoofed IP address of the target
- Reflectors response with packets directed to the target machine
- A reflector DDoS can easily involve more machines
- Hard to detect the source because attack comes from uninfected machines

flector DDoS Attack

w to find victims?

- Random
 - This may cause generalized disruption
- Hit-list
 - It results very short scanning period
- Topological
- Local subnet

oS Countermeasures

- Attack prevention and preemption
 - Enforcing policies for resource consumption
- Attack detection and filtering
 - Looking for suspicious patterns of behaviour
- Attack source traceback and identification
 - Does not yield results fast enough

Course Code: CSCN4020 Course Name: Antivirus and Malware Analysis

Course Code: CSCN4020 Course Name: Antivirus and Malware Analysis

MALWARE TO PROFIT

Ilware to Profit

- During 1980s and 1990s
 - Created as a form of vandalism or prank
- Recently
 - Written with a financial or profit motive
 - Choice of the author to monetize control over infected systems
 - Turn the control into a source of revenue
- Since 2003
 - Some redirect search engine results to paid advertisements

Ilware to Profit

- Another way
 - Directly use the infected computers to do work for the creator
 - Infected computers are used as proxies to send out spam messages or to targat anti-spam organizations with distributed DoS attacks
 - Advantage: anonymity

Ilware to Profit

- In order to coordinate the activity of many infected computers
 - Use of coordinating systems botnets
- Botnets are also used to push ungraded malware to the infected systems
- Other than those
 - Stealing credit card number
 - Stealing passwords of the online games
 - Taking the control of the modem

Course Code: CSCN4020 Course Name: Antivirus and Malware Analysis

VIRUS COUNTERMEASURES

Course Code: CSCN4020 Course Name: Antivirus and Malware Analysis

us countermeasures

- Antivirus approaches
- Advanced antivirus techniques

tivirus approaches

- The best way is prevention
- Detection
- Identification
- Removal

nerations of antivirus software

- First generation
 - Simple scanners, requires virus signature, examines proram length
- Second generation
 - Heuristic scanners, looks for fragments of virus codes, decrypts the virus
 - Computes checksum
- Third generation
 - Examines virus actions, not structure
- Fourth generation
 - Conducts a combination of mentioned techniques
 - Includes access control capability

Course Code: CSCN4020 Course Name: Antivirus and Malware Analysis

vanced antivirus techniques

- Generic Decryption
- Digital Immune Sytem
- Behaviour-Blocking Software

Course Code: CSCN4020 Course Name: Antivirus and Malware Analysis

neric Decryption

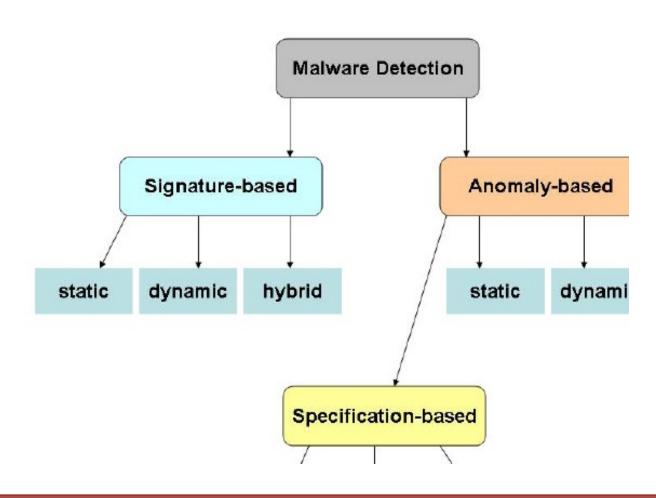
- CPU emulator
- Virus signature scanner
- Emulation control module

gital Immune System

- Monitoring program in client machine discovers suspicious programs, signatures or behaviours, forwards program to administrative machine
- Administrative machine encrypts and sends it to central analysis machine
- Central analysis machine uses emulation technique identifies the virus and produces a prescription
- Prescription is sent back

naviour-blocking software

- It is integrated with OS
- Monitors suspicios behaviours such as file operations, disk operations, system settings, scripts in e-mails


Course Code: CSCN4020 Course Name: Antivirus and Malware Analysis

MALWARE DETECTION

Iware Detector

- Attemps to protect the system by detecting malicious behaviour
- May or may not reside on the same system it is trying to protect
- Performs its protection through the manifested malware detection techniques
- Take two inputs:
 - Its knowledge of malicious behaviour
 - Program under inspection

Ilware Detection Techniques

Ilware Detection Techniques

- Anomaly-based
 - Uses its knowledge of what constitutes normal behaviour to decide the maliciousness of a program
 - Specification-based detection: leverage a rule set of what is valid behaviour
- Signature-based
 - Uses its characterization of what is known to be malicious to decide the maliciousness of a program

Ilware Detection Techniques

- Specific approach is determined by how the technique gathers information to detect malware
- Static analysis
 - Before the program under inspection executes
 - i.e. Sequence of bytes
- Dynamic analysis
 - During or after program execution
 - i.e. Systems seen on the runtime stack