School of Basic and Applied Sciences

Course Name: Programming Using Python

Lecture-05: Python Operators

Basic Operators:

Operators are the constructs which can manipulate the value of operands.
Consider the expression $4+5=9$. Here, 4 and 5 are called operands and + is called operator.
Types of Operator:
Python language supports the following types of operators.

- Arithmetic Operators
- Comparison (Relational) Operators
- Assignment Operators
- Logical Operators
- Bitwise Operators
- Membership Operators

- Identity Operators

School of Basic and Applied Sciences

Assume variable a holds 10 and variable b holds 20, then -

Operator	Description	Example
+ Addition	Adds values on either side of the operator.	$\mathrm{a}+\mathrm{b}=30$
- Subtraction	Subtracts right hand operand from left hand operand.	$\mathrm{a}-\mathrm{b}=-10$
*	Multiplies values on either side of the operator	$\mathrm{a} * \mathrm{~b}=200$
Multiplication		$\mathrm{b} / \mathrm{a}=2$
/ Division	Divides left hand operand by right hand operand	$\mathrm{b} \% \mathrm{a}=0$
\% Modulus	Divides left hand operand by right hand operand and returns remainder	

School of Basic and Applied Sciences

** Exponent
Performs exponential (power) calculation on operators
//Floor Division Floor Division - The division of operands where the result is the quotient in which the digits after the decimal point are removed. But if one of the operands is negative, the result is floored, i.e., rounded away from zero (towards negative infinity) -
$a^{* *} \mathrm{~b}=10$ to the power 20
$9 / / 2=4$ and
$9.0 / / 2.0=4.0$,
$-11 / / 3=-4,-$
$11.0 / / 3=-4.0$

School of Basic and Applied Sciences

Assume variable a holds 21 and variable b holds 10, then -

$$
a=21
$$

$$
b=10
$$

$$
c=0
$$

$$
c=a+b
$$

$$
\text { print "Line } 1 \text { - Value of } \mathrm{c} \text { is ", c }
$$

$$
c=a-b
$$

$$
\text { print "Line } 2 \text { - Value of } \mathrm{c} \text { is ", } \mathrm{c}
$$

$$
c=a * b
$$

$$
\text { print "Line } 3 \text { - Value of } \mathrm{c} \text { is ", c }
$$

School of Basic and Applied Sciences

Course Code : BSCM 304

$$
c=a / b
$$

print "Line 4 - Value of c is ", c $c=a \% b$
print "Line 5 - Value of c is ", c
$a=2$
b $=3$
$\mathrm{c}=\mathrm{a}^{* *} \mathrm{~b}$
print "Line 6 - Value of c is ", c
$a=10$
b $=5$
$c=a / / b$
print "Line 7 - Value of c is ", c

School of Basic and Applied Sciences

Course Code : BSCM 304
Course Name: Programming Using Python
When you execute the above program, it produces the following result

Line 1 - Value of c is 31
Line 2 - Value of c is 11
Line 3 - Value of c is 210
Line 4 - Value of c is 2
Line 5 - Value of c is 1
Line 6 - Value of c is 8
Line 7 - Value of c is 2

School of Basic and Applied Sciences

Python Comparison Operators:

These operators compare the values on either sides of them and decide the relation among them. They are also called Relational operators.
Assume variable a holds 10 and variable b holds 20, then -
Operator Description Example
$==\quad$ If the values of two operands are equal, then the condition becomes $\quad(a==b)$ is not true. true.
$!=\quad$ If values of two operands are not equal, then condition becomes true. $(\mathrm{a}!=\mathrm{b})$ is true.
<> If values of two operands are not equal, then condition becomes true. (a<>b) is true. This is similar to != operator.
$>\quad$ If the value of left operand is greater than the value of right operand, $(a>b)$ is not true then condition becomes true.

School of Basic and Applied Sciences

School of Basic and Applied Sciences

Assume variable a holds 10 and variable b holds 20, then -
a $=21$
b $=10$
$\mathrm{c}=0$
if ($a==b$):
print "Line 1-a is equal to $\mathrm{b}^{\prime \prime}$
else:
print "Line 1 - a is not equal to b "
if (a ! $=\mathrm{b}$):
print "Line $2-\mathrm{a}$ is not equal to $\mathrm{b}^{\prime \prime}$
else:
print "Line 2 - a is equal to b "

School of Basic and Applied Sciences

$$
\text { if }(a<>b) \text { : }
$$

print "Line $3-a$ is not equal to $b^{\prime \prime}$
else:
print "Line 3 - a is equal to $b^{\prime \prime}$
if $(a<b)$:
print "Line 4-a is less than b"
else:
print "Line 4-a is not less than b"
if $(a>b)$:
print "Line 5 - a is greater than b"
else:
print "Line 5 - a is not greater than b"

School of Basic and Applied Sciences

$$
\begin{aligned}
& a=5 ; \\
& b=20 ; \\
& \text { if }(a<=b) \text { : }
\end{aligned}
$$

print "Line 6-a is either less than or equal to $b^{\prime \prime}$
else:
print "Line $6-a$ is neither less than nor equal to b "
if ($b>=a$):
print "Line $7-b$ is either greater than or equal to b " else:
print "Line $7-b$ is neither greater than nor equal to b "

School of Basic and Applied Sciences

Line $1-a$ is not equal to b Line $2-a$ is not equal to b Line $3-\mathrm{a}$ is not equal to b Line $4-a$ is not less than b Line 5 - a is greater than b
Line 6 - a is either less than or equal to b Line $7-b$ is either greater than or equal to b

School of Basic and Applied Sciences

Python Assignment Operators:
Assume variable a holds 10 and variable b holds 20 , then -
Operator Description Example

$=$	Assigns values from right side operands to left side operand	$\mathrm{c}=\mathrm{a}+\mathrm{b}$ assigns value of $\mathrm{a}+\mathrm{b}$ into c
+= Add AND	It adds right operand to the left operand and assign the result to left operand	$\mathrm{c}+=\mathrm{a}$ is equivalent to $\mathrm{c}=\mathrm{c}+\mathrm{a}$
- $=$ Subtract AND	It subtracts right operand from the left operand and assign the result to left operand	$\mathrm{c}-\mathrm{a}=\mathrm{a}$ is equivalent to $\mathrm{c}=\mathrm{c}-\mathrm{a}$
* = Multiply AND	It multiplies right operand with the left operand and assign the result to left operand	$\mathrm{c} *=\mathrm{a}$ is equivalent to $\mathrm{c}=\mathrm{c} * \mathrm{a}$

| $/=$ Divide AND | It divides left operand with the right operand and
 assign the result to left operand | $\mathrm{c} /=\mathrm{a}$ is equivalent to $\mathrm{c}=\mathrm{c} / \mathrm{a}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\%=$ Modulus AND | It takes modulus using two operands and assign the
 result to left operand | $\mathrm{c} \%=\mathrm{a}$ is equivalent to $\mathrm{c}=\mathrm{c} \% \mathrm{a}$ |
| $* *=$ Exponent AND | Performs exponential (power) calculation on
 operators and assign value to the left operand | $\mathrm{c} * *=\mathrm{a}$ is equivalent to $\mathrm{c}=\mathrm{c}$ ** a |
| $/ /=$ Floor Division | It performs floor division on operators and assign
 value to the left operand | $\mathrm{c} / /=\mathrm{a}$ is equivalent to $\mathrm{c}=\mathrm{c} / / \mathrm{a}$ |

$a=21$
$b=10$
$\mathrm{c}=0$
$c=a+b$
print "Line 1 - Value of c is ", c
$\mathrm{c}+=\mathrm{a}$
print "Line 2 - Value of c is ", c c ${ }^{*}=\mathrm{a}$
print "Line 3 - Value of c is ", c c/= a
print "Line 4 - Value of c is ", c

School of Basic and Applied Sciences

$$
\begin{aligned}
& c=2 \\
& c \%=a
\end{aligned}
$$

$$
\text { print "Line } 5 \text { - Value of } c \text { is ", } c
$$

$$
c^{* *}=a
$$

$$
\text { print "Line } 6 \text { - Value of c is ", c }
$$

$$
c / /=a
$$

$$
\text { print "Line } 7 \text { - Value of } \mathrm{c} \text { is ", c }
$$

School of Basic and Applied Sciences

Line 1 - Value of c is 31
Line 2 - Value of c is 52
Line 3 - Value of c is 1092
Line 4 - Value of c is 52
Line 5 - Value of c is 2
Line 6 - Value of c is 2097152
Line 7 - Value of c is 99864

School of Basic and Applied Sciences

Bitwise operator works on bits and performs bit by bit operation. Assume if a $=60$; and $b=13$; Now in the binary format their values will be 00111100 and 00001101 respectively. Following table lists out the bitwise operators supported by Python language with an example each in those, we use the above two variables (a and b) as operands -
$a=00111100$
$\mathrm{b}=00001101$
$\mathrm{a} \& \mathrm{~b}=00001100$
$\mathrm{a} \mid \mathrm{b}=00111101$
$\mathrm{a}^{\wedge} \mathrm{b}=00110001$
$\sim \mathrm{a}=11000011$

There are following Bitwise operators supported by Python language.

School of Basic and Applied Sciences

Operator Description

\& Binary AND	Operator copies a bit to the result if it exists in both operands
\| Binary OR	It copies a bit if it exists in either operand.
^ Binary XOR	It copies the bit if it is set in one operand but not both.

~Binary Ones

Complement
<< Binary Left Shift
The left operands value is moved left by the number of bits specified by the right operand.
($\mathrm{a} \& \mathrm{~b}$) (means 0000 1100)
$(\mathrm{a} \mid \mathrm{b})=61$ (means 0011 1101)
$\left(\mathrm{a}^{\wedge} \mathrm{b}\right)=49$ (means 00110001$)$
$(\sim a)=-61$ (means 11000011 in 2's
complement form due to a signed binary number.
>> Binary Right Shift The left operands value is moved right by the number of bits specified by the right operand.

$$
\mathrm{a} \ll 2=240 \text { (means } 11110000)
$$

$a=60 \quad \# 60=00111100$
$b=13 \quad \# 13=00001101$
$\mathrm{c}=0$
$c=a \& b ; \quad \# 12=00001100$
print "Line 1 - Value of c is ", c
$c=a \mid b ; \quad \# 61=00111101$
print "Line 2 - Value of c is ", c
$c=a \wedge b ; \quad \# 49=00110001$
print "Line 3 - Value of c is ", c
$\mathrm{c}=\sim \mathrm{a} ; \quad \#-61=11000011$
print "Line 4 - Value of c is ", c

School of Basic and Applied Sciences

```
a = 60 # 60=0011 1100
c = a << 2; # 240 = 1111 0000
print "Line 5 - Value of c is ", c
a=60 # 60=0011 1100
c=a >> 2; # 15=0000 1111
print "Line 6 - Value of c is ", c
```


School of Basic and Applied Sciences

When you execute the above program it produces the following result Line 1 - Value of c is 12
Line 2 - Value of c is 61
Line 3 - Value of c is 49
Line 4 - Value of c is -61
Line 5 - Value of c is 240
Line 6 - Value of c is 15

School of Basic and Applied Sciences

References:

1.Introduction to Computation and Programming using Python, by John Guttag, PHI Publisher
2.T. Budd, Exploring Python, TMH, 1st Ed, 2011 3. Fundamentals of Python first Programmes by Kenneth A Lambert, Copyrighted material Course Technology Inc. 1 st edition (6th February 2009)
3. https://www.tutorialspoint.com/python/index.htm
4. https://www.geeksforgeeks.org/python-programming-language

School of Basic and Applied Sciences

****END OF THE LECTURE***

THANK YOU*

