
Malware Malware
Functionality

WinDbg v. OllyDbg
• OllyDbg is the most popular user-mode

debugger for malware analysts
• WinDbg can be used in either user-mode

or kernel-modeor kernel-mode
• This chapter explores ways to use WinDbg

for kernel debugging and rootkit analysis

Drivers and Kernel Code

Device Drivers

• Windows device drivers allow third-party
developers to run code in the Windows kernel

• Drivers are difficult to analyze
–They load into memory, stay resident, and –They load into memory, stay resident, and

respond to requests from applications

• Applications don't directly access kernel
drivers
– They access device objects which send requests

to particular devices

Devices

• Devices are not physical hardware
components
• They are software representations of

those componentsthose components
• A driver creates and destroys devices,

which can be accessed from user space

Example: USB Flash Drive

• User plugs in flash drive
• Windows creates the "F: drive" device object
• Applications can now make requests to the

F: driveF: drive
– They will be sent to the driver for that USB flash

drive

• User plugs in a second flash drive
– It may use the same driver, but applications

access it through the G: device object

Loading Drivers

• Drivers must be loaded into the kernel
– Just as DLLs are loaded into processes

• When a driver is first loaded, its
DriverEntry procedure is calledDriverEntry procedure is called
– Just like DLLMain for DLLs

DriverEntry

• DLLs expose functionality through the export
table; drivers don't

• Drivers must register the address for callback
functions

They will be called when a user-space software – They will be called when a user-space software
component requests a service

–DriverEntry routine performs this registration

–Windows creates a driver object structure, passes it
to DriverEntry which fills it with callback functions

– DriverEntry then creates a device that can be
accessed from user-land

Example: Normal Read

• Normal read request
– User-mode application obtains a file handle

to device
– Calls ReadFile on that handle– Calls ReadFile on that handle
– Kernel processes ReadFile request
– Invokes the driver's callback function handling

I/O

Malicious Request

• Most common request from malware is
DeviceIoControl
– A generic request from a user-space module

to a device managed by a driverto a device managed by a driver
– User-space program passes in an arbitrary-

length buffer of input data
– Received an arbitrary-length buffer of data as

output

12

Ntoskrnl.exe & Hal.dll

• Malicious drivers rarely control hardware
• They interact with Ntoskrnl.exe & Hal.dll

– Ntoskrnl.exe has code for core OS functions
– Hal.dll has code for interacting with main – Hal.dll has code for interacting with main

hardware components

• Malware will import functions from one or
both of these files so it can manipulate
the kernel

Setting Up Kernel Debugging

VMware

• In the virtual machine, enable kernel
debugging

• Configure a virtual serial port between VM
and hostand host

• Configure WinDbg on the host machine

Boot.ini

• The book activates kernel debugging by
editing Boot.ini

• But Microsoft abandoned that system
after Windows XPafter Windows XP

• The new system uses bcdedit

bcdedit

Get WinDbg

Run LiveKD

24

25

Using WinDbg

• Command-Line Commands

Reading from Memory

• dx addressToRead
• x can be

– da Displays as ASCII text
– du Displays as Unicode text– du Displays as Unicode text
– dd Displays as 32-bit double words

• da 0x401020
– Shows the ASCII text starting at 0x401020

Editing Memory

• ex addressToWrite dataToWrite
• x can be

– ea Writes as ASCII text
– eu Writes as Unicode text– eu Writes as Unicode text
– ed Writes as 32-bit double words

Using Arithmetic Operators

• Usual arithmetic operators + - / *
• dwo reveals the value at a 32-bit location

pointer
• du dwo (esp+4)• du dwo (esp+4)

– Shows the first argument for a function, as a
wide character string

Setting Breakpoints

• bp sets breakpoints
• You can specify an action to be performed

when the breakpoint is hit
• g tells it to resume running after the • g tells it to resume running after the

action
• bp GetProcAddress "da dwo(esp+8); g"

– Breaks when GetProcAddress is called, prints
out the second argument, and then continues

– The second argument is the function name

No Breakpoints with LiveKD

• LiveKD works from a memory dump
• It's read-only
• So you can't use breakpoints

Listing Modules

• lm
– Lists all modules loaded into a process

• Including EXEs and DLLs in user space
• And the kernel drivers in kernel mode• And the kernel drivers in kernel mode

– As close as WinDbg gets to a memory map

Reading from Memory

• dd nt
• Shows the start of module "nt"

• dd nt L10
• Shows the first 0x10 words of "nt"• Shows the first 0x10 words of "nt"

Online Help

• .hh dd
– Shows help

about "dd"
commandcommand

– But there
are no
examples

Microsoft Symbols

Symbols are Labels

• Including symbols lets you use
– MmCreateProcessAddressSpace

• instead of
– 0x8050f1a2– 0x8050f1a2

Searching for Symbols

• moduleName!symbolName
–Can be used anywhere an address is expected

• moduleName
–The EXE, DLL, or SYS filename (without –The EXE, DLL, or SYS filename (without

extension)

• symbolName
– Name associated with the address

• ntoskrnl.exe is an exception, and is named nt
–Ex: u nt!NtCreateProcess

• Unassembles that function (disassembly)

Demo

• Try these
– u nt!ntCreateProcess
– u nt!ntCreateProcess L10
– u nt!ntCreateProcess L20– u nt!ntCreateProcess L20

Deferred Breakpoints

• bu newModule!exportedFunction
– Will set a breakpoint on exportedFunction as

soon as a module named newModule is loaded

• $iment• $iment
– Function that finds the entry point of a

module

• bu $iment(driverName)
– Breaks on the entry point of the driver before

any of the driver's code runs

Searching with x

• You can search for functions or symbols
using wildcards

• x nt!*CreateProcess*
– Displays exported functions & internal – Displays exported functions & internal

functions

Listing Closest Symbol with ln

• Helps in figuring out where a call goes
• ln address

– First lines show two closest matches
– Last line shows exact match– Last line shows exact match

Viewing Structure Information with dt

• Microsoft symbols include type
information for many structures
– Including undocumented internal types– Including undocumented internal types
– They are often used by malware

• dt moduleName!symbolName
• dt moduleName!symbolName address

– Shows structure with data from address

Show Specific Values for the "Beep"
Driver

Initialization Function

• The DriverInit function is called first
when a driver is loaded
• See labelled line in previous slide

• Malware will sometimes place its entire • Malware will sometimes place its entire
malicious payload in this function

Configuring Windows Symbols

• If your debugging machine is connected to
an always-on broadband link, you can
configure WinDbg to automatically
download symbols from Microsoft as download symbols from Microsoft as
needed

• They are cached locally
• File, Symbol File Path

– SRC*c:\websymbols*http://
msdl.microsoft.com/download/symbols

Manually Downloading Symbols

• Link Ch 10a

Kernel Debugging in Practice

Kernel Mode and User Mode Functions

• We'll examine a program that writes to
files from kernel space
• An unusual thing to do
• Fools some security products
– Kernel mode programs cannot call user-mode

functions like CreateFile and WriteFile
– Must use NtCreateFile and NtWriteFile

User-Space Code

Creates a service with the CreateService
function
dwServiceType is 0x01 (Kernel driver)

User-Space Code

• Not shown: edi being set to
– \\.\FileWriter\Device

User-Space Code

Kernel-Mode Code

• Set WinDbg to Verbose mode (View,
Verbose Output)
• Doesn't work with LiveKD

• You'll see every kernel module that loads• You'll see every kernel module that loads
• Kernel modules are not loaded or

unloaded often
– Any loads are suspicious
– Except Kmixer.sys in VMware machines

66

Kernel-Mode Code

• !drvobj command shows driver object

Kernel-Mode Code
• dt command shows structure

Kernel-Mode Filenames

• Tracing this function, it eventually creates
this file
– \DosDevices\C:\secretfile.txt

• This is a fully qualified object name• This is a fully qualified object name
– Identifies the root device, usually \DosDevices

Finding Driver Objects

• Applications work with devices, not drivers
• Look at user-space application to identify

the interesting device object
• Use device object in User Mode to find driver • Use device object in User Mode to find driver

object in Kernel Mode
• Use !devobj to find out more about the

device object
• Use !devhandles to find application that use

the driver

Rootkits

Rootkit Basics

• Rootkits modify the internal functionality of
the OS to conceal themselves
– Hide processes, network connections, and other

resources from running programs
– Difficult for antivirus, administrators, and security – Difficult for antivirus, administrators, and security

analysts to discover their malicious activity

• Most rootkits modify the kernel
• Most popular method:

– System Service Descriptor Table (SSDT) hooking

System Service Descriptor Table (SSDT)

• Used internally by Microsoft
– To look up function calls into the kernel

– Not normally used by third-party applications or
drivers

• Only three ways for user space to access
kernel code
– SYSCALL
– SYSENTER
– INT 0x2E

SYSENTER

• Used by modern versions of Windows
• Function code stored in EAX register

• More info about the three ways to call
kernel code is in links Ch 10j and 10kkernel code is in links Ch 10j and 10k

Example from ntdll.dll

• EAX set to 0x25
• Stack pointer saved in EDX
• SYSENTER is called

SSDT Table Entries

• Rootkit changes the values in the SSDT so rootkit
code is called instead of the intended function

• 0x25 would be changed to a malicious driver's
function

Hooking NtCreateFile

• Rootkit calls the original NtCreateFile, then
removes files it wants to hide
• This prevents applications from getting a

handle to the filehandle to the file
• Hooking NtCreateFile alone won't hide a file

from DIR, however

Rootkit Analysis in Practice

• Simplest way to detect SSDT hooking
– Just look at the SSDT
– Look for values that are unreasonable
– In this case, ntoskrnl.exe starts at address – In this case, ntoskrnl.exe starts at address

804d7000 and ends at 806cd580
– ntoskrnl.exe is the Kernel!

• lm m nt
– Lists modules matching "nt" (Kernel modules)
– Shows the SSDT table

Win 2008
• lm m nt failed on my Win 2008 VM
• This command shows the SSDT
• dps nt!KiServiceTable L poi nt!

KiServiceLimit
• Link Ch 10l• Link Ch 10l

SSDT Table

• Marked entry is hooked
• To identify it, examine a clean system's SSDT

Finding the Malicious Driver

• lm
– Lists open modules
– In the kernel, they are all drivers

Interrupts
• Interrupts allow hardware to trigger

software events
• Driver calls IoConnectInterrupt to

register a handler for an interrupt code
• Specifies an Interrupt Service Routine (ISR)• Specifies an Interrupt Service Routine (ISR)

– Will be called when the interrupt code is
generated

• Interrupt Descriptor Table (IDT)
– Stores the ISR information
– !idt command shows the IDT

Loading Drivers

• If you want to
load a driver to
test it, you can
download the download the
OSR Driver
Loader tool

Kernel Issues for Windows Vista,
Windows 7, and x64 Versions

• Uses BCDedit instead of boot.ini
• x64 versions starting with XP have PatchGuard

– Prevents third-party code from modifying the – Prevents third-party code from modifying the
kernel

– Including kernel code itself, SSDT, IDT, etc.
– Can interfere with debugging, because debugger

patches code when inserting breakpoints

• There are 64-bit kernel debugging tools
–Link Ch 10c

Driver Signing

• Enforced in all 64-bit versions of Windows
starting with Vista

• Only digitally signed drivers will load
• Effective protection!• Effective protection!
• Kernel malware for x64 systems is

practically nonexistent
– You can disable driver signing enforcement by

specifying nointegritychecks in BCDEdit

Downloaders and Launchers

Downloaders

• Download another piece of malware
– And execute it on the local system

• Commonly use the Windows API
URLDownloadtoFileA, followed by a URLDownloadtoFileA, followed by a
call to WinExec

Launchers (aka Loaders)

• Prepares another piece of malware for
covert execution
– Either immediately or later
– Stores malware in unexpected places, such as – Stores malware in unexpected places, such as

the .rsrc section of a PE file

Backdoors
• Provide remote access to victim machine
• The most common type of malware
• Often communicate over HTTP on Port 80

– Network signatures are helpful for detection– Network signatures are helpful for detection

• Common capabilities
– Manipulate Registry, enumerate display

windows, create directories, search files, etc.

Reverse Shell
• Infected machine calls out to attacker,

asking for commands to execute

Windows Reverse Shells
• Basic

– Call CreateProcess and manipulate
STARTUPINFO structure

– Create a socket to remote machine– Create a socket to remote machine
– Then tie socket to standard input, output,

and error for cmd.exe
– CreateProcess runs cmd.exe with its

window suppressed, to hide it

Windows Reverse Shells
• Multithreaded

– Create a socket, two pipes, and two threads
– Look for API calls to CreateThread and
CreatePipeCreatePipe

– One thread for stdin, one for stdout

RATs
(Remote Administration Tools)

• Ex: Poison Ivy

Botnets

• A collection of compromised hosts
– Called bots or zombies

Botnets v. RATs
• Botnet contain many hosts; RATs control

fewer hosts
• All bots are controlled at once; RATs

control victims one by onecontrol victims one by one
• RATs are for targeted attacks; botnets are

used in mass attacks

Credential Stealers

• Three types
–Wait for user to log in and steal

credentials
–Dump stored data, such as password –Dump stored data, such as password

hashes
–Log keystrokes

GINA Interception

• Windows XP's Graphical Identification and
Authentication (GINA)
– Intended to allow third parties to customize

logon process for RFID or smart cardslogon process for RFID or smart cards
– Intercepted by malware to steal credentials

• GINA is implemented in msgina.dll
– Loaded by WinLogon executable during logon

• WinLogon also loads third-party customizations
in DLLs loaded between WinLogon and GINA

GINA Registry Key

• HKLM\SOFTWARE\Microsoft\Windows NT
\CurrentVersion\Winlogon\GinaDLL

• Contains third-party DLLs to be loaded by
WinLogonWinLogon

MITM Attack
• Malicious DLL must export all functions

the real msgina.dll does, to act as a MITM
– More than 15 functions
– Most start with Wlx– Most start with Wlx

–Good indicator
–Malware DLL exporting a lot of Wlx

functions is probably a GINA interceptor

WlxLoggedOutSAS
• Most exports simply call through to the real

functions in msgina.dll
• At 2, the malware logs the credentials to the

file %SystemRoot%\system32\drivers\tcpudp.sys

GINA is Gone
• No longer used in Windows Vista and later
• Replaced by Credential Providers

• Link Ch 11c

Custom Credential Provider Rootkit
on Windows 7

• Two sets of login buttons
• Only steals passwords from second set
• Code is provided to filter out the original set

Hash Dumping
• Windows login passwords are stored as LM

or NTLM hashes
–Hashes can be used directly to authenticate

(pass-the-hash attack)
– Or cracked offline to find passwords– Or cracked offline to find passwords

• Pwdump and Pass-the-Hash Toolkit
– Free hacking tools that provide hash dumping
– Open-source
– Code re-used in malware
– Modified to bypass antivirus

Pwdump
• Injects a DLL into LSASS (Local Security

Authority Subsystem Service)
– To get hashes from the SAM (Security Account

Manager)Manager)
– Injected DLL runs inside another process
– Gets all the privileges of that process
– LSASS is a common target

• High privileges
• Access to many useful API functions

Pwdump
• Injects lsaext.dll into lsass.exe

– Calls GetHash, an export of lsaext.dll

– Hash extraction uses undocumented Windows
function callsfunction calls

• Attackers may change the name of the
GetHash function

Pwdump Variant

• Uses these libraries
– samsrv.dll to access the SAM
– advapi32.dll to access functions not already

imported into lsass.exeimported into lsass.exe
– Several Sam functions

– Hashes extracted by SamIGetPrivateData
– Decrypted with SystemFunction025 and
SystemFunction027

• All undocumented functions

Pass-the-Hash Toolkit
• Injects a DLL into lsass.exe to get hashes

– Program named whosthere-alt

• Uses different API functions than Pwdump

Keystroke Logging

• Kernel-Based Keyloggers
– Difficult to detect with user-mode

applications
– Frequently part of a rootkit– Frequently part of a rootkit
– Act as keyboard drivers
– Bypass user-space programs and protections

Keystroke Logging
• User-Space Keyloggers

– Use Windows API
– Implemented with hooking or polling

• Hooking
– Uses SetWindowsHookEx function to notify malware – Uses SetWindowsHookEx function to notify malware

each time a key is pressed
– Details in next chapter

• Polling
– Uses GetAsyncKeyState & GetForegroundWindow

to constantly poll the state of the keys

Polling Keyloggers

• GetAsyncKeyState
– Identifies whether a key is pressed or

unpressed

• GetForegroundWindow• GetForegroundWindow
– Identifies the foreground window

– Loops through all keys, then sleeps briefly
– Repeats frequently enough to capture all

keystrokes

Identifying Keyloggers in Strings Listings

• Run Strings
• Terms like these will

be visible

Three Persistence Mechanisms

1.Registry modifications, such as Run key
• Other important registry entries:

– AppInit_DLLs
– Winlogon Notify– Winlogon Notify
– ScvHost DLLs

2.Trojanizing Binaries
3.DLL Load-Order Hijacking

Registry Modifications
• Run key

– HKEY_LOCAL_MACHINE\ SOFTWARE\ Microsoft\
Windows\ CurrentVersion\ Run

– Many others, as revealed by Autoruns– Many others, as revealed by Autoruns

• ProcMon shows all registry modifications
when running malware (dynamic analysis)
• Can detect all these techniques

Process Monitor

APPINIT DLLS
• AppInit_DLLs are loaded into every

process that loads User32.dll
– This registry key contains a space-delimited

list of DLLslist of DLLs
– HKEY_LOCAL_MACHINE\ SOFTWARE\ Microsoft\

Windows NT\ CurrentVersion\ Windows
– Many processes load them
– Malware will call DLLMain to check which

process it is in before launching payload

Winlogon Notify

• Notify value in
– HKEY_LOCAL_MACHINE\ SOFTWARE\ Microsoft\

Windows
– These DLLs handle winlogon.exe events– These DLLs handle winlogon.exe events
– Malware tied to an event like logon, startup,

lock screen, etc.
– It can even launch in Safe Mode

SvcHost DLLs
• Svchost is a generic host process for services

that run as DLLs
• Many instances of Svchost are running at once
• Groups defined at• Groups defined at

–HKEY_LOCAL_MACHINE\ SOFTWARE\ Microsoft\
Windows NT\ CurrentVersion\ Svchost

• Services defined at
– HKEY_LOCAL_MACHINE\ System\

CurrentControlSet\ Services\ ServiceName

Process Explorer
• Shows many

services running in
one svchost
processprocess

• This is the netsvcs
group

ServiceDLL
• All svchost.exe DLL contain a Parameters

key with a ServiceDLL value
– Malware sets ServiceDLL to location of

malicious DLLmalicious DLL

Groups
• Malware usually adds itself to an existing

group
– Or overwrites a non-vital service
– Often a rarely used service from the netsvcs – Often a rarely used service from the netsvcs

group

• Detect this with dynamic analysis
monitoring the registry
– Or look for service functions like
CreateServiceA in disassembly

Trojanized System Binaries

• Malware patches bytes of a system binary
• To force the system to execute the malware

the next time the infected binary is loaded
• DLLs are popular targets• DLLs are popular targets
• Typically the entry function is modified
• Jumps to code inserted in an empty portion of

the binary
• Then executes DLL normally

DLL Load-Order Hijacking

KnownDLLs Registry Key

• Contains list of specific DLL locations
• Overrides the search order for listed DLLs

• Makes them load faster, and prevents load-
order hijackingorder hijacking

• DLL load-order hijacking can only be used
– On binaries in directories other than System32
– That load DLLs in System32
– That are not protected by KnownDLLs

Example: explorer.exe

• Lives in /Windows
• Loads ntshrui.dll from System32
• ntshrui.dll is not a known DLL
• Default search is performed• Default search is performed
• A malicious ntshrui.dll in /Windows will

be loaded instead

Many Vulnerable DLLs
• Any startup binary not found in /System32

is vulnerable
• explorer.exe has about 50 vulnerable DLLs
• Known DLLs are not fully protected, • Known DLLs are not fully protected,

because
– Many DLLs load other DLLs
– Recursive imports follow the default search

order

DLL Load-Order Hijacking Detector

• Searches for DLLs that appear multiple
times in the file system, in suspicious
folders, and are unsigned

• From SANS (2015) (link Ch 11d)• From SANS (2015) (link Ch 11d)

No User Account Control
• Most users run Windows XP as

Administrator all the time, so no privilege
escalation is needed to become
AdministratorAdministrator

• Metasploit has many privilege escalation
exploits

• DLL load-order hijacking can be used to
escalate privileges

Using SeDebugPrivilege
• Processes run by the user can't do

everything
• Functions like TerminateProcess or
CreateRemoteThread require System CreateRemoteThread require System
privileges (above Administrator)

• The SeDebugPrivilege privilege was
intended for debugging

• Allows local Administrator accounts to
escalate to System privileges

• 1 obtains an access token

• 2 AdjustTokenPrivileges raises privileges to
System

Covering Its Tracks—
User-Mode RootkitsUser-Mode Rootkits

Launchers

Purpose of a Launcher
• Sets itself or another piece of malware

• For immediate or future covert execution

• Conceals malicious behavior from the user
• Usually contain the malware they're loading• Usually contain the malware they're loading

– An executable or DLL in its own resource
section

• Normal items in the resource section
– Icons, images, menus, strings

Encryption or Compression
• The resource section may be encrypted or

compressed
• Resource extraction will use APIs like

– FindResource– FindResource

– LoadResource

– SizeofResource

• Often contains privilege escalation code

Process Injection
• The most popular covert launching process
• Injects code into a running process
• Conceals malicious behavior

• May bypass firewalls and other process-• May bypass firewalls and other process-
specific security mechanisms

• Common API calls:
– VirtualAllocEx to allocate space

– WriteProcessMemory to write to it

DLL Injection
• The most commonly used covert launching

technique
• Inject code into a remote process that calls
LoadLibraryLoadLibrary

• Forces the DLL to load in the context of
that process

• On load, the OS automatically calls
DLLMain which contains the malicious
code

Gaining Privileges
• Malware code has the same privileges as

the code it is injected into

• CreateRemoteThread uses 3
parametersparameters
– Process handle hProcess

– Starting point lpStartAddress
(LoadLibrary)

– Argument lpParameter Malicious DLL name

Direct Injection
• Injects code directly into the remote

process
• Without using a DLL
• More flexible than DLL injection• More flexible than DLL injection
• Requires a lot of customized code

• To run without negatively impacting the host
process

• Difficult to write

Process Replacement
• Overwrites the memory space of a running

object with malicious code
• Disguises malware as a legitimate process
• Avoids risk of crashing a process with • Avoids risk of crashing a process with

process injection
• Malware gains the privileges of the

process it replaces
• Commonly replaces svchost.exe

Suspended State
• In a suspended state, the process is

loaded into memory but the primary
thread is suspended
– So malware can overwrite its code before it – So malware can overwrite its code before it

runs

• This uses the CREATE_SUSPENDED value
• in the dwCreationFlags parameter
• In a call to the CreateProcess function

• ZwUnmapViewOfSection releases all
memory pointed to by a section

• VirtualAllocEx allocates new memory

• WriteProcessMemory puts malware in it

• SetThreadContext restores the victim
process's environment and sets the entry

• ResumeThread runs the malicious code

Hook
InjectionInjection

Hooks
• Windows hooks intercept messages

destined for applications
• Malicious hooks

– Ensure that malicious code will run whenever – Ensure that malicious code will run whenever
a particular message is intercepted

– Ensure that a DLL will be loaded in a victim
process's memory space

Local and Remote Hooks
• Local hooks observe or manipulate

messages destined for an internal process
• Remote hooks observe or manipulate

messages destined for a remote process messages destined for a remote process
(another process on the computer)

High-Level and Low-Level
Remote Hooks• High-level remote hooks

– Require that the hook procedure is an
exported function contained in a DLL
Mapped by the OS into the process space of a – Mapped by the OS into the process space of a
hooked thread or all threads

• Low-level remote hooks
– Require that the hook procedure be contained

in the process that installed the hook

Keyloggers Using Hooks
• Keystrokes can be captured by high-level

or low-level hooks using these procedure
types
– WH_KEYBOARD or WH_KEYBOARD_LL– WH_KEYBOARD or WH_KEYBOARD_LL

Using
SetWindowsHookEx

• Parameters
– idHook– type of hook to install

– lpfn

– hMod
– points to hook procedure

– handle to DLL, or local module, in which the

lpfn procedure is defined

– dwThreadId– thread to associate the hook with. Zero = all

threadsthreads

• The hook procedure must call
CallNextHookEx to pass execution to the
next hook procedure so the system continues to
run properly

Thread Targeting
• Loading into all threads can degrade system

performance
• May also trigger an IPS
• Keyloggers load into all threads, to get all • Keyloggers load into all threads, to get all

the keystrokes
• Other malware targets a single thread
• Often targets a Windows message that is

rarely used, such as WH_CBT (a computer-
based training message)

Explanation
• Malicious DLL hook.dll is loaded
• Malicious hook procedure address obtained
• The hook procedure calls only
CallNextHookExCallNextHookEx

• A WH_CBT message is sent to a Notepad
thread

• Forces hook.dll to be loaded by Notepad
• It runs in the Notepad process space

Detour
ss

A Microsoft Product
• Detours makes it easy for application

developers to modify applications and the
OS

• Used in malware to add new DLLs to
existing binaries on diskexisting binaries on disk

• Modifies the PE structure to create
a .detour section

• Containing original PE header with a new
import address table

• setdll is the Microsoft tool used to point
the PE to the new import table

• There are other ways to add a .detour
section

APC
InjectionInjection

Asynchronous Procedure Call
(APC)• Directs a thread to execute other code prior to

executing its regular path
• Every thread has a queue of APCs attached to it
• These are processed when the thread is in an

alterable state, such as when these functions
• These are processed when the thread is in an

alterable state, such as when these functions
are called
– WaitForSingleObjectEx

– WaitForMultipleObjectsEx

– Sleep

Two Forms of APCs
• Kernel-Mode APC

– Generated for the system or a driver

• User-Mode APC
– Generated for an application– Generated for an application

• APC Injection is used in both cases

APC Injection from User Space
• Uses API function QueueUserAPC

• Thread must be in an alterable state
• WaitForSingleObjectEx is the most

common call in the Windows APIcommon call in the Windows API
• Many threads are usually in the alterable

state

QueueUserAPC Parameters
• hThread handle to
• pfnAPC defines the function to run
• dwData parameter for function

• 1: Opens a handle to the thread
• 2: QueueUserAPC is called with pfnAPC set

to LoadLibraryA (loads a DLL)
• dwData contains the DLL name (dbnet.dll)

• Svchost.exe is often targeted for APC injection

APC Injection from Kernel Space
• Malware drivers and rootkits often want to

execute code in user space
• This is difficult to do
• One method is APC injection to get to user • One method is APC injection to get to user

space
• Most often to svchost.exe
• Functions used:

–KeInitializeApc
–KeInsertQueueApc

User-Mode Rootkits

• Modify internal functionality of the OS
• Hide files, network connections,

processes, etc.
• Kernel-mode rootkits are more powerful• Kernel-mode rootkits are more powerful
• This section is about User-mode rootkits

IAT (Import Address Table) Hooking

• May modify
– IAT (Import Address Table) or
– EAT (Export Address Table)

• Parts of a PE file
• Filled in by the loader

– Link Ch 11a
– This technique is old and easily detected

IAT Hooking

Inline Hooking

• Overwrites the API function code
• Contained in the imported DLLs
• Changes actual function code, not

pointerspointers
• A more advanced technique than IAT

hooking

Purpose of a Launcher
• Sets itself or another piece of malware

• For immediate or future covert execution

• Conceals malicious behavior from the user
• Usually contain the malware they're loading• Usually contain the malware they're loading

– An executable or DLL in its own resource
section

• Normal items in the resource section
– Icons, images, menus, strings

Encryption or Compression
• The resource section may be encrypted or

compressed
• Resource extraction will use APIs like

– FindResource– FindResource

– LoadResource

– SizeofResource

• Often contains privilege escalation code

Process Injection
• The most popular covert launching process
• Injects code into a running process
• Conceals malicious behavior

• May bypass firewalls and other process-• May bypass firewalls and other process-
specific security mechanisms

• Common API calls:
– VirtualAllocEx to allocate space

– WriteProcessMemory to write to it

DLL Injection

• The most commonly used covert launching
technique

• Inject code into a remote process that calls
LoadLibraryLoadLibrary

• Forces the DLL to load in the context of
that process

• On load, the OS automatically calls
DLLMain which contains the malicious
code

Gaining Privileges
• Malware code has the same privileges as

the code it is injected into

• CreateRemoteThread uses 3
parametersparameters
– Process handle hProcess

– Starting point lpStartAddress
(LoadLibrary)

– Argument lpParameter Malicious DLL name

Direct Injection

• Injects code directly into the remote
process

• Without using a DLL
• More flexible than DLL injection• More flexible than DLL injection
• Requires a lot of customized code

• To run without negatively impacting the host
process

• Difficult to write

Process Replacement
• Overwrites the memory space of a running

object with malicious code
• Disguises malware as a legitimate process
• Avoids risk of crashing a process with • Avoids risk of crashing a process with

process injection
• Malware gains the privileges of the

process it replaces
• Commonly replaces svchost.exe

Suspended State
• In a suspended state, the process is

loaded into memory but the primary
thread is suspended
– So malware can overwrite its code before it – So malware can overwrite its code before it

runs

• This uses the CREATE_SUSPENDED value
• in the dwCreationFlags parameter
• In a call to the CreateProcess function

• ZwUnmapViewOfSection releases all
memory pointed to by a section

• VirtualAllocEx allocates new memory

• WriteProcessMemory puts malware in it

• SetThreadContext restores the victim
process's environment and sets the entry

• ResumeThread runs the malicious code

Hooks
• Windows hooks intercept messages

destined for applications
• Malicious hooks

– Ensure that malicious code will run whenever – Ensure that malicious code will run whenever
a particular message is intercepted

– Ensure that a DLL will be loaded in a victim
process's memory space

Local and Remote Hooks
• Local hooks observe or manipulate

messages destined for an internal process
• Remote hooks observe or manipulate

messages destined for a remote process messages destined for a remote process
(another process on the computer)

High-Level and Low-Level
Remote Hooks• High-level remote hooks

– Require that the hook procedure is an
exported function contained in a DLL
Mapped by the OS into the process space of a – Mapped by the OS into the process space of a
hooked thread or all threads

• Low-level remote hooks
– Require that the hook procedure be contained

in the process that installed the hook

Keyloggers Using Hooks
• Keystrokes can be captured by high-level

or low-level hooks using these procedure
types
– WH_KEYBOARD or WH_KEYBOARD_LL– WH_KEYBOARD or WH_KEYBOARD_LL

Using
SetWindowsHookEx

• Parameters
– idHook– type of hook to install

– lpfn

– hMod
– points to hook procedure

– handle to DLL, or local module, in which the

lpfn procedure is defined

– dwThreadId– thread to associate the hook with. Zero = all

threadsthreads

• The hook procedure must call
CallNextHookEx to pass execution to the
next hook procedure so the system continues to
run properly

Thread Targeting
• Loading into all threads can degrade system

performance
• May also trigger an IPS
• Keyloggers load into all threads, to get all • Keyloggers load into all threads, to get all

the keystrokes
• Other malware targets a single thread
• Often targets a Windows message that is

rarely used, such as WH_CBT (a computer-
based training message)

Explanation
• Malicious DLL hook.dll is loaded
• Malicious hook procedure address obtained
• The hook procedure calls only
CallNextHookExCallNextHookEx

• A WH_CBT message is sent to a Notepad
thread

• Forces hook.dll to be loaded by Notepad
• It runs in the Notepad process space

A Microsoft Product
• Detours makes it easy for application

developers to modify applications and the
OS

• Used in malware to add new DLLs to
existing binaries on diskexisting binaries on disk

• Modifies the PE structure to create
a .detour section

• Containing original PE header with a new
import address table

• setdll is the Microsoft tool used to point
the PE to the new import table

• There are other ways to add a .detour
section

Asynchronous Procedure Call
(APC)• Directs a thread to execute other code prior to

executing its regular path
• Every thread has a queue of APCs attached to it
• These are processed when the thread is in an

alterable state, such as when these functions
• These are processed when the thread is in an

alterable state, such as when these functions
are called
– WaitForSingleObjectEx

– WaitForMultipleObjectsEx

– Sleep

Two Forms of APCs
• Kernel-Mode APC

– Generated for the system or a driver

• User-Mode APC
– Generated for an application– Generated for an application

• APC Injection is used in both cases

APC Injection from User Space
• Uses API function QueueUserAPC

• Thread must be in an alterable state
• WaitForSingleObjectEx is the most

common call in the Windows APIcommon call in the Windows API
• Many threads are usually in the alterable

state

QueueUserAPC Parameters
• hThread handle to
• pfnAPC defines the function to run
• dwData parameter for function

• 1: Opens a handle to the thread
• 2: QueueUserAPC is called with pfnAPC set

to LoadLibraryA (loads a DLL)
• dwData contains the DLL name (dbnet.dll)

• Svchost.exe is often targeted for APC injection

APC Injection from Kernel Space
• Malware drivers and rootkits often want to

execute code in user space
• This is difficult to do
• One method is APC injection to get to user • One method is APC injection to get to user

space
• Most often to svchost.exe
• Functions used:

–KeInitializeApc
–KeInsertQueueApc

