

Unit II : ASSOCIATION RULES

Basic Concepts - Market Basket Analysis -Frequent Itemsets, Closed Itemsets and Association Rules - Frequent Itemset Mining Methods – Apriori Algorithm – Generating Association Rules - Frequent pattern growth

- Mining Various Kinds of Association Rules

Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining

Summary

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Why Is Freq. Pattern Mining Important?

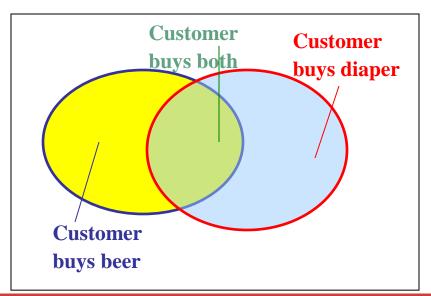
- Discloses an intrinsic and important property of data sets
- Forms the foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data
 - Classification: associative classification
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles
 - Broad applications

Program Name: B.Sc., Computer Science

GALGOTIAS UNIVERSITY Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Basic Concepts: Frequent Patterns and Association Rules

Transaction-id	Items bought	
10	A, B, D	
20	A, C, D	
30	A, D, E	
40	B, E, F	
50	B, C, D, E, F	



Itemset $X = \{x_1, ..., x_k\}$

- Find all the rules $X \rightarrow Y$ with minimum support and confidence
 - support, *s*, probability that a transaction contains X ∪ Y
 - confidence, c, conditional probability that a transaction having X also contains Y

Let $sup_{min} = 50\%$, $conf_{min} = 50\%$ *Freq. Pat.:* {*A:3, B:3, D:4, E:3, AD:3*} Association rules:

 $A \rightarrow D$ (60%, 100%) $D \rightarrow A$ (60%, 75%)

Program Name: B.Sc., Computer Science

Program Code:

Closed Patterns and Max-Patterns

- A long pattern contains a combinatorial number of subpatterns, e.g., $\{a_1, ..., a_{100}\}$ contains $({}_{100}{}^1) + ({}_{100}{}^2) + ... + ({}_{1}{}_{0}{}^0{}_{0}{}^0) = 2^{100} - 1 = 1.27*10^{30}$ sub-patterns!
- Solution: Mine closed patterns and max-patterns instead
- An itemset X is closed if X is *frequent* and there exists *no* super-pattern Y o X, with the same support as X (proposed by Pasquier, et al. @ ICDT'99)
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X (proposed by Bayardo @ SIGMOD'98)
- Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules

Program Name: B.Sc., Computer Science

School of Computing Science and Engineering Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Closed Patterns and Max-Patterns

- Exercise. $DB = \{ \langle a_1, ..., a_{100} \rangle, \langle a_1, ..., a_{50} \rangle \}$
 - Min_sup = 1.
- What is the set of closed itemset?

What is the set of max-pattern?

What is the set of all patterns?

• !!.

GALGOTIAS

Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining

Summary

Scalable Methods for Mining Frequent Patterns

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

Apriori: A Candidate Generation-and-Test Approach

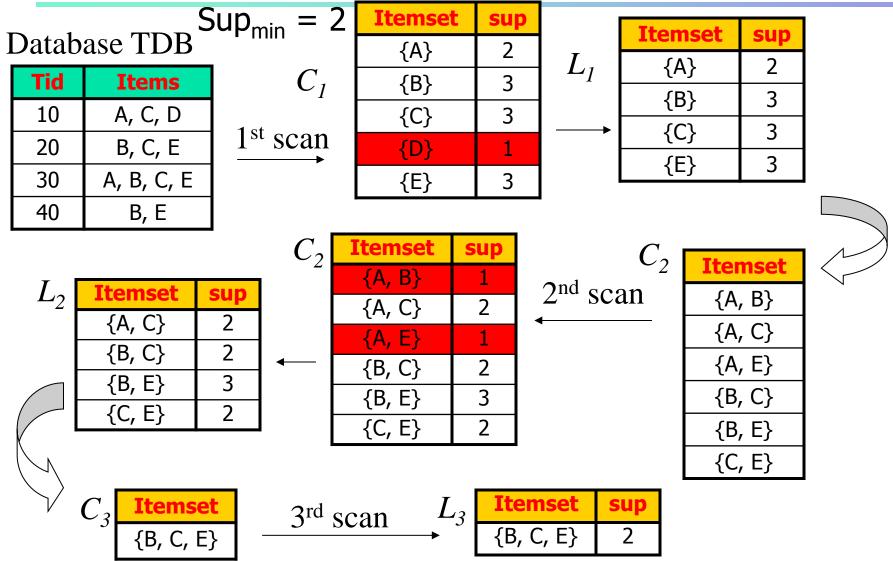
- <u>Apriori pruning principle</u>: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

School of Computing Science and Engineering

GALGOTIAS UNIVERSITY

Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

The Apriori Algorithm—An Example



The Apriori Algorithm

Pseudo-code:

- C_k : Candidate itemset of size k
- L_k : frequent itemset of size k

 $L_{1} = \{ \text{frequent items} \}; \\ \text{for } (k = 1; L_{k} \mid = \emptyset; k++) \text{ do begin} \\ C_{k+1} = \text{candidates generated from } L_{k}; \\ \text{for each transaction } t \text{ in database do} \\ \text{increment the count of all candidates in } C_{k+1} \\ \text{that are contained in } t \\ L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support} \\ \text{end} \\ \text{return } \cup_{k} L_{k}; \end{cases}$

Important Details of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- How to count supports of candidates?
- Example of Candidate-generation
 - L₃={abc, abd, acd, ace, bcd}
 - Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - $C_4 = \{abcd\}$

How to Generate Candidates?

- Suppose the items in L_{k-1} are listed in an order
- Step 1: self-joining L_{k-1}

insert into C_k

select *p.item₁, p.item₂, ..., p.item_{k-1}, q.item_{k-1}*

from **L**_{k-1} **p**, **L**_{k-1} **q**

where *p.item*₁=*q.item*₁, ..., *p.item*_{k-2}=*q.item*_{k-2}, *p.item*_{k-1} < *q.item*_{k-1}

Step 2: pruning

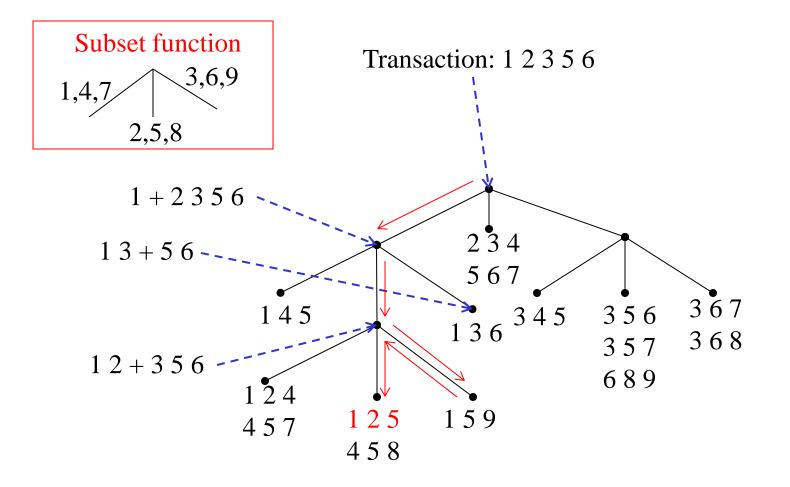
forall *itemsets c in C_k* do forall *(k-1)-subsets s of c* do **if** *(s is not in L_{k-1})* **then delete** *c* **from** *C_k*

How to Count Supports of Candidates?

- Why counting supports of candidates a problem?
 - The total number of candidates can be very huge
 - One transaction may contain many candidates
- Method:
 - Candidate itemsets are stored in a *hash-tree*
 - Leaf node of hash-tree contains a list of itemsets and counts
 - Interior node contains a hash table
 - Subset function: finds all the candidates contained in a transaction

GALGOTIAS UNIVERSITY School of Computing Science and Engineering Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

Example: Counting Supports of Candidates



Efficient Implementation of Apriori in SQL

- Hard to get good performance out of pure SQL (SQL-92) based approaches alone
- Make use of object-relational extensions like UDFs, BLOBs, Table functions etc.
 - Get orders of magnitude improvement
- S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. In SIGMOD'98

Challenges of Frequent Pattern Mining

- Challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Partition: Scan Database Only Twice

- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
 - Scan 1: partition database and find local frequent patterns
 - Scan 2: consolidate global frequent patterns
- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association in large databases. In VLDB'95

DHP: Reduce the Number of Candidates

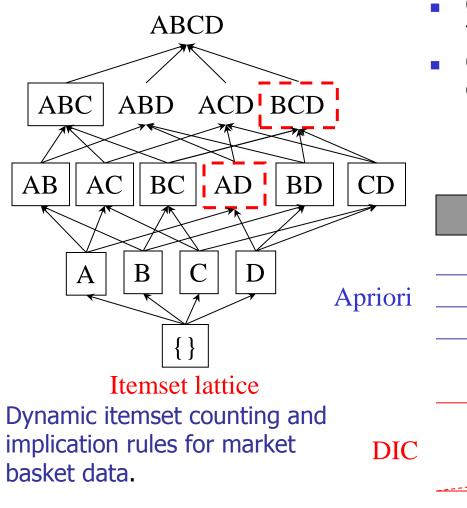
- A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
 - Candidates: a, b, c, d, e
 - Hash entries: {ab, ad, ae} {bd, be, de} …
 - Frequent 1-itemset: a, b, d, e
 - ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae} is below support threshold
- J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules.

Sampling for Frequent Patterns

- Select a sample of original database, mine frequent patterns within sample using Apriori
- Scan database once to verify frequent itemsets found in sample, only *borders* of closure of frequent patterns are checked
 - Example: check *abcd* instead of *ab, ac, ..., etc.*
- Scan database again to find missed frequent patterns
- H. Toivonen. Sampling large databases for association rules.

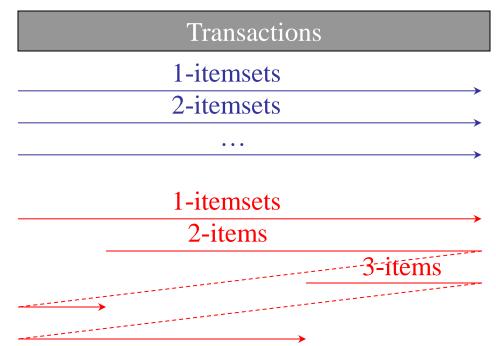
School of Computing Science and Engineering Course Code : BSCS3530 Course Name: Data Mining and Data Warehousing

DIC: Reduce Number of Scans



GALGOTIAS

- Once both A and D are determined frequent, the counting of AD begins
- Once all length-2 subsets of BCD are determined frequent, the counting of BCD begins



Program Name: B.Sc., Computer Science

Program Code:

Bottleneck of Frequent-pattern Mining

- Multiple database scans are costly
- Mining long patterns needs many passes of scanning and generates lots of candidates
 - To find frequent itemset i₁i₂...i₁₀₀
 - # of scans: 100
 - # of Candidates: $\binom{100^{1}}{100^{2}} + \binom{100^{2}}{100^{2}} + \ldots + \binom{100^{0}}{100^{0}} = 2^{100}$ 1 = 1.27*10³⁰ !
- Bottleneck: candidate-generation-and-test
- Can we avoid candidate generation?