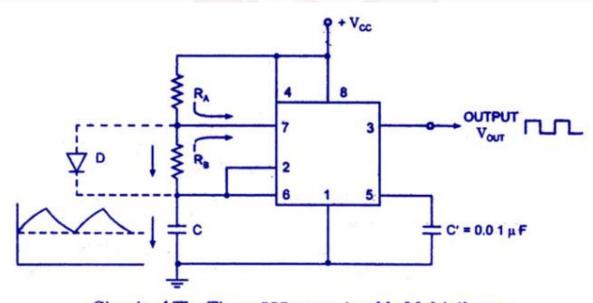
Course Code : BSCP3005

Course Name: Digital System and Application

IC555 as Astable multivibrator

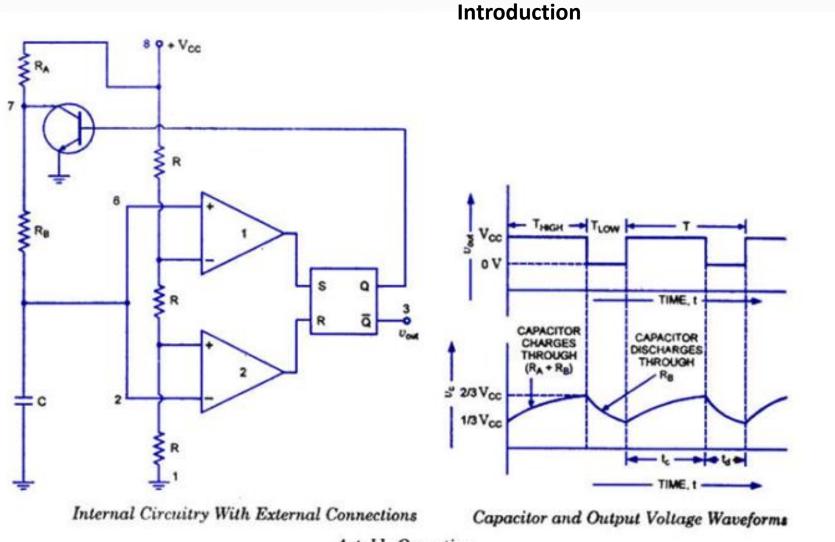
Contents:


- 1. Introduction
- 2. Circuit diagram
- 3. Working and applications

GALGOTIAS UNIVERSITY

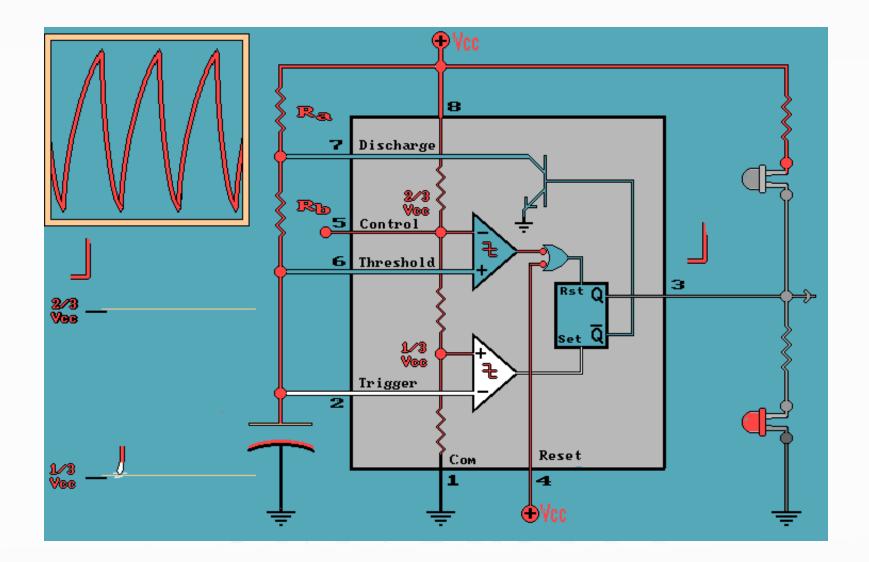
Course Code : BSCP3005

Introduction


One popular application of the 555 timer IC is as an astable multivibrator or clock circuit. An astable multivibrator, often called a free-running multivibrator, is a rectangular-wave generating circuit. Unlike the monostable multivibrator, this circuit does not require any external trigger to change the state of the output, hence the name free-running. An astable multivibrator can be produced by adding resistors and a capacitor to the basic timer IC, as illustrated in figure. The timing during which the output is either high or low is determined by the externally connected two resistors and a capacitor. The details of the astable multivibrator circuit are given in figure .

Circuit of The Timer 555 as an Astable Multivibrator

Course Code : BSCP3005


Course Name: Digital System and Application

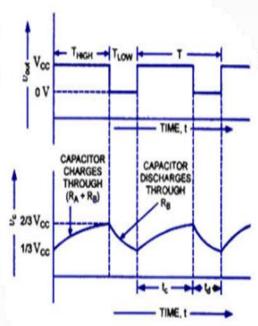
Astable Operation

Course Code : BSCP3005

Course Name: Digital System and Application

Course Code : BSCP3005

Course Name: Digital System and Application


Working:

In the circuit, when Q is low, the discharging transistor is cut-off and the capacitor C begins charging toward V_{cc} through resistances R_A and R_B . Because of this, the charging time constant is (R_A+R_B) C.

Eventually, the threshold voltage exceeds $+2/3 V_{cc}$, the comparator 1 has a high output and triggers the flip-flop so that its Q is high and the timer output is low. With Q high, the discharge transistor saturates and pin 7 grounds so that the capacitor C discharges through resistance R_B with a discharging time constant $R_B C$.

With the discharging of capacitor, trigger voltage at inverting input of comparator 2 decreases. When it drops below $1/3V_{cc}$, the output of comparator 2 goes high and this reset the flip-flop so that Q is low and the timer output is high. This proves the auto-transition in output from low to high and then to low as, illustrated in figures. Thus the cycle repeats. The time during which the capacitor C charges from $1/3 V_{cc}$

to 2/3 V_{cc} is equal to the time the output is high and is given as: t_c or $T_{HIGH} = 0.693 (R_A + R_B)$ C.

Capacitor and Output Voltage Waveforms

Course Code : BSCP3005

Course Name: Digital System and Application

Working:

Voltage across the capacitor at any instant during charging period is given as, $V_C = V_{CC}(1 - exp.^{-t/RC})$ The time taken by the capacitor to charge from 0 to $+1/3 V_{CC}$: $1/3 V_{CC} = V_{CC} (1 - exp.^{-t_1/RC})$ $t_1 = \text{RC} \log_e 1.5 = 0.405 \text{ RC}$ Similarly, the time taken by the capacitor to charge from 0 to $+2/3 V_{CC}$ is given by: $t_2 = \text{RC} \log_e 3 = 1.0986 \text{ RC}$ So the time taken by the capacitor to charge from $+1/3 V_{CC}$ to $+2/3 V_{CC}$: $t_c = (t_2 - t_1) = (1.0986 - 0.405) \text{ RC} = 0.693 \text{ RC}$ Substituting R = (RA + RB) in above equation we have, $T_{HIGH} = t_c = 0.693 (R_A + R_B) C$ where R_A and R_A are in ohms and C is in farads. The time during which the capacitor discharges from +2/3 VCC to +1/3 VCC is equal to the time the output is low and is given as: t_d or $T_{LOW} = 0.693 R_B C$ where R_B is in ohms and C is in farads.

Working:

The above equation is worked out as follows: Voltage across the capacitor at any instant during discharging period is given as: $V_C = (2/3)V_{CC}exp.^{-t/R_BC}$ Substituting $V_C = 1/3 V_{CC}$ and $t = t_d$ in above equation we have $+1/3 V_{CC} = +2/3 V_{CC} exp.^{-t_d/R_BC}$ Or td = $0.693 R_B C$ Overall period of oscillations, $T = T_{HIGH} + T_{LOW} = 0.693 (R_A + 2R_B) C$ The frequency of oscillations being the reciprocal of the overall period of oscillations T is given as: $f = 1/T = 1.44/(RA + 2R_B)C$ Equation indicates that the frequency of oscillation / is independent of the collector supply voltage $+V_{CC}$. Often the term duty cycle is used in conjunction with the astable multivibrator.

School of Basic and Applied Sciences

Course Code : BSCP3005

Course Name: Digital System and Application

References:

- Digital Principles and Applications, A.P. Malvino, D. P. Leach and Saha, 7th Ed., 2011, Tata McGraw Hill
- Digital Fundamentals, Thomas L. Floyd, 11th Ed., 2015, Pearson Education Limited
- Modern Digital Electronics, R P Jain, 4th Ed., 2010, Tata McGraw Hill

GALGOTIAS UNIVERSITY