Course Code: BSCP3005

Course Name: Digital System and Application

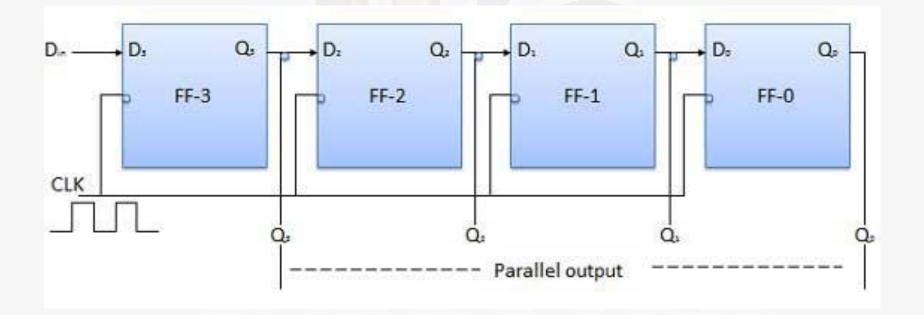
Serial In and Parallel Out (SIPO) Register

Contents:

- 1. Introduction
- 2. Block Diagram of SIPO
- 3. Working

Course Code: BSCP3005 Course Name: Digital System and Application

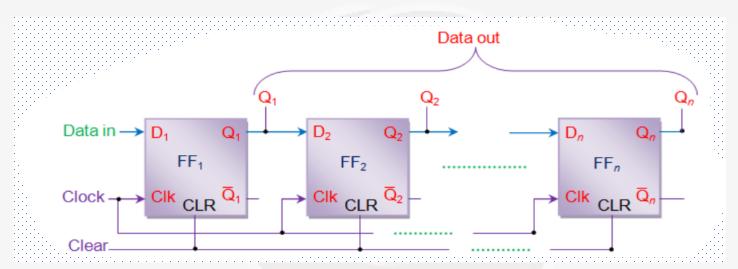
Introduction: Serial Input Parallel Output register


- In such types of operations, the data is entered serially and taken out in parallel fashion.
- Data is loaded bit by bit. The outputs are disabled as long as the data is loading.
- As soon as the data loading gets completed, all the flip-flops contain their required data, the outputs are enabled so that all the loaded data is made available over all the output lines at the same time.
- 4 clock cycles are required to load a four bit word. Hence the speed of operation of SIPO mode is same as that of SISO mode.

Course Code: BSCP3005

Course Name: Digital System and Application

Serial Input Parallel Output register


Block Diagram

Course Code: BSCP3005

Course Name: Digital System and Application

Serial Input Parallel Output register- Explanation

In **Serial In Parallel Out (SIPO) shift registers**, the data is stored into the register serially while it is retrieved from it in parallel-fashion. Figure shows an n-bit synchronous **SIPO shift register** sensitive to positive edge of the clock pulse. Here the data word which is to be stored (Data in) is fed serially at the input of the first flip-flop (D_1 of FF_1). It is also seen that the inputs of all other flip-flops (except the first flip-flop FF_1) are driven by the outputs of the preceding ones say for example, the input of FF_2 is driven by the output of FF_1 . In this kind of shift register, the data stored within the register is obtained as a parallel-output data word (Data out) at the individual output pins of the flip-flops (Q_1 to Q_n).

Course Code: BSCP3005

Course Name: Digital System and Application

Serial Input Parallel Output register

In general, the register contents are cleared by applying high on the clear pins of all the flip-flops at the initial stage. After this, the first bit, B_1 of the input data word is fed at the D_1 pin of FF

This bit (B_1) will enter into FF_1 , get stored and thereby appears at its output Q_1 on the appearance of first leading edge of the clock. Further at the second clock tick, the bit B_1 right-shifts and gets stored into FF_2 while appearing at its output pin Q_2 while a new bit, B_2 enters into FF_1 . Similarly at each clock tick the data within the register moves towards right by a single bit while a new bit of the input word enters into the register. Meanwhile one can extract the bits stored within the register in parallel-fashion at the individual flip-flop outputs.

Analyzing on the same grounds, one can note that the n-bit input data word is obtained as an n-bit output data word from the shift register at the rising edge of the nth clock pulse. This working of the shift-register can be summarized as in Table I and the corresponding wave forms are given by Figure.

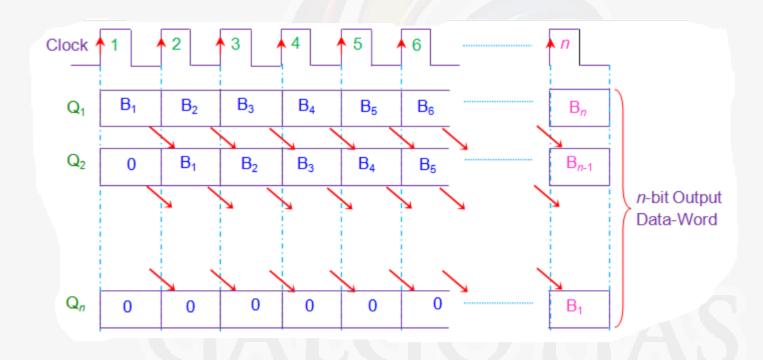
Course Code: BSCP3005

Course Name: Digital System and Application

Serial Input Parallel Output register

Table I Data Movement in Right-Shift SIPO Shift Register

Clock Cycle	Data in	Q_1	Q_2		Q _n
1	B ₁ —	→ B ₁	0		0
2	B ₂ —	→ B ₂ 、	[™] B ₁ 、		7 0
3	B ₃ —	→ B ₃ 、	$^{\mathbf{A}}$ B_2 ,	···	20
4	B ₄ —	→ B ₄	[™] B ₃ 、	···	20
5	B ₅ —	→ B ₅ 、	[▶] B ₄ 、		/ ₂ 0
6	B ₆	→ B ₆ 、	[™] B ₅ 、		7 0
				7	× .
-		-			.
-					
n	B_n —	$\rightarrow B_n$	$^{\mathbf{A}}\mathbf{B}_{n-1}$		$^{\mathbf{A}}B_{1}$


Output of SIPO (right-shift) Shift Register

In the right-shift SIPO shift-register, data bits shift from left to right for each clock tick.

Course Code: BSCP3005

Course Name: Digital System and Application

Serial Input Parallel Output register

Output Waveform of *n*-bit Right-Shift SIPO Shift Register

Course Code: BSCP3005 Course Name: Digital System and Application

References:

- Digital Principles and Applications, A.P. Malvino, D. P. Leach and Saha, 7th Ed., 2011, Tata McGraw Hill
- Digital Fundamentals, Thomas L. Floyd, 11th Ed., 2015, Pearson Education Limited
- Modern Digital Electronics, R P Jain, 4th Ed., 2010, Tata McGraw Hill

Name of the Faculty: Dr. Prabhakar Singh

Program Name: B.Sc.(H) Physics