Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Complex metal hydride reductions: LiAlH4 and NaBH4

GALGOTIAS UNIVERSITY

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

TOPICS COVERED

- ➤ Lithium Aluinium Hydride (LAH)
- > Mechanism of Reduction using LAH
- Reduction of carbonyl compounds, carboxylic acid using LAH
- Reduction of amides, esters, epoxides using LAH
- Comparative analysis of LiAlH4 and NaBH4
- >Stereochemistry of Ketone Reduction and Problems

Course Code: MSCH6002 Course Name: Reagents and Heterocyclic Chemistry

Lithium Aluminum Hydride (LAH)

Lithium aluminum hydride (LAH) is a strong reducing agent with chemical formula LiAlH₄. It can reduce a variety of functional groups such as aldehydes, esters, acids, ketones, nitriles, epoxides and azides. It vigorously reacts with water and all the reactions are performed in polar aprotic solvents.

Preparation

It was first prepared by treating lithium hydride (LiH) with aluminum chloride (AlCl₃)

$$4LiH + AlCl3$$

$$LiAlH_4 + 3LiCl$$

In industrial scale, it is prepared from sodium aluminum hydride which is prepared by reaction of sodium, aluminum and hydrogen at high temperature and pressure

UNIVERSITY

Course Code : MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Mechanism of Ketone Reduction Using LAH

Course Code : MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Functional group reduced by LAH

Functional group	Reduction product
RCHO	RCH ₂ OH
$R_2C=O$	RCH(OH)R
RCO_2R'	$RCH_2OH + R'OH$
RCO ₂ H	RCH_2OH
RCONHR'	RCH ₂ NHR'
RCONR′ ₂	RCH ₂ NR' ₂ or RCH(OH)NR' ₂ (\rightarrow RCHO + R' ₂ NH)
RC≡N	RCH_2NH_2 or $RCH=NH (\rightarrow RCHO)$
RCH=NOH	RCH_2NH_2
RNO_2	RNH_2
ArNO ₂	ArNHNHAr or ArN=NAr
RCH ₂ Br	RCH_3
RCH ₂ OSO ₂ Ar	RCH ₃
R C CH ₂	OH C C C C C C C C C C

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

LiAlH₄ is a stronger reducing agent than NaBH₄

LiAlH₄ is used to reduce compounds that are nonreactive toward NaBH₄

Course Code : MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Formation of Amines by Reduction

$$CH_{3}CH_{2}CH_{2}CNH_{2} \xrightarrow{ \textbf{1. LiAlH}_{4} } CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}NH_{2}$$
 a primary amine
$$CH_{3}CH_{2}CH_{2}CH_{2}CNHCH_{3} \xrightarrow{ \textbf{1. LiAlH}_{4} } CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}NHCH_{3}$$
 a secondary amine
$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3} \xrightarrow{ \textbf{1. LiAlH}_{4} } CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}NCH_{3}$$
 a tertiary amine
$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}NCH_{3} \xrightarrow{ \textbf{2. H}_{2}O} CH_{3}CH_{2}CH_{2}CH_{2}NCH_{3}$$
 a tertiary amine

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

DIBAL allows the addition of one equivalent of hydride to an ester Replacing some of hydrogens of LiAlH₄ with OR groups decreases the reactivity of the metal hydride

Course Code : MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

NaBH₄ can be used to selectively reduce an aldehyde or a keto group in a compound

$$CH_{3}CCH_{2}CCH_{2}CCCH_{3} \xrightarrow{\textbf{1. NaBH}_{4}} CH_{3}CHCH_{2}CH_{2}CCCH_{3}$$

CH₃CH=CHCH₂CCH₃
$$\xrightarrow{\text{1. NaBH}_4}$$
 CH₃CH=CHCH₂CHCH₃

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Reduction of Epoxides

The epoxides are reduced to the corresponding alcohols. The hydride ion is transferred to the less hindered side of the epoxides.

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

More Examples of Reduction by LAH

Ph CHO
$$\frac{\text{LiAlH}_4}{\text{Et}_2\text{O}, 35 \,^{\circ}\text{C}}$$
 Ph OH

Ph CHO $\frac{\text{LiAlH}_4}{\text{Et}_2\text{O}, -10 \,^{\circ}\text{C}}$ Ph OH

Ph OH

Ph OH

Course Code: MSCH6002 Course Name: Reagents and Heterocyclic Chemistry

References

- W. Carruthers, Some Modern Methods of Organic Synthesis, 3rd edition, Cambridge University Press, New York, 1998.
- J. Clayden, N. Greeves and S. Warren, Organic Chemistry, Oxford University Press, 2nd edition, 2012.
- T.L. Gilchrist, Heterocyclic Chemistry, 3rd edition, Addison-Wesley Longman Ltd., England, 1997.
- https://www.google.com/search?q=oxidation+and+reduction+reactions+in+organic+chemistry+ppt&rl
 https://www.google.com/search?q=oxidation+and+reduction+reactions+in+organic+chemistry+ppt&rl
 https://www.google.com/search?q=oxidation+and+reduction+reactions+in+organic+chemistry+ppt&rl
 https://www.google.com/search?q=oxidation+and+Reduction+reaction+ppt&aqs=chrome.3.0l6.21843
 https://www.google.com/search?q=oxidation+and+Reduction+reaction+ppt&aqs=chrome.3.0l6.21843
 <a href="mailto:z=1C1CHBD_enIN920IN920&oq=Oxidation+and+Reduction+reaction+ppt&aqs=chrome.3.0l6.21843
 <a href="mailto:z=1C1CHBD_enIN920IN920&oq=Oxidation+and+Reduction+reaction+ppt&aqs=chrome.3.0l6.21843
 <a href="mailto:z=1C1CHBD_enIN920IN920&oq=Oxidation+and+Reduction+reaction+ppt&aqs=chrome.3.0l6.21843
 <a href="mailto:z=1C1CHBD_enIN920IN920&oq=Oxidation+and+Reduction+

Course Code: MSCH6002 Course Name: Reagents and Heterocyclic Chemistry

