Course Code: MSCH6002 **Course Name: Reagents and Heterocyclic Chemistry** Complex metal hydride reductions: LiAlH4 and NaBH4 GALGOTIAS UNIVERSITY **Course Code: MSCH6002** **Course Name: Reagents and Heterocyclic Chemistry** ### **TOPICS COVERED** - ➤ Lithium Aluinium Hydride (LAH) - > Mechanism of Reduction using LAH - Reduction of carbonyl compounds, carboxylic acid using LAH - Reduction of amides, esters, epoxides using LAH - Comparative analysis of LiAlH4 and NaBH4 - >Stereochemistry of Ketone Reduction and Problems Course Code: MSCH6002 Course Name: Reagents and Heterocyclic Chemistry #### Lithium Aluminum Hydride (LAH) Lithium aluminum hydride (LAH) is a strong reducing agent with chemical formula LiAlH₄. It can reduce a variety of functional groups such as aldehydes, esters, acids, ketones, nitriles, epoxides and azides. It vigorously reacts with water and all the reactions are performed in polar aprotic solvents. ### Preparation It was first prepared by treating lithium hydride (LiH) with aluminum chloride (AlCl₃) $$4LiH + AlCl3$$ $$LiAlH_4 + 3LiCl$$ In industrial scale, it is prepared from sodium aluminum hydride which is prepared by reaction of sodium, aluminum and hydrogen at high temperature and pressure UNIVERSITY **Course Code : MSCH6002** **Course Name: Reagents and Heterocyclic Chemistry** ## **Mechanism of Ketone Reduction Using LAH** **Course Code : MSCH6002** **Course Name: Reagents and Heterocyclic Chemistry** ## Functional group reduced by LAH | Functional group | Reduction product | |--------------------------------------|---| | RCHO | RCH ₂ OH | | $R_2C=O$ | RCH(OH)R | | RCO_2R' | $RCH_2OH + R'OH$ | | RCO ₂ H | RCH_2OH | | RCONHR' | RCH ₂ NHR' | | RCONR′ ₂ | RCH ₂ NR' ₂ or RCH(OH)NR' ₂ (\rightarrow RCHO + R' ₂ NH) | | RC≡N | RCH_2NH_2 or $RCH=NH (\rightarrow RCHO)$ | | RCH=NOH | RCH_2NH_2 | | RNO_2 | RNH_2 | | ArNO ₂ | ArNHNHAr or ArN=NAr | | RCH ₂ Br | RCH_3 | | RCH ₂ OSO ₂ Ar | RCH ₃ | | R C CH ₂ | OH
C
C
C
C
C
C
C
C
C
C | **Course Code: MSCH6002** **Course Name: Reagents and Heterocyclic Chemistry** LiAlH₄ is a stronger reducing agent than NaBH₄ LiAlH₄ is used to reduce compounds that are nonreactive toward NaBH₄ **Course Code : MSCH6002** **Course Name: Reagents and Heterocyclic Chemistry** # Formation of Amines by Reduction $$CH_{3}CH_{2}CH_{2}CNH_{2} \xrightarrow{ \textbf{1. LiAlH}_{4} } CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}NH_{2}$$ a primary amine $$CH_{3}CH_{2}CH_{2}CH_{2}CNHCH_{3} \xrightarrow{ \textbf{1. LiAlH}_{4} } CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}NHCH_{3}$$ a secondary amine $$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3} \xrightarrow{ \textbf{1. LiAlH}_{4} } CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}NCH_{3}$$ a tertiary amine $$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}NCH_{3} \xrightarrow{ \textbf{2. H}_{2}O} CH_{3}CH_{2}CH_{2}CH_{2}NCH_{3}$$ a tertiary amine **Course Code: MSCH6002** **Course Name: Reagents and Heterocyclic Chemistry** DIBAL allows the addition of one equivalent of hydride to an ester Replacing some of hydrogens of LiAlH₄ with OR groups decreases the reactivity of the metal hydride **Course Code : MSCH6002** **Course Name: Reagents and Heterocyclic Chemistry** NaBH₄ can be used to selectively reduce an aldehyde or a keto group in a compound $$CH_{3}CCH_{2}CCH_{2}CCCH_{3} \xrightarrow{\textbf{1. NaBH}_{4}} CH_{3}CHCH_{2}CH_{2}CCCH_{3}$$ CH₃CH=CHCH₂CCH₃ $$\xrightarrow{\text{1. NaBH}_4}$$ CH₃CH=CHCH₂CHCH₃ **Course Code: MSCH6002** **Course Name: Reagents and Heterocyclic Chemistry** # Reduction of Epoxides The epoxides are reduced to the corresponding alcohols. The hydride ion is transferred to the less hindered side of the epoxides. **Course Code: MSCH6002** **Course Name: Reagents and Heterocyclic Chemistry** #### **More Examples of Reduction by LAH** Ph CHO $$\frac{\text{LiAlH}_4}{\text{Et}_2\text{O}, 35 \,^{\circ}\text{C}}$$ Ph OH Ph CHO $\frac{\text{LiAlH}_4}{\text{Et}_2\text{O}, -10 \,^{\circ}\text{C}}$ Ph OH Ph OH Ph OH Course Code: MSCH6002 Course Name: Reagents and Heterocyclic Chemistry ## References - W. Carruthers, Some Modern Methods of Organic Synthesis, 3rd edition, Cambridge University Press, New York, 1998. - J. Clayden, N. Greeves and S. Warren, Organic Chemistry, Oxford University Press, 2nd edition, 2012. - T.L. Gilchrist, Heterocyclic Chemistry, 3rd edition, Addison-Wesley Longman Ltd., England, 1997. - https://www.google.com/search?q=oxidation+and+reduction+reactions+in+organic+chemistry+ppt&rl https://www.google.com/search?q=oxidation+and+reduction+reactions+in+organic+chemistry+ppt&rl https://www.google.com/search?q=oxidation+and+reduction+reactions+in+organic+chemistry+ppt&rl https://www.google.com/search?q=oxidation+and+Reduction+reaction+ppt&aqs=chrome.3.0l6.21843 https://www.google.com/search?q=oxidation+and+Reduction+reaction+ppt&aqs=chrome.3.0l6.21843 <a href="mailto:z=1C1CHBD_enIN920IN920&oq=Oxidation+and+Reduction+reaction+ppt&aqs=chrome.3.0l6.21843 <a href="mailto:z=1C1CHBD_enIN920IN920&oq=Oxidation+and+Reduction+reaction+ppt&aqs=chrome.3.0l6.21843 <a href="mailto:z=1C1CHBD_enIN920IN920&oq=Oxidation+and+Reduction+reaction+ppt&aqs=chrome.3.0l6.21843 <a href="mailto:z=1C1CHBD_enIN920IN920&oq=Oxidation+and+Reduction+ Course Code: MSCH6002 Course Name: Reagents and Heterocyclic Chemistry