Course Code: MSCH6002 Course Name: Reagents and Heterocyclic Chemistry

Hydroboration and Birch Reduction

GALGOTIAS UNIVERSITY

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

TOPICS COVERED

- > Hydroboration Reaction
- > Mechanism of Hydroboration
- > Hydroboration of alkene and alkyne and problems
- ➤ Birch Reduction and Mechanism
- ➤ Birch Reduction in Presence of Electron withdrawing and releasing group
- > Problems

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

H adds to carbon

hydrogens

with fewest attached

Hydroboration Reaction of Alkene

Hydroboration of alkenes Regiochemistry Stereochemistry "anti-Markovnikov" "Syn"

solvent (diethyl ether)

- No rearrangements observed
- Never observe incorporation of solvent

Inconsistent with a free carbocation or with an intermediate 3-membered ring

H and B add

face of alkene

to same

Course Code : MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

The Hydroboration Mechanism

$$H_3C$$
 H_3C
 H_3C

Concerted transition state

C-H and C-B bonds are formed at approximately the same time

· 'Anti-Markovnikov' Regioselectivity

The most favored transition state allows the partially negative hydrogen atom to form a bond with the carbon atom best able to bear positive charge (the "most substituted" carbon of the alkene in most cases)

· 'Syn' Stereochemistry

In this concerted transition state, the C-H and C-B bonds are formed on the same side of the alkene (technical term: "suprafacial")

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Hydroboration Reaction of Alkyne

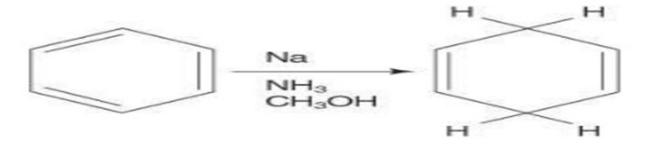
$$H_{2}C$$
 C
 C
 $H_{3}C$
 $H_{2}C$
 $H_{3}C$
 $H_{4}C$
 $H_{2}C$
 $H_{4}C$
 $H_$

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

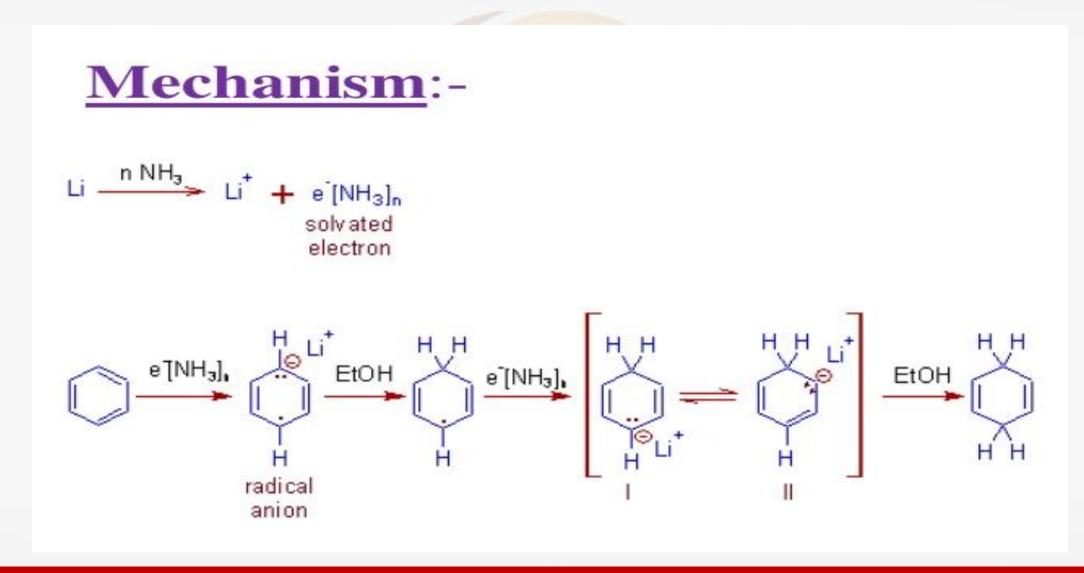
Problems on Hydroboration

Course Code : MSCH6002


Course Name: Reagents and Heterocyclic Chemistry

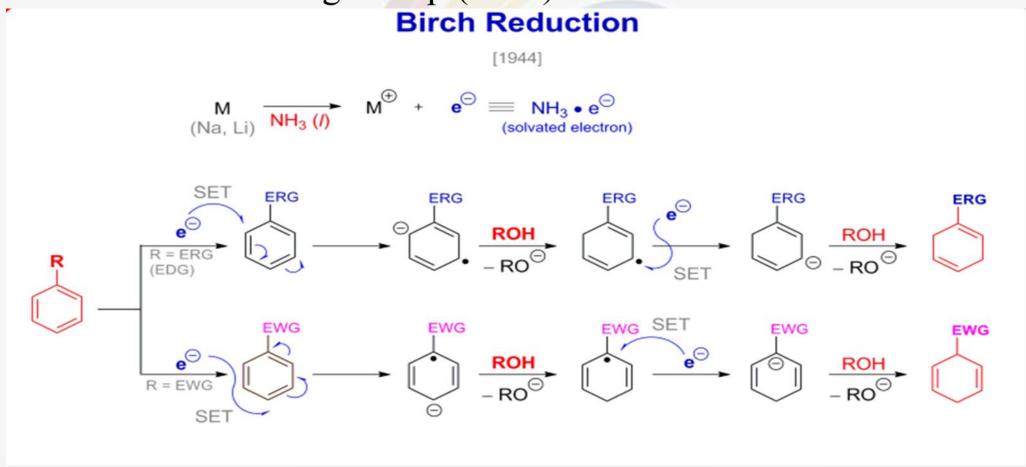
Birch reduction :-

Principle:-


Reduction of aromatic rings by means of alkali metals (Li or Na) in liquid ammonia or amines with ethanol as proton donar, to give mainaly unconjugated dihydroderivatives is known as birch reduction.

General reaction:-

Course Code: MSCH6002


Course Name: Reagents and Heterocyclic Chemistry

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Birch Reduction in Presence of Electron withdrawing Group (EWG) and Electron Releasing Group (ERG)

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

In Presence of EWG, ipso attack occurs, i.e, at the same position of EWG.

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Birch Reduction in presence of ERG, no ipso attack occurs

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

More Examples of Birch Reduction

Reduction of α , β unsaturated ketone gives saturated ketone and saturated alcohol depending upon the condition.

92%

80%

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

More Examples of Birch Reduction

OMe O OMe O OMe
$$C_7H_{15}$$
 OMe C_7H_{15} O C_7H_{15}

Course Code: MSCH6002 Course Name: Reagents and Heterocyclic Chemistry

Problems

Discuss the mechanism of Hydroboration Reaction? Identify the product and stereochemistry of following reaction.

Identify the reaction intermediate and reducing agent involved in Birch Reduction. Identify the products of the following two reactions. Determine the mechanism for each reaction.

Course Code: MSCH6002 Course Name: Reagents and Heterocyclic Chemistry

References

- W. Carruthers, Some Modern Methods of Organic Synthesis, 3rd edition, Cambridge University Press, New York, 1998.
- J. Clayden, N. Greeves and S. Warren, Organic Chemistry, Oxford University Press, 2nd edition, 2012.
- T.L. Gilchrist, Heterocyclic Chemistry, 3rd edition, Addison-Wesley Longman Ltd., England, 1997.
- https://www.google.com/search?q=oxidation+and+reduction+reactions+in+organic+chemistry+ppt&rl
 https://www.google.com/search?q=oxidation+and+reduction+reactions+in+organic+chemistry+ppt&rl
 https://www.google.com/search?q=oxidation+and+reduction+reactions+in+organic+chemistry+ppt&rl
 https://www.google.com/search?q=oxidation+and+Reduction+reaction+ppt&aqs=chrome.3.0l6.21843
 https://www.google.com/search?q=oxidation+and+Reduction+reaction+ppt&aqs=chrome.3.0l6.21843
 <a href="mailto:z=1C1CHBD_enIN920IN920&oq=Oxidation+and+Reduction+reaction+ppt&aqs=chrome.3.0l6.21843
 <a href="mailto:z=1C1CHBD_enIN920IN920&oq=Oxidation+and+Reduction+reaction+ppt&aqs=chrome.3.0l6.21843
 <a href="mailto:z=1C1CHBD_enIN920IN920&oq=Oxidation+and+Reduction+reaction+ppt&aqs=chrome.3.0l6.21843
 <a href="mailto:z=1C1CHBD_enIN920IN920&oq=Oxidation+and+Reduction+

Course Code: MSCH6002 Course Name: Reagents and Heterocyclic Chemistry

