Course Code : MSCM303

Course Name: Integral equations and calculus of variation

Integral Equation:

An integral equation is an equation in which unknown function appear under integral sign.

Applications of Integral Equations:

- 1. Mechanics
- 2. Mathematical physics
- 3. Applied Mathematics
- 4. Computational Electromagnetics

Name of the Faculty: Dr. Leena Rani

Course Code : MSCM303

Course Name: Integral equations and calculus of variation

Abel's Problem:

Let us consider a smooth curve in a vertical plane. Let a particle starts from rest at any point P with co-ordinate x under the influence of gravity along the curve.

Let t=f(x) where f(x) is the given curve. The absolute velocity of the particle at any point Q whose ordinate is η is given by

 $v = \sqrt{2g(x-\eta)}$

Let β be the angle of inclination of the tangent to the curve at Q with ξ axis.

Name of the Faculty: Dr. Leena Rani

Course Code : MSCM303

Course Name: Integral equations and calculus of variation

Now, let $\frac{1}{\sin\beta} = \phi(\eta)$ then $\sqrt{2g} dt = -\frac{\phi(\eta)d\eta}{\sqrt{(x-\eta)}}$

Name of the Faculty: Dr. Leena Rani

Course Code : MSCM303

Course Name: Integral equations and calculus of variation

Hence

$$t\sqrt{2g} = -\int_{P}^{R} \frac{\phi(\eta)d\eta}{\sqrt{x-\eta}}$$

$$\sqrt{2g} f_1(x) = \int_0^x \frac{\phi(\eta)d\eta}{\sqrt{x-\eta}}$$
$$f(x) = \int_0^x \frac{\phi(\eta)d\eta}{\sqrt{x-\eta}}.$$

Name of the Faculty: Dr. Leena Rani

Course Code : MSCM303

Course Name: Integral equations and calculus of variation

where $f(x) = f_1(x)\sqrt{2g}$ is known and $\phi(\eta)$ is the unknown function.

After finding $\phi(\eta)$, We obtain the equation of the curve as

Name of the Faculty: Dr. Leena Rani

Course Code : MSCM303

Course Name: Integral equations and calculus of variation

Thus the required curve is given in parametric form as

$$\xi = \Phi_1(\beta), \eta = \Phi(\beta).$$

Name of the Faculty: Dr. Leena Rani

Course Code : MSCM303

x

Course Name: Integral equations and calculus of variation

Hence the Abel's Problem reduces to a solution of Volterra Integral equation of First kind.

$$f(x) = \int_{0}^{\infty} K(x,t)\phi(t)dt,$$

where $\phi(x)$ is an unknown function, $K(x,t) = \frac{1}{\sqrt{x-t}}$ and $f(x)$ are given functions.

Reference:

https://nptel.ac.in/courses/111/107/111107103/

Name of the Faculty: Dr. Leena Rani