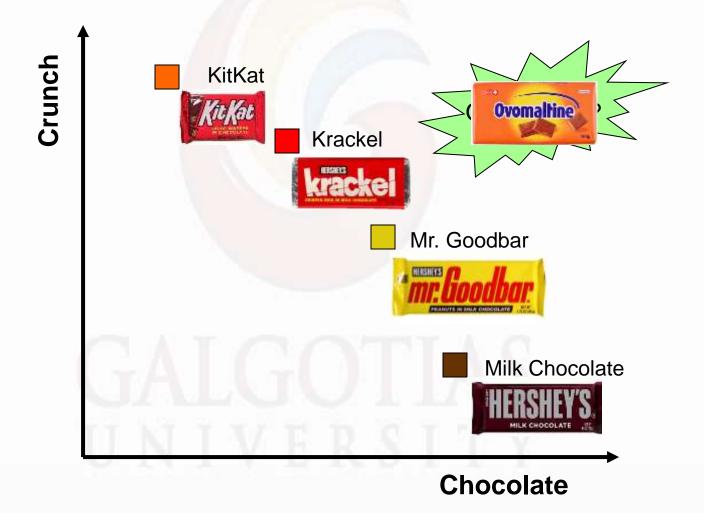
School of Mechanical Engineering

Course Code : BTME3056

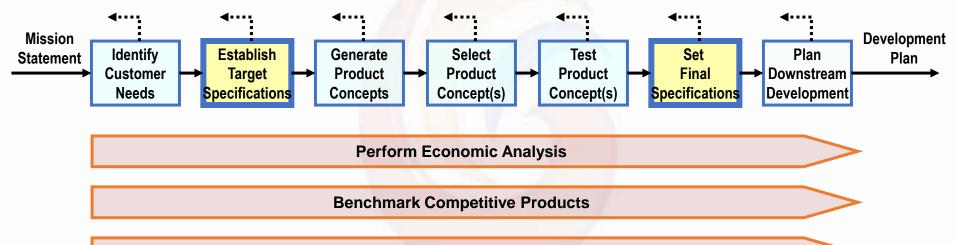
Course Name: Product Design

Product Specifications

GALGOTIAS UNIVERSITY


Name of the Faculty: Mr.Lavepreet Singh

Program Name: B.Tech(ME)


Product Specifications

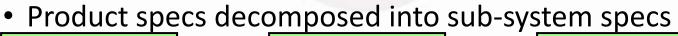
Perceptual Mapping Exercise: Chocolate Product Specifications

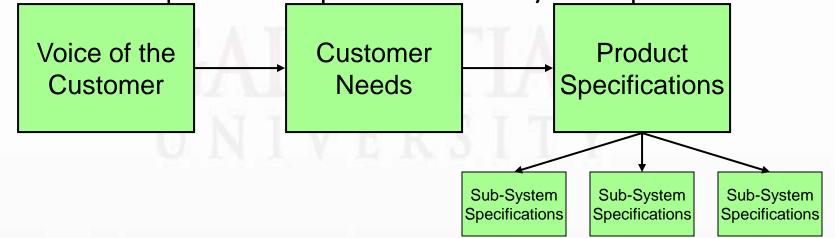
Concept Development Process

Build and Test Models and Prototypes

Target Specs

Based on customer needs and benchmarking


Final Specs


Based on selected concept, feasibility, models, testing, and trade-offs

Terminology

Product requirements come in many forms:

- Customer Needs
 - Voice of the customer translated into proper form
- Product Specifications
 - Customer needs translated into measurable terms
- Sub-system Specifications

Challenge:

Translate Customer Needs into Product Specifications

- Customer needs are captured in the customer's language.
- Product specifications are in technical terms that can be measured.
- We must establish specs for each need.

Two questions for each one:

- 1. How will we measure it?
- 2. What is the right value?

Product Requirements Example: Mountain Bike Suspension Fork

Spec = Metric + Value(s) + Units

Examples:		
metric	value	<u>units</u>
Total Mass	8.5-10	kg
Cycles to Failure	>500k	cycles
Unit Production Cost	<110	\$

Start with the Customer Needs

#		NEED	Imp
1	The suspension	reduces vibration to the hands.	3
2	The suspension	allows easy traversal of slow, difficult terrain.	2
3	The suspension	enables high speed descents on bumpy trails.	5
4	The suspension	allows sensitivity adjustment.	3
5	The suspension	preserves the steering characteristics of the bike.	4
6	The suspension	remains rigid during hard cornering.	4
7	The suspension	is lightweight.	4
8	The suspension	provides stiff mounting points for the brakes.	2
9	The suspension	fits a wide variety of bikes, wheels, and tires.	5
10	The suspension	is easy to install.	1
11	The suspension	works with fenders.	1
12	The suspension	instills pride.	5
13	The suspension	is affordable for an amateur enthusiast.	5
14	The suspension	is not contaminated by water.	5
15	The suspension	is not contaminated by grunge.	5
16	The suspension	can be easily accessed for maintenance.	3
17	The suspension	allows easy replacement of worn parts.	1
18	The suspension	can be maintained with readily available tools.	3
19	The suspension	lasts a long time.	5
20	The suspension	is safe in a crash.	5

Establish Metrics and Units

#	s#			
Metric	Need			
		Metric	Imp	Units
1	1,3	Attenuation from dropout to handlebar at 10hz	3	dB
2	2,6		3	N
3	1,3		5	g
4	1,3	Minimum descent time on test track	5	S
5	4	Damping coefficient adjustment range	3	N-s/m
6		Maximum travel (26in wheel)	3	mm
7	5	Rake offset	3	mm
8	6	Lateral stiffness at the tip	3	kN/m
9	7	Total mass	4	kg
10	8	Lateral stiffness at brake pivots	2	kN/m
11	9	Headset sizes	5	in
12	9	Steertube length	5	mm
13	9	Wheel sizes	5	list
14	9	Maximum tire width	5	in
15	10	Time to assemble to frame	1	S
16	11	Fender compatibility	1	list
17	12	Instills pride	5	subj
18	13		5	US\$
19	14	Time in spray chamber w/o water entry	5	S
20	15	Cycles in mud chamber w/o contamination	5	k-cycles
21	16,17	Time to disassemble/assemble for maintenance	3	S
22	17,18	Special tools required for maintenance	3	list
23	19	UV test duration to degrade rubber parts	5	hours
24	19	Monster cycles to failure	5	cycles
25	20	Japan Industrial Standards test	5	binary
26	20	Bending strength (frontal loading)	5	MN

Metrics Exercise: Ballpoint Pen

Customer Need: The pen writes smoothly.

How would you translate this need statement into metrics? For each metric, state the appropriate units.


Metrics Exercise: Ballpoint Pen

Customer Need: *The pen writes smoothly.*

Metric (units)

- 1 Variation in line thickness (mm)
- 2 Variation in ink coverage (cc/mm2)
- 3 Functional range of writing force (N)
- 4 Functional range of writing velocity (mm/sec)
- 5 Functional range of pen angle from vertical (deg)
- 6 Variation in resistance to translational motion (N)
- 7 The pen feels comfortable (subj)

Metrics Exercise: Bike Locks

• How do you carry something this heavy?

Customer Need

• The lock is lightweight.

Metric?

• Some locks are just a pain. It takes too long to lock up.

Customer Need

• The lock installs quickly to secure the bike.

Metric?

I wrap cushy tape around my lock to keep it from scratching my bike.

Customer Need

• The lock protects the bicycle's finish.

Metric?

• The lock doesn't protect all parts of the bicycle.

Customer Need

• The lock protects the saddle, wheels, and other accessories.

Two Ways to Benchmark Product Requirements

- Benchmark competitive products based on the customer needs.
- Benchmark competitive products based on the metrics established.

• Questions:

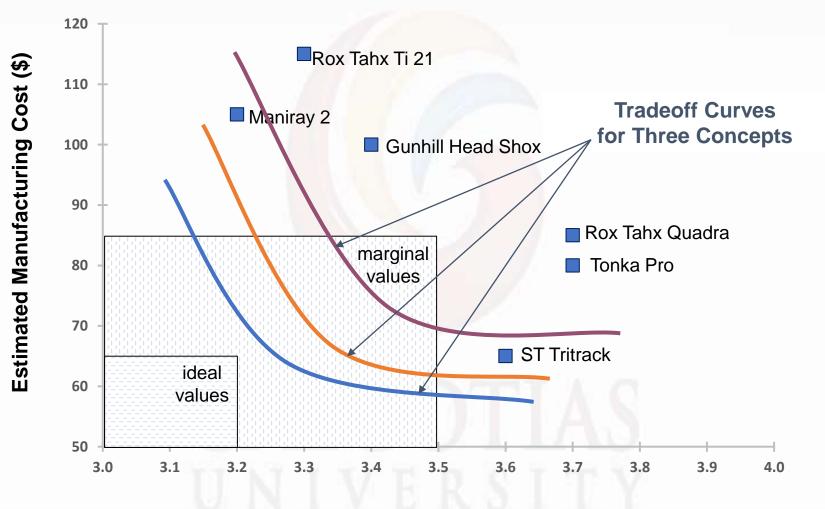
- Which is the right way to do it?
- What if they differ?

Benchmark on Customer Needs

#		NEED	Imp	ST Tritrack	Maniray 2	Rox Tahx Quadra	Rox Tahx Ti 21	Tonka Pro	Gunhill Head Shox
1	The suspension	reduces vibration to the hands.	3	•	••••	••	•••••	••	•••
2	The suspension	allows easy traversal of slow, difficult terrain.	2	••	••••	•••	•••••	•••	•••••
3	The suspension	enables high speed descents on bumpy trails.	5	•	•••••	••	•••••	••	•••
4	The suspension		3	•	••••	••	•••••	••	•••
5	The suspension	preserves the steering characteristics of the bike.	4	••••	••	•	••	•••	•••••
6	The suspension		4	•	•••	•	•••••	•	•••••
7	The suspension	is lightweight.	4	•	•••	•	•••	••••	•••••
8	The suspension	provides stiff mounting points for the brakes.	2	•	••••	•••	•••	••	•••••
9	The suspension	fits a wide variety of bikes, wheels, and tires.	5	••••	•••••	•••	•••••	•••	•
10	The suspension	is easy to install.	1	••••	•••••	••••	••••	•••••	•
11	The suspension	works with fenders.	1		•	•	•	•	•••••
12	The suspension	instills pride.	5	•	••••	•••	•••••	•••	•••••
13	The suspension	is affordable for an amateur enthusiast.	5	•••••	•	•••	•	•••	••
14	The suspension	is not contaminated by water.	5	•		••••	••••	••	•••••
15	The suspension	is not contaminated by grunge.	5	•	•••	•	••••	••	•••••
16	The suspension	can be easily accessed for maintenance.	3	••••	•••••	••••	••••	•••••	•
17	The suspension	allows easy replacement of worn parts.	1	••••	•••••	••••	••••	•••••	•
18	The suspension		3	•••••	•••••	•••••	•••••	••	•
19	The suspension	lasts a long time.	5	•••••	•••••	•••••	•••	•••••	•
20	The suspension	is safe in a crash.	5	•••••	•••••	•••••	•••••	•••••	•••••

Benchmark on Metrics

Metric #					ST Tritrack	Maniray 2	Rox Tahx Quadra	Rox Tahx Ti 21	Tonka Pro	Gunhill Head Shox
	Ž	Metric	Imp	Units	2		Ĕ	Ĕ	Ĕ	
1	1,3		3	dB	8	15	10	15	9	13
2		Spring pre-load	3	N	550	760	500	710	480	680
3		Maximum value from the Monster	5	g	3.6	3.2	3.7	3.3	3.7	3.4
4	1,3	Minimum descent time on test track	5	S	13	11.3	12.6	11.2	13.2	11
5		Damping coefficient adjustment range	3	N-s/m	0	0	0	200	0	0
6	5	Maximum travel (26in wheel)	3	mm	28	48	43	46	33	38
7	-	Rake offset	3	mm	41.5	39	38	38	43.2	39
8	6	Lateral stiffness at the tip	3	kN/m	59	110	85	85	65	130
9	-	Total mass	4	kg	1.409	1.385	1.409	1.364	1.222	1.1
10	8	Lateral stiffness at brake pivots	2	kN/m	295	550	425	425	325	650
11	9	Headset sizes	5	in	1.000		1.000 1.125			NA
12	9	Steertube length	5	mm	150 180 210 230 255	140 165 190 215	150 170 190 210	150 170 190 210 230	150 190 210 220	NA
13	9	Wheel sizes	5	list	26in	26in	26in	26in 700C	26in	26in
14	9	Maximum tire width	5	in	1.5	1.75	1.5	1.75	1.5	1.5
15	10	Time to assemble to frame	1	S	35	35	45	45	35	85
16	11	Fender compatibility	1	list	Zefal	none	none	none	none	all
17	12	Instills pride	5	subj	1	4	3	5	3	5
18	13	Unit manufacturing cost	5	US\$	65	105	85	115	80	100
19	14	Time in spray chamber w/o water entry	5	S	1300	2900	>3600	>3600	2300	>3600
20	15	Cycles in mud chamber w/o contamination	5	k-cycles	15	19	15	25	18	35
21	16,17	Time to disassemble/assemble for maintenance	3	S	160	245	215	245	200	425
22	17,18	Special tools required for maintenance	3	list	hex	hex	hex	hex	long hex	hex, pin wrnch
23	19		5	hours	400+		400+			250
24	19		5	cycles		500k+	500k+		500k+	330k
25	20	Japan Industrial Standards test	5	binary	pass		pass			pass
26	20	Bending strength (frontal loading)	5	MN	55	89	75	75	62	102


Target Specs: Marginal and Ideal Values

			Marginal Value	e
			a	/alt
			gi Tig	<u> </u>
	Metric	Units	- Nai	ldeal Value
1		dB	>10	>15
	Spring pre-load	N	480 - 800	
	Maximum value from the Monster	g	<3.5	<3.2
	Minimum descent time on test track	S	<13.0	<11.0
	Damping coefficient adjustment range	N-s/m	0	>200
	Maximum travel (26in wheel)	mm	33 - 50	45
7	Rake offset	mm	37 - 45	38
8	Lateral stiffness at the tip	kN/m	>65	>130
	Total mass	kg	<1.4	<1.1
10	Lateral stiffness at brake pivots	kN/m	>325	>650
				1.000
			1.000	1.125
11	Headset sizes	in	1.125	1.250
		1		150
		0	150	170
		100	170	190
10	Staartuba langth		190	210
12	Steertube length	mm	210	230 26in
13	Wheel sizes	list	26in	700c
	Maximum tire width	in	>1.5	>1.75
15	Time to assemble to frame	S	<60	<35
	Fender compatibility	list	none	all
	Instills pride	subj	>3	>5
	Unit manufacturing cost	US\$	<85	<65
19	Time in spray chamber w/o water entry	S	>2300	>3600
20	Cycles in mud chamber w/o contamination	k-cycles	>15	>35
21	Time to disassemble/assemble for maintenance	S	<300	<160
22	Special tools required for maintenance	list	hex	hex
23	UV test duration to degrade rubber parts	hours	>250	>450
	Monster cycles to failure	cycles	>300k	>500k
	Japan Industrial Standards test	binary	pass	pass
26	Bending strength (frontal loading)	MN	>70	>100

Dynamics of Product Specifications

- Target specs change for several reasons:
 - Customers change
 - Competitors respond
 - Technical capabilities improve
 - Designs evolve as details develop
 - Tradeoffs and conflicts become apparent
- Initially, we can set a range for specs.
- Then we learn what is feasible and can deliver.
- Finally, we commit to final point values.

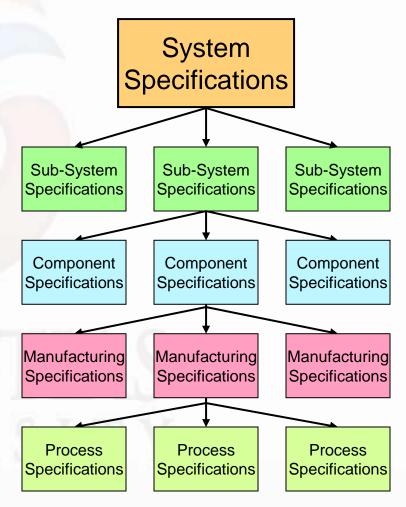
Specification Tradeoffs

Score on Monster (Gs)

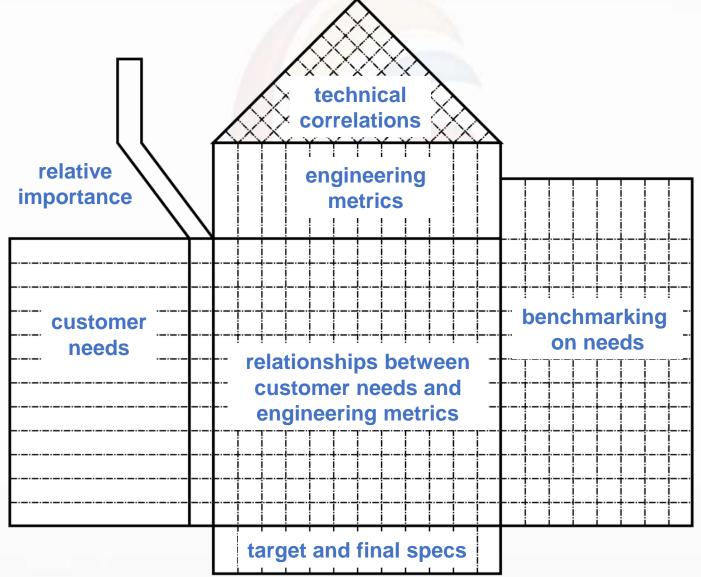
Set Final Specifications

	METRIC	Units	Value
1	Attenuation from dropout to handlebar at 10hz	dB	>12
2	Spring pre-load	N	650
3	Maximum value from the Monster	g	<3.4
4	Minimum descent time on test track	8	<11.5
5	Damping coefficient adjustment range	N-s/m	>100
6	Maximum travel (26in wheel)	mm	43
7	Rake offset	mm	38
8	Lateral stiffness at the tip	kN/m	>75
9	Total mass	kg	<1.4
10	Lateral stiffness at brake pivots	kN/m	>425
			1.000
11	Headset sizes	in	1.125
			150
			170
			190
-	Characturka Janasth		210
	Steertube length	mm	230
	Wheel sizes	list	26in
	Maximum tire width	in	>1.75
	Time to assemble to frame	S	<45
	Fender compatibility	list	Zefal
	Instills pride	subj	>4
	Unit manufacturing cost	US\$	<80
	Time in spray chamber w/o water entry	8	>3600
	Cycles in mud chamber w/o contamination	k-cycles	>25
21	Time to disassemble/assemble for maintenance	S	<200
22	Special tools required for maintenance	list	hex
	UV test duration to degrade rubber parts	hours	>450
	Monster cycles to failure	cycles	>500k
25	Japan Industrial Standards test	binary	pass
26	Bending strength (frontal loading)	MN	>100

When to Set the Final Specs


- Two Failure Modes:
 - Freezing specs too early.
 - Changing specs too late.
- Early Freeze
 - Allows downstream tasks to get started with firm input information
 - Facilitates downstream optimization (cost, performance, etc)
- Late Freeze
 - Allows better match with changing market (customers, competition)
- Question:
 - When to freeze the specifications?
- Answers:
 - Competing on cost, performance freeze early
 - Competing on market match freeze late

Conflicts, Affordability, and Tradeoffs


- Customers generally ask for more performance than is affordable.
- We can usually satisfy some target specs, but not all of them.
- <u>Question</u>: How does "target costing" help determine the specifications?
- <u>Question</u>: Can we compute the <u>optimal</u> set of specifications?

Requirements Flow Down

- System-level specs determine whether we can meet the customer needs.
- Sub-system specs determine how to meet the system specs.
- Component specs determine how to meet the sub-system specs.
- Manufacturing specs determine how to meet the component specs.
- Process specs determine how to meet the component specs.

Quality Function Deployment (House of Quality)

Message

- Requirements planning is hard work.
- Learning the principles will help you understand how to get it right.
- Some tools and methods can help you do it more carefully and completely.
- It's still hard work.

<u>^</u>

References

- Karl T. Ulrich and Steven D. Eppinger (2009), Product Design and Development, 4th Edition, Tata McGraw-Hill Publishing Company Limited, ISBN: 978-0-070-14679-2
- 2. Stephen C. Armstrong (2005), Engineering and Product development Management– The Holostic Approach, Cambridge University Press, ISBN: 978-0-521-01774-9.
- 3. IbrahimZeid (2006), Mastering CAD/CAM, 2nd Edition, Tata McGraw-Hill, ISBN: 978-0-070-63434-3.
- Anoop Desai, Anil Mital and Anand Subramanian (2007), Product Development: A Structured Approach to Consumer Product Development, Design, and Manufacture, 1st Edition, Butterworth-Heinemann, ISBN: 978-0-750-68309-8.

Thank you