
School of Mechanical Engineering

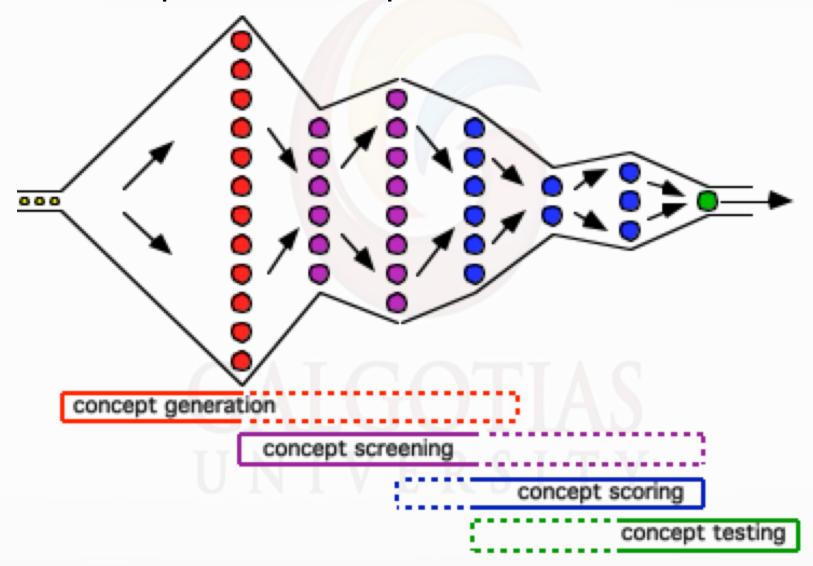
Course Code: BTME3056 Course Name: Product Design

Concept Selection

Concept Selection

Concept Development Process

- Simple rating method helps identify the most promising concepts among many.
- Discussion, combination, and refinement of concepts can create even better ones.
- Structured process creates documentation and builds consensus.

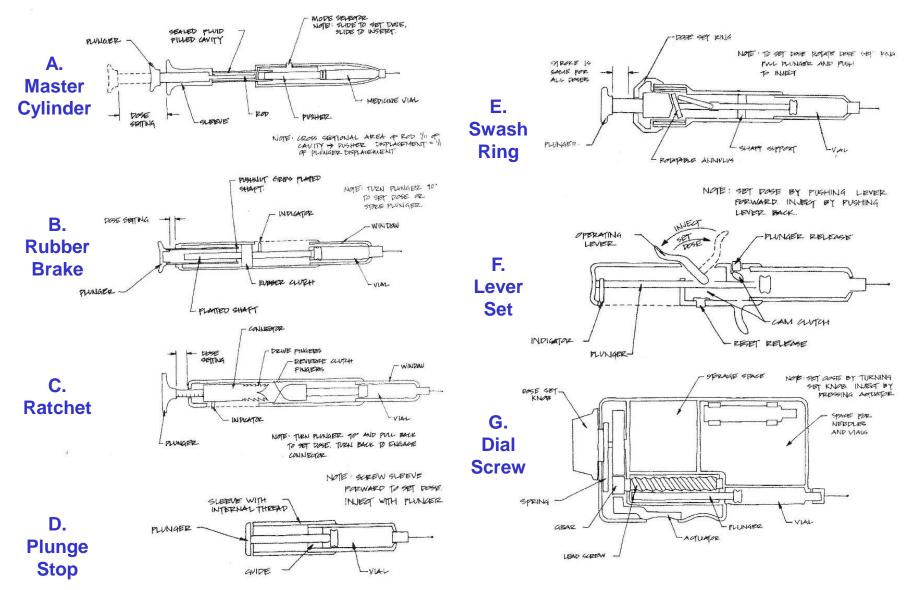

Some Concept Selection Methods

- very fast
- 1. Open Multi-voting
- 2. Secret Ballot Voting
- 3. Pro/Con or Benefit/Effort List
- common <
- 4. Group Consensus
- 5. Leader's Decision
- sometimes necessary
- 6. Client's Decision
- 7. Market Testing
- difficult ──→
- → 8. Online Community Rating
- trendy -----
- 9. Screening Matrix
- 10. Scoring Matrix

balanced -----

fast

Concept Development Funnel


Concept Selection Example: Reusable Insulin Syringe

Concept Selection Process

- Prepare the Matrix
 - Criteria
 - Reference Concept
 - Weightings
- Rate Concepts
 - Scale (+-0) or (1-5)
 - Compare to Reference Concept or Values
- Rank Concepts
 - Sum Weighted Scores
- Combine and Improve
 - Remove Bad Features
 - Combine Good Qualities
- Select Best Concept
 - May Be More than One
 - Beware of Average Concepts
- Reflect on the Process
 - Continuous Improvement

Syringe Example: Concepts

Syringe Example: Concept Screening Matrix

	Concepts										
	Α	В	С	D	Е	F	G	REF.			
Selection Criteria	Master Cylinder	Rubber Brake	Ratchet	Plunge Stop	Swash Ring	Lever Set	Dial Screw	Existing Product			
Ease of Handling	0	0	_	0	0	-	-	0			
Ease of Use	0	_	_	0	0	+	0	0			
Readability of Settings	0	0	+	0	+	0	+	0			
Dose Metering Accuracy	+	+	+	+	+	0	+	0			
Durability	0	0	0	0	0	+	0	0			
Ease of Manufacture	+	_	_	0	0	_	0	0			
Portability	+	+	_	_	0	_	_	0			
Plusses	3	2	2	1	2	2	2	0			
Sames	4	3	1	5	5	2	3	0			
Minuses	0	2	4	1	0	3	2	0			
Net	3	0	-2	0	2	-1	0				
Rank	1	3	7	5	2	6	4				
Continue?	Yes	Yes	No	No	Yes	No	Yes				

Syringe Example: Concept Scoring Matrix

		Concepts								
		A (reference) Master Cylinder		DF Lever Stop		E Swash Ring		G+ Dial Screw+		
Selection Criteria	Weight	Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score	
Ease of Handling	5%	3	0.15	3	0.15	4	0.2	4	0.2	
Ease of Use	15%	3	0.45	4	0.6	4	0.6	3	0.45	
Readability of Settings	10%	2	0.2	3	0.3	5	0.5	5	0.5	
Dose Metering Accuracy	25%	3	0.75	3	0.75	2	0.5	3	0.75	
Durability	15%	2	0.3	5	0.75	4	0.6	3	0.45	
Ease of Manufacture	20%	3	0.6	3	0.6	2	0.4	2	0.4	
Portability	10%	3	0.3	3	0.3	3	0.3	3	0.3	
Total Score		2.75		3.45		3.10		3.05		
Rank		4		1		2		3		
Continue?		No		Develop		No		No		

Concept Selection Exercise: Mechanical Pencils

Concept Selection Caveats

- The goal of concept selection is <u>not to select</u> the best concept. The goal is to <u>create and develop</u> the best concept.
- So remember to <u>combine and refine</u> the concepts to develop better ones!
- Beware of selecting the best average product.
- Note features which can be applied to other concepts.
- You can perform concept selection for each different customer group and compare results.
- Check sensitivity of selection to the importance weightings and any uncertain ratings.
- The full set of detailed requirements can be used in the final stages of selection.

References

- 1. Karl T. Ulrich and Steven D. Eppinger (2009), Product Design and Development, 4th Edition, Tata McGraw-Hill Publishing Company Limited, ISBN: 978-0-070-14679-2
- 2. Stephen C. Armstrong (2005), Engineering and Product development Management— The Holostic Approach, Cambridge University Press, ISBN: 978-0-521-01774-9.
- 3. IbrahimZeid (2006), Mastering CAD/CAM, 2nd Edition, Tata McGraw-Hill, ISBN: 978-0-070-63434-3.
- 4. Anoop Desai, Anil Mital and Anand Subramanian (2007), Product Development: A Structured Approach to Consumer Product Development, Design, and Manufacture, 1st Edition, Butterworth-Heinemann, ISBN: 978-0-750-68309-8.

Thank you