School of Mechanical Engineering

Course Code : BTME3056

Course Name: Product Design

CONCEPT TESTING

GALGOTIAS UNIVERSITY

Name of the Faculty: Mr.Lavepreet Singh

Program Name: B.Tech(ME)

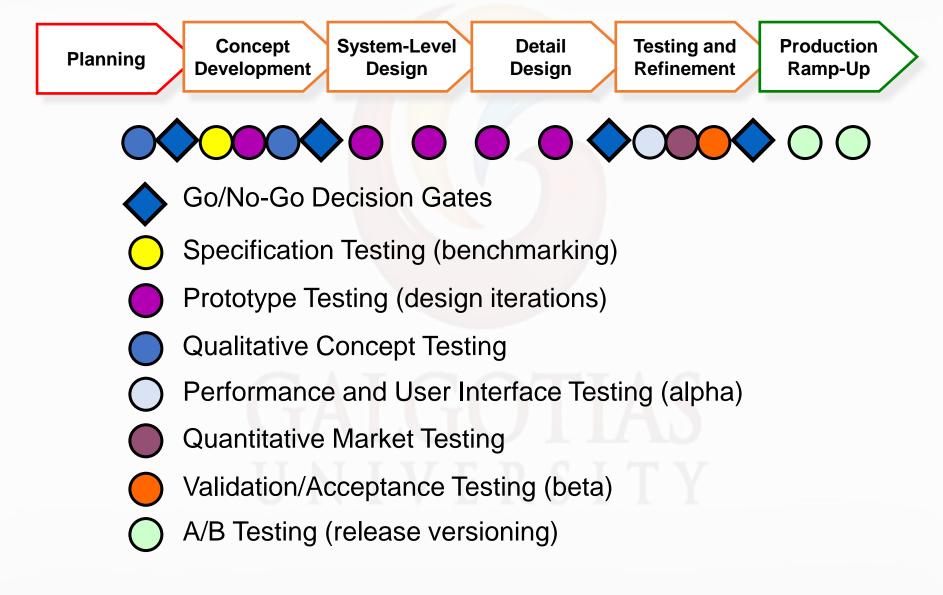
Concept Testing

GALGOTIAS UNIVERSITY

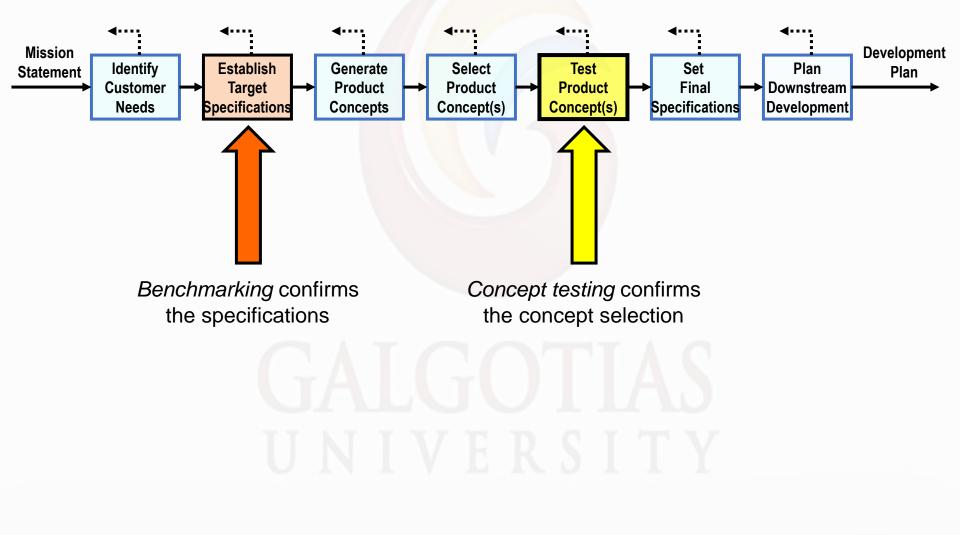
Key Ideas Today

- Fastest route to failure
- Testing in staged, spiral, and SE-V PDPs
- Concept testing method
- Identifying uncertainties and risks
- Customer acceptance
- Technical validation

Fastest Route to Failure


• Testing is about avoiding failures by identifying the risks, finding the potential failure modes, and eliminating them.

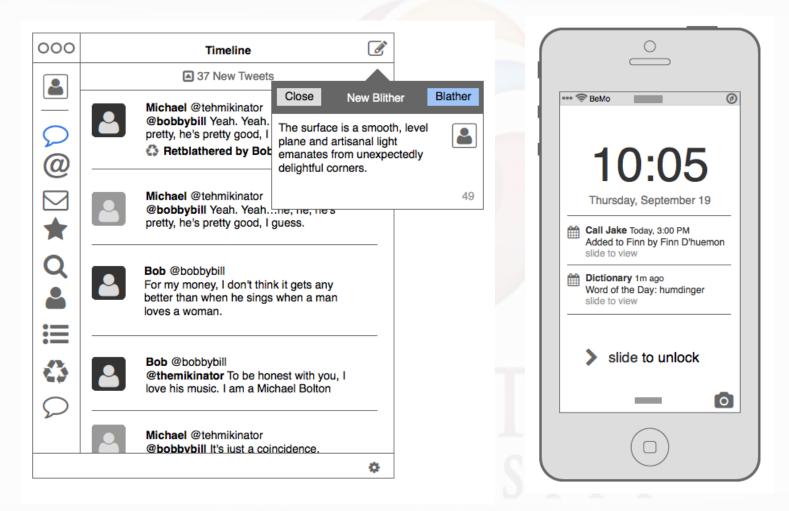
SUCCESS FAILURE


• The FRF principle is about prioritizing the failure modes to spend your time working on the most important ones.

Failure is not the opposite of success; it is part of success.

Testing in the Product Development Process

Testing in the Concept Development Process


Concept Testing is Used for Several Purposes

- Go/no-go decisions
- What market to be in?
- Selecting among alternative concepts
- Confirming concept selection decision
- Benchmarking
- Soliciting improvement ideas
- Forecasting demand
- Ready to launch?

Concept Testing Process

- 1. Define the purpose of the test
- 2. Choose a survey population
- 3. Choose a survey format
- 4. Communicate the concept
- 5. Measure customer response
- 6. Interpret the results
- 7. Reflect on the results and the process

Wireframe Mockups

Ref: Balsamiq.com Mockups apps

Concept Testing Example: emPower Electric Scooter

Scooter Example

- 1. Purpose of concept test:
 - What market to be in?
- 2. Sample populations:
 - College students who live 1-3 miles from campus
 - Factory transportation
- 3. Survey format:
 - Face-to-face interviews

GALGOTIAS

Communicating the Concept

- Verbal description
- Sketch
- Photograph or rendering
- Storyboard
- Video
- Simulation
- Interactive multimedia
- Physical appearance model
- Working prototype

UNIVERSITY

Verbal Description

- The product is a lightweight electric scooter that can be easily folded and taken with you inside a building or on public transportation.
- The scooter weighs about 25 pounds. It travels at speeds of up to 15 miles per hour and can go about 12 miles on a single charge.
- The scooter can be recharged in about two hours from a standard electric outlet.
- The scooter is easy to ride and has simple controls just an accelerator button and a brake.

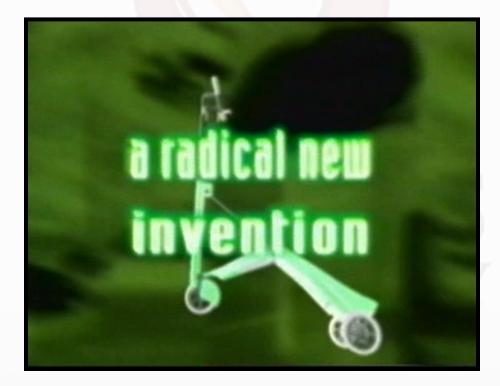
Sketch


Rendering

Storyboard

3D Solid CAD Model

Appearance Model


Working (Alpha) Prototype

Pre-Production (Beta) Prototype

Video, Animation, Interactive Multimedia, or Live Demonstration

Survey Format

PART 1, Qualification

- How far do you live from campus?
 - <If not 1-3 miles, thank the customer and end interview.>
- How do you currently get to campus from home?
- How do you currently get around campus?

PART 2, Product Description

<Present the concept description.>

Survey Format

PART 3, Purchase Intent

 If the product were priced according to your expectations, how likely would you be to purchase the scooter within the next year?

Survey Format

PART 4, Comments

- What would you expect the price of the scooter to be?
- What concerns do you have about the product concept?
- Can you make any suggestions for improving the product concept?
- Thank you.

Interpreting the Results: Forecasting Sales

 $\mathbf{Q} = \mathbf{N} \mathbf{x} \mathbf{A} \mathbf{x} \mathbf{P}$

"second box"

• Q = sales (annual)

"top box"

- N = number of (annual) purchases
- A = awareness x availability (fractions)
- P = probability of purchase (surveyed)

$$= C_{def} \times F_{def} + C_{prob} \times F_{prob}$$

Forecasting Example: College Student Market

- N = off-campus grad students (200,000)
- A = 0.2 (realistic) to 0.8 (every bike shop)
- P = 0.4 x top-box + 0.2 x second-box
- Q =
- Price point \$795

GALGOTIAS UNIVERSITY

Forecasting Example: Factory Transport Market

- N = current bicycle and scooter sales to factories (150,000)
- A = 0.25 (single distributor's share)
- P = 0.4 x top-box + 0.2 x second-box
- Q = 150,000 x 0.25 x [0.4 x 0.3 + 0.2 x 0.2] = 6000 units/yr
- Price point \$1500


emPower's Market Decision: Factory Transportation

Production Product

emPower Purchased by ZAP

ZAPPY3 PRO

Speed:URange:UMotor:38Charging Time:4Batteries:36Tires:91Color51Size:30Weight:10Max. Rider Weight29Includes:84

Up to 13 MPH Up to 17 miles 350 Watt Brushless Hub Motor 4 - 6 hours for pennies 36V 12 Ah, sealed lead acid Pneumatic Silver, Black Deck 30 x 19 x 26 in. 100 lbs. 290 lbs.

Basket, headlight, horn & removable seat

Sources of Forecast Error

- Word-of-Mouth Effects
- Quality of Concept Description
- Pricing
- Level of Promotion
- Competition

GALGOTIAS UNIVERSITY

Discussion

- Why do respondents typically overestimate purchase intent?
 - Might they ever underestimate intent?
- How to use price in surveys?
- How much does the way the concept is communicated matter?
 - When shouldn't a prototype model be shown?
- How do you increase sales, Q?
- How does early (qualitative) concept testing differ from later (quantitative) testing?
- How can we use the Internet in the process?

YikeBike

- Weight: 10kg (22 lbs)
- Frame: Carbon fibre composite
- Price: £2,995 or €3,495 (~\$4,700)
- Drive: Electric brushless DC motor
- Brakes: Electric anti-skid, regenerative
- **Battery:** LiFePO₄, 40 min recharge
- Speed: 25 km/hr
- Power: 1 kW
- Range: 10 km (6.2 miles)
- Fold size: Compact 43 litres
- Fold time: Under 20 seconds
- User height: 163 cm 193 cm
- Weight limit: 100 kg (220 lbs)
- Wheels: 20" front and 8" back
- Lights: High-visibility, built-in LEDs <u>http://yikebike.com</u>

Nova Cruz Voloci Scooter

- Lightweight, highperformance, electric motorbike
 - 79 lbs (NiMH)
 - 30 mph top speed
 - 0-20 in 5 sec
 - 50 miles (max) range
- \$1995 (SLA), \$2495 (NiMH)
- http://www.voloci.com

References

- Karl T. Ulrich and Steven D. Eppinger (2009), Product Design and Development, 4th Edition, Tata McGraw-Hill Publishing Company Limited, ISBN: 978-0-070-14679-2
- 2. Stephen C. Armstrong (2005), Engineering and Product development Management– The Holostic Approach, Cambridge University Press, ISBN: 978-0-521-01774-9.
- 3. IbrahimZeid (2006), Mastering CAD/CAM, 2nd Edition, Tata McGraw-Hill, ISBN: 978-0-070-63434-3.
- Anoop Desai, Anil Mital and Anand Subramanian (2007), Product Development: A Structured Approach to Consumer Product Development, Design, and Manufacture, 1st Edition, Butterworth-Heinemann, ISBN: 978-0-750-68309-8.

Thank you

GALGOTIAS UNIVERSITY