Course Code : BBAF3020

Course Name: Financial Derivatives

BLACK-SCHOLES OPTION PRICING MODEL

Course Code : BBAF3020 Course Name: Financial Derivatives The Black-Scholes Option Pricing Model

• The B-S option pricing model for a call is:

$$C = S_0 - Xe^{-rT} + P$$

$$C = S_0 N(d_1) - Xe^{-rT} N(d_2)$$

where

$$d_{1} = [ln(S/X) + (r + \frac{1}{2}\sigma^{2})T]/\sigma\sqrt{T}$$

$$d_{2} = d_{1} - \sigma\sqrt{T}$$

$$N(d) = \text{cumulative normal distribution}$$

Course Code : BBAF3020

Course Name: Financial Derivatives

Black-Scholes Put Price

• Price of a European put is:

 $P = C - S_0 + Xe^{-rT}$ = $S_0[N(d_1)-1] - Xe^{-rT}[N(d2)-1]$

where d_1 , d_2 , and N(d) are defined as before.

Course Code : BBAF3020

Course Name: Financial Derivatives

Black-Scholes Pricing Example

•	Assume:	$C = S_0 N(d_1) - X e^{-rT} N(d_2)$
	$-S_0 = 100	$d_1 = [ln(S/X) + (r + \frac{1}{2}\sigma^2)T]/\sigma\sqrt{T}$
	— X = \$100	$d_1 = [ln(100/100)+(.05+\frac{1}{2}(0.22)^2)1]/(0.22)\sqrt{1}$
	- r = 5%	$d_1 = 0 + .0742/.22 = .337274$
	- σ=22%	$d_2 = d_1 - \sigma \sqrt{T}$
	-T = 1 year	$d_2 = .33727 - 0.22/\sqrt{1} = .117273$
•	Then:	
	$-d_1 = 0.34,$	$N(d_1) = 0.6331$

 $-d_2 = 0.12$ $N(d_2) = 0.5478$

Course Code : BBAF3020 Course Name: Financial Derivatives

Call Option Example

• Price of a call is then:

$$C = S_0 N(d_1) - Xe^{-rT} N(d_2)$$

C = 100(0.6331) - 100(0.9512)(0.5478)
= \$11.20

• Price of a put is then:

$$P = S_0[N(d_1)-1] - Xe^{-rT}[N(d_2)-1]$$

$$P = 100[.6331 - 1] - 100(1/e^{(.05*1)})(.5478-1)$$

$$P = 100(-0.3669) - 100(0.9512)(-0.4522)$$

$$= $6.32$$

• Double check through Put-Call Parity:

$$P = C - S_0 + Xe^{-rT}$$

6.32 = 11.20 - 100 + 100(0.9512)

Course Code : BBAF3020 Course Name: Financial Derivatives

Relationship of Option and Security Prices

Parameters: X = \$100, T = 3 months, r = 5%, and σ = 25% Changing S

Course Code : BBAF3020

Course Name: Financial Derivatives

Relationship of Option Prices to Interest Rates

Course Code : BBAF3020

Course Name: Financial Derivatives

Relationship of Option Prices to Volatility

Course Code : BBAF3020

Course Name: Financial Derivatives

Relationship of Option Prices to Time to Expiration

Parameters: *S* = \$100, *X* = \$100, *r* = 5%, and σ = 25% Changing t

Course Code : BBAF3020 Course Name: Financial Derivatives

Parameters of the Black-Scholes Model

• Need to know:

 $-S, X, r, T, \sigma$.

- All readily observable, except the last.
- The interest rate should be a continuously compounded rate
 - To convert simple annualized rate to continuously compounded rate:

r = ln(1+R)

Course Code : BBAF3020 Course Name: Financial Derivatives

Volatility as a Parameter

- In pricing options, analysts usually use some measure of historical volatility of the underlying security.
- Volatility obtained from other than annualized returns must be converted to annualized volatility.
 - e.g., Variance of weekly returns must be multiplied by 52.
 - e.g., Standard deviation of weekly returns must be multiplied by $\sqrt{52}$.

Course Code : BBAF3020 Course Name: Financial Derivatives

Implied Volatility

- Alternatively, can use all the other inputs, and infer a volatility estimate from the current option price.
 - Is called the implied volatility.
- Can then compare implied volatility with recent historical volatility.
 - Higher implied than historical may indicate the option is expensive.
 - Lower implied than historical may indicate the option is cheap.

Course Code : BBAF3020

Course Name: Financial Derivatives

Implied Volatility Using the Black-Scholes Model

http://www.numa.com/derivs/ref/calculat/option/calc-opa.htm

Volatility		
Assumptions	Put Price	Call Price
15%	\$1.41	\$2.04
20%	1.98	2.61
25%	2.55	3.18
30%	3.11	3.74
35%	3.68	4.31
		Given Information
Volatility implied by option	prices	S0 = \$100, X = 100
		<i>r</i> = 8%, <i>T</i> = 30 days,
	P	= \$3.10, and C = \$3.73

Course Code : BBAF3020 Course Name: Financial Derivatives

Assumptions In Original Option Pricing Model

- Underlying returns log normally distributed.
- Variance is constant over time.
- The interest rate is constant over time.
- No sudden jumps in underlying price.
- No dividends.
- No early exercise (*i.e.*, European option).

Course Code : BBAF3020 Course Name: Financial Derivatives

Enhancing Firm Value through Hedging

- Reducing Volatility of cash flows does not guarantee increased value.
- Hedging has transaction costs, so hedging is not free.
- Hedging can add value if
 - Taxes are reduced
 - Transaction costs (like default risk) is reduced
 - When it aligns incentives to take positive NPV projects

Course Code : BBAF3020

Course Name: Financial Derivatives

Un-hedged

		Value of the		
Outcome	Probability	Firm in Period 1		
Price of oil high	0.5	1000		
Price of oil low	0.5	200		
		Price of Oil High	Price of Oil Low	
		Market Value at	Market Value at	Market
Capital Structure	Book Values	t=1	t=1	Value
Debt	500	500	200	350
Equity	500	500	0	250
		1000	200	600
Does hedging this c	company's risk i	ncrease value?		

Course Code : BBAF3020

Course Name: Financial Derivatives

Hedged

		Value of the				
Outcome	Probability	Firm in Period 1				
Price of oil high	0.5	600				
Price of oil low	0.5	600				
		Price of Oil High	Price of Oil Low			
		Market Value at	Market Value at	Market		
Capital Structure	Book Values	t=1	t=1	Value		
Debt	500	500	500	500		
Equity	500	100	100	100		
		600	600	600		
The total market value is not affected (both are \$600); however the distribution						
is affected. The Sto	ockholder value	was decreased fro	m \$250 to \$100 wi	th		
hedging, showing th	hedging, showing that there is a transfer of wealth to bondholders. This is due					
to the fact that the f	irm is on the bri	ink of insolvency.				

In our prior example, stockholders only get paid after the debt holders receive their value. Therefore, the value of the debt is like the exercise price on a call option. If the value of the firm is less than the value of the debt, stockholders will walk away and leave the firm to the debt holders. If the value of the firm is greater than the value of the debt, the stockholders remain in control of the firm.

This also shows why reducing volatility (through hedging) does not guarantee an increase in the value of the firm. In fact, as shown in the Black Scholes formula, decreasing volatility can reduce the value of the firm to equity holders (see the hedging example several slides earlier.

Course Code : BBAF3020 Course Name: Financial Derivatives

Will the Un-hedged firm add a risk-free project when new capital must be added by equity holders

			Value of the		
		Value of the	Firm in Period 1		
Outcome	Probability	Firm in Period 1	w/Investment		
Price of oil high	0.5	1000	1300		
Price of oil low	0.5	200	500		
New Investment	200				
Cash Flow at t=1	300	Should the investr	nent be taken?		
		Price of OII High	Price of OII Low		
		Market Value at	Market Value at	Market	
Capital Structure	Book Values	t=1	t=1	Value	
Debt	500	500	500	500	
Equity	700	800	0	400	
		1300	500	900	
Equityholders have	a value of \$400	, compared to a va	lue of \$250 if no p	roject	
is taken. But remer	is taken. But remember, that the equityholders added \$200 to make the				
investment. So they gained \$150 but it cost them \$200 to obtain this gain. Only					

the bondholders have benefited.

Course Code : BBAF3020 Course Name: Financial Derivatives Would New Bondholders add the new capital?

Bondholders generally enter as subordinate to the old bonds.

		Value of the	Value of the Firm in Period 1	
Outcome	Probability	Firm in Period 1	w/Investment	
Price of oil high	0.5	1000	1300	
Price of oil low	0.5	200	500	
New Investment	200			
Cash Flow at t=1	300	Should the investr	nent be taken?	
		Price of Oil High	Price of Oil Low	
		warket value at	Market Value at	Market
Capital Structure	Book Values	t=1	Market Value at t=1	Market Value
Capital Structure Senior Debt	Book Values 500	t=1 500	t=1 500	Market Value 500
Capital Structure Senior Debt Sub. Debt	Book Values 500 200	t=1 500 200	Market Value at t=1 500 0	Market Value 500 100
Capital Structure Senior Debt Sub. Debt Equity	Book Values 500 200 500	t=1 500 200 600	Market Value at t=1 500 0 0	Market Value 500 100 300
Capital Structure Senior Debt Sub. Debt Equity	Book Values 500 200 500	t=1 500 200 600 1300	Market Value at t=1 500 0 0 500	Market Value 500 100 300 900
Capital Structure Senior Debt Sub. Debt Equity New debtholders wi	Book Values 500 200 500 Il not enter into	Market value at t=1 500 200 600 1300 this transaction, it	Market Value at t=1 500 0 0 500 has a guaranteed	Market Value 500 100 300 900 loss
Capital Structure Senior Debt Sub. Debt Equity New debtholders wi for the new debthold	Book Values 500 200 500 Il not enter into ders.	Market value at t=1 500 200 600 1300 this transaction, it	Market Value at t=1 500 0 0 500 has a guaranteed	Market Value 500 100 300 900 loss

Course Code : BBAF3020

Course Name: Financial Derivatives

Will the hedged firm add take a risk-free project?

			Value of the	
		value of the	Firm in Period 1	
Outcome	Probability	Firm in Period 1	w/Investment	
Price of oil high	0.5	600	900	
Price of oil low	0.5	600	900	
New Investment	200			
Cash Flow at t=1	300			
		Price of Oil High	Price of Oil Low	
		Market Value at	Market Value at	Market
Capital Structure	Book Values	t=1	t=1	Value
Capital Structure Debt	Book Values	t=1 500	t=1 500	Value 500
Capital Structure Debt Equity	Book Values 500 700	t=1 500 400	t=1 500 400	Value 500 400
Capital Structure Debt Equity	Book Values 500 700	t=1 500 400 900	t=1 500 400 900	Value 500 400 900
Capital Structure Debt Equity When the firm does	Book Values 500 700	t=1 500 400 900	t=1 500 400 900 value falling below	Value 500 400 900
Capital Structure Debt Equity When the firm does debt outstanding, th	Book Values 500 700 not have conce	t=1 500 400 900 erns about market v take any positive N	t=1 500 400 900 value falling below	Value 500 400 900 the
Capital Structure Debt Equity When the firm does debt outstanding, th Note: From our orig	Book Values 500 700 not have conce nen the firm will ainal example. v	t=1 500 400 900 erns about market v take any positive N ve would only choo	t=1 500 400 900 value falling below VPV projects. se to hedge the fir	Value 500 400 900 the
Capital Structure Debt Equity When the firm does debt outstanding, th Note: From our orig NPV of the project v	Book Values 500 700 not have conce nen the firm will ginal example, v	t=1 500 400 900 erns about market v take any positive N ve would only choo n \$150 (the amount	t=1 500 400 900 value falling below VPV projects. ose to hedge the fin t of value lost from	Value 500 400 900 the m if the the

Course Code : BBAF3020

Course Name: Financial Derivatives

References:

- srivastava, r. (2017). *financial derivative and risk management.* new delhi: oxford university press.
- hull, j. c. (1988). options, futures and other derivatives. (9th, Ed.) pearson.

Course Code : BBAF3020

Course Name: Financial Derivatives

Thank you