Course Code : BSCP3005

Course Name: Digital System and Application

Number System Conversion

Contents:

- Introduction
- Decimal to any base conversion
- Any base to decimal conversion
- Examples

Course Code : BSCP3005

Course Name: Digital System and Application

Conversion We need to know how to convert a number in one system to the equivalent number in another system. Since the decimal system is more familiar than the other systems, we first show how to covert from any base to decimal. Then we show how to convert from decimal to any base. Finally, we show how we can easily convert from binary to hexadecimal or octal and vice versa.

Name of the Faculty: Dr. Prabhakar Singh

Name of the Faculty: Dr. Prabhakar Singh

Course Code : BSCP3005

Course Name: Digital System and Application

Figure: Converting the integral part of a number in decimal to other bases

Decimal to Binary Conversion

The following shows how to convert 35 in decimal to binary. We start with the number in decimal, we move to the left while continuously finding the quotients and the remainder of division by 2. The result is $35 = (100011)_2$.

Name of the Faculty: Dr. Prabhakar Singh

Since the number $0.625 = (0.101)_2$ has no integral part, the example shows how the fractional part is calculated.

Name of the Faculty: Dr. Prabhakar Singh

Course Code : BSCP3005

Course Name: Digital System and Application

Any base to decimal conversion

Course Code : BSCP3005

Course Name: Digital System and Application

Example

The following shows how to convert the binary number $(110.11)_2$ to decimal: $(110.11)_2 = 6.75$.

Binary	1		1		0	•	1		1
Place values	2 ²		2 ¹		2 ⁰		2 ⁻¹		2 ⁻²
Partial results	4	+	2	+	0	+	0.5	+	0.25
Decimal: 6.75									

Name of the Faculty: Dr. Prabhakar Singh

Course Code : BSCP3005

Course Name: Digital System and Application

The number 0 to 15 is represented in binary systems.

Decimal	Binary				
00	0000				
01	0001				
02	0010				
03	0011				
04	0100				
05	0101				
06	0110				
07	0111				
08	1000				
09	1001				
10	1010				
	1011				
12	1100				
13	1101				
14	1110				
15	1111				

Name of the Faculty: Dr. Prabhakar Singh

Course Code : BSCP3005

Course Name: Digital System and Application

References:

- Digital Principles and Applications, A.P. Malvino, D. P. Leach and Saha, 7th Ed., 2011, Tata McGraw Hill
- Digital Fundamentals, Thomas L. Floyd, 11th Ed., 2015, Pearson Education Limited
- Modern Digital Electronics, R P Jain, 4th Ed., 2010, Tata McGraw Hill

Name of the Faculty: Dr. Prabhakar Singh