
School  of Computing 

Science and Engineering

Program: BCA - IOP

Course Code: BCAS3031

Course Name: PL/SQL & Cursors and
Triggers

Dr. T. Poongodi

Associate Professor



School of Computing Science and Engineering
Course Code : BCAS3031 Course Name: PL/SQL & Cursors and Triggers

Program Name: Program Code:

PL/SQL Transaction Commit, Rollback, Savepoint, 
Autocommit



School of Computing Science and Engineering
Course Code : BCAS3031 Course Name: PL/SQL & Cursors and Triggers

Program Name: Program Code:

• Oracle PL/SQL transaction oriented language. Oracle
transactions provide a data integrity.

• PL/SQL transaction is a series of SQL data manipulation
statements that are work logical unit.

• Transaction is an atomic unit all changes either
committed or rollback.

• At the end of the transaction that makes database
changes, Oracle makes all the changes permanent save
or may be undone.

• If the program fails in the middle of a transaction,
Oracle detect the error and rollback the transaction and
restoring the database.



School of Computing Science and Engineering
Course Code : BCAS3031 Course Name: PL/SQL & Cursors and Triggers

Program Name: Program Code:

Use the COMMIT, ROLLBACK, SAVEPOINT, and SET
TRANSACTION command to control the transaction.

• COMMIT: COMMIT command to make changes permanent
save to a database during the current transaction.

• ROLLBACK: ROLLBACK command execute at the end of current
transaction and undo/undone any changes made since the
begin transaction.

• SAVEPOINT: SAVEPOINT command save the current point with
the unique name in the processing of a transaction.

• AUTOCOMMIT: Set AUTOCOMMIT ON to execute COMMIT
Statement automatically.

• SET TRANSACTION: PL/SQL SET TRANSACTION command set
the transaction properties such as read-write/read only
access.

https://way2tutorial.com/plsql/plsql-transaction.php#commit
https://way2tutorial.com/plsql/plsql-transaction.php#rollback
https://way2tutorial.com/plsql/plsql-transaction.php#savepoint
https://way2tutorial.com/plsql/plsql-transaction.php#autocommit
https://way2tutorial.com/plsql/plsql-transaction.php#set_transaction


School of Computing Science and Engineering
Course Code : BCAS3031 Course Name: PL/SQL & Cursors and Triggers

Program Name: Program Code:

Commit

• The COMMIT statement to make changes
permanent save to a database during the current
transaction and visible to other users.

• Commit comments are only supported for backward
compatibility.

Commit Syntax

SQL>COMMIT



School of Computing Science and Engineering
Course Code : BCAS3031 Course Name: PL/SQL & Cursors and Triggers

Program Name: Program Code:

SQL> BEGIN
UPDATE emp_information
SET emp_dept='Web Developer’
WHERE emp_name='Saulin’;
COMMIT;
END; /



School of Computing Science and Engineering
Course Code : BCAS3031 Course Name: PL/SQL & Cursors and Triggers

Program Name: Program Code:

Rollback

• The ROLLBACK statement ends the current
transaction and undoes any changes made during
that transaction.

• If you make a mistake, such as deleting the wrong
row from a table, a rollback restores the original
data.

• If you cannot finish a transaction because an
exception is raised or a SQL statement fails, a
rollback lets you take corrective action and perhaps
start over.



School of Computing Science and Engineering
Course Code : BCAS3031 Course Name: PL/SQL & Cursors and Triggers

Program Name: Program Code:

SQL>ROLLBACK [To SAVEPOINT_NAME];

SQL> DECLARE
emp_id emp.empno%TYPE;
BEGIN

SAVEPOINT dup_found;
UPDATE emp SET eno=1

WHERE empname = 'Forbs 
ross’

EXCEPTION 
WHEN DUP_VAL_ON_INDEX THEN

ROLLBACK TO dup_found;
END;
/



School of Computing Science and Engineering
Course Code : BCAS3031 Course Name: PL/SQL & Cursors and Triggers

Program Name: Program Code:

Exception raised because eno = 1 is already so

DUP_ON_INDEX exception rise and rollback 

to the dup_found savepoint named.



School of Computing Science and Engineering
Course Code : BCAS3031 Course Name: PL/SQL & Cursors and Triggers

Program Name: Program Code:

Savepoint

• SAVEPOINT savepoint_names marks the current
point in the processing of a transaction.

• Savepoints let you rollback part of a transaction
instead of the whole transaction.

SQL>SAVEPOINT SAVEPOINT_NAME;



School of Computing Science and Engineering
Course Code : BCAS3031 Course Name: PL/SQL & Cursors and Triggers

Program Name: Program Code:

SQL> DECLARE
emp_id emp.empno%TYPE;
BEGIN
SAVEPOINT dup_found;
UPDATE emp SET eno=1

WHERE empname = 'Forbs ross’
EXCEPTION 

WHEN DUP_VAL_ON_INDEX THEN
ROLLBACK TO dup_found;

END;
/



School of Computing Science and Engineering
Course Code : BCAS3031 Course Name: PL/SQL & Cursors and Triggers

Program Name: Program Code:

Autocommit

• No need to execute COMMIT statement every time.

• Set AUTOCOMMIT ON to execute COMMIT
Statement automatically.

• It's automatic execute for each DML statement. set
auto commit on using following statement,

SQL>SET AUTOCOMMIT ON;

SQL>SET AUTOCOMMIT OFF;



School of Computing Science and Engineering
Course Code : BCAS3031 Course Name: PL/SQL & Cursors and Triggers

Program Name: Program Code:

Set Transaction

• SET TRANSACTION statement is use to set
transaction are read-only or both read write. you
can also assign transaction name.

SET TRANSACTION Syntax

SQL> SET TRANSACTION [ READ ONLY | READ WRITE ]
[ NAME 'transaction_name' ];

Set transaction name using the SET TRANSACTION [...] NAME statement before you 

start the transaction.

SET TRANSACTION Example

SQL>SET TRANSACTION READ WRITE NAME 'tran_exp';



School of Computing Science and Engineering
Course Code : BCAS3031 Course Name: PL/SQL & Cursors and Triggers

Program Name: Program Code:

set serveroutput on; 

DECLARE

rollno student.sno%type; 

snm student.sname%type; 

s_age student.age%type; 

s_cr student.course%type; 

BEGIN

rollno := &sno; 

snm := '&sname’; 

s_age := &age; 

s_cr := '&course’; 

INSERT into student values(rollno,snm,age,course

dbms_output.put_line('One record inserted’

COMMIT; 



School of Computing Science and Engineering
Course Code : BCAS3031 Course Name: PL/SQL & Cursors and Triggers

Program Name: Program Code:

• There is a table called STUDENT in the database with
columns sno as number, sname as varchar2, age as number
and course as varchar2.

• Executed an INSERT statement and then used
the COMMIT statement to commit or permanently save the
changes into the database.

• Instead of the COMMIT statement, if we use
the ROLLBACK statement there, then even though
the INSERT statement executed successfully, still, after the
execution of the PL/SQL block if you will check the Student
table in the database, you will not find the new student
entry because we executed the ROLLBACK statement and
it rolled back the changes



School of Computing Science and Engineering
Course Code : BCAS3031 Course Name: PL/SQL & Cursors and Triggers

Program Name: Program Code:

PL/SQL Code Example with Savepoint and 

Rollback

• Add two insert statement in the above code and put a

savepoint in between them and then use

the ROLLBACK command to revert back changes of one

insert statement.

• After execution of the above code, we will have one entry

created in the Student table, while the second entry will be

rolled back.



School of Computing Science and Engineering
Course Code : BCAS3031 Course Name: PL/SQL & Cursors and Triggers

Program Name: Program Code:

set serveroutput on; 

DECLARE

rollno student.sno%type; 

snm student.sname%type; 

s_age student.age%type; 

s_cr student.course%type; 

BEGIN

rollno := &sno; 

snm := '&sname’; 

s_age := &age; 

s_cr := '&course’; 

INSERT into student 

values(rollno,snm,s_age,s_cr); 

dbms_output.put_line('One record inserted’); 

COMMIT; 



School of Computing Science and Engineering
Course Code : BCAS3031 Course Name: PL/SQL & Cursors and Triggers

Program Name: Program Code:

-- adding savepoint

SAVEPOINT savehere; 

-- second time asking user for input

rollno := &sno; 

snm := '&sname’; 

s_age := &age; 

s_cr := '&course’; 

INSERT into student values(rollno,snm,s_age,s_cr); 

dbms_output.put_line('One record inserted'); 

ROLLBACK TO savehere;

END;




