Course Code: BSCC3004 Course Name: Organic Chemistry V

Condensation polymerization

Condensation polymerization: the polymer grows from monomers by splitting off a small molecule such as water or carbon dioxide.

Example: formation of amide links and loss of water

Monomers

O C –
$$(CH_2)_5$$
 – N + $(CH_2)_5$ – NH_2 — O C – $(CH_2)_5$ – N C – $(CH_2)_5$ – N C – $(CH_2)_5$ – $(CH_$

First unit of polymer + H₂O

Course Code: BSCC3004

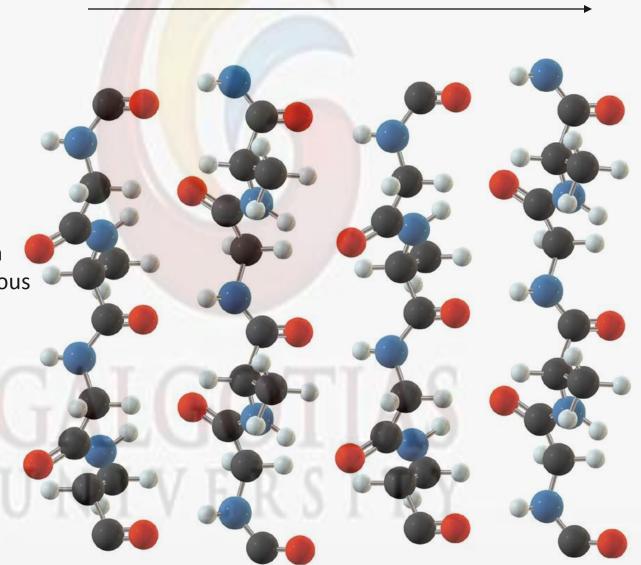
Course Name: Organic Chemistry V

nylon 6

Polyamides: This type of polymers is formed by the result of generation of amide bonds in the polymerization reaction. Nylon 6 and nylon 66 are important examples for this type of polymers nylon 6 is synthesized from ϵ -caprolactam, which on heating decomposes into 6-aminohexanoic acid that polymerizes into nylon 6. Here the number 6 represents the number of carbon atoms present in the monomer unit.

Course Code: BSCC3004

Course Name: Organic Chemis


Polyesters: This type of polymers is generated by the result of formation of ester borthe polymer chain by the condensation reaction between two monomer units. Dacron a well-known polyester, synthesized by the transesterification of dimethyl terephth with ethylene glycol.

$$H_3C-O-\overset{\circ}{C}-\overset{\circ}{C}-O-CH_3$$
 + H_2 H_2 H_2 H_3 H_3 H_3 H_3 H_4 H_5 H_5 H_5 H_5 H_5 H_5 H_6 H_6 H_7 H_8 H_8

Hydrogen bonds between chains

Supramolecular Structure of nylon

Intermolecular hydrogen bonds give nylon enormous tensile strength

© 2003 Thomson-Brooks/Cole

Course Code: BSCC3004 Course Name: Organic Chemistry

Polycarbonates: This is an example for condensation of step-growth polymer. Here the polymer chain is linked together by carbonate bonds. Lexan®, a polycarbonate formed by the condensation reaction between the two monomers phosgene and bisphenol A. This is used for manufacturing bulletproof windows.

CI
$$\overset{\circ}{\text{C}}$$
-CI $\overset{\circ}{\text{C}}$

Polyurethane: A carbamate functional group is synthesized by the addition reaction of an alcohol with an isocvanate molecule. This is also called as urethane. If a polymer chain is

a polycarbonate

outloof of basic & Applied ocietices

Course Code: BSCC3004

Course Name: Organic Chemist

linked together by urethane bonds are called as polyurethane. Typically, polyurethan are prepared by the addition reaction of diol monomers with diisocyanate monom Polyurethane in the form of foams has been used for furniture stuffing, carpet backing and insulations.

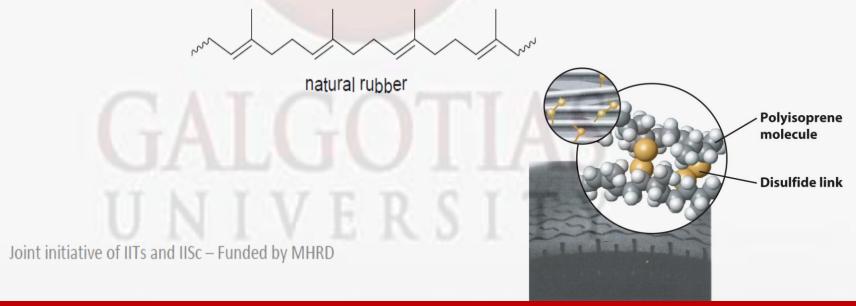
Course Code: BSCC3004 Course Name: Organic Chemistry V

Biopolymers

Nucleic acid polymers (DNA, RNA)

Amino acids polymers (Proteins)

Sugar polymers (Carbohydrates)


Genetic information for the cell: DNA

Structural strength and catalysis: Proteins

Energy source: Carbohydrates

Proteins: Proteins are large biological molecules, made up of the smallest units called α -amino acids. They are building blocks of plant and animal cells. Many proteins are enzymes that <u>catalyze</u> biochemical reactions and are essential to metabolic functions.

Natural Rubber: Natural rubber is the polymer of isoprene. This is mainly harvested as a sticky milky colloidal form called latex from the bark of the rubber tree.

e Faculty: Dr. Meenakshi

Program Name: B.Sc(H) Chemistry

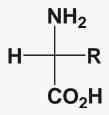
Proteins: amino acid monomers

The basic structure of an amino acid monomer

The difference between amino acids is the R group

GALGOTIAS UNIVERSITY

Course Code: BSCC3004

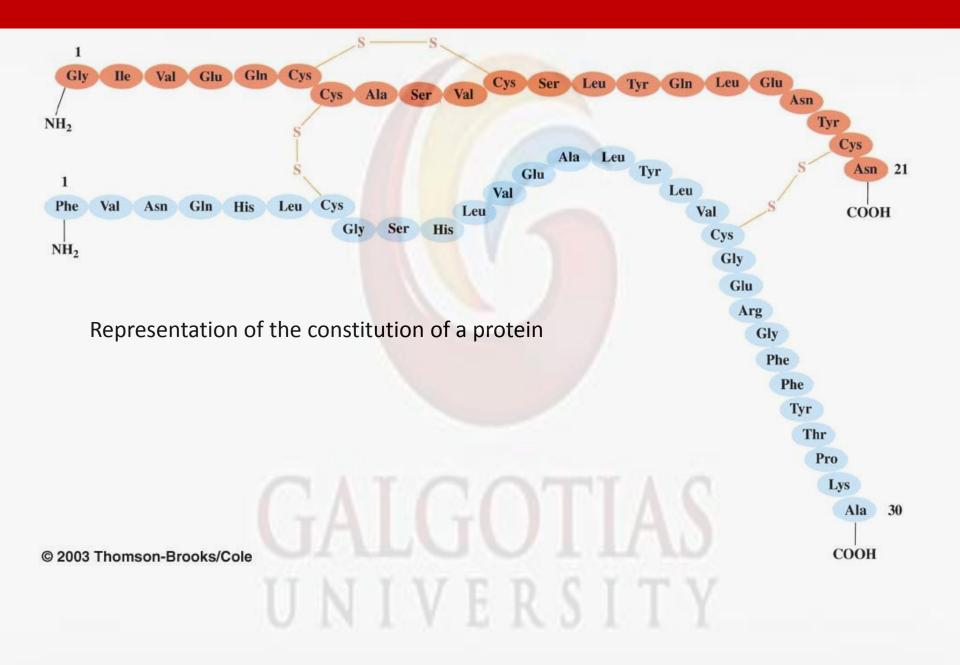

Course Name: Organic Chemistry V

Name Abbreviation Structural formula* Amino acids with nonpolar side chains			
NH ₃			
CL (C)			
Glycine Gly (G) H—ĊHCO ₂			
ŅH₃			
Alanine Ala (A) H ₃ C—CHCO ₂			
NH₃			
Valine [†] Val (V) (CH ₃) ₂ CH—CHCO ₂ ⁻			
, NH ₃			
Leucine [†] Leu (L) (CH ₃) ₂ CHCH ₂ —CHCO ₂			
CH ₃ $\stackrel{+}{N}H_3$			
Isoleucine [†] Ile (I) CH ₃ CH ₂ CH—CHCO ₂			
, NH3			
Methionine [†] Met (M) CH ₃ SCH ₂ CH ₂ —CHCO ₂ ⁻			
H_2C $\stackrel{+}{N}H_2$			
Proline Pro (P) H_2C' $CHCO_2^-$			
+			
Phenylalanine [†] Phe (F) NH_3 $CH_2-CHCO_2^-$			
The (f)			
, t NH3			
Tryptophan [†] Trp (W)			
N. T.			
Amino acids with polar but nonionized side chains			
O NH ₃			
Asparagine Asn (N) H_2NCCH_2 — $CHCO_2$			
*All amino acids are shown in the form present in greatest concentration at pH 7.			

APEL EATT MAIN	no Acids Found in Frote	ins (continued)	
Name	Abbreviation	Structural formula*	
Amino acids with polar but nonionized side chains			
		O ŅH₃	
Glutamine	Gln (Q)	O NH ₃ H ₂ NCCH ₂ CH ₂ —CHCO ₂ -	
		, NH3	
Serine	Ser (S)	HOCH ₂ —CHCO ₂ -	
		OH NH ₃	
Threonine [†]	Thr (T)	CH₃CH—CHCO₂¯	
		+ ŅH ₃	
Tyrosine	Tyr (Y)	HO————————————————————————————————————	
Tyrosine		The Chief	
		, NH3	
Cysteine	Cys (C)	HSCH ₂ —CHCO ₂ -	
Amino acids with acidic s	ide chains		
		O NH ₃ -OCCH ₂ —CHCO ₂ -	
Aspartic acid	Asp (D)	-OCCH ₂ —CHCO ₂ -	
		O NH ₃	
Glutamic acid	Glu (E)	O NH ₃ -OCCH ₂ CH ₂ —CHCO ₂ -	
Amino acids with basic s	ide chains		
		NH ₃	
Lysine [†]	Lys (K)	H ₃ NCH ₂ CH ₂ CH ₂ CH ₂ —CHCO ₂	
		NH ₂ NH ₃	
Arginine [†]	Arg (R)	H ₂ NCNHCH ₂ CH ₂ CH ₂ —CHCO ₂	
		NH ₃	
Histidine [†]	His (H)	CH ₂ —CHCO ₂	

Proteins: condensation polymers Formed by condensation polymerization of amino acids

Monomers: 20 essential amino acids



General structure of an amino acid

R is the only variable group

Glycine (R = H) + Glycine

First step toward poly(glycine)

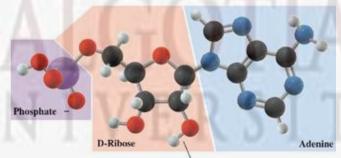
Three D representation of the structure of a protein

ours out in the second of the

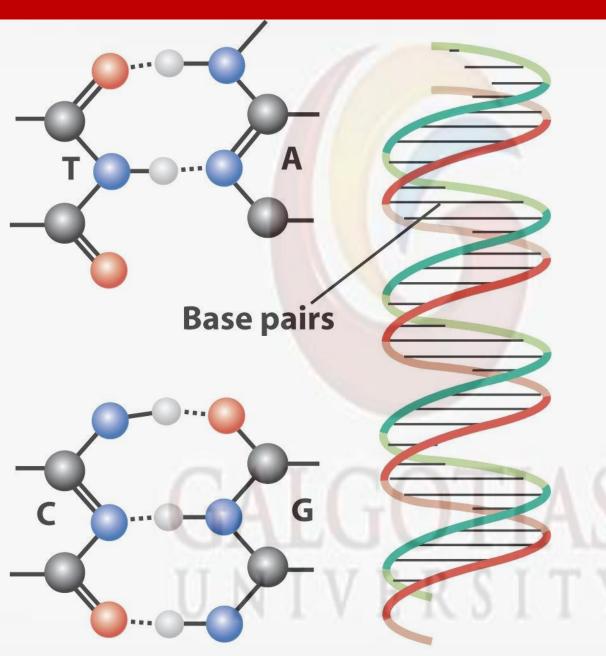
The monomers:

Adenine (A)

Thymine Adenine Cytosine (a) Guanine

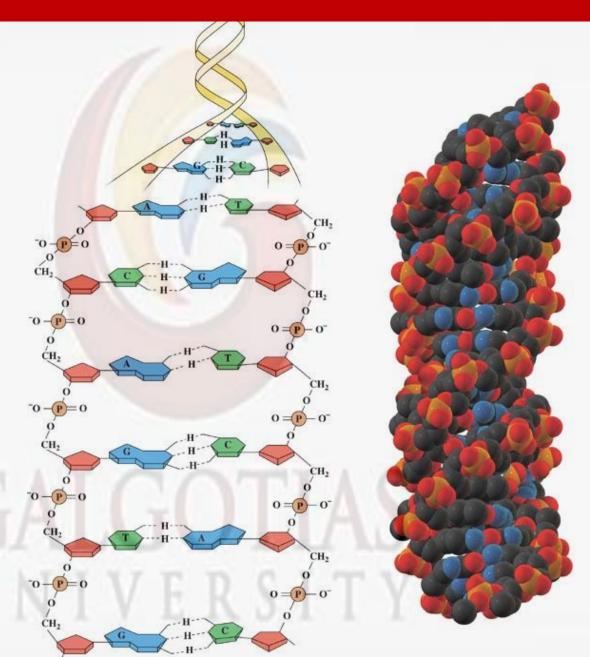

Thymine (T)

Cytosine (C)


Guanine (G)

Phosphate-Sugar (backbone) of DNA

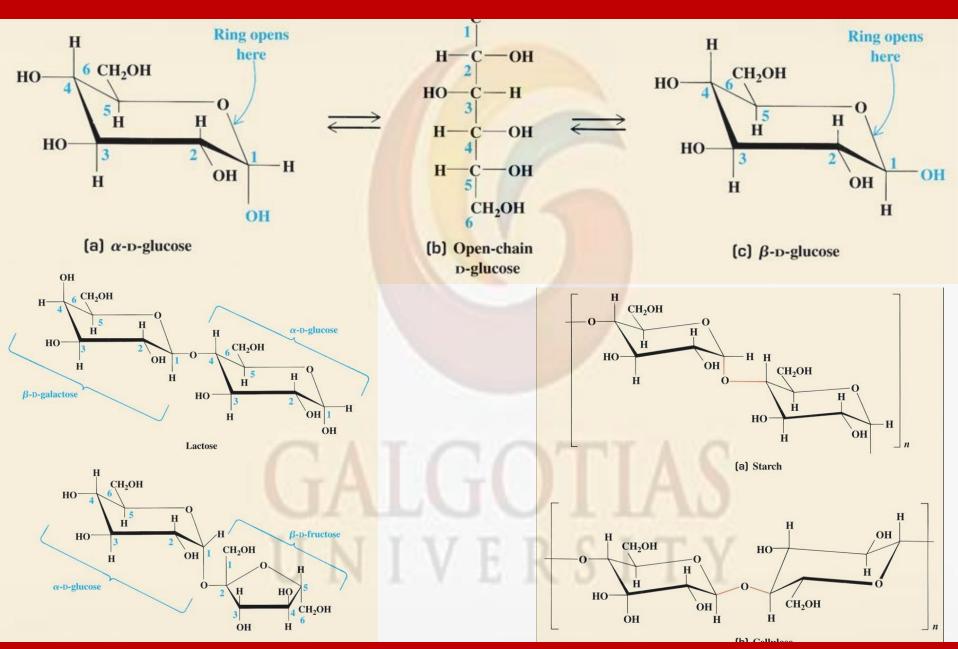
(b)


This —OH group is replaced by —H in the deoxy form found in DNA.

Phosphate-sugar backbone holds the DNA macromolecule together

Course Name: Organic Chemistry V

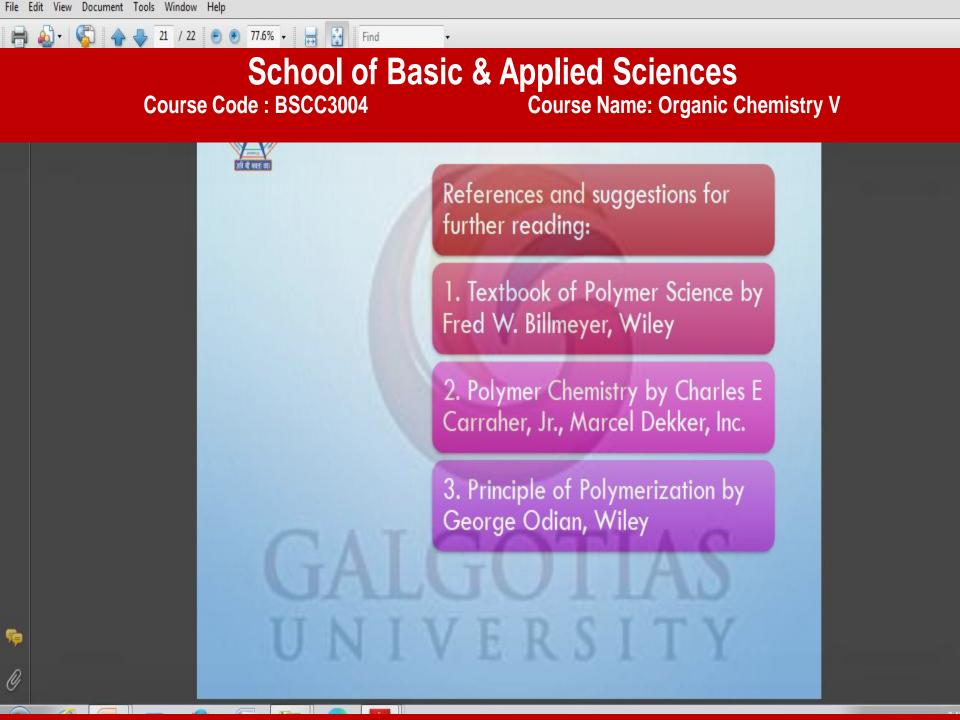
One strand unwinds to duplicate its complement via a polymerization of the monomers C, G, A and T


© 2003 Thomson-Brooks/Cole

Course Code: BSCC3004 Course Name: Organic Chemistry V

GALGOTIAS UNIVERSITY

Course Name: Organic Chemistry V


Name of the Faculty: Dr. Meenakshi

Program Name: B.Sc(H) Chemistry

Course Code: BSCC3004 Course Name: Organic Chemistry V

110101011000

- Feldman, Dorel (January 2008). "Polymer History". Designed Monomers and Polymers. 11 (1): 1–15. doi:10.1163/156855508X292383. ISSN 1568-5551. S2CID 219539020.
- "Lord Todd: the state of chemistry". Chemical & Engineering News Archive. 58 (40): 28–33. 1980-10-06. doi:10.1021/cen-v058n040.p028. ISSN 0009-2347.

