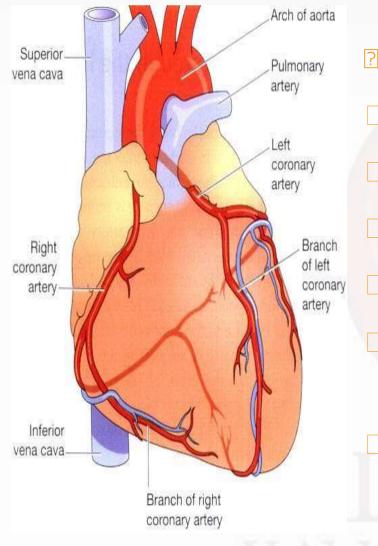
School of Medical & Allied Sciences

Course Code : BPHT5001

Course Name: Medicinal Chemistry-II

ANTI- ANGINAL DRUGS


Name of the Faculty: Dr. Deepika

Program Name: B. Pharmacy

Disclaimer

All the content material provided here is only for teaching purpose.

GALGOTIAS UNIVERSITY

Anti anginal drugs Angina pectoris Types Classification Nitrates **Calcium** channel blockers βblockers

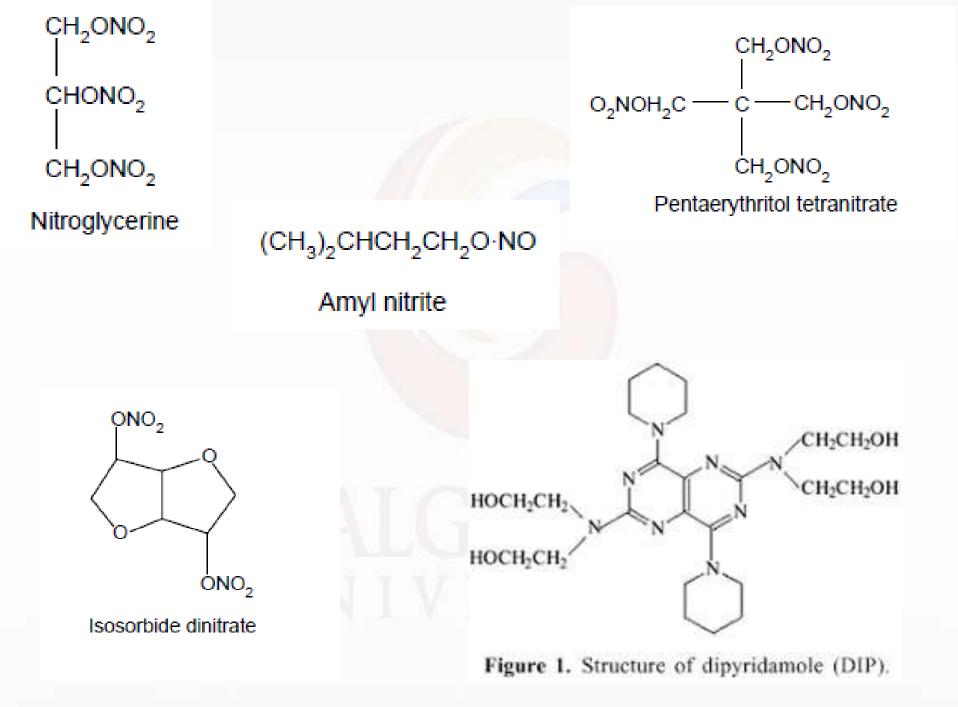
CONTENT

ANTI-ANGINAL DRUGS

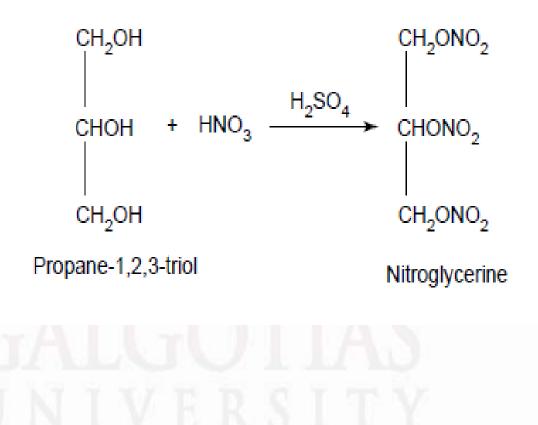
- Antianginal drugs may relieve attacks of acute myocardial ischemia by increasing myocardial oxygen supply or by decreasing myocardial oxygen demand
- Three groups of pharmacological agents have been shown to be effective in reducing the frequency, severity, or both of primary or secondary angina.
- These agents include the nitrates, adrenoceptor antagonists,

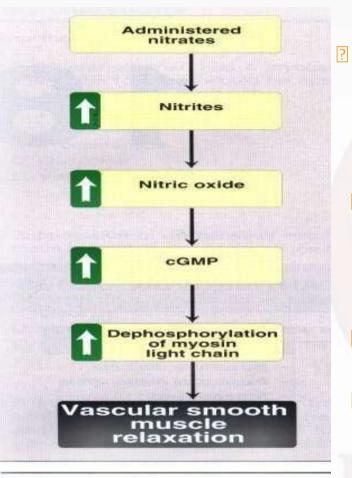
and calcium entry blockers.

- To understand the beneficial actions of these agents, it is important to be familiar with the major factors regulating the balance between
 - myocardial oxygen supply and demand.



NITRATES


Classification of nitrates:


- 1. Rapidly acting nitrates
 - * used to terminate acute attack of angina
 - * e.g.- Nitroglycerin and Amyl nitrate
 - * usually administered sublingually
- 2. Long acting nitrates
 - * used to prevent an attack of angina
 *e.g. tetra nitrate, Iso sorbide di nitrate, Penta erythrytol tetra nitrate
 * administered orally or topically

Synthesis of Nitroglycerine

Synthesis

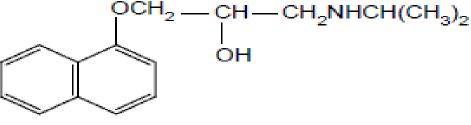
Figure 18.2

Effects of nitrates and nitrites or smooth muscle. cGMP = cyclic guanosine 3', 5'-monophosphate

Organic nitrates & nitrites are

simple nitric & nitrous esters of glycerol.

These agents cause a rapid decrease in myocardial oxygen demand leading to rapid resolution of symptoms.


Nitrates are effective for all types of angina.

Activation of guanylate cyclase increases cGMP activating a cGMP kinase leading to dephosphorylation of myosin light chains decreasing contractile force.

ORGANIC NITRATES

BETA- BLOCKERS

- β-Blockers decrease oxygen demands of the myocardium by lowering the heart rate and contractility (decrease CO) particularly the increased demand associated with exercise.
- They also reduce PVR by direct vasodilatations of both arterial & venous vessels reducing both preand after load.
- These effects are caused by blocking β_1 receptors, selective β_1 antagonists (atenolol, metoprolol) lose their selectivity at high doses and at least partially block β_2 receptors.

Propranolol

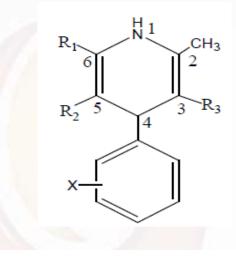
MECHANISM OFACTION

Decrease heart rate & Contractility

Increase duration of diastole

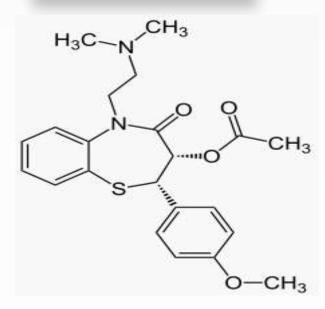
Decrease workload

Decrease

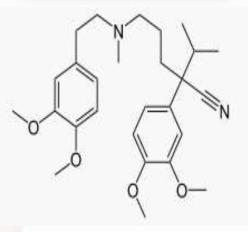

Increase coronary blood flow

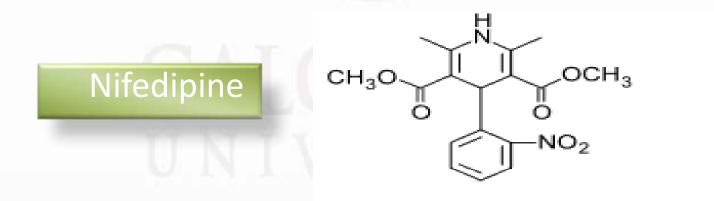
oxy.consumption Increase oxygen supply

CALCIUM CHANNEL BLOCKERS


- Ca+² channel b Lockers protect tissue by inhibiting the entrance of Ca +² into cardiac and smooth muscle cells of the coronary and systemic arterial beds.
- All Ca⁺² channel blockers produce some vasodilation (↓ PVR) and (-) inotropes.
- Some agents also show cardiac conduction particularly through the AV node thus serving to control cardiac rhythm.
- Some agents have more effect on cardiac muscle than others but all serve to lower blood pressure.
- CHF patients may suffer exacerbation of their failure as these are (-) inotropes.
- They are useful in Prinzmetal angina in conjunction with nitrates.

Dihydropyridine derivative




Compounds	R ₁	R ₂	R ₃	Х
Amlodipine	CH ₂ OH ₂ CH ₂ NH ₂	CO ₂ CH ₂ CH ₃	CO ₂ CH ₃	2-Cl
2-Felodipine	CH ₃	CO ₂ CH ₂ CH ₃	CO ₂ CH ₃	2,3-Cl ₂
Nicardipine	CH ₃	CO ₂ (CH ₂) ₂ -NH(Me)CH ₂ -Ph	CO ₂ CH ₃	3-NO ₂
Nifedipine	CH ₃	CO ₂ CH ₂ CH ₃	CO ₂ CH ₃	2-NO ₂
Nimodipine	CH ₃	CO ₂ CH ₂ CH ₂ OCH ₃	CO ₂ CH(CH ₃) ₂	3-NO ₂
Nisoldipine	СН	CO ₂ CH ₂ CH(CH ₃) ₂	CO ₂ CH ₃	2-NO ₂

Diltiazem

Verapamil

AGENTS

Nifedipine:

- This Ca+2 channel blocker works mainly on the arteriolar vasculature decreasing after load it has minimal effect of conduction or HR.
- It is metabolized in the liver and excreted in both the urine & the feces.
- It causes flushing, headache, hypotension and peripheral edema.
- It also has some slowing effect on the GI musculature resulting in constipation.
- A reflex tachycardia associated with the vasodilatation may elicit myocardial ischemia in tenuous patients, as such it is generally avoided in non-hypertensive coronary artery disease.

VERAPAMIL

- The agents has its main effect on cardiac conduction decreasing HR and thereby O2 demand.
- It also has much more (-) inotropic effect than other Ca+2 channel blockers
- It is a weak vasodilator.
- Because of its focused myocardial effects it is not used as an antianginal unless there is a tachyarrhythmia. It is metabolized in the liver.
- It interferes with digoxin levels causing elevated plasma levels; caution and monitoring of drug levels are necessary wit concomitant use.

DILTIAZEM

- This agent function similarly to Verapamil however it is more effective against Prinzmetal angina.
- It has less effect on HR.
- It has similar metabolism and side effects as Verapamil.

GALGOTIAS UNIVERSITY

Goodman, Louis S, Alfred Gilman, and Laurence L Brunton. *Goodman & Gilman's Manual of Pharmacology and Therapeutics*. New York: McGraw-Hill Medical, 2008.

Remington, Joseph P. *Remington, the Science and Practice of Pharmacy*. Easton, Pa: Mack, Pub. Co., 1995.

Richard Finkel, Michelle A. Clark, Luigi X. *Lippincott's Illustrated Reviews: Pharmacology.* 6th ed. Baltimore, MD; New Delhi: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2012.

H P Rang, M M Dale, J M Ritter, R J Flower, G Henderson **RANG AND DALE'S Pharmacology.** 7th ed. Elsevier Inc. 2007.

Ashutosh Kar. *Medicinal Chemistry.* 4th ed. New Delhi: New Age International, 2007.