School of Electrical, Electronics and Communication Engineering, Galgotias University

Analog Electronics Circuit

Course Code BEEE3021

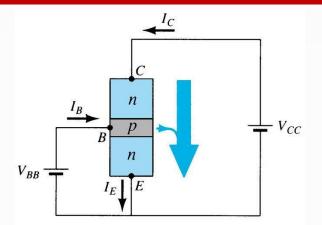
GALGOTIAS UNIVERSITY

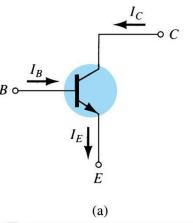
Faculty: Dr. Mohammad Rashid Ansari

Prog.: B.Tech. Electrical and Electronics Engineering

BJT Review -2

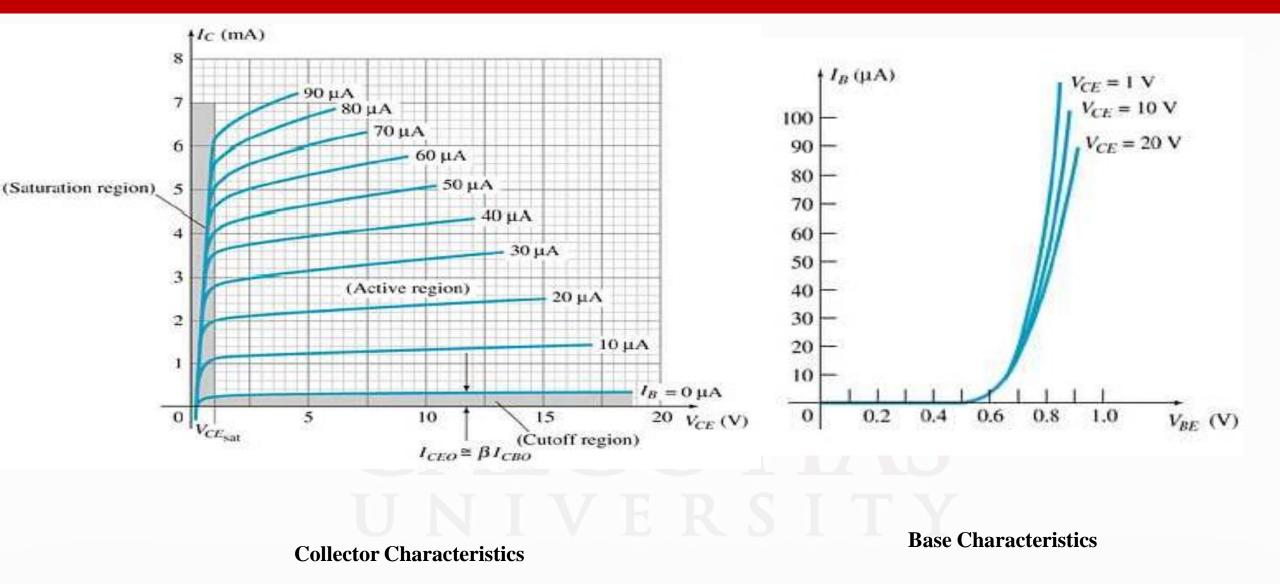
Source & References:


The materials presented in this lecture has been taken from various books and internet websites. This instruction materials is for instructional purposes only.


Referred book: R. Boylestad, Electronic Devices and Circuit Theory, 11th edition, Prentice Hall.

Common–Emitter Configuration

The emitter is common to both input (base-emitter) and output (collector- emitter).


The input is on the base and the output is on the collector.

GALGOTIA UNIVERSITY

Common-Emitter Characteristics

Common-Emitter Amplifier Currents

Ideal Currents

$$I_E = I_C + I_B \qquad \qquad I_C = \alpha I_E$$

Actual Currents

 $I_C = \alpha I_E + I_{CBO}$ where I_{CBO} = minority collector current

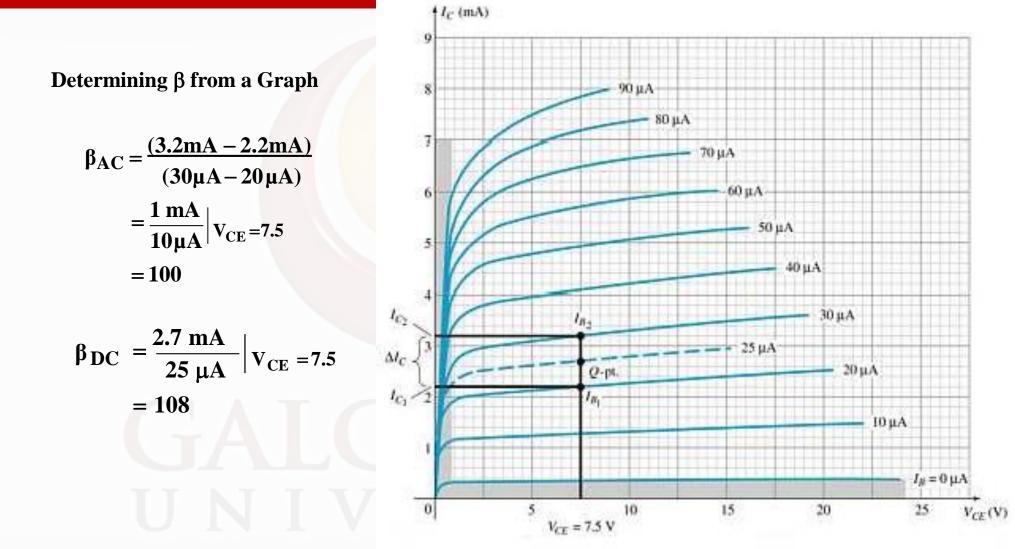
 I_{CBO} is usually so small that it can be ignored, except in high power transistors and in high temperature environments.

When $I_B = 0 \mu A$ the transistor is in cutoff, but there is some minority current flowing called I_{CEO} .

$$I_{CEO} = \frac{I_{CBO}}{1 - \alpha} \Big|_{I_B = 0 \mu A}$$

Beta (*β*)

 β represents the amplification factor of a transistor. (β is sometimes referred to as h_{fe} , a term used in transistor modeling calculations)


In DC mode:

$$\beta_{\rm dc} = \frac{I_C}{I_B}$$

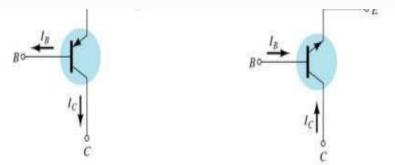
In AC mode:

$$\beta_{ac} = \frac{\Delta Ic}{\Delta IB} \Big|_{V_{CE} = constant}$$

Beta (β)

Beta (β)

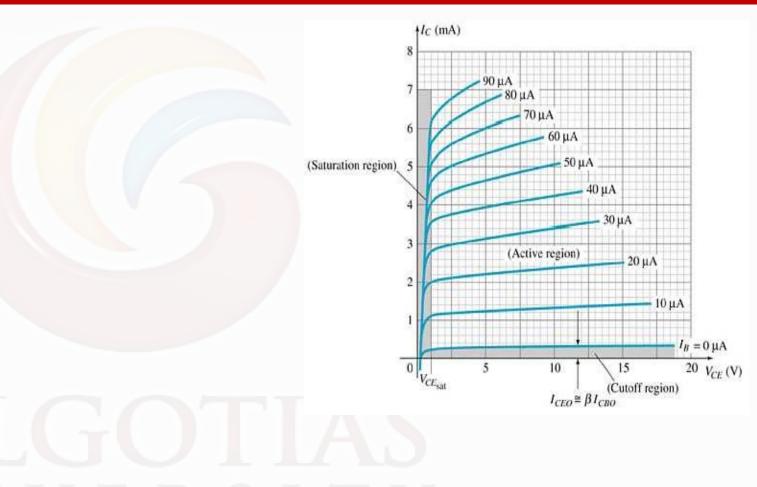
Relationship between amplification factors β and α


$$\alpha = \frac{\beta}{\beta + 1} \qquad \qquad \beta = \frac{\alpha}{\alpha - 1}$$

Relationship Between Currents

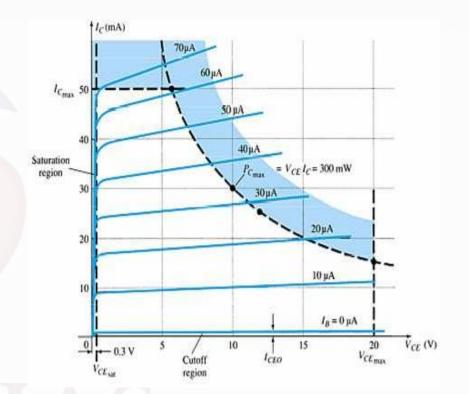
 $I_{C} = \beta I_{B} \qquad I_{E} = (\beta + 1)I_{B}$ GALGODIAS
UNIVERSITY

Common–Collector Configuration


The input is on the base and the output is on the emitter.

Common–Collector Configuration

The characteristics are similar to **those** of the commonemitter configuration, except the vertical axis is I_E .



Operating Limits for Each Configuration

 V_{CE} is at maximum and I_C is at minimum ($I_{Cmax} = I_{CEO}$) in the cutoff region.

 I_C is at maximum and V_{CE} is at minimum ($V_{CE max} = V_{CEsat} = V_{CEO}$) in the saturation region.

The transistor operates in the active region between saturation and cutoff.

11

Power Dissipation

Common-base:

 $P_{Cmax} = V_{CB}I_C$

Common-emitter:

 $P_{Cmax} = V_{CE}I_C$

Common-collector:

 $P_{Cmax} = V_{CE}I_E$

Transistor Specification Sheet

MAXIMUM RATINGS

Rating	Symbol	2N4123	Unit
Collector-Emitter Voltage	V _{CED}	使	Vdc
Collector-Base Voltage	Vcao	40	Vdc
Emitter-Base Voltage	Veno	5.0	Vde
Collector Current - Continuous	k.	200	mAde
Total Device Dissipation @ T _A = 25℃ Derate above 25℃	PD	625 5.0	mW mW'C
Operating and Storage Junction Temperature Range	T _p T _{ng}	-55 to +150	.C.

THERMAL CHARACTERISTICS

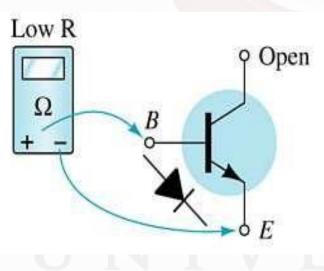
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{LUC}	83.3	'C W
Thermal Resistance, Junction to Ambient	R _{LUA}	200	'C W

Transistor Specification Sheet

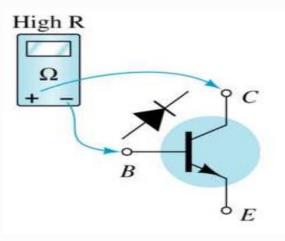
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic	Symbol .	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emimer Breakdown Voltage (1) (I _C = 1.0 mAdc, I _E = 0)	Vollacio	30		Vdc
Collector-Base Breakdown Voltage (Ic = 10 µAdc, IE = 0)	Vorsebo	-40		Vde
Emitter-Base Breakdown Voltage (Ig = 10 µAdc, Ic = 0)	V _{(BR)EBO}	5.0		Vde
Collector Cutoff Current ($V_{CS} = 20$ Vdc, $I_E = 0$)	1caor		.50	nAde
Emitter Cutoff Current (V _{BE} = 3.0 Vdc, I _C = 0)	Igno	-	50	nAde
ON CHARACTERISTICS	1.1		Q	
DC Current Gain(1) $(I_C = 2.0 \text{ mAde}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 50 \text{ mAde}, V_{CE} = 1.0 \text{ Vdc})$	hen	50 25	150	E
Collector-Emitter Saturation Voltage(1) (J _C = 50 mAde, I _B = 5.0 mAde)	Verieses	-	0.3	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 50 mAde, I _B = 5.0 mAde)	Vadianti	-	0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain – Bandwidth Product (I _C = 10 mAde, V _{CB} = 20 Vdc, f = 100 MHz)	fT	250		MHz
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}, I_{\Xi} = 0, f = 100 \text{ MHz}$)	Cito	-	4.0	bar.
Input Capacitance $(V_{BE} = 0.5 \text{ Vdc}, I_C = 0, f = 100 \text{ kHz})$	Can	-	-8,0	b ₁ .
Collector-Base Capacitance (Ig = 0, V _{CB} = 5.0 V, f = 100 kHz)	Cas	-	4,0	1st-
Small-Signal Current Gain G _C = 2.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{ie}	h ₅₀ 50		-
Current Gain – High Frequency $(I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz})$ $(I_C = 2.0 \text{ mAdc}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz})$	Date	h _{le} 2.5 50		-
Noise Figure (I _C = 100 µAdc, V _{CE} = 5.0 Vdc, R _S = 1.0 k ohm, f = 1.0 kHz)	NF	+	6.0	dB

Pulse Test: Pulse Width = 300 µs. Duty Cycle = 2.0%

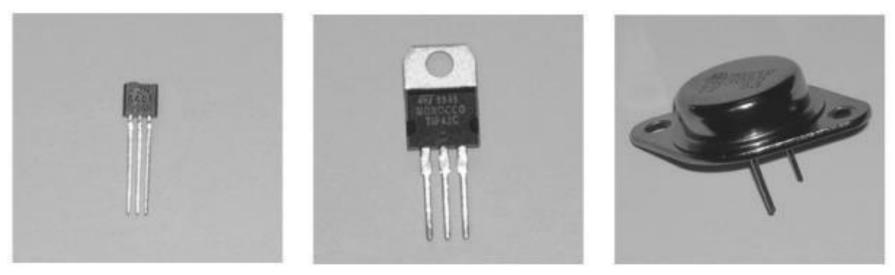

Transistor Testing

•


Curve Tracer

Provides a graph of the characteristic curves.

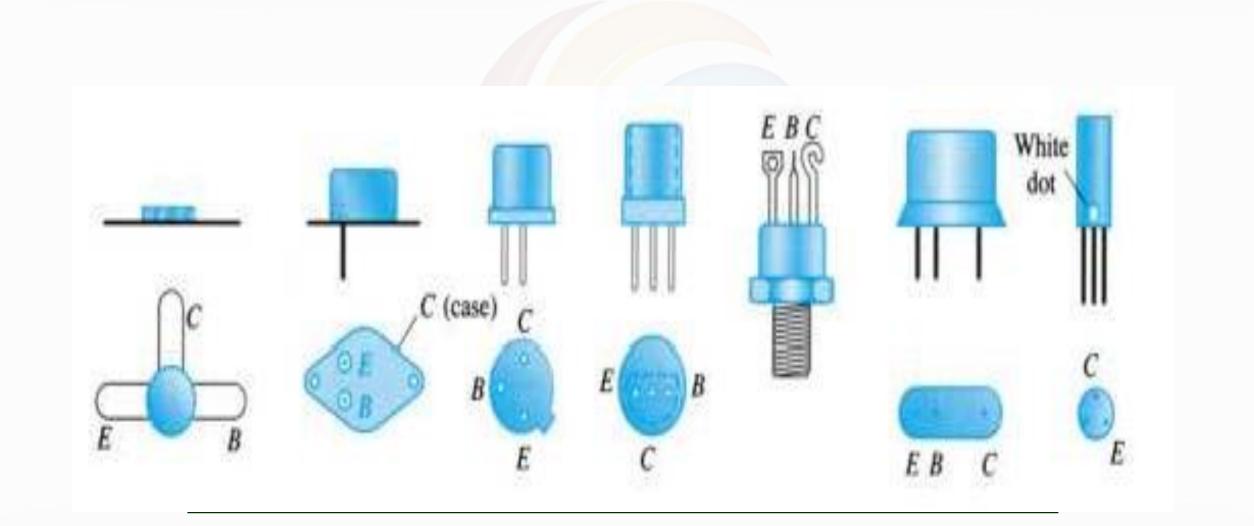
- Digital Meters
 Some DMMs measure β_{DC} or h_{FE}.
- Ohmmeter
- Checking the forwardbiased base-to-emitter junction of an *npn* transistor.



 Checking the reversebiased base-to-collector junction of an *npn* transistor.

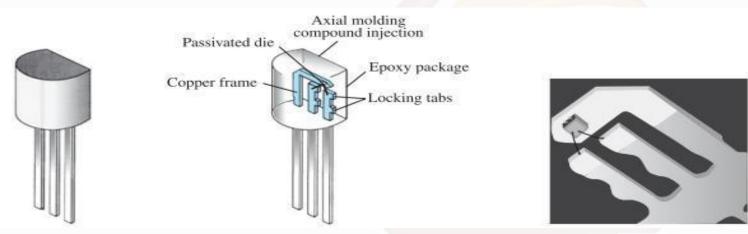
Transistor Casing

- Various types of general-purpose or switching transistors:
 - (a) low power
 - (b) medium power
 - (c) medium to high power.

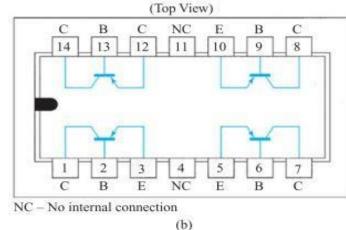


(a)

(b)


(c)

Transistor Terminal Identification


Transistor Terminal Identification

• Internal construction of a Fairchild transistor in a TO-92 package.

- (a) Appearance
- (b) pin connections.

(a)

THANK YOU

GALGOTIAS UNIVERSITY