School of Electrical, Electronics and Communication Engineering, Galgotias University

Analog Electronics Circuit

Course Code BEEE3021

Analog Electronics Circuit

Bias Stabilization

GALGOTIAS

Source & References:

The materials presented in this lecture has been taken from various books and internet websites. This instruction materials is for instructional purposes only.

Referred book: R. Boylestad, Electronic Devices and Circuit Theory, 11th edition, Prentice Hall.

BIAS STABILIZATION

- The stability of a system is a measure of the sensitivity of a network to variations in its parameters.
- The operating point of a transistor amplifier shifts mainly with changes in temperature, since the transistor parameters θ , I_{CO} and V_{BE} are functions of temperature.

β: increases with increase in temperature

|V_{BE}|: decreases about 2.5 mV per degree Celsius (°C) increase in temperature

I_{CO} (reverse saturation current): doubles in value for every 10°C increase in temperature

Variation of Silicon Transistor Parameters with Temperature

T (°C)	I_{CO} (nA)	β	$V_{BE}\left(\mathbf{V}\right)$
-65	0.2×10^{-3}	20	0.85
25	0.1	50	0.65
100	20	80	0.48
175	3.3×10^{3}	120	0.3

Stability Factors $S(I_{CO})$, $S(V_{BE})$, and $S(\beta)$

$$S(I_{CO}) = \frac{\Delta I_C}{\Delta I_{CO}}$$

$$S(V_{BE}) = \frac{\Delta I_C}{\Delta V_{BE}}$$

$$S(\beta) = \frac{\Delta I_C}{\Delta \beta}$$

BIAS STABILIZATION .. S(I_{CO})

*Stability Factor S:- The stability factor S, as the change of collector current with respect to the reverse saturation current, keeping β and VBE constant. This can be written as:

The Thermal Stability Factor: S_{lco}

$$S_{lco} = \frac{\partial I_c}{\partial I_{co}} \Big|_{V_{be}, \beta}$$

This equation signifies that I_c Changes S_{Ico} times as fast as I_{co}

Differentiating the equation of Collector Current $I_C = (1+\beta)I_{CO} + \beta I_{DD} - \delta I_{DD}$ rearranging the terms we can write

•
$$S_{lco} = 1 + \beta$$

$$1 - \beta (\partial I_b / \partial I_C)$$

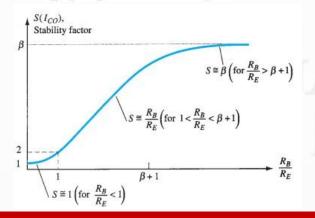
It may be noted that Lower is the value of S_{lco} better is the stability

BIAS STABILIZATION .. S(I_{co})

Fixed-Bias Configuration

$$S(I_{CO}) \cong \beta$$

Emitter-Bias Configuration


$$S(I_{CO}) \cong \frac{\beta(1 + R_B/R_E)}{\beta + R_B/B_E}$$

$$S(I_{CO}) \cong \beta$$
 $R_B/R_E \gg \beta$

$$S(I_{CO}) \cong 1$$
 $R_B/R_E \ll 1$

$$S(I_{CO}) \cong \frac{R_B}{R_E}$$

 R_R/R_F ranges between 1 and $(\beta + 1)$

Voltage-Divider Bias Configuration

$$S(I_{CO}) \cong \frac{\beta(1 + R_{Th}/R_E)}{\beta + R_{Th}/R_E}$$

Feedback-Bias Configuration ($R_E = 0 \Omega$)

$$S(I_{CO}) \cong \frac{\beta(1 + R_B/R_C)}{\beta + R_B/R_C}$$

Physical Impact

$$I_B = \frac{V_{CC} - V_{BE}}{R_B}$$

$$I_C = \beta I_B + (\beta + 1)I_{CO}$$

the level of I_C would continue to rise with temperature, with I_B maintaining a fairly constant value—a very unstable situation.

emitter-bias configuration

$$I_B \downarrow = \frac{V_{CC} - V_{BE} - V_E \uparrow}{R_B}$$

$$I_B \downarrow = \frac{V_{CC} - V_{BE} - V_{R_C} \uparrow}{R_B}$$

$$\beta R_E \gg 10R_2$$

The most stable of the configurations

BIAS STABILIZATION .. $S(V_{BE}) \& S(\beta)$

Fixed-Bias Configuration

$$S(V_{BE}) \cong \frac{-\beta}{R_B}$$

$$S(V_{BE}) \simeq \frac{-\beta/R_E}{\beta + R_B/R_E}$$

$$S(V_{BE}) \cong \frac{-\beta/R_E}{\beta} = -\frac{1}{R_E}$$

$$S(V_{BE}) = \frac{-\beta/R_E}{\beta + R_{Th}/R_E}$$

$$S(V_{BE}) = \frac{-\beta/R_C}{\beta + R_B/R_C}$$

$$S(\beta) = \frac{I_{C_1}}{\beta_1}$$

$$S(\beta) = \frac{\Delta I_C}{\Delta \beta} = \frac{I_{C_1}(1 + R_B/R_E)}{\beta_1(\beta_2 + R_B/R_E)}$$

$$S(\beta) = \frac{I_{C_1}(1 + R_{Th}/R_E)}{\beta_1(\beta_2 + R_{Th}/R_E)}$$

$$S(\beta) = \frac{I_{C_1}(R_B + R_C)}{\beta_1(R_B + \beta_2 R_C)}$$

Summary

$$\Delta I_C = S(I_{CO})\Delta I_{CO} + S(V_{BE})\Delta V_{BE} + S(\beta)\Delta\beta$$

For fixed-bias

$$\Delta I_C = \beta \Delta I_{CO} - \frac{\beta}{R_B} \Delta V_{BE} + \frac{I_{C_1}}{\beta_1} \Delta \beta$$

General Conclusion:

The ratio R_B/R_E or R_{Th}/R_E should be as small as possible with due consideration to all aspects of the design, including the ac response.

BIAS STABILIZATION .. $S(V_{BE}) \& S(\beta)$

$$S(V_{BE}) = \frac{\Delta I_C}{\Delta V_{BE}}$$

Fixed-Bias Configuration

$$S(V_{BE}) \cong \frac{-\beta}{R_B}$$

$$S(\beta) = \frac{I_{C_1}}{\beta_1}$$

Emitter-Bias Configuration

$$S(V_{BE}) \simeq \frac{-\beta/R_E}{\beta + R_B/R_E}$$

$$\beta \gg R_B/R_E$$

$$S(V_{BE}) \cong \frac{-\beta/R_E}{\beta} = -\frac{1}{R_E}$$

$$S(\beta) = \frac{\Delta I_C}{\Delta \beta} = \frac{I_{C_1}(1 + R_B/R_E)}{\beta_1(\beta_2 + R_B/R_E)}$$

Voltage-Divider Bias Configuration

$$S(V_{BE}) = \frac{-\beta/R_E}{\beta + R_{Th}/R_E}$$

$$S(\beta) = \frac{I_{C_1}(1 + R_{Th}/R_E)}{\beta_1(\beta_2 + R_{Th}/R_E)}$$

Feedback-Bias Configuration ($R_E = 0 \Omega$)

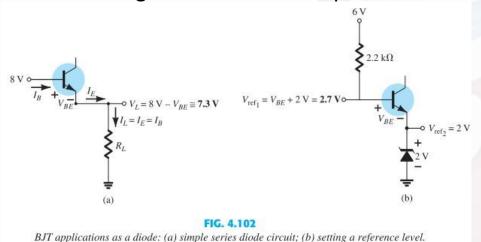
$$S(V_{BE}) = \frac{-\beta/R_C}{\beta + R_B/R_C}$$

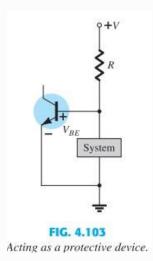
$$S(\beta) = \frac{I_{C_1}(R_B + R_C)}{\beta_1(R_B + \beta_2 R_C)}$$

Summary

$$\Delta I_C = S(I_{CO})\Delta I_{CO} + S(V_{BE})\Delta V_{BE} + S(\beta)\Delta\beta$$

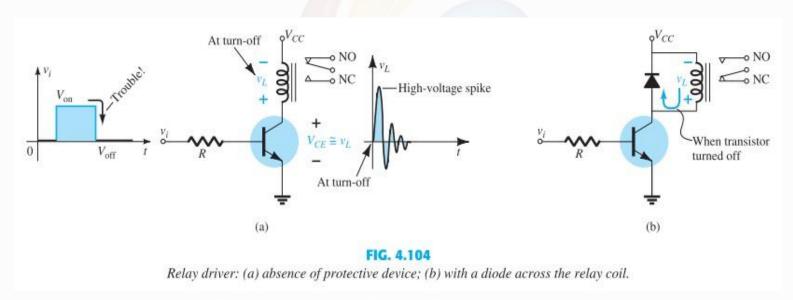
For fixed-bias


$$\Delta I_C = \beta \Delta I_{CO} - \frac{\beta}{R_B} \Delta V_{BE} + \frac{I_{C_1}}{\beta_1} \Delta \beta$$


General Conclusion:

The ratio R_B/R_E or R_{Th}/R_E should be as small as possible with due consideration to all aspects of the design, including the ac response.

PRACTICAL APPLICATION


BJT Diode Usage and Protective Capabilities

PRACTICAL APPLICATION

Relay Driver

