School of Electrical, Electronics and Communication Engineering

Course Code : BTEE2006

Course Name: Electrical Machine-1

Inductances and

Induced EMF

Acknowledgement: The materials presented in this lecture has been taken from open source, reference books etc. This can be used only for student welfare and academic purpose.

Name of the Faculty: Dr. Sheetla Prasad

Recap

- Design of a magnetic circuit
- Significant of magnetic reluctance
- Its components and analogy with electrical circuit
- Faraday's law and Lenz law
- Right hand rule

GALGOTIAS UNIVERSITY

Inductances and Induced EMF

Lecture-2 Objectives

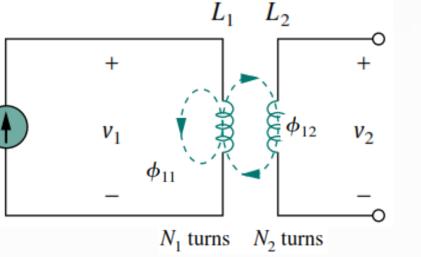
- Needs of magnetic coils
- Self inductance and Mutual inductances
- Dot convention in magnetic circuits
- Induced EMF and its types in Magnetic link circuits

Name of the Faculty: Dr. Sheetla Prasad

Self Inductance

- Consider a coil with N turns.
- When current i flows through it, a flux ϕ will be produced.
- As per Faraday's law,

$$V=N\frac{d\Phi}{dt}$$

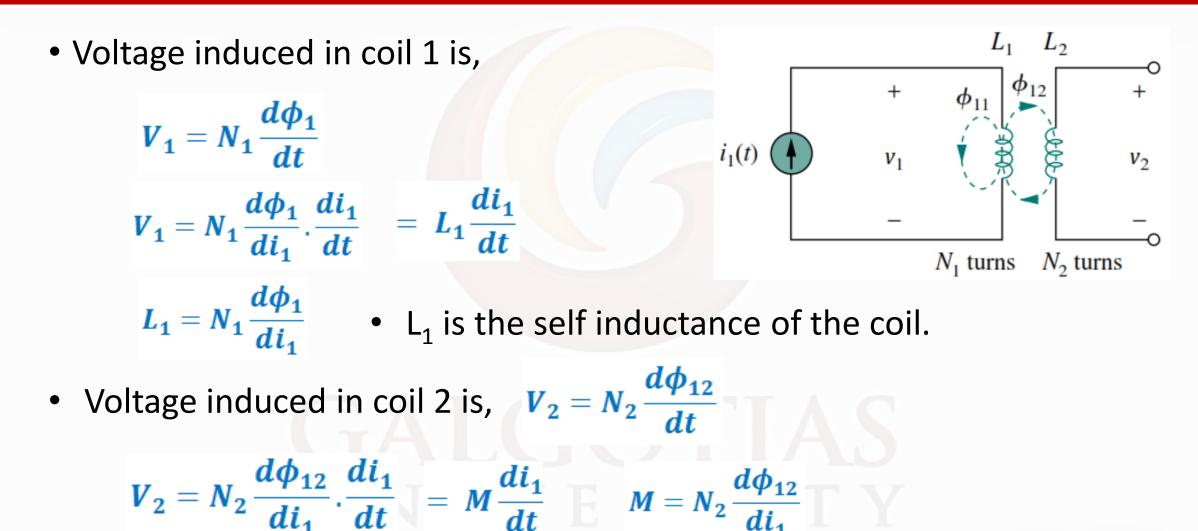

• Flux ϕ is produced by current *i* and hence any change in ϕ is caused by changes in *i*. Therefore,

$$V = N \frac{d\phi}{di} \cdot \frac{di}{dt} \qquad V = L \cdot \frac{di}{dt}$$

• The inductance *L* of the inductor is,
$$L = N \frac{d\phi}{di}$$

• This is called the *Self Inductance* of the coil. Name of the Faculty: Dr. Sheetla Prasad

 $i_1(t)$ (

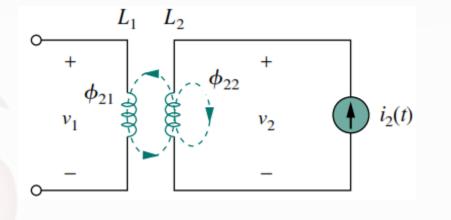

- Consider 2 coils with self inductances $L_1 \& L_2$ are kept close together.
- Coil 1 has N₁ turns and coil 2 has N₂ turns.

- Current i_1 creates a flux ϕ_1 in coil 1.
- This flux has got 2 components.
 - ϕ_{11} links with coil 1 only.
 - ϕ_{12} links with both the coils.
- Although both coils are physically separated, they are magnetically coupled.

Name of the Faculty: Dr. Sheetla Prasad

$$\phi_1 = \phi_{11} + \phi_{12}$$

• M is the mutual inductance between the 2 coils.

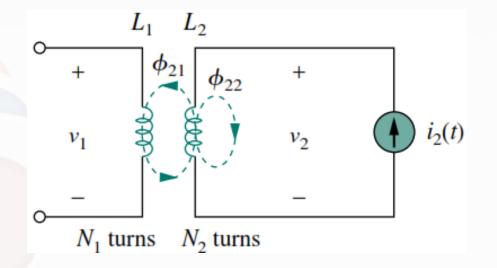

Name of the Faculty: Dr. Sheetla Prasad

 $\phi_2 = \phi_{22} + \phi_{21}$

• Now consider a current *i*₂ flows through

coil 2 and produces a flux ϕ_2

- This flux has got 2 components.
 - ϕ_{22} links with coil 1 only.
 - ϕ_{21} links with both the coils.

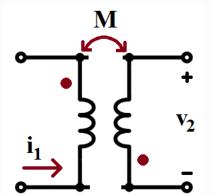


 N_1 turns N_2 turns

• Voltage induced in coil 2 is,

$$V_2 = N_2 \frac{d\phi_2}{dt}$$
$$V_2 = N_2 \cdot \frac{d\phi_2}{di_2} \cdot \frac{di_2}{dt} = L_2 \cdot \frac{di_2}{dt}$$

 $L_2 = N_2 \cdot \frac{d\phi_2}{di_2}$ • L_2 is the self inductance of the coil.


• Voltage induced in coil 1 is, $V_1 = N_1 \frac{d\phi_{21}}{dt}$

$$V_1 = N_1 \cdot \frac{d\phi_{21}}{di_2} \cdot \frac{di_2}{dt} = M \cdot \frac{di_2}{dt} \qquad M = N_1 \cdot \frac{d\phi_{21}}{di_2}$$

• M is the mutual inductance between the 2 coils.

Name of the Faculty: Dr. Sheetla Prasad

- Mutual inductance is the ability of one inductor to induce a voltage across a neighboring inductor.
- It is measured in henrys (H).

- The polarity of mutual voltage is determined by using dot covention.
- A dot is placed at one end of each coupled coils to indicate the direction of the magnetic flux if current enters that dotted terminal of the coil.

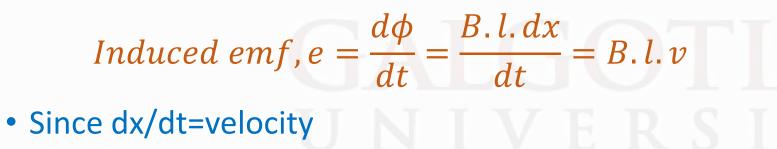
Name of the Faculty: Dr. Sheetla Prasad

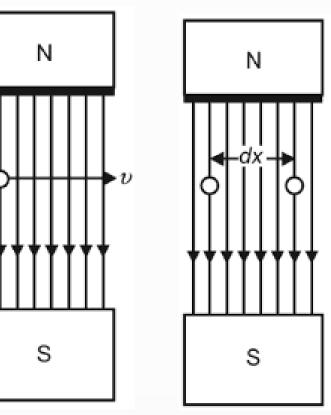
Types of Induced EMF

- According to Faraday's law of electromagnetic induction, an EMF is induced by changing the flux linkages in a coil. It can happen in two ways.
- EMF is induced either "moving the coil and keeping the magnetic field stationary" or "moving the magnetic field and keeping the coil stationary".
- EMF is induced by changing the flux linking with a coil without moving either coil or magnetic field system.

Dynamically Induced EMF

 "Moving the coil and keeping the magnetic field stationary" or "moving the magnetic field and keeping the coil stationary".

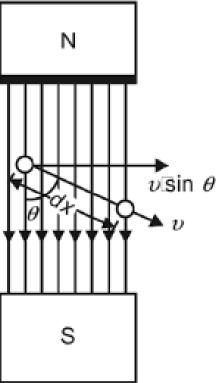

• EMF induced by this way is called dynamically induced emf. UNIVERSITY


Dynamically Induced EMF

Area swept by the conductor, $A = l \times dx$

Flux cut by the conductor, $d\phi = B \times A = B.l.dx$

• According to Faraday's law,


Name of the Faculty: Dr. Sheetla Prasad

Dynamically Induced EMF

• Now the conductor moves at an angle Θ with the direction of magnetic field. Distance covered by the conductor in dt seconds is = dx The component of distance perpendicular to the magnetic field is = dx.sin θ Area swept by the conductor, $A = l \times dx.sin\theta$ Flux cut by the conductor, $d\phi = B \times A = B.l.dx.sin\theta$

According to Faraday's law,

Induced emf, $e = \frac{d\phi}{dt} = \frac{B.l.dx.sin\theta}{dt} = B.l.v.sin\theta$

Name of the Faculty: Dr. Sheetla Prasad

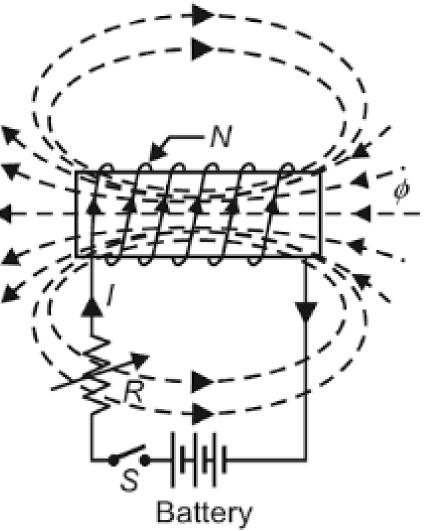
Statically Induced EMF

• EMF induced in a coil when both the coil and magnetic field system are stationary but the magnetic flux linking with the coil changes is called statically induced emf.

GALGOTIAS UNIVERSITY

Types of Statically Induced EMF

- Self Induced e.m.f.
- Mutually Induced e.m.f.


GALGOTIAS UNIVERSITY

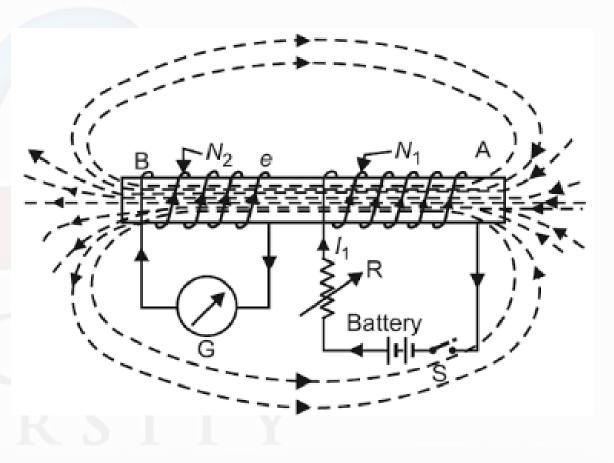
Name of the Faculty: Dr. Sheetla Prasad

Self Induced EMF

Self-induced e.m.f. is the e.m.f.
induced in a coil due to its own changing
flux linked with it.

Name of the Faculty: Dr. Sheetla Prasad

Self Induced EMF


- Direction of induced voltage is such that it opposes the cause producing it.
- Rate of change of flux depends on rate of change of current.

$$e \propto \frac{di}{dt}$$
 or $e = L \frac{di}{dt}$
L is the self inductance of the coil.

Name of the Faculty: Dr. Sheetla Prasad

Mutually Induced EMF

Mutually induced e.m.f. is the e.m.f.
induced in a coil due to the change
of flux produced by another coil
(kept close) linking with it.

