School of Electrical, Electronics and Communication Engineering

Course Code : BTEE2006

Course Name: Electrical Machine-1

ELECTROMECHANICAL ENERGY CONVERSION AND CONCEPTS IN ROTATING MACHINES UNIVERSITY

Name of the Faculty: Dr. Sheetla Prasad

Recap

- Connections of three phase transformer and its application
- Necessary and desirable conditions of the transformer
- Scott-T connections and phase conversions
- Phase conversion
- Harmonics

GALGOTIAS UNIVERSITY

Lecture-10 Objectives

- Electromechanical energy conversion
- Energy balance
- Types of magnetic systems
- Magnetic Field Energy Stored
- Concept of Co-energy
- Magnetic force

Name of the Faculty: Dr. Sheetla Prasad

- **Electro Mechanical Energy Conversion**
- Electrical energy can be transmitted to long distances with ease and it is highly efficient.
- It acts as a transmitting link for transporting other forms of energy.
- Devices for EMEC are,
 - Transducers which are used for low energy conversion.
 - Relays, solenoids and actuators which produce mechanical force or torque.
 - Motors and generators which are used for continuous energy conversion.

Name of the Faculty: Dr. Sheetla Prasad

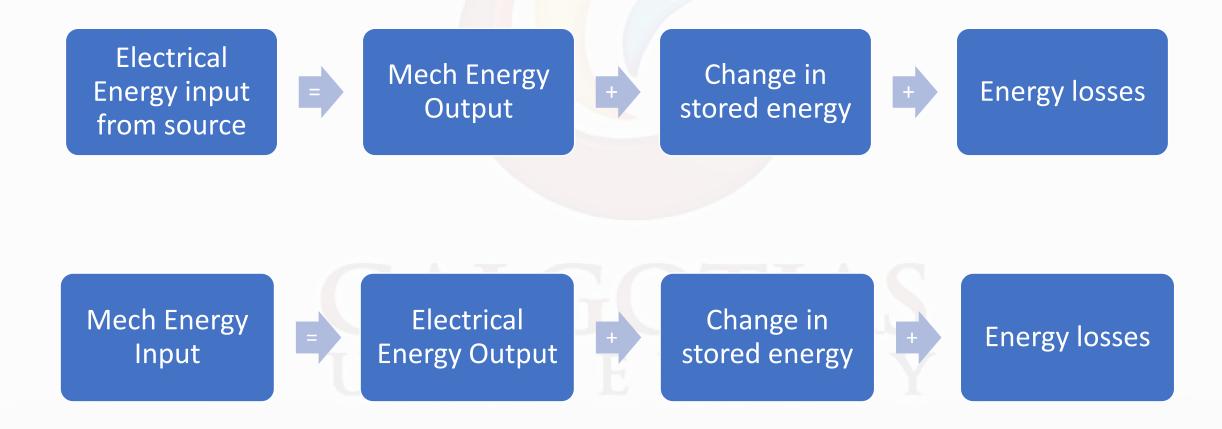
Electro Mechanical Energy Conversion

• EMEC takes place via magnetic field because of its higher energy

storing capacity.

• The fields involved with such electromechanical devices must be

slowly varying due to inertia in the mechanical parts.


Such fields are called quasi static fields.

Energy Balance

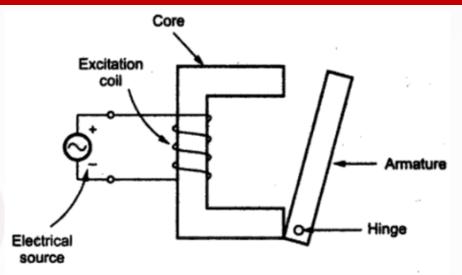
- Principle of conservation of energy Energy can neither be created nor destroyed. But it can be transformed from one form to other.
- Not the entire energy be transformed to other form.
- There are some energy loss.
- Some part of the energy is stored in the form of magnetic field.
- Thus the input energy has three parts.
 - Transformed energy
 - Energy loss
 - ✓ Stored energy

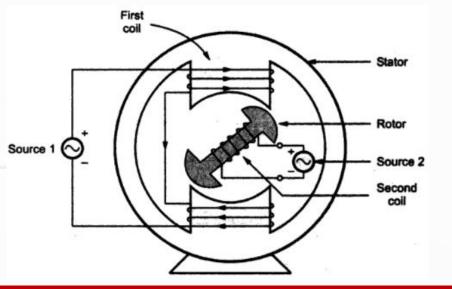
Name of the Faculty: Dr. Sheetla Prasad

Energy Balance In Motor and Generator

Name of the Faculty: Dr. Sheetla Prasad

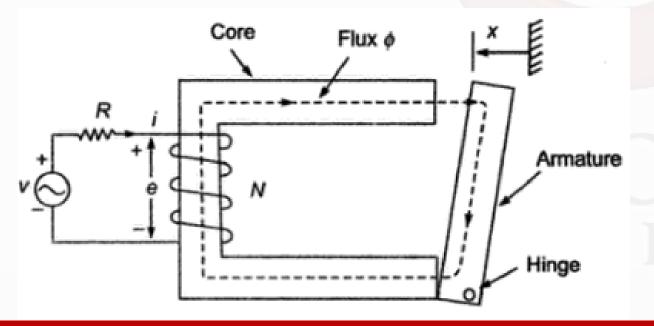
Types of Magnetic Systems


• Singly Excited System


- ✓ A single exciting coil is used to produce the magnetic field.
- ✓ Ex: Electromagnetic relay, solenoid coil etc...

<u>Multiply Excited System</u>

- ✓ More than one coils are used to produce magnetic field.
- ✓ Ex: Motors, alternators etc...


Name of the Faculty: Dr. Sheetla Prasad

Singly Excited Magnetic System

- Derivations of expressions of electrical input, stored energy and the mechanical force.
- Consider an attracted armature relay.

Assumptions

- Exciting coil is lossless.
- No leakage flux. All the flux links with all N turns.

Program Name: B.Tech. Electrical Engineering

Name of the Faculty: Dr. Sheetla Prasad

Electrical Energy Input

- Energy can be stored or retrieved from a magnetic system by means of an exciting coil connected to an electric source.
- When a voltage V is applied to the coil having N turns, a current of i will flow to produce a flux of φ webers.
- This flux will link with all N turns and create the flux linkages of,

 $\lambda = N\phi$

The EMF induced in the coil is given by,

Name of the Faculty: Dr. Sheetla Prasad

Electrical Energy Input

• Applying KVL to the coil circuit,

```
V - i.R - e = 0V = i.R + eV = i.R + \frac{d\lambda}{dt}
```

• The energy input to the coil due to the flow of current i in time dt is,

 $dW_e = e.i dt$

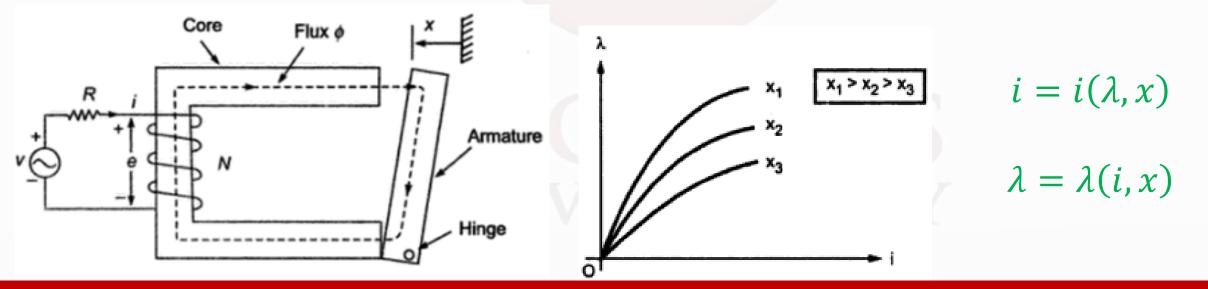
$$dW_e = \frac{d\lambda}{dt} \cdot i \, dt = i \cdot d\lambda = i \cdot d(N \cdot \phi) = N \cdot i \cdot d\phi = \mathcal{F} \cdot d\phi \quad ----1$$

Name of the Faculty: Dr. Sheetla Prasad

Magnetic Field Energy Stored

- Consider that the armature is fixed at position x. Hence mechanical work done is zero.
- Hence the entire electrical energy input gets stored in the magnetic field.

 $dW_f = dW_e = i. d\lambda = \mathcal{F}. d\phi$


• The energy stored when there is a change in flux or flux linkages can be written as,

$$W_f = \int_0^\lambda i(\lambda) d\lambda = \int_0^\phi \mathcal{F}(\phi) d\phi - ---2$$

Name of the Faculty: Dr. Sheetla Prasad

Magnetic Field Energy Stored <u>i – λ Relationship</u>

- It is similar to the magnetization curve which varies with **x**.
- The air-gap between armature and core varies with **x**.
- Total reluctance of the magnetic path decreases with increase in x.

Name of the Faculty: Dr. Sheetla Prasad

Magnetic Field Energy Stored

• Depending upon the independent variable, the stored field energy is also a function of i, x or λ , x.

$$\therefore W_f = W_f(\lambda, x)$$
 or $W_f = W_f(i, x)$

- If x is changed, then energy interchange takes place between the magnetic field and mechanical system.
- If x is constant, then energy interchange takes place between electric system and magnetic field.

Name of the Faculty: Dr. Sheetla Prasad

Concept of Co – Energy

- As per equation 2, the field energy is the area between λ axis and i- λ curve.
- The area between *i* axis and i- λ curve is called co-energy and it is λ-axis given as, $W_{r} = field energy$

$$\therefore W_f'(i,x) = i \cdot \lambda - W_f(\lambda,x) - -3$$

$$\therefore W'_f(i, x) = i \cdot \lambda - W_f(\lambda, x) - - -3$$

$$\therefore W'_f = \int_0^i \lambda di$$

$$W'_f = coenergy$$

Name of the Faculty: Dr. Sheetla Prasad

Concept of Co – Energy

• If i- λ relationship is assumed linear, then the field energy and co-energy will be equal. Hence,

$$W_f = W_f' = \frac{1}{2}i\lambda - - - 4$$

• We know that the coil inductance is,

$$L = \frac{N\phi}{i} = \frac{\lambda}{i}; \qquad \therefore \lambda = L.i \text{ and } i = \frac{\lambda}{L}$$
$$\therefore W_f = W'_f = \frac{1}{2}\frac{\lambda^2}{L} = \frac{1}{2}L.i^2 - --5$$

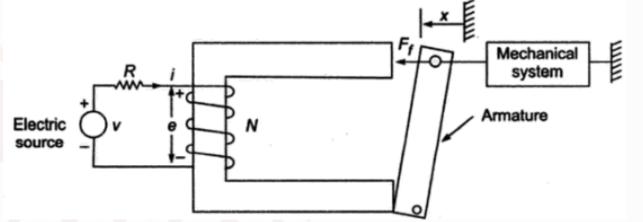
• Where L is a function of x. Name of the Faculty: Dr. Sheetla Prasad

Concept of Co – Energy

• It is clear that the field energy W_f is a function of two independent variables λ and x.

$$W_f(\lambda, x) = \frac{1}{2} \frac{\lambda^2}{L(x)} - - - 6$$

• The co-energy W_f is a function of two independent variables iand x.


$$W'_f(i,x) = \frac{1}{2}L(x)i^2 - - -7$$

Name of the Faculty: Dr. Sheetla Prasad

Mechanical Force

- Consider an attracted armature relay where the magnetic field produces a mechanical force F_f which moves the armature to a distance of dx.
- The mechanical work done is given by,

 $dW_m = F_f dx$

• Mechanical energy output = Electrical energy input – Stored field energy $F_f dx = i d\lambda - dW_f - - - - 8$

In such electromechanical systems, the independent variables can be (i,x) or (λ,x)
 Name of the Faculty: Dr. Sheetla Prasad
 Program Name: B.Tech. Electrical Engineering

Case 1: Independent variables are (i,x). i.e current constant

• Thus λ changes as i and x changes. Hence,

 $\lambda = \lambda(i, x)$ $d\lambda = \frac{\partial \lambda}{\partial i} di + \frac{\partial \lambda}{\partial x} dx - --9$ $W_f = W_f(i, x)$ $dW_f = \frac{\partial W_f}{\partial i} di + \frac{\partial W_f}{\partial x} dx - --10$

Substituting eqn 9 and eqn 10 in eqn 8, we get,

$$F_f dx = i \frac{\partial \lambda}{\partial i} di + i \frac{\partial \lambda}{\partial x} dx - \frac{\partial W_f}{\partial i} di - \frac{\partial W_f}{\partial x} dx$$

Name of the Faculty: Dr. Sheetla Prasad

$$F_{f}dx = \left(i\frac{\partial\lambda}{\partial x} - \frac{\partial W_{f}}{\partial x}\right)dx + \left(i\frac{\partial\lambda}{\partial i} - \frac{\partial W_{f}}{\partial i}\right)di$$

$$F_{f}dx = \left(i\frac{\partial\lambda}{\partial x} - \frac{\partial W_{f}}{\partial x}\right)dx$$

$$F_{f} = i\frac{\partial\lambda}{\partial x} - \frac{\partial W_{f}}{\partial x}$$

$$F_{f} = \frac{\partial}{\partial x}(i\lambda - W_{f})$$

Name of the Faculty: Dr. Sheetla Prasad

Case 2: Independent variables are (λ,x). i.e voltage constant

- Thus i changes as λ and x changes. Hence,
- $i = i(\lambda, x)$
- $W_f = W_f(\lambda, x)$

$$dW_f = \frac{\partial W_f}{\partial \lambda} d\lambda + \frac{\partial W_f}{\partial x} dx - - -11$$

Substituting eqn 10 in eqn 8, we get,

$$F_{f} dx = id\lambda - \frac{\partial W_{f}}{\partial \lambda} d\lambda - \frac{\partial W_{f}}{\partial x} dx$$

$$F_{f} dx = -\frac{\partial W_{f}}{\partial x} dx + \left(i - \frac{\partial W_{f}}{\partial \lambda}\right) d\lambda$$

$$F_{f} dx = -\frac{\partial W_{f}}{\partial x} dx + \left(i - \frac{\partial W_{f}}{\partial \lambda}\right) d\lambda$$

Name of the Faculty: Dr. Sheetla Prasad

Summary

- Electromechanical energy conversion
- Energy balance
- Types of magnetic systems
- Magnetic Field Energy Stored
- Concept of Co-energy
- Magnetic force

Name of the Faculty: Dr. Sheetla Prasad