School of Electrical, Electronics and Communication Engineering

Course Code : BTEE2006

Course Name: Electrical Machine-1

Magnetic Circuit

GALGSSES GALGSTIAS

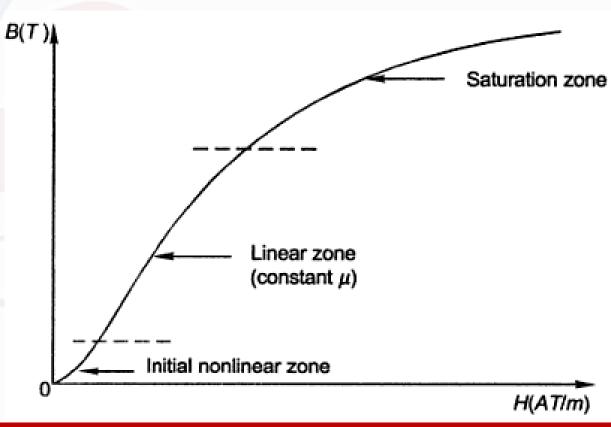
Acknowledgement: The materials presented in this lecture has been taken from open source, reference books etc. This can be used only for student welfare and academic purpose.

Name of the Faculty: Dr. Sheetla Prasad

Recap

- Needs of magnetic coils
- Self inductance and Mutual inductances
- Dot convention in magnetic circuits
- Induced EMF and its types in Magnetic link circuits

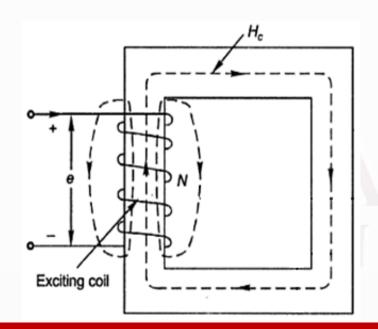
GALGOTIAS UNIVERSITY

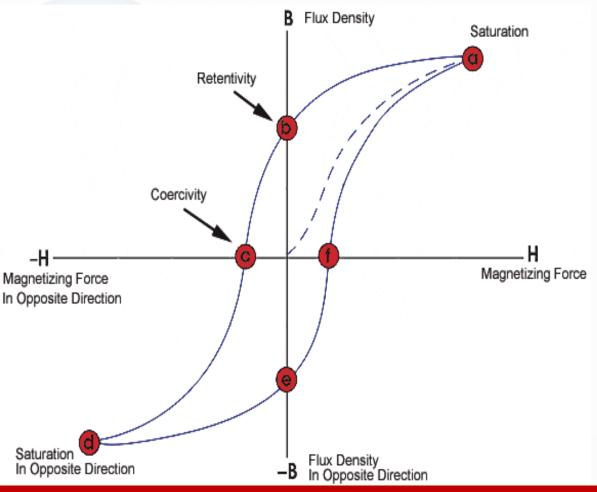

Lecture-3 Objectives

- Magnetization curve
- Hysteresis Loop/ B-H Curve
- Magnetic Circuit losses and its types
- Fringing effect and stacking factor
- Properties of magnetic materials

Name of the Faculty: Dr. Sheetla Prasad

Magnetisation Curve


The curve that shows the variation in magnetic flux density *B* with respect to the variation in magnetic field intensity *H* in a ferromagnetic material.



Name of the Faculty: Dr. Sheetla Prasad

Hysteresis Loop

- A hysteresis loop shows the variation of the magnetic flux density (**B**) with respect to the variation in magnetizing force (**H**).
- It is often referred to as the B-H loop.

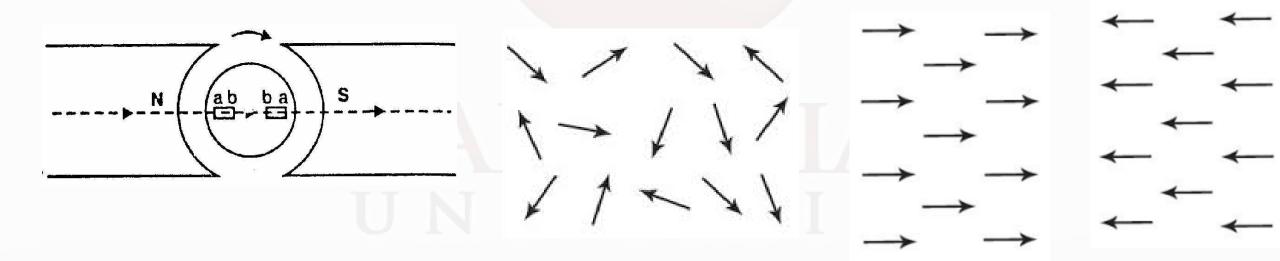
Name of the Faculty: Dr. Sheetla Prasad

Hysteresis Loop

- Retentivity It is the ability of a material to retain a certain amount of residual magnetic field when the magnetizing force is removed after achieving saturation.
- **Residual Magnetism** or **Residual Flux** The magnetic flux density that remains in a material when the magnetizing force is zero.
- Coercive Force The amount of reverse magnetic field which must be

applied to a magnetic material to make the magnetic flux return to zero.

Name of the Faculty: Dr. Sheetla Prasad


Hysteresis and Eddy Current Loss

- When a magnetic material is subjected to cyclic magnetization, two kinds of power losses occur in it.
- Hysteresis loss and Eddy current loss together called core loss.

Name of the Faculty: Dr. Sheetla Prasad

Hysteresis Loss

 Magnetic circuit is subjected to magnetic field reversals as it passes under successive poles.

Name of the Faculty: Dr. Sheetla Prasad

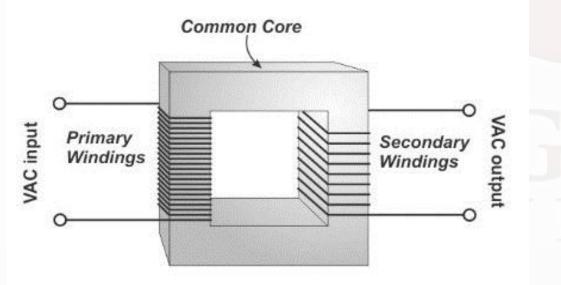
Hysteresis Loss

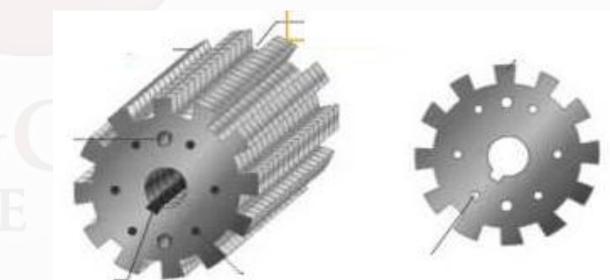
- Some amount of power has to be spent to reverse the molecular magnets
 - in the armature core continuously.
- It is considered as loss.
- The loss of power in the core due to hysteresis effect is called hysteresis loss.

• It is given by Steinmetz formula.

Hysteresis loss,
$$P_h = K_h B_{max}^{1.6} f v$$
 watts

Where


 $B_{max} = maximum flux density in the core$ f = frequency of magnetic reversals $v = volume of armature in m^3$ $K_h = Steinmetz hysteresis co - efficient$


• To reduce this loss, the magnetic core is made of such materials which

have a low value of Steinmetz hysteresis co-efficient e.g., silicon steel.Name of the Faculty: Dr. Sheetla PrasadProgram Name: B.Tech. Electrical Engineering

Eddy Current Loss

- In addition to the voltages induced in the conductors, there are also voltages induced in the magnetic core.
- These voltages produce circulating currents in the core.

Name of the Faculty: Dr. Sheetla Prasad

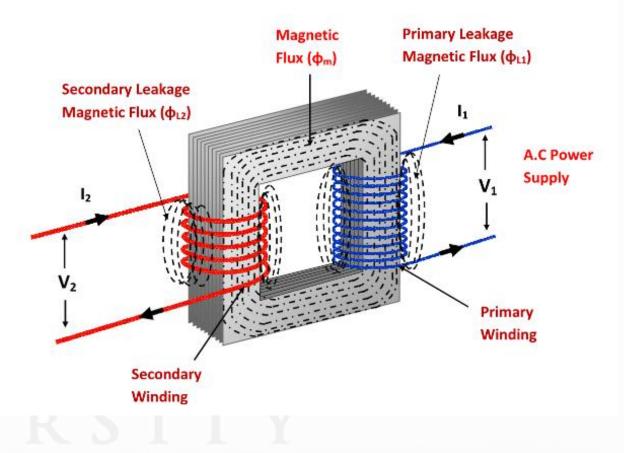
Eddy Current Loss

• It is given by

Eddy current loss, $P_e = K_e B_{max}^2 f^2 t^2 v$ watts

Where

 $B_{max} = maximum flux density in the core$ f = frequency of magnetic reversals $v = volume of armature in m^3$ t = thickness of lamination in m $K_e = constant$

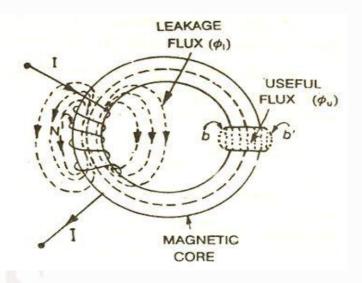

Name of the Faculty: Dr. Sheetla Prasad

Problem:

The core loss (hysteresis + eddy current loss) for a given specimen of magnetic material is found to be 2000 W at 50 Hz. Keeping the flux density constant, the frequency of the supply is raised to 75 Hz resulting in a core loss of 3200 W. Compute separately hysteresis and eddy current losses at both the frequencies.

Leakage Flux

- The stray flux, which does not take part in the energy conversion process, is called *leakage flux*.
- This leakage flux can never be eliminated.
- The effect of leakage flux is incorporated in machine models through the concept of the leakage inductance.



Program Name: B.Tech. Electrical Engineering

Name of the Faculty: Dr. Sheetla Prasad

Fringing

- The flux in a magnetic circuit bulges (or fringes) outwards while passing through an air-gap.
- This results in non-uniform flux density in the airgap, enlargement of air-gap area and reduction in flux density in air-gap.

• This phenomenon is called *fringing*. The effect of

fringing increases with the increase in air-gap length.

Name of the Faculty: Dr. Sheetla Prasad

Stacking Factor

- Magnetic cores are made up of thin, lightly insulated (coated with varnish) laminations to reduce eddy current loss.
- As a result, the net cross sectional area of the core occupied by the magnetic material is less than its gross cross section.
- Hence the ratio of net cross sectional area to the gross cross sectional area of the core is called *Stacking factor*.

 The field winding of DC electromagnet is wound with 800 turns and has a resistance of 40Ω when exciting voltage is 230 V and the magnetic flux around the coil is 0.004 Wb. Calculate self-inductance and energy stored in magnetic field.

$$L = \frac{N \cdot \phi}{i}$$
Energy Stored in magnetic field, $e = \frac{1}{2}Li^2$

$$i = \frac{V}{R} = \frac{230}{40} = 5.75 A$$

$$e = \frac{1}{2}0.556 \times 5.75^2$$

$$\therefore L = \frac{800 \times 0.004}{5.75}$$

$$e = 9.19 \text{ Joules}$$

L = 0.556 H

Name of the Faculty: Dr. Sheetla Prasad

- Two coils *A* and *B* are wound on same iron core. There are 600 turns on *A* and 3600 turns on *B*. 4 amps of current through the coil *A* produces a flux of 500 X 10⁻⁶ Wb in the core. If this current is reversed in 0.02 seconds, calculate average emf induced in coils *A* and *B*.
 - Current reversal means that the current changing from +4A to -4A.
 - Actual change in current is 8A. Hence change in flux is 1000 X 10⁻⁶ wb

 $EMF \text{ in } coil A = N_1 \cdot \frac{d\phi}{dt}$ $EMF \text{ in } coil B = N_2 \cdot \frac{d\phi}{dt}$ $EMF \text{ in } coil B = 3600 \cdot \frac{0.001}{0.02}$ E = 30 V E = 180 V

Program Name: B.Tech. Electrical Engineering

Name of the Faculty: Dr. Sheetla Prasad

Properties of Magnetic Materials

• All materials are classified according to their relative permeability.

Paramagnetic	• μ_r slightly greater than 1
Diamagnetic	• μ_r slightly lesser than 1
Ferro & Ferrimagnetic	 μ_r much higher than that of free space

Name of the Faculty: Dr. Sheetla Prasad

Properties of Magnetic Materials

• Ferromagnetic materials are further subdivided into *hard* and *soft*.

Hard (Per. Magnet)

- Alnico
- Chromium steel
- Copper nickel alloys
- Metal alloys

Soft

 Iron and its alloys with nickel, cobalt, tungsten and aluminium

Name of the Faculty: Dr. Sheetla Prasad

Summary

- Magnetization curve
- Hysteresis Loop/ B-H Curve
- Magnetic Circuit losses and its types
- Fringing effect and stacking factor
- Properties of magnetic materials

Name of the Faculty: Dr. Sheetla Prasad