School of Electrical, Electronics and Communication Engineering

Course Code : BTEE2006

Course Name: Electrical Machine-1

MMF Force and Torque

Acknowledgement: The materials presented in this lecture has been taken from open source, reference books etc. This can be used only for student welfare and academic purpose.

Name of the Faculty: Dr. Sheetla Prasad

Recap

- Electromechanical energy conversion
- Energy balance
- Types of magnetic systems
- Magnetic Field Energy Stored
- Concept of Co-energy
- Magnetic force

GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. Sheetla Prasad

Lecture-11 Objectives

- Torque in Rotational System
- Multiply Excited Magnetic System
- MMF of Distributed AC Windings

GALGOTIAS UNIVERSITY

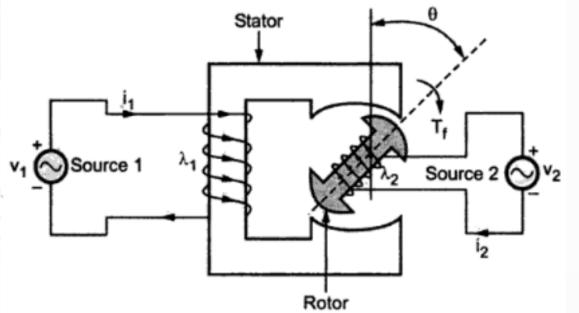
Torque in Rotational System

• In rotational system, force is replaced by torque and linear displacement dx is replaced by angular displacement d θ .

Name of the Faculty: Dr. Sheetla Prasad

Multiply Excited Magnetic System

- These systems are used where continuous energy conversion occurs.
- Example: motors, alternators etc...
- The doubly excited system has two independent sources of excitations.
- Due to the 2 sources, there are two sets of 3 independent variables.
- They are $(\lambda_1, \lambda_2, \theta)$ and (i_1, i_2, θ)



Name of the Faculty: Dr. Sheetla Prasad

<u>Case 1: Independent variables are $(\lambda_1, \lambda_2, \theta)$ </u>

• We know that,

$$T_f = -\frac{\partial W_f(\lambda_1, \lambda_2, \theta)}{\partial \theta} - - - 1$$

• The field energy is,

$$W_f(\lambda_1, \lambda_2, \theta) = \int_0^{\lambda_1} i_1 d\lambda_1 + \int_0^{\lambda_2} i_2 d\lambda_2 - - - - 2$$
$$\lambda_1 = L_{11}i_1 + L_{12}i_2 - - - 3$$
$$\lambda_2 = L_{12}i_1 + L_{22}i_2 - - - 4$$

Name of the Faculty: Dr. Sheetla Prasad

- Solve eqn 3 and eqn 4 to express i_1 and i_2 in terms of λ_1 and λ_2 .
- Multiply eqn 3 by L_{12} and eqn4 by L_{11} ,

$$L_{12}\lambda_1 = L_{12}L_{11}i_1 + L_{12}^2i_2 - - - 5$$
$$L_{11}\lambda_2 = L_{11}L_{12}i_1 + L_{11}L_{22}i_2 - - 6$$

• Subtracting eqn 6 from eqn 5,

$$L_{12}\lambda_{1} - L_{11}\lambda_{2} = L_{12}L_{11}i_{1} + L_{12}^{2}i_{2} - L_{11}L_{12}i_{1} - L_{11}L_{22}i_{2}$$
$$L_{12}\lambda_{1} - L_{11}\lambda_{2} = (L_{12}^{2} - L_{11}L_{22})i_{2}$$
$$i_{2} = \left(\frac{L_{12}}{L_{12}^{2} - L_{11}L_{22}}\right)\lambda_{1} - \left(\frac{L_{11}}{L_{12}^{2} - L_{11}L_{22}}\right)\lambda_{2}$$

Name of the Faculty: Dr. Sheetla Prasad

 $i_2 = \beta_{21}\lambda_1 + \beta_{22}\lambda_2$

• Similarly i_1 can be expressed in terms of λ_1 and λ_2 as,

 $i_1 = \beta_{11}\lambda_1 + \beta_{12}\lambda_2$ $\beta_{11} = \frac{L_{22}}{L_{11} - L_{22}}$ $\beta_{22} = \frac{L_{11}}{L_{11}L_{22} - L_{12}^2}$ $\beta_{12} = \beta_{21} = -\frac{L_{12}}{L_{11}L_{22} - L_{12}^2}$

Name of the Faculty: Dr. Sheetla Prasad

• From eqn 2,

$$W_{f}(\lambda_{1},\lambda_{2},\theta) = \int_{0}^{\lambda_{1}} (\beta_{11}\lambda_{1} + \beta_{12}\lambda_{2})d\lambda_{1} + \int_{0}^{\lambda_{2}} (\beta_{21}\lambda_{1} + \beta_{22}\lambda_{2})d\lambda_{2}$$
$$W_{f}(\lambda_{1},\lambda_{2},\theta) = \frac{1}{2}\beta_{11}\lambda_{1}^{2} + \beta_{12}\lambda_{1}\lambda_{2} + \frac{1}{2}\beta_{22}\lambda_{2}^{2}$$

• The self and mutual inductances of the coils depend on the angular position θ of the rotor.

Name of the Faculty: Dr. Sheetla Prasad

<u>Case 2: Independent variables are (i₁, i₂, θ)</u>

• We know that,

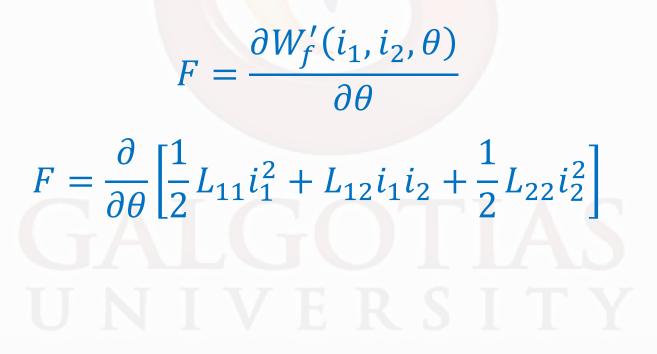
$$T_f = \frac{\partial W_f'(i_1, i_2, \theta)}{\partial \theta} - - - 7$$

• The co – energy is given by,

Name of the Faculty: Dr. Sheetla Prasad

$$W'_f(i_1, i_2, \theta) = \frac{1}{2}L_{11}i_1^2 + L_{12}i_1i_2 + \frac{1}{2}L_{22}i_2^2$$

Force in a doubly excited system,



Name of the Faculty: Dr. Sheetla Prasad

Two coupled coils have self and mutual inductance of

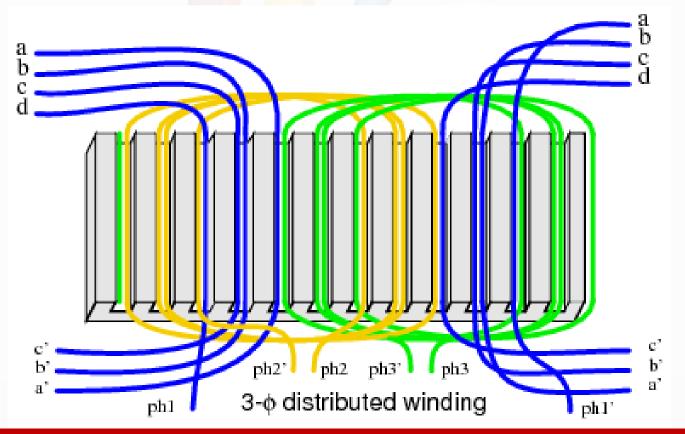
$$L_{11} = 2 + \frac{1}{2x}; L_{22} = 1 + \frac{1}{2x}; L_{12} = L_{21} = \frac{1}{2x}$$

over a certain range of linear displacement of x. The first coil is excited by a constant current of 20 A and the second by a constant current of –10 A. Find mechanical work done if x changes from 0.5 to 1 m and also the energy supplied by each electrical source.

MMF of Distributed AC Windings

• The armature of any machine has distributed winding wound for the

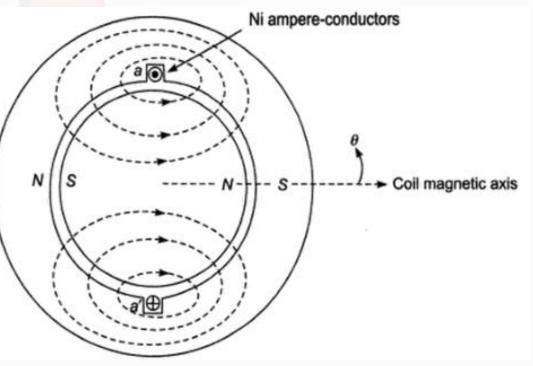
same number of poles as the field winding.



Name of the Faculty: Dr. Sheetla Prasad

MMF of a Single Coil

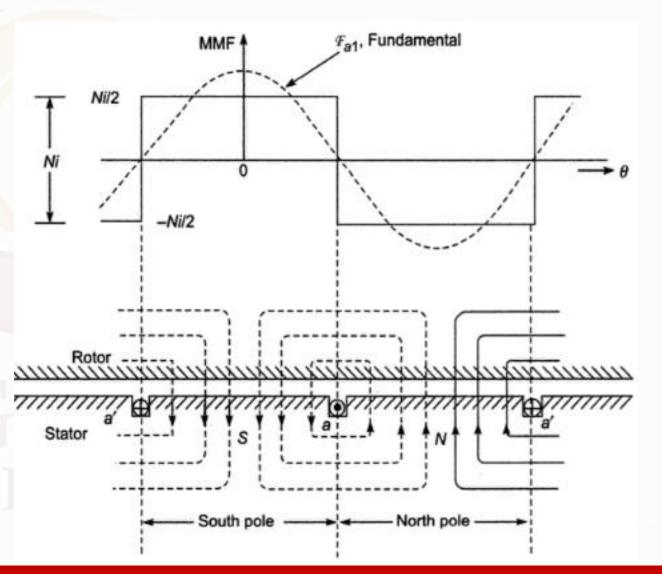
- Assume a cylindrical rotor machine with a small air-gap.
- The stator is wound for 2 poles with a single N turn coil carrying a current of *i* amps.
- The MMF produced by the single coil is Ni.
- This MMF creates a flux and each flux line crosses the air-gap radially twice.
- Half of the MMF is used to create flux from stator to rotor and other half is used to create flux from rotor to stator.



Name of the Faculty: Dr. Sheetla Prasad

MMF of a Single Coil

- In the developed diagram shown, the stator is laid down with the rotor on the top of it.
- The shape of the MMF is seen to be rectangular.
- +Ni/2 is consumed in setting up flux from rotor to stator and -Ni/2 is consumed in setting up flux stator to rotor.



Program Name: B.Tech. Electrical Engineering

Name of the Faculty: Dr. Sheetla Prasad

- MMF produced by the coil changes between +Ni/2 and -Ni/2 abruptly.
- Using fourier analysis, the fundamental component of MMF can be found as,

$$\mathcal{F}_{a1} = \frac{4}{\pi} \frac{Ni}{2} \cos \theta = F_{1p} \cos \theta$$
$$F_{1p} = \frac{4}{\pi} \frac{Ni}{2}$$

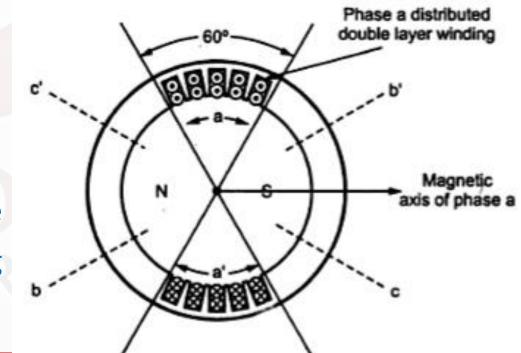
GALGOTIAS UNIVERSITY

MMF of a Distributed Winding

• Consider a 2 pole, cylindrical rotor with,

m = slots/pole/phase = 5n = slots/pole = 5x3 = 15

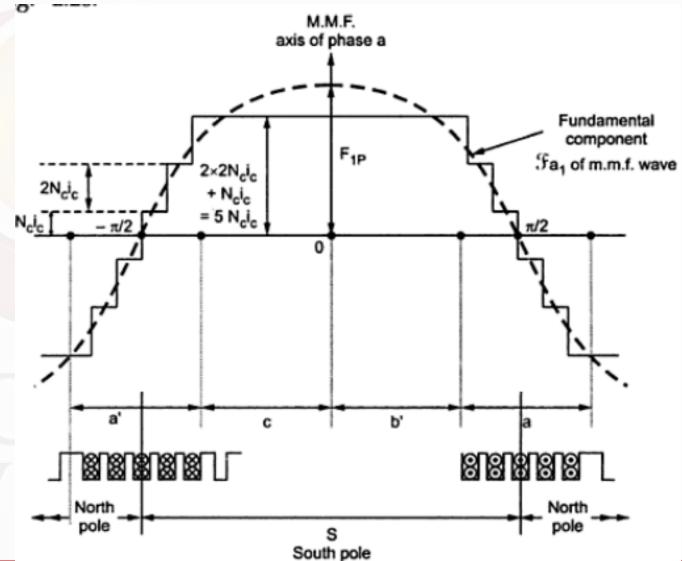
- The distributed winding for phase A, occupying 5 slots per pole is shown below.
- Let N_c = turns in a coil
- i_c = conductor current
- M.M.F in 1 slot = 2. $N_c.i_c$
- As the No. of slots are odd, half of the ampere conductors produce south pole and remaining half produce north pole on stator.



Name of the Faculty: Dr. Sheetla Prasad

Program Name: B.Tech. Electrical Engineering

- At each slot, the MMF wave has a step jump of 2 N_ci_c.
- Total MMF produced in 5 slots is 10N_ci_c.
- Half of this total MMF is used to set up flux from rotor to stator and remaining half is used to create flux from stator to rotor.
- Now F_{1P}, the peak of fundamental waveform has to be determined.



Program Name: B.Tech. Electrical Engineering

Name of the Faculty: Dr. Sheetla Prasad

Let

- T_{ph} = series turns per parallel path of a phase.
- A = Number of parallel paths.

 $Ampere turn per parallel path = T_{ph} \times i_{c}$ $Ampere turn per phase = A[T_{ph} \times i_{c}]$ $Total current in one phase, i_{a} = A \times i_{c}$ $Ampere turn/phase = T_{ph} \times i_{a}$ $Ampere turn/pole/phase = \frac{T_{ph} \times i_{a}}{P}$

• Using fourier analysis, the equation for mmf wave is given by,

$$\mathcal{F}_{a1} = \frac{4}{\pi} \frac{T_{ph} \times i_a}{P} \cos\theta$$

- Because of short pitched and distributed winding, the mmf gets reduced by
 - a factor K_p and K_d . Hence the equation for mmf wave is given by,

$$\mathcal{F}_{a1} = \left(\frac{4}{\pi} K_p K_d \frac{T_{ph} \times i_a}{P}\right) \cos \theta = F_{1p} \cos \theta$$

Summary

- Torque in Rotational System
- Multiply Excited Magnetic System
- MMF of Distributed AC Windings

GALGOTIAS UNIVERSITY