

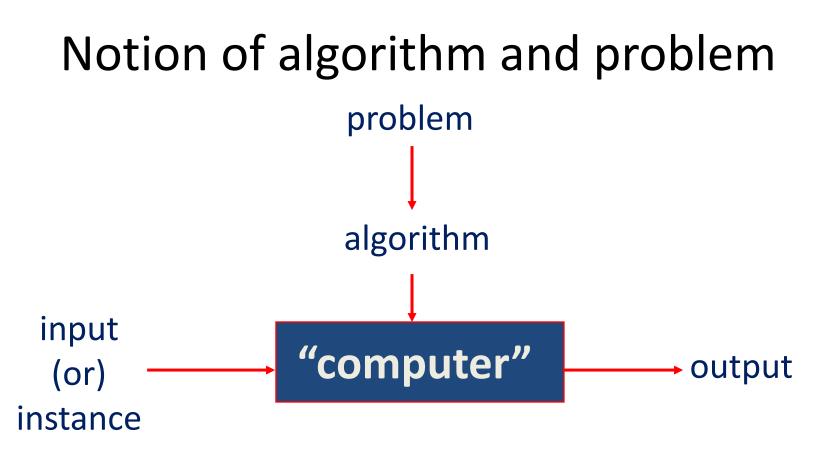
UNIT I INTRODUCTION

Introduction to Algorithms – Fundamentals of Algorithmic Problem Solving – Fundamentals of the Analysis of Algorithmic Efficiency – Analysis Framework – Asymptotic Notations and Basic Efficiency Classes – Mathematical Analysis of Recursive Algorithms – Mathematical Analysis of Non-recursive Algorithms

An <u>algorithm</u> is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.

- Can be represented various forms
- Unambiguity/clearness
- Effectiveness
- Finiteness/termination
- Correctness

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms



Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Example of computational problem: sorting

• Statement of problem:

- Input: A sequence of *n* numbers $\langle a_1, a_2, ..., a_n \rangle$
- **Output:** A reordering of the input sequence $\langle a'_1, a'_2, ..., a'_n \rangle$ so that $a'_i \leq a'_j$ whenever i < j
- Instance: The sequence <5, 3, 2, 8, 3>

• Algorithms:

- Selection sort
- Insertion sort
- Merge sort
- (many others)

Some Well-known Computational Problems

- Sorting
- Searching
- Shortest paths in a graph
- Minimum spanning tree
- Traveling salesman problem
- Knapsack problem
- Towers of Hanoi

Some of these problems don't have efficient algorithms, or algorithms at all!

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Basic Issues Related to Algorithms

- How to design algorithms
- How to express algorithms
- Proving correctness
- Efficiency (or complexity) analysis
 - Theoretical analysis
 - Empirical analysis
- Optimality

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Algorithm Design Strategies

- Brute force
- Divide and conquer
- Decrease and conquer
- Transform and conquer

- Greedy approach
- Dynamic programming
- Backtracking and branch-and-bound

Analysis of Algorithms

- How good is the algorithm?
- Correctness
- Time efficiency
- Space efficiency
- Does there exist a better algorithm?
- Lower bounds
- Optimality

What is an algorithm?

Recipe, process, method, technique, procedure, routine,... with the following requirements:

- Finiteness
 - terminates after a finite number of steps
- Definiteness
 - rigorously and unambiguously specified
- Clearly specified input
 - valid inputs are clearly specified
- Clearly specified/expected output
 - can be proved to produce the correct output given a valid input
- Effectiveness
 - steps are sufficiently simple and basic

Why study algorithms?

- Theoretical importance
- the core of computer science
- Practical importance
- A practitioner's toolkit of known algorithms
- Framework for designing and analyzing algorithms for new problems

Euclid's Algorithm

Problem: Find gcd(*m*,*n*), the greatest common divisor of two nonnegative, not both zero integers *m* and *n*

Examples: gcd(60,24) = 12, gcd(60,0) = 60, gcd(0,0) = ?

Euclid's algorithm is based on repeated application of equality $gcd(m,n) = gcd(n, m \mod n)$

until the second number becomes 0, which makes the problem trivial.

```
Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12
```


Two descriptions of Euclid's algorithm

Step 1: If n = 0, return m and stop; otherwise go to Step 2Step 2: Divide m by n and assign the value of the remainder to rStep 3: Assign the value of n to m and the value of r to n. Go to Step 1.

```
while n \neq 0 do

r \leftarrow m \mod n

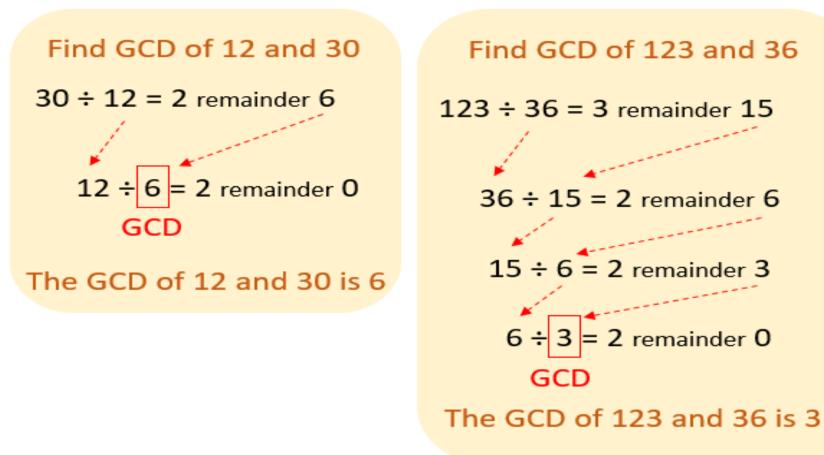
m \leftarrow n

n \leftarrow r

return m
```


Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Example:



- Other methods for computing gcd(*m*,*n*)
- Consecutive integer checking algorithm
- Step 1 Assign the value of min{*m*,*n*} to *t*
- Step 2 Divide *m* by *t*. If the remainder is 0, go to Step 3; otherwise, go to Step 4
- Step 3 Divide *n* by *t*. If the remainder is 0, return *t* and stop; otherwise, go to Step 4
- Step 4 Decrease *t* by 1 and go to Step 2
- Is this slower than Euclid's algorithm? How much slower?

O(n), if n <= m , vs O(log n)

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Consecutive Integer Checking Algorithm

10

□ Example: gcd(10,6) = 2

t	m % t	n % t			
6	10 % 6 = 4				
5	10 % 5 = 0	6 % 5 = 1			
4	10 % 4 = 2				
3	10 % 3 = 1				
2	10 % 2 = 0	6 % 2 = 0			

2 is the GCD, since m % t and n % t are zero.

Other methods for gcd(*m*,*n*) [cont.]

- Middle-school procedure
- Step 1 Find the prime factorization of *m*
- Step 2 Find the prime factorization of *n*
- Step 3 Find all the common prime factors
- Step 4 Compute the product of all the common prime factors and return it as gcd(*m*,*n*)

Sieve of Eratosthenes

- Input: Integer $n \ge 2$
- **Output: List of primes less than or equal to** *n*
- for $p \leftarrow 2$ to n do $A[p] \leftarrow p$
- for $p \leftarrow 2$ to $\lfloor n \rfloor$ do
 - if $A[p] \neq 0$ //p hasn't been previously eliminated from the list $j \leftarrow p * p$
 - while $j \leq n$ do
 - *A*[*j*] ← 0 //mark element as eliminated
 - $j \leftarrow j + p$

Example: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time complexity: sqrt(n)

GALGOTIAS UNIVERSITY

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Sieve of Eratosthenes

1	(2)	3	4	(5)	6	\bigcirc	-8	×	1 0	
(11)	12	(13)	ł4	15	£6	(17)	18	(19)	20	
21	22	(23)	24	-25	26	27	28	(29)	30	
(31)	32	33	34	35	36	(37)	38	39	40	
(41)	42	(43)	44	45	46	(47)	48	49	50	
T	52	(53)	54	55	56	51	58	(59)	60	
(61)	62	B	<i>6</i> 4	65	.66	(67)	68	69	70	
(71)	72	(73)	74	75	76	21	78	(79)	-80	
81	-82	(83)	-84	.85	.86	87	88	(89)	-90	
91	92	-93	94	95	96	(97)	98	-95	100	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$										
GCD = Multiplication of common factors = 2 x 2 x 3										

