

UNIT I INTRODUCTION:

Introduction to Algorithms – Fundamentals of Algorithmic Problem Solving – Fundamentals of the Analysis of Algorithmic Efficiency – Analysis Framework – Asymptotic Notations and Basic Efficiency Classes – Mathematical Analysis of Recursive Algorithms – Mathematical Analysis of Non-recursive Algorithms

Asymptotic Notations and Basic Efficiency Classes

- A way of comparing functions that ignores constant factors and small input sizes (because?)
- O(g(n)): class of functions f(n) that grow <u>no faster</u> than g(n)
- Θ(g(n)): class of functions f(n) that grow <u>at same rate</u> as g(n)
- Ω(g(n)): class of functions f(n) that grow <u>at least as</u> <u>fast</u> as g(n)

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

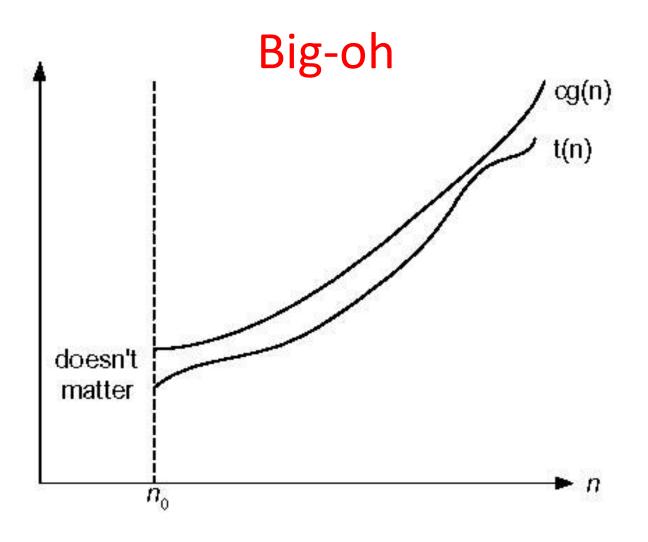


Figure 2.1 Big-oh notation: $t(n) \in O(g(n))$

Name of the Faculty: Dr. Sasikumar Periyannan

Program Name: B.Sc., (Hons) Computer Science

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms



Fig. 2.2 Big-omega notation: $t(n) \in \Omega(g(n))$

Name of the Faculty: Dr. Sasikumar Periyannan

Program Name: B.Sc., (Hons) Computer Science

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

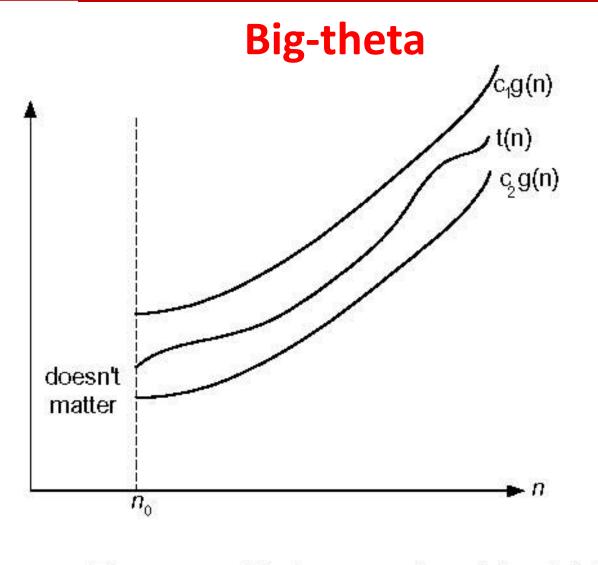


Figure 2.3 Big-theta notation: $t(n) \in \Theta(g(n))$

Name of the Faculty: Dr. Sasikumar Periyannan

Program Name: B.Sc., (Hons) Computer Science

O-notation

Definition: f(n) is in O(g(n)) if order of growth of $f(n) \le$ order of growth of g(n) (within constant multiple), i.e., there exist positive constant c and non-negative integer n_0 such that

 $f(n) \leq c g(n)$ for every $n \geq n_0$

Examples:

- 10*n* is in $O(n^2)$
- 5*n*+20 is in O(*n*)

Ω -notation

- Formal definition
 - A function t(n) is said to be in $\Omega(g(n))$, denoted $t(n) \in \Omega(g(n))$, if t(n) is bounded below by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

 $t(n) \ge cg(n)$ for all $n \ge n_0$

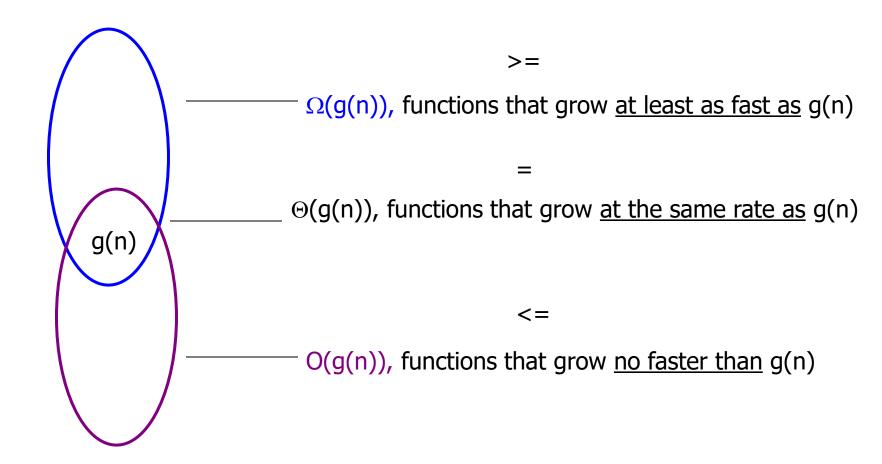
- Exercises: prove the following using the above definition
 - $10n^2 \in \Omega(n^2)$
 - 0.3 n^2 2n ∈ Ω(n^2)
 - $10n^3 \in \Omega(n^2)$

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Θ -notation

- Formal definition
 - A function t(n) is said to be in $\Theta(g(n))$, denoted $t(n) \in \Theta(g(n))$, if t(n) is bounded both above and below by some positive constant multiples of g(n) for all large n, i.e., <u>if there exist some positive constant c_1 and c_2 and some nonnegative integer n_0 such that $c_2 g(n) \le t(n) \le c_1 g(n)$ for all $n \ge n_0$ </u>
- Exercises: prove the following using the above definition
 - $-10n^2 \in \Theta(n^2)$
 - $0.3n^2 2n \in \Theta(n^2)$
 - $(1/2)n(n-1) \in \Theta(n^2)$

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms



Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Theorem

- If $t_1(n) \in O(g_1(n))$ and $t_2(n) \in O(g_2(n))$, then $t_1(n) + t_2(n) \in O(max\{g_1(n), g_2(n)\})$.
 - The analogous assertions are true for the $\Omega\text{-notation}$ and $\Theta\text{-notation}.$
- Implication: The algorithm's overall efficiency will be determined by the part with a larger order of growth, i.e., its least efficient part.

- For example, $5n^2 + 3nlogn \in O(n^2)$

Proof. There exist constants *c1*, *c2*, *n1*, *n2* such that

 $t1(n) \le c1^*g1(n)$, for all $n \ge n1$ $t2(n) \le c2^*g2(n)$, for all $n \ge n2$

Define *c*3 = *c*1 + *c*2 and *n*3 = *max*{*n*1,*n*2}. Then

 $t1(n) + t2(n) \le c3^*max\{g1(n), g2(n)\}, \text{ for all } n \ge n3$

Some properties of asymptotic order of growth

- $f(n) \in O(f(n))$
- $f(n) \in O(g(n))$ iff $g(n) \in \Omega(f(n))$
- If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$ Note similarity with $a \le b$
- If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) + f_2(n) \in O(\max\{g_1(n), g_2(n)\})$

Exercise: Can you prove these properties?

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Establishing order of growth using limits

0 order of growth of **T(n)** < order of growth of **g(n)**

c > 0 order of growth of **T(n)** = order of growth of **g(n)**

order of growth of T(n) > order of growth of g(n)

Examples:

• 10*n* vs. *n*²

 $\lim T(n)/g(n) = \mathbf{n}$

• n(n+1)/2 vs. n^2

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Basic asymptotic efficiency classes

1	constant
log n	logarithmic
п	linear
n log n	n-log-n
n^2	quadratic
n ³	cubic
2^n	exponential
<i>n</i> !	factorial

