
UNIT I INTRODUCTION:

Introduction to Algorithms – Fundamentals of Algorithmic Problem

Solving – Fundamentals of the Analysis of Algorithmic Efficiency –

Analysis Framework – Asymptotic Notations and Basic Efficiency

Classes – Mathematical Analysis of Recursive Algorithms –

Mathematical Analysis of Non-recursive Algorithms

Asymptotic Notations and Basic Efficiency Classes

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

A way of comparing functions that ignores constant
factors and small input sizes (because?)

• O(g(n)): class of functions f(n) that grow no faster
than g(n)

• Θ(g(n)): class of functions f(n) that grow at same rate
as g(n)

• Ω(g(n)): class of functions f(n) that grow at least as
fast as g(n)

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Big-oh

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Big-omega

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Big-theta

Definition: f(n) is in O(g(n)) if order of growth of f(n) ≤
order of growth of g(n) (within constant multiple),
i.e., there exist positive constant c and non-negative
integer n0 such that

f(n) ≤ c g(n) for every n ≥ n0

Examples:

• 10n is in O(n2)

• 5n+20 is in O(n)

O-notation

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

-notation
• Formal definition

– A function t(n) is said to be in (g(n)), denoted t(n)  (g(n)),
if t(n) is bounded below by some constant multiple of g(n) for
all large n, i.e., if there exist some positive constant c and
some nonnegative integer n0 such that
t(n)  cg(n) for all n  n0

• Exercises: prove the following using the above
definition
– 10n2  (n2)
– 0.3n2 - 2n  (n2)
– 10n3  (n2)

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

-notation
• Formal definition

– A function t(n) is said to be in (g(n)), denoted t(n)  (g(n)), if
t(n) is bounded both above and below by some positive constant
multiples of g(n) for all large n, i.e., if there exist some positive
constant c1 and c2 and some nonnegative integer n0 such that

c2 g(n)  t(n)  c1 g(n) for all n  n0

• Exercises: prove the following using the above
definition
– 10n2  (n2)

– 0.3n2 - 2n  (n2)

– (1/2)n(n-1) (n2)

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

(g(n)), functions that grow at least as fast as g(n)

(g(n)), functions that grow at the same rate as g(n)

O(g(n)), functions that grow no faster than g(n)

g(n)

>=

<=

=

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Theorem
• If t1(n)  O(g1(n)) and t2(n)  O(g2(n)), then

t1(n) + t2(n)  O(max{g1(n), g2(n)}).
– The analogous assertions are true for the -notation and
-notation.

• Implication: The algorithm’s overall efficiency will be determined by the
part with a larger order of growth, i.e., its least efficient part.

– For example, 5n2 + 3nlogn  O(n2)

Proof. There exist constants c1, c2, n1, n2 such that

t1(n)  c1*g1(n), for all n  n1

t2(n)  c2*g2(n), for all n  n2

Define c3 = c1 + c2 and n3 = max{n1,n2}. Then

t1(n) + t2(n)  c3*max{g1(n), g2(n)}, for all n  n3

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Some properties of asymptotic order of growth

• f(n)  O(f(n))

• f(n)  O(g(n)) iff g(n) (f(n))

• If f (n)  O(g (n)) and g(n)  O(h(n)) , then f(n)  O(h(n))

Note similarity with a ≤ b

• If f1(n)  O(g1(n)) and f2(n)  O(g2(n)) , then
f1(n) + f2(n)  O(max{g1(n), g2(n)})

Exercise: Can you prove these properties?

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Establishing order of growth using limits

lim T(n)/g(n) =

0 order of growth of T(n) < order of growth of g(n)

c > 0 order of growth of T(n) = order of growth of g(n)

∞ order of growth of T(n) > order of growth of g(n)

Examples:
• 10n vs. n2

• n(n+1)/2 vs. n2

n→∞

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Basic asymptotic efficiency classes
1 constant

log n logarithmic

n linear

n log n n-log-n

n2 quadratic

n3 cubic

2n exponential

n! factorial

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

