Course Code : BSCP3003

Course Name: Statistical Mechanics

CLASSICAL STATISTICS

GALGOTIAS UNIVERSITY

Name of the Faculty: Ms. Snigdha Sharma

Program Name: B.Sc. (Hons) Physics

Course Code : BSCP3003

Course Name: Statistical Mechanics

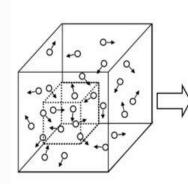
- TOPICS COVERED:
- Elementary Concept of Ensemble

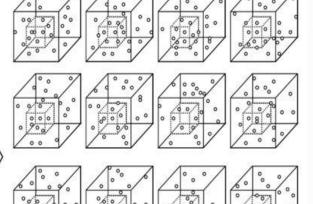
GALGOTIAS UNIVERSITY

Program Name: B.Sc. (Hons) Physics

Course Code : BSCP3003

Course Name: Statistical Mechanics


ENSEMBLES


- An ensemble (also statistical ensemble) is an idealization consisting of a large number of virtual copies (sometimes infinitely many) of a system, considered all at once, each of which represents a possible state that the real system might be in.
- A thermodynamic ensemble is a specific variety of statistical ensemble that, among other properties, is in statistical equilibrium, and is used to derive the properties of thermodynamic systems from the laws of classical or quantum mechanics

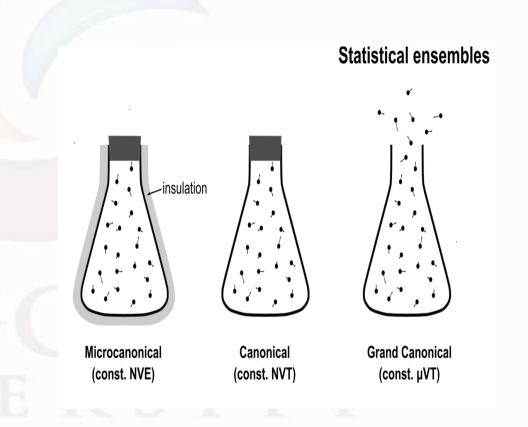
Course Code : BSCP3003

Course Name: Statistical Mechanics

ENSEMBLES

The fundamental idea of ensemble statistics is that **time average** equals ensemble average !!!!

We can therefore apply the same statistics to average a single snapshot of many identical systems as we would for multiple snapshots of a single system at different times


Name of the Faculty: Ms. Snigdha Sharma

Course Code : BSCP3003

Course Name: Statistical Mechanics

Types of Ensembles

ensemble	imposed variables (constraints)	fluctuating properties	corresponding thermodynamic system
microcanonical (NVE)	number of particles N volume V internal energy E	energy (quantum state) of each particle $\boldsymbol{\epsilon}_i$	isolated
canonical (NVT)	number of particles N volume V temperature T	internal energy E _j	closed
grand canonical (μVT)	chemical potential μ volume V temperature T	number of particles N _i internal energy E _j	open
isothermal- isobaric (NPT)	number of particles N pressure p temperature T	volume V _i internal energy E _j	-

Name of the Faculty: Ms. Snigdha Sharma

Program Name: B.Sc. (Hons) Physics

Course Code : BSCP3003

Course Name: Statistical Mechanics

Microcanonical ensemble or NVE ensemble

- a statistical ensemble where the total energy of the system and the number of particles in the system are each fixed to particular values.
- each of the members of the ensemble are required to have the same total energy and particle number.
- The system must remain totally isolated (unable to exchange energy or particles with its environment) in order to stay in statistical equilibrium

Course Code : BSCP3003

Course Name: Statistical Mechanics

Canonical ensemble or NVT ensemble

- a statistical ensemble where the energy is not known exactly but the number of particles is fixed. In place of the energy, the temperature is specified.
- The canonical ensemble is appropriate for describing a closed system which is in, or has been in, weak thermal contact with a heat bath.
- In order to be in statistical equilibrium, the system must remain totally closed (unable to exchange particles with its environment) and may come into weak thermal contact with other systems that are described by ensembles with the same temperature

UNIVERSITY

Course Code : BSCP3003

Course Name: Statistical Mechanics

Grand canonical ensemble or µVT ensemble

- a statistical ensemble where neither the energy nor particle number are fixed.
- In their place, the temperature and chemical potential are specified.
- The grand canonical ensemble is appropriate for describing an open system: one which is in, or has been in, weak contact with a reservoir (thermal contact, chemical contact, etc.).
- The ensemble remains in statistical equilibrium if the system comes into weak contact with other systems that are described by ensembles with the same temperature and chemical potential.

Course Code : BSCP3003

Course Name: Statistical Mechanics

REFERENCES

>A Textbook of Statistical Mechanics- Prof Suresh Chandra, CBS Publishers

- Statistical Mechanics, R.K. Pathria, Butterworth Heinemann: 2nd Ed., 1996, Oxford University Press
- Statistical and Thermal Physics, S. Lokanathan and R.S. Gambhir. 1991, Prentice Hall
- Slide Share and Google images

Google images