

UNIT II DIVIDE-AND-CONQUER

Divide and Conquer Methodology – Binary Search – Merge Sort – Quick Sort – Heap Sort – Multiplication of Large Integers – Strassen's Matrix Multiplication

Divide-and-Conquer

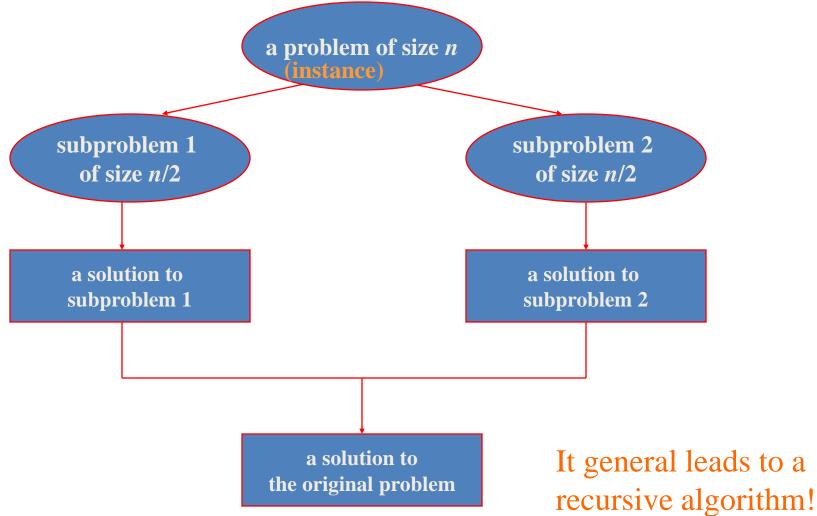
The most-well known algorithm design strategy:

- Divide instance of problem into two or more smaller instances
- 2. Solve smaller instances recursively
- 3. Obtain solution to original (larger) instance by combining these solutions

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Divide-and-Conquer Technique (cont.)



Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Divide-and-Conquer Examples

- Sorting: mergesort and quicksort
- Binary tree traversals
- Binary search (?)
- Multiplication of large integers
- Matrix multiplication: Strassen's algorithm
- Closest-pair and convex-hull algorithms

General Divide-and-Conquer Recurrence T(n) = aT(n/b) + f(n) where $f(n) \in \Theta(n^d)$, $d \ge 0$ <u>Master Theorem</u>: If $a < b^d$, $T(n) \in \Theta(n^d)$ If $a = b^d$, $T(n) \in \Theta(n^d \log n)$ If $a > b^d$, $T(n) \in \Theta(n^{\log b^d})$

Note: The same results hold with O instead of Θ . Examples: $T(n) = 4T(n/2) + n \Rightarrow T(n) \in ? \quad \Theta(n^2)$ $T(n) = 4T(n/2) + n^2 \Rightarrow T(n) \in ? \quad \Theta(n^2 \log n)$ $T(n) = 4T(n/2) + n^3 \Rightarrow T(n) \in ? \quad \Theta(n^3)$

