
UNIT II DIVIDE-AND-CONQUER

Divide and Conquer Methodology – Binary

Search – Merge Sort – Quick Sort – Heap Sort –

Multiplication of Large Integers – Strassen’s

Matrix Multiplication

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Binary Search
Very efficient algorithm for searching in sorted array:

K vs A[0] . . . A[m] . . . A[n-1]

If K = A[m], stop (successful search); otherwise, continue
searching by the same method in A[0..m-1] if K < A[m] and in
A[m+1..n-1] if K > A[m]

l 0; r n-1
while l r do

m (l+r)/2

if K = A[m] return m
else if K < A[m] r m-1
else l m+1

return -1

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Analysis of Binary Search
• Time efficiency

– worst-case recurrence: Cw (n) = 1 + Cw(n/2), Cw (1) = 1
solution: Cw(n) = log2(n+1)
This is VERY fast: e.g., Cw(106) = 20

• Optimal for searching a sorted array
Limitations: must be a sorted array (not linked list)

• Bad (degenerate) example of divide-and-conquer
because only one of the sub-instances is solved

• Has a continuous counterpart called bisection method for solving equations in
one unknown f(x) = 0

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Binary Tree Algorithms
Binary tree is a divide-and-conquer ready structure!

Ex. 1: Classic traversals (preorder, inorder, postorder)

Algorithm Inorder(T)

if T a a

Inorder(Tleft) b c b c

print(root of T) d e null null d e

Inorder(Tright)
null null null null

Efficiency:Θ(n). Why? Each node is visited/printed once.

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

Binary Tree Algorithms (cont.)

Ex. 2: Computing the height of a binary tree

T TL R

h(T) = max{h(TL), h(TR)} + 1 if T and h() = -1

Efficiency: Θ(n). Why?

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Name of the Faculty: Dr. Sasikumar Periyannan Program Name: B.Sc., (Hons) Computer Science

