

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

UNIT II - DIVIDE-AND-CONQUER

- Divide and Conquer Methodology Binary Search –
- Merge Sort Quick Sort <u>Heap Sort</u> Multiplication
- of Large Integers Strassen's Matrix Multiplication

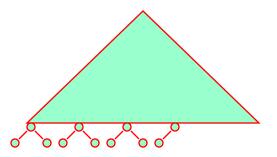
Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heap and Heap Sort

Definition:

A heap is a binary tree with keys at its nodes (one key per node) such that:

 It is essentially complete, i.e., all its levels are full except possibly the last level, where only some rightmost keys may be missing

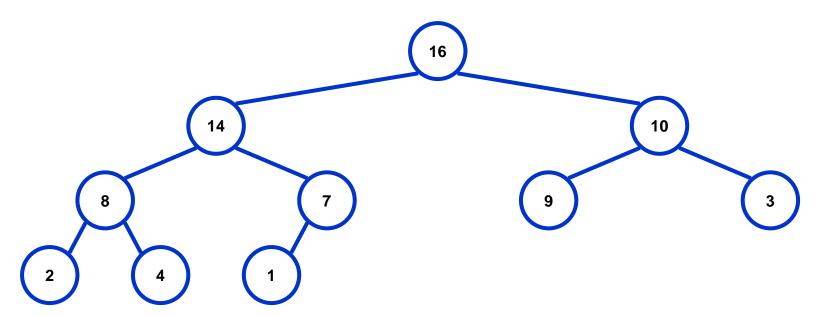


The key at each node is ≥ keys at its children

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heaps

□ A *heap* can be seen as a complete binary tree:

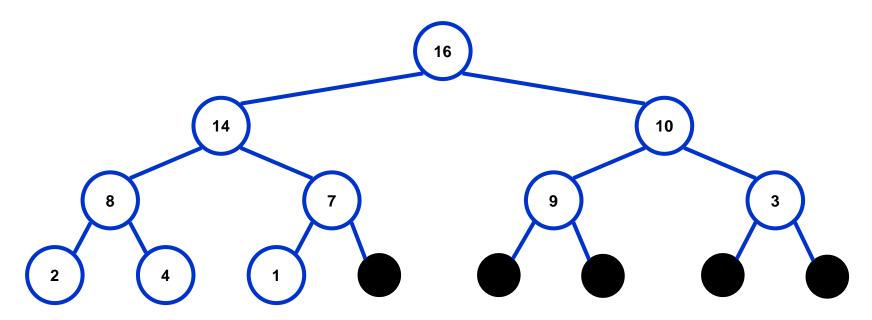


What makes a binary tree complete?
Is the example above complete?

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heaps

□ A *heap* can be seen as a complete binary tree:

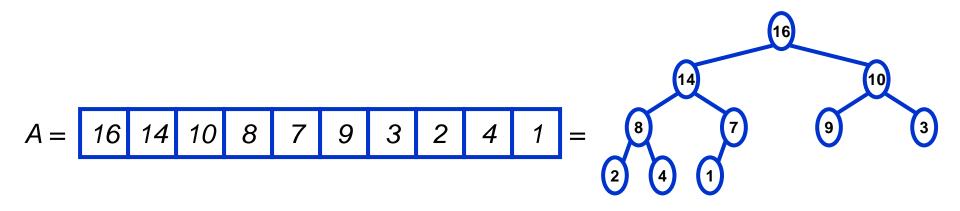


The book calls them "nearly complete" binary trees; can think of unfilled slots as null pointers

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heaps

In practice, heaps are usually implemented as arrays:



Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heaps

□ To represent a complete binary tree as an array:

- The root node is A[1]
- □ Node i is A[i]
- □ The parent of node *i* is A[i/2] (note: integer divide)
- □ The left child of node *i* is A[2*i*]
- □ The right child of node *i* is A[2i + 1]

16

14

10

9

3

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Referencing Heap Elements

- □ So...
 - Parent(i) { return $\lfloor i/2 \rfloor$; }
 - Left(i) { return 2*i; }
 - right(i) { return 2*i + 1; }
- An aside: How would you implement this most efficiently?
 - □ Trick question, I was looking for "i << 1", etc.
 - But, any modern compiler is smart enough to do this for you (and it makes the code hard to follow)

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

The Heap Property

- □ Heaps also satisfy the *heap property*:
 - $A[Parent(i)] \ge A[i]$ for all nodes i > 1
 - In other words, the value of a node is at most the value of its parent
 - □ Where is the largest element in a heap stored?

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heap Height

Definitions:

- The *height* of a node in the tree = the number of edges on the longest downward path to a leaf
- □ The height of a tree = the height of its root
- □ What is the height of an n-element heap? Why?
- This is nice: basic heap operations take at most time proportional to the height of the heap

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heap Operations: Heapify()

Heapify(): maintain the heap property

- Given: a node i in the heap with children l and r
- Given: two subtrees rooted at *l* and *r*, assumed to be heaps
- Problem: The subtree rooted at *i* may violate the heap property (*How*?)
- Action: let the value of the parent node "float down" so subtree at *i* satisfies the heap property

What do you suppose will be the basic operation between i, l, and r?

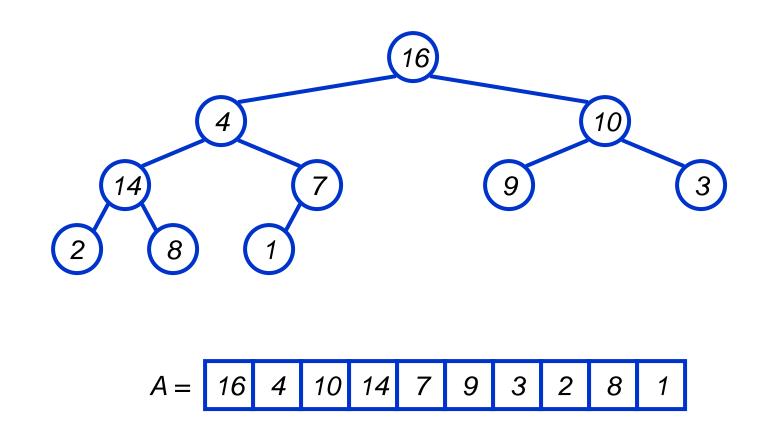
Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heap Operations: Heapify()

```
Heapify(A, i)
{
  l = Left(i); r = Right(i);
  if (1 \le \text{heap size}(A) \& A[1] > A[i])
      largest = 1;
  else
      largest = i;
  if (r <= heap size(A) && A[r] > A[largest])
      largest = r;
  if (largest != i)
      Swap(A, i, largest);
      Heapify(A, largest);
}
```

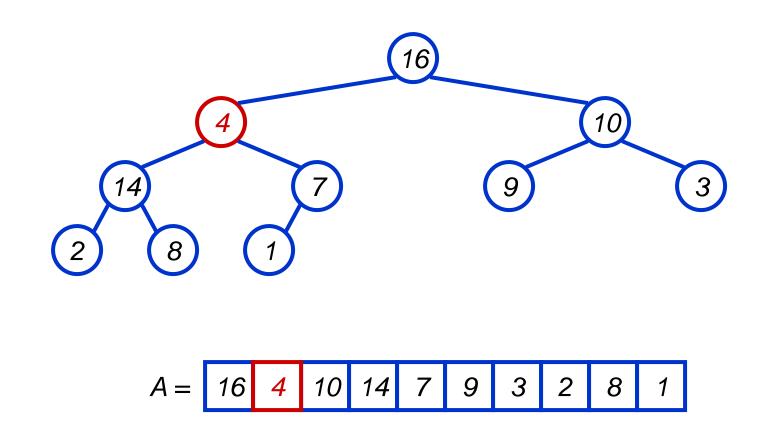

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heapify() Example



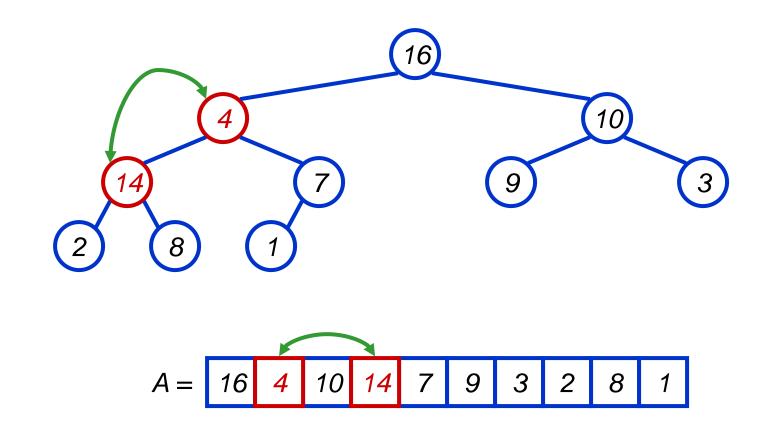
Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heapify() Example



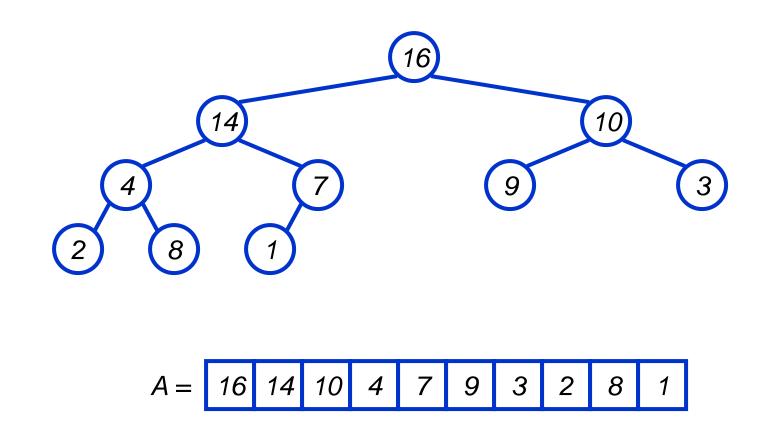
Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heapify() Example



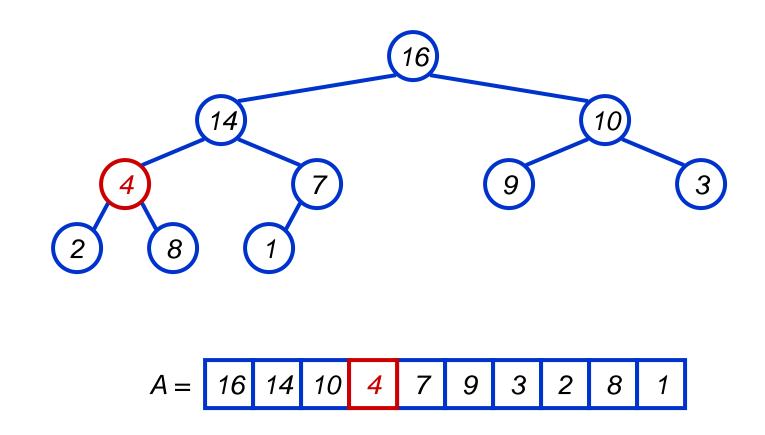
Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heapify() Example



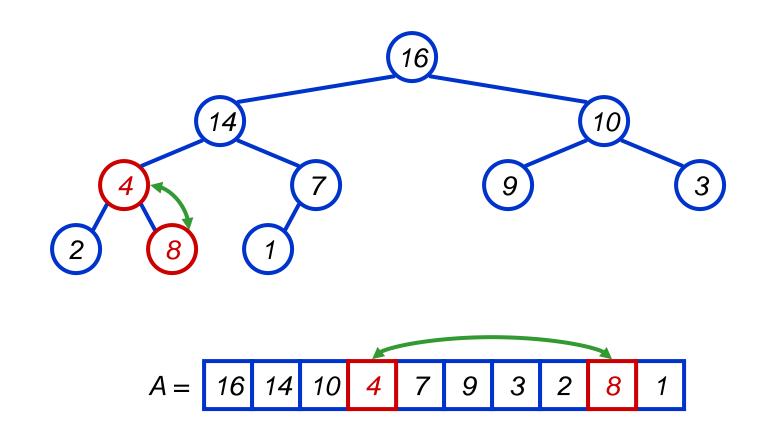
Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heapify() Example



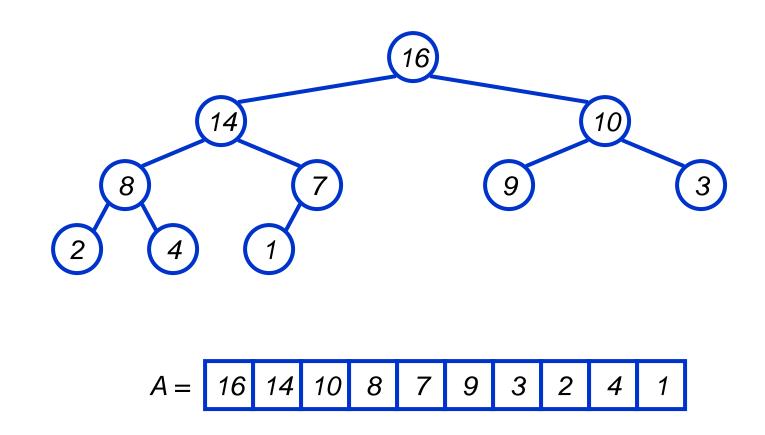
Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heapify() Example



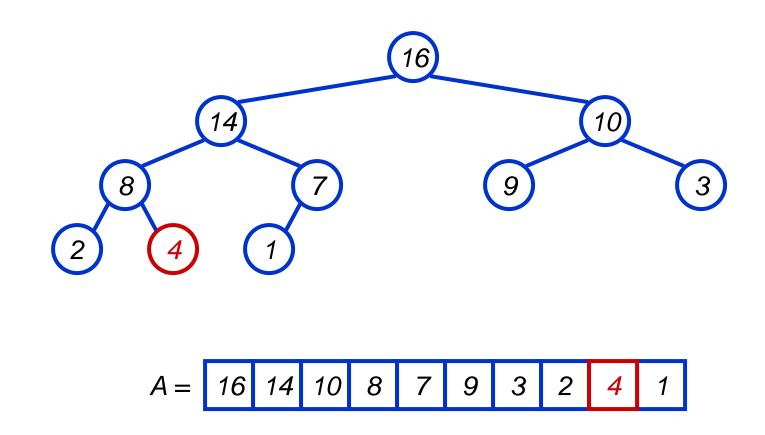
Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heapify() Example



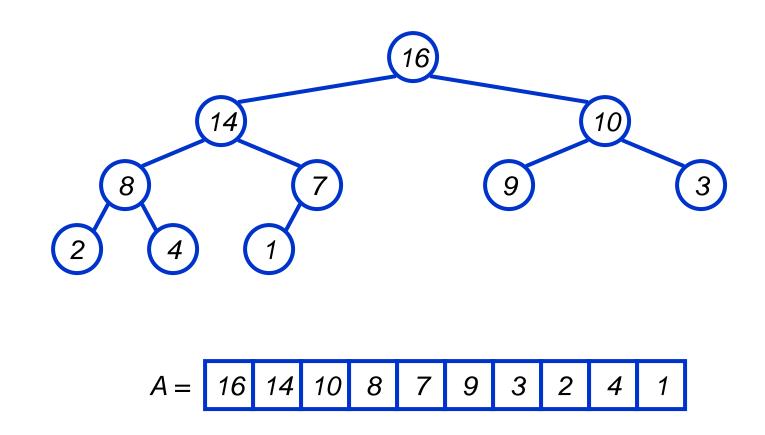
Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heapify() Example



Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heapify() Example



Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Analyzing Heapify(): Informal

- □ Aside from the recursive call, what is the running time of **Heapify()**?
- How many times can Heapify() recursively call itself?
- What is the worst-case running time of Heapify() on a heap of size n?

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Analyzing Heapify(): Formal

- Fixing up relationships between *i*, *l*, and *r* takes Θ(1) time
- □ If the heap at i has n elements, how many elements can the subtrees at l or r have?
 - Draw it
- □ Answer: 2n/3 (worst case: bottom row 1/2 full)
- □ So time taken by **Heapify()** is given by

 $T(n) \le T(2n/3) + \Theta(1)$

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Analyzing Heapify(): Formal

□ So we have

 $T(n) \le T(2n/3) + \Theta(1)$

□ By case 2 of the Master Theorem,

 $T(n) = \mathcal{O}(\lg n)$

□ Thus, **Heapify()** takes logarithmic time

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heap Operations: BuildHeap()

- We can build a heap in a bottom-up manner by running Heapify() on successive subarrays
 - □ Fact: for array of length *n*, all elements in range $A[\lfloor n/2 \rfloor + 1 ... n]$ are heaps (*Why?*)
 - □ So:
 - Walk backwards through the array from n/2 to 1, calling Heapify() on each node.
 - Order of processing guarantees that the children of node
 i are heaps when *i* is processed

}

School of Computing Science and Engineering

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

BuildHeap()

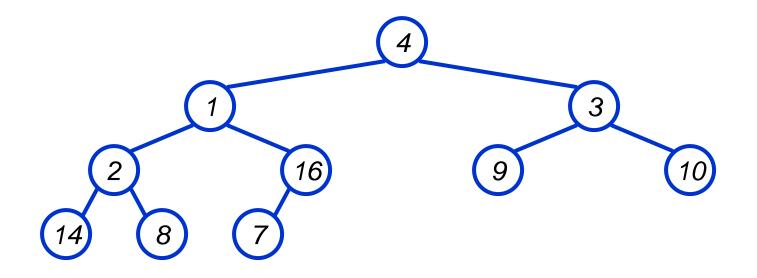
// given an unsorted array A, make A a heap
BuildHeap(A)

```
{
    heap_size(A) = length(A);
    for (i = [length[A]/2] downto 1)
    Heapify(A, i);
```


Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

BuildHeap() Example

□ Work through example $A = \{4, 1, 3, 2, 16, 9, 10, 14, 8, 7\}$



Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Analyzing BuildHeap()

- **\Box** Each call to **Heapify()** takes $O(\lg n)$ time
- □ There are O(n) such calls (specifically, $\lfloor n/2 \rfloor$)
- □ Thus the running time is $O(n \lg n)$
 - □ Is this a correct asymptotic upper bound?
 - □ Is this an asymptotically tight bound?
- □ A tighter bound is O(n)
 - How can this be? Is there a flaw in the above reasoning?

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Analyzing BuildHeap(): Tight

- □ To **Heapify()** a subtree takes O(*h*) time where *h* is the height of the subtree
 - □ $h = O(\lg m)$, m = # nodes in subtree
 - □ The height of most subtrees is small
- □ Fact: an *n*-element heap has at most $\lceil n/2^{h+1} \rceil$ nodes of height *h*
- CLR 7.3 uses this fact to prove that BuildHeap() takes O(n) time

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heapsort

- □ Given **BuildHeap()**, an in-place sorting algorithm is easily constructed:
 - □ Maximum element is at A[1]
 - Discard by swapping with element at A[n]
 - Decrement heap_size[A]
 - □ A[n] now contains correct value
 - Restore heap property at A[1] by calling
 Heapify()
 - □ Repeat, always swapping A[1] for A[heap_size(A)]

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Heapsort Algorithm

```
Heapsort(A)
{
     BuildHeap(A);
     for (i = length(A) downto 2)
     {
           Swap(A[1], A[i]);
           heap size(A) -= 1;
          Heapify(A, 1);
     }
```


Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Analyzing Heapsort

- **The call to BuildHeap()** takes O(n) time
- Each of the n 1 calls to Heapify() takes O(lg n) time
- Thus the total time taken by HeapSort()
 - $= O(n) + (n 1) O(\lg n)$
 - $= O(n) + O(n \lg n)$
 - $= O(n \lg n)$

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Priority Queues

- Heapsort is a nice algorithm, but in practice
 Quicksort (coming up) usually wins
- But the heap data structure is incredibly useful for implementing *priority queues*
 - □ A data structure for maintaining a set *S* of elements, each with an associated value or *key*
 - Supports the operations Insert(), Maximum(), and ExtractMax()

□ What might a priority queue be useful for?

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

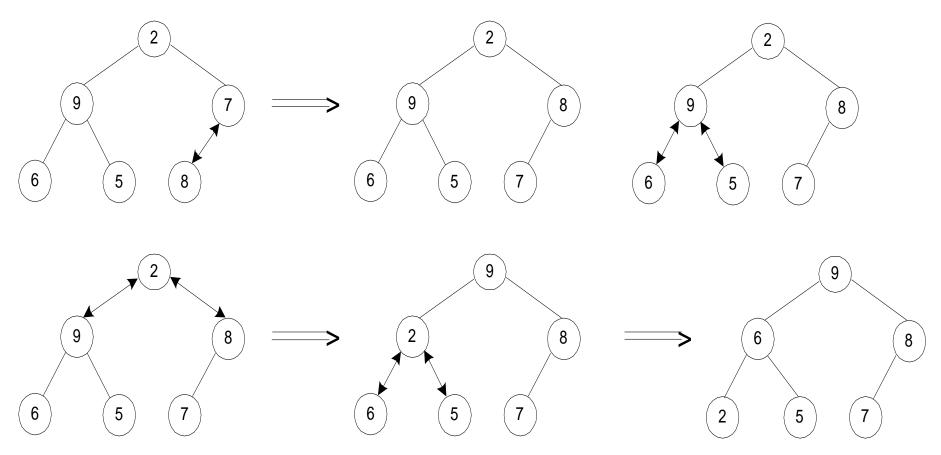
Priority Queue Operations

- □ **Insert(S, x)** inserts the element x into set S
- Maximum(S) returns the element of S with the maximum key
- ExtractMax(S) removes and returns the element of S with the maximum key
- How could we implement these operations using a heap?

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Example of Heap Construction

Construct a heap for the list 2, 9, 7, 6, 5, 8



Name of the Faculty: Dr. Sasikumar Periyannan

Program Name: B.Sc., (Hons) Computer Science

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Example of Sorting by Heapsort

Sort the list 2, 9, 7, 6, 5, 8 by heapsort

Stage 1 (heap construction)

1	9	<u>7</u>	6	5	8
2	<u>9</u>	8	6	5	7
<u>2</u>	9	8	6	5	7
9	2	8	6	5	7
9	6	8	2	5	7

Stage 2 (root/max removal)

<u>9</u>	6	8	2	5	7
7	6	8	2	5	9
<u>8</u>	6	7	2	5	9
5	6	7	2	8	9
<u>7</u>	6	5	2	8	9
2	6	5	7	8	9
<u>6</u>	2	5	7	8	9
5	2	6	7	8	9
<u>5</u>	2	6	7	8	9
2	5	6	7	8	9

Name of the Faculty: Dr. Sasikumar Periyannan

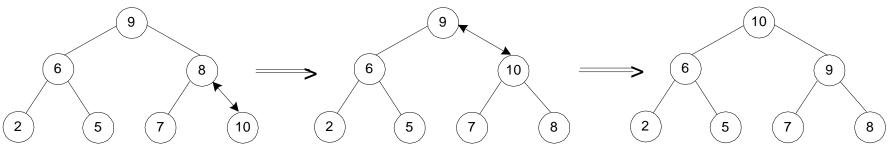
Program Name: B.Sc., (Hons) Computer Science

Course Code : BSCS2315 Course Name: Design and Analysis of Algorithms

Insertion of a New Element into a Heap

- □ Insert the new element at last position in heap.
- Compare it with its parent and, if it violates heap condition, exchange them
- Continue comparing the new element with nodes up the tree until the heap condition is satisfied

Example: Insert key 10



Efficiency: O(log *n*)

