

Syllabus

UNIT I INTRODUCTION: Introduction to Algorithms – Fundamentals of Algorithmic Problem Solving – Fundamentals of the Analysis of Algorithmic Efficiency – Analysis Framework – Asymptotic Notations and Basic Efficiency Classes – Mathematical Analysis of Recursive Algorithms – Mathematical Analysis of Non-recursive Algorithms UNIT II DIVIDE-AND-CONQUER: Divide and Conquer Methodology – Binary Search – Merge Sort

– Quick Sort – Heap Sort – Multiplication of Large Integers – Strassen's Matrix Multiplication
UNIT III DYNAMIC PROGRAMMING: Dynamic Programming – Change-making Problem –
Computing a Binomial Coefficient – All-pairs Shortest-paths Problem – Warshall's and Floyd's
Algorithms – 0/1 Knapsack Problem

UNIT IV GREEDY TECHNIQUE: Greedy Technique – Minimum Spanning Tree – Prim's Algorithm – Kruskal's Algorithm – Single-source Shortest-paths Problem – Dijkstra's Algorithm – Huffman Coding – Fractional Knapsack Problem

UNIT V BACKTRACKING AND BRANCH-AND-BOUND: Backtracking – N-Queens Problem – Hamiltonian Circuit Problem – Subset Sum Problem – Branch-and- Bound – Travelling Salesman Problem

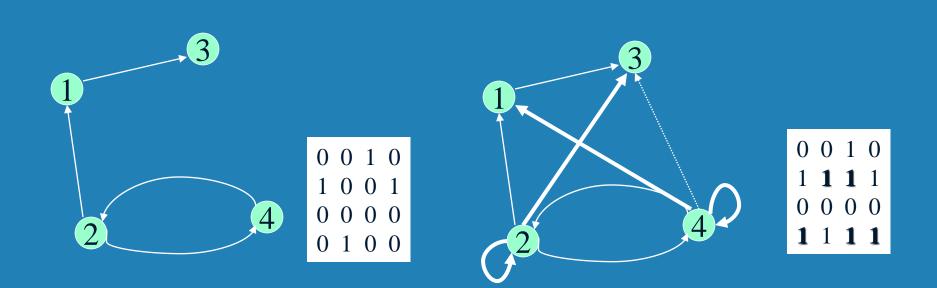
UNIT VI LIMITATIONS OF ALGORITHM POWER: P and NP Problems – NP-Complete Problems – Decision Trees – Information Retrieval – Pattern Matching – Data Science Algorithms

UNIT III DYNAMIC PROGRAMMING:

- Dynamic Programming Change-making Problem –
- Computing a Binomial Coefficient All-pairs Shortest-
- paths Problem Warshall's and Floyd's Algorithms –
- 0/1 Knapsack Problem

Warshall's Algorithm: Transitive Closure

- Computes the transitive closure of a relation
- Alternatively: existence of all nontrivial paths in a digraph
- Example of transitive closure:

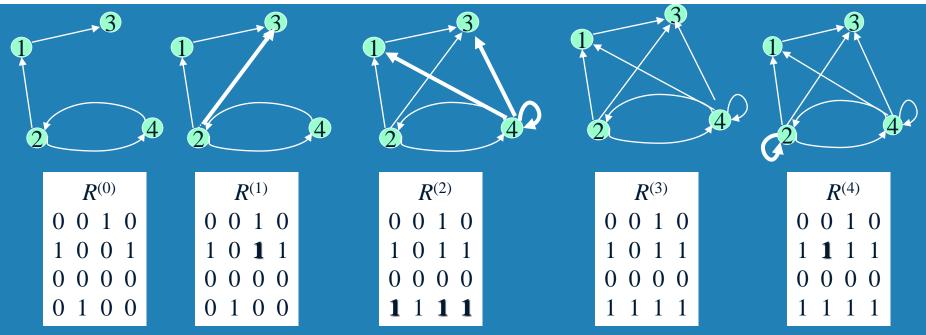


Warshall's Algorithm

Constructs transitive closure *T* as the last matrix in the sequence of *n*-by-*n* matrices $R^{(0)}, \ldots, R^{(k)}, \ldots, R^{(n)}$ where $R^{(k)}[i,j] = 1$ iff there is nontrivial path from *i* to *j* with only the first *k*

vertices allowed as intermediate

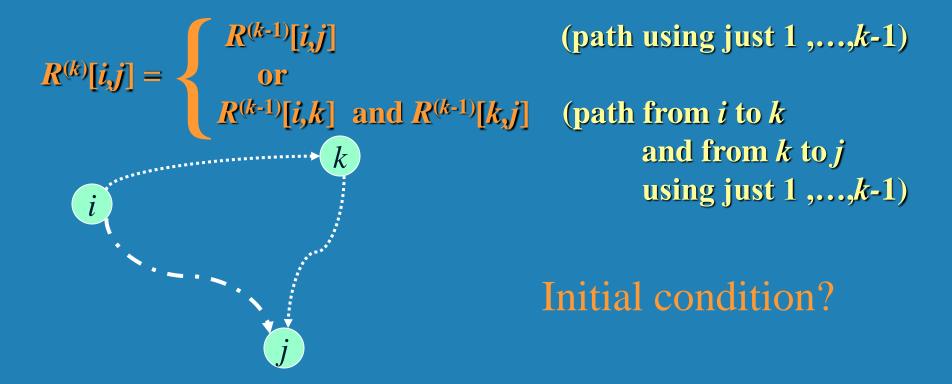
Note that $R^{(0)} = A$ (adjacency matrix), $R^{(n)} = T$ (transitive closure)



Program Name: B.Sc., Computer Science

Warshall's Algorithm (recurrence)

On the k-th iteration, the algorithm determines for every pair of vertices *i*, *j* if a path exists from *i* and *j* with just vertices 1,...,*k* allowed as intermediate



 $R^{(k)}[i,j] = R^{(k-1)}[i,j]$ or $(R^{(k-1)}[i,k]$ and $R^{(k-1)}[k,j])$

It implies the following rules for generating $R^{(k)}$ from $R^{(k-1)}$:

Rule 1 If an element in row *i* and column *j* is 1 in $R^{(k-1)}$, it remains 1 in $R^{(k)}$

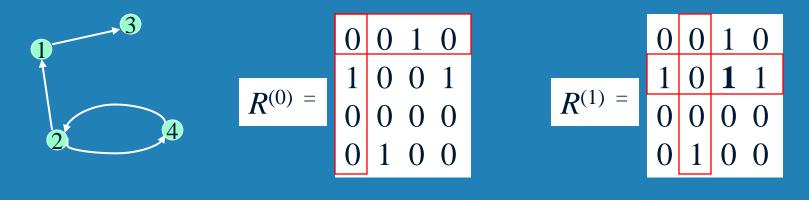
Rule 2If an element in row i and column j is 0 in $\mathbb{R}^{(k-1)}$,
it has to be changed to 1 in $\mathbb{R}^{(k)}$ if and only if
the element in its row i and column k and the element
in its column j and row k are both 1's in $\mathbb{R}^{(k-1)}$

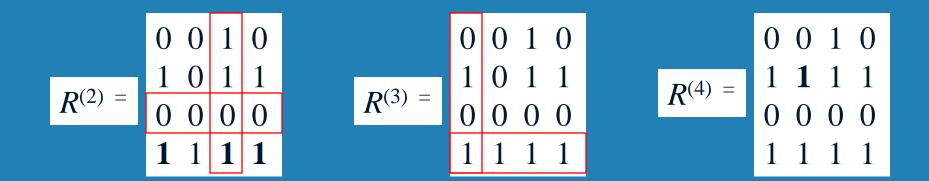
Program Name: B.Sc., Computer Science

Course Code : BSCS2315

Course Name: DAA

Warshall's Algorithm (example)





Program Name: B.Sc., Computer Science

Warshall's Algorithm (pseudocode and analysis)

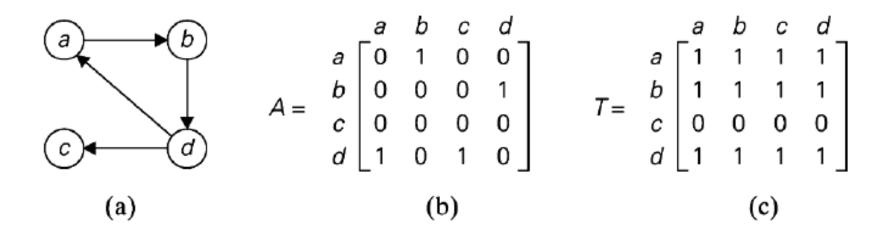
ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall's algorithm for computing the transitive closure //Input: The adjacency matrix A of a digraph with n vertices //Output: The transitive closure of the digraph $R^{(0)} \leftarrow A$ for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do $R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j]$ or $(R^{(k-1)}[i, k]$ and $R^{(k-1)}[k, j])$ return $R^{(n)}$

Time efficiency: $\Theta(n^3)$ Space efficiency: Matrices can be written over their predecessors (with some care), so it's $\Theta(n^2)$.

Program Name: B.Sc., Computer Science

Warshall's Algorithm: Transitive Closure



(a) Digraph. (b) Its adjacency matrix. (c) Its transitive closure.

Warshall's Algorithm (matrix generation)

Recurrence relating elements $R^{(k)}$ to elements of $R^{(k-1)}$ is:

 $R^{(k)}[i,j] = R^{(k-1)}[i,j]$ or $(R^{(k-1)}[i,k]$ and $R^{(k-1)}[k,j])$

It implies the following rules for generating $R^{(k)}$ from $R^{(k-1)}$:

- Rule 1 If an element in row *i* and column *j* is 1 in $R^{(k-1)}$, it remains 1 in $R^{(k)}$
- Rule 2 If an element in row *i* and column *j* is 0 in $R^{(k-1)}$, it has to be changed to 1 in $R^{(k)}$ if and only if the element in its row *i* and column *k* and the element in its column *j* and row *k* are both 1's in $R^{(k-1)}$

School of Computing Science and Engineering

Course Code : BSCS2315

0

Course Name: DAA

1's reflect the existence of paths with no intermediate vertices ($R^{(0)}$ is just the adjacency matrix); boxed row and column are used for getting $R^{(1)}$.

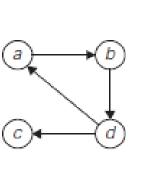
1's reflect the existence of paths with intermediate vertices numbered not higher than 1, i.e., just vertex *a* (note a new path from *d* to *b*); boxed row and column are used for getting *R*⁽²⁾.

1's reflect the existence of paths with intermediate vertices numbered not higher than 2, i.e., *a* and *b* (note two new paths); boxed row and column are used for getting *R*⁽³⁾.

1's reflect the existence of paths with intermediate vertices numbered not higher than 3, i.e., *a*, *b*, and *c* (no new paths); boxed row and column are used for getting *R*⁽⁴⁾.

1's reflect the existence of paths with intermediate vertices numbered not higher than 4, i.e., *a*, *b*, *c*, and *d* (note five new paths).

Program Name: B.Sc., Computer Science



R(0) =	c d	0 1	0 0	0 1	0 0
R ⁽¹⁾ =	a b c d	a 0 0 1 1	b 1 0 1 1 b	c 0 0 1 c	d 0 1 0 0 0
R ⁽²⁾ =	a b c d	0 0 0 1	1 0 0 1	0 0 0 1	1 1 0 1
R ⁽³⁾ =	a b c d	a 0 0 1	b 1 0 0	с 0 0 0	d 1 1 0 1
R ⁽⁴⁾ =	a b c d	a 1 1 0 1	b 1 1 0 1	с 1 1 0 1	d 1 1 0 1