

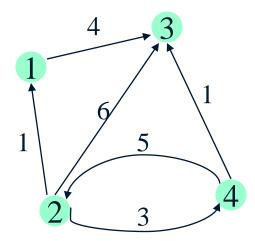
UNIT III DYNAMIC PROGRAMMING:

- Dynamic Programming Change-making Problem –
- Computing a Binomial Coefficient All-pairs Shortest-
- paths Problem Warshall's and Floyd's Algorithms –
- 0/1 Knapsack Problem

Floyd's Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between every pair of vertices

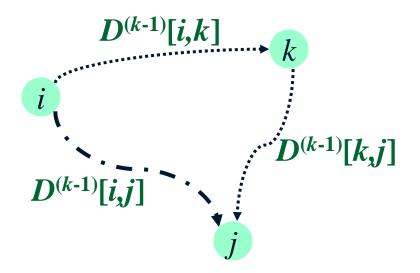
Same idea: construct solution through series of matrices $D^{(0)}$, ..., $D^{(n)}$ using increasing subsets of the vertices allowed as intermediate



Floyd's Algorithm (matrix generation)

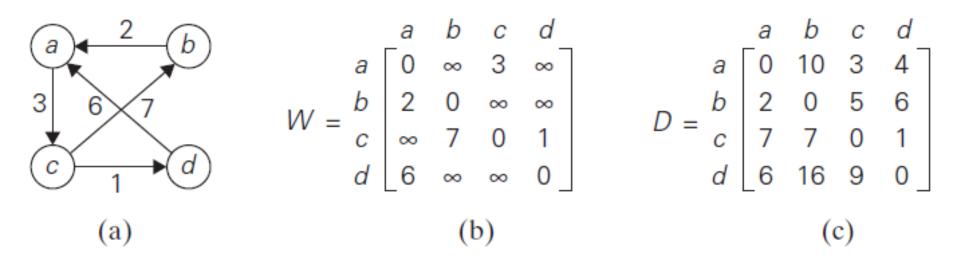
On the *k*-th iteration, the algorithm determines shortest paths between every pair of vertices *i*, *j* that use only vertices among 1,...,*k* as intermediate

 $D^{(k)}[i,j] = \min \{D^{(k-1)}[i,j], D^{(k-1)}[i,k] + D^{(k-1)}[k,j]\}$



Initial condition?

Floyd's Algorithm (matrix generation)



(a) Digraph. (b) Its weight matrix. (c) Its distance matrix.

Program Name: B.Sc., Computer Science

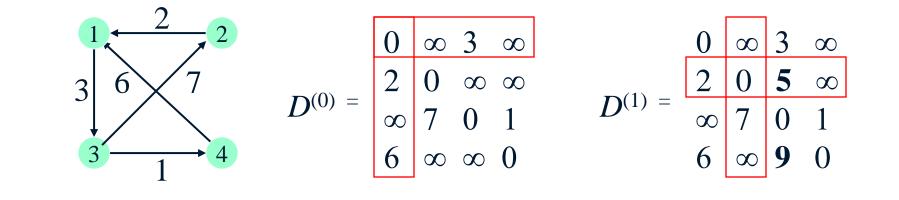
Program Code: BSCS

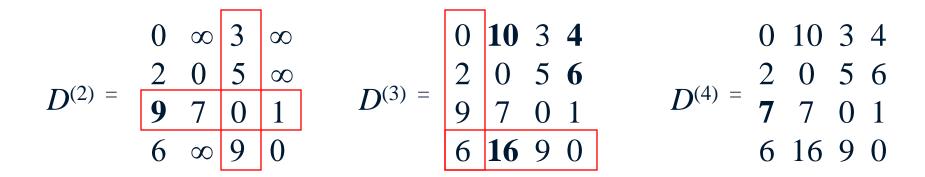
School of Computing Science and Engineering

Course Code : BSCS2315

Course Name: DAA

Floyd's Algorithm (example)





Floyd's Algorithm (example)

Solve the all-pairs shortest path problem for the digraph with the following weight matrix

	0	2	∞	1	8]	
	6	0	3	2	∞	
	∞	∞	0	4	∞	
	∞	∞	2	0	3	
	3	∞	∞	∞	0	
					_	
	- -					
	0	2	∞	1	8	
	6	0	3	2	∞	
$D^{(0)} =$	∞	∞	0	4	∞	
	∞	∞	2	0	3	
	3	∞	∞	∞	0	

Course Code : BSCS2315

Course Name: DAA

8

 $\mathbf{14}$

 ∞

 $\mathbf{3}$

0

8

14

 ∞

 $\mathbf{3}$

0

4

5

 $\overline{7}$

3

0

= D

1

 $\mathbf{2}$

4

0

 $\mathbf{4}$

4

0

1

2

4

0

4

Floyd's Algorithm (example)

Floyd's Algorithm (pseudocode and analysis)

ALGORITHM Floyd(W[1..n, 1..n])

//Implements Floyd's algorithm for the all-pairs shortest-paths problem //Input: The weight matrix W of a graph with no negative-length cycle //Output: The distance matrix of the shortest paths' lengths $D \leftarrow W$ //is not necessary if W can be overwritten for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do $D[i, j] \leftarrow \min\{D[i, j], D[i, k] + D[k, j]\}$

return D If D[i,k] + D[k,j] < D[i,j] then $P[i,j] \leftarrow k$

Time efficiency: $\Theta(n^3)$

Space efficiency: Matrices can be written over their predecessors

Note: Works on graphs with negative edges but without negative cycles. Shortest paths themselves can be found, too. How?

