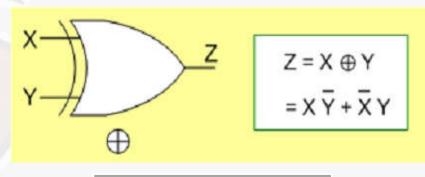
Course Code: BSCP3005

Course Name: Digital System and Application

XOR and XNOR Gates

Contents

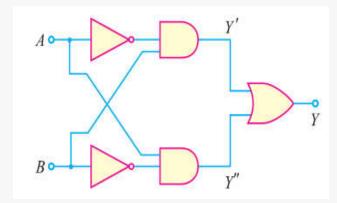

- Introduction
- XOR Gate
- XNOR Gate
- Applications

Course Code: BSCP3005

Course Name: Digital System and Application

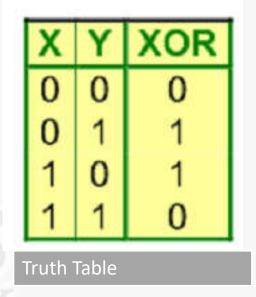
Introduction: XOR Gate

The exclusive-OR (XOR), operator uses the symbol \bigoplus , and it performs the following logic operation: $X \bigoplus Y = X Y' + X' Y$



Logic Symbol

Course Code: BSCP3005


Course Name: Digital System and Application

XOR Gate

When inputs are same, output will be 0

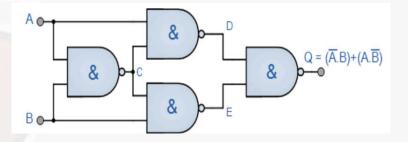
The result is 1 only when either X is equal to 1 or Y is equal to 1, but not when both X and Y are equal to 1.

Course Code: BSCP3005

Course Name: Digital System and Application

Three input XOR Gate

Symbol	Truth Table			
	С	В	А	Q
A B = 1 Q 3-input Ex-OR Gate	0	0	0	0
	0	0	1	1
	0	1	0	1
	0	1	1	0
	1	0	0	1
	1	0	1	0
	1	1	0	0
	1	1	1	1
Boolean Expression Q = A \oplus B \oplus C	"Any ODD Number of Inputs" gives Q			


$$Q = A\overline{BC} + \overline{A}B\overline{C} + \overline{AB}C + ABC$$

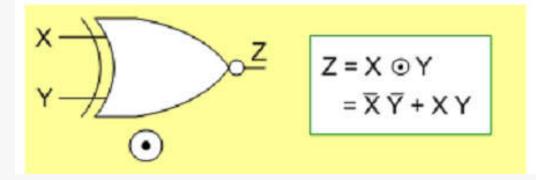
Course Code: BSCP3005

Course Name: Digital System and Application

XOR Gate Realization using NAND gates

Exclusive-OR Gates are used mainly to build circuits that perform arithmetic operations and calculations especially Adders as they can provide a "carry-bit" function or as a controlled inverter, where one input passes the binary data and the other input is supplied with a control signal.

Course Code: BSCP3005


Course Name: Digital System and Application

XNOR Gate

The exclusive-NOR (XNOR), operator uses the symbol **O**, and it performs the following logic operation

$$X \odot Y = XY + X'Y' = (X \oplus Y)'$$

Logic Symbol

Name of the Faculty: Dr. Prabhakar Singh

Program Name: B.Sc.(H) Physics

Course Code: BSCP3005

Course Name: Digital System and Application

XNOR Gate

The result is 1 when either both X and Y are 0's or when both are 1's. That is why this gate is often referred to as the **Equivalence** gate.

The truth tables clearly show that the exclusive-NOR operation is the complement of the exclusive-OR.

This can also be shown by algebraic manipulation as follows:

$$(X \oplus Y)' = (X Y' + X' Y)'$$

= $(X Y')' (X' Y)' = (X' + Y) (X + Y')$
= $(XY + X'Y')$
= $X \odot Y$

Truth Table

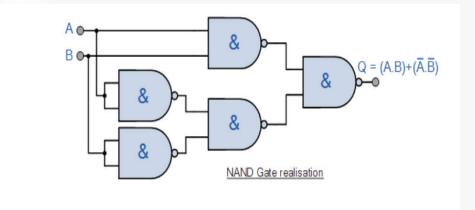
X	Υ	XNOR
0	0	1
0	1	0
1	0	0
1	1	1

Course Code: BSCP3005

Course Name: Digital System and Application

3-input Ex-NOR Gate

Symbol	Truth Table				
A B = 1 Q 3-input Ex-NOR Gate	С	В	Α	Q	
	0	0	0	1	
	0	0	1	0	
	0	1	0	0	
	0	1	1	1	
	1	0	0	0	
	1	0	1	1	
	1	1	0	1	
	1	1	1	0	
Boolean Expression Q = $\overline{A \oplus B \oplus C}$	Read as "any EVEN number of Inputs" gives Q				


$$Q = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

Course Code: BSCP3005

Course Name: Digital System and Application

XNOR Gate Realization using NAND gates

5 NAND logic gates can be used to realise the XNOR gate

Course Code: BSCP3005

Course Name: Digital System and Application

Application of XNOR gate

XNOR gates are used mainly in electronic circuits that perform arithmetic operations and data checking such as *Adders, Subtractors* or *Parity Checkers,* etc. As the Ex-NOR gate gives an output of logic level "1" whenever its two inputs are equal it can be used to compare the magnitude of two binary digits or numbers and so Ex-NOR gates are used in Digital Comparator circuits.

Name of the Faculty: Dr. Prabhakar Singh

Program Name: B.Sc.(H) Physics

Course Code: BSCP3005 Course Name: Digital System and Application

References:

- Digital Principles and Applications, A.P. Malvino, D. P. Leach and Saha, 7th Ed., 2011, Tata McGraw Hill
- Digital Fundamentals, Thomas L. Floyd, 11th Ed., 2015, Pearson Education Limited
- Modern Digital Electronics, R P Jain, 4th Ed., 2010, Tata McGraw Hill

Name of the Faculty: Dr. Prabhakar Singh

Program Name: B.Sc.(H) Physics