Course Code : BSCP3001

Course Name: QUANTUM MECHANICS

Quantum Mechanics

Covered Topics

- Application of Uncertainty Principle
- Realization of Uncertainty Principle in Daily Life
- Energy-time uncertainty relation
- References

GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. ASHUTOSH KUMAR

GALGOTIA

UNIVERSITY

Course Code : BSCP3001

Course Name: QUANTUM MECHANICS

Why isn't the uncertainty principle apparent to us in our ordinary experience...?

Planck's constant, again!!

 $h = 6.6 \times 10^{-34} \, \text{J.s}$

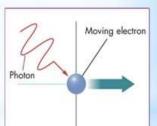
$$\Delta x \Delta p_x \ge \frac{h}{2\pi}$$

Planck's constant is so small that the uncertainties implied by the principle are also too small to be observed. They are only significant in the domain of microscopic systems

Realization of Uncertainty Principle in Daily Life

Name of the Faculty: Dr. ASHUTOSH KUMAR

Course Code : BSCP3001

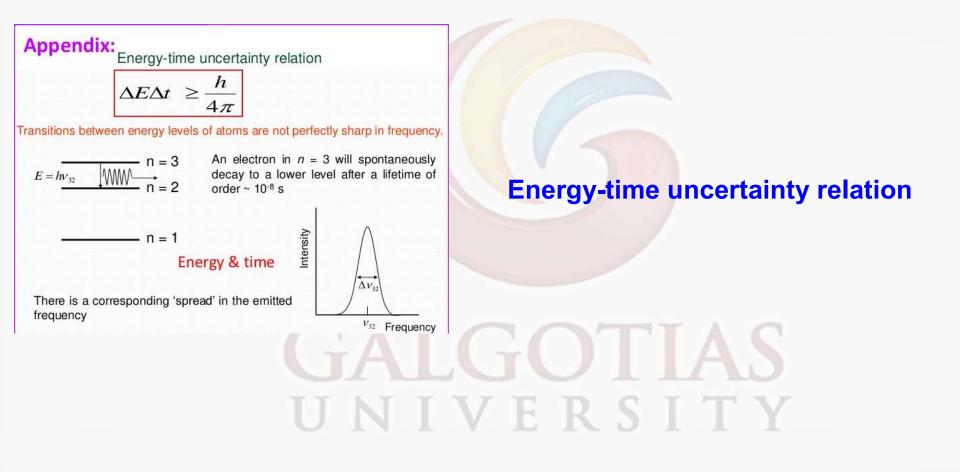

Course Name: QUANTUM MECHANICS

*Why this happens

*In the world of very small particles, one cannot measure any property of a particle without interacting with it in some way and this interaction changes related property.

Measuring p and x of electron

*So to determine the position accurately it is necessary to use light with a short wavelength


Realization of Uncertainty Principle in Daily Life

GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. ASHUTOSH KUMAR

Course Code : BSCP3001

Course Name: QUANTUM MECHANICS

Name of the Faculty: Dr. ASHUTOSH KUMAR

UNIVERSITY

GALGO

Course Code : BSCP3001

Course Name: QUANTUM MECHANICS

Example of Baseball

- A pitcher throws a 0.1-kg baseball at 40 m/s
- So momentum is 0.1 x 40 = 4 kg m/s
- Suppose the momentum is measured to an accuracy of 1 percent , i.e.,
 - $\Delta p = 0.01 p = 4 \times 10^{-2} \text{ kg m/s}$

Continued......

• The uncertainty in position is then

$$\triangle x \ge \frac{h}{4\pi \triangle p} = 1.3 \times 10^{-33} \text{ m}$$

No wonder one does not observe the effects of the uncertainty principle in everyday life!

Name of the Faculty: Dr. ASHUTOSH KUMAR

UNIVERSITY

Course Code : BSCP3001

Course Name: QUANTUM MECHANICS

EXAMPLE OF ELECTRON

- Same situation, but baseball replaced by an electron which has mass 9.11 x 10⁻³¹ kg
- So momentum = 3.6×10^{-29} kg m/s and its uncertainty = 3.6×10^{-31} kg m/s
- The uncertainty in position is then

$$\bigtriangleup x \geq \frac{h}{4\pi\bigtriangleup p} = 1.4\times 10^{-4}~{\rm m}$$

-:IMPLICATIONS:-

It is impossible to know *both* the position and momentum exactly, i.e., $\Delta x=0$ and $\Delta p=0$.

These uncertainties are inherent in the physical world and have nothing to do with the skill of the observer.

Because *h* is so small, these uncertainties are not observable in normal everyday situations.

Name of the Faculty: Dr. ASHUTOSH KUMAR

Course Code : BSCP3001

Course Name: QUANTUM MECHANICS

References:

- NouredineZettili,Quantum Mechanics: concepts and applications, 2nd Edition, Wiley, UK, 2009f
- 2. Introduction to Quantum Mechanics, D.J. Griffith, 2ndEd. 2005, Pearson Education
- 3. Quantum Mechanics, Robert Eisberg and Robert Resnick, 2ndEd., 2002, Wiley.
- 4. Quantum Mechanics, Leonard I. Schiff, 3rdEd. 2010, Tata McGraw Hill.
- 5. Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, Springer

GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. ASHUTOSH KUMAR