Course Code : MSCM301

Course Name: Functional Analysis

Space of Bounded linear transformations

By Dr. Alok Tripathi Department of Mathematics

Name of the Faculty: Dr. Alok Tripathi

Course Code : MSCM301

Course Name: Functional Analysis

Let us denote by $\beta(N, N')$ the set of all bounded linear transformations of a normed linear space N into N'. With the notation, we establish the following theorem.

Theorem: $\beta(N, N')$ is a normed linear space with respect to pointwise operations

$$(T_1 + T_2)(x) = T_1(x) + T_2(x), (\alpha T)(x) = \alpha T(x)$$

and the norm defined by

$$||T|| = \sup \left\{ \frac{||T(x)||}{||x||} : x \in N \text{ and } x \neq 0 \right\}$$

Name of the Faculty: Dr. Alok Tripathi

Course Code : MSCM301

Course Name: Functional Analysis

Let $T_1, T_2 \in \beta(N, N')$ and α be a scalar. Then T_1 and T_2 are bounded. So there exist real numbers M_1 and M_2 such that

 $||T_1(x)|| \le M_1 ||x|| \text{ and } ||T_2(x)|| \le M_2 ||x|| \text{ for all } x \in \mathbb{N}.$...(2)

Now $||(T_1 + T_2)(x)|| = ||T_1(x) + T_2(x)|| \le ||T_1(x)|| + ||T_2(x)||.$

Using (2), we get $||(T_1 + T_2)x|| \le M_1 ||x|| + M_2 ||x|| = M ||x||$ where $M = M_1 + M_2$.

Hence $T_1 + T_2 \in \beta(N, N')$ for all $T_1, T_2 \in \beta(N, N')$. In a similar manner $\alpha T \in \beta(N, N')$ for all scalars α and $T \in \beta(N, N')$. So $\beta(N, N')$ is a linear space.

To prove that $\beta(N, N')$ is a normed space, we show that (1) satisfies (N1), (N2) and (N3) of the definition of a norm.

Name of the Faculty: Dr. Alok Tripathi

Course Code : MSCM301

Course Name: Functional Analysis

 $(N1) \text{ Since } ||T(x)|| \ge 0, ||T|| \ge 0 \text{ from the definition of } ||T||.$ If T = 0, then ||T|| = 0. Conversely we have to show that ||T|| = 0 implies T = 0. If ||T|| = 0, we get from $||T(x)|| \le ||T|| ||x||, T(x) = 0$ for all $x \in N$. That is T = 0. Hence $||T|| \ge 0$ and ||T|| = 0 if and only if T = 0. (N2) Let $T_1, T_2 \in \beta(N, N')$. Then we have $||(T_1 + T_2)(x)|| = ||T_1(x) + T_2(x)|| \le ||T_1(x)|| + ||T_2(x)|| \le (||T_1|| + ||T_2||) ||x||.$ Hence we have from the above for $x \ne 0$, sup $\left\{ \frac{||(T_1 + T_2)(x)||}{||x||} \right\} \le (||T_1|| + ||T_2||).$

Name of the Faculty: Dr. Alok Tripathi

Course Code : MSCM301

Course Name: Functional Analysis

Using the definition of the norm of a bounded linear transformation, we get $||T_1 + T_2|| \le ||T_1|| + ||T_2||$. (N3) If α is a scalar, and $x \ne 0$, we get $||\alpha T(x)|| = |\alpha| ||T(x)||$ $\sup_{x \in N} \frac{||\alpha T(x)||}{||x||} = |\alpha| \sup_{x \in N} \frac{||T(x)||}{||x||}.$ This proves that $||\alpha T|| = |\alpha| ||T||$.

Name of the Faculty: Dr. Alok Tripathi

Course Code : MSCM301

Course Name: Functional Analysis

Video Links:

1. https://youtu.be/l7sx9kAXjzg

Name of the Faculty: Dr. Alok Tripathi

Course Code : MSCM301

Course Name: Functional Analysis

Reference

A first course in functional Analysis by D. Somasundaram

Name of the Faculty: Dr. Alok Tripathi

Course Code :

Course Name: Calculus

Thank You

GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. Alok Tripathi

Program Name: B.Tech