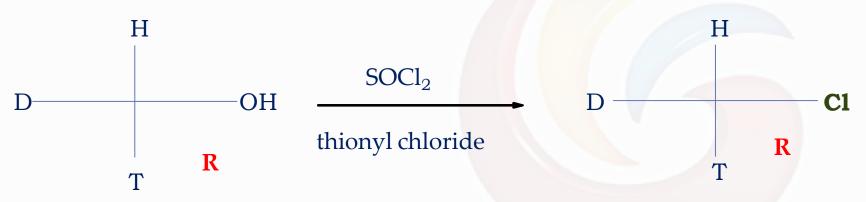
Course Code : BSCC2004

Course Name: Organic Chemistry-II

Nucleophilic substitution reaction S_Ni

GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. Shafat Ahmad Khan


Program Name: B.Sc (H)

Course Code : BSCC2004

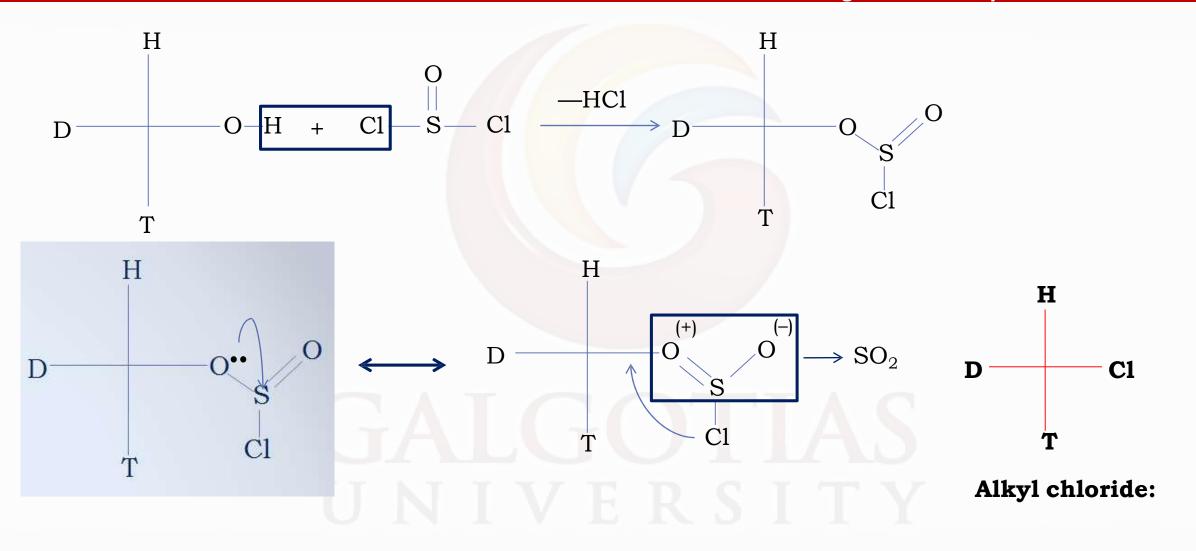
Course Name: Organic Chemistry-II

Nucleophilic Substitution SNⁱ

This kind of reaction is seen only in one situation.

So, in SNⁱ reactions, we have **retention of configuration**.

But this is different from SN¹ reactions as there is no formation of a racemic mixture over here.

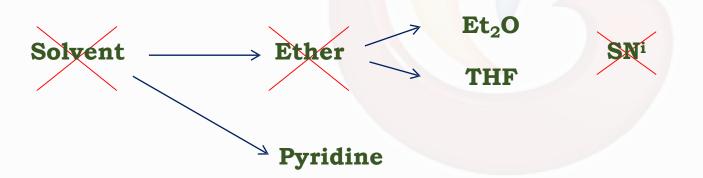

This is also different from SN² reactions as in SN², there is inversion of configuration, whereas over here, the stereochemistry of the reactant and the product is nearly the same.

Hence this reaction can be explained **neither by SN¹ nor by SN²**.

Nucleophilic Substitution Internal

Course Code : BSCC2004

Course Name: Organic Chemistry-II

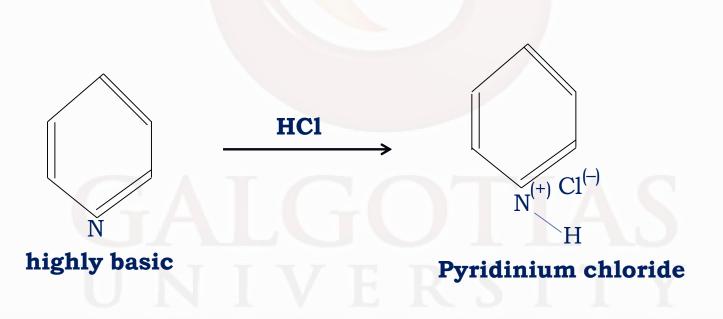

Name of the Faculty: Dr. Shafat Ahmad Khan

Program Name: B.Sc (H)

Course Code : BSCC2004

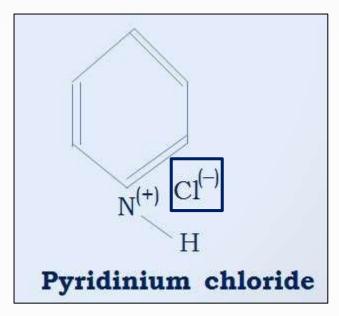
Course Name: Organic Chemistry-II

We conclude that in SNⁱ reactions, we get a **retention of configuration**.

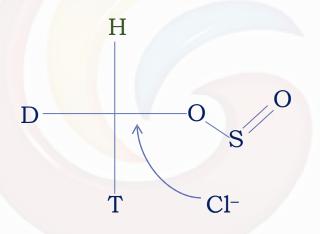


GALGOTIAS UNIVERSITY

Course Code : BSCC2004


Course Name: Organic Chemistry-II

The principle mechanism of SNⁱ reactions is based on the assumption that addition of pyridine to the reaction leads to **inversion of configuration**.



Course Code : BSCC2004

Course Name: Organic Chemistry-II

• Cl⁻ ion is loosely bonded and free

• Hence there is backward attack which results in **inversion** of configuration.

Hence if the solvent added in the medium of this reaction is pyridine,

then the reaction will **no longer remain SN**ⁱ as the mechanism will change to that of **SN**².

Course Code : BSCC2004

Course Name: Organic Chemistry-II

Hence, we can draw **four** important inferences:

1. In ether medium, the reaction follows the rules of **SN**ⁱ mechanism.

- 2. If pyridine is added as the medium solvent to this reaction, it will form a strong **nucleophile** in Pyridinium chloride, which will cause a **backward** attack on the system, eliminating Sulphur dioxide from it.
- 3. This type of reaction will be termed as SN² because there is **inversion** of configuration. In case of pyridine, the nature of the reaction changes from **SN**ⁱ to **SN²**.
- 4. In case of SNⁱ reactions, the rate of the reaction is dependent on the concentration of both the alcohol and the thionyl chloride, i.e.,

Rate r = [R – OH] [SOCl₂],

as opposed to the case of SN¹ and SN² reactions.

Course Code : BSCC2004

Course Name: Organic Chemistry-II

Source & References:

The materials presented in this lecture has been taken from various books and internet websites. This instruction materials is for instructional purposes only.

a. https://www.slideshare.net/born2beawinner/sni-substitution-reactions

b. https://www.slideshare.net/ganeshmote1/alkyl-halide-131723782

GALGOTIAS UNIVERSITY

Course Code : BSCC2004

Course Name: Organic Chemistry-II

GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. Shafat Ahmad Khan

Program Name: B.Sc (H)