Course Code: MSCH6002 Course Name: Reagents and Heterocyclic Chemistry

OXIDIZING REAGENTS

GALGOTIAS UNIVERSITY

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

TOPICS TO BE COVERED

- Oxidation Reaction of Alcohols
- Oxidation of Aldehyde and Ketones
- Mechanism of oxidation
- Hydroxylation Reaction and Mechanism

NIVERSITY

• Stereochemistry of Hydroxylation and Problems

Course Code : MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Oxidation of Alcohols

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Oxidation of Alcohols and Mechanism

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

The Swern Oxidation

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Oxidation of Aldehydes and Ketones

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Hydroxylation of Alkenes

Converting an alkene to a glycol requires addition of –OH group to each end of the double bond.

Hydroxylation Reagents:-

- i. Potassium Permaganate (KMnO₄)
- ii. Osmium Tetroxide (OsO₄)

It is a Syn-addition reaction giving diol.

$$CH_{3}CH = CHCH_{3} \xrightarrow{\text{KMnO}_{4}, \text{ HO}^{-}, \text{ H}_{2}O} \xrightarrow{\text{CH}_{3}CH} CH_{3}CH - CHCH_{3}$$
a vicinal diol

$$CH_3CH_2CH = CH_2 \xrightarrow{\begin{array}{c} \textbf{1. OsO_4} \\ \hline \textbf{2. NaHSO_3, H_2O} \end{array}} CH_3CH_2CHCH_2 \xrightarrow{\textbf{OH}}$$
 a vicinal diol

Name of the Faculty: Dr. Subhalaxmi Pradhan

Program Name: M.Sc Chemistry

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Mechanism of Hydroxylation of Alkenes

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Mechanism of Hydroxylation of Alkenes

Course Code : MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Stereochemistry of Hydroxylation

$$CF_3 \xrightarrow{OSO_4} \xrightarrow{F_3C} \xrightarrow{CF_3} \xrightarrow{CF_3}$$

$$Cis \qquad Meso$$

$$CF_3 \xrightarrow{OSO_4} \xrightarrow{F_3C} \xrightarrow{H_1 \times H_2} \xrightarrow{CF_3} \xrightarrow{F_3C} \xrightarrow{H_1 \times H_2} \xrightarrow{F_3C} \xrightarrow{F_3C} \xrightarrow{H_1 \times H_2} \xrightarrow{F_3C} \xrightarrow{F_3C} \xrightarrow{F_3C} \xrightarrow{H_1 \times H_2} \xrightarrow{F_3C} \xrightarrow{F_3C}$$

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Stereochemistry of Hydroxylation

E-isomer will give racemic mixture and z-isomer will give meso form.

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Stereochemistry of Hydroxylation

Course Code : MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

IVERSITY

Course Code: MSCH6002 Course Name: Reagents and Heterocyclic Chemistry

References

- W. Carruthers, Some Modern Methods of Organic Synthesis, 3rd edition, Cambridge University Press, New York, 1998.
- J. Clayden, N. Greeves and S. Warren, Organic Chemistry, Oxford University Press, 2nd edition, 2012.
- T.L. Gilchrist, Heterocyclic Chemistry, 3rd edition, Addison-Wesley Longman Ltd., England, 1997.
- https://www.google.com/search?q=hydroxylation+of+alkenes&tbm=isch&chips=q:hydroxylation+of+alkenes,g_1:dihydroxylation&rlz=1C1CHBD_enlN920IN920&hl=en&sa=X&ved=2ahUKEwia7Off3D3pzsAhUEJLcAHWbsCTgQ4lYoAnoECAEQFg&biw=1349&bih=576#imgrc=JzpRh2KX9hXjPM

UNIVERSITY

Course Code : MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

